

Appendix D

Regulatory Correspondence

The following questions were issued to Guildford in order for us to complete an environmental review of the Brunswick Camp.

- 1. Pre-license landfill sites within 500m of the subject site, including:
 - license holder
 - location of landfill/grid reference
 - nature of fill material
 - dates of operation
 - details of any leachate/landfill gas problems
- 2. Pollution incidents/known areas of contaminated land within 500m of the subject site, including:
 - location/grid reference
 - previous uses
 - nature/source of pollution
 - any further details
- 3. Part B APC authorisations within 500m of the subject site, including:
 - authorisation holder
 - location/grid reference
 - nature of authorisation
- 4. Private water supplies within 500m of the subject site, including:
 - location/grid reference
 - details of source and abstraction purpose
- 5. Storage of Petroleum Hydrocarbons.
- 6. Records of any previous Site Investigations on or in close proximity to the site
- 7. Records of any unexploded ordnance in the site area
- 8. Any known problems with ground gas in the site area
- 9. Any potential issues regarding naturally elevated contaminant concentrations
- 10. Any other information held by your authority which may have an impact upon the contaminative status of the site

Request for information - Ref: FOI2019/01167

noreply@guildford.gov.uk on behalf of Lisa Barrett <lisa.barrett@guildford.gov.uk>

Wed 13/11/2019 09:52

To: Harry King <harry.king@tecon.co.uk>

Dear Harry King,

We have considered your request for information, please see our response below:

1. None within 500m.

2. This department do not keep records of pollution incidents and are not aware of any contamination issues at the requested location or areas within 500m.

3. None within 500m

4. None within 500m

5. This department do not hold records on storage of petroleum hydrocarbons. You may wish to contact the Petroleum Officers, Surrey Trading Standards to check if they hold any records.

6. None

7. None

8. None known

9. This department is not aware of any ongoing contamination issues on site.

10. This department has not identified the site for Part IIA investigations. It is likely that if the site is proposed for redevelopment, any potential concerns for contamination will be dealt under the planning regime.

Copyright and re-use of information

Please be aware that copyright may exist on information that we provide in response to requests, including attachments.

Where we are providing information that the Council has authored, you may re-use it free of charge unless we have stated otherwise in our response. However, in some cases we do not own the copyright (for example Ordnance Survey owns the copyright for most map information we use). Therefore, where someone other than Guildford Borough Council owns the copyright for the information, please check with us by writing to foi@guildford.gov.uk if you plan to re-use it or if you are not sure whether copyright will be an issue.

Your right to ask for an internal review

I trust the above addresses your enquiry. However, if you do not agree with the way I have dealt with your request, you may write to ask the Council to review my decision. Another officer will carry out a review and they will then write to you, letting you know whether they agree with my decision or whether they have reached a different conclusion.

You should write to, Customer Services, Guildford Borough Council, Millmead House, Millmead, Guildford GU2 4BB (foi@guildford.gov.uk). It is important that you clearly state that you are asking for an <u>Internal Review</u> and provide a copy of your correspondence with the Council about this

request. We recommend that you include the FOI reference number and "Internal Review" in the email or letter header to help avoid delays.

Your right to appeal to the Information Commissioner

You also have the right to contact the Information Commissioner if you believe we have failed to meet our obligations to deal with your request for information. Please remember that they will usually only consider appeals after the Council has had the opportunity to carry out an internal review. More guidance about your rights is available on the Information Commissioner's website at www.ico.org.uk.

Yours sincerely

Lisa Barrett

Appendix E

Risk Methodologies and Evaluation

Risk Evaluation

The qualitative assessment methodology presented in CIRIA publication C552 (2001) titled *'Contaminated Land Risk Assessment: A Guide to Good Practice'* has been used by TEC for the basis of evaluating potential risk.

The method requires an assessment of the:

- magnitude of the probability or likelihood of the risk occurring (Table 1); and
- magnitude of the potential consequence or severity of the risk occurring (Table 2)

Tuble 1. classification	orrobability
Classification	Definition
High likelihood	There is a pollution linkage and an event that either appears very likely in the short-term and almost inevitable over the long-term, or there is evidence at the receptor of harm or pollution.
Likely	There is a pollution linkage and all the elements are present and in the right place, which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short-term and likely over the long-term.
Low likelihood	There is a pollution linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a longer period such an event would take place, and is less likely in the short-term.
Unlikely	There is a pollution linkage but circumstances are such that it is improbable that an event would occur even in the very long-term.

Table 1. Classification of Probability

Table 2. Classification of Consequence

Classification	Definition	Examples
Severe	Short-term (acute) risk to human health likely to result in "significant harm" as defined by the Environment Protection Act 1990, Part IIA. Short- term risk of pollution of sensitive water resource. (Note: Water Resources Act contains no scope for considering significance of pollution). Catastrophic damage to buildings/property. A short-term risk to a particular ecosystem, or organisation forming part of such ecosystem (note: the definitions of ecological systems within the draft circular on Contaminated Land, DETR, 2000).	High concentrations of cyanide on the surface of an informal recreation area. Major spillage of contaminants from site into controlled water. Explosion, causing building collapse (can also equate to a short-term human health risk if buildings are occupied).
Medium	Chronic damage to human health ("significant harm" as defined in DETR, 2000). Pollution of sensitive water resources. (Note: Water Resources Act contains no scope for considering significance of pollution). A significant change in a particular ecosystem, or organism forming part of such ecosystem, (note: the definitions of ecological systems within draft circular on Contaminated Land, DETR, 2000).	Concentration of a contaminant from site exceeding the generic or site-specific assessment criteria. Leaching of contaminants from a site to a major or minor aquifer. Death of a species within a designated nature reserve.
Mild	Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ("significant harm" as defined in the draft circular on Contaminated Land, DETR, 2000). Damage to sensitive buildings/structures/services or the environment.	Pollution of non-classified groundwater. Damage to building rendering it unsafe to occupy (for example foundation damage resulting in instability).
Minor	Harm, although not necessarily significant harm, which may result in a financial loss, or expenditure to resolve. Non-permanent health effects to human health (easily prevented by means such as personal protective clothing etc), easily repairable effects of damage to buildings, structures and services.	The presence of contaminants at such concentrations that protective equipment is required during site works. The loss of plants in a landscaping scheme. Discolouration of concrete.

Risk

The combination of the two factors is determined using Table 3 and the resulting level of risk is described in Table 4. The evaluation can be applied to each of the scenarios identified in the risk model and the overall risk assessed.

		Consequence							
		Severe	Medium	Mild	Minor				
	High Likelihood	Very High Risk	High Risk	Moderate Risk	Moderate/Low R				
ability	Likely	High Risk	Moderate Risk	Moderate/Low Risk	Low Risk				
Proba	Low Likelihood	Moderate Risk	Moderate/Low Risk	Low Risk	Very Low Risk				
	Unlikely	Moderate/Low Risk	Low Risk	Very Low Risk	Very Low Risk				

Table 3. Combination of Consequence with Probability

Table 4. Description of risks and likely action required

Very High Risk	There is a high probability that severe harm could arise to a designated receptor from an identified hazard, or there is evidence that severe harm to a designated receptor is currently happening. This risk, if realised, is likely to result in a substantial liability. Urgent investigation (if not undertaken already) and remediation are likely to be required.
High Risk	Harm is likely to arise to a designated receptor from an identified hazard. Realisation of the risk is likely to present a substantial liability. Urgent investigation (if not undertaken already) is required and remedial works may be necessary in the short-term and are likely over the longer-term.
Moderate Risk	It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild. Investigation (if not already undertaken) is normally required to clarify the risk and to determine the potential liability. Some remedial works may be required in the long-term.
Low Risk	It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realised, would at worst normally be mild.
Very Low Risk	There is a low possibility that harm could arise to a receptor. In the event of such harm being realised it is not likely to be severe.

Using the risk model the pollutant linkages are identified and a preliminary estimate of risk undertaken. If there is no pollutant linkage identified, then there is no risk. If the estimate of risk for all the linkages and exposure scenarios is very low at this stage then it is likely that no further assessment will be required.

Appendix F

Exploratory Hole Logs

6	ec					Tr	ial	Pit Log	Trialpit I TPO ⁴	No 1
Projec	ot Brunsv	vick Car	no Pirbright	Proje	ect No.		Co-ords	s: 492346.00 - 156888.00	Date	
Name	: Branot		np, r nongin	1909	9007.002		Level: Dimens	mbgl sions: 2.07m	18/11/20)20
Locati	ion: Pirbrig	ht					Inclinat	ion: °	1:20	,
Client	: Fairhu	rst					Orienta	ation: ° ° 1 8m	Logge RK	d
ы e	S	amples	and In Situ Tes	sting	Depth	Level			, interview of the second seco	
Wate Strik	Depth	Туре	Results	Information	(m)	(m)	Legend	Stratum Description		
	0.10 0.30 - 0.45 0.40	ES ES D			0.20			MADE GROUND: Brown slightly grav silt. Gravel is flint. Frequent rootlets to 0.15m MADE GROUND: Light brown and ye brown slightly gravelly silty sand with cobbles of brick. Gravel is flint and br Occ. roots to 0.20m Black silty sandy lens with rare green speckle 0.45m	elly sandy illowish occasional ick. s from 0.30m to	
	0.60	В			0.55			Cocc. rootlets to 0.45m (Loose to medium dense) light brown SAND. Sand is fine to medium graine Becoming more yellowish brown from 0.90m	slightly silty	
	1.00	В			1.50			(Medium dense) light brown and yello silty gravelly SAND. Sand is fine to m grained. Gravel is fine to medium sub rounded flint. Increasing moisture from 1.60m End of pit at 1.8 m	wish brown edium angular to	1
Rema	rks: Tria Terr	I pit rem	ained dry. All co	mments on der	nsities of g	granula	r materia	al are based on field observations.		2
Stabil	Terr	ninated	at depth on Eng	ineer's instruct	ion for so	akage t	est.			
Stabil	iry. Siai	л с .								

6	ec					Tr	ial	Pit Log	Trialpit N TP02	lo
Projec	st.			Pro	piect No		Co-ords	· 492368 00 - 156956 00	Sheet 1 o Date	f1
Name	Brunsv	vick Car	np, Pirbright	190)9007.002		Level:	mbgl	18/11/202	20
Locati	ion: Pirbrig	ht					Dimens	ions: 2.25m	Scale	
							Oriental	tion: ° G	Logged	
Client	: Fairhui	rst					Depth: 3	3.0m	RK	
ter ke	S	amples	and In Situ Tes	sting	Depth	Level	legend	Stratum Description		
Water	Depth 0.15 0.35 - 0.77 0.60 0.70	amples Type ES ES D B D	and In Situ Tes Results	sting Information	Depth 0.25 0.35 0.65 0.72 0.65 0.72	Level (m)	Legend	Stratum Description NEAR SURFCACE MATERIAL:: Brown silty sand. Frequent rootlets to 0.12m POTENTIALLY REWORKED NATURAL GROUND: (Loose) dark grey to black v sand. Occ. roots to 0.30m (Medium dense) Light brown and brown SAND. Sand is fine grained. (Medium dense) Light brown becoming grey slightly gravelly slightly clayey silty Sand is fine grained. Gravel is fine to consubangular to rounded flint Slight ingress of groundwater at 2.90m End of pit at 3.0 m	n very ery silty n silty coming fine greenish (SAND. barse	1
Rema	rks: Sligi	ht ingress	s of groundwater a	at 2.90m. All co	omments on	densitie	s of granu	lar material are based on field observatio	ns.	4
Stabili	ity: Stal	ble.								

