

Transport for Greater Manchester

EXCHANGE STREET, STOCKPORT

Ground Investigation Report

Transport for Greater Manchester

EXCHANGE STREET, STOCKPORT

Ground Investigation Report

(ISSUE 1) CONFIDENTIAL

PROJECT NO. 70031899

OUR REF. NO. 14113-WSP-SKZ-XX-RP-Y-0004

DATE: APRIL 2020

WSP

8 First Street Manchester M15 4RP

Phone: +44 161 200 5000

WSP.com

QUALITY CONTROL

Issue/revision	First issue	Revision 1		
Remarks	Issue 1			
Date	April 2020			
Prepared by	R. Home			
Signature				
Checked by	M. Neden			
Signature				
Authorised by	A. Hallas			
Signature				
Project number	70031899			
Report number	14113-WSP-SKZ-XX-RP-Y-0004			
File reference	\\uk.wspgroup.com\central data\Projects\700318xx\70031899 - Stockport Interchange\02 WIP\GE Geotechnical Engineering\(09) Reporting\Exchange St GIR			

CONTENTS

1	INTRODUCTION	1
1.1	GENERAL	1
1.2	OBJECTIVES & SCOPE OF WORKS	1
1.3	BACKGROUND & DEVELOPMENT PROPOSALS	1
1.4	GEOTECHNICAL CATEGORY	1
1.5	PREVIOUS REPORTS	2
1.6	CONFIDENTIALITY	2
2	THE SITE & EXISTING INFORMATION	3
2.1	SITE DETAILS	3
2.2	SITE DESCRIPTION & TOPOGRAPHY	3
3	ENVIRONMENTAL SETTING	7
3.1	INTRODUCTION	7
3.2	GEOLOGY	7
3.3	HYDROGEOLOGY	7
3.4	HYDROLOGY	7
3.5	SITE HISTORY	7
3.6	STOCKPORT VIADUCT	7
3.7	UNEXPLODED ORDNANCE	8
4	GROUND INVESTIGATION	9
4.1	FIELDWORK	9
4.2	IN-SITU TESTING	10
4.3	LABORATORY TESTING	11

4.4	GROUNDWATER & GROUND GAS MONITORING VISITS	11
5	GROUND SUMMARY	12
5.1	STRATA	12
5.2	GROUNDWATER	13
6	GROUND CONDITIONS & MATERIAL PROPERTIES	15
6.1	GENERAL	15
6.2	MADE GROUND	15
6.3	GLACIOFLUVIAL DEPOSITS	18
6.4	GLACIAL TILL	22
6.5	CHESTER FORMATION	23
6.6	SUMMARY OF CHARACTERISTIC PARAMETERS	27
	BIBLIOGRAPHY	29

APPENDICES

APPENDIX A

FIGURES & DRAWINGS

APPENDIX B

DEVELOPMENT PROPOSALS

APPENDIX C

GENERAL LIMITATIONS

APPENDIX D

GEOTECHNICS FACTUAL REPORT

EXCHANGE STREET, STOCKPORT
Project No.: 70031899 | Our Ref No.: 14113-WSP-SKZ-XX-RP-Y-0004
Transport for Greater Manchester

1 INTRODUCTION

1.1 GENERAL

On the instruction of Transport for Greater Manchester, and in accordance with the fee proposal dated June 2018, WSP has undertaken geotechnical and geo-environmental consultancy works for the proposed development of land between Station Road, Daw Bank and Exchange Street in Stockport Town Centre (**Figure A.1** in **Appendix A**).

1.2 OBJECTIVES & SCOPE OF WORKS

The main objectives of the work are to identify potential development constraints with respect to geotechnical design, soil and groundwater contamination, and ground gas.

The scope of works comprises:

- Targeted intrusive investigation;
- Laboratory geotechnical and chemical testing;
- Groundwater / ground gas monitoring;
- Contamination risk assessment considering human health and the wider environment;
- Ground gas risk assessment
- Derivation of a ground model; and,
- Derivation of geotechnical parameters.

For a discussion of contamination and ground gas issues, reference should be made to:

 WSP. 2020. 'Exchange Street – Phase II Contaminated Land Assessment', Report ref. 14113-WSP-SKZ-XX-RP-Y-0005

This report is intended to fulfil the requirements of a Ground Investigation Report (GIR) as detailed in BS EN 1997-2: 2007 (BSI, 2007).

1.3 BACKGROUND & DEVELOPMENT PROPOSALS

The Exchange Street site forms part of the wider Stockport Interchange development, which includes construction of a new bus interchange and, the now completed, construction of a bridge across the River Mersey.

A footbridge is proposed to improve access between the proposed Interchange and Stockport Railway Station. The proposals include re-grading the southern parts of the site and the installation of a sheet pile retaining wall to enable the construction of a step-free footway. In the northern part of the site it is proposed to raise levels by constructing a reinforced earth embankment. The footbridge is proposed between the northern end of the site (across the junction of Exchange Street and Daw Bank) to tie into the proposed Interchange.

Development proposals are presented in **Appendix B**.

1.4 GEOTECHNICAL CATEGORY

It is considered that the proposed structures fall within Geotechnical Category 2 as defined in BS EN 1997-1:2004+A1:2013 (BSI, 2014). These are conventional types of structures and foundations with no exceptional risk of difficult soil or loading conditions.

EXCHANGE STREET, STOCKPORT
Project No.: 70031899 | Our Ref No.: 14113-WSP-SKZ-XX-RP-Y-0004
Transport for Greater Manchester

1.5 PREVIOUS REPORTS

The following reports have been previously prepared by WSP and others and should be read in conjunction with this report:

- AECOM. 2016. Stockport Interchange Ground Investigation Report. Ref No. 60340298/GEO/02.
- WSP. 2018. Exchange Street Phase I Preliminary Ground Risk Assessment. Report Ref. 14113-WSP-SKZ-XX-RP-Y-0004.

1.6 CONFIDENTIALITY

This report is addressed to and may be relied upon by the following:

Transport for Greater Manchester 2 Piccadilly Place Manchester M1 3BG

This assessment has been prepared for the sole use of the above-named party. This report shall not be relied upon or transferred to any other parties without the express written authorisation of WSP. No responsibility will be accepted where this report is used in its entirety, or in part, by any other party.

Information provided by others is taken in good faith as being accurate. WSP cannot and will not accept liability for any deficiencies in third party information.

General limitations are presented in **Appendix C.**

2 THE SITE & EXISTING INFORMATION

2.1 SITE DETAILS

The site is located immediately north of Stockport Railway Station, approximately 300m south west of Stockport Town Centre within a mixed commercial, industrial, and residential setting.

The approximate National Grid Refence of the centre of the site is 389239E, 390058N.

The site location is shown on **Figure A.1** in **Appendix A** and an aerial photograph of the site is presented below.

2.2 SITE DESCRIPTION & TOPOGRAPHY

The site is irregular in shape, bounded by Daw Bank to the north, Station Road to the south, Exchange Street and the BT Exchange building to the east and railway lines and a brick-built viaduct the west.

The most southerly area of the site is currently used as a car park, surfaced with asphalt and accessed from Station Road. The car park level falls from approximately 68m above Ordnance Datum (m AOD) at its western extent (level with the railway line to the west) to 60m AOD at the eastern entrance with Station Road. Access into a Network Rail signalling building (adjacent to the western boundary of the site) is gained via a footpath from the car park.

From its entrance in the east, the car park is elevated above Station Road, with the level difference made up by a brick retaining wall, which reaches a maximum height of approximately 4m in the south west corner.

To the north of the car park, the site falls northwards from approximately 65m AOD to 47m AOD. The level difference is made up predominantly of an earthwork embankment with mature trees and shrubs on the upper sections.

A concrete surfaced, stepped public footpath traverse the earthwork embankment linking Exchange Street and Station Road.

Retaining walls are present at the toe of the slope at the northern extent of the site (junction of Exchange Street and Daw Bank), and to the rear of the BT Exchange building, at the eastern extent of the site. The wall at the northern site extent is a stone block retaining wall, which steps up from approximately 0.6m height up to 2m. The wall located behind the BT Exchange Building is brick construction along approximately half its length and stone block along the remainder and is approximately 1.8m high.

The arches of the viaduct are visible from approximately the midpoint of the western boundary; initially protruding from the earthworks and exposed to their full height on the north-western corner of the site. Further commentary on the viaduct is provided in **Section 3.6**.

A smaller gravel surfaced car park is present at the toe of the earthworks, adjacent to the BT Exchange building and accessed from Exchange Street. This car park rises from approximately 51m AOD at the Exchange Street entrance to approximately 52.5m AOD at its southern extent.

Photograph 2-2 - View facing south. Showing footpath linking to Station Road and low level car park (left)

Photograph 2-3 - The northern extent of the site viewed from the junction of Exchange Street and Daw Bank, with Stockport Viaduct in the background on the western boundary

Photograph 2-4 - The car park accessed from Exchange Street and the BT Exchange building

EXCHANGE STREET, STOCKPORT
Project No.: 70031899 | Our Ref No.: 14113-WSP-SKZ-XX-RP-Y-0004

Transport for Greater Manchester

Photograph 2-5 – View facing south from the northern extent of the site. Heavily vegetated areas across the western part of the site.

3 ENVIRONMENTAL SETTING

3.1 INTRODUCTION

The following section presents a summary of the environmental setting and site history taken from the WSP Phase I Preliminary Ground Risk Assessment (2018). For a more detailed assessment, reference should be made to the aforementioned report.

3.2 GEOLOGY

Published geological mapping indicates that the majority of the site is underlain by Glaciofluvial Deposits, generally comprising sand and gravel, but with some finer-grained clay and silt layers. The northern extent of the site is indicated to be underlain by Glacial Till. River Terrace Deposits associated with the River Mersey are present locally in the area, outcropping adjacent to the site's north-eastern boundary.

The solid geology underlying the site comprises sandstone of the Chester Formation. There are several faults shown in the surrounding area, the closest of which is shown approximately 25m to the south of the site and trending northwest to southeast.

3.3 HYDROGEOLOGY

The Glaciofluvial Deposits are classified as a Secondary A Aquifer and the Glacial Till as a Secondary Undifferentiated Aquifer. The Chester Formation Sandstone is classified as a Principal Aquifer.

3.4 HYDROLOGY

The nearest surface water feature is the westerly flowing River Mersey, located approximately 160m to the north of the site at its closest point. In 2016 the ecological classification of the water body was "Moderate", whilst the chemical quality was classified as "Good" under the Water Framework Directive.

3.5 SITE HISTORY

Historical maps show that parts of the site have variously been occupied by a reservoir, part of a building (dye house) and railway sidings, and has been subject to earthworks to achieve its current geometry.

3.6 STOCKPORT VIADUCT

Stockport viaduct, located to the northwest of the site, was constructed in 1840 and is a Grade II listed structure. Drawings obtained from Network Rail show ground conditions around the viaduct piers to comprise Made Ground underlain by gravel and bedrock.

Drawing 36661 shows a plan view of the piers with the extent of the foundations also marked on the plan. The plan indicates that the foundations step out approximately 1m from the edge of the structure.

Transport for Greater Manchester

3.7 UNEXPLODED ORDNANCE

No readily available records have been found to indicate that the site was bombed during World War I or World War II and a detailed desk study was not considered essential.

4 GROUND INVESTIGATION

4.1 FIELDWORK

EXPLORATORY HOLES

A limited amount of ground investigation was undertaken by AECOM in November and December 2015 across the wider Stockport Interchange site, the details of which are presented in the AECOM Ground Investigation Report (AECOM, 2016). Two window samples and one borehole were undertaken within the Exchange Street site and these have been included in this assessment of ground conditions and are detailed in **Table 4-1**.

Based on the desk study information and the AECOM exploratory holes, additional ground investigation was scoped by WSP. This aimed to provide additional geotechnical information to aid the development of a ground model and support the cost-effective design of the substructures and to obtain data to allow an assessment of the contamination status of the site.

Fieldworks were undertaken between 13 November and 9 December 2019 by Geotechnics and observed by WSP. The works undertaken are summarised in **Table 4-1**.

Table 4-1 – Summary of Fieldwork

Investigation Method	No. of Positions	Depth (m BGL*)	Comments				
	2015 AECOM Investigation						
Window sample borehole	2 (WS221 & WS224)	0.3 – 1.7					
Cable percussion borehole 1 (BH111)		1.55					
	2019 Investigatio	n					
Machine excavated trial pit	2 (TP01 & TP02)	2.6 – 2.7					
Window sample borehole	14 WS306 – WS314, WS314A, WS315 – WS318)	0.4 – 5.45	WS318 terminated on an obstruction at 0.4m BGL				
Dynamic sample borehole with rotary follow on	6 (BH303, BH304, BH305, BH305A, BH305B, BH30C)	0.8 – 19.9	BH305/A/B all terminated on obstructions within inspection pits.				
Dynamic sample borehole	BH306	8.71					

^{*} metres below ground level

The procedures followed in the investigation were in general accordance with guidance presented in BS 5930:2015 and BS 10175:2011 (BSI, 2015, 2013).

The results of the ground investigation are presented in the Factual Report (Geotechnics, 2020), which is presented in **Appendix D**. The Factual Report contains exploratory hole records, core photographs, in-situ testing data, monitoring data, and laboratory testing results.

An exploratory hole location plan is presented as **Dwg. 14113-WSP-SKZ-XX-DR-Y-0001** in **Appendix A**.

MONITORING WELLS

Combined groundwater and ground gas monitoring installations were placed in the boreholes. Details of the installations are presented on the exploratory hole records and summarised in **Table 4-2**.

Table 4-2 – Summary of Monitoring Installations

Exploratory Hole	Standpipe Diameter (mm)	Screen Top & Base (m BGL)	Strata Installed
BH303	50	2.0 – 10.0	Sandstone
BH304	50	4.0 – 10.0	Granular Glaciofluvial Deposits / Sandstone
BH305C	50	6.0 - 15.0	Glaciofluvial Deposits (Silt) / Sandstone
BH306	50	2.0 – 8.5	Glaciofluvial Deposits (Silt) / Glaciofluvial Deposits (Sand) / Sandstone
WS307	50	1.0 – 3.0	Granular Made Ground / Sandstone
WS309	50	1.0 – 1.8	Granular Made Ground / Cohesive Made Ground
WS311	50	1.0 – 4.5	Cohesive Made Ground
WS312	50	1.0 – 3.0	Glaciofluvial Deposits (Clay)
WS314	50	1.0 – 3.0	Glaciofluvial Deposits (Clay)
WS315	50	1.0 – 3.0	Glaciofluvial Deposits (Silt)
WS316	50	3.0 - 5.0	Glaciofluvial Deposits (Silt)
WS317	50	1.0 – 2.0	Granular Made Ground

SURVEYING

All exploratory holes were surveyed by Geotechnics. Eastings, northings, and Ordnance Datum elevations are presented on the exploratory hole records.

4.2 IN-SITU TESTING

STANDARD PENETRATION TESTING

Standard Penetration Tests (SPTs) were performed within the dynamic sampling sections of the boreholes and within the window sample boreholes. The test results are presented on the exploratory hole records and a plot of SPT N_{60} (corrected for hammer efficiency) versus elevation is presented as **Figure A.3** in **Appendix A**.

4.3 LABORATORY TESTING

Geotechnical testing scheduled by WSP comprised the following:

- Moisture Content;
- Atterberg Limits;
- Particle Size Distribution;
- 2.5kg compaction test
- Point Load Index;
- Unconfined Compressive Strength;
- pH; and,
- Water soluble sulphate (2:1).

Geotechnical testing results are presented in Appendix 8 of the Geotechnics Factual Report (**Appendix D**).

4.4 GROUNDWATER & GROUND GAS MONITORING VISITS

Four ground gas / groundwater monitoring visits were undertaken over a six-week period in accordance with guidance presented in BS 8484:2015 (BSI, 2016) and CIRIC C665 (Wilson et al, 2007) for a low sensitivity, low ground gas generation potential site.

Ground gas and groundwater monitoring results are provided in the Geotechnics Factual Report (2020) in **Appendix D**.

5 GROUND SUMMARY

5.1 STRATA

Published geological mapping indicates that superficial deposits across much of the site comprise Glaciofluvial Deposits with some Glacial Till in the northern part of the site. Bedrock is indicated to comprise Chester Formation Sandstone. Given the history of the site and the surrounding area, Made Ground was also anticipated.

The ground investigation recorded variable ground conditions across the site. At the northern extent of the site and in the car park off Exchange Street, recorded ground conditions generally comprised Made Ground directly overlying sandstone bedrock. WS307, WS309, and WS311 were located on the earthworks leading up to the viaduct on the western boundary of the site and recorded Made Ground comprising loose gravelly fine to coarse sand or soft to firm slightly sandy gravelly clay. Glaciofluvial Deposits were recorded in the central and southern parts of the site, increasing in thickness to the south. A limited thickness of Glacial Till was recorded underlying the Glaciofluvial Deposits in BH305C and BH306 located in the central west and southern areas of the site respectively.

A geological cross section is presented as **Figures A.5** and **A.6** in **Appendix A**.

Table 5-1 – Ground Summary

Strata		Typical Description	Depth to Base (m BGL)	Elevation of Base (m AOD)	Thickness (m)	Notes
Tops	oil	-	0.1 – 0.6	50.34 – 58.89	0.1 – 0.6	-
	Surfacing	Black tarmacadam	0.05 – 0.2	61.75 – 66.41	0.05 – 0.2	Recorded in BH306, WS 317, and WS318 located in the Station Road carpark
Made Ground	Granular	Loose gravelly fine to coarse sand with a variable cobble content	0.3 – 2.6	47.85 – 65.41	0.3 – 2.6	Recorded in the majority of exploratory positions
	Cohesive	Firm slightly sandy gravelly clay with a low cobble content	0.85 – 4.89	50.07 – 64.61	0.4 – 4.39	Recorded in 8No. exploratory holes, generally towards the south and west of the site
Glaciofluvial Deposits	Sand	Medium dense gravelly silty fine to coarse sand	>3.29 – 7.7	49.00 – 61.61	>0.49 – 3.9	Recorded in BH304, BH305C, BH306, and WS317

Strata		Typical Description	Depth to Base (m BGL)	Elevation of Base (m AOD)	Thickness (m)	Notes
	Silt	Firm yellowish brown sandy silt	>2.7 – 7.2	51.12 – 62.41	0.4 – 2.45	Recorded in BH304, BH305C, BH306, TP02, WS 315, and WS316
	Clay	Soft to firm reddish brown slightly gravelly clay	2.8 – 3.0	50.48 – 59.91	1.6 – 2.6	Recorded in BH306, WS312, WS314, and WS314A
Glacial	l Till	Stiff reddish brown slightly sandy slightly gravelly clay	7.8 – 8.2	51.13 – 58.41	0.85 – 1.0	Only recorded in BH305C and BH306
Weathered Formation S		Extremely weak reddish-brown fine to coarse grained sandstone. Recovered as sand and gravel	1.7 – 9.4	47.50 – 57.90	0.51 – 1.60	Elevation of rockhead generally falls to the north
Intact Chester Formation Sandstone		Extremely weak reddish-brown fine to coarse grained sandstone.	>19.9	<35.44	>13.5	

5.2 **GROUNDWATER**

Four rounds of groundwater monitoring have been undertaken and the results of these are summarised in **Table 5-2**, along with water strikes observed during drilling. No groundwater strikes were recorded during drilling.

Table 5-2 – Summary of Groundwater Monitoring

Exploratory			Monitoring Level (m AOD)		Strata	
Hole	AOD)	Min.	Max.	Min.	Max.	O. C.
BH303	50.64	7.43	7.54	43.10	43.21	Chester Formation Sandstone
BH304	56.70	8.69	9.89	46.81	47.25	Chester Formation Sandstone
BH305C	58.93	13.50	13.63	45.30	45.43	Chester Formation Sandstone
BH306	66.61	2.93	3.88	62.73	63.68	Glaciofluvial Deposits

Exploratory	Ground Level (m	Groundwater Depth (m		Monitoring Level (m AOD)		Strata
Hole	AOD)	Min.	Max.	Min.	Max.	Cirata
WS307	53.58	Dry	Dry	Dry	Dry	-
WS309	54.61	Dry	Dry	Dry	Dry	-
WS311	57.65	Dry	Dry	Dry	Dry	-
WS312	53.48	2.88	2.93	50.55	50.59	Glaciofluvial Deposits
WS314	62.71	1.80	1.94	60.77	60.89	Glaciofluvial Deposits
WS315	54.12	1.96	2.40	51.72	52.16	Glaciofluvial Deposits
WS316	58.60	2.13	3.21	51.72	52.16	Cohesive Made Ground
WS317	64.22	Dry	Dry	Dry	Dry	-

No groundwater strikes were recorded during the ground investigation. However, the drilling flush used during the rotary cored sections are likely to have masked any inflows.

The shallow wells installed within the Made Ground and superficial deposits recorded variable conditions, with several wells recording no groundwater during the monitoring period and others recording groundwater between 50.55m (2.93m BGL) and 63.68m AOD (2.93m BGL). This suggests the presence of discontinuous, perched groundwater bodies within the Made Ground and superficial deposits.

The deep wells installed within the sandstone recorded groundwater levels between 43.10m (7.54m BGL) and 48.01m AOD (8.69m BGL), generally flowing towards the north. This is considered to be the main groundwater body.

6 GROUND CONDITIONS & MATERIAL PROPERTIES

6.1 GENERAL

The following section discusses the ground conditions and material properties determined from the ground investigation and geotechnical testing described in **Section 4**.

Where necessary, determination of geotechnical parameters has been based on cautious estimates of laboratory derived results, published correlations, and field tests, complemented with engineering judgement.

Where material parameters are assumed, derived by calculation, or taken from published sources, further details are provided as to their derivation.

6.2 MADE GROUND

Made Ground was recorded in all exploratory hole positions either below a layer of topsoil or immediately at the surface. BH306, WS317, and WS318, located in the footway of Station Road or in the car park off Station Road, recorded a layer of surfacing comprising asphalt and paving slabs.

Both cohesive and granular Made Ground was recorded across the site. The Granular Made Ground generally comprised slightly gravelly slightly silty fine to coarse sand with a variable cobble content and ranged in thickness between 0.3m and 2.6m. Gravel and cobbles comprised fragments of sandstone, brick, and concrete.

Where recorded, the Cohesive Made Ground was generally underlying the Granular Made Ground and comprised a soft to firm slightly sandy gravelly clay with a variable cobble content and ranged in thickness between 0.4m and 4.39m. Gravel and cobbles comprised fragments of sandstone, coal, slag, concrete, and brick. Plastic and waste materials comprising plastic bags, fabrics, and drinks cans and bottles were recorded in WS311 between 0.5m and 0.7m BGL.

The results of in-situ and laboratory testing are summarised in **Table 6-1**.

Table 6-1 – Summary of In-Situ & Laboratory Testing – Made Ground

Para	ımeter	No. of Tests	Min – Max	Mean			
	Granular Made Ground						
Moisture	Content (%)	4	8 – 20	13			
Optimum Moisture Co	ontent (%) – 2.5kg effort	4	7.8 – 12	10			
Maximum Dry Density	Maximum Dry Density (Mg/m³) – 2.5kg effort		1.86 – 1.97	1.91			
	Gravel		8 – 19	15			
Particle Size Distribution (%)	Sand	4	59 – 70	64			
Distribution (70)	Silt / Clay		11 – 30	21			
рН		11	4.98 – 8.3	7.4			
Water soluble sulp	hate SO ₄ (2:1) (mg/l)	11	20 – 56	33			

EXCHANGE STREET, STOCKPORT

Project No.: 70031899 | Our Ref No.: 14113-WSP-SKZ-XX-RP-Y-0004

Transport for Greater Manchester

Parameter	No. of Tests	Min – Max	Mean
SPT N ₆₀ *	7	7 – 220	43
SPT N1 ₆₀ [†]	7	10 – 330	64
Col	hesive Made Ground		
SPT <i>N</i> ₆₀ *	13	10 – 78	20
Moisture Content (%)	2	23 & 28	25
Plastic Limit (%)		NP & 30	35
Liquid Limit (%)	2	NP & 15	15
Plasticity Index (%)		NP & 15	15
рН	5	5.9 – 7.9	7.2
Water soluble sulphate SO ₄ (2:1) (mg/l)	5	14 – 98	40

NP Non- Plastic

The following section discusses material parameters derived for the Made Ground. However, given its inherent variability, the parameters should be used with caution.

GRANULAR MADE GROUND

Particle Size Distribution

Particle size distribution tests indicate the composition of the Granular Made Ground samples is relatively consistent and varies between a gravelly very silty sand and a gravelly silty sand.

^{*} corrected for hammer efficiency

[†] corrected for hammer efficiency and effective stress

Section of the sectio

DESCRIPTION OF PERSONS

Figure 6-1 - Particle Size Distribution Testing - Granular Made Ground

Unit Weight

The SPT N_{60} results suggest that the Granular Made Ground is a loose to medium dense sand (BS 5930, (BSI, 2015)), which equates to a unit weight of 17kN/m³ for a loose to medium dense sand above the water table when compared with BS 8002:2015.

Shear Strength

A correlation between peak effective angle of internal friction, φ'_{peak} and SPT $N1_{60}$ (corrected for hammer efficiency and effective stress) has been shown by Stroud (1989). Based on the SPT $N1_{60}$ results and engineering judgement, a peak effective angle of internal friction of 30° is considered appropriate.

COHESIVE MADE GROUND

Unit Weight

In accordance with guidance presented in BS 8002:2015, a bulk unit weight of 18kN/m³ is considered appropriate for a firm clay.

Undrained Shear Strength

Based on the recorded consistency of soft to firm, SPT N_{60} results, and engineering judgement, an undrained shear strength in the region of 45kN/m² is considered appropriate.

Drained Shear Strength

For consideration of long term drained shear strength, the constant volume angle of shear resistance, φ'_{cv} has been estimated from the following relationship presented in BS 8002:2015 (BSI, 2015):

$$\varphi'_{cv} = 42 - 12.5 log_{10} I_P$$

Where I_P is the soil's plasticity index, taken as the 20% based on the testing and engineering judgement.

Based on the above relationship, a φ'_{cv} of 26° is considered appropriate for the Cohesive Made Ground.

6.3 GLACIOFLUVIAL DEPOSITS

Glaciofluvial Deposits were recorded underlying the Made Ground in exploratory holes located on the viaduct earthworks and to the south of WS311. The Glaciofluvial Deposits were recorded to predominantly comprise a firm yellowish-brown sandy silt, but layers of soft to firm slightly gravelly clay and medium dense gravelly silty fine to coarse sand were also recorded.

Overall, the Glaciofluvial Deposits were recorded to depths between 1.4m and 7.7m BGL and ranged in thickness between 0.4m and 5.9m.

The sandy layers, ranged in thickness between 0.8m and 3.9m and generally, but not exclusively occurred below the silts

Cohesive soils were recorded in WS314, WS314A and WS312 and ranged in thickness between 1.6m and 2.6m.

The results of in-situ and laboratory geotechnical testing are summarised in **Table 6-2**.

Table 6-2 – Summary of In-Situ & Laboratory Testing – Glaciofluvial Deposits

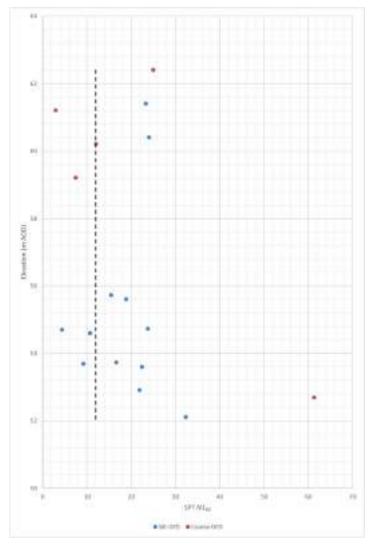
Parameter		No. of Tests	Min – Max	Mean			
	Glaciofluvial Deposits - Silt						
SPT	- N ₆₀	12	3 – 25	16			
SPT	N1 ₆₀	12	4 – 32	19			
Moisture C	Content (%)	14	6 – 36	20			
Liquid L	Limit (%)		18 – 39	28			
Plastic L	Plastic Limit (%)		Non-plastic	-			
Plasticity	Plasticity Index (%)		Non-plastic	-			
	Gravel	1	-	9			
Particle Size Distribution (%)	Sand		-	19			
21011101110111 (70)	Silt / Clay		-	72			
p	Н	9	4.67 – 7.9	7.0			
Water soluble sulphate SO ₄ (2:1) (mg/l)		9	30 – 500	120			
Glaciofluvial Deposits - Cohesive							
SPT N ₆₀		6	7 – 14	14			
Moisture C	Content (%)	7	8 – 19	15			

Parameter	No. of Tests	Min – Max	Mean	
Liquid Limit (%)		26 – 40	32	
Plastic Limit (%)	3	15 – 20	17	
Plasticity Index (%)		10 – 20	15	
рН	4	5.58 - 8.2	6.8	
Water soluble sulphate SO ₄ (2:1) (mg/l)	4	16 – 60	38	
Glaciofluvial Deposits - Sand				
SPT N ₆₀	5	2 – 56	20	
SPT <i>N1</i> ₆₀	5	3 – 61	22	
рН	2	7.02 & 7.37	7.2	
Water soluble sulphate SO ₄ (2:1) (mg/l)	2	40 & 50	45	

GRANULAR GLACIOFLUVIAL DEPOSITS

Plasticity testing undertaken on the silts recorded non-plastic results and the SPT testing recorded similar values to the sands. Based on this, both soil types have been considered together.

Unit Weight


The SPT N_{60} results suggest loose to medium conditions (BS 5930, (BSI, 2015)) which, based on guidance in BS 8002:2015 (BSI, 2015), corresponds to a unit weight of 17kN/m³ (above the water table).

Shear Strength

SPT $N1_{60}$ results are presented on **Figure** 6-2 and an SPT $N1_{60}$ of 11 is considered appropriate as a characteristic value. Based on this and the correlation shown by Stroud (1989)., a peak effective angle of internal friction of 31° is considered appropriate.

Figure 6-2 – SPT N1₆₀ vs Elevation – Granular Glaciofluvial Deposits

Stiffness

The drained Young's Modulus, *E'* has been determined from the following relationship:

$$E'(MN/m^2) = 1.5N_{60}$$
 (Clayton, 1995)

Results of this relationship are presented on **Figure** 6-3 and, based on this, a drained Young's Modulus of $15MN/m^2$ is considered appropriate.

Figure 6-3 – Drained Young's Modulus vs Elevation – Granular Glaciofluvial Deposits

COHESIVE GLACIOFLUVIAL DEPOSITS

Given the limited recorded occurrence of the cohesive soils, the amount of in-situ and laboratory testing is relatively small, and the parameters suggested below should be treated with caution.

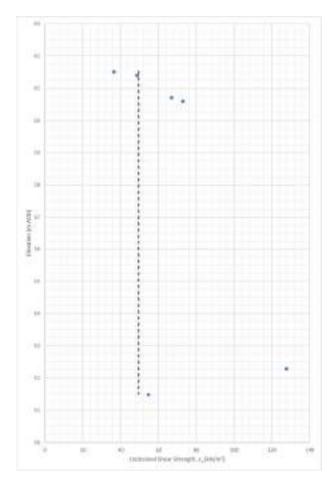
Classification Testing

The three classification tests indicate that the Cohesive Glaciofluvial Deposits recorded in WS312, WS314, and WS314 comprise clay of low to intermediate plasticity (Class CL – Cl).

Unit Weight

In accordance with guidance presented in BS 8002:2015 (BSI, 2015) a unit weight of 19kN/m³ is considered appropriate for the Cohesive GFD.

Undrained Shear Strength


The undrained shear strength, c_u has been estimated from the following relationship with SPT N_{60} : $c_u(kN/m^2) = f_1N_{60}$

Where *f1* is a factor related to the plasticity index, taken as 5 for an upper bound plasticity index of 20% (Stroud, 1975).

Results of the above relationship are presented on **Figure 6-4** and suggest an undrained shear strength of 50kN/m².

Figure 6-4 - Undrained Shear Strength vs Elevation - Cohesive Glaciofluvial Deposits

Drained Shear Strength

Based on the plasticity index relationship presented in **Section 6.2** and an upper bound plasticity index of 20%, a constant volume angle of shear resistance, φ'_{cv} of 26° is considered appropriate for the Cohesive Glaciofluvial Deposits.

Stiffness

Values of drained Young's Modulus, *E'* have been estimated from the following relationship:

 $E'(MN/m^2) = 0.9N_{60}$ (Clayton, 1995)

This relationship suggests a drained Young's Modulus of 10MN/m².

6.4 GLACIAL TILL

Cohesive Glacial Till was recorded in BH305C and BH306 to depths of 7.8m BGL and 8.2m BGL with thicknesses of 0.85m and 1m. The Cohesive Glacial Till was recorded to comprise stiff slightly sandy slightly gravelly clay with a variable cobble content.

In-situ testing is summarised in **Table 6-3**.

Table 6-3 – Summary of In-Situ Testing – Glacial Till

Parameter	No. of tests	Min – Max	Mean
SPT N ₆₀	1	-	110

Given its limited recorded occurrence and the limited testing undertaken, no material parameters have been derived for the Glacial Till.

6.5 CHESTER FORMATION

Sandstone of the Chester Formation was recorded directly underlying Made Ground in exploratory positions at the northern extent of the site and in the exploratory positions located in the car park off Exchange Street. As the ground elevation increases towards the south, the Chester Formation Sandstone was recorded underlying the sequence of Made Ground, Glaciofluvial Deposits, and Glacial Till.

Recorded rockhead levels suggest that rockhead underlying the site falls from approximately 58m AOD in the south to 47.5 m AOD in the north (Dwg No. **14113-WSP-SKZ-ZZ-DR-Y-0003** in **Appendix A**). Rockhead appears to form a plateau beneath the Exchange Street carpark, with recorded levels between 50m and 51m AOD.

The sandstone was recorded as comprising an upper weathered zone, grading with depth into intact rock. Within this report the weathered zone has been taken as the depth over which the sandstone is recorded as having been recovered as gravelly fine to medium sand or where there was very little / no recovery. In the boreholes this zone was recorded to be between 0.90m (BH303) and 1.5m (BH305C) thick.

The intact rock was generally recorded as extremely weak to weak fine to coarse grained sandstone. The main discontinuity set, likely representing bedding, was recorded as horizontal to sub horizontal, very close spaced, planar and smooth. A second, subvertical discontinuity set was also recorded.

Plots of Rock Quality Designation (RQD) and Total Core Recovery (TCR) for the rotary core boreholes are presented as **Figure A.4** in **Appendix A**.

The recorded RQD appears quite variable, with no apparent correlation with elevation across the site. Likewise, TCR was highly variable within each borehole with no particular correlation evident between the boreholes.

The results of in-situ and laboratory testing are summarised in **Table 6-4**.

Table 6-4 – Summary of In-Situ & Laboratory Testing – Chester Formation Sandstone

Parameter	No. of Tests	Min – Max	Mean
SPT N ₆₀	22	54 – 917*	323
SPT <i>N1</i> ₆₀	22	51 – 797*	328
Axial Point Load, I _{S50} (MN/m ²)	60	0 – 0.204	0.08

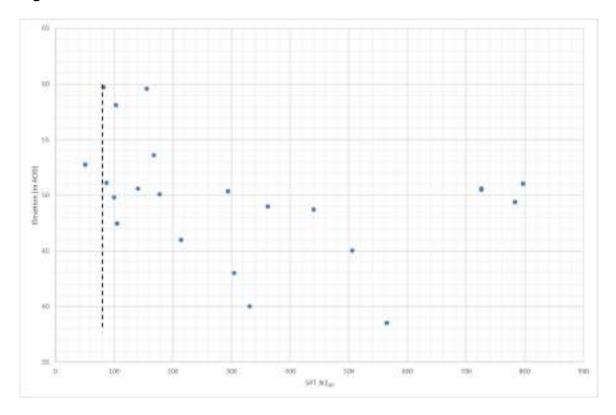
Transport for Greater Manchester

Parameter	No. of Tests	Min – Max	Mean
рН	2	7.3 & 7.7	7.5
Water soluble sulphate SO ₄ (2:1) (mg/l)	2	25 & 30	28
Unconfined Compressive Strength (MN/m²)	6	1.2 – 8.2	4.3

^{*} extrapolated values

WEATHERED CHESTER FORMATION SANDSTONE

Based on the borehole records, the highly weathered zone has been interpreted as being typically 1.5m thick.

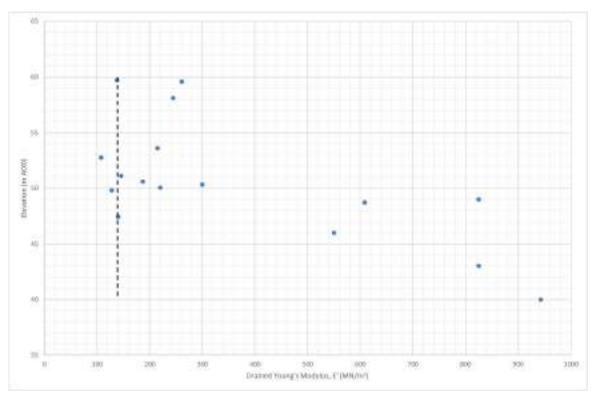

Unit Weight

The SPT N_{60} results indicate that the weathered sandstone is equivalent to a very dense sand (BS 5930:2015, (BSI, 2015)) which, in accordance with guidance presented in BS 8002:2015 (BSI, 2015) corresponds to a unit weight of 19kN/m³ above the groundwater table.

Shear Strength

In-situ testing indicates a dense to very dense sand and, based on a lower bound SPT $N1_{60}$ of 80 (**Figure 6-5**), a characteristic φ'_{peak} of 42° is considered appropriate (Stroud, 1989).

Figure 6-5 - SPT N160 vs Elevation - Weathered Chester Formation Sandstone


Stiffness

Values of drained Young's Modulus, *E'* for the Weathered Chester Formation Sandstone have been determined using the following relationship and are presented on **Figure 6-6**.

$$E'(MN/m^2) = 2N_{60}$$
 (Clayton, 1995)

Based on a lower bound SPT N_{60} value of 70 and engineering judgement, a drained Young's Modulus of 140MN/m² is considered appropriate.

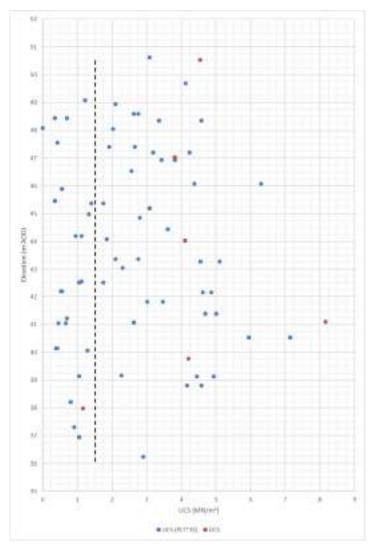
Figure 6-6 - Drained Young's Modulus vs Elevation - Weathered Chester Formation Sandstone

INTACT CHESTER FORMATION SANDSTONE

Unit Weight

The unit weight has been calculated from the mean bulk density and a characteristic unit weight of 21.2kN/m³ is considered appropriate.

Unconfined Compressive Strength


Figure 6-7 presents a plot of unconfined compressive strength versus elevation based on point load testing of samples of the intact rock.

The point load index (I_{S50}) is converted to an equivalent UCS through the application of a correction factor, K. This correction factor is derived by correlating I_{S50} results with direct UCS tests at equivalent depths, and based on testing undertaken across the wider Stockport Interchange site, a K factor of 35 has been adopted.

Based on **Figure 6-7**, a UCS of 1.5MN/m² is considered appropriate for the Intact Chester Formation Sandstone.

Figure 6-7 - Unconfined Compressive Strength vs Elevation - Intact Chester Formation Sandstone

Stiffness

Values of Young's Modulus, *E'* have been derived from the following relationship developed by Whitworth and Turner (1989) and presented in CIRIA 181 (Gannon et al, 1980):

$$E'(MN/m^2) = 275\sqrt{UCS}$$

Based on the UCS relationship and the characteristic UCS given in the previous section, the relationship suggests a Young's Modulus of 340MN/m².

