

Ground Investigation

www.geotechnics.co.uk

STOCKPORT INTERCHANGE

Factual Report

for

Transport for Greater Manchester

Engineer: WSP UK Limited

Project Number PN194052

February 2020

Issuing Office

North West Office The Geotechnical Centre Unit I, Borders Industrial Park River Lane, Saltney

Chester CH4 8RJ

Tel: 01244 671117

mail@chester.geotechnics.co.uk

Head Office
The Geotechnical Centre
203 Torrington Avenue
Tile Hill
Coventry
CV4 9UT

Tel: 02476 694664 mail@geotechnics.co.uk South West Office
The Geotechnical Centre
Unit 5, Orchard Court
Heron Road, Sowton
Exeter
EX2 7NR
Tel: 01392 463110
mail@exeter.geotechnics.co.uk

North East Office
The Geotechnical Centre
Unit I, Bypass Park Estate
Sherburn-in-Elmet
Leeds
LS25 6EP
Tel: 01977 525030
mail@yorkshire.geotechnics.co.uk

Factual Report

STOCKPORT INTERCHANGE

for

Transport for Greater Manchester

Engineer:

WSP UK Limited

Project No: PN194052

February 2020

LIST OF CONTENTS

			Page N
1.0	INTR	RODUCTION	I
2.0	ОВЈЕ	ECT AND SCOPE OF THE INVESTIGATION	I
3.0	PRES	ENTATION	1
4.0	THE	SITE	1
	4 . I	Location	1
	4.2	Description	1
	4.3	Site Geology	1
	4.4	Hydrogeology	2
5.0	PRO	CEDURE	2
	5.1	Commissioning	2
	5.2	General	2
	5.3	Dynamic Sample Boreholes with Rotary Follow-on	2
	5.4	Dynamic Sample Boreholes	3
	5.5	Trial Pits	3
	5.6	Instrumentation and Monitoring	3
6.0	LABO	ORATORY TESTING	4
	6. l	Geotechnical	4
	6.2	Contamination	4

APPENDICES

APPENDIX I	Site Location Plan
APPENDIX 2	Dynamic Sample/Rotary Follow-on Borehole Records
APPENDIX 3	Rock Core Photographs
APPENDIX 4	Dynamic Sample Borehole Records
APPENDIX 5	Trial Pit Records
APPENDIX 6	Trial Pit Photographs
APPENDIX 7	Monitoring Results
APPENDIX 8	Laboratory Test Results - Geotechnical
APPENDIX 9	Laboratory Test Results - Contamination
APPENDIX 10	Exploratory Hole Location Plan
APPENDIX I I	Investigation Techniques and General Notes

Ground Investigation

Factual Report

at

Project No: PN194052

February 2020

STOCKPORT INTERCHANGE

1.0 INTRODUCTION

A geotechnical and geo-environmental investigation was undertaken by Geotechnics Limited at the site of proposed development works at the existing Stockport Bus Interchange. The investigation was carried out to the instructions of the Engineer, WSP UK Limited on behalf of the Client, Transport for Greater Manchester. This report describes the work undertaken and presents the data obtained.

This investigation follows an earlier investigation of the site, carried out for the Client by Geotechnics Limited in 2015 to the instructions of AECOM Limited. That investigation formed the basis of a Factual Report (Ref: PN153428), issued in March 2016.

2.0 OBJECT AND SCOPE OF THE INVESTIGATION

The object of this investigation was to obtain further information on the ground and groundwater conditions relating to the design of the proposed works within the limitations posed by trial hole numbers, locations, depths, methods adopted and the scope of approved in situ and laboratory testing. The investigation comprised dynamic sample boreholes, some with rotary cored follow-on, foundation inspection pits, in situ and laboratory testing and reporting. A Factual Report was also commissioned.

3.0 PRESENTATION

A description of the site and a summary of the procedures followed during the investigation process are presented in Sections 4 to 6. The factual data so obtained are presented in Appendices 2 to 10 of this report. Attention is drawn to the General Notes and Investigation Procedures presented in Appendix II to aid an understanding of the procedures followed and the context in which the report should be read.

In addition, data in electronic format in accordance with "The Electronic Transfer of Geotechnical Data from Ground Investigations" published by the AGS (the AGS Format) are presented separately.

4.0 THE SITE

4.1 Location

The site is located in Stockport town centre, extending from Wood Street northwards to the River Mersey and from Swaine Street eastwards to Mersey Square. The approximate Ordnance Survey National Grid Reference for the centre of the site is SJ 892 902 and an extract from the relevant 1:50,000 Scale O.S. Map is included as Appendix 1.

4.2 Description

The site is irregular in shape with maximum dimensions of approximately I20m (north-west to south-east) and 220m (north-east to south-west). The River Mersey bounds the northernmost part of the site. Ground levels across the site generally fall towards the river, such that levels fall from around 47mOD on Wood Street to around 42mOD on the banks of the River Mersey.

The site comprises Stockport Bus Station which remained operational at the time of the investigation works. The A6 Wellington Road crosses the easternmost part of the site on a viaduct which trends roughly north-west to south-east. Beyond this viaduct lies the primarily hard landscaped public open space of Mersey Square. The River Mersey flows in culvert below Mersey Square.

The Site is bounded to the north by the River Mersey, to the east/south-east by Mersey Square and Wood Street and to the west by Swaine Street.

4.3 Site Geology

The 1:50,000 scale map of Stockport published by the British Geological Survey, Sheet 98 Drift edition dated 1962, shows the site to be underlain by Glacial Till (recorded on the map as Boulder Clay).

Towards the River Mersey, River Terrace Deposits are indicated (recorded on the map as First Terrace).

The I:50,000 Solid edition map (dated 1977) indicates that the site is underlain by rocks of the Chester Formation (recorded on the map as Chester Pebble Beds Formation), part of the Sherwood Sandstone Group of Triassic age. The conjectured trace of a north-north-west to south-south-east trending fault is shown approximately I50m west of Swaine Street, the strata to the east of this fault being downthrown. The conjectured trace of a second fault is shown approximately 200m to the east of the site. This fault trends roughly parallel to the other fault and the strata to the east are again downthrown.

The British Geological Survey maps do not show the presence of Made Ground below the site. However, Made Ground may be present for which the British Geological Survey have no records or which are too shallow for incorporation into the maps. Given historical land uses of this site, a thickness of Made Ground would be anticipated across the site.

4.4 Hydrogeology

The Government's DEFRA MagicMap website, https://magic.defra.gov.uk/MagicMap.aspx, accessed on 9th January 2020, shows the Glacial Till to be classed as a Secondary (undifferentiated) Aquifer. The River Terrace Deposits are shown to be classed as a Secondary A Aquifer whilst the Chester Formation rocks are shown to be classed as a Principal Aquifer.

5.0 PROCEDURE

5.1 Commissioning

The work was awarded following submission of a tender for work designed by the Engineer for ground investigation of the site in accordance with the Client's requirements.

5.2 General

The procedures followed in this site investigation are based on BS 5930: 2015 – Code of Practice for Site Investigations and BS 10175:2011+A2:2017 – Investigation of Potentially Contaminated Sites. The soils and rocks encountered have been described in accordance with BS5930:2015 and BS EN ISO 14688-1:2018 and BS EN ISO 14689:2018. The exploratory hole records are included in

Appendices 2, 4 and 5 and their positions are shown on the Exploratory Hole Location Plan in Appendix 10.

The Exploratory Hole locations were specified by the Engineer. The co-ordinates and levels shown on the Exploratory Hole Records were measured using a Leica GPS survey device. The depths quoted on the exploratory hole records are in metres below ground level.

Prior to the investigation, a survey was carried out by CMS Surveys Limited utilising Ground Penetrating Radar (GPR) techniques to check for the presence of buried services at the proposed exploratory hole locations.

At each exploratory hole location an inspection pit was excavated using hand tools to a depth of 1.20m below ground level to check for the presence of underground services. Prior to and on completion of the excavation, the location was scanned using a cable avoidance tool (CAT).

5.3 Dynamic Sample Boreholes with Rotary Follow-on

Three (3 No.) boreholes (numbered BH301, BH302A and BH302B), up to I20mm in diameter, were sunk utilising a combination of dynamic sampling and rotary coring techniques to depths ranging between 6.90m (BH302A) and 25.10m (BH301) below ground level. Borehole 302A was terminated at a depth of 6.90m below ground level due to poor core recovery and the rig was moved to a revised location (BH302B). A fourth borehole (BH302) was terminated within the inspection pit on encountering a concrete obstruction and the rig was moved to a revised location (BH302A). The work was carried out between I1th and 21st November 2019.

The dynamic sample sections of the boreholes were carried out using a compressed air percussive apparatus fitted to the rotary drilling rig which drives lined steel tubes into the ground in 1.00m lengths. Samples are retrieved in the plastic liners. The liners are extruded from the sampler and placed into suitable core boxes. The retrieved liners were split and the recovered soils described before being subsampled into ES, D and B samples as shown on the Borehole Records. The Borehole Records are presented in Appendix 2.

Rotary coring, commenced at depths of 3.80m (BH302A) and 4.00m (BH301 and BH302B) below ground level. The drilling equipment used in the

rotary sections of the boreholes on this particular contract utilised water as the flushing medium.

Rock cores were extruded horizontally in transparent liners and placed into suitable core boxes. Photographs of the individual core boxes are included in Appendix 3.

Standard Penetration Tests (SPTs) were undertaken at the depths indicated on the borehole records in accordance with BS EN ISO 22476-3:2005+A1:2011 to obtain a measure of the engineering properties of the proved strata.

Groundwater observations are included on the Borehole Records where appropriate. It should be noted that the addition of water to the borehole as part of the drilling process may have masked the presence of groundwater in the borehole. Where water was added it has been noted on the Borehole Records.

The boreholes were backfilled with bentonite on completion and the surface reinstated with concrete.

5.4 Dynamic Sample Boreholes

Seven (7 No.) Dynamic Sample Boreholes (numbered WS301 to WS305, WS301A and WS302A) were undertaken at the site to depths ranging between 0.45m (WS301) and 5.22m (WS305) below ground level. WS301 and WS302 were both terminated on encountering obstructions and the rig was moved to revised locations WS301A and WS302A, respectively. The work was carried out between 11th and 14th November 2019.

The Dynamic Samples were taken using the superheavy Dynamic Probe apparatus which drives lined steel tubes into the ground in 1.00m lengths. Samples are retrieved in the plastic liners. The retrieved liners were split and the recovered soils described before being sub-sampled into ES, D and B samples as shown on the Borehole Records. The Borehole Records are presented in Appendix 4. The hole is not cased and progress depends on the nature of the strata penetrated.

Standard Penetration Tests (SPTs) were undertaken at the depths indicated on the borehole records in accordance with BS EN ISO 22476-3:2005+A1:2011 to obtain a measure of the engineering properties of the proved strata.

Groundwater observations are included on the Borehole Records where appropriate.

On completion, standpipes were installed in Boreholes WS301A, WS303 and WS305 (see Section 5.5). The other boreholes were backfilled with bentonite and their inspection pits were filled with arisings.

5.5 Trial Pits

Four (4 No.) Trial Pits (numbered TP301 to TP304) were each excavated to a depth of 1.20m below ground level using hand tools on 15th November 2019. This work was supervised on site by a geotechnical / geo-environmental engineer.

The profiles of strata or other features were recorded as excavation proceeded and measurements ground taken from level. Representative samples were taken, where appropriate, for laboratory examination and analysis and in addition, Environmental Soil samples (ES) were recovered at the depths indicated on the Trial Pit Records. Samples were taken directly from excavated materials deposited at the surface. Groundwater observations and trench stability notes are included on the Trial Pit Records, presented in Appendix 5. Photographs of the pits are presented in Appendix 6.

5.6 Instrumentation and Monitoring

Long-term monitoring of the gas and groundwater levels was made possible by the installation of standpipes as follows:

Exploratory Hole	Standpipe Slotted Pipe & Filter Zone (m)
WS301A	1.00 to 2.50
WS303	1.00 to 3.00
WS305	1.00 to 4.00

Monitoring of the gas and groundwater levels at the site commenced on 8th January 2020 with further visits on 17th, 21st and 28th January and 12th February 2020.

On each of the monitoring visits a record of the groundwater level in the standpipes was obtained. In addition to the groundwater levels, the following parameters were measured and recorded in each standpipe using a Geotechnical Instruments GA5000 Gas Analyser:-

- Concentrations (% Vol) of CH₄, O₂, CO₂, along with (ppm) H₂S, CO
- Flow Rate

• Barometric Pressure

The results of the monitoring are presented in Appendix 7.

6.0 LABORATORY TESTING

6.1 Geotechnical

The laboratory testing schedule was specified by the Engineer. Unless otherwise stated, the tests were carried out in Geotechnics Limited's UKAS accredited Laboratory (Testing No. 1365) and were undertaken in accordance with the appropriate Standards as indicated below and on the Laboratory Test Certificate in Appendix 8. Any descriptions, opinions and interpretations are outside the scope of UKAS accreditation.

The tests undertaken can be summarised as follows:-

BS EN ISO 17892-1:2014

6 No. Water Content Determination

BS EN ISO 17892-4:2016

I No. Particle Size Distribution Determination – Sieving

Method

BS EN ISO 17892-8:2018

3 No. Unconsolidated Undrained Triaxial Test

BS EN ISO 17892-12:2018

5 No. Determination of Liquid and Plastic Limits

BS 1377:1990

Test No. Test Description Part 3

5.3, 5.5 5 No. Sulphate Analysis - Water

Extract

9.5 5 No. pH Determination

ISRM Testing Methods

85 No. Point Load Determination

The following testing was carried out at the laboratories of Derwentside Environmental Testing

Services Limited (UKAS Accredited Laboratory, Number 2139).

I No. Asbestos Screen

I No. Soluble Sulphate

I No. pH

The following testing was carried out at the laboratories of MATtest Limited (UKAS Accredited Laboratory, Number 2643).

ASTM Testing Methods

5 No. Uniaxial Compressive Strength

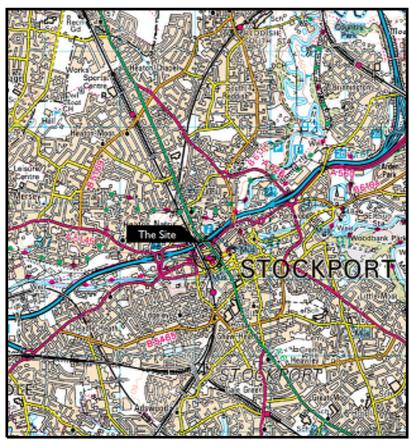
Determination

15 No. Point Load Determination

The results of these tests are also presented in Appendix 8.

6.2 Contamination

Selected samples of soil were tested at the laboratories of Derwentside Environmental Testing Services Limited (UKAS accredited Laboratory Testing No. 2139) for a number of determinands in order to check on potential site contamination. The determinands were specified by the Engineer and are detailed on the results sheets in Appendix 9 together with the test result as well as the test method, accreditation and detection limit.


Signed for and on behalf of Geotechnics Limited.

Principal Engineer

APPENDIX I

Site Location Plan

© Crown Copyright Reserved, OS License Number: 100020449

STOCKPORT INTERCHANGE for Transport for Greater Manchester

APPENDIX 2

Dynamic Sample/Rotary Follow-on Borehole Records

Sampl	e Types	Groundwater		Strata, Continued	
В	Bulk disturbed sample	Water Strike	∇	Mudstone	
BLK	Block sample	Depth Water Rose To	▼		
С	Core sample	Deput Water Rose To			2222
D	Small disturbed sample (tub/jar)	Instrumentation		Siltstone	× × × × × × × × × × × × × × × × × ×
E	Environmental test sample			Metamorphic Rock	****
ES	Environmental soil sample	Seal		Fine Grained	··········
EW	Environmental water sample			Medium Grained	······································
G	Gas sample		ŀ 』 │	r realium Cramed	
L	Liner sample	Filter	:[[-]	Coarse Grained	
LB	Large bulk disturbed sample		11		
Р	Piston sample (PF - failed P sample)		- -	Igneous Rock	
TW	Thin walled push in sample		134	Fine Grained	V V V V V
U	Open Tube - 102mm	Seal	: -1	rino Gramos	7 7 7 7 7
	diameter with blows to		: : :	Medium Grained	+ + + +
	take sample. (UF - failed U sample)				+ + + +
UT	Thin wall open drive tube sampler - 102mm diameter	Strata	Legend	Coarse Grained	* * * * * * * * * * * * * * *
	with blows to take sample. (UTF - failed UT sample)	Made Ground Granular		Backfill Materials	
٧	Vial sample	Grandia.			8
W	Water sample	Made Ground		Arisings	
#	Sample Not Recovered	Cohesive		· ·	
Insitu	Testing / Properties	Topsoil		Bentonite Seal	
CBRP	CBR using TRL probe				Ş
CHP	Constant Head Permeability Test	Cobbles and Boulders		Concrete	ρ - ο
COND	Electrical conductivity	Gravel	• • 5		· •
TC	Thermal Conductivity	G. a. v. o.		Fig. Consul Files	
TR	Thermal Resistivity			Fine Gravel Filter	
HV	Strength from Hand Vane	Sand			3
ICBR	CBR Test			General Fill	
IDEN	Density Test	Silt	× ^		·
IRES	Resistivity Test	SIIL	* * * !		
MEX	CBR using Mexecone Probe Test		x x	Gravel Filter	<u>:</u>
PKR	Packer Permeability Test	Clay			
PLT	Plate Load Test			Grout	(3) (3)
PP	Strength from Pocket Penetrometer	Peat	31/2		
Temp	Temperature		Alia	Sand Filter	50 50 50 50
VHP	Variable Head Permeability Test		Δh_{A}		53
VN w%	Strength from Insitu Vane Water content	Note: Composite soil typ by combined symbols	es shown	Tarmacadam	
		Chalk			
undrain	her strengths from ied triaxial testing)	Citaik		Rotary Core	
S	Standard Penetration Test (SPT)			RQD Rock Quality D (% of intact cor	
С	SPT with cone	Limestone		FRACTURE INDEX Fractures/metro	
N	SPT Result			FRACTURE Maximum	E
-/-	Blows/penetration (mm)	Sandstone		SPACING (m) Minimum NI Non-intact	core
-*/-	after seating drive \ Total blows/penetration			NR No core re	
(mm)	·	Coal		loss (where core recovery is unkno	
()	Extrapolated value	5 0a.		assumed to be at the base of the	

STOCKPORT INTERCHANGE GROUND INVESTIGATION Engineer Borehole BH301 Project No PN194052

National Grid Coordinates 389226.0 390150.7 Client Ground Level 45.37 m OD WSP

lient wsp			L D			Coordi		.7 N				Ground	Level 45		OD
Sampling		Denth	Prope			Strata	a 							Scale 1	T
Depth	Sample Type	Cased & (to Water)	Strength kPa	w %	SPT N (FI)	Descri	otion						Depth	Legend	Level m OD
0.20- 1.00	_ - - в					MADE	GROUND: Red b	ock pav	ing.				G.L. 0.10 0.15		45.37 45.27 45.22
0.20 0.20 0.20	D ES					MADE	GROUND: Black	fine to	coars	e sand.			0.30		45.07
0.20 0.50 0.50	- D ES					MADE	GROUND: Grey	concrete	٠.				Ē		
1.00- 1.20 1.10 1.10 1.20- 1.50	— B - D ES					angu:	GROUND: Brown lar to subangul stone. (Sub bas w 0.60m, greyis	ar fine	to co				1.00		44.37
1.20	_ D	(·			-1-		GROUND: Mediur						1.50		43.8
1.50- 1.70 1.70	- D B ES	(ADDED)			s15	angu:	elly silty find lar to subangul stone and limes	ar fine				one,	1.90		43.4
1.90- 2.20 2.00	— В - D			16			GROUND: Brown					irse	F		
2.00 2.10	ES HV		Av=106			At 1	with some root. 70m, pocket of	angula				to	2.20	× · · · · · ·	43.1
2.20- 2.70 2.20	– B - D						se gravel of co w 1.80m, brown		red.				-	×	
2.20- 2.65 2.50 2.50	D D ES	(ADDED)			S25	Firm very	to stiff light	yellow h some	rish bro	own mot	tled gr	ey	2.70		42.6
2.70- 3.20 3.00 3.10	B D HV		Av=51				um dense light ntly silty fine				led gre	ey	<u> </u>		
3.20- 3.65	_UT -	3.20	120	21 8.7		Firm	to stiff grey	mottled	lorange	e sligh	ntly sar	ndy	3.60	×	41.7
3.65- 3.80 3.80- 4.00	D D						with many root w 3.20m, gradin		ightly.	sandy	clayey	silt.	3.80	×. · · · · ·	41.57
3.80 4.00- 4.11	_ D - #	3.20			s50/31	//	t grey slightly						4.00		41.3
		(ADDED)				Extr	emely weak redo	lish bro	wn fin	e to co	arse gr		<u> </u>		
ore Run/Depth		TCR/SCR		RQD	SPT	Contin	ued by Rotary tech				<u> </u>		<u> </u>		
Core Dia/Time)	Cased	/ Type	Max/Min	%	(FI)	Genera Verv	il weak to weak 1	eddish	Detail Betwee	en 5.00)-6.30m,	no	<u> </u>		
4.00- 5.00 (92mm) 4.73- 4.85	3.20 (ADDED)	98 83 C	0.29 0.04	71	(-/	brown grain	n fine to coars ned SANDSTONE v	e 7ith	recov				-		
5.00- 6.50 (92mm) 5.00- 5.09	- 3.20 (ADDED)	13 7 C	0.09	0	(NR)	(up to the disconnection of th	orizontal black to 10mm thick) ontinuities are zontal to orizontal, very ely to closely	, ,					-		
	_				(15)	medi:	ed, occasionall um spaced, lating, smooth,	-)-7.10m,	no	-		
6.50- 7.50 (92mm) 6.50- 6.59	- 3.20 (ADDED) 3.20		0.05	0	(NR) C50/16	clear	ı.		recov	ery.			 -		
	(ADDED)				(24)						-7.50m		<u> </u>		
					(NI)				recov	ered as	gravel	•	E		
7.50- 8.50 (92mm)	- 3.20 (ADDED)	78 49	0.13 0.02	23	(NR)								<u> </u>		
7.50- 7.59	3.20 (ADDED)				C50/11								<u>E</u>		
7.97- 8.09	-	С			(10)						bhorizo		- -		
8.50- 9.50	3.20	36	0.13	23									 		
(92mm) 8.50- 8.59	(ADDED) 3.20	36	0.05		(8) C50/17								‡		
8.60- 8.70	(ADDED)	С											<u></u>		
			<u></u>										Ė !		
9.50-10.50 (92mm) 9.50- 9.58	3.20 (ADDED) 3.20	35 23	0.07 0.03	0	(NR) C50/9								<u> </u>		
oring	(ADDED)				Progre	ess			Grour	ndwate	er				
Denth Hole		Technique	<u> </u>	Crew	Depth	Depth	Depth to Date	Time	Depth	Depth		in	Depth		rks on
· Dia	Inspect	•		JB/SW	of Hole	Cased	vvatei	.9 08:00	Struck	Cased		Mins	Sealed		dwater inflows
4.00 0.10	Dynamic Rotary	Sample		JB/SW JB/SW	2.65 2.65 10.70 10.70 20.10	2.20 3.20 3.20	DRY 11/11/1 DRY 12/11/1 4.80 12/11/1 4.20 13/11/1 7.40 13/11/1	.9 18:00 .9 08:00 .9 18:00 .9 08:00						masked l	У

Remarks

Inspection pit hand excavated to 1.20m depth and no services were found.

Es sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

Backfill details from base of hole: bentonite seal up to 1.20m, arisings up to 0.20m,

Logged by

1 of 3

23/01/2020

esimbelbeg

Figure

Symbols and abbreviations are explained on the accompanying key sheet.

All dimensions are in metres.

