

24th November 2020

Bellway Homes Limited (North West) 2 Alderman Road Liverpool Merseyside L24 9LR

For the attention of Mr A Johnson

Dear Adrian

Re: Lathom Pastures (Phase 2), Skelmersdale – Mineral Assessment Report

Minerals Policy (Local and National)

The National Planning Policy requires Mineral Planning Authorities to safeguard mineral resources that are or may become of economic importance by including them is a Mineral Safeguarding Area. The aim of them is to ensure mineral resources are adequately and effectively considered in land use planning decisions, to ensure that they are not needlessly sterilised by non-mineral development.

The following resources have been used in this assessment:

- Minerals Planning Guidance 15: Provision of Silica Sand in England (2006).
- Lancashire Minerals & Waste Local Plan, Site Allocation and Development Management Policies -Part One (September 2013).
- Lancashire Minerals & Waste Local Plan, Guidance Note on Policy M2 Safeguarding Minerals (Minerals Safeguarding Area) (December 2014).
- British Geological Survey (BGS) 1:50,000 Scale Geological Maps Sheet 84, Wigan. Solid and Drift Edition.
- BGS Mineral Resource Mapping Lancashire (comprising Lancashire, Boroughs of Blackpool and Blackburn with Darwen) at 1:100,000 scale.
- BGS Mineral Resource Information in Support of National, Regional and Local Planning: Merseyside (2006).
- West Lancashire 2012-20127 Local Plan Policies Map.
- GroundTech Consulting, Preliminary Environmental Risk Assessment (ref. 19255/1167_1.1, dated December 2019).
- Brownfield Solutions Ltd, Geo-Environmental Assessment Report (ref. TM/C4380/9070 Rev A, April 2020). The Exploratory Hole Plan and Logs are appended for reference.

Policy M2 within Lancashire Minerals & Waste Local Plan states:

"Within these mineral safeguarding areas identified, planning permission will not be supported for any form of development that is incompatible by reason of scale, proximity and permanence with working the minerals, unless the applicant can demonstrate to the satisfaction of the local planning authority that:

1) The mineral concerned is no longer of any value or has been fully extracted. The full extent of the mineral can be extracted satisfactorily prior to the incompatible development taking place.

- 2) The incompatible development is of a temporary nature and can be completed and the site returned to its original condition prior to the minerals being worked.
- 3) There is an overarching need for the incompatible development that outweighs the need to avoid the sterilisation of the mineral resource.
- 4) That prior extraction of minerals is not feasible due to the depth of the deposit.
- 5) Extraction would lead to land stability problems."

Lancashire Minerals & Waste Local Plan, Guidance Note on Policy M2 states the following:

"Policy M2 seeks to prevent the needless sterilisation of mineral resources by non-minerals development. Clearly there are many forms of development that, by their nature, will not lead to the sterilisation of mineral resources. Proposals which are excluded from these considerations are:

- 1) Development already permitted by the General Development Order.
- 2) Development where outline planning permission has already been granted.
- 3) Development within the curtilage of existing developments.
- Temporary development, unless in close proximity to an active quarry or permitted reserve of minerals."

The sections below seek to provide evidence to confirm that the proposed development satisfies Policy M2 of the council's Minerals & Waste Local Plan.

Summary of Published Geological Information

An extract has been taken from the BGS 1:50,000 Scale Geological Map Sheet 84 (Wigan), which indicates the superficial and bedrock geology in the vicinity of the site.

The map indicates the site is underlain by superficial deposits of the Shirley Hill Sand Formation, this stratum typically comprises sand. The formation is widely known to be a source of Silica Sand used in the manufacture of glass. A drawing detailing the Superficial Geology at the site is presented in drawing C4380/07.

The bedrock underlying the site comprises the Pennine Lower Coal Measures Formation – Mudstone.

As detailed within the West Lancashire 2012-2027 Local Plan Policies Map and the BGS GeoIndex Onshore interactive map for Minerals, a small section of land in northern half of the site falls within an area of Safeguarded land for Silica Sand associated with the Shirdley Hill Sands as presented in drawing C4380/08.

However, the Mineral Resource Information in Support of National, Regional and Local Planning's Mineral Resources Map for Lancashire details that the site is not within a Mineral Safeguarding Area, but within an area where either a valid or expired mineral planning permission exists, this is understood to relate to Bloguegate Silica Sand.

Ground Conditions Summary

As detailed in the Geo-Environmental Risk Assessment report (ref. TM/C4380/9070 Rev A, dated April 2020) undertaken by BSL, the ground conditions typically comprised natural sandy clay or gravelly clayey sand topsoil over fine to coarse sand to circa 1.00mbgl, which was underlain by generally firm to stiff slightly gravelly slightly sandy clay.

In the Mather & Blundell, Hurst and Peet areas in the south, the superficial sands were present up to a maximum of 2.50mbgl and were generally loose. Running sand conditions were common in the shallow superficial sands in this area of the site. The shallow natural sands were typically underlain by a thin layer of clayey peaty sand, locally peat, observed up to a maximum thickness of 10cm.

Underlying the shallow natural sands and peat (where present), were interbedded soft to firm clays and medium dense sands to 4.45mbgl.

Based on the exploratory hole location plan, four locations were undertaken within the Mineral Safeguarding Area in the north of the site (WS04, TT03, TP06, RO01). Sand was encountered within TT03 and TP06 at depths from 0.35m bgl to 0.95m bgl and on average 0.425m in thickness. The sand in these exploratory holes were noted to be clayey fine to coarse sand. WS04 encountered a fine to medium sand between 0.50m and 0.70m bgl. Sand was not encountered within RO01.

The shallow bedrock underlying the site comprised extremely weak to very weak light grey mudstone. The depth to bedrock ranged from 2.00mbgl in the far north-west to 10.60mbgl in the far south-east, with a gradual increase in the thickness of superficial cover towards the south-east. The bedrock comprised interbedded mudstones, siltstones and sandstones with coal seams.

Two coal seams were encountered beneath the site; the Rushy Park Seam between 0.40m and 0.70m in thickness and the Bone Mine Seam between 0.50m and 1.30m in thickness. Based on the flush return during rotary drilling, the coal underlying the site was generally intact except for in RO08, when a total loss of flush was recorded at the approximate depth the Bone Mine Seam is expected to have been encountered.

Groundwater was encountered in every exploratory hole and was typically encountered within the top 0.50mbgl.

The Coal Authority and Coal Resources

BSL are not aware if the Coal Authority has been consulted with regards to the proposed development and the potential sterilisation of a safeguarded mineral resource.

It should be noted that within the Non-Residential Mining Report obtained as part of the Desk Study Assessment revealed worked seams underlying the site. The coal mining investigation has confirmed the presence of two coal seams present at shallow depths beneath the site; the Rushy Park Seam between 0.40m and 0.70m in thickness and the Bone Mine Seam between 0.50m and 1.30m in thickness. The coal seams were generally intact; however, evidence of underground workings within the Bone Mine Seam was identified in RO08 and appears to correlate with the location of recorded underground workings underlying the site.

RO08 is located in the centre of the site, and within the Mineral Safeguarding Zone present in the north of the site. Coal measures in this area revealed 0.40m thickness of intact coal was encountered between 23.50m and 23.90m bgl, representative of the Rushy Park seam and is not considered to be of workable thickness beneath the site.

Environmental Acceptability

UK legislation states that "...mineral operators should look to agree a programme of work with the mineral planning authority which takes account, as far as is practicable, the potential impacts on the local community and local environment (including wildlife), the proximity to occupied properties, and legitimate operational considerations over the expected duration of operations..."

UK wide guidance generally recommends that a 100m buffer zone should be introduced between any residential receptors and the point of proposed extraction. Furthermore, the Lancashire Mineral & Waste Local Plan Guidance note on Policy M2 – Safeguarding Minerals (Minerals Safeguarding Areas) states the following:

"Small ribbons or isolated occurrences of mineral resource are unlikely to be economic to work and so sterilisation may not be an issue. Likewise, if the surrounding area is developed to such an extent that

it makes the potential extraction of minerals uneconomic it can be considered that the mineral resource is already sterilised; for example if the area contains scattered houses, or fields broken up by roads, that reduce the amount of free land potentially developable for a quarry."

The area of the site demarked as a Minerals Safeguarding Area is located to the south of Old Engine Road and within 100m of a number of scattered dwellings and in line with the above, is considered to already be sterilised. The presence of scattered housing and roads suggests that it is unlikely that planning permission for a silica sand quarry at the site would be granted.

Old Engine Road is a narrow single laned track and not designed for heavy traffic suggesting that the use of the site for mineral extraction would have a significant impact on the local area, which must be taken into account when an assessment is made to determine the practical suitability of the site for mineral extraction.

Economic Viability

The superficial sand deposits underlying the area of the site classified as a Minerals Safeguarding Area is noted to be between 0.20m and 0.60m in thickness. The composition of sand bands varies across the site with differing quantities of minor constituents including clay which are not considered suitable composition for silica sand. It is noted that from across the majority of the site the superficial deposits are largely cohesive rather than granular, suggesting that even if the wider site was to be included in the Minerals Safeguarding Area it would not provide sufficient yield of Silica Sand to be economically viable.

Furthermore, to reach the sand and extract it in advance of any site development works, it would be necessary to remove the topsoil and any overlying cohesive deposits and temporarily stockpile this on the site for the duration of the mineral extraction phase, which has the potential to cause nuisance from visual intrusion, dust generation and sound nuisance. Following the completion of any mineral extraction, engineered fill would need to be brought onto the site to supplement the superficial soils to ensure that the ground conditions would support the future construction of residential properties.

In addition, a suitable stand-off including possible benching or battering of excavations from Old Engine Road to the north and residential properties surrounding the Minerals Safeguarding Area onsite would also be required in order to reach the expected depth. This would further reduce the potential area of sand to be extracted.

Assessment

An area in the north of the site is noted to lie within a Minerals Safeguarding Area assumed to be for Silica Sand, that being said, Local Authority documentation acknowledges that the site, in its entirety, it earmarked for residential development and that the presence of sporadic houses and roads within the area suggests that the land has already been sterilised.

