

Appendix 8.2: Methodology for Construction Phase Assessment

Institute of Air Quality Management Guidance

8.2.1 The methodology for the construction phase dust assessment is set out in guidance from the Institute of Air Quality Management (IAQM)¹¹.

Step 1

- 8.2.2 Step 1 is to screen the requirement for a more detailed assessment. The guidance states that an assessment will normally be required where there are existing sensitive human receptors within 350m of the site boundary and/or within 100m of the route(s) used by construction vehicles on the public highway, up to 500m from the site entrance(s).
- 8.2.3 With regards to ecological receptors, the guidance states that an assessment will normally be required where there are existing receptors within 50m of the site boundary and/or within 50m of the route(s) used by construction vehicles on the public highway, up to 500m from the site entrance(s).
- 8.2.4 Where any of these criteria are met, it is necessary to proceed to Step 2.

Step 2

- 8.2.5 Step 2 determines the potential risk of dust arising in sufficient quantities to cause annoyance and/or health or ecological impacts. The risk is related to:
 - The activities being undertaken (demolition, number of vehicles and plant etc);
 - The duration of these activities;
 - The size of the site;
 - The meteorological conditions (wind speed, direction and rainfall);
 - The proximity of receptors to the activity;
 - The adequacy of the mitigation measures applied to reduce or eliminate dust; and
 - The sensitivity of receptors to dust.
- 8.2.6 The risk of dust impacts is determined using four risk categories: negligible, low, medium and high risk. A site is allocated to a risk category based upon the following two factors (known as Step 2A and Step 2B).

¹¹ Institute of Air Quality Management, Guidance on the Assessment of Dust from Demolition and Construction, February 2014

8.2.7 **Step 2A** assesses the scale and nature of the works which determines the potential dust emission magnitude as small, medium or large. Examples of how the magnitude may be defined are included in Table 8.2.

	Dust Emission Class					
Activity	Large	Medium	Small			
	Total building volume	Total building volume	Total building volume			
	>50,000m³;	20,000-50,000m³;	<20,000m³;			
	Potentially dusty	Potentially dusty	Construction material			
	construction material	construction material;	with low potential for			
Demolition	(e.g. concrete);	Demolition activities 10-	dust release (e.g. metal			
	On-site crushing and	20m above ground level	cladding or timber)			
	screening;					
	Demolition activities					
	>20m above ground level					
	Total site area	Total site area 2,500-	Total site area <2,500m ² ,			
	>10,000m²;	10,000m²;	Soil type with large grain			
	Potentially dusty soil type	Moderately dusty soil	size (e.g. sand);			
	(e.g. clay, which will be	type (e.g. silt);	<5 heavy earth moving			
	prone to suspension	5-10 heavy earth moving	vehicles active at any one			
	when dry due to small	vehicles active at any one	time;			
	particle size);	time;	Formation of bunds <4m			
Earthworks	>10 heavy earth moving	Formation of bunds 4-8m	in height;			
	vehicles active at any one	in height;	Total material moved			
	time;	Total material moved	<20,000 tonnes;			
	Formation of bunds >8m	20,000-100,000 tonnes	Earthworks during wette			
	in height;		months			
	Total material moved					
	>100,000 tonnes					
	Total building volume	Total building volume	Total building volume			
	>100,000m³;	25,000-100,000m³;	<25,000m ³ ;			
	On-site concrete	Potentially dusty	Construction material			
Construction	batching;	construction material	with a low potential for			
	Sandblasting	(e.g. concrete);	dust release (e.g. metal			
		On-site batching	cladding or timber)			
	>50 HDV (>3.5t) outward	10-50 HDV (>3,5t)	<10 HDV (>3.5t) outward			
	movements ^a in any one	outward movements ^a in	movements ^a in any one			
	day ^b ;	any one day ^b ;	day ^b ;			
Trackout	Potentially dusty surface	Moderately dusty surface	Surface material with lov			
	material (e.g. high clay	material (e.g. high clay	potential for dust release			
	content);	content);	Unpaved road length			
	Unpaved road length	Unpaved road length 50-	<50m			

THE DRUMMOND ESTATE AND INVEROCK LIMITED

ENDERBY RELIEF ROAD

CHAPTER 8 APPENDICES: AIR QUALITY

Table 8.2: Determining the Dust Emission Magnitude of Construction Phase Activities				
Activity	Dust Emission Class			
Activity	Large	Medium	Small	
	>100m	100m		

a. A vehicle movement is a one way journey i.e. from A to B, and excludes the return journey

8.2.8 **Step 2B** considers the sensitivity of the area to dust impacts which is defined as low, medium or high. The sensitivity categories for different types of receptors are described in Table 8.3.