Backfill details from base of hole: bentonite seal up to 1.20m, arisings up to 0.20m, concrete up to ground level. Flush: 4.00-6.50m, Water, 100% returns; 6.50-8.50m, Water, 80% returns; 8.50-10.50m, Water, 70% returns; 10.50-11.50m, Water, 80% returns; 11.50-14.50m, Water, 70% returns; 10.50-15.50m, Water, 50% returns; 15.50-16.50m, Water, 100% returns; 16.50-17.50m, Water, 70% returns; 17.50-20.00m, Water, 60% returns; 20.00-20.50m, Water, 50% returns; 20.50-23.50m, Water, 100% returns; 23.50-25.00m, Water, 50% returns; 20.50-23.50m, Water, 50% returns; 23.50-25.00m, Water, 50% returns; 20.50-23.50m, Water, 50% returns; 23.50-25.00m, Water, 5

Borehole Project No STOCKPORT INTERCHANGE GROUND INVESTIGATION Engineer BH301 PN194052

National Grid Coordinates 389226.0 390150.7 Client Ground Level 45.37 m OD WSP

Drilling		Proper	ties/Sa	mplin	g l	Strata									Scale 1:	50
Core Run/Depth Core Dia/Time)	Depth Cased & (to Water)	Type TCR/SCR%	Length Max/Min	RQD %	SPT N (FI)	Descrip General				Descrip Detail	tion			Depth	Legend	Leve m OD
	_													_		
	<u> </u>				(17)									‡		
0.50-11.50	3 20	75	0.20	56	(NI)							0-10.80 act ban		E		
(92mm)	(ADDED)	70	0.03	30						recove	ered as	gravel		‡		
	(ADDED)				C50/16					discor		ies are		<u> </u>		
0.60-10.70	-	С			(8)						ontal t rizonta	o l, clos	ely	‡		
										to med	dium sp ionally	aced, pundula	lanar ting,	Ē		
1.50-13.00 (92mm)	- 3.20 (ADDED)	92 89	0.29 0.06	80						smooth	ı, cleā			‡		
1.79-11.90		C								subhor	rizonta	l black 5mm th		‡		
	E				(5)					Betwee	en 12.1	0-12.30	m,	F		
					(5)							l black 5mm th		<u> </u>		
	_													<u> </u>		
	-													‡		
3.00-14.50	- 3.20	23	0.11	7								0-20.50 act ban				
(92mm)	(ADDED)	17	0.04	•						recove		gravel		‡		
	_									discor	ntinuit	ies are		Ļ		
	_									subhor		l, extr		Ė		
	L											ery clo ar, rou		<u>L</u>		
4.22-14.38	_	С			(14)					clean	•			‡		
	-													‡		
4.50-15.50 (92mm)	3.20 (ADDED)	7 7	0.07	0										Ē		
4.50-14.60	3.20	,	0.07		C50/21									‡		
	(ADDED)													<u> </u>		
	_													Ē		
5.50-16.50	- 3.20	33	0.03	0										‡		
(92mm)	(ADDED)	3	0.01											<u> </u>		
5.50-15.59	_ - 3.20				(>30) C50/19									E		
2000	(ADDED)				030, 23									<u> </u>		
6 50 17 50	- 2 20	43	0.12	12										<u> </u>		
6.50-17.50 (92mm)	- 3.20 (ADDED)	43 22	0.13 0.01	13										Ē		
6.70-16.82		C			(12)									L		
6.50-16.61	- 3.20 (ADDED)				C50/32									‡		
														Ē		
7.50-18.50 (92mm)	3.20 (ADDED)	9	0.06 0.01	0										<u>t</u>		
(- mmi /	-		****		(11)									‡		
7.50-17.59					C50/13									E		
	(ADDED)													E		
8.50-19.50	3.20	14	0.01	0										‡		
8.50-18.60	(ADDED) 3.20	0	0.01		C50/21									Ė		
	(ADDED)													<u> </u>		
	<u> </u>				(>30)									‡		
9.50-20.00	- 3.20	76	0.08	0										‡		
(92mm)	(ADDED)	28	0.08	U	GEO /00									E		
	3.20 (ADDED)	_			C50/29							0-20.50	m, no	<u> </u>		
9.90-19.99 rilling		С			Progre	ess				Grour	ery. ndwate	r				
enth Hole	-	Technique)	Crew	Depth	Depth		Date	Time	Depth	Depth	Rose to	in	Depth	Remar	
Dia Dia		.440			of Hole 20.10	Cased 3.20	Water 8.30	14/11/19	08:00	Struck	Cased		Mins	Sealed	Ground	awater
					25.10			14/11/19								
	1				1			1			I	1				

Symbols and abbreviations are explained on the accompanying key sheet. All dimensions are in metres.

Logged in accordance with BS5930:2015

Figure

2 of 3 23/01/2020

Borehole Project No STOCKPORT INTERCHANGE GROUND INVESTIGATION Engineer BH301 PN194052 National Grid Coordinates 389226.0 390150.7 E N Client Ground Level 45.37 m OD

Client wsp						Coordinates	390150.7	N	Ground	Level 4	5.37 M	
Drilling	Donath		rties/Sa		_	Strata			December	П	Scale 1	1
Core Run/Dept (Core Dia/Time	h Cased &	Type TCR/SCR%	Length Max/Min	RQD %	SPT N (FI)	Description General			Description Detail	Depth	Legend	Level m OD
•	Ė				/							
20.00-20.50 (92mm)	3.20 (ADDED	0			(NR)					ļ.		
20.00-20.10					C50/27				Below 20.50m, discontinuities are	<u> </u>		
20.50-21.00	<u> </u>	84	0.21	42					horizontal to subhorizontal, closely	ļ.		
(92mm) 20.74-20.82	(ADDED		0.02		(5)				spaced occasionally very closely spaced, planar,	F		}
20.50-20.58					C50/9				rough, clean. Some extremely weak bands.	ļ.		
21.00-22.00		100	0.20	68					Between 21.70-22.00m,	<u> </u>		
(92mm) 21.00-21.20	(ADDED		0.02						sand infill in discontinuities.	‡		
22.00-23.50	_	50	0.17	18	(NI)				Between 22.00-22.70m, no recovery.	F		
(92mm) 22.00-22.10	(ADDED		0.04		(NR)				recovery.	ļ.		
22.00-22.10	<u> </u>								Below 22.70m,	Ē		
	_								discontinuities are horizontal, very closely	‡		
	E				(10)				to closely spaced, undulating, rough,	E		
	Ė								clean.	ļ.		
23.50-25.00	- 3.20	54	0.29	38					Between 23.50-24.15m, no recovery.	‡		
(92mm) 23.50-23.61	(ADDED		0.04		(NR) C50/30				1000.017.	‡		
23.78-23.89	(ADDED	C								F		
	-				(12)				Below 24.50m,	 		
24.50-24.68	· E	С							discontinuities are horizontal, closely to	<u> </u>		
24.87-25.00	,	С			(4)				medium spaced, planar, rough, clean.	Ė		
25.00-25.10					C50/20					25.10		20.2
	(ADDED)				End of	Borehole			Ė		
	-									F		
	Ė									Ė		
	-									-		
	Ė									Ė		
	-									F		
	Ē									Ė		
	-									-		
	_									Ē		
	_									Ę		
	-									‡		
	F									<u> </u>		
	Ė									Ė		
	F									 		
	Ė									Ė		
	<u> </u>									 		
	Ė									Ė		
	F									<u> </u>		
	Ė									Ė		
	F									-		
Drilling	+	•	*		Progre		_1		Groundwater	D- "		
Depth Hole Dia		Technique	e	Crew	Depth of Hole	Depth Depth to Cased Water	Date	Time	Depth Depth Rose to Mins	Depth Sealed		rks on dwater
]							
Remarks T	9				•	 			+ + +	Logg	ned by	PC

Remarks AGS

Symbols and abbreviations are explained on the accompanying key sheet. All dimensions are in metres.

Logged in accordance with BS5930:2015

Logged by

Figure

3 of 3 23/01/2020

PC

TRIAL PIT RECORD

Inspection Pit

STOCKPORT INTERCHANGE GROUND INVESTIGATION Engineer Trial Pit **BH302** WSP

Project No PN194052

National Grid Coordinates 389218.9 E 390142.5 N Client Ground Level 45.64 m OD WSP

lient ws				Coordinates 390142.5 N	Ground Leve		
Samples			n 5 /:	Strata	D	Scale 1	Level
Depth	Туре	No	n Results	Description	Depth	Legend	m OD
0.00- 0. 0.20	30 B ES			MADE GROUND: Black tarmacadam.	G.L. 0.10		45.6 45.5
0.30- 0. 0.50				MADE GROUND: Pinkish brown sandy slightly clayey angular to subangular fine to coarse gravel of limestone and sandstone. (Sub base).	0.30		45.3 45.0
				Below 0.15m, greyish brown.	E I		
				At 0.30m, blue geotextile.	Æ		
				MADE GROUND: Light greyish brown sandy slightly clayey angular to subangular fine to coarse gravel or limestone and sandstone. (Sub base).	- - -		
				At 0.60m, concrete obstruction.			
				End of Excavation			
					E		
					<u>-</u>		
					-		
					-		
					-		
					-		
					_		
					-		
					-		
					-		
					-		
					-		
					-		
					-		
					<u> </u>		
					-		
					_		
					-		
					-		
					-		
					-		
					-		
					-		
					_		
					-		
					_		
					_		
xcavatio	n			Groundwater			
	nd tools	_		Width (B) 0.40 Depth Depth Details			
. 114	/11/2019			Length (C) 0.40 Observed of Pit None encour	tered.		
		ina	avation.	Date Backfilled 11/11/2019	rcerea.		
y st	abie dur	rng exc	avation.				

Symbols and abbreviations are explained on the accompanying key sheet.

All dimensions are in metres.

Remarks Inspection pit hand excavated to 0.60m depth and no services were found.

Symbols and

Inspection Pit terminated at 0.60m depth on encountering a concrete obstruction - rig was

Logged in accordance with BS5930:2015

moved to BH302A.
Backfill details from base of hole: arisings up to ground level.

Figure 1 of 1 23/01/2020 وعماعطسانع

STOCKPORT INTERCHANGE GROUND INVESTIGATION Engineer Borehole **BH302A** Project No PN194052

National Grid Coordinates 389219.8 390145.1 Client Ground Level 45.47 m OD WSP

Sampling Depth Depth Sample Type (to Water) O.20- 0.80 O.20- 0.80 O.50 O.50 O.80- 1.00 O.80- 1.		Lovol
MADE GROUND: Red block paving. 0.20- 0.80 B 0.20 D 0.50 ES 0.50 ES 0.80- 1.00 B 1.00- 1.20 B 1.00 D 1.00 ES 1.10 D 1.20 ES 1.10 D 1.20 L 1.20 L 1.60 B 1.20- 1.65 D 1.20- 1.80 B S8 MADE GROUND: Grey very sandy angular to subangular medium to coarse gravel of limestone. (Sub base). 0.80- 1.00 ES 1.10 D 1.20- 1.60 B 1.20- 1.65 D 1.60- 1.80 B S8		45.47 45.37 45.27
0.20		
0.50 0.80-1.00 B 1.00-1.20 B 1.00 D 1.00 ES 1.10 D 1.20-1.65 D 1.20-1.65 D 1.60-1.80 B S8 MADE GROUND: Grey very sandy angular to subangular medium to coarse gravel of limestone. (Sub base). 0.8 MADE GROUND: Loose brown mottled red gravelly fine to medium sand. Gravel is angular to subangular fine and brick fragments. Below 1.00m, sand includes ash.		44.67
0.80-1.00 B 1.00-1.20 B 1.00-1.20 B 1.00 C 1.00 C 1.00 C 1.00 ES 1.10 C 1.20-1.60 B 1.20-1.65 D 1.60-1.80 B 1.80 B MADE GROUND: Loose brown mottled red gravelly fine to medium sand. Gravel is angular to subangular fine to coarse of sandstone, limestone, concrete and brick fragments. Below 1.00m, sand includes ash.		44.6
	n	
1.70 ES 1.90-2.20 B Firm grey mottled orange slightly gravelly sandy	0 0	43.57
2.00 ES CLAY with some rootlets. Gravel is subangular to subrounded fine to medium of siltstone and sandstone. Elevant 2.20 74 8.6 Subrounded fine to medium of siltstone and sandstone. Elevant 2.20m, grading to slightly gravelly sandy clayey silt.		
2.80- 3.00 D Grey mottled orange clayey fine to medium SAND.		42.6
3.00 ES Stiff to very stiff greyish brown mottled orange	0	42.37
slightly sandy CLAY with some decayed rootlets. Below 3.40m, grey mottled orange.		
3.60		41.67
Core Run/Depth TCR/SCR Length RQD SPT Continued by Rotary techniques		
Core Dia/Time) - Cased / Type Max/Min % (FI) General Detail 4.2	5	41.22
3.80- 4.80		
4.80- 5.80 3.80 0 (NR)		
(92mm) (ADDED) 4.80- 4.89 3.80 C50/17 Weak reddish brown fine to coarse grained SANDSTONE. Discontinuities are horizontal and subhorizontal, closely		
5.80- 6.30		
5.80- 5.90 - 3.80 C50/22 infill. 6.30- 6.80 3.80 0		
(92mm) (ADDED)		
6.30 - 6.41 3.80 C50/31 End of Borehole C50/26	D	38.5
E		
<u> </u>		
<u> </u>		
<u> </u>		
F		
Foring Progress Groundwater		
Hole Tabaiana Com Depth		arks on
1.20 0.40 Inspection Pit JB/SW G.L. 15/11/19 08:00	Possibl	ndwater e inflowa
3.80 0.10 Dynamic Sampler JB/SW 6.90 6.00 4.20 15/11/19 18:00 JB/SW JB/SW	masked	

Remarks

Inspection pit hand excavated to 1.20m depth and no services were found.

Ess sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

Borehole terminated at 6.90m depth due to poor core recovery - the rig was moved to BH302B.

Backfill details from base of hole: bentonite seal up to 0.20m, concrete up to ground level.

Figure

Flush: 3.80-6.80m, Water, 100% return.

Logged by

1 of 1

23/01/2020

geolectimies

abbreviations are explained on the accompanying key sheet.

All dimensions Logged in accordance with BS5930:2015 are in metres.

Symbols and

STOCKPORT INTERCHANGE GROUND INVESTIGATION Engineer Borehole **BH302B** Project No PN194052

National Grid Coordinates 389219.2 390145.7 Client Ground Level 45.47 m OD WSP

Sampli	ing			Prope	rties		Strata								Scale 1	:50
Depth		Sample Type	Depth Cased & (to Water)	Strength kPa	w %	SPT N (FI)	Description							Depth	Legend	Level m OD
		-					\ MADE GROUND	: Red blo	ock pav	ing.			,	G.L.	,	45.4 45.3
0.20-	0.80	В					MADE GROUND						/	0.20		45.2
		-					MADE GROUND	: Light o	rey ve	ry sand	ly angu	lar to	/	F		
0.80-	1.20	В					subangular (Sub base).	medium to					e. /	0.80		44.6
		-					MADE GROUND	: Medium	dense	dark bi	own mo	ttled r	/ ed	-		
	1.70 1.65	B D	(DRY)			s15	very gravel with a low subrounded ash and bri	cobble co	ontent. coarse	Grave.	l is su	bangula	r to	<u></u>		
1.70- 1.70	2.00	- в - р					MADE GROUND	e Firm br	rown sl	ightly	gravel	lv sand	v	1.70		43.7
2.00-	2.20	D UT		85	12		clay. Grave coarse of s fragments.	l is angu	ılar to	subro	inded f	ine to	_	2.00	· · · · · · · · · · · · · · · · · · ·	43.4
		Ė					Firm grey m							Ļ		
2.60-		- D					CLAY with s to subround						ular	Ē	0.00	
2.80-	3.10 3.25	_ D _ D					quartzite. Below 2.20m	, grading	g to sl	ightly	gravel	ly sand	У	2.80		42.6
	3.25 3.40	- В	(DRY)			S17	clayey silt	•						3.10		42.3
3.30 3.30		D _HV		Av=79	21		Medium dens medium SAND		ttled	orange	clayey	fine t	o	Ē		}
3.40- 3.60	4.00	- B - D					Stiff light	brown mo	ottled	orange	slight	ly sand		‡		
3.70 3.80-	4.00	HV D		Av=63			CLAY with s Below 3.40m	ome decay	ed roo	tlets.	_	-	-	4.00		41.4
3.80-	3.89	-	(DRY)			S50/15								4.25		41.2
		Depth Cased	TCR/SCR / Type	Length Max/Min	RQD %	SPT (FI)	Continued by R General	otary techn	iques	Detail						
4 00-	4.50	4.00	100	0.15	76	(8)	Extremely w							F		
(102		(ADDED)		0.05	70	(NI)	grained SAN (Recovered	DSTONE.						‡		
	5.50	- 4.00	58	0.13	13		gravel).	as sailu e	ina					E		
(102	mm)	(ADDED)		0.13	13		Extremely w					-4.90m,		‡		
	4.65 4.78	F	C				to coarse g	rained			n 5.50	-7.00m,	no	F		
	6.50	4.00	0			(NR)	clasts of q	uartzite.		recove	ery.			‡		}
(102 -5.50		(ADDED) - 4.00 (ADDED)				C50/19		to						F		
		(ADDED)					subhorizont closely to	closely						<u> </u>		
	7.00	4.00	0				spaced, pla undulating,	rough wi						F		
(102 6.50-		(ADDED)				C50/23			L					[
		(ADDED)					thick).			non-i		-9.20m,		<u> </u>		
(102		(ADDED)	0											Ē		
7.00-	7.10	_ 4.00 (ADDED)				C50/29								†		
		Ē												Ē		
	9.00	7.00	0			(NI)								-		
(102 -8.00		(ADDED) 7.00				C50/16								Ė		
		(ADDED)												<u> </u>		
		-												‡		
9.00-	10.00	- 7.00	75	0.22	22					Below	9.20m,			F]
(102 9.00-		(ADDED)	44	0.05		C50/22						ies are edium s		‡		
		(ADDED)				(16)				with a	some sa L infil	nd and	•	Ē		
9.74-	9.90	-	С			(3)								‡		
9.90-	10.00	-	С			,								<u> </u>		
oring						Progre	ess				idwate	ſ				
epth	Hole Dia		Techniqu	е	Crew	Depth of Hole	Depth Depth to Cased Water	Date	Time	Depth Struck	Depth Cased	Rose to	in Mins	Depth Sealed		rks on dwater
1.20 4.00	0.40	Inspect			JB/SW JB/SW	G.L. 2.20	DD	18/11/19							Possible	
25.00		Dynamic Rotary		≘T.	JB/SW JB/SW	2.20	DRY	18/11/19	08:00						masked b	
						7.20 7.20	4.00 ADDED	19/11/19	08:00							
	ks 🖳	Tnancat	ion ni	- hand		16.00	$7.00 \mid 7.20$ 1.20m depth a jar, 2 x 258m	20/11/19						 	<u> </u>	

Inspection pit hand excavated to 1.20m depth and no services were found.

Essemple = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

Backfill details from base of hole: bentonite seal up to 0.20m, concrete up to ground level.

Flush: 4.00-5.50m, Water, 100% returns; 5.50-7.00m, Water, 60% returns; 7.00-9.00m, Water,

70% returns; 9.00-10.00m, Water, 60% returns; 10.00-11.00m, Water, 70% returns;

11.00-12.00m, Water, 80% returns; 12.00-16.00m, Water, 70% returns; 16.00-19.50m, Water, 80% returns; 19.50-20.50m, Water, 70% returns; 20.50-25.00m, Water, 100% return. Figure

1 of 3

23/01/2020

gedednies

explained on the accompanying key sheet.

All dimensions Logged in accordance with BS5930:2015 are in metres.

Symbols and

abbreviations are

BOREHOLE RECORD - Dynamic Sampler and Rotary

Project STOCKPORT INTERCHANGE GROUND Engineer WSP Borehole Project No PN194052

Client WSP National Grid 389219.2 E Ground Level 45.47 m OD

Drilling	Prope	rties/Sa	mpling	n [Strata	390145.7					ouriu	Level 4:	Scale 1:	
Core Run/Depth Cased 8 (Core Dia/Time) Depth (to Wate	Type	Length	ROD	SPT N (FI)	Description General			Descrip Detail	tion			Depth	Legend	Level m OD
10.00-11.00 - 7.00		0.35	35											
(102mm) (ADDED 10.00-10.09 7.00) 43	0.35	35	(NR) C50/15								Į.		
(ADDED				(10)								Ė		
.0.64-10.80	С			(10)								Į.		
1.00-12.00 - 7.00	90	0.27	38	(3)				Below to wea	11.00m,	very v	eak	Ė		
(102mm) (ADDED .1.00-11.08 7.00	70	0.04	36	C50/9					n 11.45-	11 60-		<u> </u>		
(ADDED				(11)				non-in		-11.601	۱,	Ė		
-				(11)								<u> </u>		
2.00-13.00 - 7.00		0.18	59	(5)					12.20m,			<u> </u>		
(102mm) (ADDED .2.00-12.13	C	0.02		(48)				extrem	tinuitie ely clos			Ē		
7.00 – 7.00 (ADDED)			C50/13					12.45m,			F		
.2.70-12.83	С			(10)					tinuitie y to clo		very	<u> </u>		
.3.00-14.50 - 7.00 (102mm) (ADDED		0.21 0.05	40	(NR)				spaced	•			F		
.3.43-13.52	С			(14)								<u> </u>		
E F												<u> </u>		
14.00-14.20	С			(4)								_		
									14.40m, ng on fr			<u> </u>		
.4.50-16.00 - 7.00 (102mm) (ADDED		0.17 0.03	30	(10)				surfac		accure	•	F		
15.00-15.10	С			(28)								<u> </u>		
15.28-15.45	С			(7)										
- 15.73-15.87	С			(14)				Potwoo	n 15.85-	15 05		<u> </u>		
<u>-</u>				(>50)				band c	of very wone.	<i>r</i> eak				
16.00-17.50 - 7.50 (102mm) (ADDED								Between non-in	n 15.90- tact.	-17.50n	1,	Ė		
-												<u> </u>		
<u> </u>												Ī.		
-				(NI)								_		
Ę				(NI)								Į.		
7.50-18.50 - 7.50	22	0.08	0	-								<u> </u>		
(102mm) (ADDED 7.50-17.60 7.50) 15	0.05	Ü	C50/21								Ę.		
(ADDED				C30/21								<u> </u>		
Ę								Betwee	n 18.30-	-18.50n	١,	Į.		
8.40-18.50	С			(20)					n 18.50-	-19.50n	١,	Ė		
.8.50-19.50 - 7.50 (102mm) (ADDED	0							21				<u> </u>		
L8.50-18.60 - 7.50				(NI) C50/24								F		
(ADDED	1							Between	n 19.50-	.19 00-	n no	‡		
19.50-20.50 - 7.50 (102mm) (ADDED	60) 25	0.06 0.03	0	(NR)				recove		19.3UI	., 110	<u> </u>		
L9.50-19.57 L9.50-19.59 7.50	С			C50/17								<u> </u>		
Orilling (ADDED	יו			Progre	ess		İ	Groun	dwater					
Pepth Hole Dia	Technique	е	Crew	Depth of Hole	Depth Depth to Cased Water	Date	Time	Depth Struck	B 11	ose to	in Mins	Depth Sealed	Remar Ground	
				16.00	7.00 8.20	21/11/19 21/11/19							3.0411	
				20.70	7.50 3.10	22/11/19	08:00							
				25.00	25.00 4.20	22/11/19								

Remarks Remarks

Symbols and abbreviations are explained on the accompanying key sheet. All dimensions are in metres.

Logged in accordance with BS5930:2015

Logged by

Figure

2 of 3 23/01/2020

PC

BOREHOLE RECORD - Dynamic Sampler and Rotary Engineer Borehole STOCKPORT INTERCHANGE GROUND INVESTIGATION **BH302B** Project No PN194052 389219.2 390145.7 National Grid Client Coordinates Ground Level 45.47 m OD WSP Drilling Properties/Sampling Strata Scale 1:50 Type Length Depth Cased & (to Water) Description Description Core Run/Depth Depth Legend TCR/SCR% Max/Min (FI) General Detail m OD (Core Dia/Time) (>50) 20.47-20.50 C Between 20.50-23.50m, non-intact 20.50-21.50 (102mm) 7.50 0 (ADDED) 20.50-20.59 _ 7.50 (ADDED) C50/17 21.50-22.50 - 21.50 (102mm) (ADDED) 0 (NI) C50/33 21.50-21.61 - 21.50 (ADDED) 22.50 (ADDED) 22.50-23.50 (102mm) 22.50 (ADDED) 22.50-22.60 C50/28 23.50 (ADDED) 23.50-25.00 (102mm) 23.50-23.58 23.50-23.61 0.20 0.02 34 (13) Below 23.80m, 65 discontinuities are very 23.50 C50/3 closely to closely spaced.
Between 24.10-24.35m,
vertical discontinuity, (ADDED) (6) 23.84-23.93 C 24.00-24.13 (6) stepped, rough. Below 24.60m, extremely weak. Some sand and (NI) gravel infill in discontinuities. (>50) 25.00 20.47 25.00-25.10 25.00 C50/24 End of Borehole (ADDED Drilling Progress Groundwater Depth | Depth | Depth to Depth Depth Remarks on Date Time Depth Technique Crew Rose to Cased Water Cased Mins Sealed Dia of Hole Struck Groundwater Remarks AGS Logged by Symbols and Figure 3 of 3 abbreviations are 23/01/2020

esimbelbeg

abbreviations are explained on the accompanying key sheet. All dimensions

are in metres.

