

CALCULATIONS

Job No:	20026	
Job Title:	2 HARRIET PLACE,	
	FALMOUTH,	
	CORNWALL	

Page Numbers:	Date:	Checked by:
C1-10	JUNE'20	GM
SK01	JUNE'20	GM

JOB NO 20026 SHEET NO 1

DESIGN STANDARDS

The Standards listed below have been used in the preparation of these calculations. All Standards incorporate the latest revision and amendments.

✓	BS648:1964	Schedule of Weights of Buildings Materials.
	BS5268	Structural Use of Timber.
		Part 2: 2002: Code of Practice for Permissible stress
		design, materials and workmanship. Part 3: 1998: Code of Practice for Trussed Rafter Roofs.
		Part 4(4.1) 1978: Fire Resistance of Timber structures.
	BS5628	Code of Practice for Use of Masonry.
✓		Part 1: 1992: Structural Use of Unreinforced Masonry.
		Part 2: 2000: Structural Use of Reinforced and Prestressed Masonry.
		Part 3: 2001: Materials and components, design and workmanship.
	BS5950	Structural Use of Steel in Building.
✓		Part 1: 2000: Code of Practice for design in simple and continuous construction: hot rolled sections
	BS6399	Loading for Buildings.
		Part 1: 1996: Code of Practice for Dead and Imposed Loads. Part 2: 1997: Code of Practice for Wind Loads Part 3: 1988: Code of Practice for Imposed Roof Loads.
✓	BS8004	1986: Code of Practice for Foundations.
	BS8110	Structural Use of Concrete
		Part 1: 1997: Code of Practice for Design and Construction. Part 2: 1985: Code of Practice for Special Circumstances
☑ Tic	k as necessary	
Other	British Standar	ds used in the calculations:

Project				Job Ref.	
	2 Harri	200	026		
Section				Sheet no./rev.	
				2	2
Calc. by	Date	Chk'd by	Date	App'd by	Date
GM	MAY '20				

INTRODUCTION AND CLIENTS BRIEF

- 1. MBA's Client is Mr C Knight and Miss N Gawor of 2 Harriet Place, Falmouth.
- 2. These calculations have been prepared in support of a Building Regulations application made by our Client for the proposed structural alterations at the above property.
- 3. These calculations should be read in conjunction with MBA engineering drawings for clarity.
- 4. The structural alterations cover the widening of two openings in two existing walls at the rear of the property at ground floor level.
- 5. No site investigation has been undertaken and a preliminary inspection of the trial pits for the purposes of these calculations has provided an estimated allowable ground bearing pressure of 75kPa. This should be confirmed on site by a suitably qualified geo-technical engineer and, should the actual ground conditions differ from our assumptions, the information is to be passed to MBA to allow a review to be completed.
- 6. All Steelwork should be to a minimum grade of S275

7. LOADING

- a. The Dead loads have been derived from assumptions based on limited information of the building, however in the absence of more detailed information a conservative approach has been taken.
- b. The Live loads have been derived from BS6399-1 for use as a domestic dwelling.

8. FIRE PROTECTION

Elements of the primary structure should have fire protection in accordance with the Building Regulations or architectural details. This is an item that is beyond our expertise to specify.

Project				Job Ref.		
2 Harriet Place					20026	
Section				Sheet no./rev.	Sheet no./rev.	
				3		
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GM	MAY '20					

LOADING

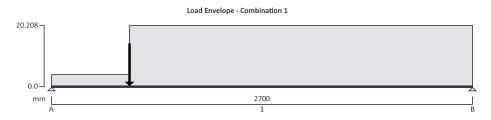
Assumed Existing	DL	LL
Trussed Rafter Roof	kN/m²	kN/m²
Slates	0.60	-
Ply boarding and felt	0.20	-
s/wt Trusses	0.25	-
pitch 30	1.05	-
load on plan	1.21	-
<u>On plan</u>		-
		-
Ceiling and Services	0.25	-
	0.25	-
Snow		0.60
Total	1.43	0.60