(ec					Tr	ial	Pit Log	Trialpit N TP03	No 3
Projec	ot Brunsv	vick Car	no Pirbright	Proj	ect No.		Co-ords	s: 492374.00 - 156898.00	Date	
Name				1909	9007.002		Level: Dimens	mbgl ions: 2.10m	18/11/20 Scale)20
Locat	ion: Pirbrigi	ht					Inclinati	ion: ° E	1:20	d
Client	: Fairhu	rst					Depth:	3.1m	RK	u
ater ike	S	amples	and In Situ Tes	ting	Depth	Level	Legend	Stratum Description		
Str Str	Depth	Туре	Results	Information	(m)	(m)		NEAR SURFCACE MATERIAL: Brown	slightly	
	0.30	ES						gravelly silty sand. Gravel is flint.		
	0.40 - 0.60	ES			0.35			(Loose to medium dense) light brown a	nd	-
	0.70	D			0.70				e grameu.	
	0.70	D			0.70			(Loose becoming medium dense) yello brown, grey and light brown slightly cla SAND. Sand is fine to medium grained.	wish yey silty	
								Slight ingress of groundwater at 1.40m		1
								Signt ingress of groundwater at 1.40m		2
	2.60	D			2.70			(Medium dense) light brown and yellow gravelly silty SAND. Sand is fine to me grained. Gravel is fine to medium subar rounded flint. End of pit at 3.1 m	ish brown Jium ngular to	3
				14.40						4 -
Rema Stabil	ırks: Sligi Tern ity: Stat	nt ingress ninated a ple.	s of groundwater a It depth on Engine	at 1.40m. All con er's instruction.	nments on	densitie	s of granu	llar material are based on field observatio	ns.	

t	ec					Tr	ial	Pit Log	Trialpit I TP04	No 1
Project	Davia		na Disksiakt	Proj	ect No.		Co-ords	s: 492316.00 - 153880.00	Date	<u>) 1</u>
Name:	Bruns	wick Car	np, Pirongni	1909	9007.002		Level:	mbgl	18/11/20	20
Locatio	n: Pirbri	ght					Inclinat	ion: ° E	Scale 1:20	
Client:	Fairh	urst					Orienta Depth:	tion: ° ⁶ 3.3m	Logge RK	d
ater ike		Samples	and In Situ Te	sting	Depth	Level	Legend	Stratum Description		
St 8	Depth	Туре	Results	Information	(m)	(m)		NEAR SURFCACE MATERIAL: Brown	slightly	<u> </u>
	0.35 0.75 0.75	ES D ES			0.38 0.70 1.15			gravelly very silty sand with occasional staining. Gravel is flint. Frequent rootlets to 0.15m Frequent roots to 0.25m POTENTIALLY REWORKED NATURAI GROUND: (loose to medium dense) Or brown, yellowish brown and light brown becoming dark grey silty SAND with occ black staining. Sand is fine to medium of Dark grey and black silty sandy lens from 0.38m (Medium dense) grey and dark grey sil Sand is fine grained. Dark grey and black very silty sandy lens from 0 0.75m (Medium dense) light brown and yellow slightly clayey silty SAND. Sand is fine to	angish casional grained. to 0.40m ty SAND. .70m to ish brown grained.	
	2.60	В			2.38			Occ. roots to 1.50m	ning rare fine Gravel is	2
	2.80	D			3.25			Ecoming greenish grey and yellowish brown fro	m 2.70m	3
Remarl	ks: <u>T</u> ri	al pit rem	ained dry. All co	pmments on de	insities of	granula	r materia	I are based on field observations.		4 -
Stability	Tei y: Sta	rminated able.	at depth on Eng	gineer's instruc	tion.					

	ec						Tr	ial	Pit Log		Trialpit TPO	No 5
Projoc	at .				Proiec	nt No		Co-ords	· 492299 00 - 1569	31.00	Sheet 1	of 1
Name	Brunsv	vick Can	ıp, Pirbright		19090	07.002		Level:	mbgl		18/11/20	020
Locati	ion: Pirbrig	ht						Dimens Inclinati	ions: on: ° –	2.10m	Scale	9
Client	. Fairbur							Orientat	tion: °		Logge	d
Client	: Faimu	SL				1		Depth: 3	3.1m		RK	
ater ike	S	amples	and In Situ Tes	sting		Depth	Level	Legend	Stratur	n Description		
str Ve	Depth	Туре	Results	Informa	ation	(m)	(m)			MTERIAL · Dark h	rowp and	1
	0.45 - 0.60 0.65 1.20	ES B D				0.25 0.95 2.50 3.10			NEAR SURFCACE M brown slightly gravell medium flint. <i>Frequent rootlets to 0.20m</i> POTENTIALLY REW GROUND: (Loose to and yellowish brown clayey gravelly slity S staining. Sand is fine <i>Dark grey and black slity s</i> (Loose becoming me brown, grey and light fine grained. (Medium dense) yello slightly greenish grey a End Ecoming greenish grey a End	ATERIAL: Dark b y sandy silt. Grave	rown and el is fine to ght brown ey slightly ck to 0.55m wish . Sand is	
												-
												-
												8 -
Rema Stabili	rks: Tria Terr ity: Stal	l pit remaininated a	ained dry. All co at depth on Eng	mments o jineer's ins	on dens structio	sities of (on.	granula	r material	l are based on field ol	oservations.		

Appendix G

Geochemical Certificates of Analysis

Reinier van der Kuip Tweedie Evans Consulting Ltd The Old Chapel 35a Southover Wells Somerset BA5 1UH

t: 01749 677 760 f: 01749 679 345 e:

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 20-42487

Project / Site name:	Brunswick Camp, Pirbright	Samples received on:	18/11/2020
Your job number:	1909007.002	Samples instructed on/ Analysis started on:	19/11/2020
Your order number:		Analysis completed by:	26/11/2020
Report Issue Number:	1	Report issued on:	27/11/2020
Samples Analysed:	2 leachate samples - 6 soil samples		

Signed	
0.9	

Karolina Marek PL Head of Reporting Team For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :	soils	 4 weeks from reporting
	leachates	- 2 weeks from reporting
	waters	- 2 weeks from reporting
	asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Brunswick Camp, Pirbright

I ah Sample Number				1690378	1600370	1690380	1600381				
Sample Reference				TP01	TP02	TP02	TP03				
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied				
Donth (m)				0.20-0.45	0.15	0.25-0.77	0.40-0.60				
Date Sampled				18/11/2020	18/11/2020	18/11/2020	18/11/2020				
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied				
	1	9 F	(0 - × ×	None Supplied	None Supplied	None Supplied	None Supplied				
Analytical Parameter (Soil Analysis)	Units	imit of etectio n	ccredi tation Status								
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1				
Moisture Content	%	0.01	NONE	18	8.8	17	13				
Total mass of sample received	kg	0.001	NONE	1.7	0.4	1.7	1.7				
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected				
General Inorganics	General Inorganics										
pH - Automated	pH Units	N/A	MCERTS	8.4	5.9	-	-				
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1				
Total Sulphate as SO4	mg/kg	50	MCERTS	480	420	-	-				
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.016	0.041	-	-				
Sulphide	mg/kg	1	MCERTS	7.4	2.8	-	-				
Ammonia as NH3	mg/kg	0.5	MCERTS	< 0.5	-	< 0.5	< 0.5				
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.7	1.5	-	-				
Total Phenols											
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0				
Speciated PAHs		-			_						
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05				
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	0.26	< 0.05	< 0.05				
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	0.35	< 0.05	< 0.05				
Fluorene	mg/kg	0.05	MCERTS	< 0.05	0.34	< 0.05	< 0.05				
Phenanthrene	mg/kg	0.05	MCERTS	0.25	8.1	< 0.05	< 0.05				
Anthracene	mg/kg	0.05	MCERTS	< 0.05	1.4	< 0.05	< 0.05				
Fluoranthene	mg/kg	0.05	MCERTS	0.49	24	< 0.05	< 0.05				
Pyrene	mg/kg	0.05	MCERTS	0.43	19	< 0.05	< 0.05				
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.25	13	< 0.05	< 0.05				
Chrysene	mg/kg	0.05	MCERTS	0.26	8.3	< 0.05	< 0.05				
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	12	< 0.05	< 0.05				
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	6.9	< 0.05	< 0.05				
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	9.8	< 0.05	< 0.05				
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	5.3	< 0.05	< 0.05				
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	1.6	< 0.05	< 0.05				
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	6.1	< 0.05	< 0.05				
Total PAH											
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	1.68	116	< 0.80	< 0.80				
		-	-								

Project / Site name: Brunswick Camp, Pirbright

Lab Sample Number				1690378	1690379	1690380	1690381			
Sample Reference				TP01	TP02	TP02	TP03			
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)				0.30-0.45	0.15	0.35-0.77	0.40-0.60			
Date Sampled				18/11/2020	18/11/2020	18/11/2020	18/11/2020			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Demonster	C C	음 드	S at A							
Analytical Parameter	Unit	n tect	atio							
	vi vi	öŞ	s n di							
Heavy Metals / Metalloids										
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	6.9	5.1	3.1	2.4			
Barium (aqua regia extractable)	mg/kg	1	MCERTS	46	41	7.5	5.6			
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.38	0.28	0.15	0.21			
Boron (water soluble)	mg/kg	0.2	MCERTS	0.2	0.4	< 0.2	< 0.2			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2			
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	-	< 4.0	< 4.0			
Chromium (hexavalent) low level	mg/kg	1.2	MCERTS	< 1.2	< 1.2	-	-			
Chromium (III)	mg/kg	1	NONE	12	-	6.8	6.3			
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	13	10	7	6.6			
Copper (aqua regia extractable)	mg/kg	1	MCERTS	370	14	3.5	3.5			
Lead (aqua regia extractable)	mg/kg	1	MCERTS	30	51	4.2	2.1			
Manganese (aqua regia extractable)	mg/kg	1	MCERTS	130	-	11	11			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	0.5			
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	0.45	-	< 0.25	< 0.25			
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	9.4	5.5	1.9	2.2			
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0			
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	19	18	-	-			
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	220	59	6.2	8.6			
Monoaromatics & Oxygenates										
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0			
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0			
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0			
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0			
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0			
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0			
			·				<u> </u>			
Petroleum Hydrocarbons										
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	< 0.1			
		•	·							
TPH C10 - C40	mg/kg	10	MCERTS	< 10	280	< 10	< 10			
	0. 0	<u> </u>					I			
TPH-CWG - Aliphatic >EC5 - EC6	ma/ka	0.001	MCERTS	< 0.001	< 0.001	-	-			
TPH-CWG - Aliphatic >EC6 - EC8	ma/ka	0.001	MCERTS	< 0.001	< 0.001	-				
TPH-CWG - Aliphatic > EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-				
TPH-CWG - Aliphatic > EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	-				
TPH-CWG - Aliphatic > EC12 - EC16	ma/ka	2	MCERTS	< 2.0	< 2.0	-				
TPH-CWG - Aliphatic > EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	-				
TPH-CWG - Aliphatic > EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	-				
TPH-CWG - Aliphatic (EC5 - EC35)	ma/ka	10	MCERTS	< 10	< 10	-	-			
,				. 10			I			
TPH-CWG - Aromatic >EC5 - EC7	ma/ka	0.001	MCERTS	< 0.001	< 0.001		. 1			
TPH-CWG - Aromatic >EC7 - EC8	ma/ka	0.001	MCEDTC	< 0.001	< 0.001	_				
TPH-CWG - Aromatic >EC8 - EC10	ma/ka	0.001	MCERTS	< 0.001	< 0.001					
TPH-CWG - Aromatic >EC10 - EC12	ma/ka	1	MCEDTC	< 1.0	< 1.0	_				
TPH-CWG - Aromatic >EC12 - EC16	ma/ka	2	MCEDTC	< 2.0	Q 21.0	_				
TPH-CWG - Aromatic >EC16 - EC21	ma/ka	10	MCERTS	< 10	80					
TPH-CWG - Aromatic >EC21 - EC35	ma/ka	10	MCERTS	< 10	170	-				
TPH-CWG - Aromatic (EC5 - EC35)	ma/ka	10	MCERTS	< 10	260	_				