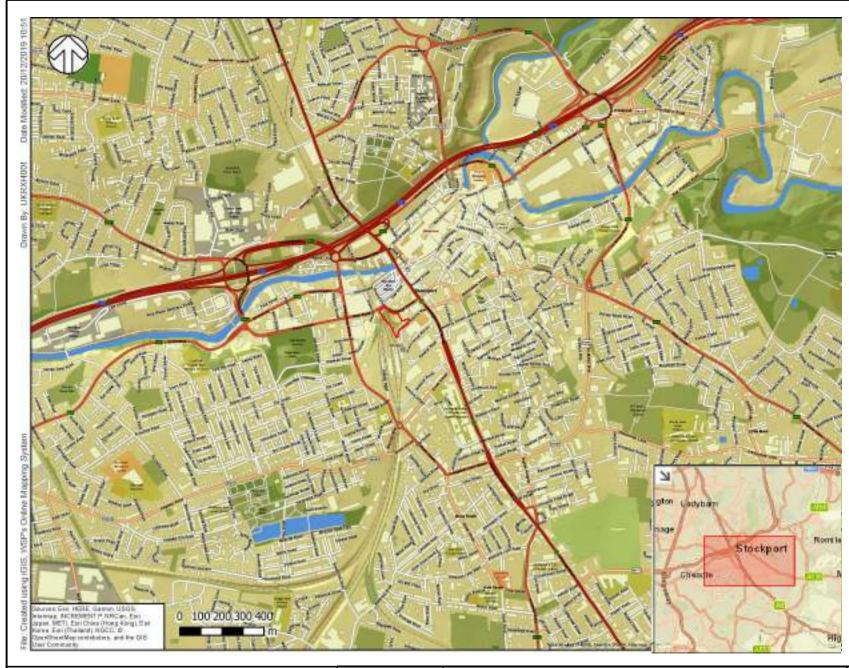
6.6 SUMMARY OF CHARACTERISTIC PARAMETERS

Table 6-5 – Summary of Characteristic Parameters

Parameter	Characteristic Value	Justification	
Granular Made Ground			
Moist Bulk Unit Weight, γ_b (kN/m ³)	17	Loose to medium dense sand – BS 8002 (BSI, 2015)	
Peak angle of internal friction, φ'_{peak} (°)	30	SPT N160 testing (Stroud, 1989)	
	Cohesive Made Ground		
Moist Bulk Unit Weight, γ _b (kN/m³)	18	Low to medium strength clay – BS 8002 (BSI, 2015)	
Undrained Shear Strength, c_u (kN/m²)	45	Field description, SPT N ₆₀ testing, & engineering judgement	
Constant volume effective angle of internal friction, φ'_{cv} (°)	26	Plasticity index relationship – BS 8002 (BSI, 2015)	
	Glaciofluvial Deposits (Silt & Sand)		
Moist Bulk Unit Weight, γ_b (kN/m ³)	17	Loose to medium dense sand – BS 8002 (BSI, 2015)	
Peak angle of internal friction, φ'_{peak} (°)	31	SPT N160 testing (Stroud, 1989)	
Stiffness, E' (MN/m²)	15	SPT N ₆₀ testing (Clayton, 1995)	
Glaciofluvial Deposits (Clay)			
Moist Bulk Unit Weight, γ_b (kN/m ³)	19	Medium strength clay – BS 8002 (BSI, 2015)	
Undrained Shear Strength, c_u (kN/m²)	50	Figure 6.4	
Constant volume effective angle of internal friction, φ'_{cv} (°)	26	Plasticity index relationship – BS 8002 (BSI, 2015)	
Stiffness, E' (MN/m²)	10	SPT N ₆₀ testing (Clayton, 1995)	
Weathered Chester Formation Sandstone			
Moist Bulk Unit Weight, γ_b (kN/m ³)	19	Very dense sand – BS 8002 (BSI, 2015)	
Peak angle of internal friction, φ'_{peak} (°)	42	SPT N160 testing (Stroud, 1989)	

Parameter	Characteristic Value	Justification	
Stiffness, E' (MN/m²)	140	SPT N ₆₀ testing (Clayton, 1995)	
Intact Chester Formation Sandstone			
Moist Bulk Unit Weight, γ_b (kN/m ³)	21.2	Calculated from mean of bulk density testing	
UCS, σ_c (MN/m²)	1.5	Figure 6.7	
Stiffness, E' (MN/m²)	340	E' = 275√UCS (Whitworth & Turner, 1989)	

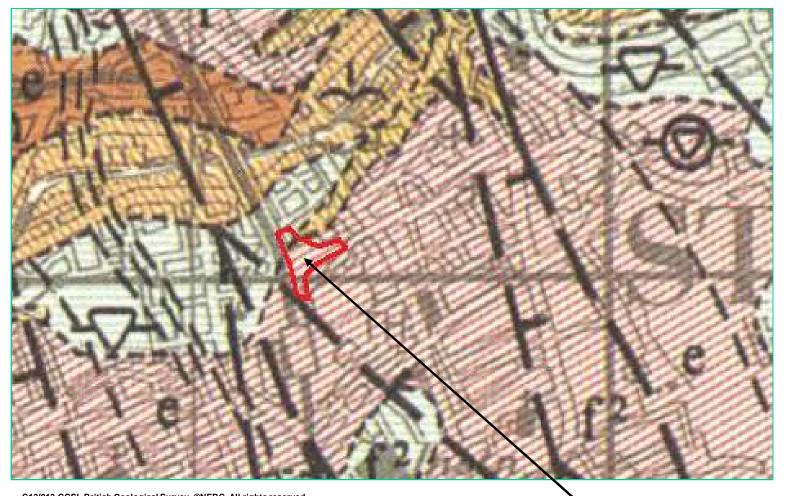
BIBLIOGRAPHY


- British Standards Institution. 2007. BS EN 1997-2:2007. Eurocode 7 Geotechnical design Part 2: Ground investigation and testing. London: BSI.
- AECOM. 2016. Stockport Interchange Ground Investigation Report. Ref No. 60340298/GEO/02
- WSP. 2018. Exchange Street Phase I Preliminary Ground Risk Assessment. Report Ref. 14113-WSP-SKZ-XX-RP-Y-0004
- British Standards Institution. 2015. BS 5930:2015. Code of practice for ground investigations. London: BSI.
- British Standards Institution. 2013. BS 10175+A1:2013. Investigation of potentially contaminated sites – Code of practice. London: BSI.
- British Standards Institution. 2016. BS 8485:2015 incorporating corrigendum No. 1. Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings. London: BSI.
- Wilson, S. et al. 2007. Assessing risk posed by hazardous ground gases to buildings. C665.
 London: CIRIA.
- Stroud, M.A. 1989. The Standard Penetration Test its application and interpretation. Proc. ICE. on Penetration Testing in the UK, Birmingham. London: Thomas Telford.
- Stroud, M.A. 1975. The standard penetration test in insensitive clays and soft rocks. Proceedings
 of the European Symposium on Penetration Testing. 2. pp.367 375
- British Standards Institution. 2015. BS 8002:2015. Code of practice for earth retaining structures.
 London: BSI
- Clayton, C.R.I. 1995. The Standard Penetration Test (SPT): Methods and Use. CIRIA Report 143. London: CIRIA.
- Whitworth, L.J. & Turner, A.J. 1989. Rock socket piles in the Sherwood Sandstone of central Birmingham. *Proc. Int. Conf. on Piling and Deep Foundations, London.* pp. 327-334.
- Gannon, J.A. et al. 1990. CIRIA Report 181: Piled foundations in weak rock. London: CIRIA.

EXCHANGE STREET, STOCKPORT
Project No.: 70031899 | Our Ref No.: 14113-WSP-SKZ-XX-RP-Y-0004
Transport for Greater Manchester

Appendix A

FIGURES & DRAWINGS



8 First Street, Manchester M15 4RP Tel: 0161 200 5000

Project No.	70031899	Scale	NTS
Date	February 2020	Figure No.	A.1
Project	Stockport Interchange - Exchange Street	Drawn by	RH
Title	Site Location Plan	Checked by	MN

Legend

First Terrace

4

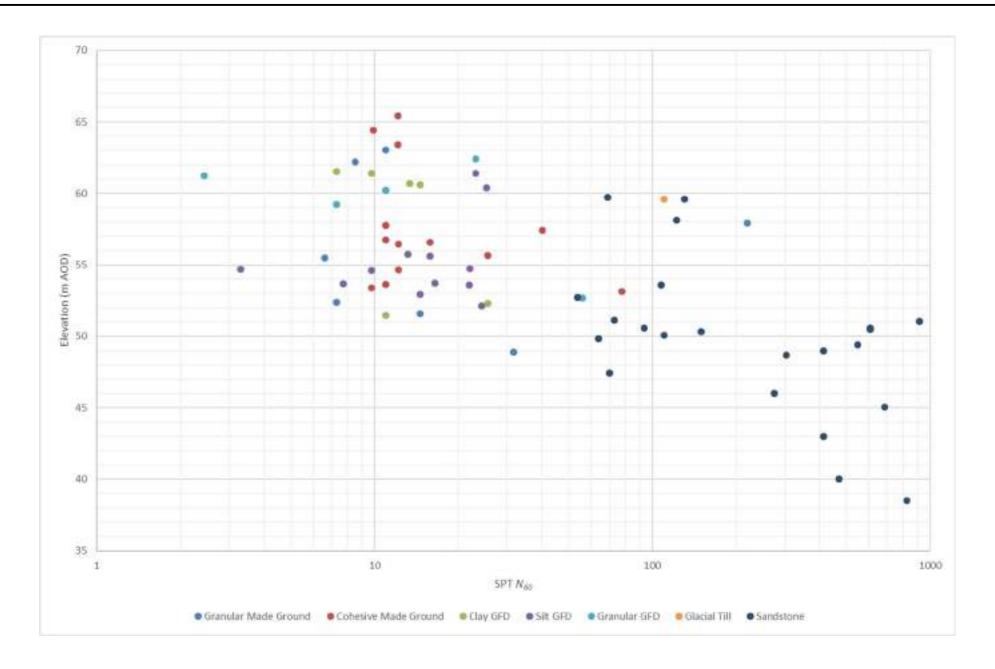
Second Terrace

Third Terrace

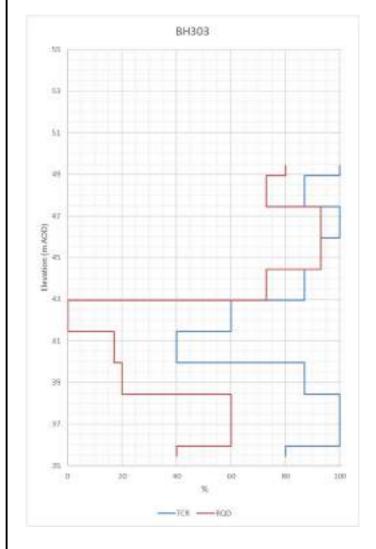
Glacial Sand and Gravel

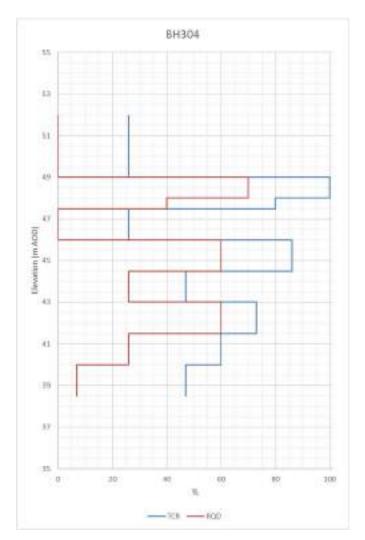
Boulder Clay

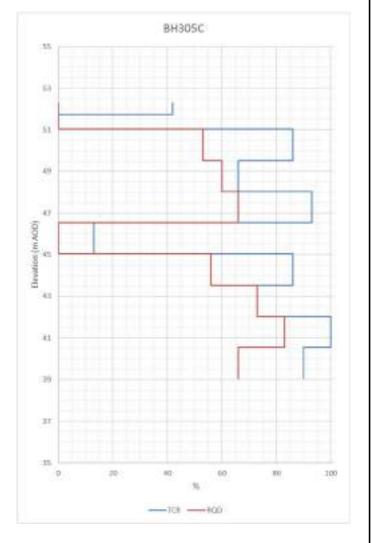
C12/013-CCSL British Geological Survey. ©NERC. All rights reserved.


Reproduced from BGS map "Stockport Sheet 98 Drift Ed. 1:63,360" by permission of the British Geological Survey. ©NERC. All rights reserved.

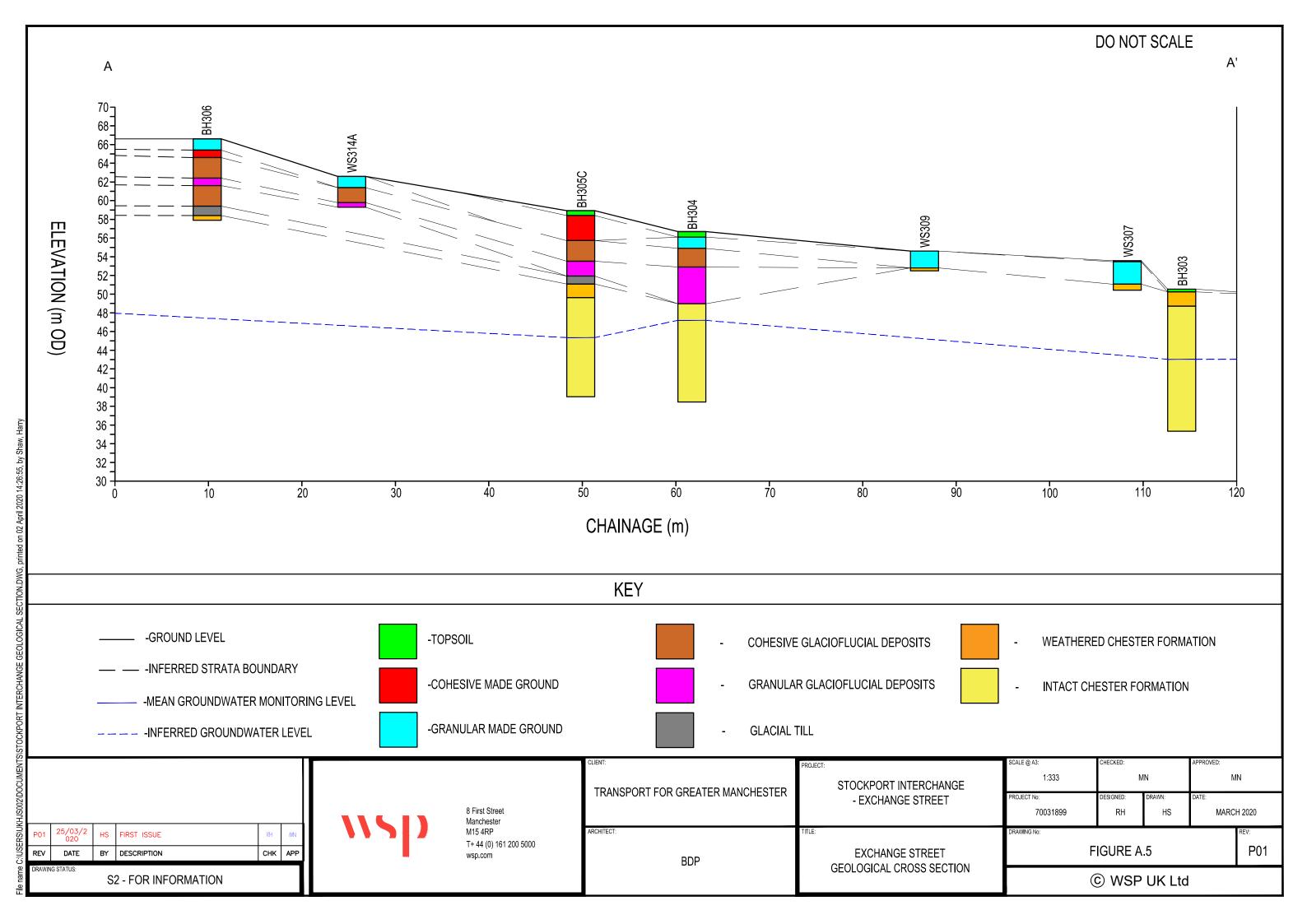
The Site

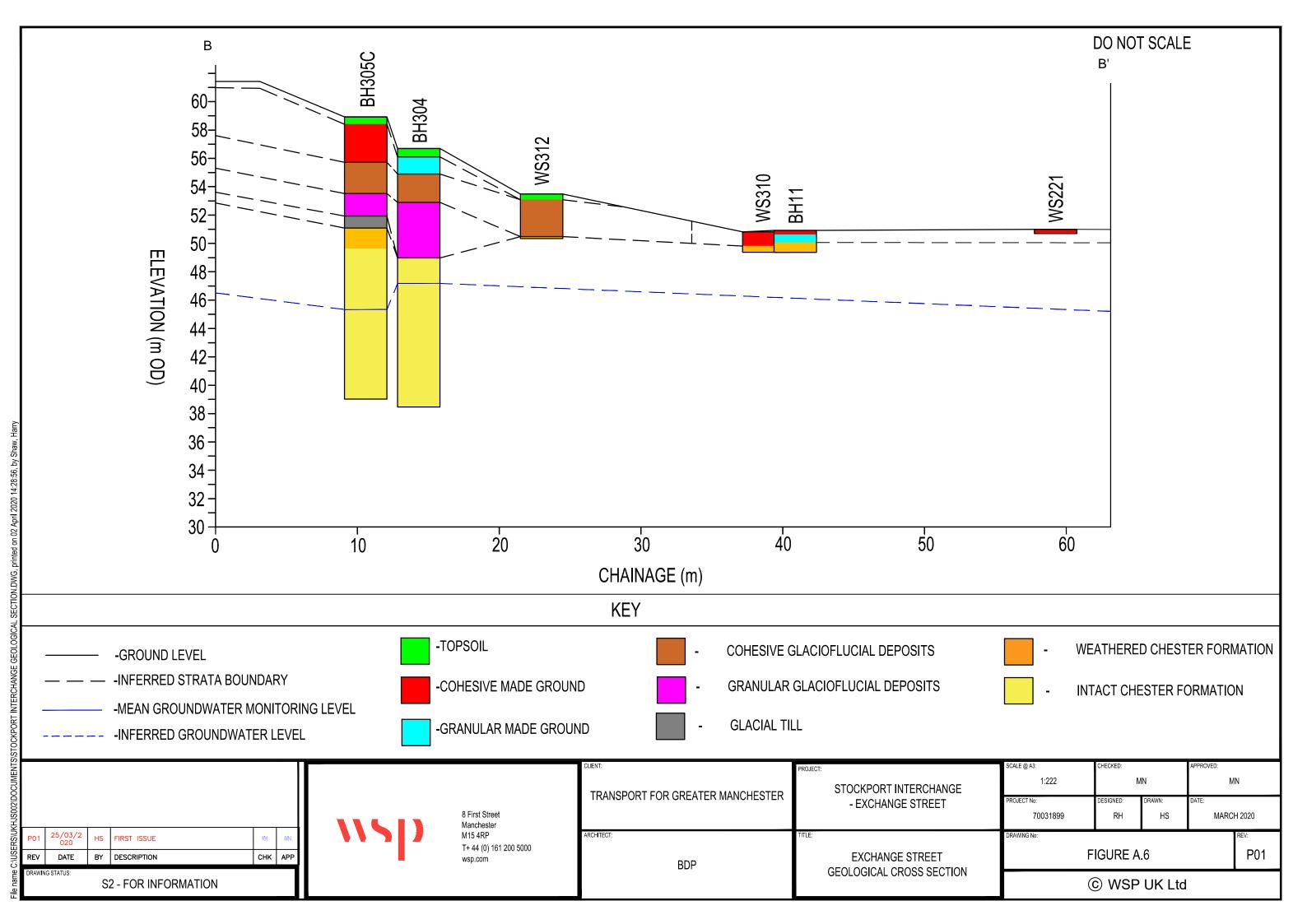

8 First	Stree	t, Mar	ches	ster	M15 4RP	•
	Tel:	0161	200	500	00	


Project No.	70031899	Scale	NTS
Date	February 2020	Figure No.	A.2
Project	Stockport Interchange - Exchange Street	Drawn by	RH
Title	Extract from BGS Geological Map Sheet 89	Checked by	MN



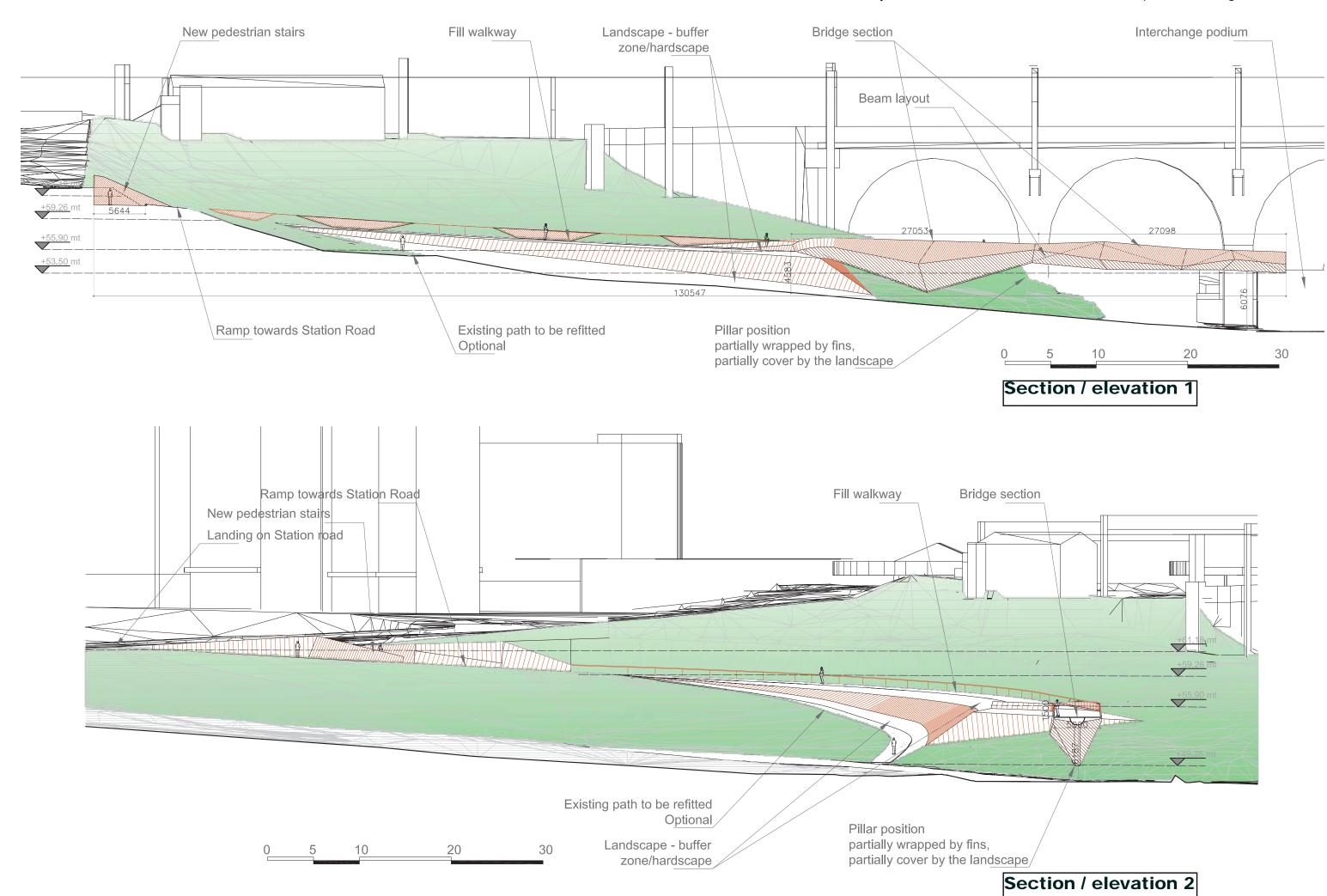
Project No.	70031899	Scale	NTS
Date	February 2020	Figure No.	A.3
Project	Stockport Interchange - Exchange Street	Drawn by	RH
Title	SPT N ₆₀ vs Elevation	Checked by	MN



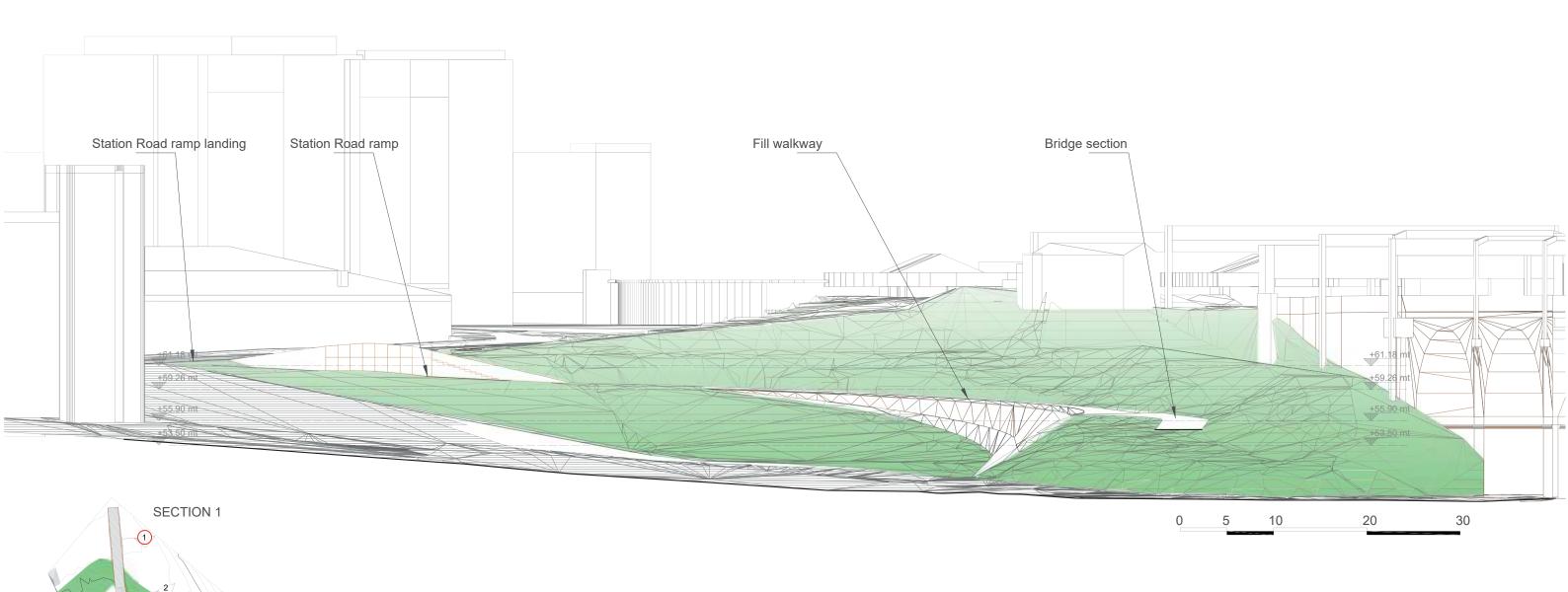


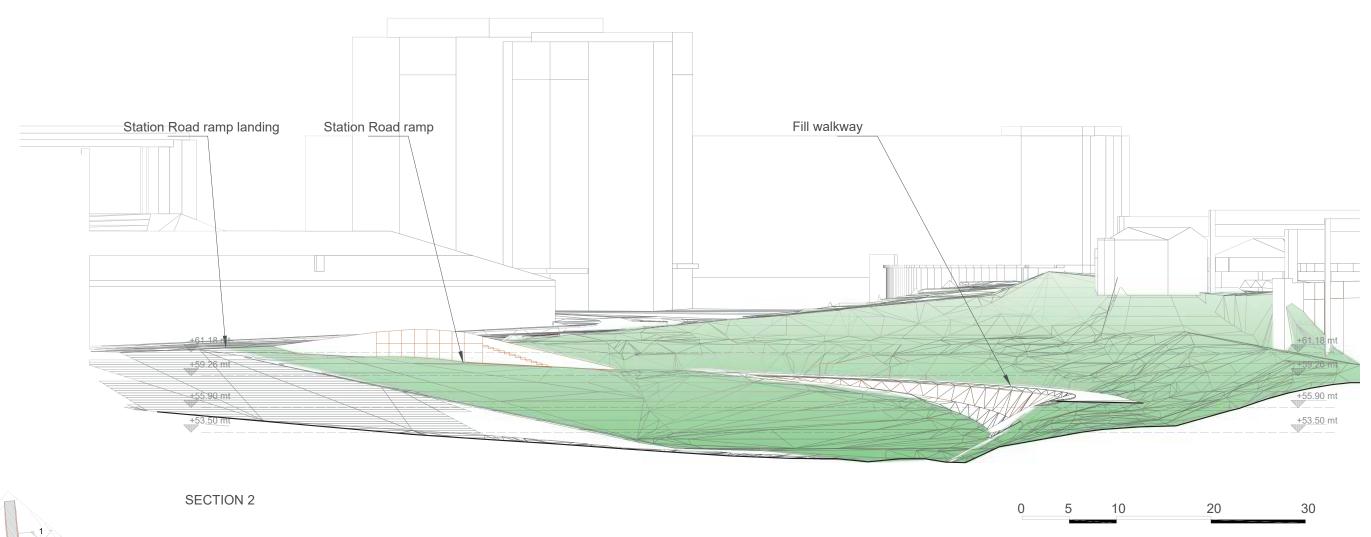
Project No.	70031899	Scale	NTS
Date	February 2020	Figure No.	A.4
Project	Stockport Interchange - Exchange Street	Drawn by	RH
Title	Total Core Recovery & Rock Quality Designation – BH303, BH304, & BH305C	Checked by	MN
		-	

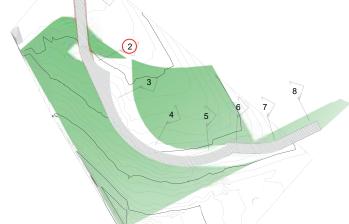
8 First	Street	, Man	ches	ter	M15 4	4RP
	Tel:	0161	200	500	00	

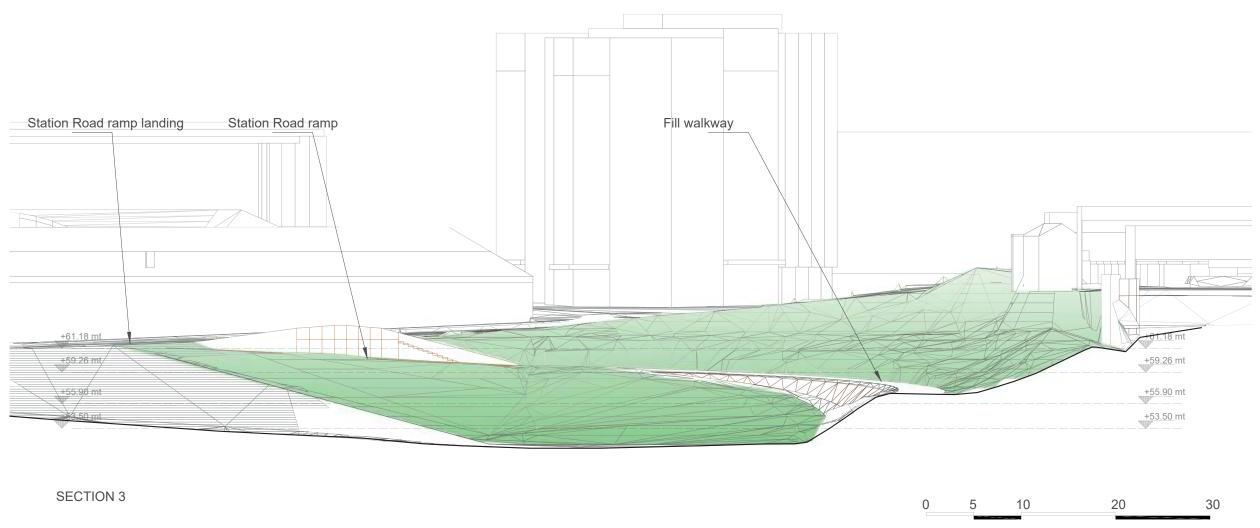

Appendix B

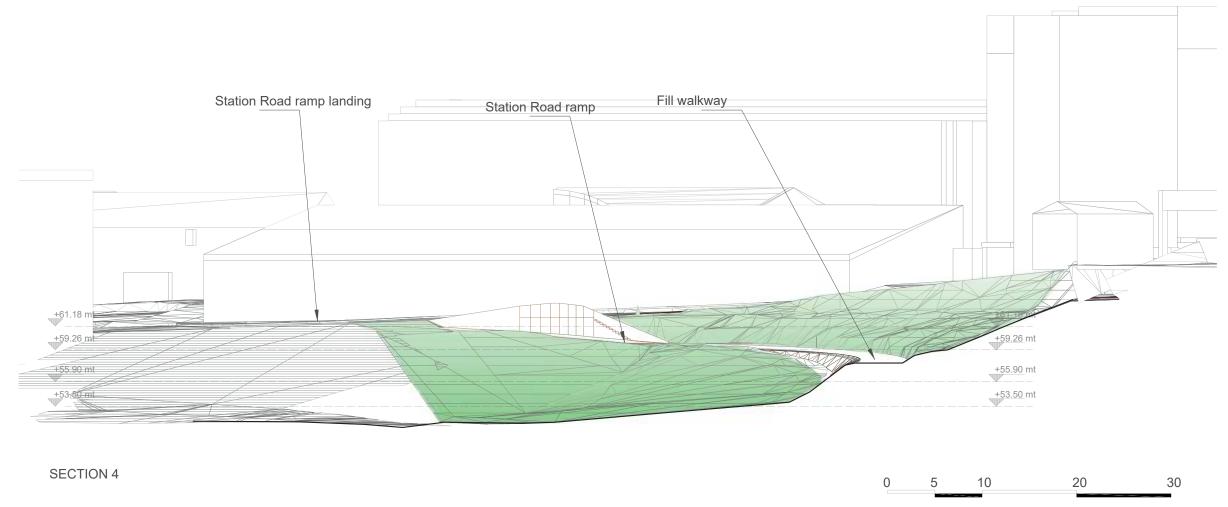
DEVELOPMENT PROPOSALS

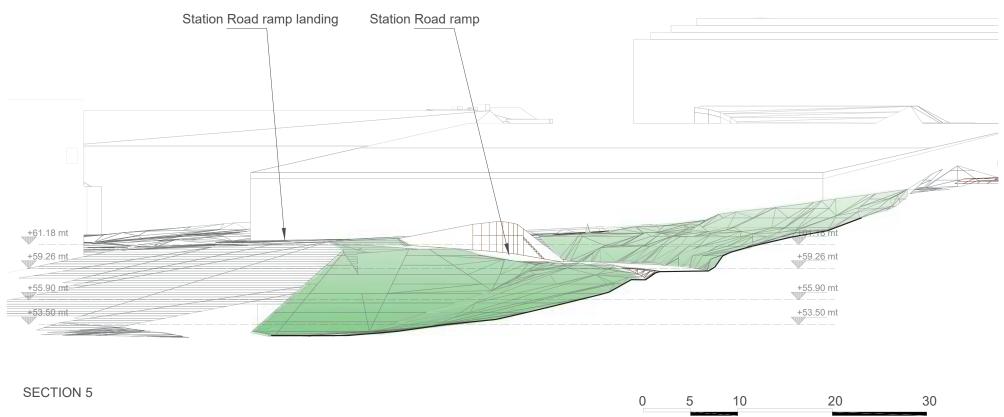

MAIN ELEVATIONS

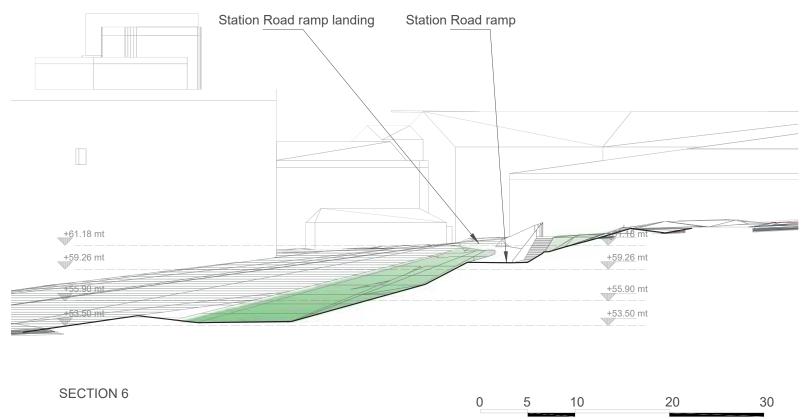


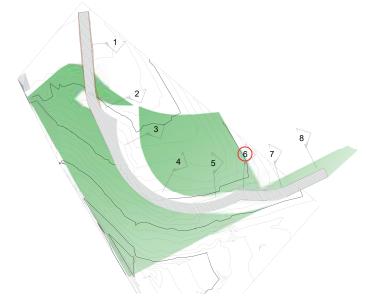


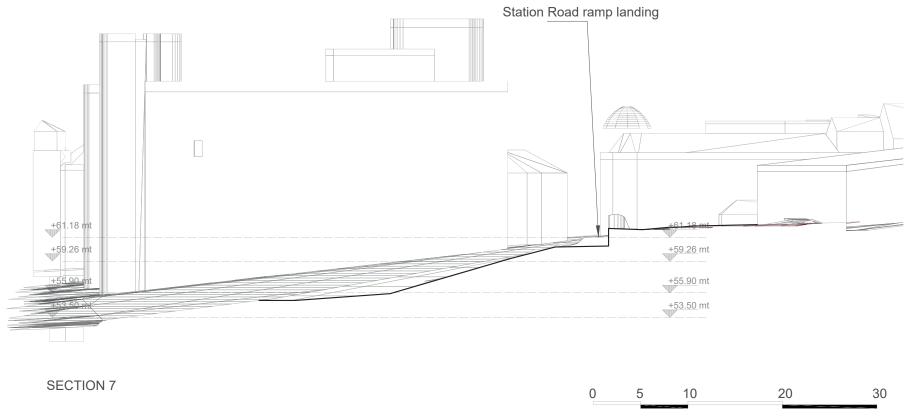

SECTIONS

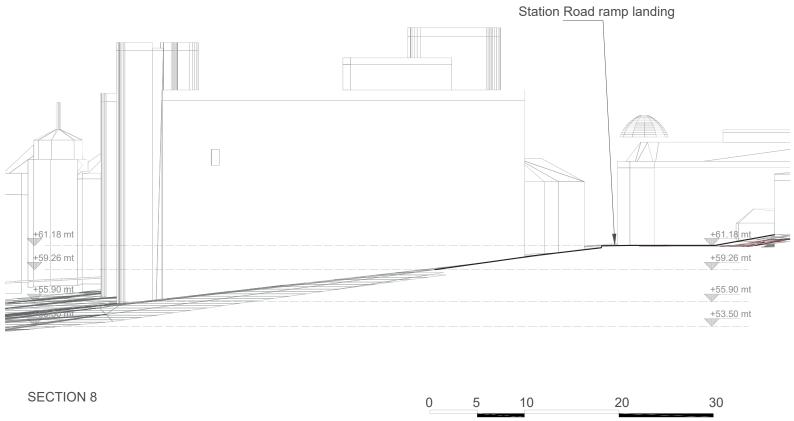














Appendix C

GENERAL LIMITATIONS

Revised: 24/05/2017

REPORT LIMITATIONS - GROUND RISK AND REMEDIATION

GENERAL

- 1. WSP UK Limited has prepared this report solely for the use of the Client and those parties with whom a warranty agreement has been executed, or with whom an assignment has been agreed and outlined in the body of the report.
- Unless explicitly agreed otherwise, in writing, this report has been prepared under WSP UK Limited standard Terms and Conditions as included within our proposal to the Client.
- 3. Project specific appointment documents may be agreed at our discretion and a charge may be levied for both the time to review and finalise appointments documents and also for associated changes to the appointment terms. WSP UK Limited reserves the right to amend the fee should any changes to the appointment terms create an increase risk to WSP UK Limited.
- 4. The report needs to be considered in the light of the WSP UK Limited proposal and associated limitations of scope. The report needs to be read in full and isolated sections cannot be used without full reference to other elements of the report and any previous works referenced within the report.

PHASE 1 GEO ENVIRONMENTAL AND PRELIMINARY RISK ASSESSMENTS

Coverage: This section covers reports with the following titles or combination of titles: phase 1; desk top study; geo environmental assessment; development appraisal; preliminary environmental risk assessment; constraints report; due diligence report; geotechnical development review; environmental statement; environmental chapter; project scope summary report (PSSR), program environmental impact report (PEIR), geotechnical development risk register; and, baseline environmental assessment.

- 5. The works undertaken to prepare this report comprised a study of available and easily documented information from a variety of sources (including the Client), together with (where appropriate) a brief walk over inspection of the Site and correspondence with relevant authorities and other interested parties. Due to the short timescales associated with these projects responses may not have been received from all parties. WSP UK Limited cannot be held responsible for any disclosures that are provided post production of our report and will not automatically update our report.
- 6. The opinions given in this report have been dictated by the finite data on which they are based and are relevant only for the purpose for which the report was commissioned. The information reviewed should not be considered exhaustive and has been accepted in good faith as providing true and representative data pertaining to site conditions. Should additional information become available which may affect the opinions expressed in this report, WSP UK Limited reserves the right to review such information and, if warranted, to modify the opinions accordingly.
- 7. It should be noted that any risks identified in this report are perceived risks based on the information reviewed. Actual risks can only be assessed following intrusive investigations of the site.
- 8. WSP UK Limited does not warrant work / data undertaken / provided by others.

REPORT LIMITATIONS - GROUND RISK AND REMEDIATION

INTRUSIVE INVESTIGATION REPORTS

Coverage: The following report titles (or combination) may cover this category of work: geo environmental site investigation; geotechnical assessment; GIR (Ground Investigation reports); preliminary environmental and geotechnical risk assessment; and, geotechnical risk register.