The ground conditions encountered during the site investigation identified the presence of sands underlying the site from depths of 0.35m and 0.95m bgl with an average thickness of approximately 0.40m which is unlikely to be significantly thick to be commercially viable for extraction.

As detailed above, the sand deposits are considered to be of poor quality as they were noted to contain varying quantities of clay and other constituents further reducing their economic value given the apparent poor sorting and grading of these deposits. Given the constraints identified at the site, it is considered highly unlikely that extraction of any deposits will be economically viable.

Based on the above, BSL believes there is no reasonable justification to retain the site for minerals extraction.

We trust the above meets your requirements. If you have any queries, then please do not hesitate to contact the undersigned.

Yours sincerely

For Brownfield Solutions Ltd

Written by:

Nicola Swallow
BSc (Hons) MSc MIEnvSc
Senior Project Engineer
n.swallow@brownfield-solutions.co.uk

Checked and approved by:

A J Stokoe BSc (Hons) CSci MIEnvSc FGS Principal Project Engineer

CSci Chartered Scientist

Enc C4380_01 – Site Location Plan

C4380_03 – Exploratory Hole Location Plan

C4380_07 – Superficial Geology Map C4380_08 – Mineral Resources Plan

BSL Exploratory Hole Logs

EXTRACT FROM BGS MINERAL RESOURCE
MAPPING – LANCASHIRE (COMPRISING
LANCASHIRE, BOROUGHS OF BLACKPOOL AND
BLACKBURN WITH DARWEN) AT 1:100,000 SCALE

KEY

APPROXIMATE SITE BOUNDARY

REV	DATE	DESCRIPTION	BY	CKD

(NORTH WEST)

LATHOM PASTURES (PHASE 2),
SKELMERSDALE

DRAWING TITLE

MINERAL RESOURCES PLAN

DRAWN BY		CHECKED BY	<u> </u>
C4380/08 REV	VISION -	NTS	18/11/20

CLIENT	i: E	BELLWAY HO	MES LIMITED (I	NORTH WE	ST)	DATES:	13/01/20	Logged	JMC
Water	Samp	le and In Sit	u Testing	Depth	Level	Logand	Stratum Description		
Strikes	Depth (m)	Туре	Results	(m)	(m OD)	Legend	Stratum Description		
•	0.30	ES		0.40	60.90		Grass over dark brown slightly gravelly s to coarse SAND with rootlets. Gravel is s subrounded fine to coarse of mudstone (TOPSOIL).	ubangular to	ė
				0.40	60.90		Greyish brown clayey fine to coarse SAN	D.	
	0.80	ES		0.90	60.40				
	1.00	n HSV	73kPa				Firm to stiff brown slightly sandy gravell to coarse. Gravel is subangular fine to coand mudstone.		
	2.00	нѕу	92kPa						2.0
	2.50	нѕу	107kPa						
	2.80	D		2.75	58.55		Very weak light grey MUDSTONE, partia	lly weathered.	0.0
				3.30	58.00				
				3,30	58.00		End of Trial Pit at 3.30m		
									4.0
									- T-
									5.0

- 1. Groundwater ingress at 0.40mbgl.
- 2. Sides slightly collapsing between 0.45mbgl and 0.90mbgl.
- 3. Backfilled with arisings upon completion.

E3 = Environmental Sample
D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample

11 = Undisturbed Sample UT = Undisturbed Thin Wall Sample

SPT = Standard Penetration Test PID = Photoionization Detector (ppm)

CLIENT	Г: (BELLWAY HO	MES LIMITED (N	NORTH WE	ST)	DATES:	13/01/20	Logged	Checked
Water		le and In Sit	A CONTRACTOR OF THE PARTY OF TH	Depth		Legend	Stratum Description		
Strikes	0.30	Type ES	Results	(m) 0.35	(m OD)		Grass over dark brown slightly gravelly slig to coarse SAND with rootlets. Gravel is sub- subrounded fine to coarse of mudstone ar (TOPSOIL). Brownish orange fine to medium SAND.	pangular to	
•	0.80	ES							10-
	1.20	HSV	73kPa	1.05	61.45		Firm to stiff brown slightly sandy gravelly of to coarse. Gravel is subangular fine to coar and mudstone.		ine
	1 50	n							
	2.00	нѕ∨	99kP2						2.0 -
	2.50	D		2,50	60.00		Very weak light grey MUDSTONE, partially	weathered.	
				3.00	59.50		End of Trial Pit at 3.00m		3.0
									4,0 -
									5.0
									5.0

1. Groundwater ingress at 0.80mbgl.

2. Sides slightly collapsing between 0.35mbgl and 1.05mbgl.

3. Backfilled with arisings upon completion.

E3 = Environmental Sample
D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample 11 = Undisturbed Sample

UT = Undisturbed Thin Wall Sample

SPT = Standard Penetration Test PID = Photoionization Detector (ppm)

PPM = Part Per Million

CLIENT	ī: E	BELLWAY HO	MES LIMITED (I	NORTH WE	ST)	DATES:	13/01/20	Logged	JMC
Water	Samp	le and In Sit	u Testing	Depth		Legend	Stratum Description		
trikes	Depth (m)	Type	Results	(m)	(m OD)	versumer.			
•	0.30	ES		0.30	62.20		to coarse SAND with rootlets. Gravelly subrounded fine to coarse of mudstone (TOPSOIL). Brownish orange fine to medium SAND	subangular to and sandstone	e /
	0.80	ES							
				1.05	61.45		Firm to stiff brown slightly sandy gravel to coarse. Gravel is subangular fine to cand mudstone.		
	1 50	n HSV	69kPa						
	2.00	HSV	79kPa						2.0
	2,50	D HSV	111kPa						
				2.90	59.60		Very weak light grey MUDSTONE, partia	ally weathered.	3.0
				2 20	50.30				
				3.30	59.20		End of Trial Pit at 3.30m		
									4.0
									240
									5.0
									5.0

- 1. Groundwater ingress at 0.50mbgl.
- 2. Sides slightly collapsing between 0.30mbgl and 1.05mbgl.
- 3. Backfilled with arisings upon completion.

E3 = Environmental Sample
D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample 11 = Undisturbed Sample

UT = Undisturbed Thin Wall Sample

SPT = Standard Penetration Test PID = Photoionization Detector (ppm)

CLIENT	:	Bellway ho	MES LIMITED (I	NORTH WE	ST)	DATES:	13/01/20	Logged JM	JMC
Vater		le and In Sit	u Testing	Depth	Level	Legend	Stratum Description	on	
trikes	Depth (m)	Туре	Results	(m)	(m OD)	Legend			
•	0.20	ES		0.40	60.40		Grass over dark brown slightly gravelly to coarse SAND with rootlets. Gravel is subrounded fine to coarse of mudstor (TOPSOIL). Greyish brown clayey fine to coarse SA	s subangular to ne and sandstone	e
	0.80	ES		0.70	60.10		Firm to stiff brown slightly sandy grave to coarse. Gravel is subangular fine to		
	1.00	HSV	731.0-				and mudstone.	coarse or sarrustor	
	1.00	HSV	73kPa						1.0
	1 50	n							
	2.00	HSV	95kPa						2.4
	2.50	нъч	109kPa						
	2.80	D		2.70	58.10		Very weak light grey MUDSTONE, part	cially weathered.	3,1
									1000
				3.30	57.50		End of Trial Pit at 3.30	m	
									4
									5.
									3

- 1. Groundwater ingress at 0.30mbgl.
- 2. Sides slightly collapsing between 0.40mbgl and 0.70mbgl.
- 3. Backfilled with arisings upon completion.

E3 = Environmental Sample
D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample 11 = Undisturbed Sample

UT = Undisturbed Thin Wall Sample SPT = Standard Penetration Test

PID = Photoionization Detector (ppm)

CLIENT			MES LIMITED (N			DATES:	13/01/20 JM	JMC
Vater	Samp	le and In Sit	u Testing	Depth		Legend	Stratum Description	
trikes	Depth (m)	Type	Results	(m)	(m OD)	Legend	Stratum Description	
•	0.30	ES		0.35	60.25	A A A A A A A A A A A A A A A A A A A	Grass over dark brown slightly gravelly slightly clayey fine to coarse SAND with rootlets. Gravel is subangular to subrounded fine to coarse of mudstone and sandstone (TOPSOIL).	
	0.50	ES					Greyish brown clayey fine to coarse SAND.	
				0.60	60.00		Firm to stiff brown slightly sandy gravelly CLAY. Sand is fine to coarse. Gravel is subangular fine to coarse of sandstone and mudstone.	
	1.00	HSV	73kPa					1
	1 50	n						
	2.00	HSV	91kPa					2
	2,50	D						
	3.00	HSV	100kPa	wit	12272			
				3.05	57.55		End of Trial Pit at 3.05m	
								9
								20

1. Groundwater ingress at 0.40mbgl.

2. Backfilled with arisings upon completion.

D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample 11 = Undisturbed Sample

UT = Undisturbed Thin Wall Sample

SPT = Standard Penetration Test PID = Photoionization Detector (ppm)

PPM = Part Per Million

LIENT	:	Bellway Ho	MES LIMITED (I	NORTH WE	ST)	DATES:	14/01/20	Logged	JMC
/ater	Samp	le and In Sit	u Testing	Depth	Level	Logand	Stratum Description	Harver	
rikes	Depth (m)	Type	Results	(m)	(m OD)	Legend	Stratum Description		
	0.30	ES		New Year			Grass over dark brown slightly gravelly slig to coarse SAND with rootlets. Gravel is su subrounded fine to coarse of mudstone a (TOPSOIL).	bangular to	ė
T				0.45	61.85		Greyish brown clayey fine to coarse SAND	,	
	0.80	ES		0.90	61.40				
	1.00	нѕv	73kPa	0.50	01.40		Firm to stiff brown slightly sandy gravelly to coarse. Gravel is subangular fine to coa and mudstone.		
	1 50	n							
	2.00	D HSV	92kPa						2
	3.00	HSV	103kPa						2
				3.30	59.00		End of Trial Pit at 3.30m		
									4
									300
									5

- 1. Groundwater ingress at 0.50mbgl.
- 2. Sides slightly collapsing between 0.45mbgl and 0.90mbgl.
- 3. Backfilled with arisings upon completion.