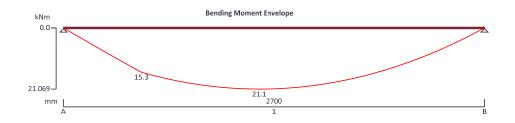
Assumed Existing	DL	LL
Floor	kN/m²	kN/m²
Partitions	0.35	-
Finishes	0.10	-
s/wt timber Joists	0.15	-
Insulation	0.05	-
Ceiling & Services	0.20	-
		-
		-
		-
Domestic	-	1.50
Total	0.85	1.50

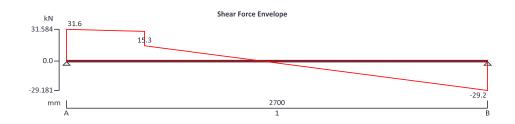
Existing Wall	<i>DL</i> kN/m²
Construction	KIN/m²
25mm Render 140mm dense blockwork PB and Skim	0.60 2.80 0.15
Total	3.55

Made by	Job Title 2 HARRIE	ET PLACE	
Checked by	Job No.	Sheet	Date
P.	20026	04	MAY120

B1 0.5m	
W. Z. OO OO OO	A=DL=19.6 km
A B B B B B B B B B B B B B B B B B B B	U= 2.6km
2·7m	B=DL= 17.1KN
	ML = 3.3 km
WI = ROOF DL = 1.43x1-2=1.72kn/m	
2008 LC = 6.60 ×1-2 = 0-72/cm/m	
	PROVIDE
W2 ROOF DL= 1.43 x 1-2 = 1.72 km/m	203×133×304B
ROOF LE = 0.60×1-2= 0.726~/m	,
WALL DL= 3.55 × 2.4= 8.52 km/m	
FLOOR DL= 0.85 x 1-2= 1-02len/m	
FLOOR U= 1.50×1-2= 1.80km/m	
TO TAL DI: 11-26km/m	
u= 2.52len/m	
PIE CONCRETE BEAM= 8.52 × 1.2= 10.23 km	
<u>B2</u>	
W_1	A=B=DL = 3.34
A K	cc= 1.4km
2.7m	
M=DL=1.21 x1.75= 2.12 km/m	PROVIDE
LL= 0.60 x1-75= 1.05km/m	203×133×30 MB




Project				Job Ref.		
2 Harriet Place				2	20026	
Section	Section			Sheet no./rev.	Sheet no./rev.	
B1				5		
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GM	MAY '20					


STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.07

Support conditions

Support A Vertically restrained

Rotationally free Vertically restrained

Rotationally free

Applied loading

Support B

Beam loads Dead partial UDL 1.72 kN/m from 0 mm to 500 mm

Imposed partial UDL 0.72 kN/m from 0 mm to 500 mm Dead partial UDL 11.26 kN/m from 500 mm to 2700 mm Imposed partial UDL 2.52 kN/m from 500 mm to 2700 mm

Dead point load 10.23 kN at 500 mm

Dead self weight of beam \times 1

Load combinations

 $\label{eq:Load combination 1} \text{Support A} \qquad \qquad \text{Dead} \times 1.40$

 $Imposed \times 1.60 \\ Dead \times 1.40$

Imposed \times 1.60

. D---I 4 40

Support B Dead \times 1.40

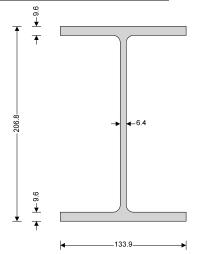
Project					Job Ref.	
2 Harriet Place				20	026	
Section					Sheet no./rev.	
B1					6	
Calc. by	Date	Chk'd by	Date		App'd by	Date
GM	MAY '20					