- 9. The investigation has been undertaken to provide information concerning either:
 - i. The type and degree of contamination present at the site in order to allow a generic quantitative risk assessment to be undertaken; or
 - ii. Information on the soil properties present at the site to allow for geotechnical development constraints to be considered.
- 10. The scope of the investigation was selected on the basis of the specific development and land use scenario proposed by the Client and may be inappropriate to another form of development or scheme. If the development layout was not known at the time of the investigation the report findings may need revisiting once the development layout is confirmed.
- 11. For contamination purposes, the objectives of the investigation are limited to establishing the risks associated with potential contamination sources with the potential to cause harm to human health, building materials, the environment (including adjacent land), or controlled waters.
- 12. For geotechnical investigations the purpose is to broadly consider potential development constraints associated with the physical property of the soils underlying the site within the context of the proposed future or continued use of the site, as stated within the report.
- 13. The amount of exploratory work, soil property testing and chemical testing undertaken has necessarily been restricted by various factors which may include accessibility, the presence of services; existing buildings; current site usage or short timescales. The exploratory holes completed assess only a small percentage of the area in relation to the overall size of the Site, and as such can only provide a general indication of conditions.
- 14. The number of sampling points and the methods of sampling and testing do not preclude the possible existence of contamination where concentrations may be significantly higher than those actually encountered or ground conditions that vary from those identified. In addition, there may be exceptional ground conditions elsewhere on the site which have not been disclosed by this investigation and which have therefore not been taken into account in this report.
- 15. The inspection, testing and monitoring records relate specifically to the investigation points and the timeframe that the works were undertaken. They will also be limited by the techniques employed. As part of this assessment, WSP UK Limited has used reasonable skill and care to extrapolate conditions between these points based upon assumptions to develop our interpretation and conclusions. The assumption made in forming our conclusions is that the ground and groundwater conditions (both chemically and physically) are the same as have been encountered during the works undertaken at the specific points of investigation. Conditions can change between investigation points and these interpretations should be considered indicative.
- 16. The risk assessment and opinions provided are based on currently available guidance relating to acceptable contamination concentrations; no liability can be accepted for the retrospective effects of any future changes or amendments to these values. Specific assumptions associated

REPORT LIMITATIONS - GROUND RISK AND REMEDIATION

with the WSP UK Limited risk assessment process have been outlined within the body or associated appendix of the report.

- **17.** Additional investigations may be required in order to satisfy relevant planning conditions or to resolve any engineering and environmental issues.
- 18. Where soil contamination concentrations recorded as part of this investigation are used for commentary on potential waste classification of soils for disposal purposes, these should be classed as indicative only. Due consideration should be given to the variability of contaminant concentrations taken from targeted samples versus bulk excavated soils and the potential variability of contaminant concentrations between sampling locations. Where major waste disposal operations are considered, targeted waste classification investigations should be designed.
- 19. The results of the asbestos testing are factually reported and interpretation given as to how this relates to the previous use of the site, the types of ground encountered and site conceptualisation. This does not however constitute a formal asbestos assessment. These results should be treated cautiously and should not be relied upon to provide detailed and representative information on the delineation, type and extent of bulk ACMs and / or trace loose asbestos fibres within the soil matrix at the site.
- 20. If costs have been included in relation to additional site works, and / or site remediation works these must be considered as indicative only and must be confirmed by a qualified quantity surveyor.

EUROCODE 7: GEOTECHNICAL DESIGN

- 21. On 1st April 2010, BS EN 1997-1:2004 (Eurocode 7: Geotechnical Design Part 1) became the mandatory baseline standard for geotechnical ground investigations.
- 22. In terms of geotechnical design for foundations, slopes, retaining walls and earthworks, EC7 sets guidance on design procedures including specific guidance on the numbers and spacings of boreholes for geotechnical design, there are limits to methods of ground investigation and the quality of data obtained and there are also prescriptive methods of assessing soil strengths and methods of design. Unless otherwise explicitly stated, the work has not been undertaken in accordance with EC7. A standard geotechnical interpretative report will not meet the requirements of the Geotechnical Design Report (GDR) under Eurocode 7. The GDR can only be prepared following confirmation of all structural loads and serviceability requirements. The report is likely to represent a Ground Investigation Report (GIR) under the Eurocode 7 guidance.

DETAILED QUANTITATIVE RISK ASSESSMENTS AND REMEDIAL STRATEGY REPORTS

23. These reports build upon previous report versions and associated notes. The scope of the investigation, further testing and monitoring and associated risk assessments were selected on the basis of the specific development and land use scenario proposed by the Client and may not be appropriate to another form of development or scheme layout. The risk assessment and opinions provided are based on currently available approaches in the generation of Site Specific Assessment Criteria relating to contamination concentrations and are not considered to represent a risk in a specific land use scenario to a specific receptor. No liability can be accepted for the retrospective effects of any future changes or amendments to these values, associated models or associated guidance.

REPORT LIMITATIONS - GROUND RISK AND REMEDIATION

- 24. The outputs of the Detailed Quantitative Risk Assessments are based upon WSP UK Limited manipulation of standard risk assessment models. These are our interpretation of the risk assessment criteria.
- 25. Prior to adoption on site they will need discussing and agreeing with the Regulatory Authorities prior to adoption on site. The regulatory discussion and engagement process may result in an alternative interpretation being determined and agreed. The process and timescales associated with the Regulatory Authority engagement are not within the control of WSP UK Limited. All costs and programmes presented as a result of this process should be validated by a quantity surveyor and should be presumed to be indicative.

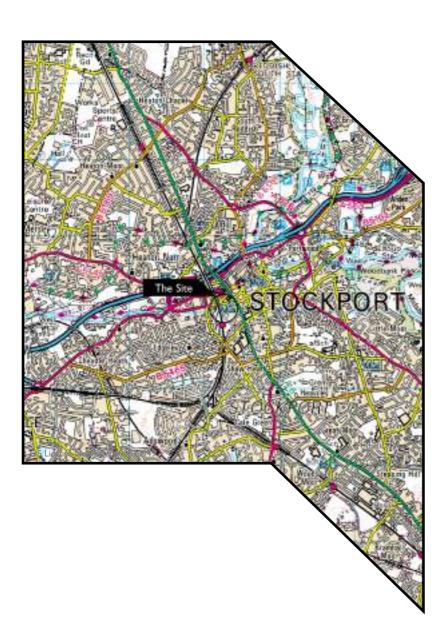
GEOTECHNICAL DESIGN REPORT (GDR)

26. The GDR can only be prepared following confirmation of all structural loads and serviceability requirements. All the relevant information needs to be provided to allow for a GDR to be produced.

MONITORING (INCLUDING REMEDIATION MONITORING REPORTS)

- 27. These reports are factual in nature and comprise monitoring, normally groundwater and ground gas and data provided by contractors as part of an earthworks or remedial works.
- 28. The data is presented and will be compared with assessment criteria.

Appendix D


GEOTECHNICS FACTUAL REPORT

Ground Investigation

www.geotechnics.co.uk

EXCHANGE SQUARE, STOCKPORT

Factual Report

for

Transport for Greater Manchester

Engineer: WSP UK Limited

Project Number PN194054

February 2020

Issuing Office

North West Office
The Geotechnical Centre
Unit I, Borders Industrial Park
Pivor Long Selengy

River Lane, Saltney

Chester CH4 8RJ

Tel: 01244 671117

mail@chester.geotechnics.co.uk

Head Office
The Geotechnical Centre
203 Torrington Avenue
Tile Hill
Coventry
CV4 9UT
Tel: 02476 694664

mail@geotechnics.co.uk

South West Office
The Geotechnical Centre
Unit 5, Orchard Court
Heron Road, Sowton
Exeter
EX2 7NR
Tel: 01392 463110
mail@exeter.geotechnics.co.uk

North East Office
The Geotechnical Centre
Unit I, Bypass Park Estate
Sherburn-in-Elmet
Leeds
LS25 6EP
Tel: 01977 525030
mail@yorkshire.geotechnics.co.uk

Factual Report

EXCHANGE SQUARE, STOCKPORT

for Transport for Greater Manchester

Engineer: WSP UK Limited **Project No:** PN194054

February 2020

LIST OF CONTENTS

			Page N
1.0	INTR	RODUCTION	1
2.0	ОВЈЕ	ECT AND SCOPE OF THE INVESTIGATION	1
3.0	PRES	ENTATION	1
4.0	THE	SITE	1
	4 . I	Location	1
	4.2	Description	1
	4.3	Site Geology	1
	4.4	Hydrogeology	2
5.0	PRO	CEDURE	2
	5.1	Commissioning	2
	5.2	General	2
	5.3	Dynamic Sample Boreholes with Rotary Follow-on	2
	5.4	Dynamic Sample Boreholes	3
	5.5	Trial Pits	3
	5.6	Instrumentation and Monitoring	3
6.0	LABO	DRATORY TESTING	4
	6. l	Geotechnical	4
	6.2	Contamination	4

APPENDICES

APPENDIX I	Site Location Plan
APPENDIX 2	Dynamic Sample/Rotary Follow-on Borehole Records
APPENDIX 3	Core Photographs
APPENDIX 4	Dynamic Sample Borehole Records
APPENDIX 5	Trial Pit Records
APPENDIX 6	Trial Pit Photographs
APPENDIX 7	Monitoring Results
APPENDIX 8	Laboratory Test Results - Geotechnical
APPENDIX 9	Laboratory Test Results - Contamination (Soil)
APPENDIX 10	Laboratory Test Results - Contamination (Groundwater)
APPENDIX I I	Exploratory Hole Location Plan
APPENDIX 12	Investigation Techniques and General Notes

Factual Report

at

Project No: PNI 94054

February 2020

EXCHANGE SQUARE, STOCKPORT

1.0 INTRODUCTION

A geotechnical and geo-environmental investigation was undertaken by Geotechnics Limited at the site of proposed development works at Exchange Square, Stockport. The investigation was carried out to the instructions of the Engineer, WSP UK Limited on behalf of the Client, Transport for Greater Manchester. This report describes the work undertaken and presents the data obtained.

2.0 OBJECT AND SCOPE OF THE INVESTIGATION

The object of this investigation was to obtain information on the ground and groundwater conditions relating to the design of the proposed works within the limitations posed by trial hole numbers, locations, depths, methods adopted and the scope of approved in situ and laboratory testing. The investigation comprised dynamic sample boreholes, some with rotary cored follow-on, foundation inspection pits, in situ and laboratory testing and reporting. A Factual Report was also commissioned.

3.0 PRESENTATION

A description of the site and a summary of the procedures followed during the investigation process are presented in Sections 4 to 6. The factual data so obtained are presented in Appendices 2 to 11 of this report. Attention is drawn to the General Notes and Investigation Procedures presented in Appendix 11 to aid an understanding of the procedures followed and the context in which the report should be read.

In addition, data in electronic format in accordance with "The Electronic Transfer of Geotechnical Data from Ground Investigations" published by the AGS (the AGS Format) are presented separately.

4.0 THE SITE

4.1 Location

The site is located in Stockport town centre, extending from Station Road northwards to Daw Bank and Exchange Street and from Stockport railway viaduct eastwards to Stockport Telephone Exchange. The approximate Ordnance Survey National Grid Reference for the centre of the site is SJ 892 900 and an extract from the relevant 1:50,000 Scale O.S. Map is included as Appendix 1.

4.2 Description

The site is irregular in shape with maximum dimensions of approximately 100m (north-west to south-east) and 85m (north-east to south-west). Ground levels across the site generally fall towards the north, such that levels fall from around 68mOD on south-western corner of the site to around 48mOD at the junction of Exchange Street with Daw Bank.

The site comprises a stone hardcore car parking area with adjacent steeply sloping and densely vegetated areas.

The site is bounded to the north by Daw Bank and Exchange Street, to the east by Stockport Telephone Exchange, to the south by Stockport Railway Station car park and Station Road and to the west by Stockport Station and the railway viaduct.

4.3 Site Geology

The 1:50,000 scale map of Stockport published by the British Geological Survey, Sheet 98 Drift edition dated 1962, shows the site to be underlain by Glaciofluvial Deposits (recorded on the map as Glacial Sand and Gravel).

The 1:50,000 Solid edition map (dated 1977) indicates that the site is underlain by rocks of the Chester Formation (recorded on the map as

Chester Pebble Beds Formation), part of the Sherwood Sandstone Group of Triassic age. The conjectured trace of a north-west to south-east trending fault is shown to pass through or very close to the south-western corner of the site, the strata to the north-east of this fault being downthrown.

The British Geological Survey maps do not show the presence of Made Ground below the site. However, Made Ground may be present for which the British Geological Survey have no records or which are too shallow for incorporation into the maps. Given historical land uses of this site, a thickness of Made Ground would be anticipated across the site.

4.4 Hydrogeology

The Government's DEFRA MagicMap website, https://magic.defra.gov.uk/MagicMap.aspx, accessed on 24th January 2020, shows the Glaciofluvial Deposits to be classed as a Secondary A Aquifer. The Chester Formation rocks are shown to be classed as a Principal Aquifer.

5.0 PROCEDURE

5.1 Commissioning

The work was awarded following submission of a tender for work designed by the Engineer for ground investigation of the site in accordance with the Client's requirements.

5.2 General

The procedures followed in this site investigation are based on BS 5930: 2015 – Code of Practice for Site Investigations and BS 10175:2011+A2:2017 – Investigation of Potentially Contaminated Sites. The soils and rocks encountered have been described in accordance with BS5930:2015 and BS EN ISO 14688-1:2018 and BS EN ISO 14689:2018. The exploratory hole records are included in Appendices 2, 4 and 5 and their positions are shown on the Exploratory Hole Location Plan in Appendix 11.

The Exploratory Hole locations were specified by the Engineer. The co-ordinates and levels shown on the Exploratory Hole Records were measured using a Leica GPS survey device. The depths quoted on the exploratory hole records are in metres below ground level.

Prior to the investigation, a survey was carried out by CMS Surveys Limited utilising Ground Penetrating Radar (GPR) techniques to check for the presence of buried services at the proposed exploratory hole locations.

At each exploratory hole location an inspection pit was excavated using hand tools to a depth of 1.20m below ground level to check for the presence of underground services. Prior to and on completion of the excavation, the location was scanned using a cable avoidance tool (CAT).

5.3 Dynamic Sample Boreholes with Rotary Follow-on

Two (2 No.) boreholes (numbered BH304 and BH305C), up to 120mm in diameter, were sunk utilising a combination of dynamic sampling and rotary coring techniques to depths of 18.20m (BH304) and 19.90m (BH305C) below ground level. A third borehole (BH306) was sunk to a depth of 8.71m below ground level utilising a combination of dynamic sampling and rotary open-hole rock-roller drilling techniques. A fourth borehole (BH303) was sunk to a depth of 15.20m below ground level utilising rotary coring techniques. Three earlier attempts (BH305, BH305A and BH305B) at Borehole BH305C were all terminated within their inspection pits on encountering concrete obstructions. The work was carried out between 25th November and 9th December 2019.

The dynamic sample sections of the boreholes were carried out using a compressed air percussive apparatus fitted to the rotary drilling rig which drives lined steel tubes into the ground in 1.00m lengths. Samples are retrieved in the plastic liners. The liners are extruded from the sampler and placed into suitable core boxes. The retrieved liners were split and the recovered soils described before being subsampled into ES, D and B samples as shown on the Borehole Records. The Borehole Records are presented in Appendix 2.

Rotary coring, commenced at depths of I.20m (BH303), 4.70m (BH304) and 6.65m (BH305C) below ground level. The drilling equipment used in the rotary sections of the boreholes on this particular contract utilised polymer/water foam as the flushing medium.

Rock cores were extruded horizontally in transparent liners and placed into suitable core boxes. Photographs of the individual core boxes are included in Appendix 3.

The strata descriptions in the open hole sections of the Borehole Records are the Drilling Foreman's estimate based on sediment and chipping returns in the flushing medium. The rate of penetration is also used as an indicator of the type of material being drilled, particularly where there is loss of flush returns. Definitive classification in terms of geology or degree of disturbance is not usually possible from these sources.

Standard Penetration Tests (SPTs) were undertaken at the depths indicated on the borehole records in accordance with BS EN ISO 22476-3:2005+A1:2011 to obtain a measure of the engineering properties of the proved strata.

Groundwater observations are included on the Borehole Records where appropriate. It should be noted that the addition of water to the borehole as part of the drilling process may have masked the presence of groundwater in the borehole.

On completion, monitoring standpipes were installed in Boreholes BH303, BH304, BH305C and BH306 (see Section 5.6). The inspection pits to Boreholes BH305, BH305A and BH305B were backfilled with arisings.

5.4 Dynamic Sample Boreholes

Fourteen (14 No.) Dynamic Sample Boreholes (numbered WS306 to WS318 and WS314A) were undertaken at the site to depths ranging between 0.45m (WS318) and 5.45m (WS316 and WS317) below ground level. The work was carried out between 13th and 22nd November 2019.

The Dynamic Samples were taken using the superheavy Dynamic Probe apparatus which drives lined steel tubes into the ground in 1.00m lengths. Samples are retrieved in the plastic liners. The retrieved liners were split and the recovered soils described before being sub-sampled into ES, D and B samples as shown on the Borehole Records. The Borehole Records are presented in Appendix 4. The hole is not cased and progress depends on the nature of the strata penetrated.

Standard Penetration Tests (SPTs) were undertaken at the depths indicated on the borehole records in accordance with BS EN ISO 22476-3:2005+A1:2011 to obtain a measure of the engineering properties of the proved strata.

Groundwater observations are included on the Borehole Records where appropriate.

On completion, standpipes were installed in Boreholes WS307, WS309, WS311, WS312, WS314, WS315, WS316 and WS317 (see Section 5.6). The other boreholes were backfilled with bentonite and their inspection pits were filled with arisings.

5.5 Trial Pits

Two (2 No.) Trial Pits were excavated to depths of 2.60m (TP01) and 2.70m (TP02) below ground level using a 3 Tonne tracked excavator on 19th November 2019. This work was supervised on site by a geotechnical / geo-environmental engineer.

The profiles of strata or other features were recorded as excavation proceeded and measurements taken from ground level. Representative samples were taken, where appropriate, for laboratory examination and analysis and in addition, Environmental Soil samples (ES) were recovered at the depths indicated on the Trial Pit Records. Samples were taken directly from excavated materials deposited at the surface. Groundwater observations and trench stability notes are included on the Trial Pit Records, presented in Appendix 5. Photographs of the pits are presented in Appendix 6.

5.6 Instrumentation and Monitoring

Long-term monitoring of the gas and groundwater levels was made possible by the installation of standpipes as follows:

Exploratory Hole	Standpipe Slotted Pipe & Filter Zone (m)		
BH303	2.00 to 10.00		
BH304	4.00 to 10.00		
BH305C	6.00 to 15.00		
BH306	2.00 to 8.50		
WS307	1.00 to 3.00		
WS309	1.00 to 1.80		
WS311	1.00 to 4.50		
W\$312	1.00 to 3.00		
W\$314	1.00 to 3.00		
W\$315	1.00 to 3.00		
W\$316	3.00 to 5.00		
W\$317	1.00 to 2.00		

Monitoring of the gas and groundwater levels at the site commenced on $8^{th}/9^{th}$ January 2020 with further visits on 17^{th} , 21^{st} and $28^{th}/29^{th}$ January and 12^{th} February 2020.

On each of the monitoring visits a record of the groundwater level in the standpipes was obtained. On 22nd January 2019, groundwater samples were obtained (where possible) from the monitoring standpipes following purging of the water within the wells.

In addition to the groundwater levels, the following parameters were measured and recorded in each standpipe using a Geotechnical Instruments GA5000 Gas Analyser:-

- Concentrations (% Vol) of CH₄, O₂, CO₂, along with (ppm) H₂S, CO
- Flow Rate
- Barometric Pressure

The results of the monitoring are presented in Appendix 7.

6.0 LABORATORY TESTING

6. I Geotechnical

The laboratory testing schedule was specified by the Engineer. Unless otherwise stated, the tests were carried out in Geotechnics Limited's UKAS accredited Laboratory (Testing No. 1365) and were undertaken in accordance with the appropriate Standards as indicated below and on the Laboratory Test Certificate in Appendix 8. Any descriptions, opinions and interpretations are outside the scope of UKAS accreditation.

The tests undertaken can be summarised as follows:-

BS EN ISO 17892-1:2014

27 No. Water Content Determination

BS EN ISO 17892-3:2015

4 No. Particle Density Determination

BS EN ISO 17892-4:2016

6 No. Particle Size Distribution
Determination – Sieving
Method

BS EN ISO 17892-12:2018

11 No. Determination of Liquid and

Plastic Limits

BS 1377:1990

Test No. Test Description

Part 3

5.3, 5.5 I5 No. Sulphate Analysis - Water

Extract

9.5 I5 No. pH Determination

Part 4

3.3 4 No. Dry Density/Moisture Content

relationship determination. Compaction Test - British Standard (2.5 kg Hammer)

ISRM Testing Methods

81 No. Point Load Determination

The following testing was carried out at the laboratories of MATtest Limited (UKAS Accredited Laboratory, Number 2643).

ASTM Testing Methods

6 No. Uniaxial Compressive Strength

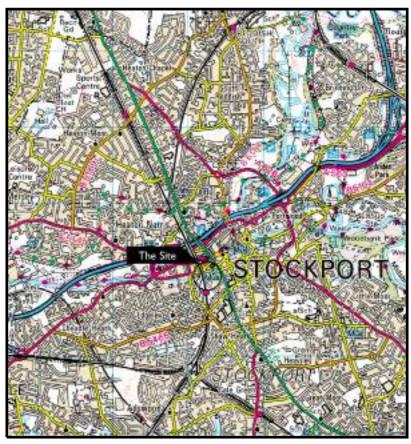
Determination

18 No. Point Load Determination

The results of these tests are also presented in Appendix 8.

6.2 Contamination

Selected samples of soil were tested at the laboratories of Derwentside Environmental Testing Services Limited (UKAS accredited Laboratory Testing No. 2139) for a number of determinands in order to check on potential site contamination. The determinands were specified by the Engineer and are detailed on the results sheets in Appendix 9 together with the test result as well as the test method, accreditation and detection limit.


Selected samples of groundwater were tested at the laboratories of Element Materials Technology Environmental UK Limited (UKAS accredited Laboratory Testing No. 4225) for a number of determinands in order to check on potential site contamination. The determinands were specified by

the Engineer and are detailed on the results sheets in Appendix 10 together with the test result as well as the test method, accreditation and detection limit.
Signed for and on behalf of Geotechnics Limited.
Prepared by:
Reviewed by:

APPENDIX I

Site Location Plan

© Crown Copyright Reserved, OS License Number: 100020449

EXCHANGE SQUARE, STOCKPORT for Transport for Greater Manchester

APPENDIX 2

Dynamic Sample/Rotary Follow-on Borehole Records

Sample Types		Groundwater		Strata, Continued	
В	Bulk disturbed sample	Water Strike	∇	Mudstone	
BLK	Block sample	Depth Water Rose To	lacktriangle		
С	Core sample			City	* * * * *
D	Small disturbed sample (tub/jar)	Instrumentation	rad	Siltstone	× × × × × × × × × × × × × × × × × × ×
E	Environmental test sample		55	Metamorphic Rock	
ES	Environmental soil sample	Seal		Fine Grained	**************************************
EW	Environmental water sample		1	Medium Grained	**********
G	Gas sample		∱ . III		~~
L	Liner sample	Filter	3	Coarse Grained	$\sim\sim$
LB P	Large bulk disturbed sample		ŀ ▋ ┃		\approx
۲	Piston sample (PF - failed P sample)		[]-	Igneous Rock	
TW	Thin walled push in sample		H	Fine Grained	7 7 7 7 7 7
U		Seal	12		+ + + +
	Open Tube - 102mm diameter with blows to take sample. (UF - failed U sample)			Medium Grained	++++
UT	Thin wall open drive tube sampler - 102mm diameter	Strata	Legend	Coarse Grained	****
	with blows to take sample. (UTF - failed UT sample)	Made Ground Granular		Backfill Materials	****
V	Vial sample				
W	Water sample	Made Ground Cohesive		Arisings	
#	Sample Not Recovered	Concarve			*
lnsitu ⁻	Testing / Properties	Topsoil		Bentonite Seal	
CBRP	CBR using TRL probe		00		
CHP	Constant Head Permeability Test	Cobbles and Boulders		Concrete	
COND	Electrical conductivity	Gravel			-3
TC	Thermal Conductivity	· .	[,,,,]	Fine Count Files	
TR	Thermal Resistivity		u 19	Fine Gravel Filter	
HV	Strength from Hand Vane	Sand			
ICBR	CBR Test			General Fill	И
IDEN	Density Test	Silt	* * * * ·		
IRES	Resistivity Test	SIIL	× × ;		
MEX	CBR using Mexecone Probe Test		x x x }	Gravel Filter	
PKR	Packer Permeability Test	Clay			7
PLT	Plate Load Test			Grout	
PP	Strength from Pocket Penetrometer	Peat	SVZ		
Temp	Temperature	reac	V/5	Sand Filter	50 B
VHP	Variable Head Permeability Test		M/2 :		9.8
VN w%	Strength from Insitu Vane Water content	Note: Composite soil type by combined symbols	es shown	Tarmacadam	
	ner strengths from	Chalk			
	ed triaxial testing)	Chan		Rotary Core	
S	Standard Penetration Test (SPT)	Limestone		RQD Rock Quality D (% of intact cor	
С	SPT with cone	LIIIIESCOIIE		FRACTURE INDEX Fractures/metro	е
N	SPT Result			FRACTURE Maximum	
-/-	Blows/penetration (mm) after seating drive	Sandstone		SPACING (m) Minimum NI Non-intact NR No core re	
*/	Total blows/penetration			AZCL Assumed z	one of core
(mm) ()	Extrapolated value	Coal		loss (where core recovery is unknot assumed to be at the base of the	

BOREHOLE RECORD - Rotary Core

Project EXCHANGE SQUARE GROUND INVESTIGATION Borehole **BH303** WSP Project No PN194054

Client wsp						National Grid 389211.0 E Coordinates 390104.0 N	Gro	und Level 50	.64 m	OD
Drilling			rties/Sa			Strata			Scale 1:	50
Core Run/Depth (Core Dia/Time)	Depth Cased & (to Water	Type TCR/SCR%	Length Max/Min	RQD %	SPT N (FI)	Description General	Description Detail	Depth	Legend	Level m OD
0.00- 0.30 0.20 0.20 0.30- 0.54		B D ES D			S50/ 110	TOPSOIL: Dark brown gravelly fine to coarse sand with a low cobble content. Gravel is angular to subangular fine to coarse of brick fragments. Some rootlets Extremely weak to weak		G.L.		50.6
1.20- 1.70 (102mm) 1.56- 1.64	(ADDED)	100 80 C	0.12	24	(12)	reddish brown fine to coarse grained SANDSTONE Discontinuities are horizontal to		-		
1.70- 3.20	1.30	87	0.19	42	(NR)	<pre>subvertical, very closel to closely spaced,</pre>	У	<u> </u>		
(102mm) 2.05- 2.17	(ADDED)	73 C	0.06		(NI)	planar, smooth.				
2.60- 2.67		С			(7)					
3.20- 4.70 (102mm)	1.30 (ADDED)	100 93	0.22	58	(NI)			‡ -		
3.70- 3.82	- - -	С	0.03		(9)					
								-		
4.56- 4.70	-	С			(NR)					
4.70- 6.20 (102mm)	1.30 (ADDED)	93 93	0.20 0.05	73				-		
5.45- 5.57		С			(7)			-		
6.20- 7.70		87	0.26	57	(NR)			-		
(102mm) 6.44- 6.55	(ADDED)	73 C	0.04		(NI)			‡		
7.27- 7.55	- - - - - - -	С			(6)		Between 7.20-9.20m, recovered as sand.			
7.70- 9.20	1.30			0	(NI)			‡		
(102mm) 8.10- 8.13	(ADDED)	60 C		0	(NR)			- -		
8.45- 8.50	- - - - -	С			(NI)					
9.20-10.70 (102mm) 9.60- 9.70	1.30 (ADDED)	40 17 C	0.20	13	(NR)					
Drilling					Progre	299	Groundwater		ı İ	
Denth Hole		Technique	e	Crew	Depth	Depth Depth to Date Tim	Depth Depth Rose to	n Depth	Remar	
0.30 0.40	Inspect Rotary	ion Pit		SL/CW SL/CW	of Hole G.L. 0.30	Cased Water 25/11/19 08: DRY 25/11/19 18:	Struck Cased M		Ground Possibly by drill	masked
					0.30 12.20 12.20 15.20	1.30 ADDED 26/11/19 18: 1.30 6.20 27/11/19 08:	0 0 0 0 0 0		flush.	

Remarks

Remarks

As 50mm standpipe was installed to 10.00m with a geowrapped slotted section from 2.00m to logged by seal up to 10.00m, gravel filter up to 2.00m, bentonite seal up to 0.20m, concrete up to ground level.

Figure

Figure

Figure

abbreviations are explained on the accompanying key sheet. All dimensions

are in metres.

Logged in accordance with BS5930:2015

1 of 2 06/02/2020

BOREHOLE RECORD -Rotary Core

Borehole Project No Project EXCHANGE SQUARE GROUND INVESTIGATION Engineer BH303 WSP PN194054 National Grid Coordinates 389211.0 E 390104.0 N Client WSP Ground Level 50.64 m OD

Drilling		Drong	rties/Sa	mnling		Strata		390104.0	N				Ground	Level 50	Scale 1	OD -50
Core Run/Depth (Core Dia/Time)	Depth Cased &				SPT N (FI)	Descrip General	tion			Descrip Detail	otion			Depth	Legend	Level m OD
(Core Dia/Time)	- (to water)										en 10.1	0-10.70 ed band	m,			
					(NI)					closel gravel	ly spac l.	ed band	ls of	<u> </u>		
10.50-10.62	_	С			(15)									_		
10.70-12.20 (102mm)	1.30 (ADDED)	87 20	0.30 0.30	20	(20) (NR)					Betwee	en 10.9 ered as	0-11.20	m,	_		
(IOZIIII)	-	20	0.30		(3)					16000	sieu as	Bana.		_		
11.50-11.59	Ē	С												<u> </u>		
	<u> </u>				(10)									ļ.		
	F													<u> </u>		
12.20-14.70	1.30	100	0.45	60	(25)									<u> </u>		
(102mm) 12.43-12.51	(ADDED)	60 C	0.10											_		
	<u> </u>				(3)									_		
	-													<u> </u>		
13.34-13.45	E	С												<u> </u>		
	Ē				(NI)									ļ.		
	-				(6)									_		
														<u> </u>		
14.40-14.54	-	С			(NI) (15)									<u> </u>		
14.70-15.20 (102mm)	1.30 (ADDED)	80 40	0.20 0.05	37	(NI)											
							7 -3 -6	P1-1-						15.20		35.4
							End of	Borehole	1					_		
														<u> </u>		
	F													<u> </u>		
	F													<u> </u>		
	Ē													Ē		
	_													<u> </u>		
														<u> </u>		
	E													<u> </u>		
	-													<u> </u>		
	F													<u> </u>		
	Ē													ļ.		
	-													<u> </u>		
	_													<u> </u>		
														<u> </u>		
	_													<u> </u>		
	L E													<u> </u>		
Drilling Donth Hole		To ob!		Crew	Progre Depth	ess Depth	Depth to	Date	Time	Depth	ndwate Depth	Rose to	in	Depth	Rema	rks on
Depth Dia		Technique	•	crew	of Hole	Cased	Depth to Water	Date	rime	Struck	Depth Cased	KUSE 10	Mins	Sealed		dwater
Remarks AGS	<u> </u>								<u> </u>	1	<u> </u>	<u> </u>	<u> </u>		ed by	MM

Remarks AGS

Symbols and abbreviations are explained on the accompanying key sheet. All dimensions are in metres.

Logged in accordance with BS5930:2015

Figure

2 of 2 06/02/2020

Dynamic Sampler and Rotary BOREHOLE RECORD -

Project EXCHANGE SQUARE GROUND INVESTIGATION Engineer Borehole **BH304** Project No PN194054

National Grid Coordinates 389237.8 390058.9 Client Ground Level 56.70 m OD WSP

Sampling			Dropo	rtios	ı	Coordir Strata		N			(Fround	Level 56		OD
Sampling	Sample	Depth Cased &	Prope Strength		SPT N									Scale 1	1
Depth	Туре	Cased & (to Water)		%	(FI)	Descrip	ption						Depth	Legend	Level m OD
0.00- 0.60 0.20 0.20 0.50 0.60- 1.20	- B - D - ES - ES					to co mudst to ro	OIL: Dark brown oarse sand with tone, concrete a counded fine to coments.	a low and bri	cobble ck. Gra	content avel is s	of ubang	ılar	G.L.		56.70
1.00 1.00 1.20- 1.80 1.20- 1.65	- _ D - ES - B _ D	(DRY)			s6	sand	GROUND: Loose I of ash. Gravel to coarse of sa	is sub	angulai	to subr	ounde		-		
1.80- 2.00 2.00- 2.80 2.00- 2.45 2.00	B	(DRY)		27 32	s3		soft yellowish ets of sandy si		slightl	ly sandy	CLAY 1	with	1.80		54.9
2.80- 3.00 3.00- 3.80 3.00- 3.45	B	(DRY)		15	s7	Below	w 3.00m, soft.						-		
3.80- 4.00 4.00- 4.45		(DRY)			s50/ 295	sandy	dense reddish l y angular to sul andstone.	orown m cangula	ottled r fine	black and to coars	nd yel: se GRA	low /EL	3.80		52.9
Core Run/Depth Core Dia/Time)	Depth Cased	TCR/SCR / Type			SPT (FI)	Contin	ued by Rotary techn	iques	Detail				4.70		52.00
4.70- 6.20 (102mm)		26 0		0	(NR)	brown silty with cobbl	ish brown, light n, grey and darl y SAND and GRAVI a medium to hig le content of va ologies. Grave	grey L gh arious L is							
					(NI)	fine	ounded to rounde to coarse of va ologies.								:
6.20- 7.70 (102mm)	4.85 (ADDED)	26 0		0	(NR)										
7.70- 8.70	4.85	100	0.20	46	(NI)		emely weak to w	aak					7.70		49.0
(102mm) 7.70- 7.82 7.75- 7.85 8.61- 8.70	(ADDED)	70	0.06	10	s50/40 (9)	reddi coars Disco horiz subve	ish brown fine of se grained SANDS continuities are zontal to ertical, extreme	ETONE.					- - - - -		
8.70- 9.20	4.85 (ADDED)	80	0.10	40	(NR)		ely to closely ed, planar, smoo	oth.					‡ ‡		
9.14- 9.20	- - -	C	0.10		(NI)								<u> </u>		; :
9.20-10.70 (102mm)	_ 4.85 (ADDED)	26 0		0	(NR)								+ - - - -		
soring					Progre	ess			Grour	ndwater					
enth Hole		Technique	<u> </u>	Crew	Depth	Depth	Depth to Date	Time	Depth	Depth D	ose to	in	Depth		rks on
1.20 0.40 4.70 0.10 18.24 0.12	Inspect Dynamic Rotary	ion Pit Sample	er	JB/SW JB/SW SL/CW	of Hole G.L. 1.20 1.20 7.70 7.70 18.24	4.85 4.85 4.85	DRY 27/11/19 DRY 27/11/19 DRY 28/11/19 ADDED 28/11/19	9 08:00 9 18:00 9 08:00 9 18:00 9 08:00 9 18:00		Cased		Mins	Sealed	Groun Possibly by drill flush.	

Remarks

Inspection pit hand excavated to 1.20m depth and no services were found.

Symbols and abbreviations are explained on the accompanying key sheet.

Figure 18.24 4.85 ADDED 29/11/19/18:00

Inspection pit hand excavated to 1.20m depth and no services were found.

Logged 1.50mm standpipe was installed to 10.00m with a geowrapped slotted section from 4.00m to 10.00m with upright lockable protective cover. Backfill details from base of hole: bentonite seal up to 10.00m, gravel filter up to 4.00m, bentonite seal up to 0.20m, concrete up to ground level.

Figure 1.50mm standpipe was installed to 10.00m with a geowrapped slotted section from 4.00m to 10.00m with upright lockable protective cover. Backfill details from base of hole: bentonite seal up to 10.00m, gravel filter up to 4.00m, bentonite seal up to 0.20m, concrete up to 10.00m with upright lockable protective cover. Backfill details from base of hole: bentonite seal up to 10.00m, gravel filter up to 4.00m, bentonite seal up to 0.20m, concrete up to 10.00m with upright lockable protective cover. Backfill details from base of hole: bentonite seal up to 10.00m, gravel filter up to 4.00m, bentonite seal up to 0.20m, concrete up to 10.00m with upright lockable protective cover. Backfill details from base of hole: bentonite seal up to 10.00m, gravel filter up to 4.00m, bentonite seal up to 0.20m, concrete up to 10.00m with upright lockable protective cover. Backfill details from base of hole: bentonite seal up to 10.00m, gravel filter up to 4.00m, bentonite seal up to 0.20m, concrete up to 10.00m with upright lockable protective cover. Backfill details from base of hole: bentonite seal up to 10.00m with upright lockable protective cover. Backfill details from base of hole: bentonite seal up to 10.00m with upright lockable protective cover. Backfill details from base of hole: bentonite seal up to 10.00m with upright lockable protective cover. Backfill details from base of hole: bentonite seal up to 10.00m with upright lockable protective cover. Backfill detail Logged by

MM 1 of 2 06/02/2020

esimbeloeg

key sheet. All dimensions are in metres.

Logged in accordance with BS5930:2015

BOREHOLE RECORD - Dynamic Sampler and Rotary

Logged in accordance with BS5930:2015

are in metres.

Project EXCHANGE SQUARE GROUND INVESTIGATION Borehole Engineer **BH304** Project No PN194054 National Grid 389237.8 Client Ground Level 56.70 m OD WSP Coordinates 390058.9 Drilling Properties/Sampling Strata Scale 1:50 Type Length Core Run/Depth Cased & (to Water) Description Description Depth Legend TCR/SCR% Max/Min (FI) General Detail m OD (NI) 10.70-12.20 4.85 86 0.23 40 (102mm) 10.70-10.83 (ADDED 60 0.07 (12) C50/60 4.85 10.80-10.93 C (8) C 11.84-11.90 (NI) 12.20-13.70 4.85 0.15 22 (102mm) 12.26-12.36 26 C 0.06 (ADDED) (NR) (10) C 13.64-13.70 (NR) 4.85 (ADDED) 13.70-15.20 73 0.22 0.03 58 (102mm) 13.70-13.79 C50/40 4.85 (ADDED (5) 14.88-15.06 C 15.20-16.70 4.85 (ADDED) 0.22 15 60 (102mm) 15.62-15.78 26 C 0.03 (NR) (NI) (10) 16.63-16.70 C 0.10 0.10 16.70-18.20 4.85 47 (NR) (ADDED (102mm) 16.70-16.80 C50/35 7 ADDED 17.56-17.66 C (11) C 17.90-18.03 18.24 38.46 End of Borehole 18.20-18.24 4.85 C50/20 (ADDED Drilling Progress Groundwater Depth Depth Struck Cased Depth Depth Depth Remarks on Date Time Depth Technique Crew Rose to Cased Water Mins Sealed Dia of Hole Struck Groundwater Remarks AGS Logged by Symbols and Figure 2 of 2 abbreviations are 06/02/2020 explained on the accompanying ezimbetbeg key sheet. All dimensions

BOREHOLE RECORD -Dynamic Sampler

Project EXCHANGE SQUARE GROUND INVESTIGATION Engineer Borehole BH305 Project No PN194054

National Grid Coordinates 389244.5 390046.6 Client Ground Level 59.13 m OD

Client	WSP						Coordin	nates	390046.6	N				Ground		9.13 m	
Sampl	ing			Prope	rties		Strata	1								Scale 1	:50
Depth		Sample Type	Cased & (to Water)	Strength kPa	w %	SPT N	Descrip	tion							Depth	Legend	Level m OD
	- 0.50	_ в					TOPS(OIL: Dan with so	rk brown ome rootl	slight ets.	ly clay	yey fin	e to co	arse	G.L.		59.13
0.50		_ D					fine Grave inclu	to coar el is ar uding co	Dark brese sand	with a suban	high o	cobble	content		0.50		58.63
1.20-	1.35	D	(DRY)			s50/75	At 1.	20m, c	oncrete o	bstruc	tion.				1 25		E7 70
		_							En	d of B	orehole	9			1.35		57.78
															<u>E</u>		
		<u> </u>													<u> </u>		
		<u> </u>													<u> </u>		
															<u> </u>		
		-													-		
															Ī.		
															<u> </u>		
		_													_		
															Ī		
															E		
		<u> </u>													<u> </u>		
															<u> </u>		
		-													‡		
															<u> </u>		
															<u> </u>		
		-													ļ.		
															Ē		
															<u> </u>		
		_													-		
		<u> </u>													<u> </u>		
		<u> </u>													E		
		<u>-</u> -													<u> </u>		
		_													<u></u>		
Boring		[Progre	ess				Grour	ndwate	r				
Depth	Hole		Technique	e	Crew	Depth of Hole		Depth to Water	Date	Time	Depth Struck	Depth		in Mins	Depth Sealed	Remai Ground	
1.20 1.35	0.40 0.10	Inspec	tion Pit	:	SL/CR SL/CR	G.L. 1.35	Caseu		02/12/19 02/12/19	08:00		Cased		IVIII13	Sealeu	None encounte	

Remarks

Inspection pit hand excavated to 1.20m depth and no services were found.

Bisorehole terminated at 1.35m depth on encountering a concrete obstruction - rig was moved to be be be because of the best
Symbols and abbreviations are explained on the accompanying key sheet.

All dimensions Logged in accordance with BS5930:2015 are in metres.

Backfill details from base of hole: arisings up to ground level.

Figure 1 of 1 06/02/2020

esimbeloeg

BOREHOLE RECORD - Dynamic Sampler Project EXCHANGE SQUARE GROUND INVESTIGATION Borehole Engineer **BH305A** Project No PN194054 National Grid 389246.2 Client Ground Level 59.24 m OD WSP Coordinates 390044.8 Sampling **Properties** Strata Scale 1:50 Depth Cased & (to Water) Sample Strength Depth Description Depth Leaend Type kPa % m OD G.L. 59.24 TOPSOIL: Dark brown slightly gravelly clayey fine to coarse sand with a low cobble content. Gravel is angular to subangular fine to coarse including 0.40 58.84 sandstone and brick fragments. Some rootlets. MADE GROUND: Dark brown gravelly slightly clayey fine to coarse sand with a high cobble content. Gravel is angular to subrounded fine to coarse 1.00 1.10 58.24 58.14 including sandstone and brick fragments. MADE GROUND: Grey concrete. End of Borehole Boring Progress Groundwater Depth Remarks on Depth Technique Crew Date Time Rose to Water Mins of Hole Cased Struck Cased Sealed Groundwater 0.40 Inspection Pit SL/CR 02/12/19 08:00 1.10 G.L None 1.10 DRY 02/12/19 18:00 encountered. Inspection pit hand excavated to 1.10m depth and no services were found.