E3 = Environmental Sample
D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample

11 = Undisturbed Sample

UT = Undisturbed Thin Wall Sample SPT = Standard Penetration Test

PID = Photoionization Detector (ppm)

CLIENT	ī: E	BELLWAY HO	MES LIMITED (N	IORTH WE	ST)	DATES:	14/01/20	Logged	Checked		
Water		le and In Sit		Depth		Legend	Stratum Description				
Strikes	0.20	Type ES	Results	(m) 0.35	(m OD)		Grass over dark brown slightly gravelly slight to coarse SAND with rootlets. Gravel is sub- subrounded fine to coarse of mudstone and (TOPSOIL). Greyish brown clayey fine to coarse SAND.	ingular to	e		
	0.60	ES									
	1.00	HSV	79kPa	1.10 6	1.10	61.50		Firm to stiff brown slightly sandy gravelly CL to coarse. Gravel is subangular fine to coars and mudstone.			
	1 50	n									
	2.00	HSV	99kPa						2.0		
	2,50	D									
	3.00	IISV	109kPa	3.00	59.60		End of Trial Pit at 3.00m		3.0		
									4.0		
									5.0		

- 1. Groundwater ingress at 0.50mbgl.
- 2. Sides readily collapsing between 0.35 mbgl and 1.10 mbgl.
- 3. Backfilled with arisings upon completion.

E3 = Environmental Sample D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample 11 = Undisturbed Sample

UT = Undisturbed Thin Wall Sample SPT = Standard Penetration Test

PID = Photoionization Detector (ppm)

	: E		MES LIMITED (1	0.5000000000000000000000000000000000000	75 S. M.	DATES:	16/01/20	JM	JMC
Vater		le and In Sit	u Testing	Depth	Level	Legend	Stratum Description	n	
trikes	Depth (m)	Type	Results	(m)	(m OD)	5016901690			
•	0.20	ES					Grass over dark brown clayey fine to c rootlets (TOPSOIL).	oarse SAND with	
	0.50	ES		0.45	60.95		Orangish brown clayey fine to coarse s	SAND	1
				1.40	60.00		Firm to stiff brown slightly sandy grave	elly CLAY. Sand is fir	ne
	1 50	HSV	71kPa				to coarse. Gravel is subangular fine to and mudstone.	coarse of sandstor	ne
	2.00	HSV	111kPa						2
	2.50	D							
	3.00	HSV	120kPa						3
				3.40	58.00		End of Trial Pit at 3.40	m	
									4
									5

- 1. Groundwater ingress at 0.30mbgl.
- 2. Sides readily collapsing between 0.45 mbgl and 1.40 mbgl.
- 3. Backfilled with arisings upon completion.

E3 = Environmental Sample D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample 11 = Undisturbed Sample

UT = Undisturbed Thin Wall Sample

SPT = Standard Penetration Test PID = Photoionization Detector (ppm)

CLIENT	r: (BELLWAY HO	MES LIMITED (I	NORTH WE	ST)	DATES:	16/01/20	Logged	JMC
Water	Samp	le and In Sit	u Testing	Depth		Legend	Stratum Description	.	
Strikes	Depth (m)	Type	Results	(m)	(m OD)	Legenu			
•	0.30	ES					Grass over dark brown clayey fine to de rootlets (TOPSOIL).	coarse SAND with	
	0.80	ES		0.40	61.90		Orangish brown clayey fine to coarse	SAND.	
	170000)	6000							1.0
				1.40	60.90		200111 72.75.150	W 8 8	
	1 50	n	771.5				Firm to stiff brown slightly sandy grave to coarse. Gravel is subangular fine to	elly CLAY. Sand is fir	ne e
		HSV	72kPa				and mudstone.	coarse or samuston	
	2.00	D HSV	100kPa						2.0
	3.00	IISV	120kPa						3.
				3.40	58.90		End of Trial Pit at 3.40	m	
							Elid of Mid Fit dt 5.49		4,6
									5.0

- 1. Groundwater ingress at 0.20mbgl.
- 2. Sides readily collapsing between 0.40mbgl and 1.40mbgl.
- 3. Backfilled with arisings upon completion.

E3 = Environmental Sample D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample 11 = Undisturbed Sample

UT = Undisturbed Thin Wall Sample

SPT = Standard Penetration Test PID = Photoionization Detector (ppm)

CLIENT	Γ: E	BELLWAY HO	MES LIMITED (I	NORTH WE	ST)	DATES:	16/01/20 Logged	JMC
Water	Samp	le and In Sit	u Testing	Depth	Level			
Strikes	Depth (m)	Type	Results	(m)	(m OD)	Legend	Stratum Description	
•	0.30	ES					Grass over dark brown clayey fine to coarse SAND with rootlets (TOPSOIL).	
				0.40	62.50		Brown clayey fine to coarse SAND.	
	0.80	ES			22.40			1.0
	1.20	D HSV	G7kPa	1.10	61.80		Firm to stiff brown slightly sandy gravelly CLAY. Sand is fit to coarse Gravel is subangular fine to coarse of sandstor and mudstone.	
	2.00	D HSV	128kPa					2.6
	3.00	IISV	130kPa					э.
				3.30	39.40		End of Trial Pit at 3.50m	
								4.
								5.
								5.

- 1. Groundwater ingress at 0.40mbgl.
- 2. Sides slightly collapsing between 0.40mbgl and 1.10mbgl.
- 3. Backfilled with arisings upon completion.

E3 = Environmental Sample
D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample 11 = Undisturbed Sample

UT = Undisturbed Thin Wall Sample SPT = Standard Penetration Test

CLIENT	T: E	Bellway Ho	MES LIMITED (I	NORTH WE	ST)	DATES:	16/01/20 Logged	IM	
Nater	Samp	le and In Sit	u Testing	Depth	Level	Logand			
itrikes	Depth (m)	Type	Results	(m)	(m OD)	Legend	Stratum Description		
	0.30	ES					Grass over dark brown clayey fine to coarse SAND with rootlets (TOPSOIL).		
	0.50	ES		0.40	63.10	Brown clayey fine to coarse SAND.			
	1.20	D HSV	75kPa	1.10	62.40		Firm to stiff brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is subangular fine to coar of sandstone and mudstone.		10
	2.00	D HSV	99kPa						2,0
	3.00	IISV	127kPa						3.0
	3,30	нзу	130kPd	3,50	60.00		End of Trial Pit at 3,50m		
									4.0
									5.0

- 1. No groundwater encountered.
- 2. Sides slightly collapsing between 0.40mbgl and 1.10mbgl.
- 3. Backfilled with arisings upon completion.

E3 = Environmental Sample
D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample 11 = Undisturbed Sample

UT = Undisturbed Thin Wall Sample

SPT = Standard Penetration Test PID = Photoionization Detector (ppm)

PPM = Part Per Million

CLIENT	The second secon		51)	DATES: 16/01/20 Logged JM							
Water	Samp	le and In Sit	u Testing	Depth	Level	Legend	Stratum Description				
itrikes	Depth (m)	Type	Results	(m)	(m OD)	Legend					
•	0.30	ES		0.35	62.75		Grass over dark brown clayey fine to coarotlets (TOPSOIL).				
	0.50	ES				Orangish brown clayey fine to coarse SAND.					
	1.00	HSV	84kPa	0.95	62.15		Firm to stiff brown slightly sandy gravelly				
	1.20	D					to coarse. Gravel is subangular fine to co and mudstone.	arse of sandsto	ne		
	2.00	D HSV	123kPa						2.0		
	3.00	IISV	130kPa	3.10	60.00		End of Trial Pit at 3.10m		3.0		
							End of that Pit at 5. Tolli				
									4.0		
				- 1					5.0		

- 1. Groundwater ingress at 0.20mbgl.
- 2. Sides slightly collapsing between 0.35mbgl and 0.95mbgl.
- 3. Backfilled with arisings upon completion.

E3 = Environmental Sample
D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample 11 = Undisturbed Sample

UT = Undisturbed Thin Wall Sample

SPT = Standard Penetration Test

LIENT	: 1	Bellway ho	MES LIMITED (1	NORTH WE	ST)	DATES:	16/01/20	Logged	Checke
ater	Samp	le and In Sit	u Testing	Depth	Level	Logand	Stratum Deceriat		
rikes	Depth (m)	Type	Results	(m)	(m OD)	Legend	Stratum Descript		
•	0.30	ES					Grass over dark brown clayey fine to rootlets (TOPSOIL).	coarse SAND with	
	0.80	ES		0.40	62.60		Greyish brown clayey fine to coarse	SAND.	
	0.80	23							1
				1.30	61.70	Ti-	Firm to stiff brown slightly sandy gra	velly CLAV Sand is fi	0.0
	1 50	n					to coarse. Gravel is subangular fine t		
		HSV	65kPa				and mudstone.		
	2.00	D HSV	91kPa						2
		1134	JANE						
	3.00	HSV	107kPa	3.05	59.95				3
				3.03	29.93		End of Trial Pit at 3.0	95m	
									14

- 1. Groundwater ingress at 0.20mbgl.
- 2. Sides slightly collapsing between 0.40mbgl and 1.30mbgl.
- 3. Backfilled with arisings upon completion.