Imposed × 1.60

S275

Analysis results

 $\begin{array}{llll} \text{Maximum moment;} & \text{M}_{\text{max}} = \underline{\textbf{21.1}} \text{ kNm;} & \text{M}_{\text{min}} = \underline{\textbf{0}} \text{ kNm} \\ \text{Maximum shear;} & \text{V}_{\text{max}} = \underline{\textbf{31.6}} \text{ kN;} & \text{V}_{\text{min}} = \underline{\textbf{-29.2}} \text{ kN} \\ \text{Deflection;} & \delta_{\text{max}} = \underline{\textbf{1.9}} \text{ mm;} & \delta_{\text{min}} = \underline{\textbf{0}} \text{ mm} \\ \text{Maximum reaction at support A;} & R_{A_\text{max}} = \underline{\textbf{31.6}} \text{ kN;} & R_{A_\text{min}} = \underline{\textbf{31.6}} \text{ kN} \end{array}$


Unfactored dead load reaction at support A; $R_{A_Dead} = \underline{19.6} \text{ kN}$ Unfactored imposed load reaction at support A; $R_{A_Imposed} = \underline{2.6} \text{ kN}$

Maximum reaction at support B; $R_{B_max} = 29.2 \text{ kN}$; $R_{B_min} = 29.2 \text{ kN}$

Unfactored dead load reaction at support B; $R_{B_Dead} = \underline{17.1} \text{ kN}$ Unfactored imposed load reaction at support B; $R_{B_Imposed} = \underline{3.3} \text{ kN}$

Section details

Section type; <u>UKB 203x133x30 (Tata Steel Advance)</u>; Steel grade;

Classification of cross sections - Section 3.5

Tensile strain coefficient; $\varepsilon = 1.00$; Section classification; Plastic

Shear capacity - Section 4.2.3

Design shear force; $F_v = 31.6 \text{ kN}$; Design shear resistance; $P_v = 218.4 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment; M = 21.1 kNm; Moment capacity low shear; $M_c = 86.5 \text{ kNm}$

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment; $M_b = 63.2 \text{ kNm}$; $M_b / m_{LT} = 67.9 \text{ kNm}$

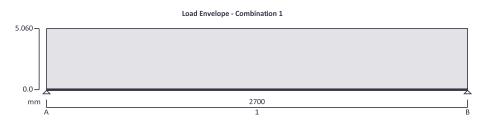
PASS - Buckling resistance moment exceeds design bending moment

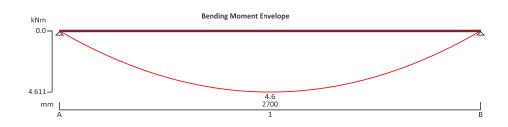
Check vertical deflection - Section 2.5.2

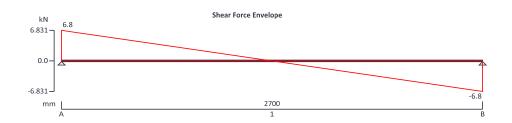
Consider deflection due to dead and imposed loads

Limiting deflection $\delta_{lim} = \underline{9} \text{ mm};$ Maximum deflection; $\delta = \underline{1.91} \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit




Project				Job Ref.	
	2 Har	riet Place			20026
Section				Sheet no./rev	
		B2			7
Calc. by	Date	Chk'd by	Date	App'd by	Date
GM	MAY '20				


STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.07

Support conditions

Support A Vertically restrained

Rotationally free Vertically restrained

Support B Vertically restrain Rotationally free

Applied loading

Beam loads Dead full UDL 2.12 kN/m

Imposed full UDL 1.05 kN/m Dead self weight of beam \times 1

Load combinations

Load combination 1 Support A Dead \times 1.40

 $Imposed \times 1.60 \\ Dead \times 1.40$

 $\label{eq:support B} Imposed \times 1.60$ Support B $\label{eq:support B} Dead \times 1.40$

Imposed × 1.60

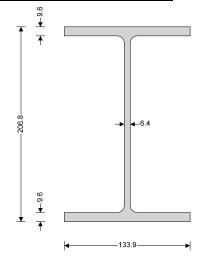
Analysis results

Maximum moment; $M_{max} = \underline{\textbf{4.6}} \text{ kNm};$ $M_{min} = \underline{\textbf{0}} \text{ kNm}$