Inspection Pit terminated at 1.10m depth on encountering a concrete obstruction - rig was Remarks Logged by moved to BH305B. Symbols and Figure 1 of 1 No samples were retrieved from the Inspection Pit. abbreviations are 06/02/2020 Backfill details from base of hole: arisings up to ground level. explained on the accompanying

esimbelbeg

key sheet.

All dimensions are in metres.

Logged in accordance with BS5930:2015

BOREHOLE RECORD - Dynamic Sampler Project EXCHANGE SQUARE GROUND INVESTIGATION Borehole Engineer **BH305B** Project No PN194054 National Grid 389246.3 Client Ground Level 59.39 m OD WSP Coordinates 390043.6 Sampling **Properties** Strata Scale 1:50 Depth Cased & (to Water) Sample Strength Depth Description Depth Leaend Type kPa % m OD G.L. 59.39 TOPSOIL: Dark brown slightly clayey fine to coarse sand with some rootlets. 0.50 58.89 MADE GROUND: Dark brown gravelly slightly clayey fine to coarse sand with a high cobble content. Gravel is subangular to rounded fine to coarse 0.80 58.59 including sandstone, concrete and brick fragments. At 0.80m, obstruction - possible concrete. End of Borehole Boring Progress Groundwater Depth Remarks on Depth Technique Crew Date Time Rose to Water Mins of Hole Cased Struck Cased Sealed Groundwater 0.40 Inspection Pit SL/CR 02/12/19 08:00 0.80 G.L None 0.80 DRY 02/12/19 18:00 encountered. Inspection pit hand excavated to 0.80m depth and no services were found.
Inspection Pit terminated at 0.80m depth due to the presence of an obstruction (possible concrete) - rig was moved to BH305C.
No samples were retrieved from the Inspection Pit. Remarks Logged by Symbols and Figure 1 of 1

abbreviations are explained on the accompanying

Backfill details from base of hole: arisings up to ground level.

key sheet. All dimensions are in metres.

Logged in accordance with BS5930:2015

06/02/2020

Dynamic Sampler and Rotary BOREHOLE RECORD -

Project EXCHANGE SQUARE GROUND INVESTIGATION Engineer Borehole **BH305C** Project No PN194054

National Grid Coordinates 389243.7 390048.5 Client Ground Level 58.93 m OD WSP

Client WSP						Coordin		390048.5	N				Ground	Level 58		OD
Sampling			Prope			Strata	3								Scale 1	:50
Depth	Sample Type	Depth Cased & (to Water)	Strength kPa	w %	SPT N (FI)	Descrip	otion							Depth	Legend	Level m OD
0.50 0.50 1.00 1.00 1.20- 2.20 1.20- 1.65	- D - ES - D - ES - D - D - E - D - D - D - D - D - D - D	(DRY)			s10	to co angul brick MADE orang cobbl	carse sa lar to man and the same serving serving serving to content to coame serving s	rk brown and with rounded f ents. Son : Firm da ntly sand ent. Grav rse of mu d brick f	a low ine to he root rk bro ly grav rel is	cobble coarse lets. wn moth elly cl subange , sands	conten of sa tled bl lay wit	t. Grav ndstone ack and h a low rounde	el is and / d	0.50		58.93
2.00 2.20- 3.20 2.20- 2.65 2.50		(DRY)			s10											
3.00 3.20- 4.20 3.20- 3.65 3.50	ES B D D	(DRY)		5.7	s12			ng stiff ome bands			low sli	ghtly s	andy	3.20		55.73
4.20- 5.20 4.20- 4.65 4.50	ES B D D	(DRY)		27	s20									- - - - - - -		
5.20- 5.40 5.20- 5.65 5.40- 6.40 5.50	D	(DRY)			s15	coars	se SAND	e brownis . Gravel f sandsto	is sub					5.40		53.53
6.20- 6.65 6.50- 6.95 6.50	- - D - - D - D	(DRY)			s49			very sar			l to ro	unded f	ine	6.40	0 × 0	52.53
Core Run/Depth	_	TCR/SCR	Lenath	RQD	SPT			otary techn		one.						. 52.26
(Core Dia/Time) 6.65- 7.20	Cased	/ Type 42 0			(FI) (NR) (NI)	General Brown subro	n very a ounded		ed.	Detail			-	6.95	0 0	51.98
7.20- 7.90		0			(NI)	sands Stiff	stone. E yello	wish brow	m					<u> </u>	0 0	
7.90- 8.07	(ADDED)	86 53 C	0.32 0.10	53	S50/18	CLAY conte angul fine	with a ent. Gra	subrounde	obble					7.80 7.90		51.13 51.03
9.24- 9.30	- - - - - -	С			(15) (NI)	brown grain recov grave	n fine to ned SANI vered as	s sand ar	ıd					 - - - -		
9.40-10.90 (102mm)	6.50 (ADDED)	66 60	0.20 0.06	53	(NR)	reddi coars Disco horiz	ish brow se grain	eak to we wn fine t ned SANDS ties are to	:0							
Boring	·			·	Progre		Donth +-	T			ndwate		in	Donth	Dom: -	rke on
Depth Hole Dia	<u> </u>	Technique	e	Crew		Cased	Depth to Water	Date	Time	Depth Struck	Depth Cased	Rose to	in Mins	Depth Sealed		rks on dwater
6.65 0.10	Inspect Dynamic Rotary	Sample		SL/CR SL/CR SL/CR	G.L. 6.50 6.50 16.90	6.50 6.50	DRY	03/12/19 03/12/19 04/12/19 04/12/19	18:00 08:00						Possible masked h drilling	

Remarks

All Inspection pit hand excavated to 1.20m depth and no services were found.

Also Borehole terminated at 19.90m depth due to instability of the rotary drilling rig.

A 50mm standpipe was installed to 15.00m with a geowrapped slotted section from 6.00m to 15.00m with flush lockable protective cover. Backfill details from base of hole: bentonite seal up to 15.00m, gravel filter up to 6.00m, bentonite seal up to 0.20m, concrete up to ground level.

Flush: 6.50-19.90m, Foam, 100% return.

All dimensions Logged in accordance with BS5930:2015

abbreviations are explained on the accompanying key sheet.

are in metres.

Symbols and

Logged by MM Figure 1 of 2 06/02/2020

geolectimies

BOREHOLE RECORD - Dynamic Sampler and Rotary

Logged in accordance with BS5930:2015

are in metres.

Project EXCHANGE SQUARE GROUND INVESTIGATION Borehole Engineer **BH305C** Project No PN194054 National Grid 389243.7 Client Ground Level 58.93 m OD WSP Coordinates 390048.5 Drilling Properties/Sampling Strata Scale 1:50 Type Length Depth Cased Description Description Core Run/Depth Depth Legend TCR/SCR% Max/Min (FI) General Detail m OD (Core Dia/Time) (to Water) subhorizontal, very closely to closely spaced, planar, smooth. (7) 10.58-10.75 C 10.90-12.40 — 6.50 (102mm) (ADDED) 93 66 0.21 26 (NR) (NI) 11.53-11.63 (7) C 11.73-11.90 (3) (NI) 13 0 C 12.40-13.90 6.50 (ADDED) 0 (102mm) 12.40-12.49 (NR) (NI) _ 6.50 (ADDED) 13.90-15.40 0.25 0.04 86 36 (102mm) 13.90-13.97 (NR) s50/24 6.50 (ADDED 13.95-14.05 C (13) 14.84-14.90 C (NI) 15.40-16.90 (102mm) 15.65-15.80 73 73 C 6.50 (ADDED) 0.35 0.06 69 (NR) (6) 16.78-16.90 C 16.90-18.40 - 6.50 (102mm) (ADDED) 100 (18) 0.31 73 83 17.55-17.67 C (NR) 18.40-19.90 6.50 (102mm) (ADDED) 18.40-18.56 50 (102mm) 18.40-18.56 66 0.05 (11)(NI) (11) 19.90 39.03 19.76-19.90 End of Borehole C Drilling Progress Groundwater Depth Depth Depth Depth Depth Remarks on Date Time Depth Crew Rose to Technique Cased Water Cased Mins Sealed Dia of Hole Struck Groundwater Remarks AGS Logged by Symbols and Figure 2 of 2 abbreviations are 06/02/2020 explained on the accompanying esimbetoeg key sheet. All dimensions

BOREHOLE RECORD - Dynamic Sampler

Project EXCHANGE SQUARE GROUND INVESTIGATION Engineer Borehole **BH306** Project No PN194054

National Grid Coordinates 389269.8 390017.7 Client Ground Level 66.61 m OD WSP

							Coordin								Level 66		
Samplir	ng		Denth	Prope			Strata	1								Scale 1	:50
Depth		Sample Type	Cased & (to Water)	Strength kPa	w %	SPT N	Descrip	otion							Depth	Legend	Level m OD
	-	-					MADE	GROUND	: Black t	armaca	dam.				G.L.		66.6
0.20- 0.20	0.40	B D					MADE	GROUND	: Sandsto	ne blo	ck pav	ing.		/	0.20		66.4 66.2
0.20 0.60-	1.20	ES B					MADE	GROUND	: Yellow	fine t	o medi	um sand		/	0.60		66.0
		_					MADE	GROUND	: Sandsto	ne blo	ck pav	ing.		/	(E		
1.00 1.00 1.20-	1 00	— D ES B						GROUND se sand	: Yellow	sh bro	wn sli	ghtly s	ilty fi	ne to	1.20		65.4
1.20-		D	(DRY)			S11			· : Firm re	eddish	brown :	sliahtl	v sandy	/ •	1.20		03.1
	•	- -					clay.					J	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		F		
2.00-	2.80	В													2.00	× · × · ·	64.6
2.00-	•	ES.					with	occasi	rey mott! onal poc!						ŧ l	× × ×	
2.20-	2.65	D	(DRY)		36	s9	odour								<u> </u>	× · · × · ×	
		- = =													Į l	× 1/2 ×	
3.00- 3.00-		В D													<u> </u>	* * . * . * . * . * . * . * . * . * . *	
3.00 3.20-		ES D	(DRY)		27	S11									-	. x . x x x x x x x x x x x x x x x x x	
		- - -													F	× × × × × × × × × × × × × × × × × × ×	
		- - -													Ė	* · .\\/.	
4.00-	4.20	B D	4 00			-01									-		
4.20-	4.65	D	4.20 (WET)			S21	Mediu SAND.		e yellow	sh bro	wn cla	yey fin	e to co	arse	4.20		62.4
		- - -					SAND.	•							-		
5.00-	5.80	в													5.00		61.6
5.00- 5.20-	5.20	- D	4.20		28	S21			wish brow pockets o			andy CI	AY with	1		×	
		- - -	(WET)												Ė	x ×.	
	•	- - -													ŧ l	×	.1
6.00-	6.20	_ D													-	x	:
6.20-	6.65	D	4.20 (WET)		28	S23									Ę	×	
		- - -	(,												Ė.	×	
	-	= =													 	×	:
7.00-	7.30	D	4.20 (WET)		9.0	S50/ 150									F	× .	
		- - -							sh brown						7.20	.0.0	59.4
		_ - -							AY. Grave			lar to	subrour	ided	Ė	0.0.0	
	-	- -													‡	0 0	:
		- -													8.20		58.4
8.50-	8.71	D	4.20			S50/			eak redd: (Recovere					rained	<u> </u>		
	•	- -	(WET)			135									8.71		57.9
		_							Er	nd of B	orehol	е			<u> </u>		
		- - -													Ę l		
	-	= - -													<u> </u>		
		- -													‡		
		<u> </u>													<u> </u>		
Boring	Hole		Table		0-	Progre Depth	Depth	Depth to	Doil	т:-	Grour Depth	ndwate Depth	т	in	Depth	Rema	rks on
Depth 1.20	Dia		Technique		Crew SL/CR	of Hole		Water	Date 06/12/19	Time 08:00	Struck	Cased	Rose to	Mins	Sealed		dwater
6.20	0.10	Dynamic	Sample Open Ho	r	SL/CR SL/CR	4.65 4.65			06/12/19 06/12/19 09/12/19	18:00						rise.	- 110
8.71	() . ! ×					. 2.00		3.60				1	1	1	1		

Remarks

Inspection pit hand excavated to 1.20m depth and no services were found.

Dynamic sampling techniques stopped at 6.20m depth due to refusal. Borehole subsequently continued using Rotary Open Hole drilling techniques.

A 50mm standpipe was installed to 8.50m with a geowrapped slotted section from 2.00m to 8.50m with flush lockable protective cover. Backfill details from base of hole: gravel filter up to 2.00m, bentonite seal up to 0.20m, concrete up to ground level.

All dimensions Logged in accordance with BS5930:2015 are in metres.

abbreviations are explained on the accompanying key sheet.

Symbols and

Logged by

Figure 1 of 1 06/02/2020

geolectimies

MM

Project EXCHANGE SQUARE GROUND INVESTIGATION

Project No

PN194054

Client WSP

75 75-150 (mm) 27 23/35		50
	50/110	
		1 1 1 1 1 1 1 1
		1
		1
		1
		1
		1
		-
		į
		i
		į
		į
		į
		į
		i
		1
		1
	e with BS EN ISO22476-3:2005	
	narks ccordance	narks ecordance with BS EN ISO22476-3:2005

-/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

Project EXCHANGE SQUARE GROUND INVESTIGATION

Project No

PN194054

Client WSP

Hole	Depth	Level	Туре	SWP	Seating	g Drive		Test	Drive		SPT 'N' Value		Jncor	recte	d SPT	
	m bgl	m OD)	(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	value	10	20	30 .N.	40	50
BH304	1.20	55.50	S	-	2	3	2	2	1	1	6	*	 		1	1
BH304	2.00	54.70	S	-	2	2	1	-	1	1	3	*	!	-	!	1
BH304	3.00	53.70	S	-	1	2	1	1	1	4	7	*				
3H304	4.00	52.70	S	-	8	9	12	13	14	11/70	50/295		i			
BH304	7.70	49.00	S	-	23	2/5	50/40				50/40		i	i	i	<u> </u>
BH304	10.70	46.00	С	-	25/70		50/60				50/60		i	i	i	>
BH304	13.70	43.00	С	-	25/50		50/40				50/40					>
BH304	16.70	40.00	С	-	25/60		50/35				50/35	1	-			>
BH304	18.20	38.50	С	-	25/20		50/20				50/20		1	1	1	>

Remarks

In accordance with BS EN ISO22476-3:2005

^{/-} Blows/penetration (mm) after seating

^{-*/-} Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

L - Split Spoon with liner used

Project EXCHANGE SQUARE GROUND INVESTIGATION

Project No

PN194054

Client WSP

Hole	Depth	Level	Type	SWP	Seating	g Drive		Test	Drive		SPT 'N'		Jncor		d SPT	
	m bgl	m OD		(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10	20	'N'	40	50
3H305	1.20	57.93	S	-	10		50				50/75	 	1	1		>
																-
												 	 	1	I I	1
												 	 	 	1 1 1	1
												1	 	1	[[1
													i	į		
												 	1	1	1	1
												 	 	1	[[]	
													 	1	[[1
												; ! !	i	i	i I	i
												 	 	 	 	1 1 1
												 	 	1	I I	1
													i	į		
												 	1	1	1	1
												 	 	 	 	1
												1	 	1	[[]	1
													i	į		
												 	i I	1	1	1
												 	 	 	 	1
													1	!	1	1
												i	i	i	i	i
							Remari In acco	ks rdance w	ith BS EN	I ISO2247	6-3:2005					

-/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

Project EXCHANGE SQUARE GROUND INVESTIGATION

Project No

PN194054

Client WSP

Hole	Depth	Level	Type	SWP	Seating	g Drive		Test	Drive		SPT 'N'	ι	Jncor		d SPT	•
	m bgl	m OD	1,7,00	(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10	20	'N' 30	40	50
BH305C	1.20	57.73	s	-	3	3	1	4	3	2	10	*	1		1	
BH305C	2.20	56.73	S	-	1	1	2	2	3	3	10	*	-	-		
BH305C	3.20	55.73	S	-	3	2	3	3	3	3	12	*		!	!	1
BH305C	4.20	54.73	S	-	2	3	2	4	6	8	20		*			-
BH305C	5.20	53.73	S	-	2	2	3	3	4	5	15	*	:	i	1	1
BH305C	6.20	52.73	S	-	4	8	10	10	14	15	49		- 	 	1	*
BH305C	7.90	51.03	S	-	8	11	50/18				50/18		- 	÷	-	>
BH305C	13.90	45.03	S	-	25/50		50/24				50/24		i	÷	+	<u>;</u>

Remarks

In accordance with BS EN ISO22476-3:2005

-/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

Project EXCHANGE SQUARE GROUND INVESTIGATION

Project No

PN194054

Client WSP

Hole	Depth	Level	Туре	SWP	Seating	g Drive		Test	Drive		SPT 'N' Value	ı	Jncor	recte	d SPT	-
	m bgl	m OD	,	(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	value	10	20	30	40	50
3H306	1.20	65.41	S	-	2	3	3	3	3	2	11	*	 		 	1
3H306	2.20	64.41	S	-	2	2	2	3	2	2	9	*				-
3H306	3.20	63.41	S	-	1	-	2	3	3	3	11	*				1
3H306	4.20	62.41	S	-	2	3	4	5	6	6	21	1	*		i	i
3H306	5.20	61.41	S	-	3	4	4	5	5	7	21	1	*	i	i	i
3H306	6.20	60.41	S	-	4	4	4	5	6	8	23	1	*	1		1
3H306	7.00	59.61	S	-	11	15	25	25			50/150	1			ı	>
3H306	8.50	58.11	S	-	25		25	25/60			50/135	1	-			>

Remarks

In accordance with BS EN ISO22476-3:2005

/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

APPENDIX 3

Core Photographs

Project Number: PN 194054

BH303 I.20 - 3.20m

Project Number: PN 194054

BH303 3.20 - 4.70m

Project Number: PN 194054

BH303 4.70 - 7.70m

Project Number: PN 194054

BH303 7.70 - 10.70m

Project Number: PN 194054

BH303 10.70 - 13.70m

Project Number: PN194054

BH303 13.70 - 15.20m

Project Number: PN 194054

BH304 4.70 - 8.70m

Project Number: PN 194054

BH304 8.70 - II.70m

Project Number: PN 194054

BH304 | 11.70 - 15.20m

Project Number: PN 194054

Project Number: PN 194054

BH305C 6.50 - 9.40m

Project Number: PN 194054

BH305C 9.40 - 11.90m

Project Number: PN 194054

Project : EXCHANGE SQUARE, STOCKPORT

BH305C 11.90 - 14.90m

Project Number: PN 194054

BH305C 14.90 - 16.90m

Project Number: PN 194054

Project : EXCHANGE SQUARE, STOCKPORT

BH305C 16.90 - 19.90m

APPENDIX 4

Dynamic Sample Borehole Records

Sampl	e Types	Groundwater		Strata, Continued	
В	Bulk disturbed sample	Water Strike	∇	Mudstone	
BLK	Block sample	Depth Water Rose To	lacksquare		
C D	Core sample Small disturbed sample	Instrumentation		Siltstone	× × × × × × × × × × × × × × × × × ×
	(tub/jar)		DEG.		× × × × × × × × × × × × × × × × ×
E	Environmental test sample			Metamorphic Rock	
ES	Environmental soil sample	Seal	136	Fine Grained	·······
EW	Environmental water sample		33		**********
G	Gas sample		 1 4	Medium Grained	~~~
L	Liner sample	Ed.			$\widetilde{\sim}$
LB	Large bulk disturbed sample	Filter	[1]-	Coarse Grained	~~:
Р	Piston sample (PF - failed P sample)		-	Igneous Rock	VVVVV
TW	Thin walled push in sample		55	Fine Grained	******
U	Open Tube - 102mm	Seal	88		++++
	diàmeter with blows to take sample. (UF - failed U sample)			Medium Grained	++++
UT	Thin wall open drive tube sampler - 102mm diameter	Strata	Legend	Coarse Grained	*****
	with blows to take sample. (UTF - failed UT sample)	Made Ground Granular		Backfill Materials	
V	Vial sample				
W	Water sample	Made Ground		Arisings	
#	Sample Not Recovered	Cohesive			
Insitu '	Testing / Properties	Topsoil		Bentonite Seal	
CBRP	CBR using TRL probe		00		Ņ
CHP	Constant Head Permeability Test	Cobbles and Boulders		Concrete	
	Electrical conductivity	Gravel	, 0 0		• •
TC	Thermal Conductivity		(, , (,)	Fine Gravel Filter	
TR	Thermal Resistivity		****	Tille Graver Filter	
HV	Strength from Hand Vane	Sand	33.63		
ICBR	CBR Test			General Fill	
IDEN	Density Test	Silt	^ × ^ }		
IRES	Resistivity Test	Sile	* * * }	G 151	
MEX	CBR using Mexecone Probe Test		× × ×	Gravel Filter	:-
PKR	Packer Permeability Test	Clay			
PLT	Plate Load Test			Grout	
PP	Strength from Pocket Penetrometer	Peat	SV/a		
Temp	Temperature		27/2	Sand Filter	50
VHP	Variable Head Permeability Test		NK.		<u> </u>
VN	Strength from Insitu Vane	Note: Composite soil typ	es shown	Tarmacadam	И
w%	Water content	by combined symbols	1.1.11		Ш
(All otl	her strengths from led triaxial testing)	Chalk	77 77	Rotary Core	
undrain S	Standard Penetration Test		1 1	RQD Rock Quality D	esignation
-	(SPT)	Limestone		(% of intact cor FRACTURE INDEX	~
С	SPT with cone	Limescone		FRACTURE INDEX Fractures/metre	e
N	SPT Result			FRACTURE Maximum	
-/-	Blows/penetration (mm)	Sandstone		SPACING (m) Minimum NI Non-intact	core
*/	after seating drive			NR No core re	covery
-*/- (mm)	Total blows/penetration			AZCL Assumed zo	one of core
· ()	Extrapolated value	Coal		(where core recovery is unknot assumed to be at the base of the	

BOREHOLE RECORD -Dynamic Sampler

Project EXCHANGE SQUARE GROUND INVESTIGATION Engineer Borehole WS306 Project No PN194054

National Grid Coordinates 389219.5 390109.3 Client Ground Level 48.65

Client wsp						Coordin		390109.3	N				Ground	Level 4	8.65 m	
Sampling			Prope	rties		Strata	a								Scale 1	:50
Depth	Sample Type	Cased & (to Water)	Strength kPa	w %	SPT N	Descrip	otion							Depth	Legend	Level m OD
0.00- 0.80 0.20 0.20 0.50	- B - D - ES - ES					grave conte	elly fir ent. Gra	MADE GROU ne to coa avel is a d brick f	rse sa ngular	nd with fine t	n a low to medi	cobble um of	1	G.L.		48.65
1.00 1.20- 1.61	_ D				S50/			wn fine t ery dense		se SANI	o.			0.80		47.85
	<u>-</u>				260	At 1	.61m, re	efusal.						1.61		47.04
	Ė							En	d of B	orehole	9					
	-															
	<u> </u>													E		
														<u> </u>		
	<u> </u>													<u>-</u>		
	-													-		
	Ė													‡		
	<u>-</u> -													- -		
	E E													Ė.		
	-													ļ.		
	<u> </u>													Ė.		
	Ė													Ė		
	= = =													 -		
	<u>-</u>															
	-													<u> </u>		
	<u>-</u> -													<u> </u>		
	_													<u> </u>		
	-													ļ.		
	Ē													<u> </u>		
														<u> </u>		
	- - -													 - -		
	F													‡		
	_													<u> </u>		
Boring					Progre						ndwate					
Depth Hole Dia		Techniqu	е	Crew	Depth of Hole	Depth Cased	Depth to Water	Date	Time	Depth Struck	Depth Cased	Rose to	in Mins	Depth Sealed		rks on dwater
		cion Pit Sample		GM/MM GM/MM	G.L. 1.61		DRY	19/11/19 19/11/19							None encounte	red.
					•											

Remarks

Inspection pit hand excavated to 1.20m depth and no services were found.

Dynamic Sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

Dynamic Sample Borehole terminated at 1.61m depth due to refusal.

Backfill details from base of hole: bentonite seal up to 0.50m, arisings up to ground level. Symbols and

06/02/2020 ggolgdmigs

MM

1 of 1

Logged by

abbreviations are explained on the accompanying key sheet. All dimensions are in metres.

Logged in accordance with BS5930:2015

BOREHOLE RECORD - Dynamic Sampler

Project EXCHANGE SQUARE GROUND INVESTIGATION Engineer Borehole WS307 Project No PN194054

National Grid Coordinates 389204.3 390091.6 Client Ground Level 53.58

Client WSP						Nationa Coordin	al Grid nates	389204.3 390091.6	8 E 5 N				Ground	Level 53	3.58 m	OD
Sampling				Strata						Scale 1:50						
Depth	Sample Type	Cased & (to Water)	Strength kPa	w %	SPT N	Descrip	otion							Depth	Legend	Level m OD
0.00- 0.50 0.20 0.20 0.50- 1.20 0.50	D ES					MADE coars	GROUND se sand ounded	: Soft ye including tine to cond brick	ellowis ng ash.	h brown Gravel	n grave L is an	lly fin	:0	G.L. 7 0.10		53.58 53.48
1.00 1.00 1.20- 1.90 1.20- 1.65					s6											
1.90- 2.00 2.00- 2.50 2.00- 2.45 2.00 2.30- 3.00 2.50- 2.60	- B D ES				s12		v 2.00m	, firm.	co coar	se SANI	· .			2.50		51.08
3.00- 3.15	<u> </u>				s50/30		.00m, ve	ery dense efusal.	e.					3.15		50.43
	- - -							Ei	nd of B	orehole	9					
	- - -													<u> </u>		
	- - -															
	- - -															
	- - - -															
	- - - -															
	<u>-</u> -													<u> </u>		
	- - - -															
	<u>-</u> - - -															
	- - - -													<u> </u>		
	<u> </u>													<u></u>		
	<u>-</u> - -													<u></u>		
	<u>-</u>													<u></u>		
	<u> </u>													<u> </u>		
Horiz :	_									· · · · · · · · · · · · · · · · · · ·	al sect	_				
Boring Hole		Toob=:-	^	Cro	Progré Depth	Depth	Depth to	Dot-	T:	Depth	ndwate Depth		in	Depth	Rema	
Deptii Dia		Technique		Crew GM/MM	of Hole	Cased	Water	Date 15/11/19	Time	Struck	Depth Cased	KOSE TO	Mins	Sealed		dwater
		c Sample		GM/MM GM/MM			DRY	15/11/19							encounte	red.

Remarks

Inspection pit hand excavated to 1.20m depth and no services were found.

Es sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

Dynamic Sample Borehole terminated at 3.15m depth due to refusal.

A 50mm standpipe was installed to 3.00m with a geowrapped slotted section from 1.00m to 3.00m with flush lockable protective cover. Backfill details from base of hole: gravel filter up to 1.00m, bentonite seal up to 0.20m, concrete up to ground level.

All dimensions Logged in accordance with BS5930:2015 are in metres.

abbreviations are explained on the accompanying key sheet.

Symbols and

Logged by

Figure 1 of 1 06/02/2020

MM

BOREHOLE RECORD - Dynamic Sampler

Project EXCHANGE SQUARE GROUND INVESTIGATION Engineer Borehole WS308 Project No PN194054

National Grid Coordinates 389239.2 E 390092.2 N Client Ground Level 50.12 m OD WSP

Sampling Properties							nates 390092.: a	Scale 1:50							
)epth	Sample Type	Depth Cased & (to Water)	Strength kPa	n w %	SPT N	Descri	otion						Depth	Legend	Level m OD
0.00- 0.50 0.20 0.20 0.50- 1.20	B B ES ES	(to tratto)				mott with coar	s over MADE GROI led red, slight rootlets. Grave se of mudstone, occasional brick	ly grav el is a sandst	elly fi ngular one, li	ine to :	medium nded fi	sand ne to	G.L.		50.
1.00 1.00 1.20- 1.50 1.20- 1.65 1.40- 1.57	D				S26 S50/60	\ coar	GROUND: Medium se sand. Gravel parse of limesto	is ang	ular to	subro	unded f	to ine	1.20		48.9 48.9
	<u> </u>						dense reddish l	rown f	ine to	coarse	SAND.		<u> </u>		
	-						Ei	nd of B	orehole	e			† - -		
	<u> </u>												<u> </u>		
													E		
													 -		
	-												<u> </u>		
													<u> </u>		
	-												<u> </u>		
													‡		
	[E		
													 -		
	_												<u> </u>		
													<u> </u>		
													<u> </u>		
	-												_		
													‡		
													Ī.		
ring					Progre	ess			Grour	ndwate	r		<u> </u>		
pth Hole Dia		Techniqu	e	Crew	Depth of Hole	Depth	Depth to Water Date	Time	Depth Struck	Depth Cased	Rose to	in Mins	Depth Sealed		rks on dwater
.20 0.40		tion Pit		GM/MM GM/MM	G.L.		DRY 15/11/19	08:00						None encounte	

Remarks

Inspection pit hand excavated to 1.20m depth and no services were found.

Es sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

Symbols and abbreviations are

Backfill details from base of hole: bentonite seal up to 0.50m, arisings up to ground level. Figure Symbols and abbreviations are

MM

1 of 1 06/02/2020

Logged by

explained on the accompanying key sheet. All dimensions are in metres.

Logged in accordance with BS5930:2015

Project EXCHANGE SQUARE GROUND INVESTIGATION Engineer Borehole WS309 Project No PN194054

National Grid Coordinates 389221.7 390077.7 Client Ground Level 54.61 m OD WSP

ampling			Prope	rtios		Coordir Strata		390077.	/ IN				Orouna	Level 54	Scale 1	
	Sample	Depth Cased &	Strength		SPT N									T		Level
epth		Cased & (to Water)		%	SPIN	Descrip	tion							Depth	Legend	m OD
0.00- 0.50 0.20 0.20 0.50- 1.20	- B - D - ES - B - ES					coars angul quart fragm At 0.	se sand ar fin- zite, ents. 50m, r	MADE GROWN with some to medical control contro	ne root ium gra slate, wall e	lets an vel of potten	nd occa limest ry and	sional one, brick		G.L.		54.6
1.00 1.20- 1.50 1.20- 1.65 1.50	- ES - B - D - D - ES				S8	sligh subro	tly gr	: Soft to	lay. Gr	avel is	s angul	ar to		1.20		53.4
1.80- 2.12	_ D				\$50/ 170	Very	dense :	reddish l efusal.	orown f	ine to	coarse	SAND.		2.12		52.8
	-							E	nd of B	orehole	9			E		
	<u> </u>													<u> </u>		
	_													-		
	- - -													<u> </u>		
	_													<u> </u>		
	- - -													<u> </u>		
	- - -															
	 - -													-		
	- - -													-		
	- - -															
	- - -													-		
	- - -															
	_															
	- -													<u> </u>		
	_													<u> </u>		
	[-													E E		
	-													Ę Į		
	_ - -													-		
	-													Ė.		
	- - -													<u> </u>		
ring					Progre						ndwate	r				
pth Hole Dia	7	Technique)	Crew	Depth of Hole	Depth Cased	Depth to Water	Date	Time	Depth Struck	Depth Cased	Rose to	in Mins	Depth Sealed		rks on dwater
	Inspect							0						1		

Remarks

Inspection pit hand excavated to 1.20m depth and no services were found.

Symbols and abbreviations are explained on the accompanying of the properties of the proper

accompanying key sheet. All dimensions are in metres.

Logged in accordance with BS5930:2015

Logged by

Figure 1 of 1

MM

Project EXCHANGE SQUARE GROUND INVESTIGATION Engineer Borehole WS310 Project No PN194054

National Grid Coordinates 389250.4 390079.9 Client Ground Level 50.81 m OD WSP

ient _{WSP}	Duamantias		Coordinates	390079.9	N N				Ground	Level 50		
Sampling	Properties	0DT 11	Strata								Scale 1	1
Depth Sample Cased Type (to Wa	n Strength w ter) kPa %	SPT N	Description							Depth	Legend	Level m OD
0.00- 0.25 - B 0.20 - D 0.20 - ES 0.25- 1.00 - B 0.50 - ES			fine to co	ND: Light goarse grave	l of l	imestor slight	le.	velly	gular	G.L. 0.25		50.8 50.5
1.00 D D D	r)	S50/	subangula: sandstone	r to subrou and brick	nded f fragme	ine to	coarse	of		1.00		49.8
1.00 ES		285	At 1.44m,	refusal.						1.44		49.3
- - - - - - - - - - - - - - - - - - -				Er	d of B	orehole						
										1		
										1		
										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
										+ - - - - - -		
<u>-</u>										- - - - - -		
										- - - - - -		
oring		Progre	ess		1	Groun	idwate	r		-		
epth Hole Techni	que Crew	Depth of Hole	Depth Depth	to er Date	Time	Depth Struck	Depth Cased	Rose to	in Mins	Depth Sealed		rks on dwater
1.00 0.40 Inspection I 1.44 0.10 Dynamic Samp	Pit GM/MM	G.L.		13/11/19 RY 13/11/19			Jaseu		Clinic	Socied	None encounte	

Remarks

Inspection pit hand excavated to 1.00m depth and no services were found.

Dynamic Sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

Dynamic Sample Borehole terminated at 1.44m depth due to refusal.

Backfill details from base of hole: bentonite seal up to 1.20m, arisings up to ground level.

explained on the accompanying key sheet. All dimensions Logged in accordance with BS5930:2015 are in metres.

Symbols and

abbreviations are

06/02/2020 esimbeloeg

MM

1 of 1

Logged by

Project EXCHANGE SQUARE GROUND INVESTIGATION Engineer Borehole WS311 Project No PN194054

National Grid Coordinates 389231.9 390058.8 Client Ground Level 57.65 m OD

Properties Strata Scale Scale	57.
1.00	m OD
0.20	
MADE GROUND: Firm yellowish orange mottled black slightly sandy gravelly clay with a low cobble content. Gravel is angular to subangular fine to coarse of sandstone, coal, slag, concrete and brick fragments. 1.80-2.00 D 1.80-2.00 D 2.80-2.50 B 2.00-2.45 D 2.00 ES 3.80-4.00 D 3.00-3.45 D 3.00 ES 3.80-4.00 D 4.00-4.45 D 4.00-4.45 D 4.00-4.89 # 350/ 350/ 235 At 4.89m, refusal.	
2.00- 2.45	
3.00 - 3.45 D S10 3.80 - 4.00 D A S10 3.80 - 4.00 D S10 3.80 - 4.00 D S10 4.50 - 4.89 # S50/235 At 4.89m, refusal.	
3.80- 4.00 D 4.00- 4.45 D S9 slightly gravelly clayey silt. 4.50- 4.89 # S50/ 235 At 4.89m, refusal.	
235 At 4.89m, refusal. 4.89	
	52.
	<u>.</u> 52.
Boring Progress Groundwater	
1.20 0.40 Inspection Pit GM/MM G.L. 19/11/19 08:00 None 4.89 0.10 Dynamic Sampler GM/MM 4.89 DRY 19/11/19 18:00 encount	irks on idwater
	dwater

Remarks

Inspection pit hand excavated to 1.20m depth and no services were found.

Es sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

Dynamic Sample Borehole terminated at 4.89m depth due to refusal.

A 50mm standpipe was installed to 4.50m with a geowrapped slotted section from 1.00m to

4.50m with flush lockable protective cover. Backfill details from base of hole: gravel filter up to 1.00m, bentonite seal up to 0.20m, concrete up to ground level.

All dimensions Logged in accordance with BS5930:2015 are in metres.

abbreviations are explained on the accompanying key sheet.

Symbols and

Figure 1 of 1 06/02/2020 geolectimies

MM

Logged by

Project EXCHANGE SQUARE GROUND INVESTIGATION Engineer Borehole WS312 Project No PN194054

National Grid Coordinates 389244.2 390064.5 Client Ground Level 53.48 m OD

Client WSP						Coordi	nates	390064.5	N				Ground		3.48 m	
Sampling		. Denth	Prope			Strata	a							1	Scale 1	1
Depth	Sample Type	Depth Cased & (to Water)	Strengtr kPa	w %	SPT N	Descrip	otion							Depth	Legend	Level m OD
	_					Veget clay	tation o	over TOPS ome root]	SOIL: S Lets.	oft daı	rk brow	m very	sandy	G.L.		53.48
0.40- 1.20 0.50	- B - ES					Stiff	f greyi	sh orange	sandy	CLAY.				0.40		53.08
0.50	- 50													F		
1.00 1.00	D ES													F		
1.20- 1.50 1.20- 1.65	[D			7.9	S21									Ė		:]
1.50- 2.00	_ D													Ė		
2.00- 2.50	- В					Betwe	en 2.00	0-2.45m,	firm.					-		
2.00- 2.45 2.00				9.2	s9	200	2011 200							-		
2.50- 3.00	D													Ē		:
	-													<u> </u>		
3.00- 3.50 3.00- 3.14	- В - D				S50/30	Verv	dense	reddish k	rown f	ine to	coarse	SAND.		3.00		50.48 50.34
3133 3122	-				250,50			efusal.					/	-		
	<u> </u>							Er	nd of B	orehole	9			<u> </u>		
	-													<u> </u>		
	-													_		
	_													Ĺ		
	-													-		
														<u> </u>		
	-													Ī		
	-													<u> </u>		
	-													-		
	_													-		
	-													<u> </u>		
	_													Ė		
	-													_		
	-													_		
	-													Ĺ		
	_													Ė		
	_													_		
	-													Ī		
														‡		
	<u> </u>													<u> </u>		
	-													 		
	F													Ī.		
	-													Ē		
														<u></u>		
Boring					Progre	ess				Grour	ndwate	r				
Depth Hole Dia		Techniqu	e	Crew	Depth of Hole	Depth	Depth to Water	Date	Time	Depth Struck			in Mins	Depth Sealed		rks on dwater
1.20 0.40	Inspect	tion Pit	t	GM/MM	G.L.			22/11/19	08:00		Justu		Cimiv.	Juliou	None	
3.14 0.10	Dynamio	: sample	er	GM/MM	3.14		DRY	22/11/19	T8:00						encounte	ered.
	-						:	٠.	 					+		

Remarks

Inspection pit hand excavated to 1.20m depth and no services were found.

Es sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

Dynamic Sample Borehole terminated at 3.14m depth due to refusal.

A 50mm standpipe was installed to 3.00m with a geowrapped slotted section from 1.00m to 3.00m with flush lockable protective cover. Backfill details from base of hole: gravel filter up to 1.00m, bentonite seal up to 0.20m, concrete up to ground level.

All dimensions Logged in accordance with BS5930:2015 are in metres.

abbreviations are explained on the accompanying key sheet.

Symbols and

Figure 1 of 1 06/02/2020 geolectimies

MM

Logged by

Properties

Sampling

Project EXCHANGE SQUARE GROUND INVESTIGATION Engineer Borehole WS313 Project No PN194054

Strata

National Grid Coordinates 389285.4 390073.7 Client Ground Level 51.80 m OD WSP

sampling		Denth	Flope													:50
epth	Sample Type	Cased & (to Water)	Strength kPa	w %	SPT N	Descrip	tion							Depth	Legend	Leve m OD
0.00- 0.25	_ - в					MADE	GROUND	: Light o	rey sa	ndy ang	ular t	o suban	gular	G.L.		51.
0.20 0.20 0.25- 1.00 0.50	- D - ES - ES - ES - D					MADE sligh subar	GROUND ntly si	rse grave : Reddish lty fine to subround brick	n brown to coa: inded f	slight rse san	:ly gra	vel is		0.25		51.
20- 1.40 20- 1.55	_ B _ D	(DRY)			\$50/ 195	Very	dense	reddish k	orown f	ine to	coarse	SAND.	· · · · · · · · · · · · · · · · · · ·	1.30		50. 50.
	_					\			nd of B	orehole	<u> </u>		/			
	E													<u> </u>		
	Ė													- - -		
	Ė													- -		
	_												:	- - -		
oring	<u> </u>				Progre				ļ	Groun	dwate	r				1
epth Hole Dia		Technique	е	Crew	Depth of Hole	Depth Cased	Depth to Water	Date	Time	Depth Struck	Depth Cased	Rose to	in Mins	Depth Sealed		irks on idwater
L.20 0.40	Inspect Dynamic			GM/MM GM/MM	G.L. 1.55			15/11/19 15/11/19		ou don	- Jasou		13	Journal	None encounte	

Dynamic Sample Borehole terminated at 1.55m depth due to refusal.

Backfill details from base of hole: bentonite seal up to 1.20m, arisings up to ground level.

1 of 1 06/02/2020

geolectinies

Scale 1:50

explained on the accompanying key sheet. All dimensions are in metres.