Concitivity			
Sensitivity Category	Dust Soiling Effects	Health effects of PM ₁₀	Ecological Effects
	Users can reasonably	Locations where members	Locations with an
	expect to enjoy a high	of the public are exposed	international or national
	level of amenity;	over a period of time	designation and the
	Appearance, aesthetics or	relevant to the air quality	designated features may
	value of a property would	objective for PM ₁₀ ;	be affected by dust soiling
112-1-	be diminished;	Examples include	Locations where there is a
High	Examples include	residential properties,	community of a
	dwellings, museums and	hospitals, schools, and	particularly dust sensitive
	other culturally important	residential care homes	species;
	collections, medium and		Examples include a Specia
	long term car parks and		Area of Conservation with
	car show rooms		dust sensitive features
	Users would expect to	Locations where people	Locations where there is a
	enjoy a reasonable level of	are exposed as workers	particularly important
	amenity, but would not	and exposure is over a	plant species, where its
	reasonably expect to enjoy	period of time relevant to	dust sensitivity is
	the same level of amenity	the air quality objective	uncertain or unknown;
	as in their home;	for PM ₁₀ ;	Locations with a national
	The appearance,	Examples include office	designation where the
	aesthetics or value of their	and shop workers but will	features may be affected
Medium	property could be	generally not include	by dust deposition;
	diminished;	workers occupationally	Examples include a Site of
	People or property	exposed to PM ₁₀	Special Scientific Interest
	wouldn't reasonably be		with dust sensitive
	expected to be		features
	continuously present or		
	regularly for extended		
	periods of time;		
	Examples include parks		

b. HDV movements during a construction project may vary over its lifetime, and the number of movements is the maximum not the average

Table 8.3: Se	ensitivity Categories for Dust	Soiling, Human Health and Ec	ological Effects	
Sensitivity Category	Dust Soiling Effects	Health effects of PM ₁₀	Ecological Effects	
	and places of work			
	Enjoyment of amenity	Locations where human	Locations with a local	
	would not reasonably be	exposure is transient;	designation where the	
	expected;	Examples include public	features may be affected	
	Property would not be	footpaths, playing fields,	by dust deposition;	
	diminished in appearance,	parks and shopping streets	Examples include a Local	
	aesthetics or value;		Nature Reserve with dust	
	People or property would		sensitive features	
Low	be expected to be present			
LOW	only for limited periods of			
	time;			
	Examples include playing			
	fields, farmland (unless			
	commercially-sensitive			
	horticultural), footpaths,			
	short term car parks and			
	roads			

8.2.9 Based on the sensitivity of individual receptors, the overall sensitivity of the area to dust soiling, human health and ecological effects is then determined using the criteria detailed in Tables 8.4 to 8.6, respectively.

Table 8.4: Sensitivity of the Area to Dust Soiling Effects on People and Property ^{ab}						
Receptor	Number of	Distance from Source (m) ^c				
Sensitivity	Receptors	<20m <50m <100m <350m				
	>100	High	High	Medium	Low	
High	10-100	High	Medium	Low	Low	
	1-10	Medium	Low	Low	Low	
Medium	>1	Medium	Low	Low	Low	
Low	>1	Low	Low	Low	Low	

- a. The sensitivity to the area should be derived for each of the four activities
- b. Estimate the total number of receptors within the stated distance. Only the highest level of sensitivity from the table needs to be considered
- c. For trackout, distances should be measured from the side of the roads used by construction traffic. Without site specific mitigation, trackout may occur for up to 500m from large sites, 200m from medium sites and 50m from small sites, measured from the site exit. The impact declines with distance from the site and it is only necessary to consider trackout impacts up to 50m from the edge of the road

Table 8.5: Sensitivity of the Area to Human Health Impacts ^{ab}							
Receptor	Annual Mean	Number of	Distance from Source (m) ^e				
Sensitivity	PM ₁₀ Concentration ^c	Receptorsd	<20m	<50m	<100m	<200m	<350m
		>100	High	High	High	Medium	Low
	>32μg/m³	10-100	High	High	Medium	Low	Low
		1-10	High	Medium	Low	Low	Low
		>100	High	High	Medium	Low	Low
	28-32μg/m ³	10-100	High	Medium	Low	Low	Low
High		1-10	High	Medium	Low	Low	Low
iligii		>100	High	Medium	Low	Low	Low
	$24-28\mu g/m^3$	10-100	High	Medium	Low	Low	Low
		1-10	Medium	Low	Low	Low	Low
		>100	Medium	Low	Low	Low	Low
	<24μg/m³	10-100	Low	Low	Low	Low	Low
		1-10	Low	Low	Low	Low	Low
	>32µg/m³	>10	High	Medium	Low	Low	Low
	>32μg/111	1-10	Medium	Low	Low	Low	Low
	28-32μg/m ³	>10	Medium	Low	Low	Low	Low
Medium	20-32μg/111	1-10	Low	Low	Low	Low	Low
Micaiaiii	24-28μg/m ³	>10	Low	Low	Low	Low	Low
	24-20μ8/111	1-10	Low	Low	Low	Low	Low
	<24μg/m³	>10	Low	Low	Low	Low	Low
	\27μ6/111	1-10	Low	Low	Low	Low	Low
Low	-	>1	Low	Low	Low	Low	Low