Logged in accordance with BS5930:2015

Fieldwork Results - SPT Results Summary

Project STOCKPORT INTERCHANGE GROUND

INVESTIGATION

Client WSP

Project No PN194052

Hole	Depth	Level	Type	SWP	Seatin	g Drive		Test	Drive		SPT 'N'		Un			SPT	-
	m bgl	m OD	.,,,,,	(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10) 2		'N' 30	40	50
BH301	1.20	44.17	S	-	7	5	5	4	3	3	15		*	 	i !	i I I	1
BH301	2.20	43.17	S	-	7	6	7	5	7	6	25	1		*	1	1	1
BH301	4.00	41.37	S	-	25		50/31				50/31	1		 	I I		>
BH301	6.50	38.87	С	-	25		50/16				50/16	1		 	 	 	<u> </u>
BH301	7.50	37.87	С	-	25		50/11				50/11	1		 	1	 	<u> </u>
BH301	8.50	36.87	С	-	25		50/17				50/17	-		<u> </u>	1	 	>
BH301	9.50	35.87	С	-	25		50/9				50/9			<u> </u>	-	i	>
BH301	10.50	34.87	С	-	25		50/16				50/16	-			1	-	>
BH301	14.50	30.87	С	-	25		50/21				50/21	1			1		>
BH301	15.50	29.87	С	-	25		50/19				50/19	1		1	1	1	>
BH301	16.50	28.87	С	-	25		50/32				50/32	1		 	1	1	>
BH301	17.50	27.87	С	-	25		50/13				50/13	1		 	1	-	<u> </u>
BH301	18.50	26.87	С	-	25		50/21				50/21	1		<u> </u>	1	<u> </u>	<u> </u>
BH301	19.50	25.87	С	-	25		50/29				50/29	-		 	1	İ	>
BH301	20.00	25.37	С	-	25		50/27				50/27	-		 	<u>;</u>	i	-
BH301	20.50	24.87	С	-	25		50/9				50/9	1		1	1	1	>
BH301	23.50	21.87	С	-	25		50/30				50/30	1		1	1	1	>
BH301	25.00	20.37	С	-	25		50/20				50/20			1	1		>
Driller	ı	<u> </u>	Jame	s Boyd			Remark					<u> </u>				0.5	10.5
Hammer No) .		6457	(6)			Equipm 22476-		ked and c	alibration	carried out in	n acco	rdan	ce w	ith B	S EN	ISO
Energy Rati	o, Er (%)		66.00														
Calibration	Date		01/08	/2019													

-/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

L - Split Spoon with liner used

Fieldwork Results - SPT Results Summary

Project STOCKPORT INTERCHANGE GROUND

INVESTIGATION

Client WSP

Project No PN194052

Hole	Depth	Level	Туре	SWP	Seating Drive		Test Drive				SPT 'N'	Uncorrected SPT				
	m bgl	m OD		(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10	20	'N'	40	50
3H302A	1.20	44.27	s	-	4	4	2	3	2	1	8	*	 	 	 	
3H302A	3.80	41.67	S	-	1	1	2	13	16	17	48		-	-	1	*
3H302A	4.80	40.67	С	-	25		50/17				50/17	!	-	!	-	>
3H302A	5.80	39.67	С	-	25		50/22				50/22	1	-	-		>
3H302A	6.30	39.17	С	-	25		50/31				50/31		i	1	-	<u> </u>
3H302A	6.80	38.67	С	-	25		50/26				50/26	i	i	i	1	>
Driller			James Boyd			Remar Equipm		ked and c	alibration	carried out i	n accord	lance	with B	S EN	ISC	
Hammer No.			6457 (6)			22476-								•		
Energy Ratio			66.00													
Calibration Date			01/08/2019													

-/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

L - Split Spoon with liner used

Fieldwork Results - SPT Results Summary

Project STOCKPORT INTERCHANGE GROUND

INVESTIGATION

Client WSP

Project No PN194052

Hole	Depth	Level	Туре	SWP	Seating Drive		Test Drive			SPT 'N'	Uncorrected SPT					
11010	m bgl	m OD	, ypc	(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10	20	'N' 30	40	50
3H302B	1.20	44.27	S	-	4	4	4	5	3	3	15		k	 	 	1
BH302B	2.80	42.67	S	-	5	4	3	4	4	6	17	1	*	-		1
BH302B	3.80	41.67	S	-	25		50/15				50/15	1		-	!	>
BH302B	5.50	39.97	С	-	25		50/19				50/19	-				>
BH302B	6.50	38.97	С	-	25		50/23				50/23		1		<u> </u>	<u> </u>
3H302B	7.00	38.47	С	-	25		50/29				50/29	<u> </u>	i	i	i	>
3H302B	8.00	37.47	С	-	25		50/16				50/16	1	1		1	>
3H302B	9.00	36.47	С	-	25		50/22				50/22		1	i	i	>
3H302B	10.00	35.47	С	-	25		50/15				50/15	1	1	-		>
BH302B	11.00	34.47	С	-	25		50/9				50/9	1				>
BH302B	12.00	33.47	С	-	25		50/13				50/13	1		!		-
BH302B	17.50	27.97	С	-	25		50/21				50/21	-				<u> </u>
BH302B	18.50	26.97	С	-	25		50/24				50/24			- 		<u> </u>
BH302B	19.50	25.97	С	-	25		50/17				50/17	1	<u> </u>	i	i	>
3H302B	20.50	24.97	С	-	25		50/17				50/17		- 		i	<u> </u>
													 			-
Driller			James Boyd			Remar Equipm		ked and c	alibration	carried out ir	n accord	dance	with B	S EN	ISC	
Hammer No			6457				22476-									
Energy Rati			66.00													
Calibration	Date		01/08	01/08/2019												

-/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

L - Split Spoon with liner used

APPENDIX 3

Rock Core Photographs

Project Number: PN194052

BH301 1.20m - 3.20m

BH301 4.00m - 8.50m

Project Number: PN194052

BH301 8.50m - 12.50m

BH301 12.50m - 20.50m

Project Number: PN194052

BH301 20.50m - 23.00m

BH301 23.00m - 25.00m

Project Number: PN194052

BH302A 1.20m - 3.80m

BH302A 3.80m - 4.80m

Project Number: PN194052

BH302B 1.20m - 3.80m

BH302B 4.00m - 9.00m

Project Number: PN194052

BH302B 9.00m - II.00m

BH302B II.00m - I3.00m

Project Number: PN194052

BH302B 13.00m - 15.00m

BH302B 15.00m - 19.50m

Project Number: PN 194052

BH302B 19.50m - 24.00m

BH302B 24.00m - 25.00m

APPENDIX 4

Dynamic Sample Borehole Records

Sampl	e Types	Groundwater		Strata, Continued					
В	Bulk disturbed sample	Water Strike	∇	Mudstone					
BLK	Block sample	Depth Water Rose To	▼						
С	Core sample	Deput Water Rose To			2222				
D	Small disturbed sample (tub/jar)	Instrumentation		Siltstone	× × × × × × × × × × × × × × × × × ×				
E	Environmental test sample			Metamorphic Rock	****				
ES	Environmental soil sample	Seal		Fine Grained	··········				
EW	Environmental water sample			Medium Grained	······································				
G	Gas sample		ŀ 』 │	r realium Cramed					
L	Liner sample	Filter	:[[-]	Coarse Grained					
LB	Large bulk disturbed sample		11						
Р	Piston sample (PF - failed P sample)		- -	Igneous Rock					
TW	Thin walled push in sample		134	Fine Grained	V V V V V				
U	Open Tube - 102mm	Seal	: -1	rino Gramos	7 7 7 7 7				
	diameter with blows to		: : :	Medium Grained	+ + + +				
	take sample. (UF - failed U sample)				+ + + +				
UT	Thin wall open drive tube sampler - 102mm diameter	Strata	Legend	Coarse Grained	* * * * * * * * * * * * * *				
	with blows to take sample. (UTF - failed UT sample)	Made Ground Granular		Backfill Materials					
V	Vial sample	Grandia.			8				
W	Water sample	Made Ground		Arisings					
#	Sample Not Recovered	Cohesive		· ·					
Insitu	Testing / Properties	Topsoil		Bentonite Seal					
CBRP	CBR using TRL probe				Ş				
CHP	Constant Head Permeability Test	Cobbles and Boulders		Concrete	ρ - ο				
COND	Electrical conductivity	Gravel	• • 5		· •				
TC	Thermal Conductivity	G. a. v. o.		Fig. Count Files					
TR	Thermal Resistivity			Fine Gravel Filter					
HV	Strength from Hand Vane	Sand			3				
ICBR	CBR Test			General Fill					
IDEN	Density Test	Silt	× ^		·				
IRES	Resistivity Test	SIIL	* * * !						
MEX	CBR using Mexecone Probe Test		x x	Gravel Filter	<u>:</u>				
PKR	Packer Permeability Test	Clay							
PLT	Plate Load Test			Grout	(3) (3)				
PP	Strength from Pocket Penetrometer	Peat	31/2						
Temp	Temperature		Alta	Sand Filter	59. 538 57.2				
VHP	Variable Head Permeability Test		Δh_{A}		5.3				
VN w%	Strength from Insitu Vane Water content	Note: Composite soil typ by combined symbols	es shown	Tarmacadam	<u> </u>				
		Chalk							
undrain	her strengths from led triaxial testing)	Citaik		Rotary Core					
S	Standard Penetration Test (SPT)			RQD Rock Quality D (% of intact cor					
С	SPT with cone	Limestone		FRACTURE INDEX Fractures/metro					
N	SPT Result			FRACTURE Maximum	5				
-/-	Blows/penetration (mm)	Sandstone		SPACING (m) Minimum NI Non-intact	core				
-*/-	after seating drive \ Total blows/penetration			NR No core re					
(mm)	·	Coal		loss (where core recovery is unkno					
()	Extrapolated value	5 0a.		assumed to be at the base of the					

BOREHOLE RECORD - Dynamic Sampler Engineer Borehole STOCKPORT INTERCHANGE GROUND INVESTIGATION WS301 Project No PN194052 National Grid 389178.0 Client Ground Level 42.95 m OD Coordinates WSP 390264.8 Sampling **Properties** Strata Scale 1:50 Sample Strength Depth Description Depth Legend Type kPa % m OD 42.95 G.L. Grass over TOPSOIL: Dark brown slightly gravelly clayey fine to coarse sand with some rootlets. Gravel is angular to subangular fine to medium of 0.10 42.85 0.20 ES 0.40 0.40 ES ceramic, glass and brick fragments. 0.45 42.50 MADE GROUND: Dark brown gravelly slightly clayey fine to coarse sand. Gravel is angular to subangular fine to coarse of sandstone, slag, concrete and brick fragments. MADE GROUND: Greyish yellow concrete. At 0.45m, obstruction. End of Borehole Boring Progress Groundwater Depth Remarks on Depth Technique Crew Date Time Rose to Water Mins of Hole Cased Struck Cased Sealed Groundwater 0.40 Inspection Pit GM/MM 11/11/19 08:00 G.L. None DRY 11/11/19 0.45 18:00 encountered. Inspection pit hand excavated to 0.45m depth and no services were found.

Es sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

Inspection Pit terminated at 0.45m depth on encountering an obstruction - the rig was moved Remarks Figure

Symbols and to WS301A abbreviations are Backfill details from base of hole: arisings up to ground level.

explained on the accompanying key sheet. All dimensions

are in metres.

Logged in accordance with BS5930:2015

1 of 1 23/01/2020

BOREHOLE RECORD -Dynamic Sampler

STOCKPORT INTERCHANGE GROUND INVESTIGATION Engineer Borehole WS301A Project No PN194052

National Grid Coordinates 389178.5 390265.4 Client Ground Level 42.91 m OD WSP

Depth Sample Type Cased & Strength (to Water) SPT N Description Depth Lege Cased & (to Water) Strength (to Water) SPT N MPa O.20	1:50 nd Level m OD 42.5 42.5
Grass over TOPSOIL: Dark brown slightly gravelly clayey fine to coarse sand with some rootlets. O.20 ES CONTROL OF CONTR	m OD 42.5 42.8 42.5
Grass over TOPSOIL: Dark brown slightly gravelly clayey fine to coarse sand with some rootlets. Gravel is angular to subangular fine to coarse of concrete and brick fragments. MADE GROUND: Dark brown mottled orange gravelly slightly clayey fine to coarse sand with a low cobble content of bricks. Gravel is angular to subangular fine to coarse of concrete and brick fragments. Sand includes ash. 1.20	42.5
slightly clayey fine to coarse sand with a low cobble content of bricks. Gravel is angular to subangular fine to coarse of concrete and brick fragments. Sand includes ash. 1.20	41.5
fine to coarse gravel of limestone. Between 0.40-1.20m, concrete foundation encountered - inspection pit extended 0.20m to east. MADE GROUND: Very loose to loose dark brown mottled - orange gravelly slightly clayey fine to coarse sand. Gravel is angular to subangular fine to coarse of clinker, slag, coal, concrete and brick fragments. Sand includes ash. Below 1.80m, low cobble content of bricks.	
sand. Gravel is angular to subangular fine to coarse of clinker, slag, coal, concrete and brick fragments. Sand includes ash. Below 1.80m, low cobble content of bricks.	
Below 2.00m, medium dense.	1
3.00- 3.44 S50/ Between 2.20-2.40m, band of soft slightly gravelly clay. At 3.44m, obstruction - probable cobble. 3.44	39.4
End of Borehole	
Dring Progress Froundwater	
Progress Groundwater Depth Hole Technique Crow Depth Depth Depth Depth Depth Depth Depth Depth Depth Research	emarks on
	oundwater
1.20 0.10 Imagescron fic Gm/mm G.D.	ntered.

Remarks Symbols and

key sheet.

Logged by

Figure

MM

وعماوطسأنع

1 of 1

23/01/2020

Inspection pit hand excavated to 1.20m depth and no services were found.

Borehole terminated at a depth of 3.44m on encountering an obstruction - probable cobble. A 50mm standpipe was installed to 2.50m with a geowrapped slotted section from 1.00m to 2.50m with flush lockable protective cover. Backfill details from base of hole: bentonite seal up to 2.50m, gravel filter up to 1.00m, bentonite seal up to 0.20m, concrete up to ground level. abbreviations are explained on the accompanying

All dimensions Logged in accordance with BS5930:2015 are in metres.

BOREHOLE RECORD - Dynamic Sampler

are in metres.

Engineer Borehole STOCKPORT INTERCHANGE GROUND INVESTIGATION WS302 Project No PN194052 National Grid 389190.5 Client Coordinates Ground Level 42.94 m OD WSP 390272.5 Sampling Properties Strata Scale 1:50 Depth Cased & (to Water) Sample Strength Depth Description Depth Legend Type kPa % m OD 42.94 G.L. Grass over TOPSOIL: Dark brown slightly gravelly fine to coarse sand with some rootlets. Gravel is angular to subangular fine to coarse of glass, 0.30 concrete and brick fragments. 0.50 42.44 MADE GROUND: Yellow sandy angular to subangular fine to coarse gravel of limestone. At 0.50m, concrete obstruction. End of Borehole Boring Progress Groundwater Depth Remarks on Depth Crew Date Time Rose to Technique Water Mins Sealed of Hole Cased Struck Cased Groundwater 11/11/19 0.40 Inspection Pit GM/MM G.L. 0.50 08:00 0.50 None 11/11/19 DRY 18:00 encountered. Inspection pit hand excavated to 0.50m depth and no services were found.
Inspection Pit terminated at 0.50m depth on encountering a concrete obstruction - the rig was moved to WS302A.

Backfill details from base of hole: arisings up to ground level. Remarks Logged by Symbols and Figure 1 of 1 abbreviations are 23/01/2020 explained on the accompanying esimbelbeg key sheet. All dimensions Logged in accordance with BS5930:2015

BOREHOLE RECORD - Dynamic Sampler

STOCKPORT INTERCHANGE GROUND INVESTIGATION Engineer Borehole WS302A Project No PN194052

National Grid Coordinates 389191.4 390272.0 Client Ground Level 42.96 m OD WSP

ient wsp			_			Coordin		272.0	IV				Ground		.96 m	
ampling		FIGRIP	Prope			Strata	3								Scale 1	1
Depth	Sample Type	Depth Cased & (to Water)	Strength kPa	w %	SPT N	Descrip	otion							Depth	Legend	Level m OD
0.20 0.30- 0.80 0.50	ES ES ES					Grave glass	s over TOPSO by fine to o al is angula s, concrete GROUND: Yel	coarse ar to s and br	sand ubang ick f	with s gular f Fragmen	some ro	otlets. coarse	of	G.L. 0.30		42.9
0.80- 1.20 1.00	B — ES					fine MADE	GROUND: Red	gravel dish b	of li	gravel	le. .ly sli	ghtly c	layey	0.80		42.1
1.20- 1.65	- D				S22	fine coars	to coarse se of limest	sand. G	ravel	l is su	ıbangul	ar fine	to T	- - - - - - -		
2.00- 2.50 2.00 2.00- 2.45 2.50- 2.70	_ D - D - ES - D	2.00			s37									- - - - - - - -		
3.00 3.00- 3.36	- _ ES - -	2.00			S50/ 210	At 3.	.00m, obstru	uction	- pro	obable	cobble	•]	30.6
	- - - -							End	of Bo	orehole	1			3.36		39.6
	<u>-</u> - -													- - - -		
	- - - -													- - - -		
	- - - -													- - - -		
	- - - -													- - - -		
														- - - -		
	- - - -													- - - -		
	- - - -													- - - -		
	- - - -													† - - -		
	- - -													- - -		
	- - -													- - - -		
	- - -													 - -		
oring					Progre						dwate	r				
epth Hole Dia	٦	Technique	9	Crew	Depth of Hole	Depth Cased	Depth to Water Da	ate T	ime	Depth Struck	Depth Cased	Rose to	in Mins	Depth Sealed		rks on dwater
	Inspect Dynamic			GM/MM GM/MM	G.L. 3.36		DRY 11/1	L1/19 0							None encounte	_

Remarks

key sheet. All dimensions

are in metres.

Inspection pit hand excavated to 1.20m depth and no services were found.

SES sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

Dynamic Sample Borehole terminated at 3.36m depth on encountering an obstruction - probable

Symbols and abbreviations are explained on the

accompanying

A 50mm gas monitoring pipe was installed to 3.00m with a geowrapped slotted section from 1.00m to 3.00m with flush lockable protective cover. Backfill details from base of hole: gravel filter up to 1.00m, bentonite seal up to 0.20m, concrete up to ground level.

Figure 1 of 1 23/01/2020 وعماوطسأنع

MM

Logged by

Logged in accordance with BS5930:2015

BOREHOLE RECORD -Dynamic Sampler

STOCKPORT INTERCHANGE GROUND INVESTIGATION Engineer Borehole WS303 Project No PN194052

National Grid Coordinates 389176.7 390248.2 Client Ground Level 43.00 m OD WSP

Client WSP						Coordina	ates	390248.2	: N				Ground	Level 43		OD
Sampling			Prope	rties		Strata									Scale 1	:50
Depth	Sample Type	Cased & (to Water)	Strength kPa	w %	SPT N	Descripti	ion							Depth	Legend	Level m OD
0.00- 0.30 0.20 0.30- 1.20 0.30 0.50	- B - ES - B - D - ES					clayey Gravel of gla	fine l is su ass, me	TOPSOIL: to coars ubangular etal, con	e sand to su crete sh bro	with a brounder and brown war were	some ro ed fine ick fra y grave	otlets. to coa	arse he to	G.L. 0.30		43.00
1.00 1.00 1.20- 1.80 1.20- 1.65 1.20	D ES B D D				S 6	limest coarse MADE G slight	one. Ge of li ROUND:	with a laravel is imestone. Loose davelly cl	angul lark br	own motine to	subangu ttled o coarse	lar fir	ne to	1.20	-	41.80
2.00- 2.45 2.00- 2.50 2.00	_ D - D - ES	2.00			s2	brick	fragme	ngular to ents. , very lo		gular :	fine to	mediur	n of			
2.50- 2.80	_ D					sandy	slight	: Firm to	lly cl	dark l	brown s	lightly	, ir	2.50		40.50
3.00- 3.45 3.00- 3.80 3.00	_ D - D - ES	2.00			s17	rine c	or bric	ek iragme	nts.					-		•
3.80 4.00- 4.07	ES D	2.00			s25/25	\ fine t	o coar	: Yellow rse grave	1 of 1	imesto	ne.	_	ar /	3.80		39.20 38.93
	<u>-</u> - - -							En	d of B	orehole	e			- - - -		
														-		
	[- - -															
	- - - -													- - - - -		
														+ - - - -		
	[- -															
	_ _ _ _													- - - - -		
	<u>-</u>													 - - -		
	_ _ _ _ _													† - - -		
oring					Progre	255			-	(Frour	ndwate	r				
Nonth Hole		Technique	<u> </u>	Crew	Depth	Depth D	epth to	Date	Time	Depth	Depth	Rose to	in	Depth		rks on
1.20 0.40	Inspect	tion Pit	:	GM/MM GM/MM	of Hole G.L. 4.07		Water	11/11/19 11/11/19	08:00		Cased		Mins	Sealed	Groun None encounte	dwater
	ļ										ļ	ļ	1			

Remarks

accompanying

Inspection pit hand excavated to 1.20m depth and no services were found.

SES sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

Dynamic Sample Borehole terminated at 4.07m depth on encountering an obstruction - probable

Symbols and abbreviations are explained on the

A 50mm standpipe was installed to 3.00m with a geowrapped slotted section from 1.00m to 3.00m with flush lockable protective cover. Backfill details from base of hole: bentonite seal up to 3.00m, gravel filter up to 1.00m, bentonite seal up to 0.20m, concrete up to ground level.

key sheet. All dimensions Logged in accordance with BS5930:2015 are in metres.

23/01/2020 وعماوطسأنع

MM

1 of 1

Logged by

Figure

BOREHOLE RECORD -Dynamic Sampler

STOCKPORT INTERCHANGE GROUND INVESTIGATION Engineer Borehole WS304 Project No PN194052

National Grid Coordinates 389196.6 390260.6 Client Ground Level 42.67 m OD WSP

Sampling		Propert	ies	1	Strata		390260.6	i IV				Ground	Level 42	Scale 1	
	Sample Depth Cased &	-	w	SPT N											1
	Type Cased & (to Water	kPa	%	SPIN	Descrip	otion							Depth	Legend	Level m OD
0.20 0.20 0.30- 0.80 - 0.50 0.80- 1.20 - 1.00	D ES B ES D ES				Grave glass MADE angul limes	ey fine el is an s and br GROUND lar to s	TOPSOIL: to coars gular to rick frag Yellow subangula Low suban	mottle	with s gular f d dark to coa	some ro	otlets. coarse sandy avel of	of	G.L. 0.30		42.67 42.37 41.87
1.20- 1.65 1.20- 2.00 2.00- 2.45	D ES			S2 S1/450	subar	GROUND ngular : ments.	: Very lo	oose re	d sandy gravel	angul of bri	ar to ck		-		
2.00- 3.00	ES				inclu	een 2.50 ides sla)-3.00m, ag and cl	sand inition	ncludes	s ash.	Gravel				
3.00- 3.04				s25/20			En	d of B	orehole	3			3.04	, , , , , , , , , , , , , , , , , , ,	39.63
- - - - - - - - -	-														
- - - -													- - - - - -		
- - - - - -													- 		
- - - - - -													- - - - -		
- - - - - -													-		
	-														
	-												+ - - - -		
Boring				Progre	ess				Groun	idwate	r		-		
Depth Hole Dia	Techniqu	e	Crew	Depth of Hole		Depth to Water	Date	Time	Depth Struck	Depth Cased	Rose to	in Mins	Depth Sealed		rks on dwater
1.20 0.40 II	nspection Pi ynamic Sampl	t (GM/MM GM/MM	G.L. 3.04	Jaseu		11/11/19 11/11/19	08:00		Caseu		iviii15	Scaled	None encounte	

Remarks

Inspection pit hand excavated to 1.20m depth and no services were found.