E3 = Environmental Sample
D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample

11 = Undisturbed Sample UT = Undisturbed Thin Wall Sample

SPT = Standard Penetration Test

T: {	Bellway ho	MES LIMITED (N	NORTH WE	ST)	DATES:	16/01/20	hecked JMC
Samp	le and In Sit	u Testing	Depth	Level	Legend	NATIONAL DESCRIPTION OF THE PROPERTY OF THE PR	
Depth (m)	Type	Results	(m)	(m OD)	Legend		
0.20	ES					MADE GROUND: Grass over dark brown clayey fine to coarse sand topsoil with rootlets.	
			0.40	61.80		MADE GROUND: Greyish brown slightly gravelly clayey fine to coarse sand. Gravel is subangular to subrounded fine to coarse of mudstone and sandstone.	
0.80	ES		0.85	61.35		Railway sleeper (timber) at 0.80mbgl with a faint hydrocarbon adour.	
1.00	HSV	74kPa	1.00	61.20		Greyish brown slightly gravelly clayey fine to coarse SAND. Gravel is subangular to subrounded fine to coarse of	10
	-					Firm to stiff brown slightly sandy gravelly CLAY. Sand is fine	
1 50	n						
2.00	D HSV	96kPa					2.0
2.80	HSV	120kPa					
			2.90	59.30		End of Trial Pit at 2.90m	3.0
							100,600
							4.0
							4.0
	Samp Depth (m) 0.20 0.80 1.00	Sample and In Sit Depth (m) Type 0.20 ES 0.80 ES 1.00 HSV	Sample and In Situ Testing Depth (m) Type Results 0.20 ES 0.80 ES 1.00 HSV 74kPa 2.00 D HSV 96kPa	Depth (m) Type Results Depth (m)	Sample and In Situ Testing Depth (m) Level (m OD)	Sample and In Situ Testing Depth (m) Level (m OD)	Sample and in Situ Testing Depth (m) Type Results 0.40 61.80 MADE GROUND: Grass over dark brown clayey fine to coarse sand topsoil with rootlets. MADE GROUND: Greyish brown slightly gravelly clayey fine to coarse sand. Gravel is subangular to subrounded fine to coarse of mudstone and sandstone. Relivoy sleeper (limber) at 0.80mbgl with a faint hydrocarbon adoux Gravel is subangular to subrounded fine to coarse of mudstone and sandstone. Firm to stiff brown slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular fine to coarse of sandstone and mudstone. 1 to 0 HSV 968Pa 1.00

1. Groundwater ingress at 0.30mbgl.

2. Backfilled with arisings upon completion.

D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample

11 = Undisturbed Sample

UT = Undisturbed Thin Wall Sample SPT = Standard Penetration Test

CLIENT	:	BELLWAY HO	MES LIMITED (N	NORTH WE	:51)	DATES:	16/01/20 Logged Cit	JMC
Water		le and In Sit	A CONTRACTOR OF THE PARTY OF TH	Depth	Level (m OD)	Legend	Stratum Description	
Strikes	0.30	Type ES	Results	(m)	(M OD)		Grass over dark brown clayey fine to coarse SANU with rootlets (TOPSOIL).	
				0.45	61.15		Greyish brown slightly gravelly clayey fine to coarse SAND. Gravel is subangular to subrounded fine to coarse of mudstone and sandstone.	
	1.00	FS						1.0
	1.30	HSV	71kPa	1.25	60 35		Firm to stiff brown slightly sandy gravelly CLAY. Sand is fine to coarse. Gravel is subangular fine to coarse of sandstone	
	1 50	n					and mudstone.	
	2.00	нѕ∨	120kPa					2,0
	2,50	D						
	3.00	HSV	130kPa	3.00	50.60		End of Trial Pit at 3.00m	3.0
								4.0
								5.0

^{1.} Groundwater ingress at 0.20mbgl.

^{2.} Backfilled with arisings upon completion.

E3 = Environmental Sample D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample 11 = Undisturbed Sample

UT = Undisturbed Thin Wall Sample

SPT = Standard Penetration Test PID = Photoionization Detector (ppm)

PPM = Part Per Million HSV = Hand Shear Vane

CLIENT	T: E	Bellway Ho	MES LIMITED (N	IORTH WI	EST)	DATES:	16/01/20 Logged C		
Water	Samp	le and In Sit	u Testing	Depth	Level	Logand		JMC	
Strikes	Depth (m)	Туре	Results	(m)	(m OD)	Legend	Stratum Description		
_	0.20	ES		0.30	61.00		Grass over dark brown clayey fine to coarse SAND with rootlets (TOPSOIL).		
	0.80	ES		0.30	61.00		Greyish brown slightly gravelly clayey fine to coarse SAND. Gravel is subangular to subrounded fine to coarse of mudstone and sandstone.		
		5080						1.0	
	1.20	HSV	64kPa	1.20	60.10		Firm to stiff brown slightly sandy gravelly CLAY. Sand is fine to coarse. Gravel is subangular fine to coarse of sandstone		
	1 50	n					and mudstone.		
	2.00	D HSV	73kPa					2.0	
	3.00	HSV	127kPa	3.00	50.00			3.00	
	3.03						End of Trial Pit at 3.00m	NTOTA	
								4.0	
								75540	
								5.0	

^{1.} Groundwater ingress at 0.30mbgl.

^{2.} Backfilled with arisings upon completion.

E3 = Environmental Sample D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample

^{11 =} Undisturbed Sample UT = Undisturbed Thin Wall Sample

SPT = Standard Penetration Test PID = Photoionization Detector (ppm)

PPM = Part Per Million

CLIENT			MES LIMITED (I	VOICITI VVI	31)	DATES:	14/01/20	JM	JMC
Water		le and In Sit		Depth	Level	Legend	Stratum Description	1	
trikes	0.30	Type ES	Results	(m) 0.35	(m OD)		Grass over dark brown slightly gravelly to coarse SAND with rootlets. Gravel is subrounded fine to coarse of mudstone (TOPSOIL). Greyish brown clayey fine to coarse SAN	slightly clayey fin subangular to and sandstone	e
	0.80	ES		1.05	61.15				1.0
	1 50	n HSV	79kPa				Firm to stiff brown slightly sandy gravel to coarse. Gravel is subangular fine to cand mudstone.		
				2.20	60.00		Very weak light grey MUDSTONE partia recovered as a gravelly clay with mediu		
	2.50	D							
									a
				4.20	58.00		End of Trial Pit at 4.20m		
									5

- 1. Groundwater ingress at 0.20mbgl.
- 2. Sides readily collapsing between 0.35mbgl and 1.05mbgl.
- 3. Trench excavated in attempt to locate coal seam. Dimensions 7.00m by 0.80m.
- 4. Backfilled with arisings upon completion.

- E3 = Environmental Sample D = Disturbed Sample
- B = Bulk Sample
- LB = Large Bulk Sample
- 11 = Undisturbed Sample
- UT = Undisturbed Thin Wall Sample
- SPT = Standard Penetration Test PID = Photoionization Detector (ppm)
- PPM = Part Per Million HSV = Hand Shear Vane

CLIENT			MES LIMITED (I	NORTH WE	ST)	DATES: 14/01/20 Logged JM			JMC
Water		le and In Sit		Depth	Level	Legend	Stratum Descript	ion	
trikes	0.20	Type ES	Results	(m) 0.40	(m OD)		Grass over dark brown slightly grave to coarse SAND with rootlets. Gravel subrounded fine to coarse of mudsto (TOPSOIL). Greyish brown clayey fine to coarse 5	lly slightly clayey fin is subangular to one and sandstone	e
	1.00	FS		1.05	60.75		Firm to stiff brown slightly sandy gra to coarse. Gravel is subangular fine t and mudstone.		
	1 50	n HSV	75kPa	2.00	59,90		Very weak light grey MUDSTONE par recovered as a gravelly clay with med		2./ t.
	2.50	D							3.
									4.
			4.15	57.65		End of Trial Pit at 4.1	5m		
									5.

- 1. Groundwater ingress at 0.30mbgl.
- 2. Sides readily collapsing between 0.40mbgl and 1.05mbgl.
- 3. Trench excavated in attempt to locate coal seam. Dimensions 8.00m by 0.80m.
- 4. Backfilled with arisings upon completion.

- E3 = Environmental Sample D = Disturbed Sample
- B = Bulk Sample
- LB = Large Bulk Sample
- 11 = Undisturbed Sample
- UT = Undisturbed Thin Wall Sample
- SPT = Standard Penetration Test PID = Photoionization Detector (ppm)
- PPM = Part Per Million HSV = Hand Shear Vane

LIEN	T: - E	BELLWAY HO	MES LIMITED (I	NORTH WE	ST)	DATES:	13/01/20 Logged	JMC	
ater	Samp	le and In Sit	u Testing	Depth	Level	Legend	Stratum Description		
rikes	Depth (m)	Type	Results	(m)	(m OD)	Legend	Stratum Description		
	0.20	ES		0.35	61.15		Grass over dark brown slightly gravelly slightly clayey fine to coarse SAND with rootlets. Gravel is subangular to subrounded fine to coarse of mudstone and sandstone (TOPSOIL).	e	
•	0.50	ES					Greyish brown clayey fine to coarse SAND.		
	1.00	нѕу	66kPa	0.95	60.55		Firm brown slightly sandy gravelly CLAY Sand is fine to coarse. Gravel is subangular fine to coarse of sandstone and mudstone.	11	
	2.00	D HSV	94kPa				Becoming stiff from 2.00mbgl.	2.	
	2,50	D							
	3.00	IISV	39kPæ					э.	
	4,00	HSV	125kPa					4,	
				4,95	56,55				

- 1. Groundwater ingress at 0.60mbgl.
- 2. Sides readily collapsing between 0.35mbgl and 0.95mbgl.
- 3. Trench excavated in attempt to locate coal seam. Dimensions 10.20m by 0.80m.
- 4. Backfilled with arisings upon completion.

