

CALCULATIONS

Job No: 20026

Job Title: 2 HARRIET PLACE,

FALMOUTH,

CORNWALL

Page Numbers:	Date:	Checked by:
C1-10	JUNE'20	GM
SK01	JUNE'20	GM

JOB NO 20026

DESIGN STANDARDS

The Standards listed below have been used in the preparation of these calculations. All Standards incorporate the latest revision and amendments.

\checkmark	BS648:1964	Schedule of Weights of Buildings Materials.
	BS5268	Structural Use of Timber.
		Part 2: 2002: Code of Practice for Permissible stress design, materials and workmanship.
		Part 3: 1998: Code of Practice for Trussed Rafter Roofs.
		Part 4(4.1) 1978: Fire Resistance of Timber structures.
	BS5628	Code of Practice for Use of Masonry.
\checkmark		Part 1: 1992: Structural Use of Unreinforced Masonry.
		Part 2: 2000: Structural Use of Reinforced and Prestressed Masonry.
		Part 3: 2001: Materials and components, design and workmanship.
	BS5950	Structural Use of Steel in Building.
\checkmark		Part 1: 2000: Code of Practice for design in simple and continuous construction: hot rolled sections
	BS6399	Loading for Buildings.
✓ □ □		Part 1: 1996: Code of Practice for Dead and Imposed Loads. Part 2: 1997: Code of Practice for Wind Loads Part 3: 1988: Code of Practice for Imposed Roof Loads.
\checkmark	BS8004	1986: Code of Practice for Foundations.
	BS8110	Structural Use of Concrete
		Part 1: 1997: Code of Practice for Design and Construction. Part 2: 1985: Code of Practice for Special Circumstances

☑ Tick as necessary

Other British Standards used in the calculations:

	Project				Job Ref.	
		2 Harri	et Place		200	026
MBA	Section				Sheet no./rev.	
					2	2
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	GM	MAY '20				

INTRODUCTION AND CLIENTS BRIEF

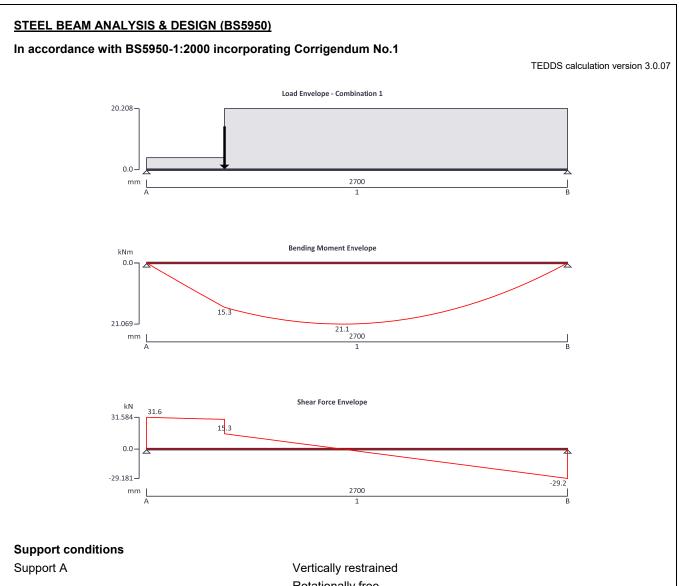
- 1. MBA's Client is Mr C Knight and Miss N Gawor of 2 Harriet Place, Falmouth.
- 2. These calculations have been prepared in support of a Building Regulations application made by our Client for the proposed structural alterations at the above property.
- 3. These calculations should be read in conjunction with MBA engineering drawings for clarity.
- 4. The structural alterations cover the widening of two openings in two existing walls at the rear of the property at ground floor level.
- 5. No site investigation has been undertaken and a preliminary inspection of the trial pits for the purposes of these calculations has provided an estimated allowable ground bearing pressure of 75kPa. This should be confirmed on site by a suitably qualified geo-technical engineer and, should the actual ground conditions differ from our assumptions, the information is to be passed to MBA to allow a review to be completed.
- 6. All Steelwork should be to a minimum grade of S275
- 7. LOADING
 - a. The Dead loads have been derived from assumptions based on limited information of the building, however in the absence of more detailed information a conservative approach has been taken.
 - b. The Live loads have been derived from BS6399-1 for use as a domestic dwelling.
- 8. FIRE PROTECTION

Elements of the primary structure should have fire protection in accordance with the Building Regulations or architectural details. This is an item that is beyond our expertise to specify.