Project				Job Ref.	
	2 Har	riet Place			20026
Section				Sheet no./rev	
		B2			8
Calc. by	Date	Chk'd by	Date	App'd by	Date
GM	MAY '20				

Maximum shear; $V_{max} = \underline{6.8} \text{ kN};$ $V_{min} = \underline{-6.8} \text{ kN}$

Deflection; $\delta_{\text{max}} = \underline{\textbf{0.4}} \text{ mm}; \qquad \delta_{\text{min}} = \underline{\textbf{0}} \text{ mm}$ Maximum reaction at support A; $R_{A_\text{max}} = \underline{\textbf{6.8}} \text{ kN}; \qquad R_{A_\text{min}} = \underline{\textbf{6.8}} \text{ kN}$


Unfactored dead load reaction at support A; $R_{A_Dead} = 3.3 \text{ kN}$ Unfactored imposed load reaction at support A; $R_{A_Imposed} = 1.4 \text{ kN}$

Maximum reaction at support B; $R_{B_{max}} = 6.8 \text{ kN}$; $R_{B_{min}} = 6.8 \text{ kN}$

Unfactored dead load reaction at support B; $R_{B_Dead} = 3.3 \text{ kN}$ Unfactored imposed load reaction at support B; $R_{B_Imposed} = 1.4 \text{ kN}$

Section details

Section type; UKB 203x133x30 (Tata Steel Advance); Steel grade; S355

Classification of cross sections - Section 3.5

Tensile strain coefficient; $\varepsilon = 0.88$; Section classification; Plastic

Shear capacity - Section 4.2.3

Design shear force; $F_V = \underline{6.8} \text{ kN}$; Design shear resistance; $P_V = \underline{281.9} \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment; M = 4.6 kNm; Moment capacity low shear; $M_c = 111.6 \text{ kNm}$

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment; $M_b = 75.2 \text{ kNm}$; $M_b / m_{LT} = 81.3 \text{ kNm}$

PASS - Buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to dead and imposed loads

Limiting deflection $\delta_{lim} = \underline{9} \text{ mm}$; Maximum deflection; $\delta = \underline{0.404} \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit

Made by	Job Title	2 HARRS	ET	PLACE		
Checked by	Job No.	20026	Sheet	Q.	Date MAY120	

10-24-6466	Desire Control of the
WORST CASE MASONRY BEARING	
LOAD ON WALL = 19.6 x 1.4 + 2.6 x 1.6 = 31.32 km	¥
ALLOWABLE STRESS = 1.5 x 3.5 = 1.5 N/mm2	
3.5	
ACTUAL STRESS (NO BADSTONE)= 31.32x103 = 1.49~/m2	: ACCEPTAB
150 × 140	
STRESS AT O.4h	
he88 = 2.4m 2400 = 17 @ 0.05t B = 0.80 texts = 140mm 140	
0.4x24x014x0-44x16x1.4+31.32=32-8km	
ALLOWABLE STRESS = 0.8 x 3.5 = 0.8 m/mm2	
3-5	
32.8 × 103 = 0.33 Nmm2 < 0.8 N /mm2 : ALCEPT	ABLE
140x 700	
	8

Made by €M	Job Title	2 HARRIE	ETPLACE	
Checked by	Job No.		Sheet	Date
100 M	1.40.	20020	10	MA7120

	002 ₀ 10 MA 7 20	
WORST CASE	FOUNDATION CLIECK	
, ·	LOAD FROM BEAM = DL = 19-6km/m	
	U= 2.6km/m	
	WALL SELF WEIGHT = D= 8.6km/n	
	ROOF OVER = DL= 1-7km/m	
5	LL= 0-7/2/2	
	FOTAL = 33.26m/m	
33.26N/m =	0-44 : 450 LIDE EXISTING STRIP	2
75 kPa	FOUNDATION ACCE	8
,		
	x	