Project / Site name: Brunswick Camp, Pirbright

		1 600070	1 6000 70	1000000	1000001		
Lab Sample Number				1690378	1690379	1690380	1690381
Sample Reference				IP01	1902	1P02	1P03
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.30-0.45	0.15	0.35-0.77	0.40-0.60
Date Sampled				18/11/2020	18/11/2020	18/11/2020	18/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detectic n	Accredi tation Status				
VOCs							
Chloromethane	ua/ka	1	ISO 17025	< 1.0	-	< 1.0	< 1.0
Chloroethane	µg/kg	1	NONE	< 1.0	-	< 1.0	< 1.0
Bromomethane	µg/kg	1	ISO 17025	< 1.0		< 1.0	< 1.0
Vinyl Chloride	µg/kg	1	NONE	< 1.0	-	< 1.0	< 1.0
Trichlorofluoromethane	µg/kg	1	NONE	< 1.0		< 1.0	< 1.0
1.1. Dicklereethene	pg/kg	1	NONE	< 1.0		< 1.0	< 1.0
1,1-Dichloro 1,2,2 Triffuoroethano	µg/kg	1	INUNE	< 1.0	-	< 1.0	< 1.0
	µg/kg	1	150 17025	< 1.0	-	< 1.0	< 1.0
MTRE (Method Textiene But d Ethere)	µg/kg	1	MCEDITO	< 1.0	-	< 1.0	< 1.0
MTBE (Methyl Tertary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
1,1-Dichloroethane	µg/kg		MCERTS	< 1.0	-	< 1.0	< 1.0
2,2-Dichloropropane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
Trichloromethane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
1,1,1-Trichloroethane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
1,2-Dichloroethane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
1,1-Dichloropropene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
Trans-1,2-dichloroethene	µg/kg	1	NONE	< 1.0	-	< 1.0	< 1.0
Benzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
Tetrachloromethane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
1,2-Dichloropropane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
Trichloroethene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
Dibromomethane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
Bromodichloromethane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
1,1,2-Trichloroethane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
1,3-Dichloropropane	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0
Dibromochloromethane	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0
Tetrachloroethene	µg/kg	1	NONE	< 1.0	-	< 1.0	< 1.0
1,2-Dibromoethane	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0
Chlorobenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
p & m-Xylene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
Styrene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
Tribromomethane	µg/kg	1	NONE	< 1.0	-	< 1.0	< 1.0
o-Xylene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
1.1.2.2-Tetrachloroethane	ug/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
Isopropylbenzene	ug/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
Bromobenzene	ua/ka	1	MCERTS	< 1.0	-	< 1.0	< 1.0
n-Propylbenzene	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0
2-Chlorotoluene	ug/kn	1	MCERTS	< 1.0	-	< 1.0	< 1.0
4-Chlorotoluene	10/ka	1	MCERTS	< 1.0	-	< 1.0	< 1.0
1 3 5-Trimethylbenzene	Ha/ra	1	ISO 17025	< 1.0		< 1.0	< 1.0
tert-Butylbenzene	µg/kg	1	MCEDIC	< 1.0		< 1.0	< 1.0
1.2.4-Trimethylhenzene	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0
	µg/kg	1	130 17025 МСЕртс	< 1.0		< 1.0	< 1.0
1 2-Dichlorohonzono	µg/kg	1	TEO 17025	< 1.0	-	< 1.0	< 1.0
	µy/Ky		150 17025	< 1.0	-	< 1.0	< 1.0
	µy/kg	1	150 1/025	< 1.0	-	< 1.U	< 1.0
1,2-DICHIOLODENZENE	µg/kg	1	MULERIS	< 1.0	-	< 1.0	< 1.0

Project / Site name: Brunswick Camp, Pirbright

Laborate Marchae				1000070	1000270	1000000	1000201
Lab Sample Number				1690378 1690379		1690380	1690381
Sample Reference					TP02	TP02	TP03
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.30-0.45	0.15	0.35-0.77	0.40-0.60
Date Sampled				18/11/2020	18/11/2020	18/11/2020	18/11/2020
Time Taken					None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detectio n	Accredi tation Status				
1,4-Dichlorobenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
Butylbenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
Hexachlorobutadiene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
1,2,3-Trichlorobenzene	µg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0

SVOCs							
Aniline	mg/kg	0.1	NONE	< 0.1	-	< 0.1	< 0.1
Phenol	mg/kg	0.2	ISO 17025	< 0.2	-	< 0.2	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	-	< 0.2	< 0.2
Isophorone	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	-	< 0.1	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	-	< 0.1	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	< 0.1	-	< 0.1	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	< 0.3	-	< 0.3	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	< 0.2
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	0.25	-	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
Carbazole	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	< 0.3
Dibutyl phthalate	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	< 0.3

Project / Site name: Brunswick Camp, Pirbright

Lab Sample Number				1690378	1690379	1690380	1690381
Sample Reference				TP01	TP02	TP02	TP03
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)					0.15	0.35-0.77	0.40-0.60
Date Sampled				18/11/2020	18/11/2020	18/11/2020	18/11/2020
Time Taken					None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detectio n	Accredi tation Status				
Fluoranthene	mg/kg	0.05	MCERTS	0.49	-	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	0.43	-	< 0.05	< 0.05
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	< 0.3	-	< 0.3	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.25	-	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	0.26	-	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05
Environmental Forensics							
Hexabromobiphenyl	mg/kg	0.1	NONE	< 0.1	-	< 0.1	< 0.1
Stockholm convention POPs list A							
Mirex	mg/kg	1	NONE	< 1.0	-	< 1.0	< 1.0
	-						

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Brunswick Camp, Pirbright

Lab Sample Number				1690382	1690383
Sample Reference		TP04	TP05		
Sample Number				None Supplied	None Supplied
Depth (m)				0.35	0.45-0.65
Date Sampled	18/11/2020	18/11/2020			
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detectio n	Accredi tation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	9.2	12
Total mass of sample received	kg	0.001	NONE	0.4	1.7
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected

Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detect
General Inorganics					

pH - Automated	pH Units	N/A	MCERTS	6.2	-
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	290	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.01	-
Sulphide	mg/kg	1	MCERTS	< 1.0	-
Ammonia as NH3	mg/kg	0.5	MCERTS	-	< 0.5
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.9	-

Total Phenols

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0
			-		

Speciated PAHs					
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Total PAH					
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80

Project / Site name: Brunswick Camp, Pirbright

Lab Sample Number				1690382	1690383			
Sample Reference				TP04	TP05			
Sample Number				None Supplied	None Supplied			
Depth (m)				0.35	0.45-0.65			
Date Sampled				18/11/2020	18/11/2020			
Time Taken				None Supplied	None Supplied			
Analytical Parameter	c	de Lii	S at A					
Analytical Parameter (Soil Analysis)	Init	n tec mit	atio					
	SS .	öĢ	is n di					
Heavy Metals / Metalloids								
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	-	< 1.0			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	3.5	6.8			
Barium (aqua regia extractable)	mg/kg	1	MCERTS	13	30			
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.17	0.5			
Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2	< 0.2			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2			
Chromium (hexavalent)	mg/kg	4	MCERTS	-	< 4.0			
Chromium (hexavalent) low level	mg/kg	1.2	MCERTS	< 1.2	-			
Chromium (III)	mg/kg	1	NONE	-	16			
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	7.1	17			
Copper (aqua regia extractable)	mg/kg	1	MCERTS	6.5	5.2			
Lead (aqua regia extractable)	mg/kg	1	MCERTS	12	10			
Manganese (aqua regia extractable)	mg/kg	1	MCERTS	-	52			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.4	< 0.3			
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	-	0.47			
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	2.5	6.6			
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0			
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	12	-			
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	20	30			
Monoaromatics & Oxygenates								
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0			
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0			
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0			
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0			
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0			
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0			
		_						
Petroleum Hydrocarbons								
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	-	< 0.1			
	-							
TPH C10 - C40	mg/kg	10	MCERTS	< 10	< 10			
		•						
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-			
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-			
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-			
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-			
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-			
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-			
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	-			
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-			
TPH-CWG - Aromatic >EC5 - EC7	ma/ka	0.001	MCERTS	< 0.001	-			
TPH-CWG - Aromatic >EC7 - EC8	ma/ka	0,001	MCERTS	< 0.001	-			
TPH-CWG - Aromatic >EC8 - EC10	ma/ka	0.001	MCERTS	< 0.001	-			
TPH-CWG - Aromatic >EC10 - EC12	ma/ka	1	MCERTS	< 1.0	-			
TPH-CWG - Aromatic >EC12 - EC16	ma/ka	2	MCERTS	< 2.0	-			
TPH-CWG - Aromatic >EC16 - EC21	ma/ka	10	MCERTS	< 10	-			
TPH-CWG - Aromatic >EC21 - EC35	ma/ka	10	MCERTS	< 10	-			
TPH-CWG - Aromatic (EC5 - EC35)	ma/ka	10	MCERTS	< 10	-			

Project / Site name: Brunswick Camp, Pirbright

Lab Sample Number	1600292	1600292			
Sample Reference	TP04	TP05			
Sample Number				Nono Supplied	Nono Supplied
Donth (m)					
Date Sampled				18/11/2020	18/11/2020
Time Taken				None Supplied	None Supplied
		<u>۹</u> -	(0 m P	None Supplied	None Supplied
Analytical Parameter	Unit	n n	iccri tatio		
	ťs	tio	edi on us		
VOCs					
Chloromethane	µg/kg	1	ISO 17025	-	< 1.0
Chloroethane	µg/kg	1	NONE	-	< 1.0
Bromomethane	µg/kg	1	ISO 17025	-	< 1.0
Vinyl Chloride	µg/kg	1	NONE	-	< 1.0
Trichlorofluoromethane	µg/kg	1	NONE	-	< 1.0
1,1-Dichloroethene	µg/kg	1	NONE	-	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	1	ISO 17025	-	< 1.0
Cis-1,2-dichloroethene	µg/kg	1	MCERTS	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	< 1.0
1,1-Dichloroethane	µg/kg	1	MCERTS	-	< 1.0
2,2-Dichloropropane	µg/kg	1	MCERTS	-	< 1.0
Trichloromethane	µg/kg	1	MCERTS	-	< 1.0
1,1,1-Trichloroethane	µg/kg	1	MCERTS	-	< 1.0
1,2-Dichloroethane	µg/kg	1	MCERTS	-	< 1.0
1,1-Dichloropropene	µg/kg	1	MCERTS	-	< 1.0
Trans-1,2-dichloroethene	µg/kg	1	NONE	-	< 1.0
Benzene	µg/kg	1	MCERTS	-	< 1.0
Tetrachloromethane	µg/kg	1	MCERTS	-	< 1.0
1,2-Dichloropropane	µg/kg	1	MCERTS	-	< 1.0
Trichloroethene	µg/kg	1	MCERTS	-	< 1.0
Dibromomethane	µg/kg	1	MCERTS	-	< 1.0
Bromodichloromethane	µg/kg	1	MCERTS	-	< 1.0
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	-	< 1.0
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	-	< 1.0
Toluene	µg/kg	1	MCERTS	-	< 1.0
1,1,2-Trichloroethane	µg/kg	1	MCERTS	-	< 1.0
1,3-Dichloropropane	µg/kg	1	ISO 17025	-	< 1.0
Dibromochloromethane	µg/kg	1	ISO 17025	-	< 1.0
Tetrachloroethene	µg/kg	1	NONE	-	< 1.0
1,2-Dibromoethane	µg/kg	1	ISO 17025	-	< 1.0
Chlorobenzene	µg/kg	1	MCERTS	-	< 1.0
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	-	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	-	< 1.0
p & m-Xylene	µg/kg	1	MCERTS	-	< 1.0
Styrene	µg/kg	1	MCERTS	-	< 1.0
Tribromomethane	µg/kg	1	NONE	-	< 1.0
o-Xylene	µg/kg	1	MCERTS	-	< 1.0
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	-	< 1.0
Isopropylbenzene	µg/kg	1	MCERTS	-	< 1.0
Bromobenzene	µg/kg	1	MCERTS	-	< 1.0
n-Propylbenzene	µg/kg	1	ISO 17025	-	< 1.0
2-Chlorotoluene	µg/kg	1	MCERTS	-	< 1.0
4-Chlorotoluene	µg/kg	1	MCERTS	-	< 1.0
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	-	< 1.0
tert-Butylbenzene	µg/kg	1	MCERTS	-	< 1.0
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	-	< 1.0
sec-Butylbenzene	µg/kg	1	MCERTS	-	< 1.0
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	-	< 1.0
p-Isopropyltoluene	µg/kg	1	ISO 17025	-	< 1.0
1,2-Dichlorobenzene	µg/kg	1	MCERTS	-	< 1.0