Symbols and

abbreviations are

Logged in accordance with BS5930:2015

Project EXCHANGE SQUARE GROUND INVESTIGATION Engineer Borehole WS314 Project No PN194054

National Grid Coordinates 389261.1 390029.7 Client Ground Level 62.71 m OD WSP

lient wsp						Coordin		390029.7	N				Ground		.71 m	
Sampling		Lionth	Prope			Strata	3								Scale 1	:50
Depth	Sample Type	Cased & (to Water)	Strength kPa	w %	SPT N	Descrip	otion							Depth	Legend	Level m OD
0.00- 0.80 0.20 0.50	B ES ES					coars	se sand	rk brown with roc fine to c	tlets.	Grave:	l is su	bangula	ar to	G.L.		62.7
0.80- 1.20 1.00 1.20- 1.90 1.20- 1.65	— ES - - в			15	s6	Soft is su	reddis	h brown s ed to rou	lightl nded f	y grave ine of	elly CL mudsto	AY. Gra	ivel	0.80		61.9
1.90- 2.00 2.00- 2.45 2.00- 2.20 2.20- 3.00	- D - D			19	s11	Below	v 2.00m	, firm.								
3.00- 3.42	_ D				S50/	Very	dense	reddish b	rown f	ine to	coarse	SAND.		2.80		59.9
	E				265			efusal -					ς.	<u> </u>		
	E							En	d of B	orehole	e			3.42		59.2
	-													<u> </u>		
	-													<u> </u>		
	Ė													ŧ l		
					I Ivo ove					<i>(</i>		_		_		
La wina ar					Progre		Depth to	1		Grour Depth	ndwate		in		· ·	
Hole		Tooks!	^	Cra	Depth	Deptiii	Doptii te	Dot-	T:		Depth	Doco to	in	Depth		rks on
Dia		Technique		Crew	of Hole	Cased	Water	Date	Time 08:00	Struck		Rose to	Mins	Sealed	Groun	rks on dwater
epth Hole Dia 1.20 0.40	Inspect Dynamic	ion Pit	=	Crew GM/MM GM/MM		Cased	Water	Date 14/11/19 14/11/19	08:00	Struck	Cased	Rose to		Sealed		dwater

Remarks

Symbols and abbreviations are explained on the accompanying key sheet. All dimensions

are in metres.

Logged in accordance with BS5930:2015

Inspection pit hand excavated to 1.20m depth and no services were found.

Dynamic Sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

Dynamic Sample Borehole terminated at 3.42m depth due to refusal (possible bedrock) - rig
was moved to WS314A.

A 50mm standpipe was installed to 3.00m with a geowrapped slotted section from 1.00m to
3.00m with flush lockable protective cover. Backfill details from base of hole: gravel
filter up to 1.00m, bentonite seal up to 0.40m, concrete up to 0.20m, tarmacadam up to
ground level.

geolectimies

MM

1 of 1

06/02/2020

Logged by

Figure

Project EXCHANGE SQUARE GROUND INVESTIGATION Engineer Borehole WS314A Project No PN194054

National Grid Coordinates 389259.7 390029.6 E N Client Ground Level 62.59 m OD WSP

Sampling		Proper	ties		Strata								Scale 1	:50
Depth	Sample Cased & (to Water	Strength kPa	w %	SPT N	Description							Depth	Legend	Level m OD
0.00- 0.50 0.20 0.20 0.50- 1.20 0.50	B D ES B ES				gravelly i	mADE GROU Fine to coa angular to sandstone,	rse sa	nd with ed fine	some	rootlet arse of	s.	G.L.		62.5
1.00 1.20- 1.90 1.20- 1.65	ES B D		16	s8	Soft to fi	irm reddish	brown	slight unded f	ly gra	velly C mudsto	LAY.	1.20		61.39
2.00- 2.45 2.20- 3.00	_ D		19	s12	Below 2.00	Om, firm.						<u>-</u> - - - -		
3.00- 3.29	_ D			S50/ 140	Very dense	reddish k	orown f	ine to	coarse	SAND.		2.80		59.79
3.00- 3.20	D					Er	d of B	orehole	2			3.29		59.30
	<u>-</u> - :													
-	- - - -											- - -		
	- -													
	<u>-</u>													
-	· - - - - -											<u>-</u> - - -		
	: : - :											<u>-</u>		
	-													
	- -													
oring	-	1		Progre	ess			Groun	idwate	r		1		L
Pepth Hole Dia	Techniq	ue	Crew	Depth of Hole	Depth Depth	to Date	Time	Depth Struck	Depth Cased	Rose to	in Mins	Depth Sealed	Rema	rks on dwater
1.20 0.40	Inspection Page 1970 Page	Ĺt	GM/MM GM/MM	G.L.		14/11/19 RY 14/11/19	08:00		Jaseu		NIIII	Scaleu	None encounte	

Remarks
Symbols and abbreviations are

Tinspection pit hand excavated to 1.20m depth and no services were found.

Logged

Logged

Logged

Logged

Logged

Logged

Backfill details from base of hole: bentonite seal up to 0.50m, arisings up to ground level.

1 of 1 06/02/2020

MM

esimbeloeg

Logged by

abbreviations are explained on the accompanying key sheet. All dimensions

are in metres.

Logged in accordance with BS5930:2015

Project EXCHANGE SQUARE GROUND INVESTIGATION Engineer Borehole WS315 Project No PN194054

National Grid Coordinates 389272.2 390053.9 Client Ground Level 54.12

Client wsr						Coordi		390053.9	Ñ				Ground		1.12 m	
Sampling			Prope		l	Strata	a								Scale 1	:50
Depth	Sample Type	Cased & (to Water)	Strength kPa	w %	SPT N	Descrip	otion							Depth	Legend	Level m OD
0.00- 0.3 0.20- 1.0 0.20 0.30- 1.2	0 D ES					sligh \ root:	htly cla lets. G	MADE GROU ayey fine ravel is andstone,	to co	arse sa r to su	and wit ubangul	h some ar fine		G.L. 0.30		54.12 53.82
1.00 1.20- 1.5	ES 0 B					clay to su	with a	: Dark br low cobb ar fine t ents.	le con	tent. 0	Fravel	is angu	lar	1.20	× • × ·	52.92
1.20- 1.6 1.50- 2.0	5 D			12	s12	Firm	yellow	ish brown	sandy	SILT.					× · · × · · · · · · · · · · · · · · · ·	
2.00- 2.5 2.00- 2.4 2.00 2.50- 3.0	5 D ES			6.9	s20	Below	w 2.00m	, stiff.						- - - -	× · · × · · · · · · · · · · · · · · · ·	
3.00- 3.4	E				S50/ 250	Very	dense :	reddish k	orown s	lightly	, grave	lly fin	e to	3.00	× · · × · × · × · × · × · × · × · × · ×	51.12
	<u>-</u> -					coars		. Gravel	is rou		ine to			3.40	0 4 4	50.72
	<u>-</u> - -							<u></u>			-			<u>-</u> 		
														<u></u>		
														- - - - -		
	- - -													- 		
	- - - - -															
														- - - - -		
	<u>-</u>															
														- - - - -		
	-													 		
	-													-		
Boring			1		Progre					Groun	ndwate					+
Depth Hol		Techniqu	е	Crew	Depth of Hole	Depth Cased	Depth to Water	Date	Time	Depth Struck	Depth Cased	Rose to	in Mins	Depth Sealed		rks on dwater
1.20 0.4	0 Inspec 0 Dynami			GM/MM GM/MM	G.L.			22/11/19		2 1. 2011					None encounte	
					l			ļ	لللبيا							

Remarks

Inspection pit hand excavated to 1.20m depth and no services were found.

Es sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

Dynamic Sample Borehole terminated at 3.40m depth due to refusal.

A 50mm standpipe was installed to 3.00m with a geowrapped slotted section from 1.00m to 3.00m with flush lockable protective cover. Backfill details from base of hole: gravel filter up to 1.00m, bentonite seal up to 0.20m, concrete up to ground level.

Logged by

Figure

MM

geolectimies

1 of 1

06/02/2020

All dimensions are in metres.

explained on the accompanying key sheet.

Symbols and

abbreviations are

Logged in accordance with BS5930:2015

Project EXCHANGE SQUARE GROUND INVESTIGATION Engineer Borehole WS316 Project No PN194054

National Grid Coordinates 389291.7 390049.9 Client Ground Level 58.60 m OD WSP

ampling		Dron	erties	1	Coordinates 390049.9 N Ground Strata	Level 58	Scale 1	OD
	Sample C	epth sed &		SPT N		Π		Level
Depth	Type (to	Water) kPa	%	J1 1 1V	Description	Depth	Legend	m OD
0.00- 0.40 0.20 0.20 0.40- 1.20 0.50	- B - D - ES - B - ES				Grass over TOPSOIL: Brown gravelly slightly clayey fine to coarse sand with roots and rootlets. Gravel is angular to subrounded fine to coarse of mudstone, sandstone, glass and brick fragments. MADE GROUND: Soft to firm orangish brown sandy	G.L. 0.20 0.40		58.6 58.4 58.2
1.00 1.00 1.20- 1.50 1.20- 1.65 1.50- 2.00	D			s33	gravelly clay with a low cobble content of sandstone and brick. Gravel is angular to subangular fine to coarse of sandstone, glass, metal and brick fragments. MADE GROUND: Very stiff orangish brown mottled black sandy gravelly clay. Gravel is angular to	- -		
2.00- 2.50 2.00- 2.45 2.00	- - B - D - ES			s13	subangular fine to coarse of clinker, slag, timber, concrete and brick fragments. Between 2.00-2.45m, firm.	<u>-</u>		
2.50- 3.00	D							
3.00- 3.50 3.00- 3.45 3.00 3.50- 4.00	B D ES D		11	s13	Firm grey slightly sandy slightly gravelly SILT. Gravel is angular to subangular fine to medium of sandstone and limestone. Between 3.50-4.00m, some bands of clay.	3.00	× × × × × × × × × × × × × × × × × × ×	55.6
4.00- 4.50 4.00- 4.45	- - - B - D			S8	Between 4.00-4.45m, soft to firm.		× × × × × × × × × × × × × × × × × × ×	
4.50- 5.00	D						× × × × × × × × × × × × × × × × × × ×	
5.00- 5.45	D - - -		16	S18	Below 5.00m, stiff.	5.45	\(\begin{align*} \begin{align*} \chi & \chi	53.:
					End of Borehole			
						<u>-</u>		
						_		
						- - - -		
						† - - - -		
oring				Progre	ss Groundwater			
anth Hole	Tec	hnique	Crew	Depth	Depth Depth to Depth Dep	Depth		rks on
1.20 0.40	Inspection Dynamic Sa	n Pit	GM/MM GM/MM	of Hole G.L. 5.45	Cased Water Date Time Struck Cased Rose to Mins 21/11/19 08:00 DRY 21/11/19 18:00	Sealed	None encounte	dwater

Remarks
Symbols and abbreviations are explained on the accompanying key sheet.

All dimensions

Remarks

All inspection pit hand excavated to 1.20m depth and no services were found.

Bynamic Sample Borehole location benched at 0.50m below ground level - borehole advanced using modular sampling rig.

ES sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

A 50mm standpipe was installed to 4.00m with a geowrapped slotted section from 3.00m to 5.00m with flush lockable protective cover. Backfill details from base of hole: bentonite seal up to 5.00m, gravel filter up to 3.00m, bentonite seal up to 0.20m, concrete up to ground level.

All dimensions

Logged in accordance with BS5930:2015 are in metres.

Logged by MM

Figure 1 of 1 06/02/2020

Project EXCHANGE SQUARE GROUND INVESTIGATION Engineer Borehole WS317 Project No PN194054

National Grid Coordinates 389292.7 E 390030.4 N Client Ground Level 64.22 m OD WSP

ient _{WSP}			Dro	rtico		Coordi		390030.	4 N				Ground		1.22 m	
ampling	Comple	Depth	Prope			Strata	a							ı	Scale 1	1
Depth	Sample Type	Depth Cased & (to Water)	Strength kPa	w %	SPT N	Descrip	otion							Depth	Legend	m OD
0.10- 0.25	_ - в					\ MADE	GROUND	: Black	tarmaca	dam.			,	G.L. 0.05		64.2 64.1
0.20 0.20 0.40- 1.20	D ES B							: Yellow ium grav						0.25	******	63.9 63.8
0.50	- ES					MADE	GROUND	: Yellow	ish gre	y conci	rete.		/	/ ‡		
1.00 1.00 1.20- 1.80 1.20- 1.65	D ES D D				s9	SAND coars Betwe	Grave se of meen 0.7	gravell l is sub udstone 5-0.85m, nd concr	angular and san high c	to subdetone	orounde	d fine	coarse to			
1.80- 2.00 2.00- 2.80 2.00- 2.45 2.00	D B D ES				s7									2.30	××	61.9
						Loose		ish yell	ow slig	htly si	ilty fi	ne to m	nedium		×	
2.80- 3.00 3.00- 3.80 3.00- 3.45 3.00	D B D D D D D D D D D D D D D D D D D D				S2	Betwe	een 3.0	0-3.45m,	very 1	oose.				<u>-</u>	×	
	_ - -					Below		, dark g	rey, si	lty. sl	light o	rganic		F	:×: : : :× : : :	
3.80- 4.00 4.00- 4.45	_ D _ D				s9									<u> </u>	×	
4.50- 5.00	D														x *	
5.00- 5.45	#				S 6										× · · · · × · · · · × · · · · · · · · ·	
	- - - - - -							E	nd of B	orehole	è			5.45	·×·····	58.
	- - - - -													<u>-</u>		
	<u>-</u> -													<u> </u>		
	- - -													Ė		
	- - -													Ė		
	- - -													Ė		
	- - -													Ė.		
														F		
	<u>-</u> -													Ė		
														_		
oring					Progre						idwate	r				
	-	Technique)	Crew	Depth of Hole	Depth Cased	Depth to Water	Date	Time	Depth Struck	Depth Cased	Rose to	in Mins	Depth Sealed		rks on dwater
epth Hole Dia																
Dia 0.40	Inspect Dynamic			GM/MM GM/MM	G.L. 5.45		DRY	18/11/1 18/11/1							None encounte	ered.

Remarks

Inspection pit hand excavated to 1.20m depth and no services were found.

A 50mm standpipe was installed to 2.00m with a geowrapped slotted section from 1.00m to 2.00m with flush lockable protective cover. Backfill details from base of hole: bentonite seal up to 2.00m, gravel filter up to 1.00m, bentonite seal up to 0.20m, concrete up to ground level.

explained on the accompanying key sheet. All dimensions

abbreviations are

Symbols and

Logged in accordance with BS5930:2015 are in metres.

Logged by

Figure

1 of 1 06/02/2020

MM

BOREHOLE RECORD - Dynamic Sampler Project EXCHANGE SQUARE GROUND INVESTIGATION Borehole Engineer WS318 Project No PN194054 National Grid 389328.8 Client Coordinates Ground Level 61.83 m OD WSP 390049.0 Sampling **Properties** Strata Scale 1:50 Sample Strength Depth Description Depth Leaend Type kPa % m OD 61.83 G.L. 0.08 0.12 0.40 61.75 61.71 MADE GROUND: Grey concrete paving slab. 0.15- 0.40 0.20 MADE GROUND: Grey gravelly fine to coarse sand. Gravel is angular to subangular fine to coarse of D 61.43 0.20 ES 0.45 61.38 sandstone. MADE GROUND: Brown mottled grey very sandy angular to subangular fine to coarse gravel of limestone and sandstone. At 0.35m, orange plastic ducting. MADE GROUND: Black tarmacadam. At 0.45m, concrete obstruction. End of Borehole Boring Progress Groundwater Depth Remarks on Depth Technique Crew Date Time Rose to Water Mins of Hole Cased Struck Cased Sealed Groundwater 20/11/19 20/11/19 0.40 Inspection Pit PC/GM G.L. 08:00 None 0.45 DRY 18:00 encountered. Inspection Pit terminated at 0.45m depth on encountering buried services and a concrete obstruction.

ES sample = 1 x 60ml amber glass jar, 2 x 258ml amber glass jars and 1 x 1L plastic tub.

Backfill details from base of hole: arisings up to ground level. Remarks Logged by Symbols and Figure 1 of 1

abbreviations are explained on the accompanying

Figure 1 of 1
06/02/2020

All dimensions are in metres. Logged in accordance with BS5930:2015

key sheet.

Project EXCHANGE SQUARE GROUND INVESTIGATION

Project No

PN194054

Client WSP

Hole	Depth	Level	Type	SWP	Seating	g Drive		Test	Drive		SPT 'N'	ι	Jncor	recte	d SPT	•
	m bgl	m OD	.,,,,	(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10	20	'N' 30	40	50
WS306	1.20	47.45	S	_	4	4	4	8	15	23/35	50/260	 	1	1	1	<u> </u>
	1.20				•	•	•		10	20,00	33/233				-	-
														1		
														1		-
												į	į	į	į	į
												1	1	1	1	1
																-
												i	į	ij	į	i
												1	1	1	1	1
													1	-		
												i	i	i	į	i
												1	1	1	I I	1
												- !	!	- !	!	-
													i	i	i	i
												i	İ	i i	I I	i i
												!	!	1	 	- [
														-		
												į	į	ij	į	į
												1	1	1	1	I
													!	- !		
													i	i	i	i
												i	i	i	i	i
												1	1	1	1	-
																-
												į	i	ij	į	i
												1	1	1	1	1
													!	- !		
													i	i	i	i
												1	1	1	1	1
													!	!		- !
													i	i	i	i
												i	İ	İ	I I	İ
												- !	!	- !	!	- !
													-	-	i	
												i	i	i	i	i
												1	1	 	1	1
								<u> </u>								
							Remarl In acco	ĸs rdance w	ith BS EN	ISO2247	6-3:2005					

-/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

Project EXCHANGE SQUARE GROUND INVESTIGATION

Project No

PN194054

Client WSP

Hole	Depth	Level	Туре	SWP	Seatin	g Drive		Test	Drive		SPT 'N' Value		Unco	recte	d SP1	•
	m bgl	m OD		(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	value	10	20	30	40	50
WS307	1.20	52.38	s	-	1	-	2	1	2	1	6	*	 		 	
VS307	2.00	51.58	S	-	2	2	3	3	3	3	12	*	-		!	
WS307	3.00	50.58	S	-	12	13/40	50/30				50/30	1	1		1	_ A
												1 1 1	 		 	1
												1	! !	į	i	i
												1 1 1	 	1	 	
												1 1 1	 	 	 	
												1 1	 		 	1
												1 1 1	 		 	1
												1	 		1	1
												į	i	į	i	i
												1	i		İ	i
													1		 	-
													1		 	-
													į	į	i	į
													i			i
													- 1		1	1
												į	į	i	i	i
															-	-
												i	i	i	i	i
													1	- !	1	-
															i	i
												1	1	1	1	1
													!	-	1	1
													1			
													į	į	i	i
												1	1	1	1	1
													1	- !		-
														-		
													i	i	į	į
		<u></u>			<u></u>		<u></u>					L	i		1	j

Remarks

In accordance with BS EN ISO22476-3:2005

/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

Project EXCHANGE SQUARE GROUND INVESTIGATION **Project No**

PN194054

Client WSP

Hole	Depth	Level	Type	SWP	Seating	g Drive		Test	Drive		SPT 'N'	ι	Jnco	rrecte	d SPT	
Tiolo	m bgl	m OD	Турс	(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10	20	'N'	40	50
WS308	1.20	48.92	S	-	3	3	6	6	4	10	26			*	1	1
VS308	1.40	48.72	S	-	13	12/30	50/60				50/60	1	-			>

In accordance with BS EN ISO22476-3:2005

Blows/penetration (mm) after seating

Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

Project EXCHANGE SQUARE GROUND INVESTIGATION

Client WSP

Hole	Depth	Level	Туре	SWP	Seating	g Drive		Test	Drive		SPT 'N' Value	ι	Jncor	recte	d SPT	•
	m bgl	m OD		(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	value	10	20	30	40	50
VS309	1.20	53.41	S	-	1	2	2	2	2	2	8	*	 	!	 	1
WS309	1.80	52.81	S	-	11	12	17	20	13/20		50/170					>

In accordance with BS EN ISO22476-3:2005

Blows/penetration (mm) after seating

Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

L - Split Spoon with liner used

Project No

PN194054

Project EXCHANGE SQUARE GROUND INVESTIGATION

Project No

PN194054

Client WSP

Hole	Depth	Level	Type	SWP	Seatin	g Drive		Test	Drive		SPT 'N'	Į	Jncor		d SPT	-
	m bgl	m OD		(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10	20	'N' 30	40	50
VS310	1.00	49.81	S	-	3	5	9	11	15	15/60	50/285	1	1	-	1	>
												1	i			1
												 	 	-	1	1
												; ;	i	į	i	i 1 1
												 	 	-	1	1
												1				
												1	1	1	1	1
												 				1
												 	1	1	1	1
												 				-
												i 1 1	i !	i	i	i I I
												 	1	-	1	1
												 		į		į
												 	 	-	1	-
												1		į		
												 	1	1	1	1
												1		i		1
													1	1	1	1
												 				1
												1	1	1	1	1
												 				-
												i i	i !	i	i I	i I I
												 				1
												; ;	i	į	i	
							Remark In acco	ks rdance w	ith BS EN	I ISO2247	6-3:2005					

/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

Project EXCHANGE SQUARE GROUND INVESTIGATION

Project No

PN194054

Client WSP

Hole	Depth	Level	Type	SWP	Seating	g Drive		Test	Drive		SPT 'N'	'	Jncor	recte	d SPT	•
	m bgl	m OD	.,,,,,	(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10	20	'N' 30	40	50
WS311	1.20	56.45	s	-	1	1	3	5	1	1	10	*	1		1	1
WS311	2.00	55.65	S	-	4	5	5	5	6	5	21		*	-	!	-
WS311	3.00	54.65	S	-	2	2	2	2	2	4	10	*				-
WS311	4.00	53.65	S	-	1	2	3	1	2	3	9	*	1			-
WS311	4.50	53.15	S	-	6	9	10	18	18	4/10	50/235		1			>
												i	į	į	i	i
													i i	- 1	i	1
													i			
												1	1	1	I	1
													i		į	
												į	į	į	į	i
												i	İ	i	i	İ
												1	1	1	1	1
												1	1	1	1	1
												1	I I	1	I	1
												1	1	1	I	1
												1	1	1	1	1
												1	1	- 1		1
												1	1	1		1
												1	1	- 1		1
												1	- 1	1	1	
												1	1	1	1	1
												1	1	1	1	1
												1	1	1	1	1
												1	1	1	1	1
												1	1	1	1	1
												1	- 1	1	1	1
	1												İ	1		İ
	1											İ	i	i	1	İ
	1											į	i	į	i	i
	1												i	į	į	i
	1												- 1	-	i	
	1											!		- [- !	-
	1												- 1	- [- !	1
	1												1	- 1		1

Remarks

In accordance with BS EN ISO22476-3:2005

-/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

Project EXCHANGE SQUARE GROUND INVESTIGATION

Project No

PN194054

Client WSP

Hole	Depth	Level	Type	SWP	Seating	g Drive		Test	Drive		SPT 'N'	'	Jncor		d SP1	-
	m bgl	m OD	.,,,,,	(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10	20	'N' 30	40	50
NS312	1.20	52.28	s	-	4	4	5	5	5	6	21	!	*		1	1
WS312	2.00	51.48	S	-	4	3	3	3	1	2	9	*			-	-
WS312	3.00	50.48	S	-	13	12/35	50/30				50/30					
												1 1 1	 		 	
												1	 		 	1
													-			
													į			i
													į		į	i
												i	i		i	1
													1		 	
													1		 	1
												İ	i	į	i	į
												i	i		i	i
													1		 	1
													İ	į	İ	İ
												i	i		i	1
													1		1	1
												į	į	į	i	i
													1		 	
													İ	- !	İ	1
												i	i		i	İ
													1		 	1
												1	1		1	1
													į	į	į	1
																1
												i	i	i	i	i

Remarks

In accordance with BS EN ISO22476-3:2005

/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

Project EXCHANGE SQUARE GROUND INVESTIGATION

Project No

PN194054

Client WSP

Hole	Depth	Level	Type	SWP	Seating	g Drive		lest	Drive		SPT 'N'	,	Jncor		d SP1	-
11016	m bgl	m OD	1,766	(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10	20	'N' 30	40	50
VS313	1.20	50.60	s	-	2	5	13	20	17/45	(11111)	50/195			1		<u> </u>
												- i	<u> </u>	<u> </u>	<u> </u>	÷
												į	į	i	i	į
												į	į	i	i	i
												1	1	1	1	1
												į	i	į	į	i
												1	1	1	1	I
														-	-	i
												i	i	i	i	i
												!	1	1	1	1
																-
												į	i	į	į	į
												1	1	1	1	1
														-		
												į	į	ij	į	i
												1	1	1	1	1
																-
												į	į	į	į	i
												1	I	1	I I	1
												- !	1	- !	!	!
														-	i	
												į	i	į	į	i
												1	1	1	1	1
																-
												į	i	i	i	i
												1	1	1	1	1
														-		
												į	į	ij	į	i
												!	1	1	1	1
													i	-	i	
												į	i	i	i	i
												1	1	1	1	1
														-		
												į	i	ij	į	į
												1	1	1	1	1
	1	I	1	I		I .	Remar	ks	1	<u> </u>						
							In acco	rdance w	ith BS EN	I ISO2247	6-3:2005					
							l									

/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

Project EXCHANGE SQUARE GROUND INVESTIGATION

Project No

PN194054

Client WSP

Hole	Depth	Level	Туре	SWP	Seating	g Drive		Test	Drive		SPT 'N'		Unco		d SP1	-
	m bgl	m OD		(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10	20	'N' 30	40	50
NS314	1.20	61.51	s	-	1	2	1	2	1	2	6	*	1	1	1	
WS314	2.00	60.71	S	-	2	1	2	3	3	3	11	*	-	!	!	
WS314	3.00	59.71	S	0	5	8	10	14	15	11/40	50/265	1	1	I I	1	
													 	1	 	!
												i	i !	i	i I	i I I
													 	 	 	1
												1	1	1	1	1
												i	i	i	į	i
														 	 	1
												į	i	i	i	i
																-
													1	1	1	1
																i
													1	1	1	
																i
												1	!	!	!	1
																i
												1	1	1	1	1
																-
												i	i	i	i	i
													- !	!	!	1
												1	1	1	I I	1
														1		
														i	i	i
												İ	i I	l I	1	i I
												!	1	1	1	
													i	i	i	i
												1	1	1	1	1
														1		1
	1					L	Remar	1	1			<u>Li</u>	i_	i_	i	<u>i</u>

Remarks

In accordance with BS EN ISO22476-3:2005

-/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

Project EXCHANGE SQUARE GROUND INVESTIGATION

Project No

PN194054

Client WSP

Hole	Depth	Level	Type	SWP	Seating	g Drive		Test	Drive		SPT 'N'	-	Jncor		d SPT	
110.0	m bgl	m OD	.,,,,	(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10	20	'N' 30	40	50
WS314A	1.20	61.39	s	-	1	1	1	2	2	3	8	*		 	1	-
WS314A	2.00	60.59	S	-	2	2	2	3	3	4	12	*				-
WS314A	3.00	59.59	S	-	7	7	12	38/65			50/140	1				
												1 1 1				1
												 			1	1
												 	 		1	1
												i	i	į	į	į
												i	į		į	į
																-
												 			1	1
												į	į	į	į	i
															i	
												-				1
															1	-
												i	į	i	i	i
												1	1		1	1
												į	į	į	į	i
												i			i	
												-				1
														-	1	1
												i	i	i	i	i
															1	1
												i	į	į	1	1
													1		į	-
] 			1	1
] 				1
													-		į	i !
							Remari						-		 	

Remarks

In accordance with BS EN ISO22476-3:2005

-/- Blows/penetration (mm) after seating

SWP Penetration under own weight (mm)

-*/- Total blows/penetration (mm)

S - Standard Penetration Test (SPT) C - SPT with cone

L - Split Spoon with liner used

GEOTECHNICS

Project EXCHANGE SQUARE GROUND INVESTIGATION

Project No

PN194054

Client WSP

Hole	Depth	Level	Type	SWP	Seatin	g Drive		Test	Drive		SPT 'N'	ι	Jncor		d SPT	
	m bgl	m OD	,,,	(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10	20	'N'	40	50
WS315	1.20	52.92	s	-	2	1	3	3	3	3	12	*	1	1	1	1
WS315	2.00	52.12	S	-	4	5	5	5	4	6	20		*	!		-
WS315	3.00	51.12	S	-	3	4	8	8	20	14/25	50/250	1				_ A
													1	-	1	-
												; ;	i	į	i !	i
												1	 	1	 	
												 	 	1		1
													 	1		1
													İ			1
																į
																1
												 	 	1		1
												i	i	į	į	į
												i		i		i
												1	1	1		1
												i	i	į	i	i
												1	 	1		
												i i	i	i	į	i
												1	!	- !	- !	-
												į	i	i	i	i
												1	1	1	I	1
												1	1	1	1	1
														-		-
												i	i	i	i	i
												i	i	į	į	i
												1	1	1	1	1
												1	I I	1		1
												1	!			1
																1
												i	i	į	į	i
												i	i	i I	i	İ
		<u></u>			<u></u>		<u></u>								1	

Remarks

In accordance with BS EN ISO22476-3:2005

/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

Project EXCHANGE SQUARE GROUND INVESTIGATION

Project No

PN194054

Client WSP

Hole	Depth	Level	Type	SWP	Seating	g Drive		Test	Drive		SPT 'N'		Unco	recte	SPT	•
Tiole	m bgl	m OD	Турс	(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10	20	'N' 30	40	50
WS316	1.20	57.40	S	-	2	2	2	9	13	9	33	 	1	*		1
WS316	2.00	56.60	S	-	2	4	5	4	3	1	13		*			-
WS316	3.00	55.60	S	-	1	3	3	3	3	4	13		*			
WS316	4.00	54.60	S	-	2	1	1	2	2	3	8	*	-		1	
WS316	5.00	53.60	S	-	4	4	4	4	5	5	18	-	*			1
																1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Remarks

In accordance with BS EN ISO22476-3:2005

/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

L - Split Spoon with liner used

GEOTECHNICS

Project EXCHANGE SQUARE GROUND INVESTIGATION

Project No

PN194054

Client WSP

Hole	Depth	Level	Туре	SWP	Seatin	g Drive		Test	Drive		SPT 'N' Value		Jncor		d SPT	
	m bgl	m OD	,,,	(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	value	10	20	'N' 30	40	50
NS317	1.20	63.02	s	-	2	2	3	2	2	2	9	*	1	1	1	1
WS317	2.00	62.22	S	-	1	1	2	2	2	1	7	*				-
WS317	3.00	61.22	s	-	2	1	-	1	-	1	2	*				1
WS317	4.00	60.22	S	-	2	2	1	3	2	3	9	*	i	i		i
WS317	5.00	59.22	S	-	3	2	1	1	2	2	6	*	1	1		1
													1			1
													i	į	i	i
													1	1	1	1
												į	į	į	į	į
													1	1	1	-
													İ	İ	i i	i i
																1
															i	i
													į	į	į	i
													1	1	I I	1
													1	1	I I	I I
													1	1	1	1
													- }			-
														-	- }	
																- 1
													- 1			-
													- 1	-	i	i i
													1			-
												1	1	I I	I I	1
													1	1	1	1
													1	1	I I	1
													i	i	İ	İ
													ij	į	į	i
													- !	į	į	į
													1	- 1		1
													1	-	- [1
													1	1	I I	1
													I I	I I	I I	I I
													1	1	I I	1
				L		ı.	Remar		l	<u> </u>						

Remarks

In accordance with BS EN ISO22476-3:2005

-/- Blows/penetration (mm) after seating

-*/- Total blows/penetration (mm)

SWP Penetration under own weight (mm)

S - Standard Penetration Test (SPT)

C - SPT with cone

L - Split Spoon with liner used

GEOTECHNICS

APPENDIX 5

Trial Pit Records

Sampl	e Types	Groundwater		Strata, Continued	
В	Bulk disturbed sample	Water Strike	∇	Mudstone	
BLK	Block sample	Depth Water Rose To	lacksquare		
C D	Core sample Small disturbed sample	Instrumentation		Siltstone	× × × × × × × × × × × × × × × × × ×
	(tub/jar)		DEG.		× × × × × × × × × × × × × × × × ×
E	Environmental test sample			Metamorphic Rock	
ES	Environmental soil sample	Seal	136	Fine Grained	·······
EW	Environmental water sample		33		***********
G	Gas sample		 1 4	Medium Grained	~~~
L	Liner sample	Ed.			$\widetilde{\sim}$
LB	Large bulk disturbed sample	Filter	<u>[</u> 1]-	Coarse Grained	~~:
Р	Piston sample (PF - failed P sample)		-	Igneous Rock	V V V V V
TW	Thin walled push in sample		55	Fine Grained	******
U	Open Tube - 102mm	Seal	88		++++
	diàmeter with blows to take sample. (UF - failed U sample)			Medium Grained	++++
UT	Thin wall open drive tube sampler - 102mm diameter	Strata	Legend	Coarse Grained	*****
	with blows to take sample. (UTF - failed UT sample)	Made Ground Granular		Backfill Materials	
V	Vial sample				
W	Water sample	Made Ground		Arisings	
#	Sample Not Recovered	Cohesive			
Insitu ˈ	Testing / Properties	Topsoil		Bentonite Seal	
CBRP	CBR using TRL probe		00		Ņ
CHP	Constant Head Permeability Test	Cobbles and Boulders		Concrete	
	Electrical conductivity	Gravel	, 0 0		• •
TC	Thermal Conductivity		(, , (,)	Fine Gravel Filter	
TR	Thermal Resistivity		****	Tille Graver Filter	
HV	Strength from Hand Vane	Sand	33.63		
ICBR	CBR Test			General Fill	
IDEN	Density Test	Silt	^ × ^ }		
IRES	Resistivity Test	Sile	* * * }	G 151	
MEX	CBR using Mexecone Probe Test		× × ×	Gravel Filter	:-
PKR	Packer Permeability Test	Clay			
PLT	Plate Load Test			Grout	
PP	Strength from Pocket Penetrometer	Peat	SV/a		
Temp	Temperature		27/2	Sand Filter	50
VHP	Variable Head Permeability Test				<u> </u>
VN	Strength from Insitu Vane	Note: Composite soil typ	es shown	Tarmacadam	И
w%	Water content	by combined symbols	1.1.11		Ш
(All otl	her strengths from led triaxial testing)	Chalk	77 77	Rotary Core	
undrain S	Standard Penetration Test		1 1	RQD Rock Quality D	esignation
-	(SPT)	Limestone		(% of intact cor FRACTURE INDEX	~
С	SPT with cone	Limescone		FRACTURE INDEX Fractures/metre	e
N	SPT Result			FRACTURE Maximum	
-/-	Blows/penetration (mm)	Sandstone		SPACING (m) Minimum NI Non-intact	core
*/	after seating drive			NR No core re	covery
-*/- (mm)	Total blows/penetration			AZCL Assumed zo	one of core
· ()	Extrapolated value	Coal		(where core recovery is unknot assumed to be at the base of the	

TP01 Trial Pit Project exchange square ground investigation WSP Project No PN194054

National Grid Coordinates 389288.7 Client WSP 390034.3

Ground Level 62.66 m OD Scale 1:50 Samples and Tests Strata Stratum Depth Results Type Description Depth Leaend m OD No 62.66 G.L. 0.00- 0.30 MADE GROUND: Dark brown mottled black slightly silty fine to medium sand with some roots and rootlets. Some fragments of plastic. 0.20 D ES 0.30 62.36 0.30- 0.90 B D mc = 9.8%MADE GROUND: Brown gravelly silty fine to coarse sand with some rootlets. Gravel is subrounded to rounded fine to coarse of siltstone and sandstone. 0.50 ES 0.90- 1.10 Below 0.50m, occasional pockets of ash and coal 1.10 61.56 1.00 1.00 ES 1.60 mc=8.3% 1.10в At 0.90m, large pocket of ash and coal debris (up to 1.00m thick). Gravel includes brick fragments. Low cobble content of brick. 1.50 ES 1.50 1.60- 2.10 MADE GROUND: Orangish brown gravelly silty fine to 2.10- 2.30 coarse sand. Gravel is subangular to rounded fine to medium of siltstone and sandstone. В 2.10 60.56 2.30- 2.60 2.50 в Below 2.00m, occasional pockets of stiff brown sandy 2.50 ES 2.60 60.06 POSSIBLE MADE GROUND: Dark grey mottled orange clayey fine to medium sand with some rootlets. End of Excavation Excavation Groundwater Depth of Pit Depth Width (B) 3T Tracked Excavator 19/11/2019 Observe Length (C) 2.80 Shoring None. None encountered.

Date Backfilled 19/11/2019 Stability Stable during excavation.

Remarks ES sample = $1 \times 60 \text{ml}$ amber glass jar, $2 \times 258 \text{ml}$ amber glass jars and $1 \times 11 \text{L}$ plastic tub.

Logged by Figure

1 of 1 06/02/2020 وعفاعطنمنع

Symbols and abbreviations are explained on the accompanying kev sheet. All dimensions are in metres.

Logged in accordance with BS5930:2015

Trial Pit

TP02 Project exchange square ground investigation Trial Pit WSP PN194054 Project No

National Grid 389273.5 E Client

Ground Level 62 E0 m OD

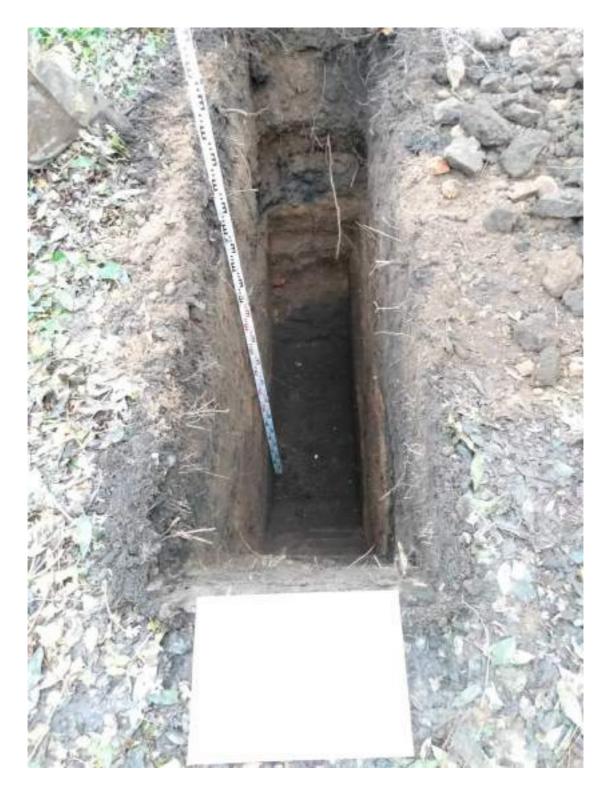
Client wsp				Co	ordinates 390	0031.9 N		G	round Leve	l 62.50 m	OD	
Samples and	d Tests			Strata	Strata					Scale 1	:50	
Depth	Туре	Stratum No	Results	Description					Depth	Legend	Level m OD	
- 0.00- 0.30 - 0.20 - 0.20 - 0.30- 0.70 - 0.50 - 0.50	D ES		mc=12%	to medium to coarse	IND: Dark brown a sand. Gravel e of siltstone, IND: Orangish k and with occasi	is angular to plastic and prown gravell	o subro metal. y silty	unded fine fine to	G.L. 0.30		62.50	
0.70- 1.00 - 0.90 - 0.90	B D ES			clay. Gra coarse of Below 0.3	vel is subangu various litho 30m, frequent p	llar to subro plogies.	unded f	ine to	- - - -		> > > > >	
[1.30- 1.70 - 1.50 - 1.50 - 1.70- 2.30	D ES		mc=20%		IND: Firm orang		ttled g	rey and	1.30		61.20 60.80	
2.00 2.00	D ES				UND: Grey mottl				<u></u>			
2.30- 2.70 - 2.50 - 2.50	B D ES			Soft to f	firm thinly lam n occasional le	ninated grey enses of sand	slightl •	y sandy	2.30		60.20 59.80	
_					End o	of Excavation					39.00	
_									E			
_									E			
- -									E			
_												
									E			
<u> </u>									E			
<u> </u>												
[-												
_									E			
<u> </u>									<u> </u>			
_									E			
- -									-			
_ -												
									E I			
-									<u> </u>			
_												
-									F			
<u></u>												
<u> </u>									Ė I			
<u> </u>												
<u>-</u>									E			
_									<u> </u>			
									E			
<u> </u>									Ė I			
_												
<u> </u>									F			
Excavation	1			1		Ground	water				1	
				Width (B)	/idth (B) 0.65 De			Depth of Pit Details				
Shoring None.				Length (C)	ength (C) 2.80 Observ			None encountered.				

Date Backfilled 19/11/2019 Stability Stable during excavation.

ES sample = 1×60 ml amber glass jar, 2×258 ml amber glass jars and 1×1 L plastic tub. Remarks AGS

Logged by PC Figure

1 of 1 06/02/2020 esimbeloeg


Symbols and abbreviations are explained on the accompanying key sheet. All dimensions are in metres.