- C3 = Crivironniental Sample D = Disturbed Sample
- B = Bulk Sample
- LB = Large Bulk Sample
- 11 = Undisturbed Sample
- UT = Undisturbed Thin Wall Sample SPT = Standard Penetration Test
- PID = Photoionization Detector (ppm)
- PPM = Part Per Million HSV = Hand Shear Vane

	10				No.
	BROWNFIELD SOLUTIONS LTD		Trial Pit Log	TT	04
	Action to the State of the Stat		The second secon	Sheet	1 of 1
DDOIECT NO.	C4390	CO OPPC.	245250E 405700N	Hole	Туре
PROJECT NO:	C4380	CO-ORDS:	346260E, 406700N	1	TP.
PROJECT NAME:	LATHOM PASTURES (PHASE 2)	LEVEL:	61.70m OD	Sc	ale
PROJECT NAIVIE:	LATHOW PASTORES (PHASE 2)	LEVEL:	61.70m OD	1:	25
CLIENT.	DELLAWAY HOMES LIMITED (NIODTH MEST)	DATEC.	13/01/20	Logged	Checked
CLIENT:	BELLWAY HOMES LIMITED (NORTH WEST)	DATES:	13/01/20	11.1	11.40

LIENT	: :	BELLWAY HO	MES LIMITED (1	NORTH WE	(51)	DATES:	13/01/20	Logged	JMC
/ater	Samp	le and In Sit	u Testing	Depth		Legend	Stratum Description		
rikes	Depth (m)	Type	Results	(m)	(m OD)	Legenu			
	0.10	ES		0.35	61.35	1 1 1 1 1 1 1 1 1	SAND with rootlets. Sand is fine to coarsubangular to subrounded fine to coarsuandstone (TOPSOIL).	se. Gravel is se of mudstone a	nd
_	0.50	ES				$\pm \pm 1$	Greyish brown clayey fine to coarse SA	ND.	
•	0.30			0.55	61.15		Firm brown slightly sandy gravelly CLAY coarse. Gravel is subangular fine to coa and mudstone.		
	1.00	HSV	90kPa				Becoming Stiff from 1.vumbgi.		1.
	2.00	D HSV	122kPa						2.
	3.00	IISV	122kPa						2
	4.00	HSV	130kPa						4
	4.65	D		4.65	57.05		Black COAL.		
				4.85	56.85		End of Trial Pit at 4.85m		
				1000			Lilo of that Fit at 4.03ff		5

- 1. Groundwater ingress at 0.55mbgl.
- 2. Sides readily collapsing between 0.35mbgl and 0.55mbgl.
- 3. Trench excavated in attempt to locate coal seam. Dimensions 10.30m by 0.80m.
- 4. Coal seam encountered at base of trial trench with an outcrop length of 1.0m, dipping towards the south-east. Thickness not proven due to reach of plant equipment. Bedrock outcropping east and west of the seam comprised extremely weak to very weak light grey mudstone partially weathered.
- 5. Backfilled with arisings upon completion.

- C3 = Environmental Sample D = Disturbed Sample
- B = Bulk Sample
- LB = Large Bulk Sample
- II = Undisturbed Sample UT = Undisturbed Thin Wall Sample
- SPT = Standard Penetration Test
- PID = Photoionization Detector (ppm)
- PPM = Part Per Million HSV = Hand Shear Vane

CLIENT	ī: I	BELLWAY HO	MES LIMITED (I	NORTH WE	ST)	DATES:	13/01/20	Logged	Checked
Water		le and In Site		Depth	Level	Legend	Stratum Description		
Strikes	0.10	Type ES	Results	(m) 0.25	(m OD)		Black fine to medium SAND with rootlets. Urange fine to medium SAND.	(TOPSOIL)	
•	0.60	ES		0.85	59.44				
	1.00	D HSV	46kPa				Soft to firm light grey sandy CLAY. Sand is f	ine to mediun	n. 10
							Becoming brown and slightly gravelly from 1.40mbgl. Grandstangular to subrounded fine to coarse of mudstane.	ravel is	
	2.00	D HSV	102kPa				Becoming stiff from 2.00mbgl.		2.0
									3.0
	3.40	D		3.40 3.50	56.89 36.79		Black COAL. End of Trial Pit at 3.50m		
									4.0
									5.0

- 1. Groundwater encountered with medium flow at 0.80mbgl.
- 2. Sides readily collapsing between 0.40mbgl and 1.50mbgl.
- 3. Coal seam encountered at base of trial trench with an outcrop length of 1.0m, dipping towards the south-east. Bedrock outcropping east and west of the seam comprised extremely weak to very weak light grey partially weathered mudstone.
- 4. Unable to excavate deeper than 3.50mbgl due to large collapse of trench sides and reach of JCB-3CX.
- 5. Backfilled with arisings.

- Tage of the second second
- E3 = Environmental Sample D = Disturbed Sample
- B = Bulk Sample
- LB = Large Bulk Sample
- II = Undisturbed Sample
- UT = Undisturbed Thin Wall Sample
- SPT = Standard Penetration Test
- PID = Photoionization Detector (ppm) PPM = Part Per Million
- HSV = Hand Shear Vane

ENT:	BELLW	AY HON	MES LIMITED (NO	ORTH WE	ST)	DATES:	14/01/20 - 16/01/20 Logged		JMC	
Water	Lettern and the second	and In	Situ Testing	Depth	Level	Legend	Stratum Description			
Strike	Depth (m)	Type	Results	(m)	(m OD)	Legend	Stratum Description			
•	0.20	ES					Black brown clayey fine to medium SAND w (TOPSOIL).	ith rootlets.		
	0.50	ES		0.40	61.90		Reddish brown fine to medium SAND.			
				0.70	61.60		Soft light grey slightly gravelly slightly sands coarse. Gravel is subangular to subrounded mudstone and sandstone.			
	1.00	ES							1	
	1.20	SPT	N=5 (1,1/1,1,1,2)							
	2.00	SPT	N=24 (2,3/4,5,7,8)				Becoming stiff from 2.00mbgl.		2	
· .	2.40 2.50	D SPT	N≥50	2.50	59.80		W LULL ANDSTONE WILL			
		9710	(25 for 30mm/50 for 10mm)	2.54	59.76		Very weak light grey MUDSTONE, partially to End of Borehole at 2.54	weathered. m	-1	
									1	

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with medium flow at 0.20mbgl.
- 3. Casing installed from GL to 2.00mbgl.
- 4. Borehole installed: GL to U.5Um plain, U.5Um to 2.5Um slotted, 2.5Um to 2.54m backfilled with arisings.

ES = Einvironmental Sample

D = Disturbed Sample

B = Bulk Sample LB = Large Bulk Sample

UT = Undisturbed Thin Wall Sample

SPT = Standard Penetration Test PID = Photoionization Detector (ppm)

CLIENT: BELLWAY HOMES LIMITED (NORTH WEST)				EST)	DATES: 14/01/20 TM					
Well	Water Strikes	Sample	Situ Testing	Depth	Level	Legend			JMC	
ell		Depth (m)	Type	Results	(m)	(m OD)	Legellu	Stratum Description		
	•	0.20	ES		0.30	61.10		Black brown clayey fine to medium SAND with (TOPSOIL). Reddish brown fine to medium SAND.	rootlets.	
		0.60	ES		0.50	60.90		Soft light grey slightly gravelly slightly sandy C medium. Gravel is subangular to subrounded mudstone and sandstone.		
		1.20	D SPT	N=4 (1,1/1,1,1,1)				Becoming from 1.70mbgl. Becoming firm from 1.70mbgl.		1
		2.00	SPT	N=12 (1,2/3,3,3,3)						2
		2.20	Ď		2.25	59.15	** (1.4 ()*).	Extremely weak light grey MUDSTONE, partia	lly weathered.	
		3,00	FPT	N-14 (8,7/4,3,3,4)						3
		3.70	D							
		4.00	SPT	N≥50 (9,14/50 for 200mm)	-07/m 20/0	A Service of Administration				9
XZ.					4.35	57.05		End of Borehole at 4.35m		
										3
										3
	- The same of the			rated to 1.20mbgl t						

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with small flow at 0.20mbgl.
- 3. Casing installed from GL to 2.00mbgl.
- 4. Backfilled with arisings.

ES = Environmental Sample

D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample

UT = Undisturbed Thin Wall Sample SPT = Standard Penetration Test

PID = Photoionization Detector (ppm)

CLIENT: BELLWAY HOMES LIMITED (NORTH WEST)				ORTH WE	ST)	DATES:	JMC	иC		
ell	Water Strikes				Depth	Level	Legend	Stratum Description		_
en		Depth (m)	Type	Results	(m)	(m OD)	Legenu	Stratum Description		
	•	0.20	ES					Black brown clayey fine to coarse SAND with rootlets. (TOPSO	iL).	
		0.50	ES		0.35	61.65		Light brown slightly gravelly fine to coarse SAND. Gravel is subrounded fine to medium of mudstone.		
		1.20	ES SPT	N=5 (1,1/1,1,1,2)	1.00	61.00		Soft light grey brown slightly gravelly slightly sandy CLAY. Sand fine to medium. Gravel is subangular to subrounded fine to medium of mudstone and sandstone. Becoming reddish brown from 1.20mbgl. Becoming prim from 1.50mbgl.	is	1
		2.00-2.45 2.00	D SPT	N=7 (1,1/1,2,2,2)					3	2
		3.00 3.15 3.00	D SPT	N=9 (1,2/2,2,2,3)					2	2
		4.00	SPT	N=16 (2,3/3,4,4,5)				Becoming stiff from 4,00mbgl.	i	4
33%					4.45	57.55		End of Borcholc at 4.45m		
										6

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with small flow at 0.30mbgl.
- 3. Casing installed from GL to 2.00mbgl.
- 4. Backfilled with arisings.

ES = Environmental Sample

D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample

UT = Undisturbed Thin Wall Sample

SPT = Standard Penetration Test PID = Photoionization Detector (ppm)

CLIEN	VT:	BELLIN	/AY HOI	MES LIMITED (NO	ORTH WE	EST)	DATES:	14/01/20 TM	JMC
Vell	Water	Landania and Maria	and In	Situ Testing	Depth	Level	Legend	Stratum Description	3/110
veli	Strikes	Depth (m)	Type	Results	(m)	(m OD)	Legend		
	•	0.20	ES		0.50	61.91		MADE GROUND: Black slightly gravelly fine to coarse sand topsoil with low cobble content. Gravel is angular to subrounded fine to coarse of brick, mudstone, sandstone and coal. Cobbles are angular to subangular up to 80mm in diameter of brick. Reddish brown fine to medium SAND.	
					0.70	61.71		Soft light grey slightly gravelly slightly sandy CLAY. Sand is fine to medium. Gravel is subangular to subrounded fine to medium of mudstone and sandstone.	1.0
		1.20-1.65 1.20	D SPT	N=7 (1,1/1,2,2,2)				Becaming brown from 1.40mbgl.	
								Becoming firm from 1.60mbgl.	
		2.00	SPT	N=12 (1,2/3,3,3,3)					2.0
		2.80	D TPT	N-7					3.0
		3.20	D	(1,1/1,2,2,2)					
		4.00	SPT	N≥50 (3,3/50 for 220mm)	4.20	38.21			4,0
					350008	3775780000 ±		Extremely weak light grey MUDSTONE, partially weathered.	
					4.37	58.04		End of Borehole at 4.37m	5.0
									6.0

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with small flow at 0.20mbgl.
- 3. Casing installed from GL to 2.00mbgl.
- 4. Backfilled with arisings.