Project / Site name: Brunswick Camp, Pirbright

Lab Sample Number	1690382	1690383			
Sample Reference				TP04	TP05
Sample Number				None Supplied	None Supplied
Depth (m)				0.35	0.45-0.65
Date Sampled				18/11/2020	18/11/2020
Time Taken					None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detectio n	Accredi tation Status		
1,4-Dichlorobenzene	µg/kg	1	MCERTS	-	< 1.0
Butylbenzene	µg/kg	1	MCERTS	-	< 1.0
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	-	< 1.0
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	-	< 1.0
Hexachlorobutadiene	µg/kg	1	MCERTS	-	< 1.0
1,2,3-Trichlorobenzene	µg/kg	1	ISO 17025	-	< 1.0

SVOCs	-				
Aniline	mg/kg	0.1	NONE	-	< 0.1
Phenol	mg/kg	0.2	ISO 17025	-	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	-	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	-	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	-	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	-	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	-	< 0.2
Isophorone	mg/kg	0.2	MCERTS	-	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	-	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	-	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	-	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	-	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	-	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	-	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	-	< 0.2
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	-	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05
Carbazole	mg/kg	0.3	MCERTS	-	< 0.3
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	-	< 0.3

Project / Site name: Brunswick Camp, Pirbright

Lab Sample Number	1690382	1690383			
Sample Reference	TP04	TP05			
Sample Number				None Supplied	None Supplied
Depth (m)				0.35	0.45-0.65
Date Sampled				18/11/2020	18/11/2020
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detectio n	Accredi tation Status		
Fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	< 0.05
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05
Environmental Forensics	-				
Hexabromobiphenyl	mg/kg	0.1	NONE	-	< 0.1

Stockholm convention POPs list A					
Mirex	mg/kg	1	NONE	-	< 1.0
					•

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Brunswick Camp, Pirbright

Lab Sample Number	1690384	1690385			
Sample Reference	TP03	TP04			
Sample Number	None Supplied	None Supplied			
Depth (m)	0.30	0.75			
Date Sampled	18/11/2020	18/11/2020			
Time Taken				None Supplied	None Supplied
Analytical Parameter (Leachate Analysis)	Units	Limit of detectio n	Accredi tation Status		

General Inorganics

pH	pH Units	N/A	ISO 17025	6.7	6.3
Total Cyanide	µg/l	10	ISO 17025	< 10	< 10
Sulphate as SO4	mg/l	0.1	ISO 17025	0.3	0.4
Sulphide	µg/I	5	NONE	< 5.0	< 5.0
Total Organic Carbon (TOC)	mg/l	0.1	NONE	6.04	8.39

Total Phenols

Total Phenols (monohydric)	µg/l	10	ISO 17025	< 10	< 10

Speciated PAHs					
Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Phenanthrene	µg/I	0.01	ISO 17025	< 0.01	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Pyrene	µg/I	0.01	ISO 17025	< 0.01	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	NONE	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	NONE	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	NONE	< 0.01	< 0.01

Total PAH

Total EPA-16 PAHs	µg/l	0.2	NONE	< 0.2	< 0.2

Heavy Metals / Metalloids

Arsenic (dissolved)	µg/l	1	ISO 17025	< 1.0	2.4
Barium (dissolved)	µg/l	0.05	ISO 17025	6.7	4.2
Beryllium (dissolved)	µg/l	0.2	ISO 17025	< 0.2	< 0.2
Boron (dissolved)	µg/l	10	ISO 17025	< 10	< 10
Cadmium (dissolved)	µg/l	0.08	ISO 17025	< 0.08	< 0.08
Chromium (dissolved)	µg/l	0.4	ISO 17025	1.1	< 0.4
Copper (dissolved)	µg/l	0.7	ISO 17025	6.2	8
Lead (dissolved)	µg/l	1	ISO 17025	4.7	4.3
Mercury (dissolved)	µg/l	0.5	ISO 17025	< 0.5	< 0.5
Nickel (dissolved)	µg/l	0.3	ISO 17025	0.5	< 0.3
Selenium (dissolved)	µg/l	4	ISO 17025	< 4.0	< 4.0
Vanadium (dissolved)	µg/l	1.7	ISO 17025	< 1.7	< 1.7
Zinc (dissolved)	ug/l	0.4	ISO 17025	13	7.8

U/S = Unsuitable Sample I/S = Insufficient Sample

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1690378	TP01	None Supplied	0.30-0.45	Brown sand.
1690379	TP02	None Supplied	0.15	Brown loam and sand with vegetation.
1690380	TP02	None Supplied	0.35-0.77	Brown loam and sand.
1690381	TP03	None Supplied	0.40-0.60	Light brown sand.
1690382	TP04	None Supplied	0.35	Light brown loam and sand with vegetation.
1690383	TP05	None Supplied	0.45-0.65	Light brown loam and sand with gravel.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

	1				
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
NRA Leachate Prep	10:1 extract with de-lonised water shaken for 24 hours then filtered.	In-house method based on National Rivers Authority	L020-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	termination of metals in leachate by acidification In-house method based on MEWAM 2006 Methods lowed by ICP-OES. In Soil.		W	ISO 17025
Boron in leachate	Determination of boron in leachate. Sample acidified and followed by ICP-OES.	In-house method based on MEWAM	L039-PL	W	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in leachate	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L102B-PL	W	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
pH at 20oC in leachate	Determination of pH in leachate by electrometric measurement.	In house method.	L005-PL	w	ISO 17025

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	al Method Description Analytical Method Reference			
PRO (Soil)	Determination of hydrocarbons C6-C10 by headspace GC- MS.	In-house method based on USEPA8260	L088-PL	w	MCERTS
Sulphide in leachate	Determination of sulphide in leachate by ion selective electrode.	In-house method	L010-PL	W	NONE
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCI followed by ICP-OES.	termination of total sulphate in soil by extraction with In house method. % HCl followed by ICP-OES.			
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	andard preparation for all samples unless otherwise tailed. Gravimetric determination of stone > 10 mm as dry weight.			
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Total cyanide in leachate	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon in leachate	Determination of dissolved organic carbon in leachate by TOC/DOC NDIR analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	w	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics) Determination of BTEX in soil by headspace GC-MS.		In-house method based on USEPA8260	L073B-PL	W	MCERTS
Ammonia as NH3 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	W	MCERTS

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
EF - Hexabromobiphenyl in soil by GC-Q	Hexabromobiphenyl by GC-Q	In-house method	UK	W	NONE
EF - Annex A POPs	Annex A POPs	In house method - Annex A POPs	UK	W	NONE
Sulphate in leachates	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Reinier van der Kuip Tweedie Evans Consulting Ltd The Old Chapel 35a Southover Wells Somerset BA5 1UH

t: 01749 677 760 f: 01749 679 345 e:

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 20-42491

Project / Site name:	Brunswick Camp, Pirbright	Samples received on:	18/11/2020
Your job number:	1909007.002	Samples instructed on/ Analysis started on:	19/11/2020
Your order number:		Analysis completed by:	26/11/2020
Report Issue Number:	1	Report issued on:	26/11/2020
Samples Analysed:	4 10:1 WAC samples		

Signed:	