Logged in accordance with BS5930:2015

APPENDIX 6

Trial Pit Photographs

Project Number: PN194054

TP01 Pit (I)

Project Number: PN194054

TP01 Pit (2)

Project Number: PN194054

TP01 Spoil

Project Number: PN 194054

TP02 Pit (1)

Project Number: PN 194054

TP02 Pit (2)

Project Number: PN194054

TP02 Spoil

7

APPENDIX 7

Monitoring Results

FIELDWORK - Water Level Monitoring

Project EXCHANGE SQUARE GROUND INVESTIGATION

Project No PN194054

Barry Bar	Instrument (dia. mm) S (50mm	Client WSP	•									Sheet	No 1		
Depth to Base (m) 10.00 10.00 15.00 8.50 3.00 1.80 Filter Zone (m) 2.00-10.00 4.00-10.00 6.00-15.00 2.00-8.71 1.00-3.15 1.00-2.12 Level 50.64 m OD 56.70 m OD 58.93 m OD 66.61 m OD 53.58 m OD 54.61 m OD Date Time Depth (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Depth (m) Level (m) Depth (m) D	Depth to Base (m) 10.00 10.00 15.00 8.50 3.00 1.80 Filter Zone (m) 2.00-10.00 4.00-10.00 6.00-15.00 2.00-8.71 1.00-3.15 1.00-2.12 Level 50.64 m OD 56.70 m OD 58.93 m OD 66.61 m OD 53.58 m OD 54.61 m O Date Time Depth (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Depth (m) Level (m) Depth (m) De	Borehole		BH303		BH304		BH305C		BH306		WS307		WS309	
Filter Zone (m) 2.00-10.00 4.00-10.00 6.00-15.00 2.00-8.71 1.00-3.15 1.00-2.12 Level 50.64 m OD 56.70 m OD 58.93 m OD 66.61 m OD 53.58 m OD 54.61 m OD Date Time Depth (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Depth (m) Level (m) Depth (m) Dep	Filter Zone (m) 2.00-10.00	Instrument (di	a. mm)	S (50mm	n)	S (50mm	n)	S (50mm	າ)	S (50mm	า)	S (50mm	n)	S (50mm	1)
Date Time Depth (m) Level Depth (m) Level (m) Level (m) Depth (m) Level (m) Depth	Date Time Depth (m) Level Depth (m) Level (m) Level (m) Depth	Depth to Base	e (m)	10.00		10.00		15.00		8.50		3.00		1.80	
Date Time Depth (m) Level Depth (m) Level Depth (m) Level (m)	Date Time Depth (m) Level Depth (m) Level Depth (m) Level Depth (m) Level Depth (m) Level Depth (m) Level Depth (m) Level Depth (m) Level Depth (m) Level Depth (m) Level Depth (m)	Filter Zone	(m)	2.00-10.0	00	4.00-10.	00	6.00-15.0	00	2.00-8.7	1	1.00-3.1	5	1.00-2.12	2
B Jan 2020 7.52 43.12 9.89 46.81 13.56 45.37 Car over DRY DRY 17.52 A3.17 9.45 47.25 13.53 45.40 DRY DRY DRY 21 Jan 2020 7.54 43.10 9.88 46.82 13.63 45.30 3.88 62.73 DRY DRY 28 Jan 2020 7.43 43.21 DRY 13.50 45.43 Car over DRY DRY DRY 29 Jan 2020 7.43 43.21 DRY 29 Jan 2020 20 7.45 43.21 DRY 29 Jan 2020 7.46 43.21 DRY 29 Jan 2020 7.47 43.21 DRY 29 Jan 2020 7.48 43.21 DRY 29 Jan 2020 7.49 43.21 DRY 29 Jan 2020 7.49 43.21 DRY 29 Jan 2020 7.40 7.40 7.40 7.40 7.40 7.40 7.40 7.4	Bale (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) Level (m) (m) Level (m) (m) Level (m) (m) Level (m) (m) Level (m) (m) Level (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	Level		50.64 m	OD	56.70 m	OD	58.93 m	OD	66.61 m	OD	53.58 m	OD	54.61 m	OD
9 Jan 2020 17 Jan 2020 7.47 43.17 9.45 47.25 13.53 45.40 DRY DRY 21 Jan 2020 7.54 43.10 9.88 46.82 13.63 45.30 3.88 62.73 DRY DRY DRY 28 Jan 2020 7.43 43.21 DRY 13.50 45.43 Car over DRY DRY DRY 29 Jan 2020	9 Jan 2020 17 Jan 2020 7.47 43.17 9.45 47.25 13.53 45.40 DRY DRY 21 Jan 2020 7.54 43.10 9.88 46.82 13.63 45.30 3.88 62.73 DRY DRY DRY 28 Jan 2020 7.43 43.21 DRY DRY 13.50 45.43 Car over DRY DRY DRY	Date	Time		Level		Level		Level		Level		Level		Leve
17 Jan 2020 7.47 43.17 9.45 47.25 13.53 45.40 DRY DRY 21 Jan 2020 7.54 43.10 9.88 46.82 13.63 45.30 3.88 62.73 DRY DRY 28 Jan 2020 7.43 43.21 DRY 13.50 45.43 Car over DRY DRY 29 Jan 2020 20 20 20 20 20 20 20 20 20 20 20 2	17 Jan 2020 7.47 43.17 9.45 47.25 13.53 45.40 DRY DRY 21 Jan 2020 7.54 43.10 9.88 46.82 13.63 45.30 3.88 62.73 DRY DRY 28 Jan 2020 7.43 43.21 DRY 13.50 45.43 Car over DRY DRY 29 Jan 2020 2.93 63.68	8 Jan 2020		7.52	43.12	9.89	46.81	13.56	45.37	Car over		DRY		DRY	
21 Jan 2020 7.54 43.10 9.88 46.82 13.63 45.30 3.88 62.73 DRY DRY 28 Jan 2020 7.43 43.21 DRY 13.50 45.43 Car over 2.93 63.68	21 Jan 2020 7.54 43.10 9.88 46.82 13.63 45.30 3.88 62.73 DRY DRY 28 Jan 2020 7.43 43.21 DRY 13.50 45.43 Car over 2.93 63.68	9 Jan 2020								3.88	62.73				
28 Jan 2020 7.43 43.21 DRY 13.50 45.43 Car over DRY DRY 29 Jan 2020	28 Jan 2020 7.43 43.21 DRY 13.50 45.43 Car over DRY DRY 29 Jan 2020	17 Jan 2020		7.47	43.17	9.45	47.25	13.53	45.40			DRY		DRY	
29 Jan 2020 2.93 63.68	29 Jan 2020 2.93 63.68	21 Jan 2020		7.54	43.10	9.88	46.82	13.63	45.30	3.88	62.73	DRY		DRY	
		28 Jan 2020		7.43	43.21	DRY		13.50	45.43	Car over		DRY		DRY	
12 Feb 2020 7.48 43.16 8.89 48.01 13.56 45.37 3.87 62.74 DRY	12 Feb 2020 7.48 43.16 8.69 48.01 13.56 45.37 3.87 62.74 DRY	29 Jan 2020								2.93	63.68				
		12 Feb 2020		7.48	43.16	8.69	48.01	13.56	45.37	3.87	62.74	DRY		DRY	

Remarks

Symbols and abbreviations are explained on the accompanying key sheet.

All dimensions are in metres.

FIELDWORK - Water Level Monitoring

Project EXCHANGE SQUARE GROUND INVESTIGATION

Project No PN194054

Client WSP										Sheet	No 2		
Borehole		WS311		WS312		WS314		WS315		WS316		WS317	
Instrument (dia	a. mm)	S (50mm	า)	S (50mm	1)	S (50mm	1)	S (50mm	1)	S (50mm	1)	S (50mm	1)
Depth to Base	(m)	4.50		3.00		3.00		3.00		4.00		2.00	
Filter Zone	(m)	1.00-4.89	9	1.00-3.14	4	1.00-3.42	2	1.00-3.40)	3.00-5.0	0	1.00-2.00)
Level		57.65 m	OD	53.48 m	OD	62.71 m	OD	54.12 m	OD	58.60 m	OD	64.22 m	OD
Date	Time	Depth (m)	Level	Depth (m)	Level	Depth (m)	Level	Depth (m)	Level	Depth (m)	Level	Depth (m)	Level
8 Jan 2020		DRY		2.93	50.55	1.94	60.77	2.12	52.00	3.21	55.39	DRY	
17 Jan 2020		DRY		2.89	50.59	1.82	60.89	2.10	52.02	2.13	56.47	DRY	
21 Jan 2020		DRY		2.90	50.58	1.82	60.89	1.96	52.16	2.88	55.72	DRY	
28 Jan 2020		DRY		2.89	50.59	1.87	60.84	2.40	51.72	2.66	55.94	DRY	
12 Feb 2020		DRY		2.88	50.60	1.80	60.91	2.06	52.06	2.87	55.73	DRY	

Remarks

Symbols and abbreviations are explained on the accompanying key sheet. All dimensions are in metres.

Project EXCHA Client WSP	ANGE SQUARE G	ROUND INVE	STIGATION				Date	ect No et No.	PN194054 08/01/2020 1 (1 of 3)
Equipment Us GI Infra R	sed Red Gas Ana	lyser	MK	1 🔲	MK	2 🔲	GA200	0 🔲	
• • • • • • • • • • • • • • • • • • • •	GA5000;								
Weather / Sit	e Conditions	3	Still Light x			. 🗆	NAI	_ 🖂	Ctura II
Wind			Sti	" <u> </u>	Light x		Moderate		Strong
Cloud Co	ver		Non	e	Sligh	nt x	Cloud	y	Overcast
Precipitat	ion		Dr	ух	Slight		Moderate		Heavy
Borehole	Depth to Base		Current Hole Depth	CH4	Methane (Steady) CH4	Carbon Dioxide (Peak)	Carbon Dioxide (Steady)	Oxygen (Peak)	Remarks
	(m)	(m bgl)	(m bgl)	(% VOL)	(% VOL)	(% VOL)	(% VOL)	(% VOL)	
вн303	10.00	7.52	10.27	0.2	0.2	0.2	0.2	20.1	
вн304	10.00	9.89	9.98	0.2	0.2	0.1	0.1	20.2	
BH305C	15.00	13.56	14.80	0.2	0.2	3.7	3.7	20.3	
вн306 ws307	8.50 3.00	Car over	2.80	0.0	0.0	1.8	1.8	19.3	Car over borehole
WS309	1.80	DRY	1.95	0.0	0.0	1.7	1.7	20.2	
WS311	4.50	DRY	1.82	0.0	0.0	0.2	0.1	21.2	
WS312	3.00	2.93	3.00	0.0	0.0	0.6	0.6	21.6	
WS314	3.00	1.94	3.10	0.0	0.0	4.8	4.8	18.7	
WS315	3.00	2.12	2.81	0.0	0.0	0.2	0.1	21.7	
WS316	4.00	3.21	3.97	0.2	0.1	0.8	0.7	20.9	
WS317	2.00	DRY	1.94	0.0	0.0	3.9	3.9	21.2	Top open on
									arrival.
Remarks									$\overline{}$

	ange square g	ROUND INVE	STIGATION				Date		PN194054 08/01/2020
							Snee	et No.	1 (2 of 3)
Equipment Us GI Infra R	sed Red Gas Ana	lyser	MK	1 🔲	MK	2 🔲	GA200	0 🔲	
• • • • • • • • • • • • • • • • • • • •	A5000;								
Weather / Sit	e Conditions	5							
Wind			St	ill []	Ligh	nt x	Moderat	e	Strong
Cloud Co	ver		Non	ie 🗌	Sligh	nt x	Cloud	у	Overcast
Precipitat	ion		Dr	ух	Sligh	nt 🗌	Moderat	е	Heavy
Borehole	Depth to Base (m)	Oxygen (Steady) (% VOL)	Hydrogen Sulphide (Peak) (ppm)	Hydrogen Sulphide (Steady) (ppm)	Carbon Monoxide (Peak) (ppm)	Carbon Monoxide (Steady) (ppm)	Flow Rate (Peak) (I/hr)	Flow Rate (Steady) (I/hr)	Remarks
вн303	10.00	20.1	0	0	0	0	0.0	0.0	
BH305C	15.00	13.6	0	0	4	4	0.0	0.0	
вн306	8.50	-	_	-	-	-	-	-	Car over borehole
WS307	3.00	18.8	0	0	0	0	0.1	0.1	
ws309	1.80	19.5	0	0	0	0	0.0	0.0	
WS311	4.50	21.2	0	0	0	0	0.0	0.0	
WS312	3.00	21.4	0	0	0	0	0.0	0.0	
WS314	3.00	17.2	0	0	0	0	0.0	0.0	
WS315	3.00	21.7	0	0	0	0	0.1	0.1	
WS316	4.00	20.9	0	0	0	0	0.0	0.0	
WS317	2.00	16.7	0	0	0	0	0.0	0.0	Top open on
									arrival.
Remarks									\

,	ANGE SQUARE GI	ROUND INVESTIGAT	ON		Project No Date	PN194054 08/01/2020
Client wsp					Sheet No.	1 (3 of 3)
Equipment Us	sed					
GI Infra R	Red Gas Ana	lyser	MK1	MK2	GA2000	
Other of	GA5000;					
Weather / Sit	e Conditions	i				
Wind			Still	Light x	Moderate	Strong
Cloud Co	ver	ı	None	Slight x	Cloudy	Overcast
Precipitat	tion		Dry x	Slight	Moderate	Heavy
	Depth to Base	Barometric Pressure				
Borehole	(m)	(mBars)			Remarks	
вн303	10.00	1015 1015				
BH305C	15.00	1015				
вн306	8.50	1015	Car over bo	orehole		
WS307	3.00	1015	042 0.01 20			
WS309	1.80	1015				
WS311	4.50	1015				
WS312	3.00	1015				
WS314	3.00	1015				
WS315	3.00	1015				
WS316	4.00	1014				
WS317	2.00	1014	Top open or	n arrival.		
Remarks					[

Project ехсн Client wsp	ange square G	ROUND INVE	STIGATION				Date	ect No et No.	PN194054 09/01/2020 1 (1 of 3)
	seu Red Gas Ana	lyser	MK	1 📗	MK	2 🔲	GA200	0 🔲	
Weather / Si		•							
Wind	te Conditions	•	Sti	ill 🗌	Ligh	nt 🔲	Moderat	ех	Strong
Cloud Co	over		Non	е	Sligh	nt 🗌	Cloud	ly x	Overcast
Precipita	tion		Dr	ух	Sligh	nt 🔲	Moderat	е	Heavy
Borehole	Depth to Base (m)	Depth to Water (m bgl)	Current Hole Depth (m bgl)	Methane (Peak) CH4 (% VOL)	Methane (Steady) CH4 (% VOL)	Carbon Dioxide (Peak) (% VOL)	Carbon Dioxide (Steady) (% VOL)	Oxygen (Peak) (% VOL)	Remarks
вн306	8.50	3.88	8.50	0.2	0.2	4.9	4.9	20.6	
Remarks									

Project Exchi	INGE SQUARE G	ROUND INVE	STIGATION				Proje Date	ect No	PN194054 09/01/2020
Client wsp								et No.	1 (2 of 3)
Equipment Us GI Infra R	sed Red Gas Ana	lyser	MK	1 🔲	MK	2 🔲	GA200	0 🔲	
Other	A5000;								
Weather / Sit	e Conditions	3							
Wind			St	ill	Ligh	nt	Moderat	ех	Strong
Cloud Co	ver		Non	е	Sligh		Cloud	ух	Overcast
Precipitat	ion		Dr	ух	Sligh	nt	Moderat	е 🗌	Heavy
Borehole	Depth to Base (m)	Oxygen (Steady) (% VOL)	Hydrogen Sulphide (Peak) (ppm)	Hydrogen Sulphide (Steady) (ppm)	Carbon Monoxide (Peak) (ppm)	Carbon Monoxide (Steady) (ppm)	Flow Rate (Peak) (I/hr)	Flow Rate (Steady) (I/hr)	Remarks
вн306	8.50	12.9	0	0	0	0	0.0	0.0	
Remarks									
								ണ	<u></u> නම්නම්කාම්සුදු

				_				
-7	NGE SQUARE G	ROUND INVESTI	GATION			Project No Date	09/01	./2020
Client wsp						Sheet No.	1 (3	of 3)
Equipment Us						 		
	ed Gas Ana	lyser	MK1	Ш	MK2	GA2000		
	A5000;							
Weather / Site	e Conditions	•	CUII		12.11		C.	
Wind			Still	=	Light	Moderate x	•	ong
Cloud Co	ver		None	Ш	Slight	Cloudy x	Overd	ast
Precipitat	ion		Dry	x	Slight	Moderate	He	avy 🗌
Borehole	Depth to Base	Barometric Pressure				Remarks		
	(m)	(mBars)						
вн306	8.50		997					
Remarks								0 0
								ख्यांग्रिस

Project Excha Client wsp	NGE SQUARE G	ROUND INVE	STIGATION				Date	ect No et No.	PN194054 17/01/2020 1 (1 of 3)
	sed ed Gas Ana	lyser	MK	1 🔲	MK	2 🔲	GA200	0 🔲	
Weather / Site		3	Sti		Liah	Light x		<u> </u>	Strong
							Moderat		- —
Cloud Co			Non	_		nt x	Cloud		Overcast
Precipitat	ion		Dr	ух	Sligh	nt	Moderat	e	Heavy
Borehole	Depth to Base		Current Hole Depth	CH4	Methane (Steady) CH4	Carbon Dioxide (Peak)	Carbon Dioxide (Steady)	Oxygen (Peak)	Remarks
	(m)	(m bgl)	(m bgl)	(% VOL)	(% VOL)	(% VOL)	(% VOL)	(% VOL)	
вн303	10.00	7.47 9.45	10.27 9.90	0.2	0.2	0.1	0.1	20.4	
BH305C	15.00	13.53	14.83	0.3	0.2	3.6	0.1	20.7	
вн306	8.50			-	-	-	-	-	Car over the
									borehole location
ws307	3.00	DRY	2.74	0.20	0.20	2.7	0.1	20.7	
WS309	1.80	DRY	1.88	0.2	0.2	2.7	0.1	20.5	
WS311	4.50	DRY	1.75	0.2	0.2	2.0	0.2	20.6	
WS312	3.00	2.89	2.95	0.2	0.2	0.90	0.10	20.60	
WS314	3.00	1.82	3.04	0.2	0.2	5.1	0.1	20.7	
WS315	3.00	2.10	2.77	0.2	0.2	0.1	0.1	20.9	
WS316	4.00	2.13	3.77	0.3	0.2	2.9	0.1	20.8	
W231/	2.00	DRI	1.09	0.2	0.2	3.6	0.1	20.7	
Remarks	2.00	DRY	1.89	0.2	0.2	3.6	0.1	20.7	

Project EXCHA	NGE SQUARE G	ROUND INVE	STIGATION					ect No	PN194054
Client wsp							Date Shee	et No.	17/01/2020 1 (2 of 3)
Equipment Us									
	Red Gas Ana	lyser	MK	1 📗	MK	2	GA200	0	
<u> </u>	A5000;								
Weather / Sit	e Conditions	5	_	—					
Wind			Sti	ill <u> </u>	Ligh	nt x	Moderat	e	Strong
Cloud Co	ver		Non	e	Sligh	nt x	Cloud	ly	Overcast
Precipitat	ion		Dr	ух	Sligh	nt 🗌	Moderat	е	Heavy
Borehole	Depth to Base	Oxygen (Steady)	Hydrogen Sulphide	Hydrogen Sulphide	Carbon Monoxide	Carbon Monoxide	Flow Rate (Peak)	Flow Rate (Steady)	Remarks
boreriole	(m)	(% VOL)	(Peak) (ppm)	(Steady) (ppm)	(Peak) (ppm)	(Steady) (ppm)	(I/hr)	(l/hr)	кетыкѕ
вн303	10.00	20.3	0	0	0	0	0.0	0.0	
вн304	10.00	20.5	0	0	0	0	0.0	0.0	
вн305С	15.00	14.3	0	0	0	0	-1.0	-1.0	
вн306	8.50	_	-	-	-	_	-	-	Car over the
									borehole location
WS307	3.00	18.8	0	0	0	0	0.1	0.1	
WS309	1.80	18.5	0	0	0	0	0.0	0.0	
WS311	4.50	18.2	0	0	0	0	0	0.0	
WS312	3.00	20.10	0	0	0	0	0.0	0.0	
WS314	3.00	16.0	0	0	0	0	0.0	0.0	
WS315	3.00	20.8	0	0	0	0	0.0	0.0	
WS316	4.00	19.6	0	0	0	0	0.0	0.0	
WS317	2.00	16.9	0	0	0	0	0.2	0.2	
Remarks									
								9	<u>ख</u> ंखीलांड्ड

,	ANGE SQUARE G	ROUND INVESTIGAT	ON		Project No Date	PN194054 17/01/2020
Client wsp					Sheet No.	1 (3 of 3)
Equipment Us	sed					
GI Infra R	Red Gas Ana	lyser	MK1	MK2	GA2000	
Other of	A5000;					
Weather / Sit	e Conditions	3				
Wind			Still	Light x	Moderate	Strong
Cloud Co	ver	1	None	Slight x	Cloudy	Overcast
Precipitat	ion		Dry x	Slight	Moderate	Heavy
Borehole	Depth to Base	Barometric Pressure			Remarks	
	(m)	(mBars)				
вн303	10.00	1001				
вн304	10.00	1002				
вн305С	15.00	1001				
вн306	8.50	1003	Car over t	he borehole location	1	
WS307	3.00	1003				
WS309	1.80	1003				
WS311	4.50	1003				
WS312	3.00	1004				
WS314	3.00	1002				
WS315	3.00	1002				
WS316	4.00	1003				
WS317	2.00	1002				
Remarks						

Project EXCHA Client WSP	ANGE SQUARE G	ROUND INVE	STIGATION				Date	ect No et No.	PN194054 21/01/2020 1 (1 of 3)	
	Red Gas Ana	lyser	MK	1 🔲	MK	2 🔲	GA200	0 🔲		
Other G	A5000;									
Wind	e Conditions	•	Sti	шП	Liah	Light x		е	Strong	
Cloud Co	vor		Non	_		Slight			Overcast	
				_			Cloud Moderat		_	
Precipitat	Precipitation			ух	Sligh	Slight		е	Heavy	
Borehole	Depth to Base		Current Hole Depth	CH4	Methane (Steady) CH4	Carbon Dioxide (Peak)	Carbon Dioxide (Steady)	Oxygen (Peak)	Remarks	
	(m)	(m bgl)	(m bgl)	(% VOL)	(% VOL)	(% VOL)	(% VOL)	(% VOL)		
вн303	10.00	7.54	10.28	0.2	0.1	0.3	0.3	20.1		
вн304 вн305С	10.00 15.00	9.88 13.63	9.92 14.83	0.1	0.1	0.1	0.1 3.4	20.4		
вн305С	8.50	3.88	8.58	0.2	0.2	3.4 11.2	11.2	19.9		
WS307	3.00	DRY	2.73	0.1	0.1	2.7	2.7	19.8		
ws309	1.80	DRY	1.88	0.1	0.1	2.6	2.6	19.6		
WS311	4.50	DRY	1.75	0.2	0.2	0.3	0.3	19.6		
WS312	3.00	2.90	2.95	0.1	0.1	0.9	0.9	20.5		
WS314	3.00	1.82	3.03	0.1	0.1	4.8	4.8	20.4		
WS315	3.00	1.96	2.77	0.1	0.1	0.1	0.1	20.6		
WS316	4.00	2.88	3.78	0.2	0.2	2.0	2.0	20.5		
WS317	2.00	DRY	1.88	0.1	0.1	5.0	5.0	20.4		
Remarks									$\overline{}$	•

Project exch	ANGE SQUARE G	ROUND INVE	STIGATION		Proje Date	ect No	PN194054 21/01/2020		
Client wsp								et No.	1 (2 of 3)
Equipment U	sed								
GI Infra F	Red Gas Ana	lyser	MK	1 🔲	MK	2	GA200	0 🗌	
Other	GA5000;								
Weather / Sit	te Conditions	S							_
Wind			St	ill	Ligh	nt x	Moderat	e	Strong
Cloud Co	over		Non	е	Sligh	nt 🗌	Cloud	ух	Overcast
Precipita ⁻	tion		Dr	ух	Sligh	nt 🔲	Moderat	е 🗌	Heavy
Borehole	Depth to Base	Oxygen (Steady)	Hydrogen Sulphide (Peak)	Hydrogen Sulphide (Steady)	Carbon Monoxide (Peak)	Carbon Monoxide (Steady)	Flow Rate (Peak)	Flow Rate (Steady)	Remarks
	(m)	(% VOL)	(ppm)	(ppm)	(ppm)	(ppm)	(I/hr)	(l/hr)	
вн303	10.00	20.1	0	0	0	0	0.3	0.3	
вн304	10.00	20.3	0	0	0	0	0.1	0.1	
вн305С	15.00	14.5	0	0	0	3	0.1	0.1	
вн306	8.50	2.1	0	0	0	0	0.1	0.1	
WS307	3.00	18.2	0	0	0	0	0.1	0.1	
WS309	1.80	18.2	0	0	0	0	0.0	0.0	
WS311	4.50	19.6	0	0	0	0	0.0	0.0	
WS312	3.00	20.1	0	0	0	0	0.0	0.0	
WS314	3.00	15.4 20.6	0	0	0	0	0.0	0.0	
WS315 WS316	3.00 4.00	19.9	0	0	0	0	0.0	0.0	
WS317	2.00	13.9	0	0	0	0	0.0	0.0	
Remarks									
								9	<u> </u>

				, ,				
.,	INGE SQUARE GI	ROUND INVESTIGATI	CON		Project Date		PN194054 21/01/2020	
Client wsp					Sheet N	10.	1 (3 of 3)	
	ed Gas Ana	lyser	MK1	MK2	GA2000 [
	A5000;							
Weather / Site	e Conditions	•	Still	Light x	Moderate	_	Strong	
Cloud Co	vor	r	None	Slight _	Cloudy	<u> </u>	Overcast	
		'			_	<u> </u>		
Precipitat	ion		Dry x	Slight	Moderate		Heavy	
Borehole	Depth to Base	Barometric Pressure			Remarks			
	(m)	(mBars)						
вн303	10.00	1033						
вн304	10.00	1033						
вн305С	15.00	1033						
вн306	8.50	1033						
WS307	3.00	1034						
WS309	1.80	1034						
WS311	4.50	1034						
WS312	3.00	1033						
WS314	3.00	1032						
WS315	3.00	1032						
WS316	4.00	1031						
WS317	2.00	1031						
Remarks							$\frac{1}{2}$	
						@	<u> </u>	33

Project ExcHZ Client WSP	ANGE SQUARE G	ROUND INVE	STIGATION				Date	ect No et No.	PN194054 28/01/2020 1 (1 of 3)	
Equipment Us	sed									
	Red Gas Ana	lyser	MK	1 🔲	MK	2 🗍	GA200	0 🗍		
Other	GA5000;									
Weather / Sit	e Conditions	;								
Wind			Sti	ill 🗌	Ligh	nt x	Moderat	е 🗌	Strong	
Cloud Co	ver		Non	е	Sligh	nt x	Cloud	у 🔲	Overcast	
Precipitat	tion		Dr	у 🗌	Sligh	nt x	Moderat	е 🗌	Heavy	
Borehole	Depth to Base	Depth to Water	Current Hole Depth	Methane (Peak) CH4	Methane (Steady) CH4	Carbon Dioxide (Peak)	Carbon Dioxide (Steady)	Oxygen (Peak)	Remarks	
	(m)	(m bgl)	(m bgl)	(% VOL)	(% VOL)	(% VOL)	(% VOL)	(% VOL)		
вн303	10.00	7.43	10.27	0.2	0.2	0.2	0.2	19.9		
вн304	10.00	DRY	9.10	0.2	0.2	3.2	3.2	19.9		
вн305С	15.00	13.50	14.83	0.2	0.2	2.7	2.7	19.9		
вн306	8.50	Car over		-	-	-	-	-	Car over	
WS307	3.00	DRY	2.74	0.2	0.2	2.8	2.8	20.1		
ws309	1.80	DRY	1.89	0.2	0.2	2.7	2.7	20.1		
WS311	4.50	DRY	1.75	0.2	0.2	1.3	1.3	20.2		
WS312	3.00	2.89	2.94	0.2	0.2	2.4	2.4	20.2		
WS314	3.00	1.87	3.04	0.2	0.2	5.3	5.3	20.3		
WS315	3.00	2.40	2.77	0.2	0.2	1.8	1.8	20.2		
WS316 WS317	4.00 2.00	2.66 DRY	1.89	0.3	0.3	3.9 5.3	3.9 5.3	20.2		
W5517	2.00	DRI	1.09	0.2	0.2	3.3	3.3	20.4		
Remarks	<u> </u>		1							

.,	ANGE SQUARE G	ROUND INVE	STIGATION		Project No Date Sheet No.		PN194054 28/01/2020		
Client wsp							She	et No.	1 (2 of 3)
Equipment Us				. —		. —		. —	
GI Infra F	Red Gas Ana	lyser	MK	1 📙	MK	2 📙	GA200	О	
•	GA5000;								
Weather / Sit	e Conditions	5							
Wind			St	ill []	Ligh	nt x	Moderat	e	Strong
Cloud Co	ver		Non	е	Sligh	nt x	Cloud	ly 🗌	Overcast
Precipitat	tion		Dr	у 🗌	Sligh	nt x	Moderat	е	Heavy
	Depth to Base	Oxygen	Hydrogen	Hydrogen	Carbon		Flow Rate	Flow Rate	
Borehole		(Steady)	Sulphide (Peak)	Sulphide (Steady)	Monoxide (Peak)	Monoxide (Steady)	(Peak)	(Steady)	Remarks
	(m)	(% VOL)	(ppm)	(ppm)	(ppm)	(ppm)	(I/hr)	(l/hr)	
вн303	10.00	19.9	0	0	0	0	0.0	0.0	
вн304	10.00	18.2	0	0	0	0	0.0	0.0	
вн305С	15.00	16.4	0	0	0	0	0.0	0.0	
вн306	8.50	-	-	-	=	-	-	-	Car over
WS307	3.00	18.1	0	0	0	0	0.0	0.0	
WS309	1.80	18.1	0	0	0	0	0.0	0.0	
WS311	4.50	19.4	0	0	0	0	0.1	0.1	
WS312 WS314	3.00 3.00	18.7 15.4	0	0	0	0	0.0	0.0	
WS315	3.00	19.4	0	0	0	0	0.1	0.1	
WS316	4.00	18.7	0	0	0	0	0.1	0.1	
WS317	2.00	14.0	0	0	0	0	0.0	0.0	
									<u> </u>
Remarks									
								9	<u> </u>

				, ,		
.,	INGE SQUARE GI	ROUND INVESTIGAT	ION		Project No Date	PN194054 28/01/2020
Client wsp					Sheet No.	1 (3 of 3)
	ed Gas Ana	lyser	MK1	MK2	GA2000	
	A5000;					
Weather / Site Wind	e Conditions		Still	Light x	Moderate	Strong
Cloud Co	ver	1	None	Slight x	Cloudy	Overcast
Precipitat	ion		Dry	Slight x	Moderate	Heavy 🗌
Borehole	Depth to Base	Barometric Pressure			Remarks	
	(m)	(mBars)				
вн303	10.00	986				
вн304	10.00	986				
вн305С	15.00	986				
вн306	8.50	986	Car over			
WS307	3.00 1.80	986				
WS309 WS311	4.50	986 986				
WS312	3.00	986				
WS314	3.00	985				
WS315	3.00	986				
WS316	4.00	985				
WS317	2.00	985				
Remarks						
					(ezimieslose

•	INGE SQUARE G	ROUND INVE	STIGATION				Date		PN194054 29/01/2020
Client wsp							She	et No.	1 (1 of 3)
	ed Gas Ana	lyser	MK	1 🔲	MK	2	GA200	0 🔲	
	A5000;								
Weather / Site	e Conditions	•	Sti	II 🗌	Ligh	nt x	Moderat	е 🔲	Strong
Cloud Co	ver		Non	е 🗌	Sligh	nt x	Cloud	у	Overcast
Precipitat	ion		Dr	у 🔲	Sligh	nt x	Moderat	е 🗌	Heavy
Borehole	Depth to Base (m)	Depth to Water (m bgl)	Current Hole Depth (m bgl)	Methane (Peak) CH4 (% VOL)	Methane (Steady) CH4 (% VOL)	Carbon Dioxide (Peak) (% VOL)	Carbon Dioxide (Steady) (% VOL)	Oxygen (Peak) (% VOL)	Remarks
вн306	8.50	2.93	8.60	0.2	0.2	4.1	4.1	20.4	
Remarks									

Project EXCHA	ANGE SQUARE G	ROUND INVE	STIGATION			ect No	PN194054			
Client wsp							Date She	et No.	29/01/2020 1 (2 of 3)	
Equipment U										
GI Infra F	Red Gas Ana	lyser	MK	1	MK	2	GA200	0		
	GA5000;									
Weather / Sit	e Conditions	5	C+	ill 🔲	Liah		Moderat	<u>.</u> П	Strong	
				_		nt x			Strong	
Cloud Co	ver		Non	e	Sligh	nt x	Cloud	у 🔛	Overcast	
Precipitat	tion		Dr	у 📙	Sligh	nt x	Moderat	e	Heavy	
	Depth to	Oxygen	Hydrogen	Hydrogen	Carbon		Flow Rate	Flow Rate		
Borehole	Base	(Steady)	Sulphide (Peak)	Sulphide (Steady)	Monoxide (Peak)	Monoxide (Steady)	(Peak)	(Steady)	Remarks	
	(m)	(% VOL)	(ppm)	(ppm)	(ppm)	(ppm)	(l/hr)	(l/hr)		
вн306	8.50	14.3	0	0	0	0	0.0	0.0		
Remarks		<u> </u>								
-										_

Project EXCHA	INGE SQUARE G	ROUND INVESTIGAT	CION		Project No Date	PN194054 29/01/2020
Client wsp					Sheet No.	1 (3 of 3)
Equipment Us	sed					
GI Infra R	ed Gas Ana	lyser	MK1	MK2	GA2000	
Other ^q	A5000;					
Weather / Site	e Conditions	S				
Wind			Still	Light x	Moderate	Strong
Cloud Co	ver		None	Slight x	Cloudy	Overcast
Precipitat	ion		Dry	Slight x	Moderate	Heavy 🗌
	Depth to Base	Barometric Pressure				
Borehole	(m)	(mBars)			Remarks	
вн306	8.50	998				
Remarks			1		[
						عنشاء

Project EXCEL Client WSP	ange square G	ROUND INVE	STIGATION		Date	ect No et No.	PN194054 12/02/2020 1 (1 of 3)		
							3110		1 (1 01 3)
Equipment U GI Infra F	sed Red Gas Ana	lyser	MK	1 🔲	MK	2 🔲	GA200	0 🔲	
U 1.1.0.	GA5000;								
Weather / Sit	te Conditions	3							
Wind			Sti	II [Ligh	nt x	Moderat	e	Strong
Cloud Co	over		Non	e 🗌	Sligh	nt x	Cloud	у	Overcast
Precipita	tion		Dr	ух	Sligh	nt 🔲	Moderat	е 🗌	Heavy
	Depth to	Depth to	Current	Methane	Methane	Carbon	Carbon	Oxygen	
Borehole	Base		Hole Depth	CH4	(Steady) CH4	Dioxide (Peak)	Dioxide (Steady)	(Peak)	Remarks
	(m)	(m bgl)	(m bgl)	(% VOL)	(% VOL)	(% VOL)	(% VOL)	(% VOL)	
вн303	10.00	7.48	10.27	0.1	0.0	1.1	1.1	21.2	
вн304	10.00	8.69	9.10	0.1	0.0	0.2	0.2	21.5	
вн305С	15.00	13.56	14.84	0.1	0.1	3.2	3.2	21.6	
вн306	8.50	3.87	8.60	0.1	0.0	12.1	12.1	21.8	
WS307	3.00	DRY	2.74	0.1	0.0	2.5	2.5	21.2	
WS309	1.80	DRY	1.89	0.1	0.0	1.0	1.0	21.4	
WS311	4.50	DRY	1.75	0.1	0.0	1.2	1.2	21.6	
WS312 WS314	3.00	2.88 1.80	2.94 3.03	0.0	0.0	1.9 5.2	1.9 5.2	21.8	
WS315	3.00	2.06	2.78	0.0	0.0	3.2	3.2	21.8	
WS316	4.00	2.87	2.90	0.2	0.1	6.0	3.4	21.8	
WS317	2.00	DRY	1.88	0.1	0.0	2.1	2.1	21.5	
Remarks	1								
								<u> </u>	<u> </u>

Project вхсн	ANGE SQUARE G	ROUND INVE	STIGATION		Proje Date	ect No	PN194054 12/02/2020		
Client wsp								et No.	1 (2 of 3)
Equipment U	sed								
GI Infra I	Red Gas Ana	lyser	MK	1 🔲	MK	2	GA200	0 🗌	
Other	GA5000;								
Weather / Si	te Conditions	6							
Wind			St	ill	Ligh	nt x	Moderat	e	Strong
Cloud Co	over		Non	е	Sligh	nt x	Cloud	у	Overcast
Precipita	tion		Dr	ух	Sligh	nt 🔲	Moderat	е 🗌	Heavy
Borehole	Depth to Base	Oxygen (Steady)	Hydrogen Sulphide (Peak)	Hydrogen Sulphide (Steady)	Carbon Monoxide (Peak)	Carbon Monoxide (Steady)	Flow Rate (Peak)	Flow Rate (Steady)	Remarks
	(m)	(% VOL)	(ppm)	(ppm)	(ppm)	(ppm)	(l/hr)	(l/hr)	
вн303	10.00	19.0	0	0	0	0	0.1	0.1	
вн304	10.00	21.5	0	0	0	0	0.0	0.0	
вн305С	15.00	16.5	0	0	2	1	0.0	0.0	
вн306	8.50	0.8	0	0	0	0	0.0	0.0	
WS307	3.00	19.0	0	0	0	0	0.1	0.1	
WS309	1.80	20.3	0	0	0	0	0.0	0.0	
WS311	4.50	20.1	0	0	0	0	0.0	0.0	
WS312	3.00	20.8	0	0	0	0	0.0	0.0	
WS314	3.00	16.3 20.2	0	0	0	0	0.0	0.0	
WS315 WS316	3.00 4.00	19.9	0	0	1	0	0.2	0.0	
WS317	2.00	19.3	0	0	0	0	0.0	0.0	
Remarks	1	1	<u> </u>				1		
								<u>س</u>	<u> </u>
								الع	رجرسس تحصيح

Project exchange square ground investigation Project No Pn194054 Date 12/02/2020										
Client wsp					Sheet No					
Equipment Us	sed									
GI Infra R	ed Gas Ana	lyser	MK1	MK2	GA2000]				
Other ^q	A5000;					-				
Weather / Site	e Conditions	3								
Wind			Still	Light x	Moderate	Strong				
Cloud Co	ver	ſ	None	Slight x	Cloudy	Overcast				
Precipitat	ion		Dry x	Slight	Moderate	Heavy 🗌				
	Depth to	Barometric								
Borehole	Base	Pressure			Remarks					
	(m)	(mBars)								
вн303	10.00	1006								
вн304	10.00	1006								
вн305С	15.00	1005								
вн306	8.50	1005								
WS307	3.00	1006								
WS309	1.80	1006								
WS311	4.50	1006								
WS312	3.00	1006								
WS314	3.00	1005								
WS315	3.00	1006								
WS316 WS317	4.00 2.00	0.0 1005								
W5317	2.00	1005								
Remarks										
						<u>न्य</u> निक्रीविक्रीलेड				

APPENDIX 8

Laboratory Test Results - Geotechnical

Laboratory Test Certificate

Issued To	Geotechnics Ltd	Date of issue	06/02/2020				
	The Geotechnical Centre	Issue No.	2				
	Unit 1B, Borders Industrial Estate	Client Ref. No.	-				
	River Lane, Saltney	Samples / Materia	Samples / Material Source				
	Chester CH4 8RJ	Samples Recv'd	31/01/2020				
Testing Start Date	31/01/2020	Sample State	As received				
Testing Complete	06/02/2020	Sampled by	Geotechnics Limited				
Comments	Issue 2 superseedes issue 1 - Additional t	esting					
Project No	PN194054						
Project Name EXCHANGE SQUARE GROUND INVESTIGATION							
Summary of Tests							

Test Description	Test Quantity	UKAS
Water Content	27	Yes
Liquid Limit and Plastic Limit	11	Yes
Particle Size Distribution by Sieving Method	6	Yes
Particle Density by Fluid Pycnometer	4	Yes
Sulphate Analysis - Ground Water	15	Yes
рН	15	Yes
Point Load Strength of Rock	41	Yes
2.5 kg Rammer Dry Density/Moisture Content Relationship (Compaction)	4	Yes
	Water Content Liquid Limit and Plastic Limit Particle Size Distribution by Sieving Method Particle Density by Fluid Pycnometer Sulphate Analysis - Ground Water pH Point Load Strength of Rock	Water Content Water Content Liquid Limit and Plastic Limit Particle Size Distribution by Sieving Method Particle Density by Fluid Pycnometer 4 Sulphate Analysis - Ground Water pH 15 Point Load Strength of Rock 41

Note: Any descriptions, opinions or interpretations are outside the scope of UKAS accreditation.

The results within this report relate only to the samples tested and received from the client.

Test Results checked and approved for issue.
Signed for and on behalf of Geotechnics Limited

203 Torrington Avenue, Tile Hill, Coventry, CV4 9UT

Classification and Strength

Symbol C - Clay M - Silt

(0 - containing organic matter)
Plasticity L - Low

I - IntermediateH - HighV - Very HighE - Extremely High

Ip Plasticity Index

% retained on 425 µm sieve, shown under lp

value

 $egin{array}{lll} w_L & \mbox{Liquid Limit} \\ w_P & \mbox{Plastic Limit} \\ NP & \mbox{Non-Plastic} \\ \end{array}$

NAT Sample tested in natural state

w Water Content

Particle Density

Test Quick undrained triaxial tests

SS Single stage - 102mm diameter.

S3 Single stage - set of 3 38mm diameter.

MS Multistage - 102mm diameter.