SES sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

A 50mm gas monitoring pipe was installed to 3.00m with a geowrapped slotted section from 1.00m to 3.00m with flush lockable protective cover. Backfill details from base of hole: gravel filter up to 1.00m, bentonite seal up to 0.20m, concrete up to ground level.

abbreviations are explained on the accompanying key sheet. All dimensions are in metres.

Symbols and

Logged in accordance with BS5930:2015

MM

Figure 1 of 1 23/01/2020

Logged by

BOREHOLE RECORD -Dynamic Sampler

STOCKPORT INTERCHANGE GROUND INVESTIGATION Engineer Borehole WS305 Project No PN194052

National Grid Coordinates 389302.8 390302.7 Client Ground Level 43.79 m OD WSP

Rent WSP		Droport!	ioc	П	Coordin		390302.7	N				Ground	Level 43		OD
Sampling Sample		Properti trength	ies w	CDT N	Strata									Scale 1	1
Depth Sample Type		kPa	w %	SPT N	Descrip	tion							Depth	Legend	m OD
					MADE	GROUND	: Grey co	ncrete	paving	g slab.		/	G.L. 0.05		43.7
0.20- 0.25 B 0.20 D 0.20 ES 0.25- 1.00 B							: Yellow of limes		angula:	r to su	bangula	ır	0.10		43.6 43.5
0.50 ES							: Reddish						<u>-</u>		
1.00 D ES 1.20- 1.65 D 1.50- 2.00 B	(DRY)			s17	claye conte subro coal, inclu	y fine ent of a sunded slag, des as	: Medium to coars mudstone fine to c clinker h. 0-0.75m,	se sand and br coarse and br	with a ick. G of muda ick fra	a low or ravel i stone, agments	obble s angul sandsto . Sand	ar to			
2.00- 2.50 B 2.00- 2.45 D 2.00 ES	(DRY)			s11	bar (3mm di	ameter). , cobbles								
2.50- 3.00 D													<u>-</u> -		
3.00- 3.45 D 3.00- 3.50 D 3.00 ES	(DRY)			s8	Belov	7 3.00m	, loose.								
3.50- 4.00 B															
4.00- 4.45 D 4.00 ES	(DRY)			s8									- - -		
4.50- 5.00 D					Very	dense :	reddish h	orown f	ine to	coarse	SAND.		4.50		39.2
5.00- 5.22 D	(DRY)			s50/65											
_							Er	nd of B	orehol	e			5.22		38.5
F													<u> </u>		
E													<u> </u>		
F													_		
Ę													Į.		
F													-		
Ė													<u> </u>		
													<u> </u>		
<u> </u>													-		
Ė.													 -		
E													<u> </u>		
<u> </u>															
<u></u>													-		
F													<u> </u>		
E													Ę l		
ļ													 		
E													Ē		
ţ													-		
F													-		
E													Ē		
F													-		
oring Hole	+ + +			Progre Depth		Depth to) .		Grour Depth	ndwate Depth		in	Depth	Rema	rks on
Dia Dia	Technique		Crew	of Hole	Cased	Water	Date	Time	Struck	Cased	Rose to	Mins	Sealed	Groun	dwater
1.20 0.40 Inspect 5.22 0.10 Dynamic			M/MM M/MM	G.L. 5.22		DRY	14/11/19							None encounte	red.
							1	0		1	1	1	1		

Remarks Symbols and

abbreviations are explained on the accompanying key sheet.

All dimensions Logged in accordance with BS5930:2015 are in metres.

Inspection pit hand excavated to 1.20m depth and no services were found.

A 50mm standpipe was installed to 4.00m with a geowrapped slotted section from 1.00m to 4.00m with flush lockable protective cover. Backfill details from base of hole: bentonite seal up to 4.00m, gravel filter up to 1.00m, bentonite seal up to 0.20m, concrete up to ground level.

Logged by

Figure 1 of 1 23/01/2020

MM

Project STOCKPORT INTERCHANGE GROUND

INVESTIGATION

Client WSP

Project No PN194052

Hole	Depth	Level	Туре	SWP	Seatin	g Drive		Test	Drive		SPT 'N'		Uncor		d SPT	Γ
•	m bgl	m OD		(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10	20	'N' 30	40	50
VS301A	1.20	41.71	s	-	1	2	1	-	1	2	4	*	1		1	
VS301A	2.00	40.91	S	-	2	6	6	5	4	8	23		*		!	-
WS301A	3.00	39.91	S	-	11	10	9	8	12	21/65	50/290				-	>
Driller			Gary	 Martin			Remar					L			<u> </u>	
Hammer No.			110.9				Equipm 22476-		ked and c	alibration	carried out i	n accord	dance	with E	BS EN	ISO
Energy Ratio	, Er (%)		73.00					-								
Calibration D			15/01	(0010			1									

-/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

Project STOCKPORT INTERCHANGE GROUND

INVESTIGATION

Client WSP

Project No PN194052

Hole	Depth	Level	Type	SWP	Seating	g Drive		Test	Drive		SPT 'N'	ι	Jncor		d SP1	Γ
	m bgl	m OD		(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10	20	'N' 30	40	50
VS302A	1.20	41.76	S	-	6	4	8	5	4	5	22	1 1 1	*	1	 	1
VS302A	2.00	40.96	S	-	7	10	10	10	10	7	37		-	1	t	-
VS302A	3.00	39.96	S	-	8	10	14	16	20/60		50/210	1				-
Oriller			Gary	Martin			Remar	ks	ved and c	alibration	carried out i	accord	3000	with F	29 FM	190
Hammer No.			110.9				22476-		.54 4114 0	and anom	Janiou Out II					
Energy Ratio			73.00													
Calibration E	ate		15/01	/2019												

-/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

Project STOCKPORT INTERCHANGE GROUND

INVESTIGATION

Client WSP

Project No PN194052

Hole	Depth	Level	Type	SWP	Seatin	g Drive		Test	Drive		SPT 'N'		Unco		d SP1	Γ
	m bgl	m OD		(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10	20	'N' 30	40	50
WS303	1.20	41.80	S	-	3	2	2	1	2	1	6	*	 	1	 	1
VS303	2.00	41.00	S	-	1	1	1	-	1	-	2	*	1		i i	1
WS303	3.00	40.00	S	-	1	2	5	4	4	4	17	!	*	-	!	!
WS303	4.00	39.00	S	-	25/45		25/25				25/25					>
												i !	i !	i	i I	i I I
Driller			<u> </u>	Martin				ent checl	ked and c	alibration	carried out i	n acco	rdance	with B	S EN	ISO
Hammer No			110.9				22476-	3: 2005								
Energy Ratio			73.00													
Calibration I	vate		15/01	/2019												

-/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

Project STOCKPORT INTERCHANGE GROUND

INVESTIGATION

Client WSP

Project No PN194052

Hole	Depth	Level	Type	SWP	Seating	g Drive		Test	Drive		SPT 'N'		Unco		d SP1	Γ
	m bgl	m OD		(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	1	0 20	'N'	40	50
VS304	1.20	41.47	S	-	4	4	1	-	1	-	2	*	1 I 1 I 1 I	 	 	1
VS304	2.00	40.67	S	-	1	-	-	-	-	-	1/450	*		-		1
VS304	3.00	39.67	S	-	25/20		25/20				25/20				1	>
			0	Mantin			Remark	lro.					i i	i	i	į
Driller Hammer No.			110.9	Martin			Equipm	ent checl	ked and c	alibration	carried out	in acc	ordance	with I	BS EN	ISC
Hammer No. Energy Ratio	. Er (%)		73.00				22476-3	3: 2005								
c.gy riailo	, (/0)		, 5.00													

-/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

Project STOCKPORT INTERCHANGE GROUND

INVESTIGATION

Client WSP

Project No PN194052

Hole	Depth	Level	Type	SWP	Seating	g Drive		Test	Drive		SPT 'N'		Uncor		d SPT	-
	m bgl	m OD		(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10	20	'N'	40	50
WS305	1.20	42.59	S	-	1	2	2	4	5	6	17	1	*			
WS305	2.00	41.79	S	-	5	5	3	3	3	2	11	*	-	-	!	!
WS305	3.00	40.79	S	-	3	2	3	2	2	1	8	*				1
WS305	4.00	39.79	S	-	3	2	1	1	2	4	8	*				+
WS305	5.00	38.79	S	-	3	7	50/65				50/65	1	1			>
Driller			Gary	 Martin			Remark	ks	(ed and a	alibration	carried out i	n accord	lance	with P	SEN	180
Hammer No			110.9	6			22476-		veu anu C	anvialiuli	camed out I	ii accord	iai iC C	VVIIII 🗅	SEIN	130
Energy Rati	o, Er (%)		73.00													
Calibration	Date		15/01	/2019		_										

-/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

APPENDIX 5

Trial Pit Records

Sampl	e Types	Groundwater		Strata, Continued	
В	Bulk disturbed sample	Water Strike	∇	Mudstone	
BLK	Block sample	Depth Water Rose To	▼		
С	Core sample	Deput Water Rose To			2222
D	Small disturbed sample (tub/jar)	Instrumentation		Siltstone	× × × × × × × × × × × × × × × × × ×
E	Environmental test sample			Metamorphic Rock	****
ES	Environmental soil sample	Seal		Fine Grained	··········
EW	Environmental water sample			Medium Grained	······································
G	Gas sample		ŀ 』 │	r realium Cramed	
L	Liner sample	Filter	:[[-]	Coarse Grained	
LB	Large bulk disturbed sample		11		
Р	Piston sample (PF - failed P sample)		- -	Igneous Rock	
TW	Thin walled push in sample		134	Fine Grained	V V V V V
U	Open Tube - 102mm	Seal	: -1	rino Gramos	7 7 7 7 7
	diameter with blows to		: : :	Medium Grained	+ + + +
	take sample. (UF - failed U sample)				+ + + +
UT	Thin wall open drive tube sampler - 102mm diameter	Strata	Legend	Coarse Grained	* * * * * * * * * * * * * * *
	with blows to take sample. (UTF - failed UT sample)	Made Ground Granular		Backfill Materials	
V	Vial sample	Grandia.			8
W	Water sample	Made Ground		Arisings	
#	Sample Not Recovered	Cohesive		· ·	
Insitu	Testing / Properties	Topsoil		Bentonite Seal	
CBRP	CBR using TRL probe				Ş
CHP	Constant Head Permeability Test	Cobbles and Boulders		Concrete	ρ - ο
COND	Electrical conductivity	Gravel	• • 5		· •
TC	Thermal Conductivity	G. a. v. o.		Fig. Consul Files	
TR	Thermal Resistivity			Fine Gravel Filter	
HV	Strength from Hand Vane	Sand			3
ICBR	CBR Test			General Fill	
IDEN	Density Test	Silt	× ^		·
IRES	Resistivity Test	SIIL	* * * !		
MEX	CBR using Mexecone Probe Test		x x	Gravel Filter	<u>:</u>
PKR	Packer Permeability Test	Clay			
PLT	Plate Load Test			Grout	(3) (3)
PP	Strength from Pocket Penetrometer	Peat	31/2		
Temp	Temperature		Alia	Sand Filter	50 50 50 50
VHP	Variable Head Permeability Test		Δh_{A}		53
VN w%	Strength from Insitu Vane Water content	Note: Composite soil typ by combined symbols	es shown	Tarmacadam	
		Chalk			
undrain	her strengths from ied triaxial testing)	Citaik		Rotary Core	
S	Standard Penetration Test (SPT)			RQD Rock Quality D (% of intact cor	
С	SPT with cone	Limestone		FRACTURE INDEX Fractures/metro	
N	SPT Result			FRACTURE Maximum	E
-/-	Blows/penetration (mm)	Sandstone		SPACING (m) Minimum NI Non-intact	core
-*/-	after seating drive \ Total blows/penetration			NR No core re	
(mm)	·	Coal		loss (where core recovery is unkno	
()	Extrapolated value	5 0a.		assumed to be at the base of the	

Inspection Pit

STOCKPORT INTERCHANGE GROUND INVESTIGATION TP301 Engineer Trial Pit Project No PN194052

National Grid Coordinates 389286.3 E 390268.2 N Client Ground Level 43.57 m OD WSP

Samples and Test Depth Ty - 0.10- 0.25 B D D D D D D D D D D D D D D D D D D	ype Stratum No	Results	Description MADE GROUND: Black tarmaca MADE GROUND: Yellow sandy to coarse gravel of limest MADE GROUND: Dark brown mo to coarse sand. Gravel is to coarse of slag, clinker fragments. Sand includes a End of E	angular to sub cone. (Sub base ottled brown gr angular to sub	cavelly fine	Depth — G.L. 0.10 0.20 — 1.20	Scale 1 Legend	Level m OD 43.5 43.4 43.3
0.10- 0.25 B D D D D ES D D ES D D D D D D D D D D D	No No	Results	MADE GROUND: Black tarmaca MADE GROUND: Yellow sandy to coarse gravel of limest MADE GROUND: Dark brown mo to coarse sand. Gravel is to coarse of slag, clinker fragments. Sand includes a	angular to sub cone. (Sub base ottled brown gr angular to sub concrete and sh.	cavelly fine	G.L. 0.10 0.20	Legend	m OD 43.5 43.4 43.3
0.20 0.20 0.25- 1.20 0.50 ES	s s		MADE GROUND: Yellow sandy to coarse gravel of limest MADE GROUND: Dark brown mo to coarse sand. Gravel is to coarse of slag, clinker fragments. Sand includes a	angular to sub cone. (Sub base ottled brown gr angular to sub concrete and sh.	cavelly fine	0.10		43.4 43.3
0.20 0.25- 1.20 B 0.50 ES	5		MADE GROUND: Dark brown mo to coarse sand. Gravel is to coarse of slag, clinker fragments. Sand includes a	one. (Sub base of the brown grangular to sub c, concrete and sh.	cavelly fine			
1.00 D			to coarse sand. Gravel is to coarse of slag, clinker fragments. Sand includes a	angular to sub r, concrete and sh.	oangular fine	1.20		42.3
			End of E	excavation		1.20		42.1
						E		1
						Г		
						-		
						_		
						F		
						-		
						-		
						<u>-</u> -		
						-		
						-		
						-		
						E		
						-		
						<u> </u>		
						-		
xcavation				Groundwate	ır			
ant Hand tool	l a		Width (B) 0.30	Depth Dept Observed of P				

Stability Stable during excavation.

Remarks

All Inspection pit hand excavated to 1.20m depth and no services were found.

Es sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

Top of concrete footing exposed at 1.20m below ground level. Footing projects 0.25m from face of wall. Underside of footing not proven. Top of brick substructure (possible manhole) exposed at 0.40m depth. Collared pipe also exposed in trial pit.

accompanying key sheet. All dimensions are in metres.

Symbols and abbreviations are

explained on the

Logged in accordance with BS5930:2015

Logged by

Figure 1 of 1 23/01/2020

MM

Inspection Pit

STOCKPORT INTERCHANGE GROUND INVESTIGATION TP302 Engineer Trial Pit Project No PN194052

National Grid Coordinates

389287.8 390259.6 Client Ground Level 43.64 m OD WSP

Samples and	Tests			Strata		Scale 1	:50
Depth	Туре	Stratum No	Results	Description	Depth	Legend	Level m OD
0.10- 0.25	В			MADE GROUND: Black tarmacadam.	G.L. - 0.10		43.6 43.5
0.20 0.20 0.25- 1.20	D ES B			MADE GROUND: Yellow sandy angular to subangular fine to coarse gravel of limestone. (Sub base).	0.25		43.3
1.00	ES D			MADE GROUND: Dark brown gravelly fine to coarse sand. Gravel is angular to subangular fine to coarse of coal, slag, clinker, ceramic, plastic, concrete and			
1.00	ES			brick fragments. Sand includes ash.	1.20		42.4
				End of Excavation	E		
					E		
					-		
					-		
					-		
					-		
					F		
					-		
					-		
					_		
					-		
					-		
					-		
					Ė		
					-		
					-		
					-		
					Ė		
					-		
					-		
					-		
					E		
					-		
					-		
					E		
					-		
					E		
					E		
					F .		
xcavation				Groundwater			

Observed of Pit 15/11/2019 Date Length (C) 0.80 Shoring None. None encountered. Date Backfilled 15/11/2019 Stability Stable during excavation.

explained on the

Remarks

Inspection pit hand excavated to 1.20m depth and no services were found.

Es sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

Symbols and abbreviations are face of wall. Footing exposed at 0.80m below ground level. Footing projects 0.25m from face of wall. Footing continues to at least 1.20m depth. Underside of footing not proven.

accompanying key sheet. All dimensions are in metres.

Logged in accordance with BS5930:2015

Logged by MM

Figure

1 of 1

Inspection Pit

STOCKPORT INTERCHANGE GROUND INVESTIGATION TP303 Engineer Trial Pit WSP Project No PN194052

National Grid Coordinates 389310.9 E 390277.1 N Client Ground Level 44.16 m OD WSP

Samples and	Tests			Strata	ordinates 390277.						
Depth	Туре	Stratum	Results	Description					Depth	Legend	Level m OD
0.10- 0.20	P.	No		NADE COC-	ND: Black tarmacad				G.L.		44.1
0.10- 0.20 0.20 0.20	B D ES				ND: Yellow sandy a		o gubar	omular fine	0.25		44.0
0.25- 1.00 0.50	B ES			to coarse	gravel of limesto	ne. (Sub	base).	·	<i>/</i> }-		
1.00	D ES			coarse sa	ND: Dark brown sli nd. Gravel is angu concrete and bric	lar to s	ubangul	lar fine to			
				\	concrete footing.				1.20		42.9
					End of Ex	cavation			7 E		
									E		
									E		
									-		
									E		
									-	Scale 1:5 Legend	
									Ė I		
									Ė		
									-		
									E		
									-		
									E		
									<u> </u>		
									Ė		
									E I		
									-		
									_		
									E		
									Ė I		
									-		
									<u> </u>		
									-		
									E	Legend Le m O	
									E		
									F		
									Ė I		
									-		
									Ė		
									-		
xcavation						Ground					
	tools.			Width (B) Length (C)	0.40	Depth Observed	Depth of Pit	Details			
ate 15/11 horing None.	/2019			Length (C)	0.90			None encounte	ered.		

Date Backfilled 15/11/2019 Stability Stable during excavation.

Remarks

All Inspection pit hand excavated to 1.20m depth and no services were found.

Es sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

Top of concrete footing exposed at 0.25m below ground level. Footing projects 0.55m from face of wall, increasing to 0.75m from face of wall at 1.20m below ground level. Underside of footing not proven.

accompanying key sheet.

All dimensions are in metres.

Logged in accordance with BS5930:2015

Logged by

Figure 1 of 1 23/01/2020

MM

Inspection Pit

STOCKPORT INTERCHANGE GROUND INVESTIGATION TP304 Engineer Trial Pit WSP Project No PN194052

National Grid Coordinates 389305.4 390281.2 Client WSP

Ground Level 43.95 m OD

CHEIR WSP				Coordinates 390281.2 N	Oloulla Lcv	ei 43.95 m	
Samples and	Tests			Strata		Scale 1	:50
		Stratum	D Ha		Donth		Level
Depth	Type	No	Results	Description	Depth	Legend	m OD
_					_ G.L.		43.95
0.10- 0.20	B D			MADE GROUND: Black tarmacadam.	0.10		43.85
0.10 0.10	ES			MADE GROUND: Yellow sandy angular to subangular fine	─ ∤ 0.20		43.75
0.25- 1.20	В			to coarse gravel of limestone. (Sub base).	/F		
0.50	ES				<u> </u>		8
-				MADE GROUND: Black gravelly fine to coarse sand with a low cobble content. Gravel is angular to subangular			8
1.00	D			fine to coarse of slag, clinker and brick fragments.	<u> </u>		1
1.00	ES			Sand includes ash.			40.75
-				End of Excavation	1.20		42.75
_					F		
-					Ė		
-					-		
_					F		
-					Ĺ		
-					-		
-					F		
-					t		
-					-		
_							
- -					Ė		
-					-		
-					Ė.		
-					E		
-					F		
_					<u>L</u>		
-					E		
-					F		
- -					L		
-					-		
-					F		
<u> </u>					_		
-					-		
-					F		
-					L		
-					-		
-					ļ.		
					<u>L</u>		
-					-		
-					ļ.		
·					E		
-					F		
<u>.</u>					Ė		
-					-		
-					F		
<u>-</u> -					ţ		
<u>-</u>					Ł		
- ·		1			F		
:					ļ.		
					-		
-					F		
					Ė		
					-		
-		1			F		
		1			-		
		1			F		
-					_		
,					-		
<u>-</u> -					Ē		
<u>-</u>					Ė		
,					F		
					Ė		
_					\vdash		
Excavation				Groundwater			
Plant Hand	tools.			Width (B) 0.50 Depth Depth Observed of Pit			
Date 15/11	/2019			3' (')			
Shoring None.				Date Backfilled 15/11/2019 None encour	tered.		
Stability Stabl	e durir	ng exca	avation.	Date Backfilled 15/11/2019			
3 20021							

Remarks

Inspection pit hand excavated to 1.20m depth and no services were found.

Es sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

Symbols and abbreviations are face of wall. Footing exposed at 0.20m below ground level. Footing projects 0.20m from face of wall. Footing continues to at least 1.20m depth. Underside of footing not proven.

explained on the accompanying key sheet. All dimensions are in metres.

Logged in accordance with BS5930:2015

Logged by MM

Figure 1 of 1 23/01/2020

APPENDIX 6

Trial Pit Photographs

Project Number: PN194052

TP301 (I)

Project Number: PN194052

TP301 (2)

Project Number: PN 194052

TP301 (3)

Project Number: PN194052

TP302 (I)

Project Number: PN194052

TP302 (2)

Project Number: PN194052

TP302 (3)

Project Number: PN194052

TP303 (I)

Project Number: PN194052

TP303 (2)

Project Number: PN 194052

TP303 (3)

Project Number: PN194052

TP304 (I)

Project Number: PN194052

TP304 (2)

Project Number: PN194052

TP304 (3)

5

APPENDIX 7

Monitoring Results

FIELDWORK - Water Level Monitoring

Project STOCKPORT INTERCHANGE GROUND INVESTIGATION

Project No PN194052

Client WSP Sheet No 1

Olletti WSI										Oncot			
Borehole		WS301A		WS302A	1	WS303		WS304		WS305			
Instrument (dia	a. mm)	S (50mm	1)	G (50mn	n)	S (50mm	1)	G (50mm	۱)	S (50mm	۱)		
Depth to Base	(m)	2.50		3.00		3.00		3.00		4.00			
Filter Zone	(m)	1.00-2.50)	1.00-3.00	0	1.00-3.00)	1.00-3.04	1	1.00-4.0	0		
Level		42.91 m	OD	42.96 m	OD	43.00 m	OD	42.67 m	OD	43.79 m	OD		
Date	Time	Depth (m)	Level	Depth (m)	Level	Depth (m)	Level	Depth (m)	Level	Depth (m)	Level	Depth (m)	Leve
8 Jan 2020		DRY		DRY		DRY		DRY		DRY			
17 Jan 2020		DRY		DRY		DRY		DRY		DRY			
21 Jan 2020		DRY		DRY		DRY		DRY		DRY			
28 Jan 2020		DRY		DRY		DRY		DRY		DRY			
12 Feb 2020		DRY		DRY		DRY		DRY		DRY			

Remarks

Symbols and abbreviations are explained on the accompanying key sheet.

All dimensions are in metres.