Rachel Bradley Deputy Quality Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical	Results						
Report No:		20-4	2491				
					Client:	TWEEDIE	
Location		Brunswick Ca	amp, Pirbright				
Lab Bafanna (Camula Nambar)					Landfill	Naste Acceptanc	e Criteria
Lab Reference (Sample Number)		1690399	/ 1690400			Limits	
Sampling Date		18/11	/2020			Stable Non-	
Sample ID Depth (m)	TP01 0.30-0.45			Inert Waste Landfill	reactive HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis							
TOC (%)**	0.7				3%	5%	6%
Loss on Ignition (%) **	1.3						10%
BTEX (µg/kg) **	< 10				6000		
Sum of PCBs (mg/kg) **	< 0.007				1		
Mineral Oil (mg/kg)	< 10				500		
Total PAH (WAC-17) (mg/kg)	< 0.85				100		
pH (units)**	8.4					>6	
Acid Neutralisation Capacity (mol / kg)	3.6					To be evaluated	To be evaluated
Elusto Analysis					Limit value	s for compliance le	eaching test
Eluate Allalysis	10:1			10:1	Linie value	is for compliance in	cuching cese
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)		
Arconic *	0.0062			0.0503	0.5	2	25
Barium *	0.0002			0.184	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0030			0.025	0.5	10	70
Copper *	0.025			0.21	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	< 0.0004			< 0.0040	0.5	10	30
Nickel *	0.0024			0.019	0.4	10	40
Lead *	0.0074			0.060	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.033			0.27	4	50	200
Chloride *	2.4			19	800	15000	25000
Fluoride	0.32			2.6	10	150	500
Sulphate *	4.1			33	1000	20000	50000
TDS*	46			380	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	5.29			42.9	500	800	1000
Leach Test Information		1	1	1			
Stone Content (%)	< 0.1		1	1			
Sample Mass (kg)	1.7	1	1	1			
Dry Matter (%)	82		1	1			
Moisture (%)	18	1					
		1	1				
				1			
Results are expressed on a dry weight basis, after correction for mo	isture content where	e applicable.			*= UKAS accredite	ed (liquid eluate ana	lysis only)
Stated limits are for guidance only and i2 cannot be held responsible	e for any discrepanc	ies with current legi	slation		** = MCERTS accr	edited	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Results							
Report No:		20-4	2491				
					Client:	TWEEDIE	
Location		Brunswick C	amp, Pirbright				
					Landfill	Waste Acceptan	e Criteria
Lab Reference (Sample Number)		1690401	/ 1690402			Limits	
Sampling Date		18/11	L/2020			Stable Non-	
Sample ID		TI	P02		The art Minister	reactive	Useerdeure
Depth (m)	0.35-0.77			Landfill	waste in non- hazardous Landfill	Waste Landfill	
Solid Waste Analysis							
TOC (%)**	1.3				3%	5%	6%
Loss on Ignition (%) **	3.0						10%
BTEX (µg/kg) **	< 10				6000		
Sum of PCBs (mg/kg) **	< 0.007				1		
Mineral Oil (mg/kg)	< 10				500		
Total PAH (WAC-17) (mg/kg)	< 0.85				100		
pH (units)**	/.1					>6	
Acid Neutralisation Capacity (mol / kg)	0.12					To be evaluated	To be evaluated
Eluate Analysis	10:1			10.1	Limit value	es for compliance l	eaching test
	10.1			10.1	using PC EN	124E7 2 at 1/6 10	
(BS EN 12457 - 2 preparation utilising end over end leaching	ma/l			ma/ka	USING DS EN	12437-2 at L/3 It	i/kg (ilig/kg)
procedure)							
Arsenic *	0.0038			0.0317	0.5	2	25
Barium *	0.0080			0.0655	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0015			0.013	0.5	10	70
Copper *	0.0053			0.044	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	< 0.0004			< 0.0040	0.5	10	30
Lead *	0.0011			0.0095	0.4	10	50
Antimony *	< 0.0033			< 0.045	0.06	0.7	5
Selenium *	< 0.0017			< 0.017	0.00	0.5	7
Zinc *	0.0065			0.053	4	50	200
Chloride *	2.0			16	800	15000	25000
Fluoride	< 0.050			< 0.50	10	150	500
Sulphate *	2.4			19	1000	20000	50000
TDS*	13			100	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	11.4			93.6	500	800	1000
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	17	1					
Dry Matter (%)	83						
Moisture (%)	17	1	1				
		1					
	1	1		ĺ			
				1			
Results are expressed on a dry weight basis, after correction for mo	isture content wher	e applicable.	•		*= UKAS accredite	ed (liquid eluate ana	lysis only)
Stated limits are for guidance only and i2 cannot be held responsible	e for any discrepend	ies with current legi	slation		** = MCERTS accr	edited	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Results							
Report No:		20-4	2491				
					Client:	TWEEDIE	
Location		Brunswick Ca	amp, Pirbright				
					Landfill	Waste Acceptance	e Criteria
Lab Reference (Sample Number)		1690403	/ 1690404			Limits	
Sampling Date		18/11	L/2020			Stable Non-	
Sample ID Depth (m)	TP03 0.40-0.60			Inert Waste Landfill	reactive HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis							
TOC (%)**	0.7				3%	5%	6%
Loss on Ignition (%) **	1.2						10%
BTEX (µg/kg) **	< 10				6000		
Sum of PCBs (mg/kg) **	< 0.007				1		
Mineral Oil (mg/kg)	< 10				500		
Total PAH (WAC-17) (mg/kg)	1.51				100		
pH (units)**	7.2					>6	
Acid Neutralisation Capacity (mol / kg)	0.56					To be evaluated	To be evaluated
Fluate Analysis				10.1	Limit value	es for compliance le	eaching test
	10:1			10:1			
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)		
Arsenic *	< 0.0010			< 0.0100	0.5	2	25
Barium *	0.0089			0.0768	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	100	5
Chromium *	0.0019			0.016	0.5	10	70
Copper *	0.0027			0.023	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	< 0.0004			< 0.0040	0.5	10	30
Nickel *	0.0009			0.0079	0.4	10	40
Lead *	0.0084			0.072	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.0081			0.070	4	50	200
Chloride *	1.4			12	800	15000	25000
Fluoride	0.099			0.85	10	150	500
Sulphate *	1.7			15	1000	20000	50000
IDS* Dhanal Index (Manahuduja Dhanala) *	13			110	4000	60000	100000
Phenoi Index (Mononydric Phenois) *	< 0.010		-	< 0.10	1	-	-
DOC	7.68			66.2	500	800	1000
Leach Test Information							
Stone Content (%)	< 0.1			1		1	
Sample Mass (kg)	1.7			1		1	
Dry Matter (%)	87						
Moisture (%)	13						
Results are expressed on a dry weight basis, after correction for mo	isture content wher	e applicable.			*= UKAS accredite	ed (liquid eluate ana	lysis only)
Stated limits are for guidance only and i2 cannot be held responsible	e for any discrepend	ies with current legi	slation		** = MCERTS accr	edited	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical	Results						
Report No:		20-4	2491				
					Client:	TWEEDIE	
Location		Brunswick Ca	amp, Pirbright				
Lab Beference (Comula Number)					Landfill	Waste Acceptane	e Criteria
Lab Reference (Sample Number)		1690405	/ 1690406			Limits	
Sampling Date		18/11	L/2020			Stable Non-	
Sample ID Depth (m)	TP05 0.45-0.65			Inert Waste Landfill	reactive HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis							
TOC (%)**	< 0.1				3%	5%	6%
Loss on Ignition (%) **	0.5						10%
BTEX (µg/kg) **	< 10				6000		
Sum of PCBs (mg/kg) **	< 0.007				1		
Mineral Oil (mg/kg)	< 10				500		
Total PAH (WAC-17) (mg/kg)	< 0.85				100		
pH (units)**	5.8					>6	
Acid Neutralisation Capacity (mol / kg)	-24					To be evaluated	To be evaluated
Fluate Analysis	10.1			10-1	Limit value	es for compliance l	eaching test
(BS EN 12457 - 2 preparation utilising end over end leaching	10:1			10:1	using BS EN	12457-2 at L/S 10	l/kg (mg/kg)
procedure)	mg/l			mg/kg			
Arsenic *	0.0048			0.0407	0.5	2	25
Barium *	0.0056			0.0473	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0007			0.0057	0.5	10	70
Copper *	0.0025			0.021	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	< 0.0004			< 0.0040	0.5	10	30
Nickel *	0.0025			0.021	0.4	10	40
Lead *	0.0096			0.082	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.0065			0.055	4	50	200
Chloride *	2.5			21	800	15000	25000
Fluoride	< 0.050			< 0.50	10	150	500
Sulphate *	2.2			19	1000	20000	50000
IDS* Rhonol Indox (Monohydric Phonole) *	14			120	4000	60000	100000
	< 0.010			< 0.10	1		-
DOC	8.38			71.1	500	800	1000
Leach Test Information	1	1	1	1			
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.7	1		1		1	
Dry Matter (%)	88	1			İ		
Moisture (%)	12	1	1		İ		
Results are expressed on a dry weight basis, after correction for mo	isture content when	e applicable.			*= UKAS accredite	ed (liquid eluate ana	lysis only)
Stated limits are for guidance only and i2 cannot be held responsible	e for any discrepend	ies with current legi	slation		** = MCERTS accr	edited	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1690399	TP01	None Supplied	0.30-0.45	Brown sand.
1690401	TP02	None Supplied	0.35-0.77	Brown loam and sand.
1690403	TP03	None Supplied	0.40-0.60	Light brown sand.
1690405	TP05	None Supplied	0.45-0.65	Light brown loam and sand with gravel.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

	1				
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	w	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance""	L046-PL	W	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	w	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	w	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	w	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Appendix H

Geotechnical Laboratory Report

K	1 Soils)	Sui	mma	ary of Natural N	loisture Co	ntent, L	iquid	Limit	and Pla	astic L	imit R	esults
Job No			Project	Name							Prog	amme	
			-							Samples	received	19/1	1/2020
29	9111		Brunsw	ick Ca	mp, Pirbright					Schedule	received	19/1	1/2020
Project No.			Client							Project st	arted	23/1	1/2020
19090	007.00	2	TEC							Testing S	tarted	25/1	1/2020
Hole No.		Sa	mple	1	Soil Descr	iption	NMC	Passing 425µm	LL	PL	PI	Rer	narks
	Ref	l op m	Base m	Туре			%	%	%	%	%		
TP03	-	2.60	-	D	Orangish brown slightly clayey SAND with rare	r mottled grey fine gravel	23	99	28	15	13		
<u></u>	Test	Method	ls: BS13	377: P	art 2: 1990:	Test F	Report by K	4 SOILS	LABOR	ATORY		Check	ked and
_ 💆	Natur	al Moistu	re Conten	t : clau	se 3.2	U	nit 8 Olds C	lose Old	s Appro	ach		Арр	roved
	Atterk	erg Limit	s: clause	4.3, 4.4	and 5.0		Watford Tel: 0 Email: Jar	Herts WD 1923 711 nes@k4s	288 288 coils.con	n		Initials Date:	J.P 27/11/2020
	Anni	oved Sig	inatories:	K Pha	ure (Tech Mar) J Phaure (l ab Mgr)		-				MSI	F-5-R1

	K					PA	RTI	СГ	.E \$	SIZI	E D	DIS	ΓR	BL	ITI	ON					Job	Ref	/Dit	No					2911 TP0	1			$\overline{]}$
			/	Drune	wiek Co)irbria	ht												-	Dure			INO.		+			TPU	1			4
				Dinis		пр, г	lining			Clier						тгс	<u>,</u>			-	Dont		NU.			+			-				-
	Jectiv	NO.			1909007	1.002				Clier	11					TEC	,			+	Depi		pp			+		0.0	00				4
																				<u> </u>		i Bas	se			+						m	4
	Soil D	escripti	on				Gr	eyis	h br	own	sligh	ntly s	ilty S	SAN	D						Sam	ple 7	уре			\downarrow		10	B	0000			4
																				\vdash	Sche	dule	s rec	ceiv	ed	╉		19	/11/2	2020			-
	Test	Metho	d	BS13	77:Part 2	2: 199	90, cla	ause	9.0)											Pr	ojec	t sta	rted				23	/11/2	2020			
																					[Date	test	ed				25	/11/2	2020			
		CLAY	Fine		SILT		Coarse	_		Fine		S/ Me	AND	<u> </u>		oarse		Fin	<u>م</u>	G	RAVE	EL	0	harse	_	СС	BBLES		BOU	LDERS	S		
	100 -										!						-					_		1		TIT						 1	
	90 -											\square																					
	00																																
	80 70 60 50 40 30 20 10 0 0.001 0.001 0.01										Π																						
%	90 80 70 60 60 60 50 60 40 60 30 60 20 60 10 0.01 0.001 0.01 0.001 0.01 90 100 90 100 75 100 63 100 50 100															╈		_									-						
ing	90 80 70 60 60 60 50 60 40 60 30 60 20 60 10 0.1 0.001 0.1 F Sedimentation Particle Size mm % Passing 125 100 90 100 75 100 50 100 28 100 20 100 14 100														+					_						-							
Pass	50 -																																
tage	40																																
srcen	40 -																																
Pe	30 -							+		-							╈		_									-					
	20 -																+					_	_										
	10 -																																
	10									1																							
	0 - 0.0	001			0.01			0	().1		<u> </u>				1					10				<u>. </u>	1	00				10	00	
													Ρ	artic	le S	Size	mm																
	\vdash		Sie	ving					S	edim	nent	atio	n			-																	
	40 30 40 <td< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></td<>														_																_		
	0 1 0.001 0.01 0.1 Sieving Sedimentation Particle Size mm % Passing Particle Size mm % 125 100 0 0 0 90 100 0 0 0 0 63 100 0														-	Sa	erv co	e Pro	opoi e	tion	s				+		%	dry r 0.0	mass			-	
		75			100												Gi	avel	Juite	-									0.0				
	<u> </u>	63 50			100						+					-	Sa	and								+			98.3	3			4
		37.5	,		100												Fi	nes <	:0.06	63mr	n								1.7				
		28			100											4	6	radin	a A	nalv	sie												٦
		14			100											1	D	100	3 71	nury:				r	mm								
		10			100						\square					-		30 30						r	nm	Ŧ			0.18	4			\dashv
		5			100						\pm						D	10						r	nm	\pm			0.13				
		3.35	5		100						T					-	Ur	niforn	nity (Coef	ficien	t t				Ŧ			1.8]
	2 100 1.18 100									+					-		u vau		JUEII									1.4					
	0.6 100 0.425 100												1	Re	emarl	ks on and	d toeti	na in s	accord	ance	with	R\$13	877	inless not	od bol	low							
	0.425 100 0.3 99 0.312 00												-	FIG	paratio	JIT and	u testi	ny in a	100010	ance	with	0010	<i>577</i> u	mess nou	eu bei	1010							
		0.212	2		90																												
	\vdash	0.15) 3		17	-																											
																-											Check	ed a	nd A	nnro	Vod		
- <u></u>	Q								K4	Soi	ils I	Lab	ora	tor	у												CHECK						
-(≯	Unit 8, Olds Close, Watford, Herts, WD18 9 Email: james@k4soils.com												9RU	I					1	niti	als:												
	UKAS Tel: 01923 711288										/11								1	Date	: :			27	//11/2	020							
25	19	Арр	roved S	Signato	ries: K.P	haure	e (Teo	ch.M	lgr)	J.Ph	aure	(La	b.Mç	gr)														MSF	-5-R	3			