D Drained TestHV Hand Vane

PP Pocket Penetrometer (kg/cm²)

NST Not suitable for test

 γ_b Bulk Density

 σ_3 Triaxial Cell Pressure

 σ_1 - σ_3 Deviator Stress ### Excessive Strain c_u Undrained Cohesion c Cohesion Intercept

Angle of Shearing Resistance

Linear Shrinkage

Shrink

Stab add- Stabiliser which is added

Consolidation

 $\begin{array}{ll} m_{_{V}} & Coefficient \ of \ Volume \ Compressibility \\ c_{_{V50}} & Coefficient \ of \ Consolidation \ - \ Log \ t \\ c_{_{V90}} & Coefficient \ of \ Consolidation \ - \ \sqrt{t} \end{array}$

Rock

UF Unacceptable Failure

Chemical Analysis

Acid Soluble Total sulphate in specimen, expressed as

SO₃ %, value in brackets expressed as

SO₄ %

Water Soluble Soluble sulphate in 2:1 water : soil

extract, expressed as SO₃ g/l, value in

brackets expressed as SO₄ g/l

In Water Sulphate content of groundwater,

expressed as SO₃ g/l, value in brackets

expressed as SO₄ g/l

pH pH value

Organic content Organic content expressed as a

percentage of dry weight

percentage of dry weight

MCV, Compaction, CBR

MCV Moisture Condition Value at natural

water content

MCC Moisture Condition Calibration

CCV Chalk Crushing Value

Compaction

Type 2.5 = 2.5 kg Rammer

4.5 = 4.5 kg Rammer V = Vibrating Hammer

 γ_b Bulk Density

 γ_d Dry Density

CBR California Bearing Ratio

Type 2.5 = Test on Specimen

Recompacted using

2.5 kg Rammer

4.5 = As above but using

4.5 kg Rammer

V = As above but using

Vibrating Hammer

M = Test on open drive mould

specimen cut in field

S = Soaked Specimen

Top CBR at top of mould

Bottom CBR at bottom of mould

ND None Detected

In the Sample Description denotes a laboratory

only description

LABORATORY RESULTS - Classification and Strength

Project EXCHANGE SQUARE GROUND INVESTIGATION

Sample						ssific	atio	า		Strength						
Hole	Depth (Specimen Depth) m	Туре	Sample Ref	Description	Symbol	l _p (>425) %	w _L	w _p	w (p _d) %	Test	$\gamma_{ m b} \ (\gamma_{ m d}) \ { m Mg/m}^3$	σ_3 kN/m ²	$\sigma_1 - \sigma_3$ kN/m^2	c _u	c _{Avg}	
BH304	1.80- 2.00 (1.80)	D	N77879	Very soft yellowish brown slightly sandy slightly gravelly clayey SILT.		(36%)	39	NP	26.7							
BH304	2.00- 2.45 (2.00)		N77880	Very soft yellowish brown slightly sandy CLAY.					32.2							
BH304	2.80- 3.00 (2.80)	D	N77881	Soft yellowish brown slightly sandy clayey SILT.		(5%)	22	NP	15.5							
BH305C	3.20- 3.65 (3.20)		N77884	Firm brownish yellow sandy clayey SILT. (See Test Remarks Sheet for further information)		(62%)	26	NP	5.7							
BH305C	4.20- 4.65 (4.20)	D	N77886	Firm to stiff brownish yellow slightly sandy CLAY.					27.2							
BH306	2.20- 2.65 (2.20)		N77890	Firm dark grey slightly sandy SILT.		(22%)	31	NP	35.7							
BH306	3.20- 3.65 (3.20)		N77892	Firm dark grey slightly sandy SILT.					26.9							
BH306	5.20- 5.65 (5.20)		N77895	Stiff yellowish brown slightly sandy clayey SILT.		(2%)	32	NP	27.9							
BH306	6.20- 6.65 (6.20)		N77897	Stiff yellowish brown slightly sandy CLAY.					28.3							
BH306	7.00- 7.30 (7.00)		N77898	Stiff yellowish brown slightly sandy CLAY.					9.0							
TP01	0.30- 0.90 (0.30)		N77900	MADE GROUND: Brown gravelly very silty fine to coarse sand.					9.8 (2.62)							
TP01	1.10- 1.60 (1.10)		N77901	MADE GROUND: Orangish brown gravelly silty fine to coarse sand.					8.3 (2.65)							
TP02	0.30- 0.70 (0.30)		N77902	MADE GROUND: Orangish brown gravelly silty fine to coarse sand.					11.6 (2.66)							
TP02	1.70- 2.30 (1.70)		N77903	MADE GROUND: Grey and orange gravelly very clayey fine to coarse sand.					20.4 (2.62)							

Remarks 🔚

NST - Not suitable for Test

For Standards followed see Laboratory Test Certficate

w% - ^ = Rock water content test; x = Aggregate moisture content test

QUT Water Contents: <Failure Zone>, [After test]

LABORATORY RESULTS - Classification and Strength

Project EXCHANGE SQUARE GROUND INVESTIGATION

Sample						ssific	ation	<u> </u>		Strength						
Hole	Depth (Specimen Depth) m	Type	Sample Ref	Description	Symbol	I _p (>425) %	w _L	w _p	w (p _d) %	Test	$\gamma_{b} \ (\gamma_{d}) \ Mg/m$	σ ₃	$\sigma_1 - \sigma_3$ kN/m^2	c _u kN/m	c _{Avg}	
WS311	1.80- 2.00 (1.80)	D	N78449	MADE GROUND: Soft yellowish orange mottled black slightly sandy slightly gravelly clay.	CL	15 (29%)	30	15	27.9							
WS311	3.80- 4.00 (3.80)	D	N78450	MADE GROUND: Firm yellowish orange mottled black slightly sandy slightly gravelly clayey silt.		(19%)	39	NP	22.5							
WS312	1.20- 1.65 (1.20)	D	N77904	Stiff greyish orange sandy CLAY. (See Test Remarks Sheet for further information)		NST (56%)			7.9							
WS312	2.00- 2.45 (2.00)	D	N77906	Firm greyish orange sandy CLAY.					9.2							
WS314	1.20- 1.65 (1.20)	D	N77907	Soft reddish brown slightly gravelly CLAY.					15.0							
WS314	2.00- 2.20 (2.00)	D	N77908	Firm reddish brown CLAY.	CL	16 (0%)	31	15	18.6							
WS314A	1.20- 1.65 (1.20)	D	N77909	Soft to firm reddish brown slightly gravelly CLAY.					15.8							
WS314A	2.00- 2.45 (2.00)	D	N77910	Firm reddish brown slightly gravelly CLAY.	CI	20 (4%)	40	20	19.2							
WS315	1.20- 1.65 (1.20)	D	N77911	Firm yellowish brown sandy SILT.		(29%)	18	NP	11.8							
WS315	2.00- 2.45 (2.00)		N77912	Stiff yellowish brown sandy SILT.					6.9							
WS316	3.00- 3.45 (3.00)		N77913	Firm grey slightly sandy slightly gravelly SILT.					10.8							
WS316	3.50- 4.00 (3.50)		N77914	Firm grey slightly sandy slightly gravelly silty CLAY.	CL	10 (10%)	26	16	15.9							
WS316	5.00- 5.45 (5.00)		N77915	Stiff grey slightly sandy slightly gravelly SILT.					15.8							

Remarks 🔚

NST - Not suitable for Test

For Standards followed see Laboratory Test Certficate

w% - ^ = Rock water content test; x = Aggregate moisture content test

QUT Water Contents: <Failure Zone>, [After test]

Project EXCHANGE SQUARE GROUND INVESTIGATION

Depth Specimen Depth)	Туре	Sample	Description		Point	Data					
		Ref		Test Type		Water %	Sym- bol	þ	>425 sieve	w _L	wр
1.80- 2.00 (1.80)	D	N77879	Very soft yellowish brown slightly sandy slightly gravelly clayey SILT.	Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um sieve	Pene.	(Factor)		%	μm 36%	39	% NP
2.80- 3.00 (2.80)	D	N77881	Soft yellowish brown slightly sandy clayey SILT.	Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um sieve					5%	22	NP
3.20- 3.65 (3.20)	D	N77884	Firm brownish yellow sandy clayey SILT. Test Remark: 1-point cone	Fall Cone 1pt with increasing water content, cone type: 80g/30, washed over 425um sieve	20.3 19.9	24.16 24.10 (1.057)			62%	26	NP
2.20- 2.65 (2.20)	D	N77890	Firm dark grey slightly sandy SILT.	Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um sieve					22%	31	NP
5.20- 5.65 (5.20)	D	N77895	Stiff yellowish brown slightly sandy clayey SILT.	Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um sieve					2%	32	NP
1.80- 2.00 (1.80)	D		MADE GROUND: Soft yellowish orange mottled black slightly sandy slightly gravelly clay.	Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um sieve			CL	15	29%	30	15
3.80- 4.00 (3.80)	D	N78450	MADE GROUND: Firm yellowish orange mottled black slightly sandy slightly gravelly clayey silt.	Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um sieve					19%	39	NP
1.20- 1.65 (1.20)	D	N77904	Stiff greyish orange sandy CLAY. Test Remark: Not suitable for testing due to sample type.	Not suitable for Test							
2.00- 2.20 (2.00)	D	N77908	Firm reddish brown CLAY.	Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um sieve			CL	16	0%	31	15
	2.80- 3.00 (2.80) 3.20- 3.65 (3.20) 2.20- 2.65 (2.20) 5.20- 5.65 (5.20) 1.80- 2.00 (1.80) 1.20- 1.65 (1.20) 2.00- 2.20	(1.80) 2.80- 3.00 (2.80) 3.20- 3.65 (3.20) 5.20- 5.65 (2.20) 1.80- 2.00 (1.80) 1.20- 1.65 (1.20) 2.20- D 1.65 (1.20) D 2.20 D 2.20	(1.80) 2.80- 3.00 (2.80) 3.20- 3.65 (3.20) 5.20- 5.65 (2.20) 1.80- 2.00 (1.80) 1.20- 4.00 (3.80) 1.20- 1.65 (1.20) D N77904 1.65 (1.20) D N77908 2.00- D N77908	(1.80) D N77881 Soft yellowish brown slightly sandy clayey SILT. 3.20-3.65 (3.20) D N77884 Firm brownish yellow sandy clayey SILT. 2.20-2.65 (2.20) D N77890 Firm dark grey slightly sandy SILT. 5.20-5.65 (2.20) D N77895 Stiff yellowish brown slightly sandy clayey SILT. 1.80-5.65 (5.20) D N78449 MADE GROUND: Soft yellowish orange mottled black slightly sandy slightly gravelly clay. 3.80-4.00 (3.80) D N78450 MADE GROUND: Firm yellowish orange mottled black slightly sandy slightly gravelly clayey silt. 1.20-1.65 (1.20) D N77904 Stiff greyish orange sandy CLAY. 1.20-1.65 (1.20) D N77908 Firm reddish brown CLAY. 2.00-2.20 D N77908 Firm reddish brown CLAY.	(1.80)	(1.80)	Cone type: 80g/30, washed over 425um sieve Cane type: 80g/30,	Cone type: 80g/30, washed over 425um sieve Cape	Cone type: 80g/30, washed over 425um sieve Cone type: 80g/30, washed over 425um Cone type: 80g/30, washed over 425um Cone type: 80g/30, washed over 425um Cone type: 80g/30, washed over 425um Cone type: 80g/30, washed over 425um Cone type: 80g/30, washed over 425um Cone type: 80g/30, washed over 425um Cone type: 80g/3	Cone type: 80g/30, washed over 425um sieve Cone type: 80g/30,	Cone type: 80g/30, washed over 425um slightly sandy clayery SILT. Soft yellowish brown slightly sandy clayery SILT. Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SILT. Soft yellowish brown slightly sandy slieve SILT. Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SILT. Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SILT. Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SILT. Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SILT. Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SILT. SILT cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SILT cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SILT cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SILT cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SILT cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SILT cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SILT cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SILT cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SILT cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SILT cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SILT cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SILT cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SILT cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SILT cone 4pt with increasing water content, cone type: 80g/30, washed over 425um slieve SIL

Remarks 🔚

LABORATORY RESULTS - Atterberg Limit

Project EXCHANGE SQUARE GROUND INVESTIGATION

Sampl	е				Results										
Hole	Depth (Specimen Depth) m	Туре	Sample Ref	Description	Test Type	Point Cone Pene.	Data Water % (Factor)	Sym- bol	þ %	>425 sieve µm	w _L	w _p			
WS314A	2.00- 2.45 (2.00)		N77910	Firm reddish brown slightly gravelly CLAY.	Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um sieve			CI	20	4%	40	20			
WS315	1.20- 1.65 (1.20)		N77911	Firm yellowish brown sandy SILT.	Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um sieve					29%	18	NP			
WS316	3.50- 4.00 (3.50)		N77914	Firm grey slightly sandy slightly gravelly silty CLAY.	Fall Cone 4pt with increasing water content, cone type: 80g/30, washed over 425um sieve			CL	10	10%	26	16			

Remarks 🔚

LABORATORY RESULTS - Chemical Analysis

Project EXCHANGE SQUARE GROUND INVESTIGATION Project No: PN194054

Sample)				S	Sulphat	е				C	Chlorid	le
Hole	Donth	Tunn	Samala	Description		Soil				Loss	In:	Soil	
Hole	Depth (Specimen Depth) m		Ref	Description	Acid Soluble %	Water Soluble g/l	In Water g/I	pН	Organic Content %	on Ignition %	Acid Soluble %	Water Soluble g/l	In Water g/I
BH304	1.80- 2.00 (1.80- 2.00)		N77879	Very soft yellowish brown slightly sandy slightly gravelly clayey SILT.		0.119 (0.14)		7.05					
BH304	2.00- 2.45 (2.00- 2.45)		N77880	Very soft yellowish brown slightly sandy CLAY.		0.082 (0.10)		7.32					
BH304	3.00- 3.45 (3.00- 3.45)		N77882	Soft yellowish brown slightly sandy CLAY.		0.044 (0.05)		7.32					
BH304	4.00- 4.45 (4.00- 4.45)		N77883	Reddish brown sandy fine to coarse GRAVEL.		0.035 (0.04)		7.37					
BH305C	3.50 (3.50)	l	N77885	Firm brownish yellow slightly sandy CLAY.		0.082 (0.10)		7.71					
BH305C	4.50 (4.50)	l	N77887	Stiff brownish yellow slightly sandy CLAY.		0.022 (0.03)		7.10					
BH305C	6.20- 6.65 (6.20- 6.65)		N77889	Brownish yellow slightly gravelly slightly silty fine to coarse SAND.		0.045 (0.05)		7.02					
BH306	3.00- 3.20 (3.00- 3.20)		N77891	Firm dark grey slightly sandy SILT.		0.414 (0.50)		4.67					
BH306	4.00- 4.20 (4.00- 4.20)		N77894	Firm dark grey slightly sandy SILT.		0.053 (0.06)		7.45					
BH306	6.00- 6.20 (6.00- 6.20)		N77896	Stiff yellowish brown slightly sandy CLAY.		0.030 (0.04)		7.90					
BH306	8.50- 8.71 (8.50- 8.71)		N77899	Reddish brown SAND and GRAVEL (Sandstone).		0.023 (0.03)		7.30					

Remarks For Standards followed please see Laboratory Test Certificate Sulphate reported as SO3, results in brackets reported as SO4

LABORATORY RESULTS - Chemical Analysis

Project EXCHANGE SQUARE GROUND INVESTIGATION Project No: PN194054

Sample	е				Sulphate							Chloric	le
Hole	Depth	Tunn	Sample	Description	In	Soil				Loss	In	Soil	
noie	(Specimen Depth)	Туре	Ref	Description	Acid Soluble %	Water Soluble	In Water	pН	Organic Content %	on Ignition %	Soluble	Water Soluble	
					%	g/l	g/l		70	%	%	g/l	g/l
TP01	0.30- 0.90 (0.30- 0.90)		N77900	MADE GROUND: Brown gravelly very silty fine to coarse sand.		0.038 (0.05)		4.98					
WS312	1.50- 2.00 (1.50- 2.00)		N77905	Stiff greyish orange sandy CLAY.		0.049 (0.06)		7.67					
WS314	1.20- 1.65 (1.20- 1.65)		N77907	Soft reddish brown slightly gravelly CLAY.		0.029 (0.03)		5.58					
WS316	3.50- 4.00 (3.50- 4.00)		N77914	Firm grey slightly sandy slightly gravelly silty CLAY.		0.046 (0.06)		6.31					

Remarks For Standards followed please see Laboratory Test Certificate Sulphate reported as SO3, results in brackets reported as SO4

LABORATORY RESULTS - MCV, Compaction, CBR

Project EXCHANGE SQUARE GROUND INVESTIGATION

Sampl	е				МС	V	Con	npact	ion			СВІ	R			
Hole	Depth			Description	MCV		Туре	w		γ	ν	Туре	To	эр	Bott	om
	(Specimer Depth)		Ref				,,,,,	(Opt)	ρ_{d}	γ_{b}	γ_{d} (Max)	. , , , ,	CBR	w	CBR	w
	m					%		%	Mg/m³	Mg/m³	Mg/m³		%	%	%	%
TP01	0.30-	В	N77900	MADE GROUND: Brown gravelly			2.5kg	(7.8)	2.62		(1.88)					
	0.90	1		very silty fine to coarse sand.				11.1*	m	*2.06	*1.86					
	(0.30-	I .						2.3		1.84	1.80					
	0.90)	1						4.7 6.9		1.92 2.00	1.83 1.87					
								15.2		2.00	1.76					
TDO4	4.40	_	N177004	MADE ODOLIND Ozorokala konsur			0.51		0.05							
TP01	1.10- 1.60	1	N77901	MADE GROUND: Orangish brown gravelly silty fine to coarse sand.			2.5kg	(9.5)	2.65 m	1.86	(1.97) 1.80					
	(1.10-	I		gravery sitty fine to coarse sailu.				6.0	'''	1.97	1.86					
	1.60)	I .						8.0*		*2.10	*1.95					
								13.0		2.17	1.92					
								15.1		2.08	1.81					
								17.9		1.96	1.67					
TP02	0.30-	В	N77902	MADE GROUND: Orangish brown			2.5kg	(10.0)	2.66		(1.93)					
	0.70			gravelly silty fine to coarse sand.				12.8*	m	*2.12	*1.88					
	(0.30-	I						4.5		1.91	1.83					
	0.70)							6.6		1.98	1.86					
								10.6 16.6		2.13 1.98	1.92 1.70					ĺ
	1	_						-		1.90						
TP02	1.70-	1	N77903	MADE GROUND: Grey and			2.5kg			*0.00	(1.86)					
	2.30 (1.70-	1		orange gravelly very clayey fine to coarse sand.				19.5* 9.6	m	*2.02 2.01	*1.69 1.84					
	2.30)	I .		coarse sariu.				15.4		2.07	1.79					
	2.00,							3.3		1.78	1.72					
								11.0		2.05	1.84					
1																
																1

Remarks 🖫

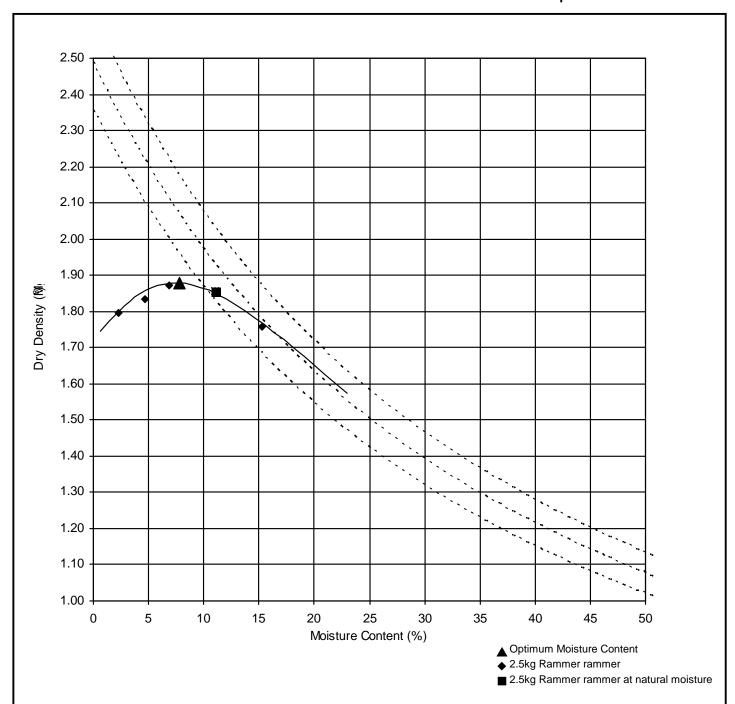
Particle Density - a=assumed, m=measured

w% - * = at natural moisture content; x = aggregate moisture content

= stabilised, see relevant test plot for details

NST = Not suitable for Test

For Standards followed see Laboratory Test Certficate


LABORATORY RESULTS - Compaction

Project: **EXCHANGE SQUARE GROUND INVESTIGATION**

Project No: PN194054

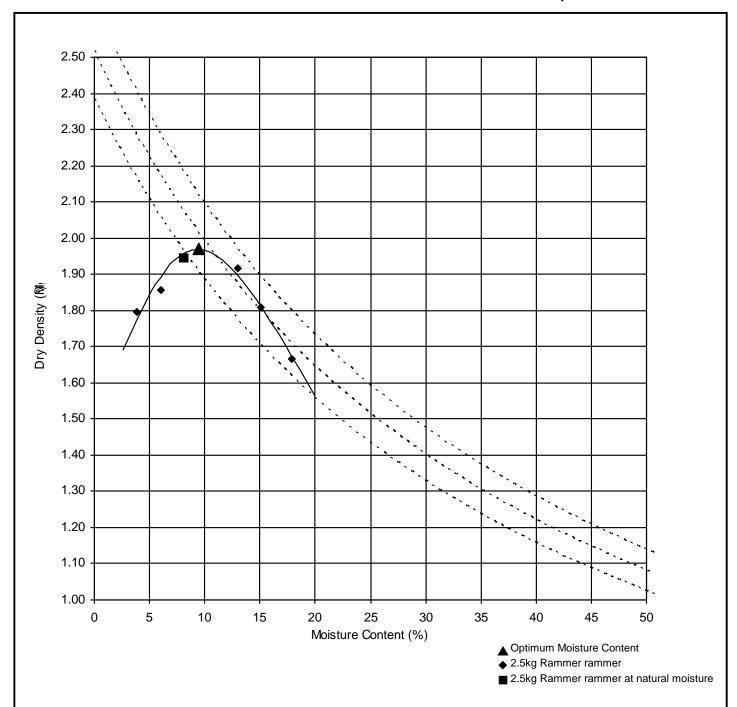
Hole TP01 **Sample Depth** 0.30-0.90m

Sample Type Sample Ref N77900

Optimum Moistu Maximum Dry D		7.8 1.88 Mg/m ³	Particles retained on	37.5mm 20mm sieve	0 % 2 %
Particle Density Preparation	2.62 (Meas) Single Sample 2.5kg Rammer	Mg/m ³	Description	MADE GROUND: coarse sand.	Brown gravelly very silty fine to

Remarks 🔛

BS1377 Part 4 1990 : Clause 3.3 and 3.4


LABORATORY RESULTS - Compaction

Project: **EXCHANGE SQUARE GROUND INVESTIGATION**

Project No: PN194054

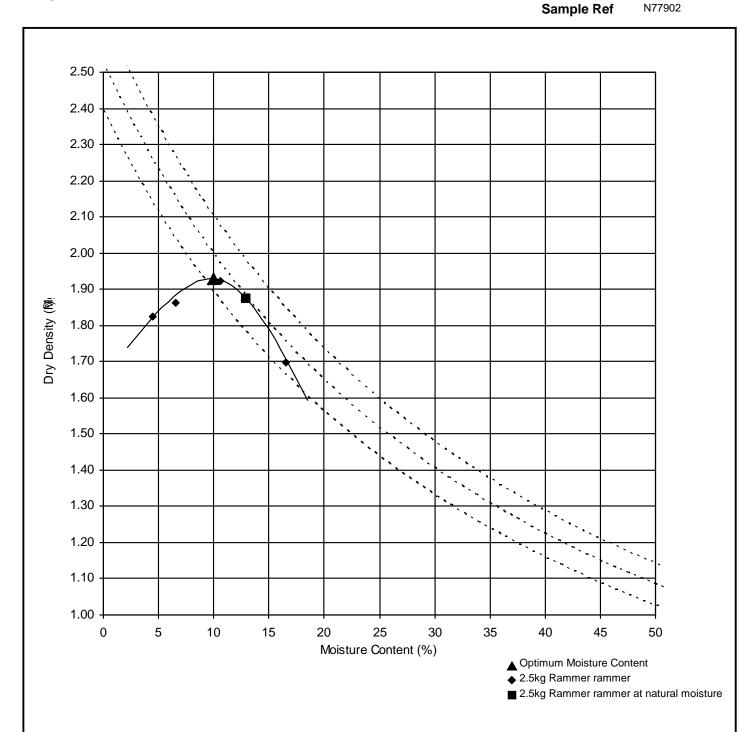
Hole TP01 **Sample Depth** 1.10-1.60m

Sample Type Sample Ref N77901

Optimum Moist Maximum Dry D		9.5 1.97 Mg/m ³	Particles retained on	37.5mm 20mm sieve	0 % 2 %
Particle Density Preparation	2.65 (Meas) Single Sample 2.5kg Rammer	Mg/m ³	Description	MADE GROUND: fine to coarse san	Orangish brown gravelly silty d.

Remarks 🔛

BS1377 Part 4 1990 : Clause 3.3 and 3.4


LABORATORY RESULTS - Compaction

Project: **EXCHANGE SQUARE GROUND INVESTIGATION**

Project No: PN194054

Hole TP02 0.30-0.70m **Sample Depth**

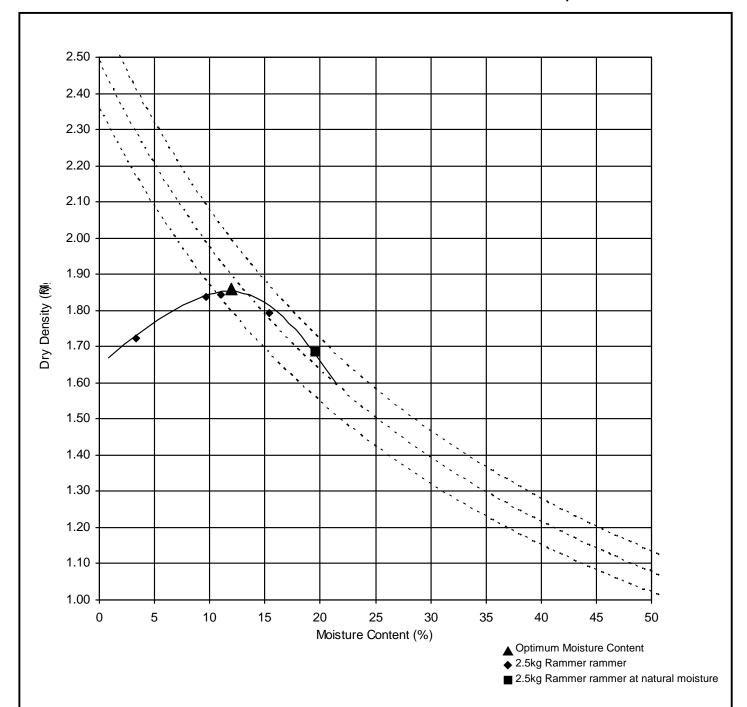
Sample Type Sample Ref

Optimum Moist Maximum Dry D		10.0 1.93 Mg/m ³	Particles retained on	37.5mm 20mm sieve	0 % 2 %
Particle Density Preparation	2.66 (Meas) Single Sample 2.5kg Rammer	Mg/m ³	Description	MADE GROUND: fine to coarse sand	Orangish brown gravelly silty d.

Remarks 🔐

BS1377 Part 4 1990 : Clause 3.3 and 3.4

LABORATORY RESULTS - Compaction


Project: **EXCHANGE SQUARE GROUND INVESTIGATION**

Project No: PN194054

Hole TP02 **Sample Depth** 1.70-2.30m

Sample Type

Sample Ref N77903

Optimum Moiste Maximum Dry D		12.0 1.86 Mg/m ³	Particles retained on	37.5mm 20mm sieve	0 % 0 %
Particle Density Preparation	2.62 (Meas) Single Sample 2.5kg Rammer	Mg/m ³	Description	MADE GROUND: clayey fine to coar	Grey and orange gravelly very se sand.

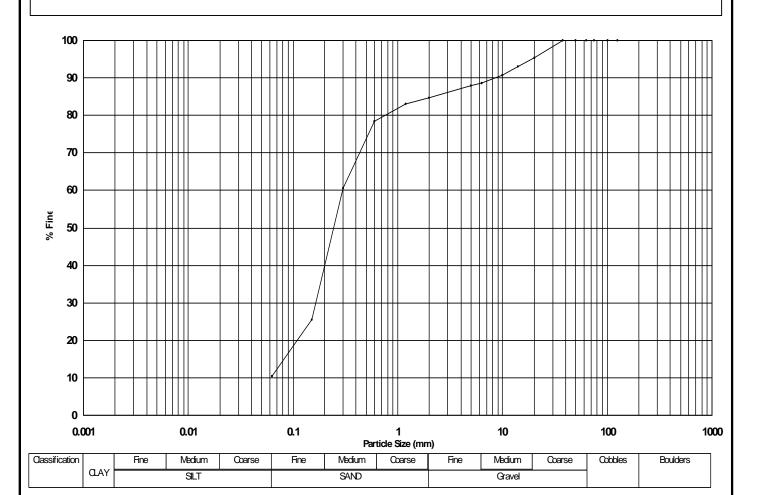
Remarks 🔛

BS1377 Part 4 1990 : Clause 3.3 and 3.4

EXCHANGE SQUARE GROUND INVESTIGATION Project:

BH305C Hole

Sample Depth 5.40-6.40m


Sample Type Sample Ref

В N77888

Project No: PN194054

Sample Description

Brownish yellow gravelly silty fine to coarse SAND.

Classification	% of each
SILT (including CLAY)	11
SAND	74
GRAVEL	15
COBBLES	0
BOULDERS	0

Size	% Finer
125 mm	100
100 mm	100
75 mm	100
63 mm	100
50 mm	100
37.5 mm	100
20 mm	95
14 mm	93
10 mm	91
6.3 mm	89
5 mm	88
2 mm	85
1.18 mm	83
600 μm	78
300 μm	60
150 μm	25

Size	% Finer
63 μm	11

Uniformity Coefficient		
Not Available		
Sieving Method		
Wet sieve		
Fine Particle Analysis		
Method		
Pre-treated with		
% loss on Pre-treatment		
Particle Density		

Remarks Sieve:-Test performed in accordance with BS EN ISO 17892-4:2016

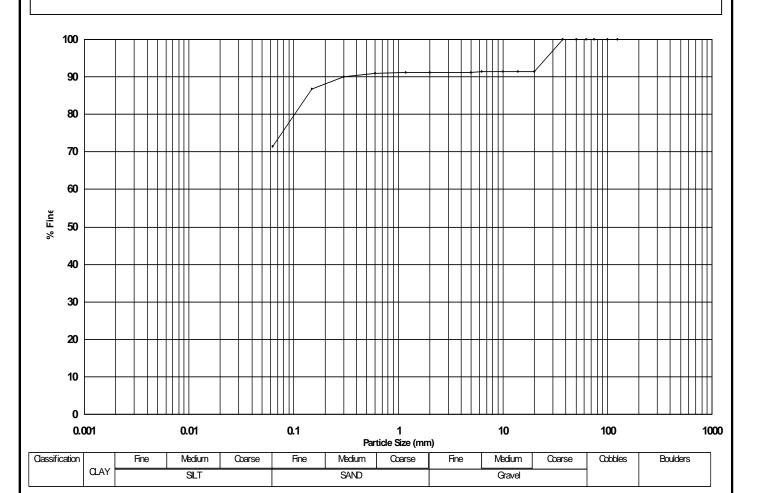
Project: EXCHANGE SQUARE GROUND INVESTIGATION

Hole BH306

Sample Depth 4.00-4.80m

Sample Type

В


Sample Ref

N77893

Sample Description

Project No: PN194054

Firm dark grey slightly sandy slightly gravelly SILT.

Classification	% of each
SILT (including CLAY)	72
SAND	19
GRAVEL	9
COBBLES	0
BOULDERS	0

Size	% Finer
125 mm	100
100 mm	100
75 mm	100
63 mm	100
50 mm	100
37.5 mm	100
20 mm	91
14 mm	91
10 mm	91
6.3 mm	91
5 mm	91
2 mm	91
1.18 mm	91
600 μm	91
300 μm	90
150 μm	87

Size	% Finer
63 μm	72

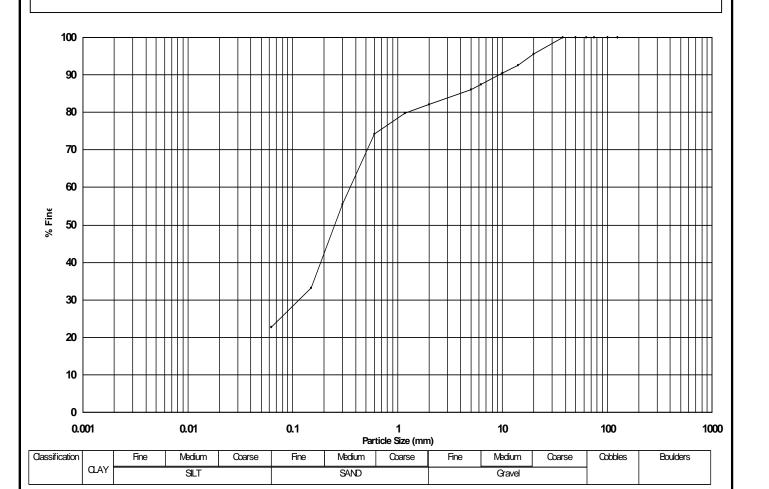
Uniformity Coefficient		
Not Available		
Sieving Method		
Wet sieve		
Fine Particle Analysis		
Method		
Pre-treated with		
% loss on Pre-treatment		
Particle Density		

Remarks Sieve:-Test performed in accordance with BS EN ISO 17892-4:2016

GEOTECHNICS

EXCHANGE SQUARE GROUND INVESTIGATION Project:

TP01 Hole


Sample Depth 0.30-0.90m

Project No: PN194054

Sample Type В N77900 Sample Ref

Sample Description

MADE GROUND: Brown gravelly very silty fine to coarse sand.

Classification	% of each
SILT (including CLAY)	23
SAND	59
GRAVEL	18
COBBLES	0
BOULDERS	0

Size	% Finer
125 mm	100
100 mm	100
75 mm	100
63 mm	100
50 mm	100
37.5 mm	100
20 mm	96
14 mm	93
10 mm	90
6.3 mm	87
5 mm	86
2 mm	82
1.18 mm	80
600 μm	74
300 μm	55
150 μm	33

Size	% Finer
63 μm	23

Uniformity Coefficient		
Not Available		
Sieving Method		
Wet sieve		
Fine Particle Analysis		
Method		
Pre-treated with		
% loss on Pre-treatment		
Particle Density		

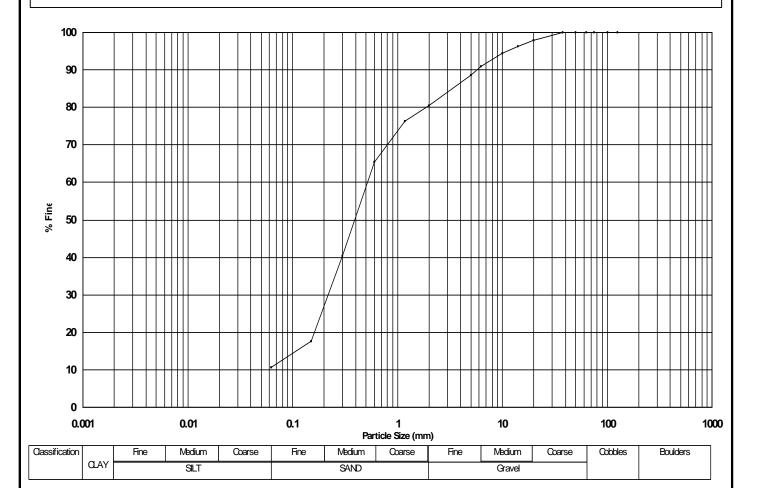
Remarks Sieve:-Test performed in accordance with BS EN ISO 17892-4:2016

Project: EXCHANGE SQUARE GROUND INVESTIGATION

Hole TP01

Sample Depth 1.10-1.60m

Sample Type


В

Project No: PN194054

Sample Ref N77901

Sample Description

MADE GROUND: Orangish brown gravelly silty fine to coarse sand.

Classification	% of each
SILT (including CLAY)	11
SAND	70
GRAVEL	19
COBBLES	0
BOULDERS	0

Size	% Finer
125 mm	100
100 mm	100
75 mm	100
63 mm	100
50 mm	100
37.5 mm	100
20 mm	98
14 mm	96
10 mm	94
6.3 mm	91
5 mm	89
2 mm	81
1.18 mm	76
600 μm	65
300 μm	40
150 μm	18

Size	% Finer
63 μm	11

Uniformity Coefficient		
Not Available		
Sieving Method		
Wet sieve		
Fine Particle Analysis		
Method		
Pre-treated with		
% loss on Pre-treatment		
Particle Density		

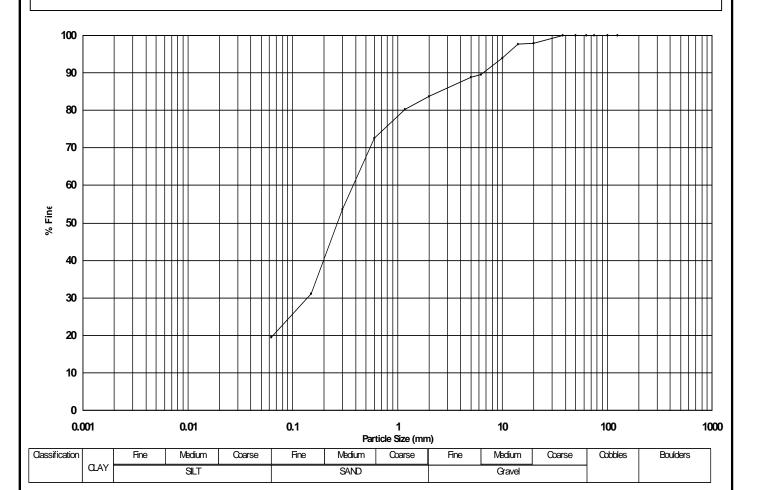
Remarks Sieve:-Test performed in accordance with BS EN ISO 17892-4:2016

GEOTECHNICS

Project: EXCHANGE SQUARE GROUND INVESTIGATION

Hole TP02

Sample Depth 0.30-0.70m


Sample Type Sample Ref

B N77902

Project No: PN194054

Sample Description

MADE GROUND: Orangish brown gravelly silty fine to coarse sand.

Classification	% of each
SILT (including CLAY)	20
SAND	64
GRAVEL	16
COBBLES	0
BOULDERS	0

Size	% Finer
125 mm	100
100 mm	100
75 mm	100
63 mm	100
50 mm	100
37.5 mm	100
20 mm	98
14 mm	98
10 mm	94
6.3 mm	90
5 mm	89
2 mm	84
1.18 mm	80
600 μm	73
300 μm	54
150 μm	31

Size	% Finer
63 μm	20

Uniformity Coefficient		
Not Available		
Sieving Method		
Wet sieve		
Fine Particle Analysis		
Method		
Pre-treated with		
% loss on Pre-treatment		
Particle Density		

Remarks Sieve:-Test performed in accordance with BS EN ISO 17892-4:2016

GEOTECHNICS

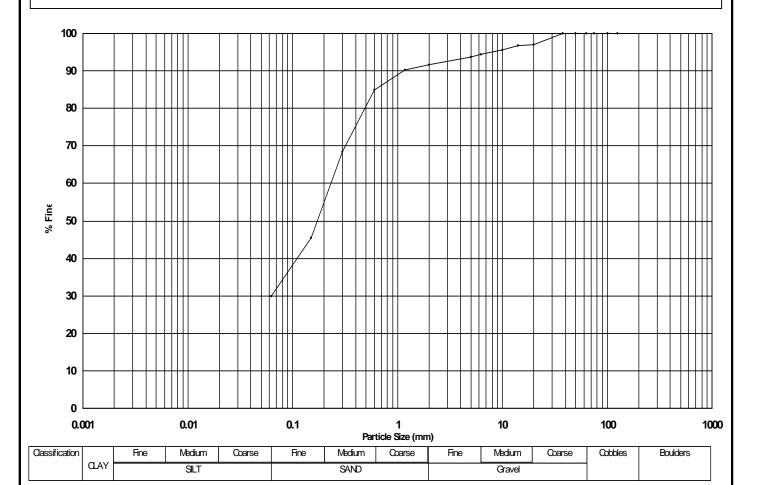
23/01/2020

EXCHANGE SQUARE GROUND INVESTIGATION Project:

TP02 Hole

Sample Depth 1.70-2.30m

Sample Type


В

Project No: PN194054

N77903 Sample Ref

Sample Description

MADE GROUND: Grey and orange gravelly very clayey fine to coarse sand.