	Project				Job Ref.	
		2 Harri	et Place		200	026
MBA	Section				Sheet no./rev.	
					:	3
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	GM	MAY '20				

LOADING

Assumed Existing	DL	LL
Trussed Rafter Roof	kN/m²	kN/m²
Slates	0.60	-
Ply boarding and felt	0.20	-
s/wt Trusses	0.25	-
pitch 30	1.05	-
load on plan	1.21	-
<u>On plan</u>		-
		-
Ceiling and Services	0.25	-
	0.25	-
Snow		0.60
Total	1.43	0.60


Assumed Existing	DL	LL
Floor	kN/m²	kN/m²
Partitions	0.35	-
Finishes	0.10	-
s/wt timber Joists	0.15	-
Insulation	0.05	-
Ceiling & Services	0.20	-
		-
		-
		-
Domestic	-	1.50
Total	0.85	1.50

Existing Wall	<i>DL</i>
Construction	kN/m²
25mm Render	0.60
140mm dense blockwork	2.80
PB and Skim	0.15
Total	3.55

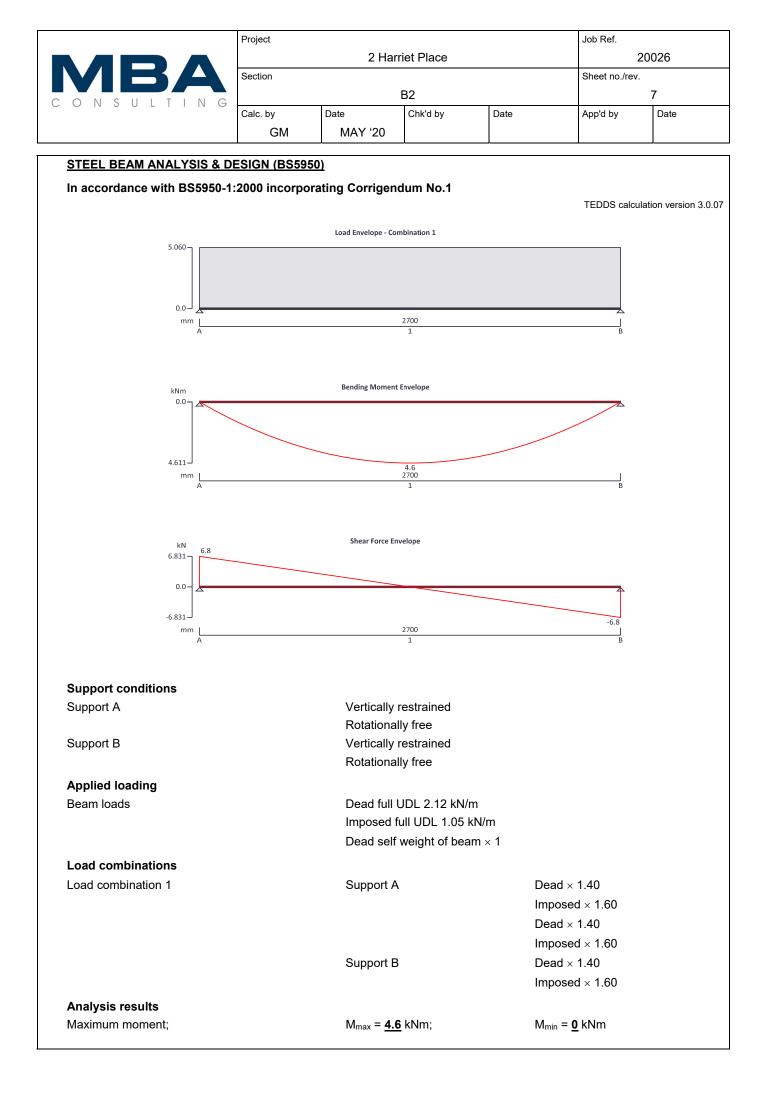
Made by	Job Title 2 WARRS	SET PLACE		MBA
Checked by	Job No.	Sheet	Date	CONSULTING
	NO. 2002-6	04	MAY120	