ES = Environmental Sample

D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample

UT = Undisturbed Thin Wall Sample SPT = Standard Penetration Test

PID = Photoionization Detector (ppm)

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with small flow at 0.80mbgl, rising to 0.45mbgl after 20 minutes.
- 3. Casing installed from GL to 2.00mbgl.
- 4. Borehole installed: GL to 1.00m plain, 1.00m to 3.00m slotted, 3.00m to 4.45m backfilled with arisings.

- D = Disturbed Sample
- B = Bulk Sample
- LB = Large Bulk Sample
- UT = Undisturbed Thin Wall Sample

6.0

- SPT = Standard Penetration Test PID = Photoionization Detector (ppm)
- PPM = Part Per Million
- HSV = Hand Shear Vane

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with small flow at 0.50mbgl.
- 3. Running sands encountered between 0.70mbgl and 1.70mbgl.
- 4. Casing installed from GL to 2.00mbgl.
- 5. Borehole installed: GL to 1.00m plain, 1.00m to 4.00m slotted, 4.00m to 4.45m backfilled with arisings.

ES = Einvironmental Sample

6.0

D = Disturbed Sample B = Bulk Sample

LB = Large Bulk Sample

UT * Undisturbed Thin Wall Sample

SPT = Standard Penetration Test PID = Photoionization Detector (ppm)

Water	Sample	and In S	itu Testing	Depth	Level	Logonal	Stratum Description	
Strikes			Results	(m)	(m OD)	Legend	Stratum Description	
•	0.30	ES				337000 57600	MADE GROUND: Black-brown slightly gravelly very sandy clay topsoil. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of brick and mudstone.	
	0.80	ES		0.70	61.24		Light brown fine to coarse SAND.	
	1.20	SPT	N=8 (0,1/2,2,2,2)				Loase from 1.2umogi.	25
	1 80	n		1.75 1.85	60.19 60.09	and the	Brown clayey peaty fine to coarse SAND with natural organic	
	2.00	SPT	N=9 (2,2/2,3,2,2)				odour. Soft to firm light grey-brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of mudstone and sandstone. Becoming brown from 2.00mbgl.	1
	2.50	D						
	3.00	SPT	N-16 (2,3/3,4,4,5)	2.90	59.04		Medium dense brown fine to medium SAND.	
				3.40 3.45	58.54 58.49		Firm brown slightly sandy CLAY. Sand is fine to coarse. Brown fine to medium SAND.	7
	4.00	SPT	N=21 (3,4/5,5,5,6)	3.90	58.04		Stiff brown slightly sandy CLAY. Sand is fine to coarse.	
				4.45	57.49		End of Borcholc at 4.45m	

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with small flow at 0.30mbgl.
- 3. Running sands encountered between 0.70mbgl and 1.75mbgl.
- 4. Casing installed from GL to 2.00mbgl.
- 5. Backfilled with arisings.

ES = Environmental Sample

D = Disturbed Sample

B = Bulk Sample LB = Large Bulk Sample

= Large Buck Sample = Undisturbed Sample

UT = Undisturbed Thin Wall Sample SPT = Standard Penetration Test

PID = Photoionization Detector (ppm)

Water	Sample	and In S	itu Testing	Depth	Level	#GE 32023-10#		
Strikes		Type	Results	(m)	(m OD)	Legend	Stratum Description	
•	0.10	ES		0.40	61.44		MADE GROUND: Black brown slightly gravelly clayey fine to medium sand topsoil with roots and rootlets. Gravel is angular to subangular fine to coarse of mudstone and glass. Light brown fine to medium SAND.	
	0.50	ES					Sand becoming dark brown from 0.85mbgl.	
	1.20	SPT	N=4 (0,0/1,1,1,1)				Loose from 1.zumogi.	9
	1.90 2.00	ES SPT	N=4 (0,0/1,1,1,1)	1 80	60 Na		Very soft to soft brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to medium of mudstone and sandstone.	
	2.70	D					Becoming firm from 2,60mbgl	
	3,00	TYS	N-21 (2,2/4,5,6,6)				Becoming firm to stiff from 3.00mbgt.	
	3.80	D	N. 43					
	4.00	SPT	N=13 (2,2/2,3,4,4)					
4				4,45	57.40		End of Borcholc at 4.45m	

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with small flow at 0.10mbgl.
- 3. Running sands encountered between 0.40mbgl and 1.80mbgl.
- 4. Casing installed from GL to 2.00mbgl.
- 5. Backfilled with arisings.

ES = Einvironmentai Sample

D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample LI = Lindisturbed Sample

UT + Undisturbed Thin Wall Sample SPT = Standard Penetration Test

PID = Photoionization Detector (ppm)

LIENT:			MES LIMITED (N	OKIH WE	31)	DATES:	17/01/20	Logged SM	JMC
ell Water	Lettermont from the		Situ Testing	Depth	Level	Legend	Stratum Description		
Strikes	0.20 0.40 0.70 1.00 1.60 1.80 2.00 2.50 3.00 3.20	D ES D ES SPT D STT D	N=4 (0,1/1,1,1,1) N=10 (1,1/2,2,3,3)	0.30 0.60	61.21 60.91 59.96 59.86		MADE GROUND: Grass over dark brown slight sandy clay topsoil with rootlets. Sand is fine the angular to subrounded fine to coarse of much brick, plastic and rare glass. Dark grey slightly gravelly SAND. Sand is fine the tocoarse subangular to subrounded of build brown fine to medium SAND. Becoming brown from 0.80mbgl. Loose from 1.20mbgl. Plastic dark brown fibrous PEAT. Organic odor Soft mottled grey and brown silty CLAY. Becoming firm from 1.90mbgl. Becoming stiff from 2.50mbgl.	o coarse. Gravel i stone, sandstone, to coarse. Gravel rick and mudston	s is
	4.00	SPT	N=27 (5,5/5,7,7,8)	4.45	57.06		End of Borcholc at 4.45m		4
									5
									€

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with small flow at 1.00mbgl.
- 3. Running sands encountered between 0.60mbgl and 1.55mbgl.
- 4. Casing installed from GL to 2.00mbgl.
- 5. Borehole installed: GL to 1.00m plain, 1.00m to 4.00m slotted, 4.00m to 4.45m backfilled with arisings.

£5 = Einvironmentai Sample

- D = Disturbed Sample
- B = Bulk Sample
- LB = Large Bulk Sample
- UT + Undisturbed Thin Wall Sample SPT = Standard Penetration Test
- PID = Photoionization Detector (ppm)
- PPM = Part Per Million HSV = Hand Shear Vane

11	Water	Sample	and In S	itu Testing	Depth	Level	Legand	Stratum Description	
11	Strikes	Depth (m)	Type	Results	(m)	(m OD)	Legend	Stratum Description	
X X X X					0.35	61.96		MADE GROUND: Grass over black slightly gravelly sandy clay topsoil with rootlets. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of mudstone, occasional concrete, glass and plastic.	
SECTION SECTIO		0.50	D ES					Light brown fine to coarse SAND.	
	•	0.90	D ES					Becoming brown from 0.80mbgl.	
		1.00	D ES STT	N-4 (0,0/1,1,1,1)				Loose from 1. zumbgl.	
					1 50	60.81	×_x_x	Soft brown slightly gravelly silty CLAY. Gravel is fine to medium sub-rounded to angular of mudstone and sandstone.	_
Section 1		1 80	ES				xx -xx		
		2.00	SPT	N=6 (0,0/1,1,2,2)			xx		
		2.60	D				XX XX	Becoming firm from 2.50mbgl	
		3.00	SPT	N-15 (2,2/3,4,4,4)			XX_ XX_ XX_ XX_ XX_ XX_	Becoming stiff from 2.80mbgl.	
STORY DESIGNATION		3.50	D				X _ X X _ X X _ X X _ X X _ X		
		4.00	SPT	N=18					
\$5000000000000000000000000000000000000				(3,3/4,4,5,5)			××		
4					4.45	57.86		End of Borcholc at 4.45m	-

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with small flow at 0.90mbgl.
- 3. Running sands encountered between 0.35mbgl and 1.50mbgl.
- 4. Casing installed from GL to 2.00mbgl.
- Backfilled with arisings.

ES = Environmental Sample

D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample LI = Lindisturbed Sample

UT = Undisturbed Thin Wall Sample SPT = Standard Penetration Test

PID = Photoionization Detector (ppm)

Wa	iter	Sample	and In S	itu Testing	Depth	Level	Lennad	Charter Description	
Stri	ikes	Depth (m)	Type	Results	(m)	(m OD)	Legend	Stratum Description	
7	•				0.30	61.62		Very soft dark brown-black slightly gravelly very sandy CLAY with roots and rootlets. Sand is fine to coarse. Gravel is subangular to subrounded fine to medium of mudstone and sandstone. (TOPSOIL)	1
		0.50	ES					Reddish brown-grey fine to medium SAND.	
		1.20	SPT	N=4 (0,0/1,1,1,1)				Loase from 1.Zumbgl.	Soft
		1.40	D						
8		3.00	507	N. F	1.95	59.97	n)Mice	Participated and a participated and a supplicated and a supplicate	
		2.00	SPT	N=5 (0,0/1,1,1,2)	2.00	59.92		Brown clayey peaty SAND with natural organic odour. Very soft slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to medium of mudstone and rare coal.	<i>y</i>
		2.90	D		2.45	59.47		Soft slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to medium of mudstone and rare coal.	
		3,00	SPT	N-14 (1,2/3,4,3,4)				Becoming firm from 3.00mbgl.	
					3.45	58.47		Brown fine to medium SAND.	
		4.00	SPT	N=16 (2,2/3,4,4,5)	3.90	58.02		Firm to stiff slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to medium of mudstone and rare coal.	
2					4.45	57.47		End of Borcholc at 4.45m	-
									1100

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with small flow at 0.30mbgl.
- 3. Running sands encountered between 0.30mbgl and 1.95mbgl.
- 4. Casing installed from GL to 2.00mbgl.
- 5. Backfilled with arisings.