	K	1				PAF	RTIC	LE	E S	SIZE	E D	IS	٢R	IBI	JT	101	N					Job	Ref							2	2911	1	. 10		
		SOILS																				Bore	ehole	e/Pit	No.					-	TP0 ⁻	1			
S	ite Nam	le		Brunsv	vick Carr	ıp, Pir	rbrigh	t														Sam	nple	No.			\downarrow				-				
Pro	oject No	D.		1	1909007.	.002			C	Clien	t					Т	EC					Dep	th To	эр						1.6	0			m	
)epth	n Ba	se						-				m	
	Soil De	scriptic	on	Grey	ish brow	n mot	ttled c	prang	gish	h bro	wn	silty	ver	y gra	ave	lly S	ANI	D (gr	avel	is		Sam	nple [·]	Туре	e		Τ				В				
							IIIIC	anu	i su	D-an	iguia		rou	nue	u)							Sar	nple	s re	ceiv	ed				19/	11/2	020			
	Test	Method		BS137	7.Part 2	1000		160 (2.0													Sche	edule	es re		/ed	+			19/	11/2	020			_
	10511	victriou		00107	7.i art 2.	. 1000	, 0100	100 0															Date	tes	ted	4				25/	11/2	020			
					SILT							S	ANC)							G	RAVI	EL						FS		BOUI	DER	9		
	100		Fine	•	Medium	C	oarse		F	ine		Me	ediur	n	(Coars	se		Fine		M	lediu	m	С	coars	e					DOOL				
																										\square									
	90																	┢																	
	80 -								++-									\vdash						4											
	70																	-									_								
% ɓi	60																																		
assir	00																																		
ige P	50										1							┢																	
centa	40										+				++-			┢						_								++			
Perc	30												_																						
	20										/																								
	20							-	1																										
	10																	┢																	
	0 L				0.01				Щ																										
	0.00	JI			0.01				0.	. 1			F	Parti	cle	ı Size	r	nm				10						100					10	000	
			Sie	ving					Se	dim	enta	atio	n			٦																			
	Parti	cle Siz	e mm	%	Passing		Partic	le S	ize	mm		%	Pas	ssing	3																				
		125			100						+							Sar	nple	Pro	por	tion	S				Т			% (dry n	nass	6		
		90 75			100													Ver	y coa	arse	9						+				0.0	2			
		63			100	+					┢					+		Sar	nd								╉				52.1				-
		50			100						\square							Lin	~~ <(2.06	2						\downarrow				17.0	, ,			
	-	28			87	+					+					+		FIII	25 \(5.00	SHIII	1									17.5)			
		20			79													Gra	ding	g An	alys	sis					\square								
		14			74	-					┼					+		D60)							mm mm				(0.28	6			-
		6.3			73													D30)							mm				(0.164	4			
		5 3.35		-+					┢					-		Uni) form	ity C	Coeff	icier	nt			mm	+								-		
		2							t							Cur	vatu	re C	Coeff	icien	nt														
		1.18 0.6	-										-		Rer	nark	s																		
	0.6 68 Remarks 0.425 67 Preparation and testing in accord											accore	dance	e with	BS1	377 ı	unles	s note	d belo	w															
	0.3 62 0.212 47																																		
		0.15			24																														
		0.063			17																														
G	Ð							ĸ	(4 :	Soi	ls I	_ab	ora	ato	ry													Cł	neck	ed ar	nd A	ppro	ovec		
	2)				Un	it 8,	Olds	s C	los	se, I	Wa	tfoi	rd,	He	rts	s, W	D1	8 9	RU							Initi	als:								
	シ					-	E	mai	il: j	am	es(@k	4s	oils	5.CO	om										Dat	e:				27	/11/3	2020		
1ESI 25	19	Appr	oved S	ignatori	ies [.] K Ph	aure	(Tech	Ma		I: 0'	192 aure	237 (1 a)	т 11 5 М	288	5															MSF	_5_R	3			
		- PPR		3.16.01					., 5			,		J' 1																	211	-			_

	K	1)			PAF	RTIC	LE	E S	IZE	Đ	IST	RI	BL	ITI		1					Job	Ref	(0)							2911	11			
		SUILS																			-	Bore	ehole	e/Pit	t No						190	2			4
	ite Nan	ne		Brunsv	wick Can	np, Pi	rbright	t														Sam	nple	No.							-				4
Pro	oject N	0.			1909007.	.002			С	lient	t					TE	EC					Dep	oth T	ор						1.4	40			m	۱
																						Depth	h Ba	ase						-	•			m	1
	Soil De	escriptio	on	Gree	nish brov	NN MC	ottled o	orar el is	ngish s fmc	n bro	wn d sul	sligh b-an	ntly (grav ar to	elly	sligi unde	htly d)	clay	/ey s	silty		Sam	nple	Тур	е						В				
					C	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(grav		/	June		o un	guit		100	ando	a)					Sar	mple	es re	ceiv	/ed				19	/11/2	2020			\square
	Test	Methor	4	BS137	7.Part 2	· 1990) clau	ise	9.0												\vdash	Sche	roie	es r	ecei arte	vec d	1			19 23	/11/2	2020) 		-
			-	20101	· · · · · · · ·		, 0.040		0.0												L		Date	e tes	sted					25	/11/2	2020	1		
					SILT							SA	ND								G	RAVI	EL					COF	BBLES		BOU		25		
	100 -		Fine		Medium	C	oarse		Fi	ine		Me	dium	ו ו	С	Coars	е		Fine	;	N	lediu	Im	(Coars	se									
														++									-		Ī			Ĭ							
	90 -											Í																						1	
	80 -		0.01 0.1 1 Particle Size mm % Passing Particle Size mm % Passing																		-														
	70 -					_																													
g %	60																																		
assin	00 -										ľ																							1	
ge P.	50 -									_								-																	
enta	40					_					+	_						-		_						+								-	
Perc	30 -																																		
	20 -									/																								1	
	10 -							-/		_		+											_			-									
	0																																		
	0.0	01			0.01				0.	1			Р	artio	le S	1 Size	n	nm				10						10	00				1(000	
			Sie	ving					Se	dim	enta	ation	1			7																			
	Part	ticle Siz	ze mm	%	Passing		Partic	le S	Size ı	mm		% I	Pas	sing		1																			
		125			100	-					\vdash					-		Sar	nple	Pro	por	tion	IS							%	dry r	mas	s		Γ
		Sieving Sed Particle Size mm % Passing Particle Size mm 125 100 100 90 100 100 63 100 100																Ver	y co	arse	9										0.0)			
		75 63			100	-					\vdash					-		Gra Sar	ivel id												2.6 87.3	; 3			\neg
		50			100																_														
		37.5 28			100	-					┢					-		Fine	es <	0.06	3mn	n									10.0	0			
		20			98													Gra	ding	g An	alys	sis													
	-	14 10			98 98	-					\vdash					-		D10)							mr mr	n n	\vdash			0.21	3			\dashv
		6.3			98													D30)							mr	n				0.16	61			
	-	5 3 35			98 98						\vdash					-		D10 Uni) form	itv C	Coeff	icier	nt			mr	n	-							\dashv
		2			97													Cur	vatu	ire C	Coeff	icier	nt												
	1.18 97 0.6 97										nork																								
	0.6 97 Remarks 0.425 97 Preparation and testing in according to the string t												rdanc	e with	n BS	1377	7 un	less note	ed bel	ow															
		0.3)		90																														
		0.212			22	-																													
		0.063	}		10																														
G	b							4	<u> </u>	Soil	s I	ah	ora	itor	v														Check	ed a	nd A	ppr	ove	k	
	2	K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU														Ini	tial	s:																	
	シ.				0.1		Er	ma	il: j	am	es(@k4	lsc	oils	.co) m	- 1	- •													07	7/4 4 4	2024		
	AS INC	Α.					/ T		Tel	: 01	192	37	112	288												La	ne:			M0-	21	711/.	2020	,	
25	13	Appr	oved S	ignator	ies: K.Ph	aure	(I ech	ı.ıVlQ	jr) J.	.rna	ure	Lab	v.iVlQ	JL)												1				IVISI	5-h	3			

	F)		F	PARI	LICL	.E S	IZE	DIS	TR	IBU	TI	ON				J	lob Re	f	No					291 TD	11		
			/	Brupowiek	Com	o Dirbr	right												Somelic		INU.		+			IF	03		
									lient					тго									+			-			
	oject	NO.		190	9007.0	02			lient					TEC					Jeptn	гор			+			0.70			
																		De	epth B	ase						-			m
	Soil I	Descript	ion				G	irey s	lightly	silty	SANI	D						S	Sample	е Тур	е					D)		
																			Sampl	es re	ceive	ed	+		1	9/11/	2020		
	Tes	st Metho	d	BS1377:P	Part 2:	1990, d	clause	9.0											Proje	ect st	arted	l	╋		2	3/11/	2020		
																			Da	te tes	sted				2	25/11/	2020		
	-	CLAY		SI	LT						SAND							GR	AVEL				со	BBLES		BO	ULDER	S	
	100	1	Fine	e Mec	dium	Coa	rse	F	ine	N	lediun	n	C	oarse		Fine		Me	edium		Coarse		191 9	-		_			i
	00									r																			
	90																												
	80														┢										-				
<u>`0</u>	70	-													┢										-	_			
% BL	60																												
assil																													
ige P	50																												
centa	40									_					+										-	_			
Perc	30	ļ																											
	00																												
	20																												
	10														┢										-	-			
	0	Ļ																					Щ						
	0	.001		0.0)1			0.	.1		Р	artic	í le S	1 Size	mm			1	0				1(00				10	00
			Sie	ving				Se	dime	ntatio	on			1															
	Pa	article Si	ze mm	% Pas	ssing	Pa	article	Size	mm	%	6 Pas	sing		1															
		20												1	Sa	mple	Pro	port	ions				Τ		%	dry	mass	;	
	SievingSedimentParticle Size mm% PassingParticle Size mm1251009090100907510090													-	Ve	ry coa avel	arse						+			0.	0		
		63		10	00										Sa	nd							+			96	.5		
		50 27 P	-	10	00]	Ein	~~~	062)mm					\bot			2	2		
		28)	10	00									1	ГШ	62 ~0	0.003									3.	3		
		20		10	00]	Gra	ading	J An	alysi	is										
	\vdash	14 10		10	00	_ _								{	D1	0						mm	+			0.1	77		+
		6.3		10	00									1	D3	0						mm				0.1	52		
	\vdash	5 3 35	5	10	00	_ _								-	D1 Un	U iformi	ty Co	oeffi	cient			mm	+			0.07	798 2		+
		2		10								1	Cu	rvatu	re Co	oeffic	cient							1.	6				
		1.18	3	10									-	D-	mark	-	_		_			_					_		
	0.425 99												_		Pre	paration	and	testing	g in acco	ordanc	e with	BS13	77 ur	nless no	oted b	elow			
	0.3 99 0.212 96										1																		
	\vdash	0.21	∠ 5	28	0 8	$-\parallel$																							
		0.06	3	3	3																								
G	أث							K4	Soils	s I al	bora	ator	v											Cheo	ked	and	Appro	ved	
	K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU															Initia	als:												
_ <u> </u>	<u>ト</u>						Em	ail: j	ame	s@l	k4so	oils	co	m								Date				2	7/11/	2020	
	TINC 519	Δ ρ ρ	rovad C	ignatorias	K Dha	T DILLE	ech M	Te	1: 019	923	711:	288											•		M	2 SE-5	R3		
۷.		, ipp		.gnatorica.	110		5011.10	·9·/ J	au	·~ (L)	~~.ivi	<u>שיו</u>													1410			_	