BI DISM PI	
N' 2 Man	A= DL = 19.6 ken
ABRING	4 = 2.6km
2°7m	B=DL= 17.1KN
	UL = 3.3kn
W1= 1200F DL = 1.43×1.2= 1.72 km/m	
200F LL = 0.60 × 1.2 = 0.72/cm/m	
	PROVIDE
W2 ROOF DL= 1.43×1.2= 1.72km/m	203×133×304B
ROOF LE= 0.60×1-2= 0.72/cm/m	
WALL DL= 3.55 x 2.4= 8.52 km/m	
FLOOR DL= 0.85 × 1-2 = 1.02/en/m	
FLOOR 41= 1.50×1-2= 1.80km/m	
TO TAL DI= 11.2-6/cm/m	
4= 2.52/cn/m	
PIE CONCRETE BEAM= 8.52 × 1.2 = 10.23 km	· · · · · · · · · · · · · · · · · · ·
Bz	
Wi J.	A=B=DL=3.3k
A CONTRACTOR B K 2:7m X	Le= 1.4k
$M = DL = 1.21 \times 1.75 = 2.12 km/h$	PROVIDE
4= 0.60 x1-75= 1.05km/m	203×133×3010B

Project				Job Ref.	
	2 Harri	iet Place		20	026
Section				Sheet no./rev.	
	E	31			5
Calc. by	Date	Chk'd by	Date	App'd by	Date
GM	MAY '20				

Support B

Applied loading Beam loads


Load combinations

Vertically restrained Rotationally free Vertically restrained Rotationally free

Dead partial UDL 1.72 kN/m from 0 mm to 500 mm Imposed partial UDL 0.72 kN/m from 0 mm to 500 mm Dead partial UDL 11.26 kN/m from 500 mm to 2700 mm Imposed partial UDL 2.52 kN/m from 500 mm to 2700 mm Dead point load 10.23 kN at 500 mm Dead self weight of beam × 1

Support A $Dead \times 1.40$ Imposed $\times 1.60$ $Dead \times 1.40$ Imposed $\times 1.60$ Support B $Dead \times 1.40$