Project stoce	KPORT INTERCH	ANGE GROUN	D INVESTIG		Project No PN194052					
Client wsp							Date Shee	et No.	08/01/2020 1 (1 of 3)	
Equipment Us										
	Red Gas Ana	lyser	MK	1 🗌	MK	2	GA200	0		
Weather / Sit		<u> </u>								_
	Wind			п 🔲	Ligh	nt x	Moderate		Strong	
	Cloud Cover			None None			Cloudy x		Overcast	
Precipitat					Slight Slight		Moderate		Heavy	
Trecipitat	•	1	Di	ух	Sligi	" 🗀	Moderat	<u>с</u> []	rieavy	
Danahala	Depth to Base	Depth to Water	Current Hole Depth	Methane (Peak)	Methane (Steady)	Carbon Dioxide	Carbon Dioxide	Oxygen (Peak)	Demonto	
Borehole	(m)	(m bgl)	(m bgl)	CH4 (% VOL)	CH4 (% VOL)	(Peak) (% VOL)	(Steady) (% VOL)	(% VOL)	Remarks	
WS301A	2.50	DRY	2.72	0.0	0.0	0.3	0.3	20.7		_
WS302A	3.00	DRY	2.77	0.0	0.0	0.2	0.2	20.9		
WS303	3.00	DRY	3.00	0.0	0.0	0.8	0.8	20.6		
WS304	3.00	DRY	2.68	0.0	0.0	0.5	0.5	20.8		
WS305	4.00	DRY	4.10	0.0	0.0	0.7	0.7	20.7		
Remarks	1	1	<u> </u>		<u> </u>	<u> </u>				
omano								س	` edednie	₹
								برع	عجس المحسج	,

Project stoce	ject stockport interchange ground investigation						Proje Date	ect No	PN194052 08/01/2020	
Client wsp								et No.	1 (2 of 3)	
Equipment Us		_		. —				- —		
	Red Gas Ana	lyser	MK	¹	MK	2	GA200	0 🔲		
Other Other Veather / Sit	GA5000;									
Weather / Sit	e Conditions	•	St	ш	Liah	nt x	Moderat	е П	Strong	
Cloud Co	ver		Non	_	Sligh		Cloud	_	Overcast	
Precipitation		Dry x		Sligh		Moderat	_	Heavy		
	Depth to	Oxygen	Hydrogen	Hydrogen	Carbon	1	Flow Rate	Flow Rate		
Borehole	Base	(Steady)	Sulphide (Peak)	Sulphide (Steady)	Monoxide (Peak)	Monoxide (Steady)	(Peak)	(Steady)	Remarks	
	(m)	(% VOL)	(ppm)	(ppm)	(ppm)	(ppm)	(I/hr)	(l/hr)		
WS301A	2.50	20.7	0	0	0	0	0.0	0.0		
WS302A	3.00	20.9	0	0	0	0	0.0	0.0		
WS303 WS304	3.00 3.00	19.3 20.8	0	0	0	0	0.0	0.0		
WS304	4.00	20.3	0	0	0	0	0.0	0.0		
Remarks	<u>I</u>									

				, ,		
.,	PORT INTERCH	ANGE GROUND INVES	TIGATION		Project No Date	08/01/2020
Client wsp					Sheet No.	1 (3 of 3)
	sed led Gas Ana BA5000;	lyser	MK1	MK2	GA2000	
Weather / Site		•				
Wind	e conditions	•	Still	Light x	Moderate	Strong
Cloud Co		1	None	Slight	Cloudy	Overcast
Precipitat	ion		Dry x	Slight	Moderate	Heavy
Borehole	Depth to Base	Barometric Pressure			Remarks	
	(m)	(mBars)				
WS301A WS302A	2.50 3.00	1016 1016				
WS303	3.00	1016				
WS304	3.00	1016				
WS305	4.00	1014				
Remarks						

.,							Project No PN194052 Date 17/01/2020			
Client wsp							Shee	et No.	1 (1 of 3)	
Equipment Us				. —		. —		. —		
	Red Gas Ana	ıyser	MK	, \square	MK	² ∐	GA200	0 🔲		
Other Other Other	GA5000;									
Weather / Sit	e Conditions	•	Sti	🗀	Liah	nt x	Moderat	е П	Strong	
								_	_	
Cloud Co			Non	_	Sligh		Cloud	_	Overcast x	
Precipitat	tion		Dr	у	Sligh	nt x	Moderat	e	Heavy	
	Depth to	Depth to	Current	Methane	Methane	Carbon	Carbon	Oxygen		
Borehole	Base		Hole Depth	CH4	(Steady) CH4	Dioxide (Peak)	Dioxide (Steady)	(Peak)	Remarks	
	(m)	(m bgl)	(m bgl)	(% VOL)	(% VOL)	(% VOL)	(% VOL)	(% VOL)		
WS301A	2.50	DRY	2.60	0.2	0.2	0.3	0.3	20.7		
WS302A	3.00	DRY	2.72	0.2	0.2	0.2	0.1	20.3		
WS303 WS304	3.00	DRY DRY	2.30 2.62	0.2	0.2	0.4	0.1	20.4		
WS305	4.00	DRY	4.02	0.2	0.2	0.8	0.1	20.6		
Remarks										

Project stockport interchange ground investigation Client wsp						Proje Date	ect No	PN194052 17/01/2020		
Client wsp							She	et No.	1 (2 of 3)	
Equipment U										
GI Infra F	Red Gas Ana	lyser	MK	1	MK	2	GA200	0		
Other	GA5000;									
Weather / Sit	e Conditions	3								
Wind		Sti	ill	Light x		Moderate		Strong		
Cloud Cover		Non	е	Sligh	nt 🗌	Cloudy		Overcast x		
Precipitat	tion		Dr	у 🗌	Sligh	nt x	Moderat	е	Heavy	
Borehole	Depth to Base	Oxygen (Steady)	Hydrogen Sulphide	Hydrogen Sulphide	Carbon Monoxide	Carbon Monoxide	Flow Rate (Peak)	Flow Rate (Steady)	Remarks	
Borenole	(m)	(% VOL)	(Peak) (ppm)	(Steady) (ppm)	(Peak) (ppm)	(Steady) (ppm)	(l/hr)	(l/hr)	Remarks	
WS301A	2.50	20.7	0	0	0	0	0.0	0.0		
WS302A	3.00	20.3	0	0	0	0	0.0	0.0		
WS303	3.00	19.1	0	0	0	0	0.0	0.0		
WS304	3.00	20.3	0	0	0	0	0.0	0.0		
WS305	4.00	20.3	0	0	0	0	0.1	0.1		
Remarks										
								<u> </u>		

.,	PORT INTERCH	ANGE GROUND INVES	STIGATION		Project No Date	PN194052 17/01/2020
Client wsp					Sheet No.	1 (3 of 3)
	sed led Gas Ana BA5000;	lyser	MK1	MK2	GA2000	
Weather / Site						
Wind	o oonarion	•	Still	Light x	Moderate	Strong
Cloud Co		1	None	Slight	Cloudy	Overcast x
Precipitat	ion		Dry	Slight x	Moderate	Heavy
Borehole	Depth to Base	Barometric Pressure			Remarks	
	(m)	(mBars)				
WS301A	2.50	1006				
WS302A	3.00	1006				
WS303 WS304	3.00 3.00	1006 1006				
WS305	4.00	1006				
Remarks		<u> </u>	l			
					L	

Project stoc	KPORT INTERCH	ANGE GROUN	D INVESTIG	ATION				ect No	PN194052	
Client wsp							Date Shee	et No.	21/01/2020 1 (1 of 3)	
Equipment U	lsed									
GI Infra	Red Gas Ana	lyser	MK	1	MK	2	GA200	0 🗌		
	GA5000;									
Weather / Si	te Conditions	6								
Wind			Sti	ill []	Ligh	nt x	Moderat	e	Strong	
Cloud Co	over		Non	е	Sligh	nt	Cloud	ух	Overcast	
Precipita	tion		Dr	ух	Sligh	nt 🗌	Moderat	е 🗌	Heavy 🗌	
	Depth to	Depth to	Current	Methane	Methane	Carbon	Carbon	Oxygen		
Borehole	Base	Water	Hole Depth	CH4	(Steady) CH4	Dioxide (Peak)	Dioxide (Steady)	(Peak)	Remarks	
	(m)	(m bgl)	(m bgl)	(% VOL)	(% VOL)	(% VOL)	(% VOL)	(% VOL)		
WS301A	2.50	DRY	2.60	0.2	0.2	0.3	0.3	20.0		
WS302A	3.00	DRY		0.2	0.2	0.2	0.2	19.9		
WS303	3.00	DRY	2.94	0.2	0.1	1.0	1.0	20.1		
WS304 WS305	3.00 4.00	DRY DRY		0.2	0.2	0.7 0.8	0.7 0.8	20.2		
]								<u> </u>	
Remarks										

Project stoc	KPORT INTERCH	ANGE GROUN	D INVESTIG	ATION				ect No	PN194052	
Client wsp							Date She	et No.	21/01/2020 1 (2 of 3)	
Equipment U								_		
	Red Gas Ana	lyser	MK	1 📙	MK	2	GA200	0		
	GA5000;									
Weather / Sit	te Conditions	5	0.1	🗀		. \square			a. 🗖	
Wind			St	" <u> </u>	Ligh	nt x	Moderat	e	Strong	
Cloud Co	ver		Non	e	Sligh	nt	Cloud	ух	Overcast	
Precipitat	tion		Dr	ух	Sligh	nt 🗌	Moderat	е 🗌	Heavy	
Borehole	Depth to Base	Oxygen (Steady)	Hydrogen Sulphide	Hydrogen Sulphide	Carbon Monoxide	Monoxide	Flow Rate (Peak)	Flow Rate (Steady)	Remarks	
Borenole	(m)	(% VOL)	(Peak) (ppm)	(Steady) (ppm)	(Peak) (ppm)	(Steady) (ppm)	(l/hr)	(l/hr)	Remarks	
WS301A	2.50	19.8	0	0	0	0	0.0	0.0		
WS302A	3.00	19.9	0	0	0	0	0.0	0.0		
WS303	3.00	19.3	0	0	0	0	0.0	0.0		
WS304	3.00	19.5	0	0	0	0	0.0	0.0		
WS305	4.00	19.9	0	0	0	0	0.0	0.0		
Remarks										

.,	CPORT INTERCH	ANGE GROUND INVES	TIGATION		Project No Date	PN194052 21/01/2020
Client wsp					Sheet No.	1 (3 of 3)
	ed Gas Ana	lyser	MK1	MK2	GA2000	
	A5000;					
Weather / Sit Wind	e Conditions	6	Still	Light x	Moderate	Strong
Cloud Co		1	None	Slight	Cloudy x	Overcast
Precipitat	ion		Dry x	Slight	Moderate	Heavy
Borehole	Depth to Base	Barometric Pressure			Remarks	
	(m)	(mBars)				
WS301A	2.50	1035				
WS302A	3.00	1035				
WS303 WS304	3.00 3.00	1036 1036				
WS304	4.00	1035				
Remarks					[ezimbeloer

.,	KPORT INTERCH	ANGE GROUN	D INVESTIG	ATION			Date		PN194052 28/01/2020	
Client wsp							She	et No.	1 (1 of 3)	
Equipment U		lvoor	NAIZ	₁ □	NAIZ	م التا	C 4 200	۰. 🗆		
	Red Gas Ana	iysei	MK	' Ш	MK	² [_]	GA200	۰Ш		
Other Weather / Sit	ga5000;	•								
Weather 7 on	ic domainon.	•	Sti	ш	Ligh	nt 🗍	Moderat	ех	Strong	
Cloud Co	over		Non	_	Sligh		Cloud	_	Overcast	
Precipita [.]				у 🗌		nt x	Moderat		Heavy 🔲	
	Depth to	Depth to	Current	Methane	Methane	Carbon	Carbon	Ovygon		
Borehole	Base		Hole Depth	(Peak)	(Steady)	Dioxide	Dioxide	Oxygen (Peak)	Remarks	
	(m)	(m bgl)	(m bgl)	CH4 (% VOL)	CH4 (% VOL)	(Peak) (% VOL)	(Steady) (% VOL)	(% VOL)		
WS301A	2.50	DRY	2.60	0.2	0.2	0.2	0.2	20.5		
WS302A	3.00	DRY	2.72	0.2	0.2	0.2	0.2	20.6		
WS303	3.00	DRY	2.93	0.2	0.2	1.0	1.0	20.6		
WS304 WS305	3.00 4.00	DRY DRY	2.62 4.02	0.2	0.2	0.5	0.5	20.7		
Remarks										

Project stoci	KPORT INTERCH	ANGE GROUN	D INVESTIG	ATION			Proje Date	ect No	PN194052 28/01/2020	
Client wsp								et No.	1 (2 of 3)	
Equipment U										
	Red Gas Ana	lyser	MK	1 📙	MK	2	GA200	0 📗		
	GA5000;									
Weather / Sit	te Conditions	5	61	—		. \square			c. \Box	
Wind			St	" <u> </u>	Ligh		Moderat	_	Strong	
Cloud Co	ver		Non	е	Sligh	nt	Cloud	ух	Overcast	
Precipitat	tion		Dr	у	Sligh	nt x	Moderat	е 🗌	Heavy	
Borehole	Depth to Base	Oxygen (Steady)	Hydrogen Sulphide (Peak)	Hydrogen Sulphide (Steady)	Carbon Monoxide (Peak)	Carbon Monoxide (Steady)	Flow Rate (Peak)	Flow Rate (Steady)	Remarks	
	(m)	(% VOL)	(ppm)	(ppm)	(ppm)	(ppm)	(l/hr)	(l/hr)		
WS301A	2.50	20.5	0	0	0	0	0.0	0.0		
WS302A	3.00	20.6	0	0	0	0	0.0	0.0		
WS303	3.00	19.4	0	0	0	0	0.0	0.0		
WS304 WS305	3.00 4.00	20.6	0	0	0	0	0.0	0.0		
Remarks									$\overline{}$	

.,	PORT INTERCH	ANGE GROUND INVE	STIGATION		Project No Date	28/01/2020
Client wsp					Sheet No.	1 (3 of 3)
	sed led Gas Ana	lyser	MK1	MK2	GA2000	
Weather / Site		<u> </u>				
Wind	o contantione	•	Still	Light	Moderate x	Strong
Cloud Co		I	None	Slight	Cloudy	Overcast
Precipitat	ion		Dry	Slight x	Moderate	Heavy
Borehole	Depth to Base	Barometric Pressure			Remarks	
	(m)	(mBars)				
WS301A	2.50	987				
WS302A	3.00	987				
WS303	3.00	988				
WS304 WS305	3.00 4.00	988 987				
İ						
Remarks			l		Γ	
-					(

Project stoci Client wsp	KPORT INTERCH	ANGE GROUN	D INVESTIG	ATION			Date	ect No et No.	PN194052 12/02/2020 1 (1 of 3)
							Silco	ot NO.	1 (1 01 3)
	Red Gas Ana	lyser	MK	1 🔲	MK	2 🔲	GA200	0 🔲	
Other • Weather / Sit	GA5000;								
Wind	te Conditions	•	Sti	ill 🔲	Ligh	nt x	Moderat	е 🗌	Strong
Cloud Co	ver		Non	е	Sligh	nt x	Cloud	у 🗌	Overcast
Precipitat	tion		Dr	ух	Sligh	nt 🔲	Moderat	е 🗌	Heavy
Borehole	Depth to Base	Depth to Water	Current Hole Depth	Methane (Peak) CH4	Methane (Steady) CH4	Carbon Dioxide (Peak)	Carbon Dioxide (Steady)	Oxygen (Peak)	Remarks
	(m)	(m bgl)	(m bgl)	(% VOL)	(% VOL)	(% VOL)	(% VOL)	(% VOL)	
WS301A	2.50	DRY	2.60	0.2	0.2	0.2	0.2	20.7	
WS302A	3.00	DRY	2.72	0.1	0.1	0.2	0.2	21.1	
WS303	3.00	DRY	2.93	0.1	0.0	0.8	0.8	21.2	
WS304 WS305	3.00 4.00	DRY DRY	2.61 4.02	0.0	0.0	0.3	0.3	21.1 19.2	
Remarks									
ROTTIOTAS									

Project stoc	KPORT INTERCH	ANGE GROUN	D INVESTIG	ATION				ect No	PN194052	
Client wsp							Date Shee	et No.	12/02/2020 1 (2 of 3)	
Equipment U	sed									
	Red Gas Ana	lyser	MK	1 🔲	MK	2	GA200	0		
Other Weather / Si	GA5000;									
Weather / Si Wind	te Conditions	•	St		Ligh	nt x	Moderat	<u>.</u> П	Strong	
				_					_	
Cloud Co	over		Non	ie	Sligh	nt x	Cloud	у 🔛	Overcast	
Precipita	tion		Dr	ух	Sligh	nt 🗌	Moderat	е	Heavy	
Danahala	Depth to Base	Oxygen (Steady)	Hydrogen Sulphide	Hydrogen Sulphide	Carbon Monoxide	Carbon Monoxide	Flow Rate (Peak)	Flow Rate (Steady)		
Borehole	(m)	(% VOL)	(Peak) (ppm)	(Steady) (ppm)	(Peak) (ppm)	(Steady) (ppm)	(l/hr)	(l/hr)	Remarks	
WS301A	2.50	20.7	0	0	0	0	0.0	0.0		
WS302A	3.00	21.1	0	0	0	0	0.0	0.0		
WS303	3.00	20.5	0	0	0	0	0.0	0.0		
WS304	3.00	20.9	0	0	0	0	0.0	0.0		
WS305	4.00	19.2	0	0	0	0	0.3	0.3		
Remarks										

Project stock	PORT INTERCH	ANGE GROUND INVES	TIGATION		Project No Date	PN194052 12/02/2020
Client wsp					Sheet No.	
Equipment Us	sed					
GI Infra R	ed Gas Ana	lyser	MK1	MK2	GA2000	
	A5000;					
Weather / Sit	e Conditions	3	🗖		1	
Wind			Still	Light x	Moderate	Strong
Cloud Co	ver	1	None	Slight x	Cloudy	Overcast
Precipitat	ion		Dry x	Slight	Moderate	Heavy
Borehole	Depth to Base	Barometric Pressure			Remarks	
	(m)	(mBars)				
WS301A	2.50	1007				
WS302A	3.00	1007				
WS303	3.00	1008				
WS304 WS305	3.00 4.00	1008 1007				
112303	1.00	1007				
Remarks						
						<u>न्य</u>

APPENDIX 8

Laboratory Test Results - Geotechnical

Laboratory Test Certificate

Issued To	Geotechnics Ltd	Date of issue	21/01/2020
	The Geotechnical Centre	Issue No.	1
	Unit 1B, Borders Industrial Estate	Client Ref. No.	-
	River Lane, Saltney	Samples / Materia	l Source
	Chester CH4 8RJ	Samples Recv'd	06/01/20 & 09/01/20
Testing Start Date	06/01/2020	Sample State	As received
Testing Complete	21/01/2020	Sampled by	Geotechnics Limited
Comments	BS 1377-3:1990 is considered out of date and Rock Moisture Content performed according Method		o IRSM accredited
Project No	PN194052		
Project Name	STOCKPORT INTERCHANGE GROUND IN	VESTIGATION	

Summary of Tests

Standard	Test Description	Test Quantity	UKAS
BS EN ISO 17892-1:2014	Water Content	6	Yes
BS EN ISO 17892-12:2018 Cl. 5.3 & 5.5	Liquid Limit and Plastic Limit	5	Yes
BS EN ISO 17892-8:2018	Shear Strength by Unconsolidated Undrained Triaxial Test - Single Stage	3	Yes
BS 1377-3:1990 Cl. 5.4 & 5.5 (Standard withdrawn)	Sulphate Analysis - Ground Water	5	Yes
BS 1377-3:1990 Cl. 9.0 (Standard withdrawn)	рН	5	Yes
ISRM Suggested Method (1985)	Point Load Strength of Rock	36	Yes
BS EN ISO 17892-4:2016 Cl. 5.2	Particle Size Distribution by Sieving Method	1	Yes

Note: Any descriptions, opinions or interpretations are outside the scope of UKAS accreditation.

The results within this report relate only to the samples tested and received from the client.

Test Results checked and approved for issue.
Signed for and on behalf of Geotechnics Limited

203 Torrington Avenue, Tile Hill, Coventry, CV4 9UT

Classification and Strength

Symbol C - Clay M - Silt

(0 - containing organic matter)
Plasticity L - Low

I - IntermediateH - HighV - Very HighE - Extremely High

Ip Plasticity Index

% retained on 425 µm sieve, shown under lp

value

 $egin{array}{ll} w_L & \mbox{Liquid Limit} \\ w_P & \mbox{Plastic Limit} \\ \mbox{NP} & \mbox{Non-Plastic} \\ \end{array}$

NAT Sample tested in natural state

w Water Content

Particle Density

Test Quick undrained triaxial tests

SS Single stage - 102mm diameter.

S3 Single stage - set of 3 38mm diameter.

MS Multistage - 102mm diameter.

D Drained TestHV Hand Vane

PP Pocket Penetrometer (kg/cm²)

NST Not suitable for test

 γ_b Bulk Density

 σ_3 Triaxial Cell Pressure

 σ_1 - σ_3 Deviator Stress ### Excessive Strain c_u Undrained Cohesion c Cohesion Intercept

Angle of Shearing Resistance

Linear Shrinkage

Shrink

Stab add- Stabiliser which is added

Consolidation

 $\begin{array}{ll} m_{_{V}} & Coefficient \ of \ Volume \ Compressibility \\ c_{_{V50}} & Coefficient \ of \ Consolidation \ - \ Log \ t \\ c_{_{V90}} & Coefficient \ of \ Consolidation \ - \ \sqrt{t} \end{array}$

Rock

UF Unacceptable Failure

Chemical Analysis

Acid Soluble Total sulphate in specimen, expressed as

SO₃ %, value in brackets expressed as

SO₄ %

Water Soluble Soluble sulphate in 2:1 water : soil

extract, expressed as SO₃ g/l, value in

brackets expressed as SO₄ g/l

In Water Sulphate content of groundwater,

expressed as SO₃ g/l, value in brackets

expressed as SO₄ g/l

pH pH value

Organic content Organic content expressed as a

percentage of dry weight

percentage of dry weight

MCV, Compaction, CBR

MCV Moisture Condition Value at natural

water content

MCC Moisture Condition Calibration

CCV Chalk Crushing Value

Compaction

Type 2.5 = 2.5 kg Rammer

4.5 = 4.5 kg Rammer V = Vibrating Hammer

 $\gamma_{\rm b}$ Bulk Density

 γ_{d} Dry Density

CBR California Bearing Ratio

Type 2.5 = Test on Specimen

Recompacted using

2.5 kg Rammer

4.5 = As above but using

4.5 kg Rammer

V = As above but using

Vibrating Hammer

M = Test on open drive mould

specimen cut in field

S = Soaked Specimen

Top CBR at top of mould

Bottom CBR at bottom of mould

ND None Detected

In the Sample Description denotes a laboratory

only description

LABORATORY RESULTS - Classification and Strength

Project STOCKPORT INTERCHANGE GROUND INVESTIGATION

Sample	е				Classification					Strength						
Hole	Depth (Specimen Depth) m		Sample Ref	Description	Symbol	l _p (>425) %	w _L	w _p	w (p _d) %	Test	$\begin{array}{c} \gamma_b \\ (\gamma_d) \\ \text{Mg/m} \end{array}$	σ ₃	$\sigma_1 - \sigma_3$ kN/m^2	c _u	c _{Avg}	
BH301	2.00 (2.00)	D	N77867	Firm to stiff light yellowish brown mottled grey very sandy CLAY with some rootlets.					15.9							
BH301	3.20- 3.65 (3.20- 3.25)		N77869	Stiff high strength grey mottled orange slightly sandy clayey SILT with rootlets.		(1%)	25	NP	8.7 21.4 <10.9>	SS	1.82	60	239	120	120	
BH302A	2.20- 2.65 (2.20)		N77870	Firm medium strength grey mottled orange slightly gravelly sandy clayey SILT.		(2%)	23	NP	11.0 8.6 <7.8>	SS	1.94	40	147	74	74	
BH302A	3.60 (3.60)	D	N77872	Stiff greyish brown mottled orange slightly sandy CLAY.	CI	22 (0%)	43	21	22.7							
BH302B	2.20- 2.80 (2.20- 2.25)		N77874	Firm high strength grey mottled orange slightly gravelly sandy clayey SILT.		(3%)	22	NP	11.8 <8.6>	SS	1.92	40	170	85	85	
BH302B	3.30 (3.30)	D	N77876	Stiff light brown mottled orange slightly sandy CLAY.	CL	15 (0%)	33	18	21.2							

Remarks 🔛

NST - Not suitable for Test For Standards followed see Laboratory Test Certficate