										Job Ref			29111	
	K	TOILS	P.	ARTICI	LE SIZE I	DISTRIE	BUTI	ON		Borehole/	Pit No.		TP04	
S	ite Name	-	Brunswick Camp,	Pirbright						Sample N	0.		-	
Pro	oject No.		1909007.00)2	Client			TEC		Depth Top	D		2.60	m
	,				-					Depth Base	e		-	m
		ription	Orangish brov	up mottlod	bluich grou		Dwith	roro f	ino graval	Sample T	vpe		В	
	Soli Desc	прион	Orangish brow	wir mottieu	bluishigiey	Jayey SAN		laiei	ine graver	Samples	received		19/11/2020	
										Schedules	s received		19/11/2020	
	Test Me	ethod	BS1377:Part 2: 1	990, claus	e 9.0					Project	started		23/11/2020	
										Date	lested		20/11/2020	
	CLA	AY Fine	SILT e Medium	Coarse	Fine	SAND Medium	Co	oarse	Fine	GRAVEL Medium	Coarse	COBBLES	BOULDERS	
	100													
	90					\square								-
	80													
	00													
%	70													
sing	60					1								
Pas	50													
itage	40													
srcen	40													
Pe	30													
	20													-
	10													
	0 — 0.001		0.01		0.1		1	_ <u>-</u> 1		10		100	· · · · · · · · · · · · · · · · · · ·	1 000
						Par	ticle S	ize r	nm					
		Sie	ving		Sedimen	tation								
	Particle	e Size mm	% Passing	Particle	e Size mm	% Passi	ng							
		125	100					1	Sample Pro	portions			% dry mass	
		90 75	100						Very coarse Gravel			+	0.0	
		63	100					1	Sand				85.1	
		50 37 5	100					-	Fines <0.06	3mm			13 7	
		28	100					1						
		20	100						Grading An	alysis				
		14	100					1	D100		mm		0.207	
		6.3	100					1	D30		mm	1	0.157	
		5 3 35	100					-	D10 Uniformity C	oefficient	mm	-		
		2	99						Curvature C	oefficient				
	1	1.18	98						Demenden					
	0	0.6	97	┨					Remarks Preparation and	testing in accorda	ance with BS13	77 unless note	ed below	
		0.3	89					1						
	0	0.212	63 25	-										
	0	0.063	14											
C	c				K4 Soile	Laborat	orv					Check	ed and Approve	ed
	<u></u>		Unit	8. Olds	Close. W	atford. H	erts	WD'	18 9RU		Initia	ıls:		
<u></u>	シ_		0.111	Em	ail: james	@k4soi	s.co	m			B-1		07/44/000	20
	AS INC	·		·····	Tel: 019	23 71128	38				Date		27/11/202	20
25	12 4	hpproved S	ognatories: K.Phat	ire (Tech.l	vigr) J.Phaur	e (Lab.Mgr)							IVISE-2-K3	

	K	1 SOIL				PA	RTI		.E \$	SIZE	E D	ols'	ΓR	BU	ITI	ON				_	J	lob I Bore	Ref hole	e/Pit	No.						29 T)111 P05	0.		\square
s	ite Na	me		Bruns	wick Car	np. P	irbric	aht												\dashv		Sam	ple l	No.								-			
Pro	oiect N	No.			1909007	.002		Ţ		Clien	nt					TEC	2			+		Dept	h To	ac							0.65				m
	,									-							-				D	epth	Ba	se							-				m
	Soil F	Vocorinti	on	Gre	yish brov	wn sli	ightly	/ clay	yey g	grave	elly s	ilty \$	SAN	D (g	rav	el is fr	mc	and	sub-	.	5	Sam	ple -	Гуре	e							В			-+
	3011 L	lescripti						ar	ngula	ar to :	sub-	rour	nded)						ŀ		San	1ple:	s ree	ceiv	ed					19/1	1/20	20		-+
																				\square	S	Sche	dule	es re	eceiv	ved					19/1	1/20	20		
	Test	t Metho	d	BS13	77:Part 2	2: 199	0, cla	ause	9.0											+		Pr	ojec Date	t sta tes	arteo ted	b					23/1 ⁻ 26/1 ⁻	1/20: 1/20:	20 20		-+
	_				SILT							S	AND							-	GF	RAVE	EL												
	100	CLAY	Fine	e	Medium	(Coars	е		Fine		Me	edium	ו	С	oarse		F	ine		Me	ediur	n	С	oars	e	1	COB	BLES		B	OULD	ERS		
	100																						-	1											
	90																-	-	-																
	80											/																							
<u>`</u> 0	70					_						\square					_			_			_						_	_	_				
ing %	60		Image: sector of the sector																									_							
Pass	50		Sieving Sedimentation 1 0.01 0.1 Particle Particle 125 100 90 100 75 100 50 100																																
itage	40										/																								
ercen	40	1																								T									
Ъ	30								Ϊ																										
	20					_											_		_	_			_						_	_	_				
	10					_																							_						
	0																																		
	0.	001			0.01				C	.1			П	ortio		1					1	0						10	0					100	00
			Sie	vina					S	edim	ient	atio	n			7																			
	Pa	rticle Si	Sieving Sedimentation 1 0.01 0.1 Particle Sedimentation le Size mm % Passing Particle Size mm % Passing 125 100													1																			
		Sieving Sedimentation 125 100 90 100 75 100 63 100 50 100 37.5 100													-	Γ	Sam	ole F	Prop	oort	ion	s							9	% dr	y ma	ass			
		90			100						\bot							Very	coar	se											().0			
		63			100						+						ł	Sand	ei												6	3.z 2.8			
		50 37 5			100						+					-		Fines	: <0	063	mm										2	4 0			
		28	,		99						\pm						L	i inco	, .0.	000												4.0			
		20			97 95	$- \ $					+					-	┟	Grad	ing	Ana	alys	is				mn	1								
		10			93											1	ļ	D60								mn	ı 1				0.	194			
		6.3 5			90 89						+					-	╞	D30 D10								mn mn	ו ז				0.0)898	6		-+
		3.35	5		88						t					1	ļ	Unifo	rmity	y Co	oeffi	cien	t												
		2	3		87 86						+					-	L	Curva	ature	e Co	peffi	cien	t												
		0.6	_		85						_					1		Rema	arks	and t	ootin	a in a		lonor		DC	1077			atad	holow				
		0.42	5		83 79											-		Prepara	ation	and t	estin	g in a	ICCOLO	ance	e with	821	13//	uni	ess no	oted	Delow				
		0.21	2		67																														
		0.06	3		24																														
يسر										<u>.</u>	1	<i>.</i>		4 -		-													Cheo	cked	d and	l Ap	prov	ed	
	E S				11-	.if 0		de (κ4 ΟΙα	30I	IS I M/~	_ab	ora	utor Har	y to		11	2 0 0								ln ¹⁴	ie!-								
- (≯	Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com																	-	als					o=:	4.15										
									Те	l: 0	192	23 7	11:	288												Dat	te:					27/1	1/20	20	
25	19	Арр	roved S	Signator	ries: K.Pl	haure	e (Teo	ch.N	1gr) 、	J.Pha	aure	(La	b.Mo	gr)																М	SF-5	5-R3			

Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY Telephone: (01424) 718618

> cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number	r: 20-30997
Issue:	1
Date of Issue:	27/11/2020
Contact:	James Phaure
Customer Details:	K4 Soils Laboratory Ltd Unit 8 Watford HertfordshireWD18 9RU
Quotation No:	Q16-00568
Order No:	Not Supplied
Customer Reference:	29111
Date Received:	24/11/2020
Date Approved:	27/11/2020
Details:	Brunswick Camp, Pirbright
Approved by:	

Mike Varley, Technical Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

This report may only be reproduced in full

Sample Summary

Report No.: 20-30997, issue number 1

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
220971	TP01 0.40	18/11/2020	24/11/2020	Sand	
220972	TP01 1.00	18/11/2020	24/11/2020	Sand	
220973	TP02 2.00	18/11/2020	24/11/2020	Sand	
220974	TP03 2.60	18/11/2020	24/11/2020	Loamy sand	
220975	TP04 2.80	18/11/2020	24/11/2020	Loamy sand	

Results Summary

Report No.: 20-30997, issue number 1

		ELAB I	Reference	220971	220972	220973	220974	220975
	C	Customer I	Reference					
		S	Sample ID					
		Sar	nple Type	DISTURBED	DISTURBED	DISTURBED	DISTURBED	DISTURBED
		Sample	e Location	TP01	TP01	TP02	TP03	TP04
		Sample	Depth (m)	0.40	1.00	2.00	2.60	2.80
		Sam	pling Date	18/11/2020	18/11/2020	18/11/2020	18/11/2020	18/11/2020
Determinand	Codes	Units	LOD					
Soil sample preparation paramet	ers							
Material removed	N	%	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Description of Inert material removed	N		0	None	None	None	None	None
Anions								
Water Soluble Sulphate	М	g/l	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Inorganics								
Total Sulphur	N	%	0.01	0.01	< 0.01	0.01	0.02	< 0.01
Acid Soluble Sulphate (SO4)	U	%	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Miscellaneous								
pН	М	pH units	0.1	8.1	7.9	5.7	5.6	5.5

Method Summary Report No.: 20-30997, issue number 1

Parameter	Codes	Analysis Undertaken On	Date Tested	Method Number	Technique
Soil					
рН	M	Air dried sample	27/11/2020	113	Electromeric
Acid Soluble Sulphate	U	Air dried sample	27/11/2020	115	Ion Chromatography
Water soluble anions	M	Air dried sample	26/11/2020	172	Ion Chromatography
Total organic carbon/Total sulphur	N	Air dried sample	26/11/2020	216	IR

Tests marked N are not UKAS accredited

Report Information

Report No.: 20-30997, issue number 1

Key

U	hold UKAS accreditation
Μ	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
۸	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"
LOD	LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination. Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.
	FLAB are unable to provide an interpretation or opinion on the content of this report
	The results relate only to the sample received.
	PCB congener results may include any coeluting PCBs
	Uncertainty of measurement for the determinands tested are available upon request
	Unless otherwise stated, sample information has been provided by the client. This may
	affect the validity of the results.
eviation	Codes