MBA	Section	2 1 101	riet Place			0026
	1				Sheet no./rev.	
	X		B1			6
ONSULTING	Calc. by	Date	Chk'd by	Date	App'd by	Date
	GM	MAY '20				
	•		-	Impo	osed × 1.60	•
Analysia reculto				impo	Seu × 1.00	
Analysis results Maximum moment;		M _{max} = <u>21</u>	1 kNm [.]	Mmin	= <u>0</u> kNm	
Maximum shear;		V _{max} = <u>31.</u>			= <u>-29.2</u> kN	
Deflection;		δ _{max} = <u>1.9</u>			= <u>0</u> mm	
Maximum reaction at support	A;	R _{A_max} = <u>3</u>			_{nin} = <u>31.6</u> kN	
Unfactored dead load reaction	n at support A;	$R_{A_{Dead}} = $	19.6 kN			
Unfactored imposed load read	ction at support A;	$R_{A_Imposed}$	= <u>2.6</u> kN			
Maximum reaction at support		R _{B_max} = <u>2</u>		R _{B_m}	_{nin} = <u>29.2</u> kN	
Unfactored dead load reaction		$R_{B_{Dead}} =$				
Unfactored imposed load read	ction at support B;	$R_{B_Imposed}$	= <u>3.3</u> kN			
Section details		20 /T-1- 01- 1	Adversely		Oto al ana di	0075
Section type;	<u>UKB 203x133x</u>	(<u>30 (Tata Steel</u> %	<u>Aavance)</u> ;		Steel grade;	<u>S275</u>
	—	*]		
		1		-		
	206.8-		→ ←6.4			
		(D				
		9. 6 ↓		-		
	<u> </u>	▲]		
			-133.9	•		
Classification of cross secti	ions - Section 3.5	5				
Tensile strain coefficient;	ε = <u>1.00;</u>	-	Section clas	sification;	<u>Plastic</u>	
Shear capacity - Section 4.2	2.3					
Design shear force;	F _v = <u>31.6</u> kN;		Design shea	ar resistance;	P _v = <u>218.4</u> ki	N
		PA	-	shear resistance		
Moment capacity - Section 4	4.2.5					
Design bending moment;	M = <u>21.1</u> kNm;		Moment cap	oacity low shear;	Mc = <u>86.5</u> kN	m
Buckling resistance momen	t - Section 4.3.6.	4				
Buckling resistance moment;			M _b / m _{LT} = <u>6</u>	7.9 kNm		
		PASS - Buck	ling resistand	ce moment exce	eds design ber	nding mon
Check vertical deflection - S	Section 2.5.2					
Consider deflection due to dea	ad and imposed lo	bads				
Limiting deflection	δ _{lim} = <u>9</u> mm;		Maximum de		δ = <u>1.91</u> mm	
		PA	SS - Maximuı	n deflection do	es not exceed d	leflection l