ES = Environmental Sample

D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample

UT * Undisturbed Thin Wall Sample

SPT = Standard Penetration Test PID = Photoionization Detector (ppm)

	IT:	DELLV	AY HUIV	IES LIMITED (N	NORTH WE	.51)	DATES:	16/01/20 TM	JMC
ell	Water		T	Situ Testing	Depth	Level	Legend	Stratum Description	
877	Strikes	Depth (m)	Type	Results	(m)	(m OD)	***********		
	_	0.20	ES				9990099900	MADE GROUND: Grass over black slightly gravelly clayey sand topsoil with rootlets and low cobble content. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse of brick, concrete and glass. Cobbles are subangular up to 80mm in diameter of brick and concrete.	
	*				0.55	61.73		Light brown fine to coarse SAND.	
		0.90	ES					Becaming brown from 1.00mbgl.	
		1.20	SPT	N=6 (0,1/1,1,2,2)				Loase from 1. Zumbgi.	
								Becoming light grey from 1.5umbgi.	
		2.00	SPT	N=6					
		2.10-2.45 2.20	D ES	(1,1/1,1,2,2)	2.10	60.18		Soft brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of mudstone and sandstone.	
								Becoming firm from 2.80mbgl.	
		3.00	SPT	N-16 (2,3/3,4,4,5)	3.00	59,28		Brown fine to coarse SAND.	
				(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)-(-)	3.15	59.13		Firm brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of	
					3.45	58.83		mudstone and sandstone. Brown fine to coarse SAND.	1
		4.00	SPT	N=17 (2,2/3,4,5,5)	3.90	58.38		Firm brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of mudstone and sandstone.	100
Ž					4.45	57.83		End of Borcholc at 4.45m	
									100

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with small flow at 0.55mbgl. Groundwater level in inspection pit rose from 1.00mbgl to 0.50mbgl in ten minutes.
- 3. Running sands encountered between U.SSmbgl and 2.10mbgl.
- 4. Casing installed from GL to 2.00mbgl.
- 5. Backfilled with arisings.

ES = Environmental Sample

- D = Disturbed Sample
- B = Bulk Sample
- LB = Large Bulk Sample
- UT + Undisturbed Thin Wall Sample
- SPT = Standard Penetration Test PID = Photoionization Detector (ppm)
- PPM = Part Per Million HSV = Hand Shear Vane

LIENT:	BELLW	AY HOM	IES LIMITED (N	IORTH WE	ST)	DATES:	15/01/20 Logged CI	JMC
ell Water		and In S	itu Testing	Depth	Level	Legend	Stratum Description	
Strikes	Depth (m)	Type	Results	(m)	(m OD)	Legenu		4
×	0.20	ES					MADE GROUND: Grass over very soft black slightly gravelly slightly sandy clay topsoil with roots and rootlets. Sand is fine to coarse. Gravel is subangular fine of brick.	
	0.50	ES		0.40	62.15		Light grey fine to medium SAND. Becoming light brown from 0.70mbgl.	
	1.20	D SPT	N=2 (0,0/0,0,1,1)				very loose from 1.20mbgi.	đ
	1.90 2.00	D SPT	N=5 (0,1/1,1,1,2)	1.85	60.75 60.70		Brown clayey peaty SAND with natural organic odour. Soft to firm light grey-brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of mudstone and sandstone.	3
	2.90 3.00	D SPT	N-10 (2,2/2,2,3,3)				Becoming firm from 3.00mbgi.	
	4.00	SPT	N=14 (2,2/3,3,4,4)					Ş
424				4.45	58.10		End of Borcholc at 4.45m	
marks	1 Hamble	dt see er	ted to 1.20mbg	Lincolnus E G	or to obset s		£5 = Einvironmental Sample	

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with medium flow at 0.20mbgl.
- 3. Running sands encountered between 0.40mbgl and 1.80mbgl.
- 4. Casing installed from GL to 2.00mbgl.
- 5. Backfilled with arisings.

- £5 = Environmental Sample
- D = Disturbed Sample
- B = Bulk Sample
- LB = Large Bulk Sample
- UT * Undisturbed Thin Wall Sample
- SPT = Standard Penetration Test PID = Photoionization Detector (ppm)
- PPM = Part Per Million H5V = Hand Shear Vane

IEN	T:	BELLW	AY HOM	IES LIMITED (N	IORTH WE	ST)	DATES:	15/01/20 TM	JMC
ell	Water	Sample	and In S	Situ Testing	Depth	Level	Logand		
:11	Strikes	Depth (m)	Type	Results	(m)	(m OD)	Legend	Stratum Description	
	•	0.40	ES					MADE GROUND: Grass over soft dark brown-black slightly gravelly very sandy clay topsoil. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of brick and concrete. Isolated angular coobile of concrete at 0.10mogl, 100mm in diameter.	
		0.80	ES		0.70	61.88		Dark brown slightly gravelly clayey fine to medium SAND with occasional rootlets.	1.0
		1.20	SPT	N=3 (0,0/0,1,1,1)				very loose from 1.20mbgi,	
		1 20	D SPT	N=4				Becoming fight brown from 1.70mbgl.	2.0
			VAC-91	(0,0/1,1,1,1)	2.05	60.53		Soft to firm brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of mudstone and sandstone.	2.0
		2.50	D						
		3.00	TTR	N-17 (2,3/3,4,5,5)	3.00	59.58		Medium dense brown fine to medium SAND.	3.0
		3.80	D		3,70	58.88		Soft to firm brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse	
		4.00	SPT	N=14 (2,3/3,3,4,4)	4.00	58.58		of mudstone and sandstone. Brown fine to medium SAND.	4.0
				(2)2/2/2///	4.20	58.38		Firm brown slightly gravelly slightly sandy CLAY. Sand is fine to	1
X					4.45	58.13		coarse. Gravel is subangular to subrounded fine to coarse of mudstone and sandstone. End of Borehole at 4.45m	٥
									5.0
									6.0

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with small flow at 0.30mbgl. Groundwater level in inspection pit rose from 1.20mbgl to 0.30mbgl in ten minutes.
- 3. Running sands encountered between U.70mbgl and 2.05mbgl.
- 4. Casing installed from GL to 2.00mbgl.
- 5. Backfilled with arisings.

£5 = Einvironmentai Sample

D = Disturbed Sample B = Bulk Sample

LB = Large Bulk Sample

UT * Undisturbed Thin Wall Sample

SPT = Standard Penetration Test PID = Photoionization Detector (ppm)

IEN.	111:	BELLV	AY HOM	IES LIMITED (N	NORTH WE	:51)	DATES:	15/01/20 TM	JMC
ell	Water	Lettern and the second	and In S	itu Testing	Depth		Legend	Stratum Description	
	Strikes	Depth (m)	Type	Results	(m)	(m OD)	Legena		
I		0.20	ES		0.10	62.54		MADE GROUND: Red cobbles of angular whole bricks 150mm in diameter. MADE GROUND: Black slightly gravelly clayey fine to coarse sand.	1
	•				0.45	62.19		Gravel is angular to subrounded fine to coarse of brick, glass and concrete.	1
		0.60	ES					Light grey brown fine to medium SAND with mild hydrocarbon odour.	
			3242						
		1.20	SPT	N=4 (0,0/1,1,1,1)				Loose from 1.20mbgl. Becoming reddish brown from 1.30mbgl.	
77		1.95	D		1.90 2.00	60.74 60.64	astle state	Brown clayey peaty SAND with natural organic odour.	
SCONCINCO SCO		2.00	D D	N=6 (1,1/1,1,2,2)	Married W	20,00		Soft to firm brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of mudstone and sandstone.	
SKINKINKINKINKINKINKINKINKINKINKINKINKINK									
		3,00	THE	N-17 (2,2/3,4,5,5)				Becoming stiff from 3.00mbgl.	
		3.60	D						
XIIIX IX		4.00	SPT	N=17 (2,3/4,4,4,5)					
					4.45	58.19		End of Borcholc at 4.45m	

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with small flow at 0.50mbgl. Groundwater level in inspection pit rose from 1.20mbgl to 0.50mbgl in five minutes.
- 3. Running sands encountered between 0.45mbgl and 1.90mbgl.
- 4. Casing installed from GL to 2.00mbgl.
- 5. Borehole installed: GL to 0.50m plain, 0.50m to 2.00m slotted, 2.00m to 4.45m backfilled with arisings.
- ES = Environmental Sample
- D = Disturbed Sample
- B = Bulk Sample
- LB = Large Bulk Sample
- UT + Undisturbed Thin Wall Sample SPT = Standard Penetration Test
- PID = Photoionization Detector (ppm)
- PPM = Part Per Million HSV = Hand Shear Vane

LILI	VT:	DELLV	AT HOIV	IES LIMITED (I	NORTH WI	:51)	DATES:	15/01/20 TM	JMC
ell	Water	La		Situ Testing	Depth		Legend	Stratum Description	
NE STEE	Strikes	Depth (m)	Type	Results	(m) 0.10	(m OD)		MADE GROUND: Grass over black gravelly fine to coarse sand	
		0.30	ES		0.20	62.57		topsoil. Gravel is subangular to subrounded fine to coarse of mudstone. MADE GROUND: Red cobbles of angular whole bricks 150mm in diameter.	1
		0.80	ES		0.70	62.07		MADE GROUND: Black brown slightly gravelly clayey fine to coarse sand. Gravel is subangular to subrounded fine of mudstone and brick.	
	•							Light brown fine to medium SAND with mild hydrocarbon odour. Becoming reddish brown from 0.8mbgl.	ā
		1.20-1.65 1.20	D SPT	N=8 (1,1/1,2,2,3)				Loose from 1.2umbgl.	
		1.90 2.00	D SPT	N=6 (0,1/1,1,2,2)	1 80	FP 03		Soft light brown grey slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of mudstone and sandstone.	2
		3.00 3.45 3.00	D SPT	N=13 (2,3/3,3,3,4)				Becoming firm from 3.00mbgl.	2
		4.00	SPT	N=19 (2,3/4,4,5,6)				Becoming stiff from 4.00mbgl.	4
¥2.					4.40 4.48	58.37 58.22		Brown fine to medium clavey SAND. End of Borehole at 4.45m	
									į
									4

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with small flow at 1.10mbgl.
- 3. Running sands encountered between 0.70mbgl and 1.80mbgl.
- 4. Casing installed from GL to 2.00mbgl.
- 5. Backfilled with arisings.