De

- No date of sampling supplied а
- b No time of sampling supplied (Waters Only)
- С Sample not received in appropriate containers
- d Sample not received in cooled condition
- е The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- Sample age exceeds stability time (sampling to analysis) g

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

Appendix I

Generic Quantitative Risk Assessment: Human Health

Assessment
Risk
Quantitative
Generic
Health:
Human

Project Number: 1909007.002		Lab Sample Number	1690378	1690379	1690380	1690381	1690382	1690383	
Project Name: Brunswick Camp, Pirbright		Sample Reference	TP01	ТР02	ТР02	TP03	TP04	TP05	
Site End Use:		Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Residential with homegrown produce	GAC (mg/kg)	Depth (m) Date Sampled	0.30-0.45 18/11/2020	0.15	0.35-0.77 18/11/2020	0.40-0.60	0.35	0.45-0.65	
Determinand			1	2	3	4	5		
Arsenic	37 ⁽¹⁾	mg/kg	6.90	5.10	3.10	2.40	3.50	6.80	
Boron	290 ⁽³⁾	mg/kg	0.20	0.40	< 0.2	< 0.2	< 0.2	< 0.2	
Cadmium	22 ⁽¹⁾	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	
Chromium (total)	910/1/	mg/kg	13.00	10.00	0.1	6.60	/.10	1/.00	
Conner (VI)		mg/kg	270.00	14 00	2 50	2 50	- '	с 20	
Lead	200(1) 200 ⁽¹⁾	mg/kg	30.00	51.00	0.5	2.10	12.00	10.00	
Mercurv	40 ⁽²⁾	me/ke	< 0.3	< 0.3	< 0.3	0.50	0.40	< 0.3	
Nickel	130 ⁽²⁾	mg/kg	9.40	5.50	1.90	2.20	2.50	6.60	
Selenium	350 ⁽²⁾	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Zinc	3700 ⁽³⁾	mg/kg	220.00	59.00	6.20	8.60	20.00	30.00	
Beryllium	1.7 ⁽³⁾	mg/kg	0.38	0.28	0.15	0.21	0.17	0.50	
Vanagum	4 TOV(4)	mg/kg	19.00	18.00	FO		12.00	-	
Darriari Conside (Tetal)	1200(2)	mg/kg	40.00	41.00	nc./	00.c	13.00	30.00	
Cyanuce (Locar) Phenol (Monohydric)	120 ⁽³⁾	mg/kg mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Sulphide		mg/kg	7.40	2.80			< 1.0		
Total Organic Carbon (TOC)		s %	0.70	1.50			06.0		
Naphthalene	2.3 ⁽³⁾	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthylene	170 ⁽³⁾	mg/kg	< 0.05	0.26	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthene	210 ⁽³⁾	mg/kg	< 0.05	0.35	< 0.05	< 0.05	< 0.05	< 0.05	
Fluorene	170 ⁽³⁾	mg/kg	< 0.05	0.34	< 0.05	< 0.05	< 0.05	< 0.05	
Phenanthrene	95 ⁽³⁾	mg/kg	0.25	8.10	< 0.05	< 0.05	< 0.05	< 0.05	
Anthracene	2400 ⁽³⁾	mg/kg	< 0.05	1.40	< 0.05	< 0.05	< 0.05	< 0.05	
Fluoranthene	280(3)	mg/kg	0.49	24.00	< 0.05	< 0.05	< 0.05	< 0.05	
Pyrene	620(3) 7 2(3)	mg/kg	0.43	19.00	< 0.05	< 0.05	< 0.05	< 0.05	
Chrysene	15 ⁽³⁾	mg/kg mg/kg	0.26	8.30	< 0.05	< 0.05	< 0.05	<0.0>	
Benzo(b)fluoranthene	2.6 ⁽³⁾	mg/kg	< 0.05	12.00	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(k)fluoranthene	77 ⁽³⁾	mg/kg	< 0.05	6.90	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(a)pyrene	2.2 ⁽³⁾	mg/kg	< 0.05	9.80	< 0.05	< 0.05	< 0.05	< 0.05	
Indeno(1,2,3-cd)pyrene	27 ⁽³⁾	mg/kg	< 0.05	5.30	< 0.05	< 0.05	< 0.05	< 0.05	
Dibenz(a,h)anthracene	$0.24^{(3)}$	mg/kg	< 0.05	1.60	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(ghi)perylene Sneristed Totsl EDA.16 DAHe	320%	mg/kg mg/bg	< 0.05 1.68	6.10 116.00	< 0.05	<0.0>	<0.0 > 0.0 A	< 0.05	
pressass 10tal EL A-TO 1 A13 Benzene	0.087 ⁽³⁾	111B/ NB 118/ Kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Toluene	130 ⁽³⁾	ug/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	47 ⁽³⁾	μg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
p & m-xylene	56 ⁽³⁾	μg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
o-xylene	60 ⁽³⁾	μg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	49 ⁽⁴⁾	μg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
TPH Aliphatic C5 - C6	42 ⁽³⁾	mg/kg	< 0.001	< 0.001	,		< 0.001		
TPH Aliphatic C6 - C8	100 ⁽³⁾	mg/kg	< 0.001	< 0.001	,		< 0.001		
TPH Aliphatic C8 - C10	27 ⁽³⁾	mg/kg	< 0.001	< 0.001	,		< 0.001		
TPH Aliphatic C10 - C12	130 ⁽³⁾	mg/kg	< 1.0	< 1.0	,		< 1.0		
TPH Aliphatic C12 - C16	1100 ⁽³⁾	mg/kg	< 2.0	< 2.0	1		< 2.0		
TPH Aliphatic C16 - C21	65000 ⁽³⁾	mg/kg	< 8.0	< 8.0			< 8.0		
TPH Aliphatic C21 - C35	65000 ⁽³⁾	mg/kg	< 8.0	< 8.0			< 8.0		
IPH Aromatic C5 - C/	/U/	mg/kg	TNN'N >	T00.0 >			TOU.U >	-	

Project Number: 1909007.002		Lab Sample Number	1690378	1690379	1690380	1690381	1690382	1690383		
Project Name: Brunswick Camp, Pirbright		Sample Reference	TP01	ТР02	TP02	TP03	TP04	TP05		
Site End Use:		Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Decidential with homearown produce	GAC (mg/kg)	Depth (m)	0.30-0.45	0.15	0.35-0.77	0.40-0.60	0.35	0.45-0.65		
vesidential with montegrown produce		Date Sampled	18/11/2020	18/11/2020	18/11/2020	18/11/2020	18/11/2020	18/11/2020		
TPH Aromatic C7 - C8	130 ⁽³⁾	mg/kg	< 0.001	< 0.001			< 0.001			
TPH Aromatic C8 - C10	34 ⁽³⁾	mg/kg	< 0.001	< 0.001			< 0.001			
TPH Aromatic C10 - C12	74 ⁽³⁾	mg/kg	< 1.0	< 1.0	-		< 1.0	1		
TPH Aromatic C12 - C16	140 ⁽³⁾	mg/kg	< 2.0	8.00	1		< 2.0			
TPH Aromatic C16 - C21	260 ⁽³⁾	mg/kg	< 10	80.00		,	< 10			
TPH Aromatic C21 - C35	1100 ⁽³⁾	mg/kg	< 10	170.00			< 10			

Concentration does not exceed GAC No set GAC

Notes: ¹¹ DEFRA CASLs (2014) ¹² Environment Agency SGVs (2009) ¹³ LOM/CEHS suuls 2015) ¹³ LOM/CEHS aults 2015 & ES(2009) ¹³ DLCL Intervention Value for free cyanide (VROM 2000) ¹⁴ GACS based on a sandy soil and Soil Organic Matter (SOM) of 1% where applicable.

Appendix J

Generic Quantitative Risk Assessment: Controlled Waters

Near Surface Leachability Analysis

Contaminant	TP03 at 0.30mbgl	TP04 at 0.75mbgl	SSV	No. of
Containmant	(μg/l)	(μg/l)	(µg/l)	Exceedances
Arsenic	<1.0(5)	2.4	10(1)	0
Cadmium	< 0.08(5)	< 0.08(5)	5.0 ⁽¹⁾	0
Chromium	1.1	0.4	50(1)	0
Copper	6.2	8	2000(1)	0
Lead	4.7	4.3	10(1)	0
Mercury	< 0.5(5)	< 0.5(5)	1.0(1)	0
Nickel	0.5	<0.3	20(1)	0
Zinc	13	7.8	3000 ⁽²⁾	0
Beryllium	<0.2(5)	< 0.2(5)	-	0
Selenium	<4.0 ⁽⁵⁾	<4.0 ⁽⁵⁾	10(1)	0
Vanadium	<1.7(5)	<1.7 ⁽⁵⁾	60(4)	0
Barium	6.7	4.2	700 ⁽²⁾	0
Cyanide (Total)	<10 ⁽⁵⁾	<10 ⁽⁵⁾	50 ⁽¹⁾	0
Total Phenol (Monohydric)	<10 ⁽⁵⁾	<10 ⁽⁵⁾	0.5 ^(1, 6)	0
Sulphate	300	400	250000 ⁽¹⁾	0
Sulphide	<5.0(5)	< 0.5(5)	-	0
рН	6.7	6.3	-	0
Naphthalene	< 0.01(5)	< 0.01(5)	22.4 ⁽³⁾	0
Acenaphthylene	< 0.01(5)	< 0.01(5)	-	0
Acenaphthene	< 0.01(5)	< 0.01(5)	-	0
Fluorene	< 0.01(5)	< 0.01(5)	-	0
Phenanthrene	< 0.01(5)	< 0.01(5)	-	0
Anthracene	< 0.01(5)	< 0.01(5)	0.1(3)	0
Fluoranthene	< 0.01(5)	< 0.01(5)	0.12(4)	0
Pyrene	< 0.01(5)	< 0.01(5)	-	0
Benzo(a)anthracene	< 0.01(5)	< 0.01(5)	-	0
Chrysene	< 0.01(5)	< 0.01(5)	-	0
Benzo(b)fluoranthene	< 0.01(5)	< 0.01(5)	0.10 ⁽¹⁾	0
Benzo(k)fluoranthene	< 0.01(5)	< 0.01(5)	0.10(1)	0
Benzo(a)pyrene	< 0.01(5)	< 0.01(5)	0.010 ⁽¹⁾	0
Indeno(1,2,3-cd)pyrene	< 0.01(5)	< 0.01(5)	0.10 ⁽¹⁾	0
Benzo(g,h,i)perylene	< 0.01(5)	< 0.01(5)	0.10(1)	0
Dibenz(a,h)anthracene	< 0.01(5)	< 0.01(5)	-	0
Total PAH	<0.2(5)	<0.2(5)	-	0

Notes:

1 Water Supply (Water Quality) Regulations 2018 – Drinking Water Standards (DWS)

2 WHO Guidelines for Drinking Water Quality (2016)

3 EQS, Annual Average (AA) – Freshwaters

4 EQS, Maximum Allowable Concentrations (MAC) – Freshwaters

5 Laboratory Limit of Detection

6 Laboratory Limit of Detection greater than SSV

Appendix K

Soakage Test Results

Trial Pit Soakage Test Summary Sheet

BRE Digest 365 (2016) Soakaway Design

Project:	Brunswick Camp, Pirbright
Project Number:	1909007.002
Test Pit Reference:	TP01/SA01
Client:	Fairhurst
Operator:	RK
Test Date:	18/11/2020

Extrapolated Data?	No
il Infiltration Rate (mm/hr)	NO INTITITATION RALE CAICI
bil Infiltration Rate (m/sec)	No Infiltration Data Calo

Form TEC SF001 (RevA)