	Project	2 Har	riet Place		Job Ref.	0026
NBA	Section		B2		Sheet no./rev.	
ONSULTIN	G Calc. by	Date	BZ Chk'd by	Date	App'd by	8 Date
	GM	MAY '20	Clika by	Dale	Арра Бу	Date
Maximum shear;		V _{max} = <u>6.8</u>	kN;	V _{min} =		
Deflection;		δ _{max} = <u>0.4</u>		δ _{min} = <u>(</u>	_	
Maximum reaction at suppor		R _{A_max} = <u>6</u>		RA_min F	= <u>6.8</u> kN	
Unfactored dead load reaction		R _{A_Dead} =				
Unfactored imposed load rea				D -	- C O LNI	
Maximum reaction at suppor Unfactored dead load reaction		R _{B_max} = <u>6</u> R _{B_Dead} = 5		KB_min ↔	= <u>6.8</u> kN	
Unfactored imposed load reaction		_				
-	iolion at ouppoir D,	T CD_IIIIposed	<u></u> KI			
Section details Section type;	<u>UKB 203x133x</u>	30 (Tata Steel	Advance).		Steel grade;	<u>S355</u>
occion type,			Auvancej,		oleci giade,	0000
		9.6 ↓]		
	-206.8	-	6.4			
		9 6 ↓ ↓]		
		◀	-133.9	•		
Classification of cross sec		5				
Tensile strain coefficient;	ε = <u>0.88</u> ;		Section clas	ssification;	<u>Plastic</u>	
Shear capacity - Section 4. Design shear force;	2.3 F _v = <u>6.8</u> kN;		-	ar resistance;	Pv = <u>281.9</u> ki	
Design shear force;	F _v = <u>6.8</u> kN;	PA	-	ar resistance; shear resistance e		
Design shear force; Moment capacity - Section	F _v = <u>6.8</u> kN; 4.2.5	PA	SS - Design	shear resistance e	exceeds desig	ın shear fo
Design shear force;	F _v = <u>6.8</u> kN;	ΡΑ	SS - Design			ın shear fo
Design shear force; Moment capacity - Section Design bending moment; Buckling resistance mome	F _v = <u>6.8</u> kN; 4.2.5 M = <u>4.6</u> kNm; nt - Section 4.3.6.	4	SS - Design	shear resistance e	exceeds desig	ın shear fo
Design shear force; Moment capacity - Section Design bending moment;	F _v = <u>6.8</u> kN; 4.2.5 M = <u>4.6</u> kNm; nt - Section 4.3.6.	4	SS - Design Moment cap M₀ / m⊾⊤ = <u>8</u>	shear resistance e bacity low shear; <u>81.3</u> kNm	exceeds desig M _c = <u>111.6</u> k	yn shear fo Nm
Design shear force; Moment capacity - Section Design bending moment; Buckling resistance mome	F _v = <u>6.8</u> kN; 4.2.5 M = <u>4.6</u> kNm; nt - Section 4.3.6.	4	SS - Design Moment cap M₀ / m⊾⊤ = <u>8</u>	shear resistance e	exceeds desig M _c = <u>111.6</u> k	yn shear fo Nm
Design shear force; Moment capacity - Section Design bending moment; Buckling resistance mome Buckling resistance moment; Check vertical deflection -	F _v = <u>6.8</u> kN; 4.2.5 M = <u>4.6</u> kNm; nt - Section 4.3.6. ; M _b = <u>75.2</u> kNm; Section 2.5.2	4 PASS - Buck	SS - Design Moment cap M₀ / m⊾⊤ = <u>8</u>	shear resistance e bacity low shear; <u>81.3</u> kNm	exceeds desig M _c = <u>111.6</u> k	yn shear fo Nm