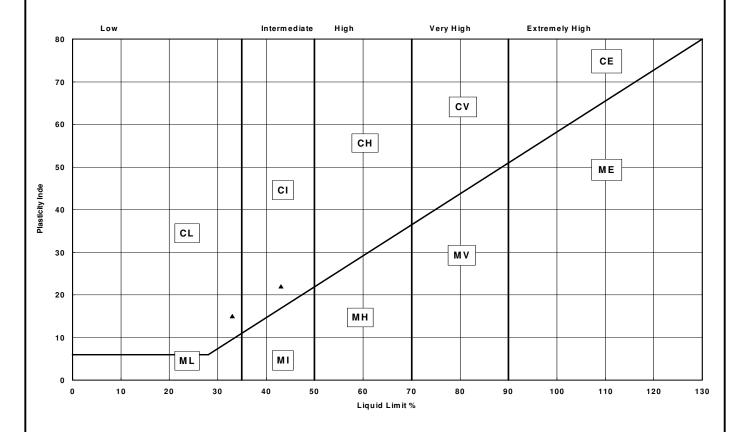
^ Rock water content test

QUT Water Contents: <Failure Zone>, [After test]

LABORATORY RESULTS - Atterberg Limit

Project STOCKPORT INTERCHANGE GROUND INVESTIGATION

Sampl	е				Results							
Hole	Depth (Specimen Depth) m	Туре	Sample Ref	Description	Test Type	Point Cone Pene.	Data Water % (Factor)	Sym- bol	þ %	>425 sieve µm	w _L	w p %
BH301	3.20- 3.65 (3.20)		N77869	Stiff high strength grey mottled orange slightly sandy clayey SILT with rootlets.	Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um sieve					1%	25	NP
BH302A	2.20- 2.65 (2.20)		N77870	Firm medium strength grey mottled orange slightly gravelly sandy clayey SILT.	Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um sieve					2%	23	NP
BH302A	3.60 (3.60)	D	N77872	Stiff greyish brown mottled orange slightly sandy CLAY.	Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um sieve			CI	22	0%	43	21
BH302B	2.20- 2.80 (2.20)	UT	N77874	Firm high strength grey mottled orange slightly gravelly sandy clayey SILT.	Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um sieve					3%	22	NP
BH302B	3.30 (3.30)	D	N77876	Stiff light brown mottled orange slightly sandy CLAY.	Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um sieve			CL	15	0%	33	18


Remarks 🔓

Project: STOCKPORT INTERCHANGE GROUND INVESTIGATION

Project No: PN194052

PLOT OF PLASTICITY INDEX AGAINST LIQUID LIMIT for all items tested

Plastic	ity Characterisics
L	Low
- 1	Intermediate
Н	High
V	Very High
E	Extremely High
	L I H V

Table of Soil Types and Plasticity Characteristics from BS 5930 : 1999 $\,$

Remarks 21/01/2020

LABORATORY RESULTS - Chemical Analysis

Project STOCKPORT INTERCHANGE GROUND INVESTIGATION Project No: PN194052

Sample	9				5	Sulphat	е				(Chloric	le
Hole	Depth (Specimen Depth) m		Sample Ref	Description	In Acid Soluble %	Soil Water Soluble g/l	In Water g/l	рН	Organic Content %	Loss on Ignition %	Acid	Soil Water Soluble g/l	In Water g/l
BH301	3.00	D	N77868	Firm to stiff grey mottled orange slightly sandy CLAY.		0.165 (0.20)		6.87					
BH302A	3.00 (3.00)	D	N77871	Grey mottled orange clayey fine to medium SAND.		0.082 (0.10)		5.30					
BH302A	3.80- 4.25 (3.80- 4.25)		N77873	Reddish brown SAND and GRAVEL (Sandstone).		0.031 (0.04)		7.50					
BH302B	2.60- 2.80 (2.60- 2.80)		N77875	Firm grey mottled orange slightly gravelly sandy CLAY.		0.130 (0.16)		4.75					
WS305	0.25- 1.00 (0.25- 1.00)		N77877	MADE GROUND: Black clayey sand and gravel.		0.228 (0.27)		10.40					

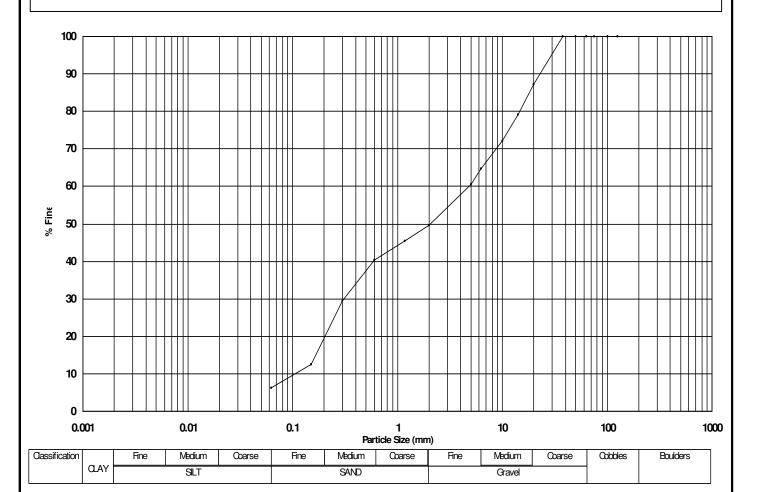
Remarks For Standards followed please see Laboratory Test Certificate Sulphate reported as SO3, results in brackets reported as SO4

LABORATORY RESULTS - Particle Size Distribution

STOCKPORT INTERCHANGE GROUND INVESTIGATION Project:

WS305 Hole

Sample Depth 0.25-1.00m


Sample Type Sample Ref

В N77877

Sample Description

Project No: PN194052

MADE GROUND: Black clayey sand and gravel.

Classification	% of each
SILT (including CLAY)	6
SAND	44
GRAVEL	50
COBBLES	0
BOULDERS	0

Siz	e	% Finer
125	mm	100
100	mm	100
75	mm	100
63	mm	100
50	mm	100
37.5	mm	100
20	mm	87
14	mm	79
10	mm	72
6.3	mm	65
5	mm	60
2	mm	50
1.18	mm	45
600	μm	40
300	μm	29
150	μm	12

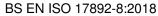
Size	% Finer
63 µm	6

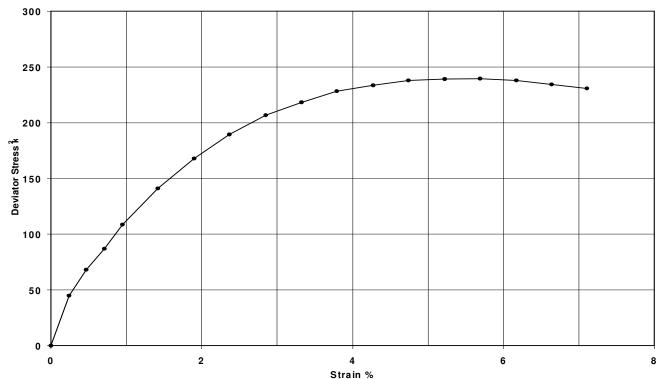
Uniformity	Coefficient
4	5.18
Sieving	Method
Wet	t sieve
Fine Partic	ele Analysis
Method	
Pre-treated with	
% loss on Pre-treatment	
Particle Density	

Remarks Sieve:-Test performed in accordance with BS EN ISO 17892-4:2016

geotechnical and geoenvironmental specialists

Project: STOCKPORT INTERCHANGE GROUND INVESTIGATION


Hole BH301 Sample Depth 3.20-3.65m


Project No: PN194052

Sample Type UT
Sample Ref N77869

Sample Description The following samples were combined to perform this test:

Stiff high strength grey mottled orange slightly sandy clayey SILT with rootlets.

	Stage 1	Stage 2	Stage 3	Strain %	Corrected Deviator Stress kN/m ²	Strain %	Corrected Deviator Stress kN/m ²
Sample Condition		Undisturbed		0.2	44.9		
Orientation of sample		Vertical		0.5 0.7	68.2 87.0		
Initial Diameter (mm)	102.70			0.7	108.6		
Initial Length (mm)	210.86			1.4	141.1		
Initial Water Content (%)	21.4			1.9	167.7		
Initial Bulk Density (Mg/m³)	1.82			2.4	189.4		
Initial Dry Density (Mg/m³)	1.50			2.8	206.6		
Particle Density (Mg/m³)	2.65 Assumed			3.3	218.2		
Cell Pressure (kPa)	60			3.8 4.3	228.5 233.5		
'Specimen Height' at start of Shearing Stage (mm)	210.26			4.7	237.9		
Membrane Thickness/Correction (mm/kPa)				5.2 5.7	239.1 239.5		
Rate of Strain (%/min)	2.0			6.2	237.8		
Corrected Deviator Stress (kPa)	239			6.6	234.4		
Undrained Shear Strength (kPa)	120			7.1	230.8		
Strain at Failure (%)	5.7						
Failure Zone Water Content (%)	10.9						
Water Content (after test) (%)							
Mode of Failure	Brittle						

Remarks

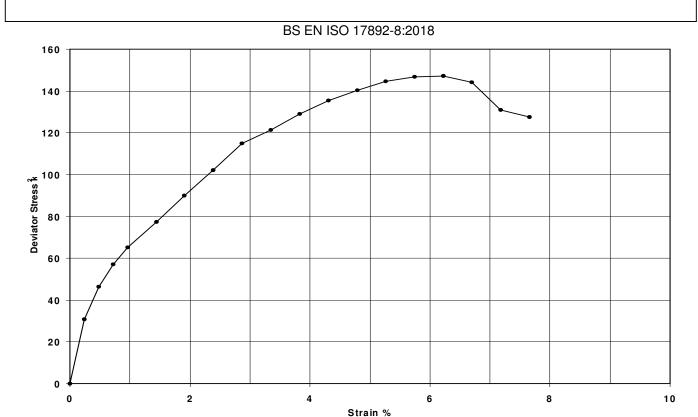
Project: STOCKPORT INTERCHANGE GROUND INVESTIGATION Hole BH301

 Project No:
 PN194052
 Sample Depth
 3.20-3.65m

 Bample Type
 UT
 Sample Ref
 N77869

Remarks

Project: STOCKPORT INTERCHANGE GROUND INVESTIGATION


Hole BH302A Sample Depth 2.20-2.65m

Project No: PN194052

Sample Type UT
Sample Ref N77870

Sample Description The following samples were combined to perform this test:

Firm medium strength grey mottled orange slightly gravelly sandy clayey SILT.

	Stage 1	Stage 2	Stage 3	Strain %	Corrected Deviator Stress kN/m ²	Strain %	Corrected Deviator Stress kN/m
Sample Condition		Undisturbed	1	0.2	30.7		Stress kin/iii
Orientation of sample		Vertical		0.5	46.4		
Initial Diameter (mm)	102.01			0.7	57.1 65.1		
Initial Length (mm)	208.95			1.4	77.3		
Initial Water Content (%)	8.6			1.9	90.0		
Initial Bulk Density (Mg/m³)	1.94			2.4	102.2		
Initial Dry Density (Mg/m³)	1.79			2.9	115.0		
Particle Density (Mg/m³)	2.65 Assumed			3.4	121.4		
Cell Pressure (kPa)	40			3.8	129.0 135.3		
'Specimen Height' at start of Shearing Stage (mm)	208.66			4.8	140.3		
Membrane Thickness/Correction (mm/kPa)				5.3 5.7	144.7 146.9		
Rate of Strain (%/min)	2.0			6.2	147.2		
Corrected Deviator Stress (kPa)	147			6.7	144.3		
Undrained Shear Strength (kPa)	74			7.2	131.0		
Strain at Failure (%)	6.2			7.7	127.6		
Failure Zone Water Content (%)	7.8						
Water Content (after test) (%)							
Mode of Failure	Brittle						

Remarks

Project: STOCKPORT INTERCHANGE GROUND INVESTIGATION

BH302A Hole Sample Depth 2.20-2.65m

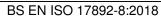
Sample Type Project No: PN194052

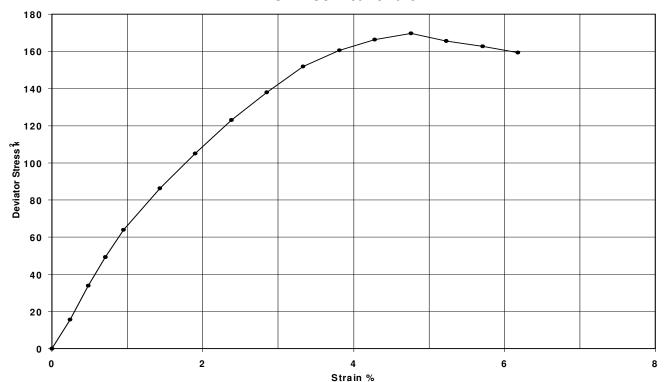
UT Sample Ref N77870

Remarks

Project: STOCKPORT INTERCHANGE GROUND INVESTIGATION

Hole BH302B Sample Depth 2.20-2.80m


Project No: PN194052


Sample Type UT
Sample Ref N77874

Sample Description

The following samples were combined to perform this test:

Firm high strength grey mottled orange slightly gravelly sandy clayey SILT.

		Otta	111 /0				
	Stage 1	Stage 2	Stage 3	Strain %	Corrected Deviator Stress kN/m ²	Strain %	Corrected Deviator Stress kN/m ²
Sample Condition		Undisturbed		0.2	15.6		
Orientation of sample		Vertical		0.5	33.9		
Initial Diameter (mm)	103.08			0.7	49.2 63.9		
Initial Length (mm)	210.21			1.4	86.3		
Initial Water Content (%)	11.8			1.9	105.0		
Initial Bulk Density (Mg/m³)	1.92			2.4	123.1		
Initial Dry Density (Mg/m³)	1.72			2.9	137.8		
Particle Density (Mg/m³)	2.65 Assumed			3.3	151.9 160.4		
Cell Pressure (kPa)	40			4.3	166.3		
'Specimen Height' at start of Shearing Stage (mm)	210.13			4.8	169.6		
Membrane Thickness/Correction (mm/kPa)				5.2 5.7	165.6 162.6		
Rate of Strain (%/min)	2.0			6.2	159.4		
Corrected Deviator Stress (kPa)	170						
Undrained Shear Strength (kPa)	85						
Strain at Failure (%)	4.8						
Failure Zone Water Content (%)	8.6						
Water Content (after test) (%)							
Mode of Failure	Brittle						

Remarks

Project: STOCKPORT INTERCHANGE GROUND INVESTIGATION

Hole BH302B Sample Depth 2.20-2.80m

Project No: PN194052 Sample Type

Sample Type UT Sample Ref N77874

Remarks

Project STOCKPORT INTERCHANGE GROUND INVESTIGATION Project No: PN194052

Hole	Depth (Specimen Depth) m	Туре	Sample Ref	Description	w %	W	D mm	Fail Load kN	Test Type/ Direction	De mm	De ²	Is MN/m ²	F	Is 50 MN/m
BH301	4.73- 4.85 (4.73- 4.85)	С	N78004	Extremely weak to very weak reddish brown fine to coarse grained SANDSTONE.	11.0	86 85 85	85 51 46	0.15 0.19 0.15	D/PL A/PD A/PD	85.00 74.29 70.56	7225 5519 4978	0.021 0.034 0.030	1.270 1.195 1.168	0.04
BH301	5.00- 5.09 (5.00- 5.09)	С	N78005	Very weak reddish brown fine to coarse grained SANDSTONE.	9.8	85	79	0.40	A/PD	92.47	8550	0.047	1.319	0.06
BH301	7.97- 8.09 (7.97- 8.09)	С	N78006	Very weak reddish brown fine to coarse grained SANDSTONE.	13.6	86 86 86	86 62 48	0.84 0.95 0.56	D/PL A/PD A/PD	86.00 82.39 72.50	7396 6789 5256	0.113 0.140 0.106	1.276 1.252 1.182	0.176
BH301	8.60- 8.70 (8.60- 8.70)	С	N78007	Very weak reddish brown fine to coarse grained SANDSTONE.	13.5	85 85 85	85 51 50	0.32 0.42 0.47	D/PL A/PD A/PD	85.00 74.29 73.56	7225 5519 5411	0.044 0.076 0.086	1.270 1.195 1.190	0.091
BH301	10.60- 10.70 (10.60- 10.70)	С	N78008	Very weak reddish brown fine to coarse grained SANDSTONE.	16.1	85 85 85	85 81 76	0.48 0.77 0.65	D/PL A/PD A/PD	85.00 93.63 90.69	7225 8766 8225	0.066 0.088 0.080	1.270 1.326 1.307	
BH301	11.79- 11.90 (11.79- 11.90)	С	N78009	Very weak reddish brown fine to coarse grained SANDSTONE.	16.5	86 86 86	86 62 57	0.27 0.66 0.45	D/PL A/PD A/PD	86.00 82.39 79.00	7396 6789 6241	0.036 0.097 0.072	1.276 1.252 1.229	0.122
BH301	14.22- 14.38 (14.22- 14.38)	С	N78010	Very weak reddish brown fine to coarse grained SANDSTONE.	13.7	86 86 86	86 71 57	0.46 0.65 0.54	D/PL A/PD A/PD	86.00 88.17 79.00	7396 7774 6241	0.062 0.084 0.086	1.276 1.291 1.229	0.108
BH301	16.70- 16.82 (16.70- 16.82)	С	N78011	Extremely weak to very weak reddish brown fine to coarse grained SANDSTONE.	13.9	85 85 85	85 69 53	0.18 0.35 0.17	D/PL A/PD A/PD	85.00 86.41 75.74	7225 7468 5736	0.024 0.046 0.029	1.270 1.279 1.206	0.059
BH301	19.90- 19.99 (19.90- 19.99)	С	N78012	Very weak reddish brown fine to coarse grained SANDSTONE.	12.6	86	81	0.63	A/PD	94.18	8869	0.071	1.330	0.095
BH301	20.74- 20.82 (20.74- 20.82)	С	N78013	Very weak reddish brown fine to coarse grained SANDSTONE.	11.8	86	68	0.53	A/PD	86.29	7446	0.071	1.278	0.091
BH301	21.00- 21.20 (21.00- 21.20)	С	N78014	Very weak reddish brown fine to coarse grained SANDSTONE.	12.0	86 86 86	86 86 79 71	0.48 0.38 0.65 0.71	D/PL D/PL A/PD A/PD	86.00 86.00 93.01 88.17	7396 7396 8650 7774		1.276 1.276 1.322 1.291	0.066

Remarks 🗟

Test Type D - Diametral, A - Axial, I - Lump or Irregular Test

Direction PL - parallel to planes of weakness, R - Random or unknown orientation,

PD - perpendicular to planes of weakness

Fail Load UF - unacceptable failure

For Standards followed see Laboratory Test Certificate

Project STOCKPORT INTERCHANGE GROUND INVESTIGATION

Sample)							F-"						
Hole	Depth (Specimen Depth) m	Туре	Sample Ref	Description	w %	W mm	D mm	Fail Load kN	Test Type/ Direction	De mm	De ² mm ²	Is MN/m ²	F	Is 50 MN/m
BH301	22.00- 22.10 (22.00- 22.10)	С	N78015	Very weak reddish brown fine to coarse grained SANDSTONE.	10.8	85 84 84	84 51 49	0.26 0.28 0.20	D/PL A/PD A/PD	84.00 73.85 72.39	7056 5455 5241	0.037 0.051 0.038	1.263 1.192 1.181	
BH301	23.78- 23.89 (23.78- 23.89)	С	N78016	Very weak reddish brown fine to coarse grained SANDSTONE.	9.4	85 85 85	85 58 57	0.45 0.52 0.50	D/PL A/PD A/PD	85.00 79.23 78.54	7225 6277 6169	0.062 0.083 0.081	1.270 1.230 1.225	0.102
BH301	24.50- 24.68 (24.50- 24.68)	С	N78017	Very weak reddish brown fine to coarse grained SANDSTONE.	13.7	80 79 79	79 73 72	0.32 0.56 0.58	D/PL A/PD A/PD	79.00 85.69 85.10	6241 7343 7242	0.052 0.076 0.081	1.229 1.274 1.270	0.097
BH301	24.87- 25.00 (24.87- 25.00)	С	N78018	Very weak reddish brown fine to coarse grained SANDSTONE.	13.0	85 83	83 56	0.24 0.33	D/PL A/PD	83.00 76.93	6889 5918	0.035 0.055	1.256 1.214	
BH302A	4.30- 4.43 (4.30- 4.43)	С	N78019	Very weak reddish brown fine to coarse grained SANDSTONE.	9.5	100 100	64 65	0.26 0.35	A/PD A/PD	90.27 90.97	8149 8276	0.032 0.043	1.305 1.309	
BH302B	4.15- 4.26 (4.15- 4.26)	С	N78020	Extremely weak reddish brown fine to coarse grained SANDSTONE.	12.5	100 100	61 52	0.19 0.16	A/PD A/PD	88.13 81.37	7767 6621	0.024 0.024	1.291 1.245	0.032 0.030
BH302B	4.50- 4.65 (4.50- 4.65)	С	N78021	Extremely weak to very weak reddish brown fine to coarse grained SANDSTONE.	12.6	100 100 100	100 61 59	0.17 0.26 0.31	D/PL A/PD A/PD	100.00 88.13 86.67	10000 7767 7512	0.017 0.034 0.041	1.366 1.291 1.281	0.023 0.044 0.053
BH302B	4.65- 4.78 (4.65- 4.78)	С	N78022	Extremely weak reddish brown fine to coarse grained SANDSTONE.	10.2	100	89	0.18	A/PD	106.45	11332	0.016	1.405	0.023
BH302B	9.74- 9.90 (9.74- 9.90)	С	N78023	Extremely weak reddish brown fine to coarse grained SANDSTONE.	14.5	100 100 100	100 66 58	0.14 0.18 0.23	D/PL A/PD A/PD	100.00 91.67 85.93	10000 8403 7385	0.014 0.021 0.031	1.366 1.314 1.276	0.028
BH302B	9.90- 10.00 (9.90- 10.00)	С	N78024	Extremely weak reddish brown fine to coarse grained SANDSTONE.	13.6	90 70	66 47	0.07 0.08	I/R I/R	86.97 64.72	7563 4189	0.009 0.020	1.283 1.123	
BH302B	10.64- 10.80 (10.64- 10.80)	С	N78025	Extremely weak to very weak reddish brown fine to coarse grained SANDSTONE.	12.0	100 96 96	96 64 64	0.12 0.71 0.83	D/PL A/PD A/PD	96.00 88.45 88.45	9216 7823 7823	0.013 0.090 0.106	1.341 1.293 1.293	

Remarks 🔛

Test Type D - Diametral, A - Axial, I - Lump or Irregular Test

Direction PL - parallel to planes of weakness, R - Random or unknown orientation,

PD - perpendicular to planes of weakness

Fail Load UF - unacceptable failure

For Standards followed see Laboratory Test Certificate

Project STOCKPORT INTERCHANGE GROUND INVESTIGATION

Sample)													
Hole	Depth (Specimen Depth) m		Sample Ref	Description	w %	W mm	D mm	Fail Load kN	Test Type/ Direction	De mm	De ² mm ²	Is MN/m ²	F	Is 50 MN/m ²
BH302B	11.39- 11.47 (11.39- 11.47)	С	N78026	Very weak reddish brown fine to coarse grained SANDSTONE.	14.3	100	70	0.79	A/PD	94.41	8913	0.088	1.331	0.118
BH302B	12.00- 12.13 (12.00- 12.13)	С	N78027	Very weak reddish brown fine to coarse grained SANDSTONE.	13.2	100 100 100	100 91 57	0.63 0.89 0.52	D/PL A/PD A/PD	100.00 107.64 85.19	10000 11586 7257	0.063 0.077 0.071	1.366 1.412 1.271	0.087 0.109 0.091
BH302B	12.70- 12.83 (12.70- 12.83)	С	N78028	Very weak reddish brown fine to coarse grained SANDSTONE.	13.1	100 101 101	101 79 49	0.33 0.71 0.45	D/PL A/PD A/PD	101.00 100.79 79.38	10201 10159 6301	0.032 0.070 0.071	1.372 1.371 1.231	0.044 0.096 0.087
BH302B	13.43- 13.52 (13.43- 13.52)	С	N78029	Very weak reddish brown fine to coarse grained SANDSTONE.	12.5	100	72	0.73	A/PD	95.75	9167	0.080	1.340	0.107
BH302B	14.00- 14.20 (14.00- 14.20)	С	N78030	Very weak reddish brown fine to coarse grained SANDSTONE.	15.2	100 100 100 100	100 100 74 59	0.69 0.32 0.92 0.75	D/PL D/PL A/PD A/PD	100.00 100.00 97.07 86.67	10000 10000 9422 7512	0.069 0.032 0.098 0.100	1.366 1.366 1.348 1.281	0.094 0.044 0.132 0.128
BH302B	15.00- 15.10 (15.00- 15.10)	С	N78031	Very weak reddish brown fine to coarse grained SANDSTONE.	12.9	100	76	0.67	A/PD	98.37	9677	0.069	1.356	0.094
BH302B	15.28- 15.45 (15.28- 15.45)	С	N78032	Very weak reddish brown fine to coarse grained SANDSTONE.	15.5	100 100 100	100 77 47	0.34 0.89 0.49	D/PL A/PD A/PD	100.00 99.01 77.36	10000 9804 5984	0.034 0.090 0.082	1.366 1.360 1.217	0.046 0.123 0.100
BH302B	15.73- 15.87 (15.73- 15.87)		N78033	Extremely weak to very weak reddish brown fine to coarse grained SANDSTONE.	15.2	100 100 100	100 89 69	0.36 0.56 0.24	D/PL A/PD A/PD	100.00 106.45 93.73	10000 11332 8785	0.036 0.049 0.028	1.366 1.405 1.327	0.049 0.069 0.037
BH302B	18.40- 18.50 (18.40- 18.50)	ı	N78034	Extremely weak reddish brown fine to coarse grained SANDSTONE.	13.7	95	74	0.14	A/PD	94.61	8951	0.016	1.332	0.021
BH302B	19.50- 19.57 (19.50- 19.57)	l	N78035	Very weak reddish brown fine to coarse grained SANDSTONE.	29.5	95	59	0.32	A/PD	84.48	7137	0.045	1.266	0.057
BH302B	20.47- 20.50 (20.47- 20.50)	С	N78036	Extremely weak to very weak reddish brown fine to coarse grained SANDSTONE.	13.5	90 60	43 36	0.15 0.13	I/R I/R	70.20 52.44	4927 2750	0.031 0.049	1.165 1.022	0.036 0.050