- a. The sensitivity to the area should be derived for each of the four activities
- b. Estimate the total number of receptors within the stated distance. Only the highest level of sensitivity from the table needs to be considered
- c. Most straightforwardly taken from the national background maps, but should also take account of local sources. The values are based on 32µg/m³ being the annual mean concentration at which an exceedance of the 24-hour mean objective is likely in England, Wales and Northern Ireland. In Scotland, there is an annual mean objective of 18µg/m³
- d. In the case of high sensitivity receptors with high occupancy (such as schools or hospitals) approximate the number of people likely to be present. In the case of residential dwellings, just include the number of properties e. For trackout, distances should be measured from the side of the roads used by construction traffic

Table 8.6: Sensitivity of the Area to Ecological Impacts ^{ab}					
Receptor	Distance from the Source (m) ^c				
Sensitivity	<20 <50				
High	High	Medium			
Medium	Medium	Low			
Low	Low	Low			

- a. The sensitivity to the area should be derived for each of the four activities
- b. Only the highest level of sensitivity from the table needs to be considered

THE DRUMMOND ESTATE AND INVEROCK LIMITED

ENDERBY RELIEF ROAD

CHAPTER 8 APPENDICES: AIR QUALITY

Table 8.6: Sensitivity of the Area to Ecological Impacts ^{ab}					
Receptor	Distance from the Source (m) ^c				
Sensitivity	<20 <50				
c. For trackout, distar	c. For trackout, distances should be measured from the side of the roads used by construction traffic				

- 8.2.10 These two factors are combined in **Step 2C** to determine the risk of dust impacts with no mitigation applied.
- 8.2.11 The risk of dust effects is determined for four types of construction phase activities, with each activity being considered separately. If a construction phase activity is not taking place on the site, then it does not need to be assessed. The four types of activities to be considered are:
 - Demolition;
 - Earthworks;
 - · Construction; and
 - Trackout.
- 8.2.12 The risk of dust being generated by demolition activities at the site is determined using the criteria in Table 8.7.

Table 8.7: Risk of Dust Impacts for Demolition					
Sensitivity of Area	Dust Emission Magnitude				
Sensitivity of Area	Large	Medium	Small		
High	High Risk	Medium Risk	Medium Risk		
Medium	High Risk	Medium Risk	Low Risk		
Low	Medium Risk	Low Risk	Negligible		

8.2.13 The risk of dust being generated by earthworks and construction at the site is determined using the criteria in Table 8.8.

Table 8.8: Risk of Dust Impacts for Earthworks and Construction					
Sensitivity of Area	Dust Emission Magnitude				
Sensitivity of Area	Large	Medium	Small		
High	High Risk	Medium Risk	Low Risk		
Medium	Medium Risk	Medium Risk	Low Risk		
Low	Low Risk	Low Risk	Negligible		

8.2.14 The risk of dust being generated by trackout at the site is determined using the criteria in Table 8.9.

ENDERBY RELIEF ROAD
CHAPTER 8 APPENDICES: AIR QUALITY

Table 8.9: Risk of Dust Impacts for Trackout				
Sensitivity of Area	Dust Emission Magnitude			
Sensitivity of Area	Large	Medium	Small	
High	High Risk	Medium Risk	Low Risk	
Medium	Medium Risk	Low Risk	Negligible	
Low	Low Risk	Low Risk	Negligible	

Step 3

- 8.2.15 Step 3 of the assessment determines the site-specific mitigation required for each of the activities, based on the risk determined in Step 2. Mitigation measures are detailed in guidance published by the Greater London Authority¹², recommended for use outside the capital by LAQM guidance, and the IAQM guidance document itself. Professional judgement should be used to determine the type and scale of mitigation measures required.
- 8.2.16 If the risk is classed as negligible, no mitigation measures beyond those required by legislation will be necessary.

Step 4

8.2.17 Step 4 assesses the residual effect, with mitigation measures in place, to determine whether or not these are significant.

Professional Judgement

8.2.18 The IAQM guidance makes reference to the use of professional judgement when assessing the risks of dust and fine particulate matter from demolition and construction sites.

¹¹ Greater London Authority, The Control of Dust and Emissions from Construction and Demolition: Best Practice Guidance, 2006