Design shear force; Moment capacity - Section Design bending moment; Buckling resistance moment Buckling resistance moment Check vertical deflection - Consider deflection due to deflection	$F_v = 6.8 kN;$ 4.2.5 M = <u>4.6</u> kNm; nt - Section 4.3.6. ; M _b = <u>75.2</u> kNm; Section 2.5.2 ead and imposed lo	4 PASS - Buck	SS - Design Moment cap M _b / m∟⊤ = <u>8</u> ling resistand	shear resistance e bacity low shear; 81.3 kNm ce moment exceed	exceeds desig M _c = <u>111.6</u> k ds design ber	n shear fo Nm nding mon
Design shear force; Moment capacity - Section Design bending moment; Buckling resistance mome Buckling resistance moment; Check vertical deflection -	F _v = <u>6.8</u> kN; 4.2.5 M = <u>4.6</u> kNm; nt - Section 4.3.6. ; M _b = <u>75.2</u> kNm; Section 2.5.2	4 PASS - Buck bads	SS - Design Moment cap M _b / m _{LT} = <u>8</u> ling resistand Maximum d	shear resistance e bacity low shear; <u>91.3</u> kNm ce moment exceed eflection;	exceeds desig Mc = <u>111.6</u> k ds design ber δ = <u>0.404</u> mn	in shear fo Nm ading mon 1
Design shear force; Moment capacity - Section Design bending moment; Buckling resistance moment Buckling resistance moment Check vertical deflection - Consider deflection due to deflection	$F_v = 6.8 kN;$ 4.2.5 M = <u>4.6</u> kNm; nt - Section 4.3.6. ; M _b = <u>75.2</u> kNm; Section 2.5.2 ead and imposed lo	4 PASS - Buck bads	SS - Design Moment cap M _b / m _{LT} = <u>8</u> ling resistand Maximum d	shear resistance e bacity low shear; 81.3 kNm ce moment exceed	exceeds desig Mc = <u>111.6</u> k ds design ber δ = <u>0.404</u> mn	in shear fo Nm ading mon 1
Design shear force; Moment capacity - Section Design bending moment; Buckling resistance moment Buckling resistance moment Check vertical deflection - Consider deflection due to deflection	$F_v = 6.8 kN;$ 4.2.5 M = <u>4.6</u> kNm; nt - Section 4.3.6. ; M _b = <u>75.2</u> kNm; Section 2.5.2 ead and imposed lo	4 PASS - Buck bads	SS - Design Moment cap M _b / m _{LT} = <u>8</u> ling resistand Maximum d	shear resistance e bacity low shear; <u>91.3</u> kNm ce moment exceed eflection;	exceeds desig Mc = <u>111.6</u> k ds design ber δ = <u>0.404</u> mn	in shear fo Nm ading mon 1
Design shear force; Moment capacity - Section Design bending moment; Buckling resistance moment Buckling resistance moment Check vertical deflection - Consider deflection due to deflection	$F_v = 6.8 kN;$ 4.2.5 M = <u>4.6</u> kNm; nt - Section 4.3.6. ; M _b = <u>75.2</u> kNm; Section 2.5.2 ead and imposed lo	4 PASS - Buck bads	SS - Design Moment cap M _b / m _{LT} = <u>8</u> ling resistand Maximum d	shear resistance e bacity low shear; <u>91.3</u> kNm ce moment exceed eflection;	exceeds desig Mc = <u>111.6</u> k ds design ber δ = <u>0.404</u> mn	in shear fo Nm ading mon 1