Remarks 🗟

Test Type D - Diametral, A - Axial, I - Lump or Irregular Test

Direction PL - parallel to planes of weakness, R - Random or unknown orientation,

PD - perpendicular to planes of weakness

Fail Load UF - unacceptable failure

For Standards followed see Laboratory Test Certificate

Project STOCKPORT INTERCHANGE GROUND INVESTIGATION

Sample)													
Hole	Depth (Specimen Depth) m	Туре	Sample Ref	Description	w %	W	D mm	Fail Load kN	Test Type/ Direction	De mm	De ²	Is MN/m ²	F	Is 50 MN/m ²
BH302B	23.50- 23.58 (23.50- 23.58)	С	N78037	Very weak reddish brown fine to coarse grained SANDSTONE.	10.8	100	79	0.44	A/PD	100.29	10059	0.044	1.368	0.060
BH302B	23.84- 23.93 (23.84- 23.93)	С	N78038	Very weak reddish brown fine to coarse grained SANDSTONE.	10.5	100 100 100	101 58 47	0.69 0.67 0.55	A/PD	101.00 85.93 77.36	10201 7385 5984	0.067 0.091 0.092	1.372 1.276 1.217	0.116
BH302B	24.00- 24.13 (24.00- 24.13)	С	N78039	Extremely weak to very weak reddish brown fine to coarse grained SANDSTONE.	11.1	100 100 100	100 70 59	0.25 0.57 0.35	A/PD	100.00 94.41 86.67		0.025 0.064 0.047	1.366 1.331 1.281	0.034 0.085 0.060

Remarks 🗟

Test Type D - Diametral, A - Axial, I - Lump or Irregular Test

Direction PL - parallel to planes of weakness, R - Random or unknown orientation,

PD - perpendicular to planes of weakness

Fail Load UF - unacceptable failure

For Standards followed see Laboratory Test Certificate

Certificate Number 20-00353

13-Jan-20

Client Geotechnics LTD

203 Torrington Avenue

Tile Hill Coventry CV4 9AP

Our Reference 20-00353

Client Reference PN194052

Order No AUTH-OL24059

Contract Title Stockport Interchange

Description 2 Soil samples.

Date Received 09-Jan-20

Date Started 09-Jan-20

Date Completed 13-Jan-20

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025

accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Summary of Chemical Analysis Soil Samples

Our Ref 20-00353
Client Ref PN194052
Contract Title Stockport Interchange

Lab No	1621220
Sample ID	WS305
Depth	2.00-2.45
Other ID	
Sample Type	D
Sampling Date	n/s
Sampling Time	n/s
LOD Units	

Test	Method	LOD	Units	
Inorganics				
рН	DETSC 2008#		рН	11.1
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	270

Summary of Asbestos Analysis Soil Samples

Our Ref 20-00353 Client Ref PN194052

Contract Title Stockport Interchange

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
1621219	WS305 0.25-1.00	SOIL	NAD	none	Jordan Eadington

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 20-00353 Client Ref PN194052

Contract Stockport Interchange

Containers Received & Deviating Samples

Date containers Received Holding time exceeded for tests

Lab No	o Sample ID Sample		Containers Received	Holding time exceeded for tests	tests
1621219	WS305 0.25-1.00 SOIL		PT 1L		
1621220	WS305 2.00-2.45 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (365 days), pH	
				+ Conductivity (7 days)	

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-

Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

LABORATORY TEST CERTIFICATE

10 Queenslie Point Queenslie Industrial Estate 120 Stepps Road Glasgow

Tel: 0141 774 4032

G33 3NQ

email: info@mattest.org Website: www.mattest.org

Certificate No: 20/019 - 01

To: Thomas Birch

Client : Geotechnics Limited

River Lane Saltney Chester CH4 8RJ

Unit 1B, Borders Industrial Park

Dear Sirs,

LABORATORY TESTING OF ROCK

Introduction

We refer to samples taken from Stockport Interchange GI and delivered to our laboratory on 08th January 2020.

Material & Source

Sample Reference : See Report Plates

Sampled By : Client

Sampling Certificate : Not Supplied

Location : See Report Plates

Description : Rock Cores

Date Sampled : Not Supplied

Date Tested : 08th January 2020 Onwards

Source : PN194052 - Stockport Interchange GI

Test Results;

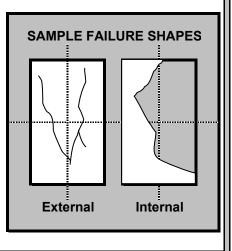
As Detailed On Page 2 to Page 6 inclusive

Comments:

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory. All remaining samples for this project will be disposed of 28 days after issue of this test certificate.

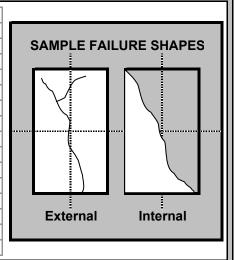
Remarks;

Approved for Issue		
	Date	03/02/2020
T McLelland (Director)		



Issue No. 01 Page 1 of 6

GEOTECHNICS LIMITED STOCKPORT INTERCHANGE



BOREHOLE		BH301
SAMPLE		С
DEPTH	m	10.97-11.06
SAMPLE DIAMETER	mm	84.44
SAMPLE HEIGHT	mm	151.40
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.1
TEST DURATION	min.sec	8.01
DATE OF TESTING		31/01/2020
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	38.5
UNCONFINED COMPRESSIVE STRENGTH	MPa	6.9
WATER CONTENT (ISRM Suggested Methods)	%	14.3
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.18
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	1.91

Test specimen does not meet specified length / diameter ratio requirements

BOREHOLE		BH301
SAMPLE		С
DEPTH	m	12.50-12.80
SAMPLE DIAMETER	mm	85.81
SAMPLE HEIGHT	mm	154.39
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.1
TEST DURATION	min.sec	7.33
DATE OF TESTING		31/01/2020
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	41.0
UNCONFINED COMPRESSIVE STRENGTH	MPa	7.1
WATER CONTENT (ISRM Suggested Methods)	%	11.9
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.17
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	1.94

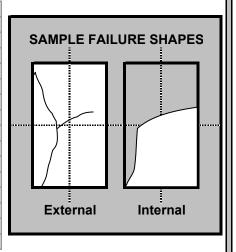
Test specimen does not meet specified length / diameter ratio requirements

BOREHOLE			
SAMPLE			
DEPTH	m	SAMPLE FAIL	URE SHAPES
SAMPLE DIAMETER	mm		
SAMPLE HEIGHT	mm		
TEST CONDITION			
RATE OF LOADING	kN/s		
TEST DURATION	min.sec		
DATE OF TESTING			
LOAD FRAME USED			
LOAD DIRECTION WITH RESPECT TO LITHOLOGY			
FAILURE LOAD	kN		
UNCONFINED COMPRESSIVE STRENGTH	MPa		
WATER CONTENT (ISRM Suggested Methods)	%	External	Internal
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³		
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³		

Tested in accordance with ASTM D7012 - 14

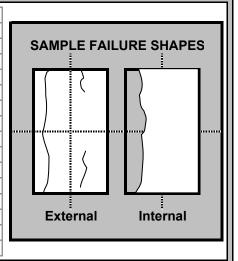
SUMMARY OF UNCONFINED COMPRESSIVE STRENGTH

GEOTECHNICS LIMITED STOCKPORT INTERCHANGE



BOREHOLE		BH302B	1
SAMPLE		С	
DEPTH	m	11.00-11.28	SAMPLE FAILU
SAMPLE DIAMETER	mm	100.42	
SAMPLE HEIGHT	mm	160.17	
TEST CONDITION		As Received	
RATE OF LOADING	kN/s	0.1	
TEST DURATION	min.sec	8.31	
DATE OF TESTING		31/01/2020	\ \
LOAD FRAME USED		2000kN	
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown	
FAILURE LOAD	kN	38.9	
UNCONFINED COMPRESSIVE STRENGTH	MPa	4.9	
WATER CONTENT (ISRM Suggested Methods)	%	12.3	External
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.11	
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	1.88	

URE SHAPES Internal


Test specimen does not meet specified length / diameter ratio requirements

BOREHOLE		BH302B
SAMPLE		С
DEPTH	m	13.52-13.74
SAMPLE DIAMETER	mm	100.49
SAMPLE HEIGHT	mm	127.94
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.1
TEST DURATION	min.sec	7.12
DATE OF TESTING		31/01/2020
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	39.0
UNCONFINED COMPRESSIVE STRENGTH	MPa	4.9
WATER CONTENT (ISRM Suggested Methods)	%	16.4
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.10
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	1.80
LOAD FRAME USED LOAD DIRECTION WITH RESPECT TO LITHOLOGY FAILURE LOAD UNCONFINED COMPRESSIVE STRENGTH WATER CONTENT (ISRM Suggested Methods) BULK DENSITY (ISRM Suggested Methods)	MPa % Mg/m³	2000kN Unknown 39.0 4.9 16.4 2.10

Test specimen does not meet specified length / diameter ratio requirements

	BH302B
	С
m	24.37-24.54
mm	100.06
mm	97.77
	As Received
kN/s	0.1
min.sec	6.07
	31/01/2020
	2000kN
	Unknown
kN	40.3
MPa	5.1
%	13.7
Mg/m ³	2.11
Mg/m ³	1.85
	kN/s min.sec kN MPa % Mg/m³

Test specimen does not meet specified length / diameter ratio requirements

Tested in accordance with ASTM D7012 - 14

SUMMARY OF UNCONFINED COMPRESSIVE STRENGTH

GEOTECHNICS LIMITED STOCKPORT INTERCHANGE

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	TYPE OF TEST * (see below)	CORE DIAMETER (mm)	EQUIVALENT DIAMETER (mm)	PLATEN SEPARATION (mm)	FAILURE LOAD (kN)	Is (MPa)	Is(50) (MPa)
BH301	С	4.14-4.48	As Received	Α	85.39 85.39	85.39 74.70	85.39 51.32	0.14 0.38	0.02	0.02
	С	20.50-20.74	As Received	A D A A	85.39 85.22 85.22 85.22	73.82 85.22 69.29 73.38	50.12 85.22 44.25	0.27 0.25 0.14 0.14	0.05 0.03 0.03 0.03	0.06 0.04 0.03 0.03
	С	24.58-24.87	As Received		77.83 7.83 77.83	73.36 77.83 23.14 78.50	49.63 77.83 53.72 62.18	0.14 0.05 0.15 0.32	0.03 0.01 0.29 0.05	0.03 0.01 0.20 0.06
				Α	77.00	70.00	02.10	0.02	0.00	0.00

NOTE: N/M - Not measured NOTE: A dash (-) signifies that scale

did not register a reading

* I = IRREGULAR TEST D = DIAMETRAL TEST A = AXIAL TEST

Mean Is(50) - Axial tests	0.08
Mean Is(50) - Diametrical tests	0.03
la(50)	3.09

Tested in accordance with ISRM (2007)

SUMMARY OF POINT LOAD TEST RESULTS

GEOTECHNICS LIMITED STOCKPORT INTERCHANGE

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	TYPE OF TEST * (see below)	CORE DIAMETER (mm)	EQUIVALENT DIAMETER (mm)	PLATEN SEPARATION (mm)	FAILURE LOAD (kN)	Is (MPa)	Is(50) (MPa)
BH302A	С		CONTENT	TEST * (see below)	DIAMETER	DIAMETER	SEPARATION	LOAD		

NOTE: N/M - Not measured

NOTE: A dash (-) signifies that scale

did not register a reading

* I = IRREGULAR TEST D = DIAMETRAL TEST A = AXIAL TEST

Mean Is(50) - Axial tests	0.02
Mean Is(50) - Diametrical tests	0.02
la(50)	1.08

Tested in accordance with ISRM (2007)

SUMMARY OF POINT LOAD TEST RESULTS

GEOTECHNICS LIMITED STOCKPORT INTERCHANGE

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	TYPE OF TEST * (see below)	CORE DIAMETER (mm)	EQUIVALENT DIAMETER (mm)	PLATEN SEPARATION (mm)	FAILURE LOAD (kN)	Is (MPa)	Is(50) (MPa)
BH302B	С	(m)	CONTENT	TEST * (see below)	DIAMETER	DIAMETER	SEPARATION	LOAD		

NOTE: N/M - Not measured

NOTE: A dash (-) signifies that scale

did not register a reading

* I = IRREGULAR TEST D = DIAMETRAL TEST A = AXIAL TEST

Tested in accordance with ISRM (2007)

SUMMARY OF POINT LOAD TEST RESULTS

APPENDIX 9

Laboratory Test Results - Contamination

Certificate Number 19-23460

28-Nov-19

Client Geotechnics LTD

203 Torrington Avenue

Tile Hill Coventry CV4 9AP

Our Reference 19-23460

Client Reference PN194052

Order No (not supplied)

Contract Title Stockport Interchange GI

Description 8 Soil samples, 4 Leachate samples.

Date Received 19-Nov-19

Date Started 19-Nov-19

Date Completed 28-Nov-19

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Our Ref 19-23460 Client Ref PN194052

Contract Title Stockport Interchange GI

Lab No	1599589	1599590	1599591	1599592	1599593	1599594
Sample ID	WS301A	WS301A	WS302A	WS302A	WS303	WS303
Depth	1.00	2.50	0.20	1.00	0.20	3.00
Other ID						
Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sampling Date	11/11/19	11/11/19	11/11/19	11/11/19	11/11/19	11/11/19
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

		Janipii	ng rimeL	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Metals					<u>.</u>				
Arsenic	DETSC 2301#	0.2	mg/kg	3.0	5.8	6.3	18	11	3.9
Barium	DETSC 2301#	1.5	mg/kg	47	100	130	630	160	50
Beryllium	DETSC 2301#	0.2	mg/kg	< 0.2	0.3	0.5	0.8	0.5	0.4
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	0.2	< 0.2
Cadmium	DETSC 2301#	0.1	mg/kg	0.1	0.1	0.2	0.5	0.4	0.2
Chromium	DETSC 2301#	0.15	mg/kg	4.6	6.6	12	19	24	9.2
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	10	15	31	71	48	23
Lead	DETSC 2301#	0.3	mg/kg	16	13	64	300	100	32
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05	< 0.05	0.11	0.06	< 0.05
Nickel	DETSC 2301#	1	mg/kg	4.0	12	12	18	15	9.4
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	5.5	< 0.5	< 0.5	< 0.5	< 0.5
Vanadium	DETSC 2301#	0.8	mg/kg	6.2	9.7	22	23	33	12
Zinc	DETSC 2301#	1	mg/kg	19	23	66	160	81	43
Inorganics	•		-		•				
рН	DETSC 2008#		рН	11.7	7.5	9.7	8.0	10.4	7.9
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	0.1	0.7	0.3	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Organic Carbon	DETSC 2084#	0.5	%	< 0.5			4.9	3.9	
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	10	46	44	27	110	41
Petroleum Hydrocarbons	•		•		•				
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	1.2	1.3
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	3.9	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4	71	< 3.4	25	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	76	< 10	26	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	1.4	< 0.5	0.9	< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6	12	< 0.6	5.2	< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4	190	< 1.4	68	< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	200	< 10	74	< 10
TPH Ali/Aro Total	DETSC 3072*	10	mg/kg	< 10	< 10	280	< 10	100	< 10
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Our Ref 19-23460 Client Ref PN194052

Contract Title Stockport Interchange GI

Lab No	1599589	1599590	1599591	1599592	1599593	1599594
Sample ID	WS301A	WS301A	WS302A	WS302A	WS303	WS303
Depth	1.00	2.50	0.20	1.00	0.20	3.00
Other ID						
Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sampling Date	11/11/19	11/11/19	11/11/19	11/11/19	11/11/19	11/11/19
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units	·		·		·	
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	0.81	< 0.01
PAHs				·				·	
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	0.1	2.9	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	3.4	< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	0.1	< 0.1	0.5	12	0.4	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	0.4	15	0.3	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	0.3	< 0.1	3.5	85	1.7	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	1.1	37	0.5	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	0.4	< 0.1	5.7	140	2.7	< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	0.4	< 0.1	5.3	180	2.5	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	0.2	< 0.1	2.3	76	1.2	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	0.2	< 0.1	2.6	81	1.3	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	0.2	< 0.1	2.1	46	1.2	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	0.1	< 0.1	1.1	25	0.6	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	0.2	< 0.1	2.8	71	1.4	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	0.1	< 0.1	1.8	37	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	0.2	< 0.1	0.4	8.0	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	0.1	< 0.1	1.8	37	< 0.1	< 0.1
PAH Total	DETSC 3301	1.6	mg/kg	2.6	< 1.6	32	860	14	< 1.6
Phenols									
Phenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	0.58	< 0.01	< 0.01
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
p-cresol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	1.6	< 0.01	< 0.01
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
VOCs									
Vinyl Chloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1 Dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Trans-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Cis-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chloroform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,1-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Carbon tetrachloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Our Ref 19-23460 Client Ref PN194052

Contract Title Stockport Interchange GI

Lab No	1599589	1599590	1599591	1599592	1599593	1599594
Sample ID	WS301A	WS301A	WS302A	WS302A	WS303	WS303
Depth	1.00	2.50	0.20	1.00	0.20	3.00
Other ID						
Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sampling Date	11/11/19	11/11/19	11/11/19	11/11/19	11/11/19	11/11/19
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

		-	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Trichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibromomethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromodichloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
cis-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
trans-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,2-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tetrachloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dibromoethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,1,2-tetrachloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
m+p-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
o-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Styrene	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromoform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Isopropylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,3-trichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
n-propylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3,5-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
4-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tert-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,4-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
sec-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
p-isopropyltoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,4-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
n-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dibromo-3-chloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,4-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobutadiene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,3-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
MTBE	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Our Ref 19-23460
Client Ref PN194052
Contract Title Stockport Interchange GI

Lab No	1599595	1599596
Sample ID	WS304	WS304
Depth	0.50	2.00-3.00
Other ID		
Sample Type	SOIL	SOIL
Sampling Date	11/11/19	11/11/19
Sampling Time	n/s	n/s

Test	Method	LOD	Units		
Metals					
Arsenic	DETSC 2301#	0.2	mg/kg	5.6	3.1
Barium	DETSC 2301#	1.5	mg/kg	47	35
Beryllium	DETSC 2301#	0.2	mg/kg	0.3	< 0.2
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	< 0.2	< 0.2
Cadmium	DETSC 2301#	0.1	mg/kg	< 0.1	< 0.1
Chromium	DETSC 2301#	0.15	mg/kg	6.1	6.8
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	18	5.6
Lead	DETSC 2301#	0.3	mg/kg	42	11
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05
Nickel	DETSC 2301#	1	mg/kg	4.9	3.3
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5
Vanadium	DETSC 2301#	0.8	mg/kg	8.4	5.9
Zinc	DETSC 2301#	1	mg/kg	33	8.9
Inorganics	•		-	•	
рН	DETSC 2008#		рН	9.4	9.6
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1
Total Organic Carbon	DETSC 2084#	0.5	%		< 0.5
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	25	35
Petroleum Hydrocarbons	•			•	
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	2.4	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	11	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	130	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	140	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	0.6	< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	14	< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	210	< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg	220	< 10
TPH Ali/Aro Total	DETSC 3072*	10	mg/kg	360	< 10
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01

Our Ref 19-23460
Client Ref PN194052
Contract Title Stockport Interchange GI

Lab No	1599595	1599596
Sample ID	WS304	WS304
Depth	0.50	2.00-3.00
Other ID		
Sample Type	SOIL	SOIL
Sampling Date	11/11/19	11/11/19
Sampling Time	n/s	n/s

Test	Method	LOD	Units		
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01
PAHs					
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	0.7	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	0.2	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	1.2	0.1
Pyrene	DETSC 3301	0.1	mg/kg	1.3	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	0.7	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	0.8	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	0.9	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	0.4	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	1.2	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	1.0	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	0.2	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	1.2	< 0.1
PAH Total	DETSC 3301	1.6	mg/kg	10	< 1.6
Phenols					
Phenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01
p-cresol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01
VOCs					
Vinyl Chloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1 Dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Trans-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Cis-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
2,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Bromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Chloroform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1,1-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Carbon tetrachloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Benzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01

Our Ref 19-23460
Client Ref PN194052
Contract Title Stockport Interchange GI

Lab No	1599595	1599596
Sample ID	WS304	WS304
Depth	0.50	2.00-3.00
Other ID		
Sample Type	SOIL	SOIL
Sampling Date	11/11/19	11/11/19
Sampling Time	n/s	n/s

		Sampii	ing rime	n/s	n/s
Test	Method	LOD	Units		
Trichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Dibromomethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Bromodichloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
cis-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Toluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
trans-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1,2-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Tetrachloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,3-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Dibromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dibromoethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Chlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1,1,2-tetrachloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Ethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
m+p-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
o-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Styrene	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01
Bromoform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Isopropylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Bromobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,3-trichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
n-propylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
2-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,3,5-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
4-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Tert-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,4-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
sec-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
p-isopropyltoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,3-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,4-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
n-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dibromo-3-chloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,4-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Hexachlorobutadiene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,3-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
MTBE					

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 19-23460 Client Ref PN194052

Contract Title Stockport Interchange GI

Sample Id WS301A 1.00

Sample Numbers 1599589 1599597 1599598

Date Analysed 27/11/2019

Test Results On Waste				
Determinand and Method Reference	Units	Result		
DETSC 2084# Total Organic Carbon	%	< 0.5		
DETSC 2003# Loss On Ignition	%	1.3		
DETSC 3321# BTEX	mg/kg	< 0.04		
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01		
DETSC 3311# TPH (C10 - C40)	mg/kg	< 10		
DETSC 3301 PAHs	mg/kg	2.6		
DETSC 2008# pH	pH Units	11.7		
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1		
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1		

1					
	WAC Limit Values				
	Inert	SNRHW	Hazardous		
	Waste		Waste		
	3	5	6		
	n/a	n/a	10		
	6	n/a	n/a		
	1	n/a	n/a		
	500	n/a	n/a		
	100	n/a	n/a		
	n/a	>6	n/a		
	n/a	TBE	TBE		
	n/a	TBE	TBE		

Test Results On Leachate

Determinand and Method Reference	Conc in E	Conc in Eluate ug/l		Amount Leached* mg/kg		
Determinand and Method Reference	2:1	8:1	LS2	LS10		
DETSC 2306 Arsenic as As	13	2.4	0.026	0.042		
DETSC 2306 Barium as Ba	3.7	7.6	< 0.02	< 0.1		
DETSC 2306 Cadmium as Cd	0.04	< 0.03	< 0.004	< 0.02		
DETSC 2306 Chromium as Cr	3.2	0.8	< 0.02	< 0.1		
DETSC 2306 Copper as Cu	8.3	1.3	0.017	0.025		
DETSC 2306 Mercury as Hg	0.02	< 0.01	< 0.0004	< 0.002		
DETSC 2306 Molybdenum as Mo	78	3.4	0.16	0.16		
DETSC 2306 Nickel as Ni	0.9	1.5	< 0.02	< 0.1		
DETSC 2306 Lead as Pb	3.1	0.59	< 0.01	< 0.05		
DETSC 2306 Antimony as Sb	0.87	0.33	< 0.01	< 0.05		
DETSC 2306 Selenium as Se	0.47	< 0.25	< 0.006	< 0.03		
DETSC 2306 Zinc as Zn	2.3	37	0.005	0.311		
DETSC 2055 Chloride as Cl	1600	760	< 20	< 100		
DETSC 2055* Fluoride as F	210	< 100	0.42	0.36		
DETSC 2055 Sulphate as SO4	6900	1400	< 20	< 100		
DETSC 2009* Total Dissolved Solids	66000	27000	132	336.4		
DETSC 2130 Phenol Index	< 100	< 100	< 0.2	< 1		
DETSC 2085 Dissolved Organic Carbon	9900	3200	19.8	< 50		

WAC LIMIT Values				
Limit values for LS10 Leachate				
Inert	SNRHW	Hazardous		
Waste SNKHW Waste				

MAC Limit Values

l	Limit val	Limit values for LS10 Leachate				
	Inert	SNRHW	Hazardous			
]	Waste	SINKHW	Waste			
	0.5	2	25			
	20	100	300			
	0.04	1	5			
	0.5	10	70			
	2	50	100			
	0.01	0.2	2			
	0.5	10	30			
	0.4	10	40			
	0.5	10	50			
	0.06	0.7	5			
	0.1	0.5	7			
	4	50	200			
	800	15,000	25,000			
	10	150	500			
	1000	20,000	50,000			
	4000	60,000	100,000			
	1	n/a	n/a			
	500	800	1000			

TBE - To Be Evaluated SNRHW - Stable Non-Reactive Hazardous Waste

DETSC 2008 pH	7.2	7.8
DETSC 2009 Conductivity uS/cm	93.9	39.2
* Temperature*	18	17
Mass of Sample Kg*	0.130	
Mass of dry Sample Kg*	0.123	
Stage 1		-
Volume of Leachant L2*	0.24	
Volume of Eluate VE1*	0.21	
Stage 2		-
Volume of Leachant L8*	0.987	
Volume of Eluate VE2*	0.927	

The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Disclaimer: Values are correct at time of issue.