ES = Einvironmental Sample

D = Disturbed Sample

B = Bulk Sample

LB = Large Bulk Sample

UT * Undisturbed Thin Wall Sample

SPT = Standard Penetration Test

PID = Photoionization Detector (ppm)

Water	Sample	and In S	itu Testing	Depth	Level	100000000000000000000000000000000000000	PAULADILI PODUSIA AFDIS	
Strikes	1 1 1 1 1 1 1		Results	(m)	(m OD)	Legend	Stratum Description	
•	0.20	ES		0.30	62.00		Very soft dark brown-black slightly gravelly very sandy CLAY with roots and rootlets. Sand is fine to coarse. Gravel is subangular to subrounded fine to medium of mudstone and sandstone. (TOPSOIL) Light grey fine to medium SAND.	
Acatha athra	0.60	B					Becuming orangish brown from 0.90mbgl.	
	1.20	SPT	N=4 (0,0/1,1,1,1)				Loase from 1.Zumbgi.	
	1.60	D						
	2.00	SPT	N=7 (1,1/1,2,2,2)					
	2.60	D		2.50	59.80		Soft brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to medium of mudstone and rare coal.	
	3.00	SPT	N-10 (1,2/2,2,3,3)	3.20	59.10			
	3.50	SPT	N=13 (2,3/4,3,3,3)				Brown fine to medium SAND. Medium dense from 3.50mbgl.	
				3.85 3.95	58.45 58.35		Soft brown slightly sandy CLAY. Sand is fine to coarse.	
							End of Borehole at 3.95m	
		Y						

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with medium flow at 0.20mbgl. Groundwater level in inspection pit rose from 1.00mbgl to 0.50mbgl after five minutes.
- 3. Running sands encountered between 0.30mbgl and 2.50mbgl.
- 4. Casing installed from GL to 2.00mbgl.
- 5. Borehole unable to be progressed beyond 3.95mbgl due to blowing sands.
- 6. Backfilled with arisings.

- ES = Environmental Sample
- D = Disturbed Sample
- B = Bulk Sample
- LB = Large Bulk Sample
- UT + Undisturbed Thin Wall Sample
- SPT = Standard Penetration Test
- PID = Photoionization Detector (ppm)
- PPM = Part Per Million HSV = Hand Shear Vane

LIEN		DLLLVV	AT HOW	IES LIMITED (N	IOKIH WE	:31)	DATES:	15/01/20 TM	JMC
OII	Water	Lettern and have a	and In S	itu Testing	Depth		Legend	Stratum Description	
	Strikes		500	Results	(m)	(m OD)	EEGENE	Black slightly gravelly very sandy CLAY with rootlets and roots up to 20mm in diameter. Sand is fine to coarse. Gravel is subangular to subrounded fine to medium of mudstone and rare coal.	
	•	0.30	ES ES		0.45	61.86		Brown fine to medium SAND.	
		1.20	SPT	N=3 (0,0/0,1,1,1)				very loose from 1.20mbgi.	1
		2.00 2.10	SPT D	N=7 (1,1/1,2,2,2)	1.70	60.61 60.51		Brown clayey peaty SAND with natural organic odour. Soft brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to medium of mudstone and rare coal. Becoming stiff from 2.00mbgl.	2
XXXXXXX		3.00	SPT	N-17 (2,2/3,4,5,5)				Becoming firm from 2.70mbgl.	4
		4.00	SPT	N=22 (3,4/4,5,6,7)					
22					4.45	57.86		End of Borcholc at 4.45m	
									ł

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with small flow at 0.45mbgl. Groundwater level in inspection pit rose from 1.00mbgl to 0.60mbgl in fifteen minutes.
- 3. Running sands encountered between 0.45mbgl and 1.90mbgl.
- 4. Casing installed from GL to 2.00mbgl.
- 5. Borehole installed: GL to 0.50m plain, 0.50m to 2.00m slotted, 2.00m to 4.45m backfilled with arisings.
- ES = Environmental Sample
- D = Disturbed Sample
- B = Bulk Sample
- LB = Large Bulk Sample
- UT + Undisturbed Thin Wall Sample SPT = Standard Penetration Test
- PID = Photoionization Detector (ppm)
- PPM = Part Per Million HSV = Hand Shear Vane

.11	Water Strikes	Sample	itu Testing	Depth	Level	Logond	Stratum Description		
ell		Depth (m)	Type	Results	(m)	(m OD)	Legend	Stratum Description	
	•	0.20	ES	ES Black-brown clayey fine to medium SAND with rootlets. (TOPSOIL)					
		0.60	ES		0.50	61.16		Brown fine to medium SAND.	
		1.20	SPT	N=3 (0,0/0,1,1,1)				very loose from 1.2umbgi.	
		1.60	D		1,45	60.20		Soft brown slightly gravelly slightly sandy CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to medium of mudstone and sandstone.	
		2.00	SPT	N=3 (0,0/0,1,1,1)				Becoming very soft from 2.00mbgl.	
								Locally soft between 2.60mbgl and 3.00mbgl.	
		3.00	D D	N-16 (2,2/3,3,5,5)				Becoming stiff from 3.00mbgl.	
No Market		4.00	SPT	N=21 (3,3/4,5,6,6)					
%					4,45	57.20		End of Borcholc at 4.45m	

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with small flow at 0.30mbgl.
- 3. Running sands encountered between 0.50mbgl and 1.45mbgl.
- 4. Casing installed from GL to 2.00mbgl.
- 5. Backfilled with arisings.

ES = Environmental Sample

- D = Disturbed Sample
- B = Bulk Sample
- LB = Large Bulk Sample
- UT * Undisturbed Thin Wall Sample
- SPT = Standard Penetration Test PID = Photoionization Detector (ppm)
- PPM = Part Per Million HSV = Hand Shear Vane

BELLWAY HOMES LIMITED (NORTH WEST)						.517	DATES:	17/01/20	SM	
ell	Water Strikes				Depth	1.9	Legend	Stratum Description		
833		Depth (m)	Type	Results	(m)	(m OD)	STANTAN			
	•	0.30	D ES			61.11 61.01		Dark brown slightly sandy clay topsoil with rootle to medium.	ets. Sand is fine	e
		0.55	D CS D ES		0.50 0.60				Dark grey sandy CLAY. Sand is fine to medium. (T Grey brown fine to medium SAND.	OPSOIL)
		1.20	SPT	N='5				Loase from 1.2umbgl.		
				(0,0/1,1,1,2)						
		1 50	n		1.50 1.52	60.11 60.09		Plastic brown slightly sandy PEAT. Sand is fine to Organic odour.	medium.	
	4							Grey brown fine to medium SAND.		
	•	2.00	SPT	N=5 (1,2/2,1,1,1)	2.00	59.61		Loose brown fine to medium SAND.		
X		2.50	D		2.60	59.01		Brown sandy CLAY. Sand is fine to medium.		_
		2.80	D ES							
	•	3.00	SPT	N-14 (1,2/3,3,4,4)	3,00	58,61		Medium dense brown fine to medium SAND.		
		4.00	SPT	N=14 (2,2/3,3,4,4)						
					4.45	57.16		End of Borcholc at 4.45m		

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with small flow at 0.40mbgl, 2.00mbgl and between 3.00m to 3.50mbgl.
- 3. Running sands encountered between 0.60mbgl and 1.50mbgl.
- 4. Casing installed from GL to 2.00mbgl.
- Backfilled with arisings.

ES = Einvironmentai Sample

D = Disturbed Sample

B = Bulk Sample LB = Large Bulk Sample

U = Undicturbed Sample

UT = Undisturbed Thin Wall Sample SPT = Standard Penetration Test

PID = Photoionization Detector (ppm)

NT:			MES LIMITED (N	IORTH WE	ST)	DATES: 17/01/20			JMC
Water	- International		Situ Testing	Depth	Level	Legend	Stratum Description	on	
Strikes	Depth (m) 0.20	D ES	Results	0.35 0.60	61.20		MADE GROUND: Grass over dark brown stopsoil with rootlets. Sand is fine to coarse subrounded fine to coarse of mudstone, fine plastic. Flagging encoutered at 0.20mbgl. MADE GROUND: Dark red brown clayey grounded of brown clayey grounded of brown subrounded su	lightly sandy clay e. Gravel is angular to lag stone, brick and ravel. Gravel is mediu	
	0.80	D ES		0.90	60.90		Light brown fine to medium SAND. Brown fine to medium SAND.		1.
	1.20	D ES SPT	N=3 (0,0/0,1,1,1)				very loose from 1.20mbgi,		
	2.00	SPT	N=5 (1,1/1,1,1,2)	2.10	59.70	×	Soft brown slightly sandy silty CLAY. Sand	is fine to medium.	2
	2.60	D ES				X-X-X X-X-X X-X-X X-X-X			
	3.00	SPT	N-11 (1,2/2,3,3,3)	3.00	58.80	Z - Z	Medium dense brown fine to medium SAI	ND.	2
				3.45	58.34		End of Borehole at 3.4	5m	
									4
									5
									6

- 1. Hand dug pit excavated to 1.20mbgl to check for buried services.
- 2. Groundwater ingress with small flow at 0.30mbgl.
- 3. Flagstones encountered at 0.20mbgl and former brick road encountered between 0.35m to 0.60mbgl.
- 4. Kunning sands encountered between U.60mbgl and 2.10mbgl.
- 5. Casing installed from GL to 2.00mbgl.
- 5. Backfilled with arisings.

- ES = Einvironmental Sample
- D = Disturbed Sample
- B = Bulk Sample
- LB = Large Bulk Sample
- UT + Undisturbed Thin Wall Sample
- SPT = Standard Penetration Test PID = Photoionization Detector (ppm)
- PPM = Part Per Million HSV = Hand Shear Vane