Made by		
CM	Title 2 HARRIET PLACE	
Checked by	Job Sheet Date CONSUL No. 20026 9. MAY'20	
WORST	CASE MASONRY BEARSNE	
LOAC	ON WALL = 19.6×1.4+2.6×1.5=31.32km	
ALLO	WABLE STRESS = 1.5 x 3.5 = 1.5 N/mm2	-Ĩ-
	3.5	
ACTUAL	- STRESS (NO PADSTONE) = 31.32×10 ³ = 1.49~/m ² = ACCE. 150 × 140	PTABL
STRESS,	29 O.4h	
hefs = .		
h = 8S = 1 t = 1	2.4 2400 = 17 @ 0.05t B = 0.80	
	2.4 2400 = 17 @ 0.05t B = 0.80	
Ec. 18 = 1	2.4 2400 = 17 @ 0.05t B = 0.80	
Ec. 18 = 1	2.4 <u>2400 - 17 @ 0.05t B = 0.80</u> 40mm 140	
tets = 1 0.1	$2.4c_{ma} = 17 @ 0.05t B = 0.80$ $40_{ma} = 140$ $+ \times 2.4t \times 0.14t \times 0.44 \times 16 \times 1.4t + 31.32 = 32.8 km$	
tets = 1 0.1	2.4 $2400 = 17$ @ 0.05t B = 0.80 40mm 140 $x > 2.4 \times 0.14 \times 0.44 \times 16 \times 1.4 + 31.32 = 32.8 \text{ km}$ ABLE STRESS = $0.8 \times 3.5 = 0.8 \text{ m/mm}^2$	
tets = 1 0.1	$2.4c_{ma} = 17 @ 0.05t B = 0.80$ $40_{ma} = 140$ $+ \times 2.4t \times 0.14t \times 0.44 \times 16 \times 1.4t + 31.32 = 32.8 km$	
teds = 1 0.1 Allow.	2.4 $2400 = 17$ @ 0.05t $B = 0.80$ 40m 140 $x \times 2.4 \times 0.14 \times 0.44 \times 16 \times 1.4 + 31.32 = 32.8 \text{ km}$ ABLE STRESS = $0.6 \times 3.5 = 0.5 \text{ m/mm}^2$ 3.5	
Ects = 1 0.1 Allow. 32.	2.4 $2400 = 17$ @ 0.05t B = 0.80 40mm 140 $x > 2.4 \times 0.14 \times 0.44 \times 16 \times 1.4 + 31.32 = 32.8 \text{ km}$ ABLE STRESS = $0.8 \times 3.5 = 0.8 \text{ m/mm}^2$	
Ects = 1 0.1 Allow. 32.	2. l_{m} <u>2400 = 17</u> @ 0.05t <u>B</u> = 0.80 40m <u>140</u> $x \times 2.4 \times 0.14 \times 0.44 \times 16 \times 1.4 + 31.32 = 32.8 km$ ABLE STRESS = <u>0.8 \times 3.5</u> = <u>0.8 m/mm²</u> <u>3.5</u> <u>8 \times 10³</u> = <u>0.33 m/mm²</u> < <u>0.8 m/mm²</u> :: ALCEPT ABLE	
Ects = 1 0.1 Allow. 32.	2. l_{m} <u>2400 = 17</u> @ 0.05t <u>B</u> = 0.80 40m <u>140</u> $x \times 2.4 \times 0.14 \times 0.44 \times 16 \times 1.4 + 31.32 = 32.8 km$ ABLE STRESS = <u>0.8 \times 3.5</u> = <u>0.8 m/mm²</u> <u>3.5</u> <u>8 \times 10³</u> = <u>0.33 m/mm²</u> < <u>0.8 m/mm²</u> :: ALCEPT ABLE	
Ects = 1 0.1 Allow. 32.	2. l_{m} <u>2400 = 17</u> @ 0.05t <u>B</u> = 0.80 40m <u>140</u> $x \times 2.4 \times 0.14 \times 0.44 \times 16 \times 1.4 + 31.32 = 32.8 km$ ABLE STRESS = <u>0.8 \times 3.5</u> = <u>0.8 m/mm²</u> <u>3.5</u> <u>8 \times 10³</u> = <u>0.33 m/mm²</u> < <u>0.8 m/mm²</u> :: ALCEPT ABLE	
Ects = 1 0.1 Allow. 32.	2. l_{m} <u>2400 = 17</u> @ 0.05t <u>B</u> = 0.80 40m <u>140</u> $x \times 2.4 \times 0.14 \times 0.44 \times 16 \times 1.4 + 31.32 = 32.8 km$ ABLE STRESS = <u>0.8 \times 3.5</u> = <u>0.8 m/mm²</u> <u>3.5</u> <u>8 \times 10³</u> = <u>0.33 m/mm²</u> < <u>0.8 m/mm²</u> :: ALCEPT ABLE	
Ects = 1 0.1 Allow. 32.	2. l_{m} <u>2400 = 17</u> @ 0.05t <u>B</u> = 0.80 40m <u>140</u> $x \times 2.4 \times 0.14 \times 0.44 \times 16 \times 1.4 + 31.32 = 32.8 km$ ABLE STRESS = <u>0.8 \times 3.5</u> = <u>0.8 m/mm²</u> <u>3.5</u> <u>8 \times 10³</u> = <u>0.33 m/mm²</u> < <u>0.8 m/mm²</u> :: ALCEPT ABLE	
Ects = 1 0.1 Allow. 32.	2. l_{m} <u>2400 = 17</u> @ 0.05t <u>B</u> = 0.80 40m <u>140</u> $x \times 2.4 \times 0.14 \times 0.44 \times 16 \times 1.4 + 31.32 = 32.8 km$ ABLE STRESS = <u>0.8 \times 3.5</u> = <u>0.8 m/mm²</u> <u>3.5</u> <u>8 \times 10³</u> = <u>0.33 m/mm²</u> < <u>0.8 m/mm²</u> :: ALCEPT ABLE	

Made by	Job Title	2 HARRIET PLACE				•		3	A
Checked by	Job No.	20026	Sheet 10	Date MA7'20	С	ON	S	UL	TING

WORST CASE FOUNDATION CHECK LOAD FROM BEAM = DL = 19-6Km/m U= 2.6km/m WALL SELF WESSUT= OL= 8.6km/m ROOF OVER = DE= 1-7km/m LL= O-Flexing TOTAL= 33.24m/m 33.24m/m = 0.44 : 450 LIDE EXISTING STREP. 75 kPa FOUNDATION ACCEPTABLE