^{*} DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 19-23460 Client Ref PN194052

Contract Title Stockport Interchange GI

Sample Id WS304 2.00-3.00

Sample Numbers 1599596 1599599 1599600

Date Analysed 28/11/2019

Test Results On Waste				
Determinand and Method Reference	Units	Result		
DETSC 2084# Total Organic Carbon	%	< 0.5		
DETSC 2003# Loss On Ignition	%	0.80		
DETSC 3321# BTEX	mg/kg	< 0.04		
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01		
DETSC 3311# TPH (C10 - C40)	mg/kg	< 10		
DETSC 3301 PAHs	mg/kg	< 1.6		
DETSC 2008# pH	pH Units	9.6		
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1		
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1		

WAC Limit Values				
Inert	SNRHW	Hazardous		
Waste	SINKHW	Waste		
3	5	6		
n/a	n/a	10		
6	n/a	n/a		
1	n/a	n/a		
500	n/a	n/a		
100	n/a	n/a		
n/a	>6	n/a		
n/a	TBE	TBE		
n/a	TBE	TBE		

Test Results On Leachate

Determinand and Method Reference	Conc in E	Conc in Eluate ug/l		Amount Leached* mg/kg	
Determinand and Method Reference	2:1	8:1	LS2	LS10	
DETSC 2306 Arsenic as As	2.4	0.51	0.005	< 0.01	
DETSC 2306 Barium as Ba	19	11	0.04	0.12	
DETSC 2306 Cadmium as Cd	< 0.03	< 0.03	< 0.004	< 0.02	
DETSC 2306 Chromium as Cr	2	< 0.25	< 0.02	< 0.1	
DETSC 2306 Copper as Cu	1.8	0.4	< 0.004	< 0.02	
DETSC 2306 Mercury as Hg	0.03	0.02	< 0.0004	< 0.002	
DETSC 2306 Molybdenum as Mo	64	12	0.13	0.21	
DETSC 2306 Nickel as Ni	< 0.5	< 0.5	< 0.02	< 0.1	
DETSC 2306 Lead as Pb	1.2	0.53	< 0.01	< 0.05	
DETSC 2306 Antimony as Sb	0.44	< 0.17	< 0.01	< 0.05	
DETSC 2306 Selenium as Se	0.29	< 0.25	< 0.006	< 0.03	
DETSC 2306 Zinc as Zn	3	2.3	0.006	0.024	
DETSC 2055 Chloride as Cl	1600	620	< 20	< 100	
DETSC 2055* Fluoride as F	190	490	0.38	4.39	
DETSC 2055 Sulphate as SO4	45000	1800	90	< 100	
DETSC 2009* Total Dissolved Solids	120000	28000	240	435.2	
DETSC 2130 Phenol Index	< 100	< 100	< 0.2	< 1	
DETSC 2085 Dissolved Organic Carbon	5300	2100	10.6	< 50	

0.917

WAC Limit Values					
Limit values for LS10 Leachate					

Limit values for LS10 Leachate				
Inert	SNRHW	Hazardous		
Waste	SINULIAN	Waste		
0.5	2	25		
20	100	300		
0.04	1	5		
0.5	10	70		
2	50	100		
0.01	0.2	2		
0.5	10	30		
0.4	10	40		
0.5	10	50		
0.06	0.7	5		
0.1	0.5	7		
4	50	200		
800	15,000	25,000		
10	150	500		
1000	20,000	50,000		
4000	60,000	100,000		
1	n/a	n/a		
500	800	1000		

TBE - To Be Evaluated SNRHW - Stable Non-Reactive Hazardous Waste

Additional Information

Volume of Eluate VE2*

DE 13C 2008 PH	7.5	7.8
DETSC 2009 Conductivity uS/cm	174	39.6
* Temperature*	17	18
Mass of Sample Kg*	0.140	
Mass of dry Sample Kg*	0.122	
Stage 1		-
Volume of Leachant L2*	0.226	
Volume of Eluate VE1*	0.206	
Stage 2		
Volume of Leachant L8*	0.977	

Disclaimer:

The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

^{*} DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

Summary of Asbestos Analysis Soil Samples

Our Ref 19-23460 Client Ref PN194052

Contract Title Stockport Interchange GI

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
1599589	WS301A 1.00	SOIL	NAD	none	Lee Kerridge
1599591	WS302A 0.20	SOIL	NAD	none	Lee Kerridge
1599594	WS303 3.00	SOIL	NAD	none	Lee Kerridge
1599595	WS304 0.50	SOIL	NAD	none	Lee Kerridge

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos.

Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos

Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 19-23460 Client Ref PN194052

Contract Stockport Interchange GI

Containers Received & Deviating Samples

		Date			Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1599589	WS301A 1.00 SOIL	11/11/19	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
1599590	WS301A 2.50 SOIL	11/11/19	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
1599591	WS302A 0.20 SOIL	11/11/19	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
1599592	WS302A 1.00 SOIL	11/11/19	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
1599593	WS303 0.20 SOIL	11/11/19	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
1599594	WS303 3.00 SOIL	11/11/19	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
1599595	WS304 0.50 SOIL	11/11/19	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
1599596	WS304 2.00-3.00 SOIL	11/11/19	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
1599597	WS301A 1.00 LEACHATE	11/11/19	GJ 250ml, GJ 60ml, PT 1L		
1599598	WS301A 1.00 LEACHATE	11/11/19	GJ 250ml, GJ 60ml, PT 1L		
1599599	WS304 2.00-3.00 LEACHATE	11/11/19	GJ 250ml, GJ 60ml, PT 1L		
1599600	WS304 2.00-3.00 LEACHATE	11/11/19	GJ 250ml, GJ 60ml, PT 1L		

Kev: G-Glass P-Plastic J-Jar T-Tub

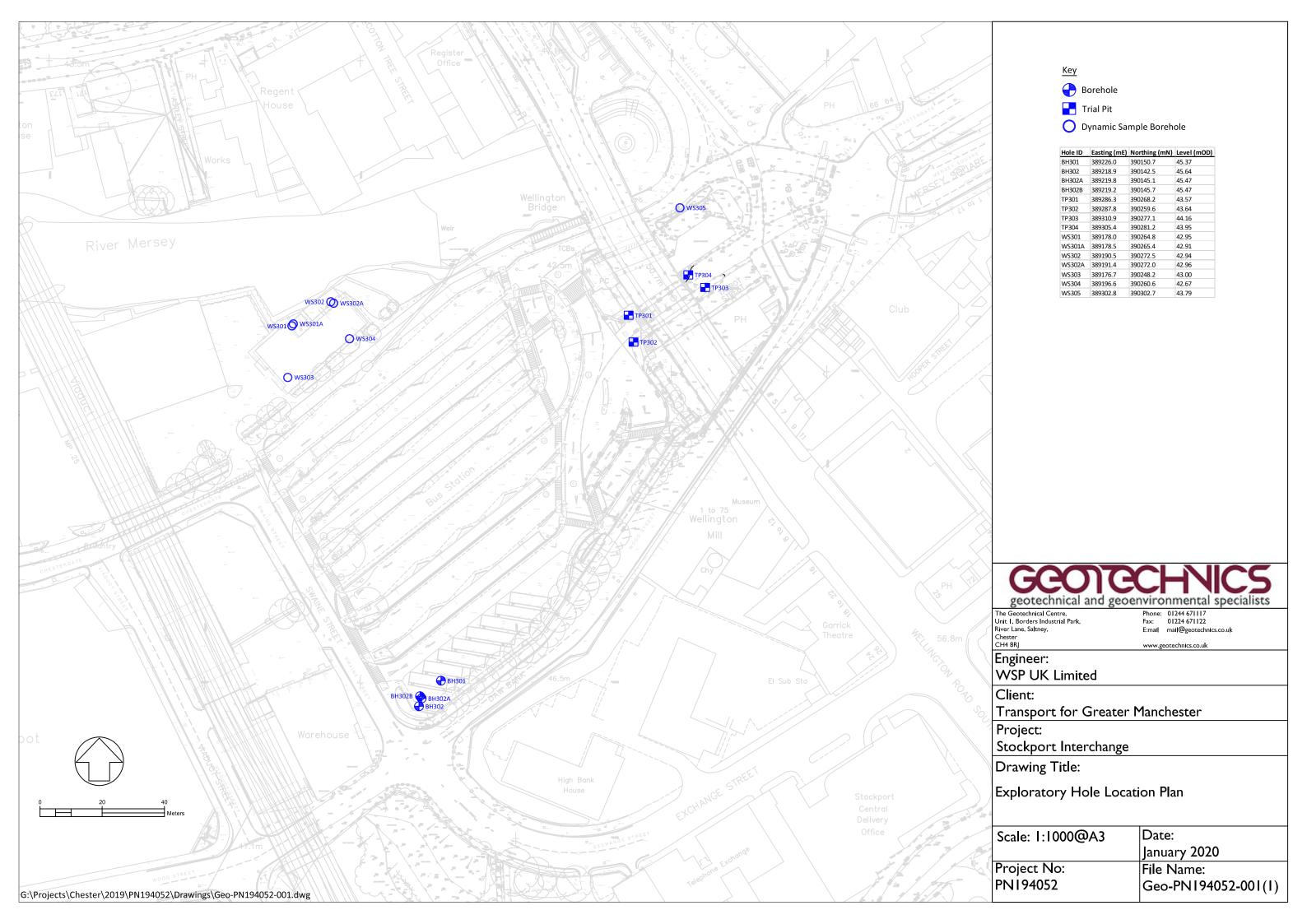
DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.


Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-

Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

APPENDIX 10

Exploratory Hole Location Plan

APPENDIX II

Investigation Techniques and General Notes

©

INTRODUCTION

The following brief review of Ground Investigation techniques, generally used as part of most Site Investigations in the UK, summarises their methodology, advantages and limitations. Detailed descriptions of the techniques are available and can be provided on request. This review should be read in conjunction with the accompanying General Notes.

TRIAL PITS

The trial pit is amongst the simplest yet most effective means of identifying shallow ground conditions on a site. Its advantages include simplicity, speed, potential accuracy and cost-effectiveness. The trial pit is most commonly formed using a back-acting excavator which can typically determine ground conditions to some 4 metres below ground level. Hand excavation is often used to locate, expose and detail existing foundations, features or services. In general, it is difficult to extend pits significantly below the water table in predominantly granular soils, where flows can cause instability. Unless otherwise stated, the trial pits will not have been provided with temporary side support during their construction. Under such circumstances, entrance into the pit is not permitted and hence observations will have been made from the ground surface and samples taken from the excavator bucket.

Where access for personnel is required to allow close observation of the exposed strata, the taking of samples and the carrying out of in situ tests, the sides of the trial pits (Observation Pits in BS 5930:2015) will be made safe using temporary supports or the sides battered back to a stable angle. Some limited access to such Trial Pits (Observation Pits) at depths less than I m may be allowed in stable conditions or where the sides are benched or battered back to a safe angle.

Trends in strata type, level and thickness can be determined, shear surfaces identified and the behaviour of plant, excavation sides and excavated materials can be related to the construction process. They are particularly valuable in land slip investigations. Some types of in situ test can be undertaken in such pits and large disturbed or block samples obtained.

CABLE PERCUSSION BORING

The light Cable Percussion technique of soft ground boring, typically at a diameter of 150mm, is a well-established simple and flexible method of boring vertical holes and generally allows data to be obtained in respect of strata conditions other than rock. A tubular cutter (for cohesive soils) or shell with a flap valve (for granular soils) is repeatedly lifted and dropped using a winch and rope operating from an "A" frame. Soil which enters these tools is regularly removed and either sampled for subsequent examination or test, or laid to one side for later removal off site and licensed disposal or, if permitted by the Client, use as backfill. Steel casing will have been used to prevent collapse of the borehole sides where necessary. A degree of disturbance of soil and mixing of layers is inevitable and the presence of very thin layers of different soils within a particular stratum may not be identified. Changes in strata type can only be detected on recognition of a change in soil samples at the surface, after the interface has been passed. For the foregoing reasons, depth measurements should not be considered to be more accurate than 0.10 metre. The technique can determine ground conditions to depths in excess of 30 metres under suitable circumstances and usually causes less surface disturbance than trial pitting.

In cohesive soils cylindrical samples are retrieved by driving or pushing in 100mm nominal diameter tubes. In soft soils, piston sampling or vane testing may be undertaken. In granular soils and often in cohesive materials, in situ Standard Penetration Tests (SPT's) are performed. The SPT records the number of standard blows required to drive a 50mm diameter open or cone ended probe for 300mm after an initial 150mm penetration. A modified method of recording is used in denser strata. Small disturbed samples are obtained throughout.

ROTARY DRILLING

Rotary Drilling to produce cores by rotating an annular diamond-impregnated tube or barrel into the ground is the technique most appropriate to the forming of site investigation boreholes through rock or other hard strata. It has the advantage of being able to be used vertically or at an angle. Core diameters of less than 100mm are most common for site investigation purposes. Core is normally retrieved in plastic lining tubes. A flushing fluid such as air, water or foam is used to cool the bit and carry cuttings to the surface. Depths in excess of 60 metres can be achieved under suitable circumstances using rotary techniques, with minimal surface disturbance.

Examination of cores allows detailed rock description and generally enables angled discontinuity surfaces to be observed. However, vertical holes do not necessarily reveal the presence of vertical or near-vertical fissures or joint discontinuities. The core type and/or techniques used will depend on the ground conditions. Where open hole rotary drilling is employed, descriptions of strata result from examination at the surface of small particles ejected from the borehole in the flushing medium. In consequence, no indication of fissuring, bedding, consistency or degree of weathering can be obtained.

DYNAMIC SAMPLING

This technique involves the driving of an open-ended tube into the ground and retrieval of the soil which enters the tube. It was previously called window or windowless sampling. The term "window sample" arose from the original device which had a "window" or slot cut into the side of the tube through which samples were taken. This was superseded by the use of a thin-walled plastic liner to retrieve the soil sample from within a sampler (windowless sampling) which has a solid wall. Line diameters range from 36 to 86mm. Such samples can be used for qualitative logging, selection of samples for classification and chemical analysis and for obtaining a rudimentary assessment of strength.

Driving devices can be hand-held or machine mounted and the drive tubes are typically in 1m lengths. Depending on the type of rig used, the hole formed can be cased to prevent collapse of the borehole sides. Where the type of rig does not allow the insertion of casing, the success of this technique can be limited when soils and groundwater conditions are such that the sides of the hole collapse on withdrawal of the sampler. Obstructions within the ground, the density of the material or its strength can also limit the depth and rate of penetration of this light-weight investigation technique. Nevertheless, it is a valuable tool where access is constrained such as within buildings or on embankments. Depths of up to 10m can be achieved in suitable circumstances depending on the rig type but depths of 5m to 6m are more common.

EXPLORATORY HOLE RECORDS

The data obtained by these techniques are generally presented on Trial Pit, Borehole, Drillhole or Dynamic Sample Records. The descriptions of strata result from information gathered from a number of sources which may include published geological data, preliminary field observations and descriptions, in situ test results, laboratory test results and specimen descriptions. A key to the symbols and abbreviations used accompanies the records. The descriptions on the exploratory hole records accommodate but may not necessarily be identical to those on any preliminary records or the laboratory summaries.

The records show ground conditions at the exploratory hole locations. The degree to which they can be used to represent conditions between or beyond such holes, however, is a matter for geological interpretation rather than factual reporting and the associated uncertainties must be recognised.

DYNAMIC PROBING

This technique typically measures the number of blows of a standard weight falling over a standard height to advance a cone-ended rod over sequential standard distances (typically 100mm). Some devices measure the penetration of the probe per standard blow. It is essentially a profiling tool and is best used in conjunction with other investigation techniques where site-specific correlation can be used to delineate the distribution of soft or loose soils or the upper horizon of a dense or strong layer such as rock.

Both machine-driven and hand-driven equipment is available, the selection depending upon access restrictions and the depth of penetration required. It is particularly useful where access for larger equipment is not available, disturbance is to be minimised or where there are cost constraints. No samples are recovered and some techniques leave a sacrificial cone head in the ground. As with other lightweight techniques, progress is limited in strong or dense soils. The results are presented both numerically and graphically. Depths of up to 10m are commonly achieved in suitable circumstances.

The hand-driven DCP probing device has been calibrated by the Highways Agency to provide a profile of CBR values over a range of depths.

<u>INSTRUMENTATION</u>

The most common form of instrument used in site investigation is either the standpipe or else the standpipe piezometer which can be installed in investigation holes. They are used to facilitate monitoring of groundwater levels and water sampling over a period of time following site work. Normally a standpipe would be formed using rigid plastic tubing which has been perforated or slotted over much of its length whilst a standpipe piezometer would have a filter tip which would be placed at a selected level and the hole sealed above and sometimes below to isolate the zone of interest. Groundwater levels are determined using an electronic "dip meter" to measure the depth to the water surface from ground level. Piezometers can also be used to measure permeability. They are simple and inexpensive instruments for long term monitoring but response times can limit their use in tidal areas and access to the ground surface at each instrument is necessary. Remote reading requires more sophisticated hydraulic, electronic or pneumatic equipment.

Settlement can be monitored using surface or buried target plates whilst lateral movement over a range of depths is monitored using slip indicator or inclinometer equipment.

- The report is prepared for the exclusive use of the Client named in the document and copyright subsists with Geotechnics Limited. Prior written permission must be obtained to reproduce all or part of the report. It is prepared on the understanding that its contents are only disclosed to parties directly involved in the current investigation, preparation and development of the site.
- Further copies may be obtained with the Client's written permission, from Geotechnics Limited with whom the master copy of the document will be retained.
- 3. The report and/or opinion is prepared for the specific purpose stated in the document and in relation to the nature and extent of proposals made available to Geotechnics Limited at that time. Re-consideration will be necessary should those details change. The recommendations should not be used for other schemes on or adjacent to the site without further reference to Geotechnics Limited.
- The assessment of the significance of the factual data, where called for, is provided to assist the Client and their Engineer and/or Advisers in the preparation of their designs.
- 5. The report is based on the ground conditions encountered in the exploratory holes together with the results of field and laboratory testing in the context of the proposed development. The data from any commissioned desk study and site reconnaissance are also drawn upon. There may be special conditions appertaining to the site, however, which are not revealed by the investigation and which may not be taken into account in the report.
- 6. Methods of construction and/or design other than those proposed by the designers or referred to in the report may require consideration during the evolution of the proposals and further assessment of the geotechnical and any geoenvironmental data would be required to provide discussion and evaluations appropriate to these methods.
- 7. The accuracy of results reported depends upon the technique of measurement, investigation and test used and these values should not be regarded necessarily as characteristics of the strata as a whole (see accompanying notes on Investigation Techniques). Where such measurements are critical, the technique of investigation will need to be reviewed and supplementary investigation undertaken in accordance with the advice of the Company where necessary.
- 8. The samples selected for laboratory test are prepared and tested in accordance with the relevant Clauses and Parts of BS EN ISO 17892 and BS 1377 Parts 1 to 8, where appropriate, in Geotechnics Limited's UKAS accredited Laboratory, where possible. A list of tests is given.
- Tests requiring the use of another laboratory having UKAS accreditation where possible are identified.
- Any unavoidable variations from specified procedures are identified in the report.
- Specimens are cut vertically, where this is relevant and can be identified unless otherwise stated
- 12. All the data required by the test procedures are recorded on individual test sheets but the results in the report are presented in summary form to aid understanding and assimilation for design purposes. Where all details are required, these can be made available.
- 13. Whilst the report may express an opinion on possible configurations of strata between or beyond exploratory holes, or on the possible presence of features based on either visual, verbal, written, cartographical, photographic or published evidence, this is for guidance only and no liability can be accepted for its accuracy.

- 14. The Code of Practice for Ground Investigations BS 5930:2015 calls for man-made soils to be described as Anthropogenic Ground with soils placed in an un-controlled manner classified as Made Ground and soils placed in a controlled manner as Fill. In view of the difficulty in always accurately determining the origin of manmade soils in exploratory holes, Geotechnics Limited classify such materials as Made Ground. Where soils can be clearly identified as being placed in a controlled manner then further classification of the soils as Fill has been added to the Exploratory Hole Records.
- 15. Classification of man-made soils is based on the inspection of retrieved samples or exposed excavations. Where it is obvious that foreign matter such as paper, plastic or metal is present, classification is clear. Frequently, however, for man-made soils that arise from the adjacent ground or from the backfilling of excavations, their visual characteristics can closely resemble those of undisturbed ground. Other evidence such as site history, exploratory hole location or other tests may need to be drawn upon to provide clarification. For these reasons, classification of soils on the exploratory hole records as either Made Ground or naturally occurring strata, the boundary between them and any interpretation that this gives rise to should be regarded as provisional and subject to re-evaluation in the light of further data.
- 16. The classification of materials as Topsoil is generally based on visual description and should not be interpreted to mean that the material so described complies with the criteria for Topsoil used in BS 3882:2015. Specific testing would be necessary where such a definition is a requirement.
- 17. Ground conditions should be monitored during the construction of the works and the report should be re-evaluated in the light of these data by the supervising geotechnical engineers.
- 18. Any comments on groundwater conditions are based on observations made at the time of the investigation, unless specifically stated otherwise. It should be noted, however, that the observations are subject to the method and speed of boring, drilling or excavation and that groundwater levels will vary due to seasonal or other effects.
- 19. Any bearing capacities for conventional spread foundations which are given in the report and interpreted from the investigation are for bases at a minimum depth of Im below finished ground level in naturally occurring strata and at broadly similar levels throughout individual structures, unless otherwise stated. Typically they are based on serviceability criteria taking account of an assessment of the shear strength and/or density data obtained by the investigation. The foundations should be designed in accordance with the good practice embodied in BS 8004:2015 Foundations, supplemented for housing by NHBC Standards. Foundation design is an iterative process and bearing pressures may need adjustment or other measures may need to be taken in the context of final layouts and levels prior to finalisation of brobosals.
- Unless specifically stated, the investigation does not take account
 of the possible effects of mineral extraction or of gases from fill or
 natural sources within, below or outside the site.
- 21. The costs or economic viability of the proposals referred to in the report, or of the solutions put forward to any problems encountered, will depend on very many factors in addition to geotechnical or geoenvironmental considerations and hence their evaluation is outside the scope of the report.