Classification	% of each
SILT (including CLAY)	30
SAND	62
GRAVEL	8
COBBLES	0
BOULDERS	0

Size	•	% Finer
125 r	nm	100
100 r	nm	100
75 r	nm	100
63 r	nm	100
50 r	nm	100
37.5 r	nm	100
20 r	nm	97
14 r	nm	97
10 r	nm	96
6.3 r	nm	95
5 r	nm	94
2 r	nm	92
1.18 r	nm	90
600 j	ιm	85
300 J	ιm	68
150 μ	ιm	45

Size	% Finer
63 μm	30

Uniformity	Uniformity Coefficient						
Not Available							
Sieving Method							
Wet	t sieve						
Fine Partic	Fine Particle Analysis						
Method							
Pre-treated with							
% loss on Pre-treatment							
Particle Density							

Remarks Sieve:-Test performed in accordance with BS EN ISO 17892-4:2016

Project EXCHANGE SQUARE GROUND INVESTIGATION

Sample	9							Fe!!						
Hole	Depth (Specimen Depth) m	Type	Sample Ref	Description	w %	W mm	D mm	Fail Load kN	Test Type/ Direction	De mm	De ²	Is MN/m ²	F	Is 50 MN/m
BH303	1.56- 1.64 (1.56- 1.64)	С	N78040	Extremely weak reddish brown fine to coarse grained SANDSTONE.	10.0	90	79	0.24	A/PD	95.15	9053	0.027	1.336	0.035
BH303	2.05- 2.17 (2.05- 2.17)	С	N78041	Extremely weak to very weak reddish brown fine to coarse grained SANDSTONE.	10.7	100 101 101	101 71 45	0.12 0.54 0.36	D/PL A/PD A/PD	101.00 95.55 76.07	10201 9130 5787	0.011 0.059 0.062	1.372 1.338 1.208	0.079
BH303	2.60- 2.67 (2.60- 2.67)	С	N78042	Very weak reddish brown fine to coarse grained SANDSTONE.	10.3	98	69	0.38	A/PD	92.79	8610	0.044	1.321	0.058
BH303	3.70- 3.82 (3.70- 3.82)	С	N78043	Very weak reddish brown fine to coarse grained SANDSTONE.	9.6	101 101 101	101 70 51	0.60 0.74 0.52	D/PL A/PD A/PD	101.00 94.88 80.98	10201 9002 6558	0.059 0.082 0.079	1.372 1.334 1.242	0.109
BH303	4.56- 4.70 (4.56- 4.70)	С	N78044	Very weak reddish brown fine to coarse grained SANDSTONE.	7.5	101 101 101	101 76 75	0.97 1.30 0.89	D/PL A/PD A/PD	101.00 98.86 98.21	10201 9773 9645	0.095 0.133 0.092	1.372 1.359 1.355	0.180
BH303	5.45- 5.57 (5.45- 5.57)	С	N78045	Very weak reddish brown fine to coarse grained SANDSTONE.	11.2	100 101 101	101 62 59	0.43 0.54 0.52	D/PL A/PD A/PD	101.00 89.29 87.10	10201 7973 7587	0.042 0.068 0.069	1.372 1.298 1.284	0.088
BH303	6.44- 6.55 (6.44- 6.55)	С	N78046	Extremely weak reddish brown fine to coarse grained SANDSTONE.	9.2	95 95	60 55	0.18 0.14	A/PD A/PD	85.19 81.56	7257 6653	0.025 0.021	1.271 1.246	0.032 0.027
BH303	7.27- 7.55 (7.27- 7.55)	С	N78047	Very weak reddish brown fine to coarse grained SANDSTONE.	10.3	100 101 101 101	101 101 88 81	0.41 0.40 0.64 0.45	D/PL D/PL A/PD A/PD	101.00 101.00 106.38 102.06	10201 10201 11317 10416	0.041 0.039 0.056 0.043	1.372 1.372 1.405 1.379	0.054 0.079
BH303	8.10- 8.13 (8.10- 8.13)		N78048	Extremely weak reddish brown fine to coarse grained SANDSTONE.	12.8	96	39	0.13	A/PD	69.04	4767	0.027	1.156	0.032
BH303	8.45- 8.50 (8.45- 8.50)		N78049	Extremely weak reddish brown fine to coarse grained SANDSTONE.	6.1	85 55	57 41	0.08 0.04	I/R I/R	78.54 53.58	6169 2871	0.013 0.015	1.225 1.032	
BH303	9.60- 9.70 (9.60- 9.70)		N78050	Extremely weak reddish brown fine to coarse grained SANDSTONE.	12.1	100 99 99	99 56 54	0.01 0.07 0.10	D/PL A/PD A/PD	99.00 84.02 82.50	9801 7059 6807	0.001 0.010 0.015	1.360 1.263 1.253	0.013

Remarks 🔣

Test Type D - Diametral, A - Axial, I - Lump or Irregular Test

Direction PL - parallel to planes of weakness, R - Random or unknown orientation,

PD - perpendicular to planes of weakness

Fail Load UF - unacceptable failure

For Standards followed see Laboratory Test Certificate

Project No: PN194054

Project EXCHANGE SQUARE GROUND INVESTIGATION

Sample	9							F-::						
Hole	Depth (Specimen Depth) m	Type	Sample Ref	Description	w %	W mm	D mm	Fail Load kN	Test Type/ Direction	De mm	De ² mm ²	Is MN/m ²	F	Is 50 MN/m²
BH303	10.50- 10.62 (10.50- 10.62)	С	N78051	Extremely weak reddish brown fine to coarse grained SANDSTONE.	12.0	100 101 101	107 69 59	0.05 0.08 0.06	D/PL A/PD A/PD	107.00 94.20 87.10	11449 8873 7587	0.005 0.009 0.008	1.408 1.330 1.284	0.012
BH303	11.50- 11.59 (11.50- 11.59)	С	N78052	Extremely weak reddish brown fine to coarse grained SANDSTONE.	12.4	100	89	0.24	A/PD	106.45	11332	0.021	1.405	0.030
BH303	12.43- 12.51 (12.43- 12.51)	С	N78053	Extremely weak reddish brown fine to coarse grained SANDSTONE.	13.9	100	68	0.15	A/PD	93.05	8658	0.018	1.323	0.023
BH303	13.34- 13.45 (13.34- 13.45)	С	N78054	Extremely weak reddish brown fine to coarse grained SANDSTONE.	11.8	98	78	0.19	A/PD	98.65	9733	0.019	1.358	0.026
BH303	14.40- 14.54 (14.40- 14.54)	С	N78055	Very weak reddish brown fine to coarse grained SANDSTONE.	13.3	100 99	99 77	0.59 0.59	D/PL A/PD	99.00 98.52	9801 9706	0.061 0.061	1.360 1.357	0.082 0.083
BH304	7.75- 7.85 (7.75- 7.85)	С	N78056	Very weak reddish brown fine to coarse grained SANDSTONE.	10.8	100	57	0.34	A/PD	85.19	7257	0.047	1.271	0.060
BH304	8.61- 8.70 (8.61- 8.70)	С	N78057	Extremely weak reddish brown fine to coarse grained SANDSTONE.	10.6	100	79	0.00	A/PD	100.29	10059	0.000	1.368	0.000
BH304	9.14- 9.20 (9.14- 9.20)	С	N78058	Extremely weak reddish brown fine to coarse grained SANDSTONE.	12.0	100	59	0.07	A/PD	86.67	7512	0.009	1.281	0.012
BH304	10.80- 10.93 (10.80- 10.93)	С	N78059	Extremely weak reddish brown fine to coarse grained SANDSTONE.	12.7	100	78	0.12	A/PD	99.66	9931	0.012	1.364	0.016
BH304	11.84- 11.90 (11.84- 11.90)	С	N78060	Very weak reddish brown fine to coarse grained SANDSTONE.	11.8	100	79	0.59	A/PD	100.29	10059	0.058	1.368	0.080
BH304	12.26- 12.36 (12.26- 12.36)	С	N78061	Very weak reddish brown fine to coarse grained SANDSTONE.	11.9	100	83	0.79	A/PD	102.80	10568	0.075	1.383	0.103

Remarks 🔣

Test Type D - Diametral, A - Axial, I - Lump or Irregular Test

Direction PL - parallel to planes of weakness, R - Random or unknown orientation,

PD - perpendicular to planes of weakness

Fail Load UF - unacceptable failure

For Standards followed see Laboratory Test Certificate

Project No: PN194054

Project EXCHANGE SQUARE GROUND INVESTIGATION Project No: PN194054

								Fail				l		
Hole	Depth (Specimen Depth) m	Туре	Sample Ref	Description	w %	W mm	D mm	Load kN	Test Type/ Direction	De mm	De ²	Is MN/m ²	F	Is 50 MN/m
BH304	13.64- 13.70 (13.64- 13.70)	С	N78062	Very weak reddish brown fine to coarse grained SANDSTONE.	10.5	100	64	0.41	A/PD	90.27	8149	0.051	1.305	0.060
BH304	14.88- 15.06 (14.88- 15.06)	С	N78063	Very weak reddish brown fine to coarse grained SANDSTONE.	11.9	100 100 100	100 88 57	0.51 0.79 0.49	D/PL A/PD A/PD	100.00 105.85 85.19	10000 11205 7257	0.051 0.071 0.068	1.366 1.401 1.271	0.069 0.099 0.086
BH304	15.62- 15.78 (15.62- 15.78)	С	N78064	Very weak reddish brown fine to coarse grained SANDSTONE.	15.9	95 93	93 79	0.26 0.52	D/PL A/PD	93.00 96.72	8649 9354	0.030 0.056	1.322 1.346	
BH304	16.63- 16.70 (16.63- 16.70)	С	N78065	Extremely weak reddish brown fine to coarse grained SANDSTONE.	14.8	100	68	0.24	A/PD	93.05	8658	0.028	1.323	0.037
BH304	17.56- 17.66 (17.56- 17.66)	С	N78066	Very weak reddish brown fine to coarse grained SANDSTONE.	12.9	100 95 95	95 59 49	0.62 0.80 0.62	D/PL A/PD A/PD	95.00 84.48 76.99	9025 7137 5927	0.069 0.112 0.105	1.335 1.266 1.214	0.141
BH304	17.90- 18.03 (17.90- 18.03)	С	N78067	Very weak reddish brown fine to coarse grained SANDSTONE.	12.4	90 88 88	88 68 59	0.53 0.70 0.70	D/PL A/PD A/PD	88.00 87.29 81.31	7744 7619 6611	0.068 0.092 0.106	1.290 1.285 1.245	0.119
BH305C	8.31- 8.40 (8.31- 8.40)	С	N78068	Very weak reddish brown fine to coarse grained SANDSTONE.	11.7	100	89	0.71	A/PD	106.45	11332	0.062	1.405	0.088
BH305C	9.24- 9.30 (9.24- 9.30)	С	N78069	Very weak reddish brown fine to coarse grained SANDSTONE.	10.8	100	60	0.70	A/PD	87.40	7639	0.092	1.286	0.118
BH305C	10.58- 10.75 (10.58- 10.75)	С	N78070	Very weak reddish brown fine to coarse grained SANDSTONE.	10.4	100 98 98	98 66 54	0.53 0.83 0.52	D/PL A/PD A/PD	98.00 90.75 82.09	9604 8235 6738	0.055 0.101 0.077	1.354 1.308 1.250	0.131
BH305C	11.53- 11.63 (11.53- 11.63)	С	N78071	Very weak reddish brown fine to coarse grained SANDSTONE.	10.0	100 100 100	100 52 50	0.38 0.40 0.29	D/PL A/PD A/PD	100.00 81.37 79.79	10000 6621 6366	0.038 0.061 0.045	1.366 1.245 1.234	0.076
BH305C	11.73- 11.90 (11.73- 11.90)	С	N78072	Very weak reddish brown fine to coarse grained SANDSTONE.	10.4	100 100 100	100 85 68	0.41 0.71 0.79	D/PL A/PD A/PD	100.00 104.03 93.05	10000 10823 8658	0.041 0.065 0.091	1.366 1.391 1.323	0.091

Remarks 🔣

Test Type D - Diametral, A - Axial, I - Lump or Irregular Test

Direction PL - parallel to planes of weakness, R - Random or unknown orientation,

PD - perpendicular to planes of weakness

Fail Load UF - unacceptable failure

For Standards followed see Laboratory Test Certificate

Project EXCHANGE SQUARE GROUND INVESTIGATION

Sample	•													
Hole	Depth (Specimen Depth) m	Туре	Sample Ref	Description	w %	W mm	D mm	Fail Load kN	Test Type/ Direction	De mm	De ²	Is MN/m ²	F	Is 50 MN/m
BH305C	12.40- 12.49 (12.40- 12.49)	С	N78073	Very weak reddish brown fine to coarse grained SANDSTONE.	9.9	100	81	0.55	A/PD	101.55	10313	0.053	1.376	0.073
BH305C	13.95- 14.05 (13.95- 14.05)	С	N78074	Extremely weak reddish brown fine to coarse grained SANDSTONE.	12.1	95	89	0.29	A/PD	103.76	10765	0.027	1.389	0.038
BH305C	14.84- 14.90 (14.84- 14.90)	С	N78075	Very weak reddish brown fine to coarse grained SANDSTONE.	15.6	100	65	0.34	A/PD	90.97	8276	0.041	1.309	0.053
BH305C	15.65- 15.80 (15.65- 15.80)	С	N78076	Very weak reddish brown fine to coarse grained SANDSTONE.	13.8	100 98 98	98 85 68	1.00 1.12 0.84	D/PL A/PD A/PD	98.00 102.99 92.11	9604 10606 8485	0.104 0.106 0.099	1.354 1.384 1.317	0.146
BH305C	16.78- 16.90 (16.78- 16.90)	С	N78077	Very weak reddish brown fine to coarse grained SANDSTONE.	15.5	100 100 100	100 59 60	0.77 0.78 0.83	D/PL A/PD A/PD	100.00 86.67 87.40	10000 7512 7639	0.077 0.103 0.108	1.366 1.281 1.286	0.132
BH305C	17.55- 17.67 (17.55- 17.67)	С	N78078	Very weak reddish brown fine to coarse grained SANDSTONE.	13.4	95 94 94	94 63 59	0.56 0.84 0.75	D/PL A/PD A/PD	94.00 86.83 84.03	8836 7540 7061	0.063 0.112 0.106	1.329 1.282 1.263	0.143
BH305C	18.40- 18.56 (18.40- 18.56)	С	N78079	Very weak reddish brown fine to coarse grained SANDSTONE.	11.2	100 100 100	100 91 70	1.06 1.67 1.14	D/PL A/PD A/PD	100.00 107.64 94.41	10000 11586 8913	0.106 0.144 0.128	1.366 1.412 1.331	
BH305C	19.76- 19.90 (19.76- 19.90)		N78080	Very weak reddish brown fine to coarse grained SANDSTONE.	17.2	100 99	99 91	0.31 0.53	D/PL A/PD	99.00 107.10	9801 11471	0.031 0.046	1.360 1.409	

Remarks 🔣

Test Type D - Diametral, A - Axial, I - Lump or Irregular Test

Direction PL - parallel to planes of weakness, R - Random or unknown orientation,

PD - perpendicular to planes of weakness

Fail Load UF - unacceptable failure

For Standards followed see Laboratory Test Certificate

Project No: PN194054

LABORATORY RESULTS - Test Remarks

Project EXCHANGE SQUARE GROUND INVESTIGATION Project No: PN194054

Sample	•			
Hole	Depth (Specimen Depth) m	Туре	Sample Ref	Laboratory Remark
3H305C	3.20- 3.65 (3.20- 3.65)		N77884	Atterberg Limit Test - 1-point cone
VS312	1.20- 1.65 (1.20- 1.65)		N77904	Atterberg Limit Test - Not suitable for testing due to sample type.

Remarks 🚻

LABORATORY TEST CERTIFICATE

10 Queenslie Point Queenslie Industrial Estate 120 Stepps Road Glasgow

Gasgow G33 3NQ

Tel: 0141 774 4032

email: info@mattest.org Website: www.mattest.org

Certificate No: 20/020 - 01

Client : Geotechnics Limited

Unit 1B, Borders Industrial Park

River Lane Saltney Chester CH4 8RJ

Thomas Birch

Dear Sirs,

To:

LABORATORY TESTING OF ROCK

Introduction

We refer to samples taken from Exchange Square GI and delivered to our laboratory on 08th January 2020.

Material & Source

Sample Reference : See Report Plates

Sampled By : Client

Sampling Certificate : Not Supplied

Location : See Report Plates

Description : Rock Cores

Date Sampled : Not Supplied

Date Tested : 08th January 2020 Onwards

Source : PN194054 - Exchange Square GI

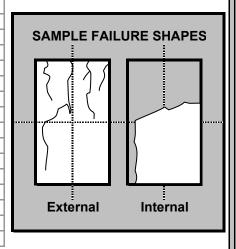
Test Results;

As Detailed On Page 2 to Page 6 inclusive

Comments;

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory All remaining samples for this project will be disposed of 28 days after issue of this test certificate

Remarks;

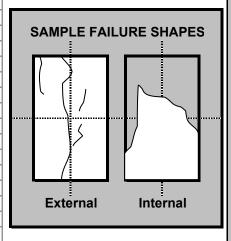

Approved for Issue			
	Date	03/02/2020	
T McLelland (Director)		_	

Issue No. 01 Page 1 of 6

BOREHOLE		BH303
SAMPLE		С
DEPTH	m	12.66-12.92
SAMPLE DIAMETER	mm	100.49
SAMPLE HEIGHT	mm	128.48
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.1
TEST DURATION	min.sec	2.05
DATE OF TESTING		31/01/2020
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	9.2
UNCONFINED COMPRESSIVE STRENGTH	MPa	1.2
WATER CONTENT (ISRM Suggested Methods)	%	9.4
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.32
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	2.12

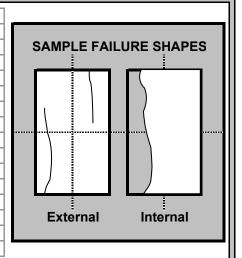
Test specimen does not meet specified length / diameter ratio requirements

m		SAMPLE FAIL	URE SHAPES
mm			
mm			
kN/s			
min.sec			
kN			
MPa			
%		External	Internal
Mg/m ³			
Mg/m ³			
	kN/s min.sec kN MPa % Mg/m³	mm mm kN/s min.sec kN MPa % Mg/m³	mm mm kN/s min.sec kN MPa % Mg/m³ External

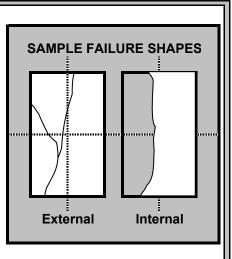

BOREHOLE				
SAMPLE				
DEPTH	m	SAMPLE FAIL	URE SHAPES	3
SAMPLE DIAMETER	mm			
SAMPLE HEIGHT	mm			
TEST CONDITION				
RATE OF LOADING	kN/s			
TEST DURATION	min.sec			
DATE OF TESTING				
LOAD FRAME USED				
LOAD DIRECTION WITH RESPECT TO LITHOLOGY				
FAILURE LOAD	kN			
UNCONFINED COMPRESSIVE STRENGTH	MPa			
WATER CONTENT (ISRM Suggested Methods)	%	External	Internal	
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³			
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³			

Tested in accordance with ASTM D7012 - 14

SUMMARY OF UNCONFINED COMPRESSIVE STRENGTH



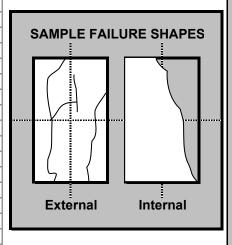
BOREHOLE		BH305C	_
SAMPLE		С	ı
DEPTH	m	8.40-8.62	П
SAMPLE DIAMETER	mm	99.19	П
SAMPLE HEIGHT	mm	171.20	П
TEST CONDITION		As Received	П
RATE OF LOADING	kN/s	0.1	П
TEST DURATION	min.sec	7.55	Ш
DATE OF TESTING		31/01/2020	
LOAD FRAME USED		2000kN	П
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown	П
FAILURE LOAD	kN	35.1	П
UNCONFINED COMPRESSIVE STRENGTH	MPa	4.5	П
WATER CONTENT (ISRM Suggested Methods)	%	12.2	
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.07	
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	1.84	


Test specimen does not meet specified length / diameter ratio requirements

BOREHOLE		BH305C
SAMPLE		С
DEPTH	m	11.90-12.10
SAMPLE DIAMETER	mm	99.07
SAMPLE HEIGHT	mm	176.89
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.1
TEST DURATION	min.sec	7.34
DATE OF TESTING		31/01/2020
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	29.4
UNCONFINED COMPRESSIVE STRENGTH	MPa	3.8
WATER CONTENT (ISRM Suggested Methods)	%	10.3
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.06
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	1.87

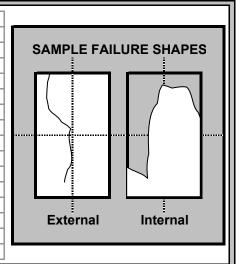
Test specimen does not meet specified length / diameter ratio requirements

BOREHOLE		BH305C
SAMPLE		С
DEPTH	m	14.90-15.12
SAMPLE DIAMETER	mm	98.05
SAMPLE HEIGHT	mm	188.19
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.1
TEST DURATION	min.sec	6.46
DATE OF TESTING		31/01/2020
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	31.0
UNCONFINED COMPRESSIVE STRENGTH	MPa	4.1
WATER CONTENT (ISRM Suggested Methods)	%	12.4
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.18
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	1.94

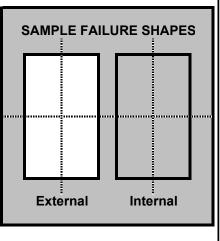

Test specimen does not meet specified length / diameter ratio requirements

Tested in accordance with ASTM D7012 - 14

SUMMARY OF UNCONFINED COMPRESSIVE STRENGTH



BOREHOLE		BH305C
SAMPLE		С
DEPTH	m	17.83-18.03
SAMPLE DIAMETER	mm	100.21
SAMPLE HEIGHT	mm	157.29
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.1
TEST DURATION	min.sec	9.34
DATE OF TESTING		31/01/2020
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	64.4
UNCONFINED COMPRESSIVE STRENGTH	MPa	8.2
WATER CONTENT (ISRM Suggested Methods)	%	14.4
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.19
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	1.92


Test specimen does not meet specified length / diameter ratio requirements

BOREHOLE		BH305C
SAMPLE		С
DEPTH	m	19.16-19.40
SAMPLE DIAMETER	mm	100.28
SAMPLE HEIGHT	mm	169.60
TEST CONDITION		As Received
RATE OF LOADING	kN/s	0.1
TEST DURATION	min.sec	7.50
DATE OF TESTING		31/01/2020
LOAD FRAME USED		2000kN
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		Unknown
FAILURE LOAD	kN	33.2
UNCONFINED COMPRESSIVE STRENGTH	MPa	4.2
WATER CONTENT (ISRM Suggested Methods)	%	13.0
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	2.14
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	1.90

Test specimen does not meet specified length / diameter ratio requirements

BOREHOLE		
SAMPLE		
DEPTH	m	SAMPLE F
SAMPLE DIAMETER	mm	
SAMPLE HEIGHT	mm	
TEST CONDITION		
RATE OF LOADING	kN/s	
TEST DURATION	min.sec	
DATE OF TESTING		
LOAD FRAME USED		
LOAD DIRECTION WITH RESPECT TO LITHOLOGY		
FAILURE LOAD	kN	
UNCONFINED COMPRESSIVE STRENGTH	MPa	
WATER CONTENT (ISRM Suggested Methods)	%	Externa
BULK DENSITY (ISRM Suggested Methods)	Mg/m ³	
DRY DENSITY (ISRM Suggested Methods)	Mg/m ³	

Tested in accordance with ASTM D7012 - 14

SUMMARY OF UNCONFINED COMPRESSIVE STRENGTH

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	TYPE OF TEST * (see below)	CORE DIAMETER (mm)	EQUIVALENT DIAMETER (mm)	PLATEN SEPARATION (mm)	FAILURE LOAD (kN)	Is (MPa)	Is(50) (MPa)
BH303	С	2.20-2.39	As Received	Α	99.31 99.31	99.31 71.12	99.31 40.00	0.16 0.06	0.02	0.02
	С	5.27-5.45	As Received	A D A	99.31 100.10 100.10	72.98 100.10 88.69	42.12 100.10 61.71	0.07 0.07 0.30	0.01 0.01 0.04	0.02 0.01 0.05
	С	9.42-9.60	As Received	Α	100.10 100.36 100.36	86.07 100.36 73.35	58.13 100.36 42.10	0.25 0.08 0.10	0.03 0.01 0.02	0.04 0.01 0.02
	С	13.70-13.88	As Received	Α	100.36 100.15 100.15	69.78 100.15 79.99	38.11 100.15 50.18	0.09 0.07 0.13	0.02 0.01 0.02	0.02 0.01 0.03
				А	100.15	79.46	49.51	0.15	0.02	0.03

NOTE: N/M - Not measured

NOTE: A dash (-) signifies that scale

did not register a reading

* I = IRREGULAR TEST D = DIAMETRAL TEST A = AXIAL TEST

Mean Is(50) - Axial tests	0.03
Mean Is(50) - Diametrical tests	0.01
Ia(50)	2.16
la(50)	2.16

Tested in accordance with ISRM (2007)

SUMMARY OF POINT LOAD TEST RESULTS

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)	TYPE OF TEST * (see below)	CORE DIAMETER (mm)	EQUIVALENT DIAMETER (mm)	PLATEN SEPARATION (mm)	FAILURE LOAD (kN)	Is (MPa)	Is(50) (MPa)
BH304	C	(m) 11.23-11.46	CONTENT	TEST * (see below) D A A	DIAMETER	DIAMETER	SEPARATION	LOAD		

NOTE: N/M - Not measured NOTE: A dash (-) signifies that scale

did not register a reading

* I = IRREGULAR TEST D = DIAMETRAL TEST A = AXIAL TEST

Mean Is(50) - Axial tests	0.02
Mean Is(50) - Diametrical tests	0.01
la(50)	1.97

Tested in accordance with ISRM (2007)

SUMMARY OF POINT LOAD TEST RESULTS

APPENDIX 9

Laboratory Test Results - Contamination (Soil)

Certificate Number 19-24411-1

24-Jan-20

Client Geotechnics LTD

203 Torrington Avenue

Tile Hill Coventry CV4 9AP

Our Reference 19-24411-1

Client Reference PN194054

Order No (not supplied)

Contract Title Exchange Square, Stockport

Description 4 Soil samples, 4 Leachate samples.

Date Received 29-Nov-19

Date Started 29-Nov-19

Date Completed 24-Jan-20

Test Procedures Identified by prefix DETSn (details on request).

Notes This report supersedes 19-24411, amendments.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Summary of Chemical Analysis Matrix Descriptions

Our Ref 19-24411-1 Client Ref PN194054

Sample ID Depth Lab No Completed	Matrix Description
----------------------------------	--------------------

TP01	0.5	1605649	06/12/2019	Dark brown sandy CLAY including odd rootlets
TP01	2.5	1605650	06/12/2019	Dark brown, sandy CLAY including odd rootlets
TP02	1.5	1605651	06/12/2019	Brown sandy CLAY including odd rootlets
TP02	2	1605652	06/12/2019	Dark brown sandy CLAY

Our Ref 19-24411-1 *Client Ref* PN194054

Lab No	1605649	1605650	1605651	1605652
Sample ID	TP01	TP01	TP02	TP02
Depth	0.50	2.50	1.50	2.00
Other ID				
Sample Type	SOIL	SOIL	SOIL	SOIL
Sampling Date	19/11/19	19/11/19	19/11/19	19/11/19
Sampling Time	n/s	n/s	n/s	n/s

Test	Method	LOD	Units				
Metals							
Arsenic	DETSC 2301#	0.2	mg/kg	6.4	26	9.7	12
Barium	DETSC 2301#	1.5	mg/kg	89	120	160	150
Beryllium	DETSC 2301#	0.2	mg/kg	0.5	0.9	0.6	0.5
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	0.2	1.1	0.2	0.2
Cadmium	DETSC 2301#	0.1	mg/kg	0.2	0.3	0.1	0.1
Chromium	DETSC 2301#	0.15	mg/kg	15	10	16	15
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	32	110	17	21
Lead	DETSC 2301#	0.3	mg/kg	31	170	14	23
Mercury	DETSC 2325#	0.05	mg/kg	0.11	0.65	< 0.05	0.06
Nickel	DETSC 2301#	1	mg/kg	19	21	19	17
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Vanadium	DETSC 2301#	0.8	mg/kg	20	24	19	18
Zinc	DETSC 2301#	1	mg/kg	61	67	45	42
Inorganics							
рН	DETSC 2008#		рН	6.6	5.0	7.0	7.3
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.1	0.7	< 0.1	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	0.3	< 0.1	< 0.1
Total Organic Carbon	DETSC 2084#	0.5	%	1.6	14	1.0	1.3
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	55	670	39	45

Our Ref 19-24411-1 Client Ref PN194054

Lab No	1605649	1605650	1605651	1605652
Sample ID	TP01	TP01	TP02	TP02
Depth	0.50	2.50	1.50	2.00
Other ID				
Sample Type	SOIL	SOIL	SOIL	SOIL
Sampling Date	19/11/19	19/11/19	19/11/19	19/11/19
Sampling Time	n/s	n/s	n/s	n/s

Test	Method	LOD	Units				
Petroleum Hydrocarbons							
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	6.6	< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	19	< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6	92	< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4	120	< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	240	< 10
TPH Ali/Aro Total	DETSC 3072*	10	mg/kg	< 10	< 10	240	< 10
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01

Our Ref 19-24411-1 Client Ref PN194054

Lab No	1605649	1605650	1605651	1605652
Sample ID	TP01	TP01	TP02	TP02
Depth	0.50	2.50	1.50	2.00
Other ID				
Sample Type	SOIL	SOIL	SOIL	SOIL
Sampling Date	19/11/19	19/11/19	19/11/19	19/11/19
Sampling Time	n/s	n/s	n/s	n/s

Test	Method	LOD	Units				
PAHs							
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	2.7	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	2.8	< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1	13	< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	11	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	0.1	61	< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	14	0.2	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	0.2	72	0.2	0.1
Pyrene	DETSC 3301	0.1	mg/kg	0.4	72	< 0.1	0.2
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	33	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	36	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	23	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	13	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	31	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	18	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	3.2	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	22	< 0.1	< 0.1
PAH Total	DETSC 3301	1.6	mg/kg	< 1.6	430	< 1.6	< 1.6
Phenols							
Phenol	DETSC 3451*	0.01	mg/kg	< 0.01	0.02	0.06	< 0.01
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	0.08	< 0.01
p-cresol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	0.08	< 0.01
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01

Our Ref 19-24411-1 *Client Ref* PN194054

Lab No	1605649	1605650	1605651	1605652
Sample ID	TP01	TP01	TP02	TP02
Depth	0.50	2.50	1.50	2.00
Other ID				
Sample Type	SOIL	SOIL	SOIL	SOIL
Sampling Date	19/11/19	19/11/19	19/11/19	19/11/19
Sampling Time	n/s	n/s	n/s	n/s

Test	Method	LOD	Units				
VOCs							
Vinyl Chloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,1 Dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Trans-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,1-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Cis-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Bromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Chloroform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,1,1-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,1-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Carbon tetrachloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Benzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Trichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dibromomethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Bromodichloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
cis-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
trans-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,1,2-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Tetrachloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,3-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Dibromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dibromoethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Chlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,1,1,2-tetrachloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
m+p-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
o-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01

1605652

1605650 1605651

Summary of Chemical Analysis Soil Samples

Our Ref 19-24411-1 *Client Ref* PN194054

1,4-dichlorobenzene

1,2-dichlorobenzene

1,2,4-trichlorobenzene

Hexachlorobutadiene

1,2,3-trichlorobenzene

1,2-dibromo-3-chloropropane

n-butylbenzene

MTBE

Contract Title Exchange Square, Stockport

		Sa	ample ID	TP01	TP01	TP02	TP02
			Depth	0.50	2.50	1.50	2.00
			Other ID				
			ple Type	SOIL	SOIL	SOIL	SOIL
			ing Date	19/11/19	19/11/19	19/11/19	19/11/19
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Styrene	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Bromoform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Isopropylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Bromobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,2,3-trichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
n-propylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
2-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,3,5-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
4-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Tert-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,2,4-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
sec-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
p-isopropyltoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
1,3-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

DETSC 3431

DETSC 3431

DETSC 3431

DETSC 3431

DETSC 3431

DETSC 3431

DETSC 3431

DETSC 3431*

Lab No 1605649

WASTE ACCEPTANCE CRITERIA TESTING **ANALYTICAL REPORT**

Our Ref 19-24411-1 Client Ref PN194054

Contract Title Exchange Square, Exchange Square, Stockport

Sample Id TP01 2.50

Test Results On Leachate

DETSC 2306 Zinc as Zn

DETSC 2055 Chloride as Cl

DETSC 2055* Fluoride as F

DETSC 2130 Phenol Index

Volume of Eluate VE2*

DETSC 2055 Sulphate as SO4

DETSC 2009* Total Dissolved Solids

Sample Numbers 1605650 1605653 1605654

Date Analysed 06/12/2019

3.785

103

1.53

391.9

1959.5

< 1

< 50

Test Results On Waste		
Determinand and Method Reference	Units	Result
DETSC 2084# Total Organic Carbon	%	14
DETSC 2003# Loss On Ignition	%	16
DETSC 3321# BTEX	mg/kg	< 0.04
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01
DETSC 3311# TPH (C10 - C40)	mg/kg	< 10
DETSC 3301 PAHs	mg/kg	430
DETSC 2008# pH	pH Units	5.0
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1

W	AC Limit Va	lues
Inert	SNRHW	Hazardous
Waste	0	Waste
3	5	6
n/a	n/a	10
6	n/a	n/a
1	n/a	n/a
500	n/a	n/a
100	n/a	n/a
n/a	>6	n/a
n/a	TBE	TBE
n/a	TBE	TBE

Conc in E	luate ug/l	Amount Leached* mg/kg				
2:1	8:1	LS2	LS10			
0.55	0.33	< 0.002	< 0.01			
16	33	0.03	0.3			
1.3	1	< 0.004	< 0.02			
0.31	< 0.25	< 0.02	< 0.1			
5.4	3	0.011	0.034			
< 0.01	< 0.01	< 0.0004	< 0.002			
< 1.1	< 1.1	< 0.02	< 0.1			
43	39	0.09	0.4			
0.18	0.26	< 0.01	< 0.05			
0.54	0.35	< 0.01	< 0.05			
0.56	0.33	< 0.006	< 0.03			
	2:1 0.55 16 1.3 0.31 5.4 < 0.01 < 1.1 43 0.18 0.54	0.55 0.33 16 33 1.3 1 0.31 < 0.25	2:1 8:1 LS2 0.55 0.33 < 0.002			

370

12000

110

46000

230000

< 100

0.833

380

10000

160

38000

190000

< 100

0.74

24

0.22

92

460

< 0.2

< 10

WAC Limit Values								
Limit values for LS10 Leachate								
Inert	SNRHW	Hazardous						
Waste	SINKHW	Waste						
0.5	2	25						
20	100	300						
0.04	1	5						
0.5	10	70						
2	50	100						
0.01	0.2	2						
0.5	10	30						
0.4	10	40						
0.5	10	50						
0.06	0.7	5						
0.1	0.5	7						
4	50	200						
800	15,000	25,000						
10	150	500						
1000	20,000	50,000						
4000	60,000	100,000						
1	n/a	n/a						
500	800	1000						

DETSC 2085 Dissolved Organic Carbon	4600	2400
Additional Information		
DETSC 2008 pH	7.1	6.7
DETSC 2009 Conductivity uS/cm	324	265
* Temperature*	17	18
Mass of Sample Kg*	0.140	
A A C C I - I / - *	0 4 4 0	

Mass of Sample Kg*	0.140
Mass of dry Sample Kg*	0.113
Stage 1	<u> </u>

Stage 1	
Volume of Leachant L2*	0.199
Volume of Eluate VE1*	0.168
Stage 2	·
Volume of Leachant L8*	0.903

TBE - To Be Evaluated SNRHW - Stable Non-Reactive Hazardous Waste

The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Disclaimer: Values are correct at time of issue.

^{*} DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 19-24411-1 Client Ref PN194054

Contract Title Exchange Square, Exchange Square, Stockport

Sample Id TP02 1.50

Sample Numbers 1605651 1605655 1605656 Date Analysed 06/12/2019

Test Results On Waste		
Determinand and Method Reference	Units	Result
DETSC 2084# Total Organic Carbon	%	1.0
DETSC 2003# Loss On Ignition	%	3.3
DETSC 3321# BTEX	mg/kg	< 0.04
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01
DETSC 3311# TPH (C10 - C40)	mg/kg	1400
DETSC 3301 PAHs	mg/kg	< 1.6
DETSC 2008# pH	pH Units	7.0
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1

WAC Limit Values						
Inert	SNRHW	Hazardous				
Waste	SINKHW	Waste				
3	5	6				
n/a	n/a	10				
6	n/a	n/a				
1	n/a	n/a				
500	n/a	n/a				
100	n/a	n/a				
n/a	>6	n/a				
n/a	TBE	TBE				
n/a	TBE	TBE				

Test Results On Leachate						
Determinand and Method Reference	Conc in E	luate ug/l	Amount Lea	Amount Leached* mg/kg		
Determinant and Method Reference	2:1	8:1	LS2	LS10		
DETSC 2306 Arsenic as As	0.43	0.4	< 0.002	< 0.01		
DETSC 2306 Barium as Ba	22	4.7	0.04	< 0.1		
DETSC 2306 Cadmium as Cd	0.07	< 0.03	< 0.004	< 0.02		
DETSC 2306 Chromium as Cr	0.28	< 0.25	< 0.02	< 0.1		
DETSC 2306 Copper as Cu	< 0.4	< 0.4	< 0.004	< 0.02		
DETSC 2306 Mercury as Hg	< 0.01	< 0.01	< 0.0004	< 0.002		
DETSC 2306 Molybdenum as Mo	< 1.1	< 1.1	< 0.02	< 0.1		
DETSC 2306 Nickel as Ni	2.3	< 0.5	< 0.02	< 0.1		
DETSC 2306 Lead as Pb	0.14	0.14	< 0.01	< 0.05		
DETSC 2306 Antimony as Sb	0.23	0.18	< 0.01	< 0.05		
DETSC 2306 Selenium as Se	0.25	< 0.25	< 0.006	< 0.03		
DETSC 2306 Zinc as Zn	24	1.6	0.048	0.053		
DETSC 2055 Chloride as Cl	4200	910	< 20	< 100		
DETSC 2055* Fluoride as F	170	< 100	0.34	0.28		
DETSC 2055 Sulphate as SO4	12000	2400	24	< 100		
DETSC 2009* Total Dissolved Solids	29000	9800	58	129.6		
DETSC 2130 Phenol Index	< 100	< 100	< 0.2	< 1		
DETSC 2085 Dissolved Organic Carbon	5800	2200	11.6	< 50		

WAC Limit Values							
Limit va	Limit values for LS10 Leachate						
Inert	SNRHW	Hazardous					
Waste	SINITION	Waste					
0.5	2	25					
20	100	300					
0.04	1	5					
0.5	10	70					
2	50	100					
0.01	0.2	2					
0.5	10	30					
0.4	10	40					
0.5	10	50					
0.06	0.7	5					
0.1	0.5	7					
4	50	200					
800	15,000	25,000					
10	150	500					
1000	20,000	50,000					
4000	60,000	100,000					
1	n/a	n/a					
500	800	1000					

TBE - To Be Evaluated SNRHW - Stable Non-Reactive Hazardous Waste

Additional Information		
DETSC 2008 pH	7.1	7.1
DETSC 2009 Conductivity uS/cm	41.1	14
* Temperature*	18	18
Mass of Sample Ka*	0.140	

Mass of Sample Kg* 0.140
Mass of dry Sample Kg* 0.119

 Stage 1
 0.216

 Volume of Leachant L2*
 0.216

 Volume of Eluate VE1*
 0.195

 Stage 2
 0.195

Volume of Leachant L8* 0.948
Volume of Eluate VE2* 0.888

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

^{*} DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

Summary of Asbestos Analysis Soil Samples

Our Ref 19-24411-1 *Client Ref* PN194054

Contract Title Exchange Square, Stockport

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
1605649	TP01 0.50	SOIL	NAD	none	Rebecca Burgess
1605650	TP01 2.50	SOIL	NAD	none	Rebecca Burgess
1605651	TP02 1.50	SOIL	NAD	none	Rebecca Burgess

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos.

Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos

Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: *
not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 19-24411-1 Client Ref PN194054

Contract Exchange Square, Stockport

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1605649	TP01 0.50 SOIL	19/11/19	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
1605650	TP01 2.50 SOIL	19/11/19	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
1605651	TP02 1.50 SOIL	19/11/19	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
1605652	TP02 2.00 SOIL	19/11/19	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
1605653	TP01 2.50 LEACHATE	19/11/19	GJ 250ml, GJ 60ml, PT 1L		
1605654	TP01 2.50 LEACHATE	19/11/19	GJ 250ml, GJ 60ml, PT 1L		
1605655	TP02 1.50 LEACHATE	19/11/19	GJ 250ml, GJ 60ml, PT 1L		
1605656	TP02 1.50 LEACHATE	19/11/19	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-

Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Appendix A - Details of Analysis

			Limit of Sample				
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 2002	Organic matter	%	0.1	Air Dried	No	Yes	Yes
DETSC 2003	Loss on ignition	%	0.01	Air Dried	No	Yes	Yes
DETSC 2008	pH	pH Units	1	Air Dried	No	Yes	Yes
DETSC 2024	Sulphide	mg/kg	10	Air Dried	No	Yes	Yes
DETSC 2076	Sulphate Aqueous Extract as SO4	mg/l	10	Air Dried	No	Yes	Yes
DETSC 2084	Total Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2084	Total Organic Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2119	Ammoniacal Nitrogen as N	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide free	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide total	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Phenol - Monohydric	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC 2130	Thiocyanate	mg/kg	0.6	Air Dried	No	Yes	Yes
DETSC 2321	Total Sulphate as SO4	%	0.01	Air Dried	No	Yes	Yes
DETSC 2321	Mercury	mg/kg	0.05	Air Dried	No	Yes	Yes
DETSC 3049	Sulphur (free)	mg/kg	0.75	Air Dried	No	Yes	Yes
DETSC2123	Boron (water soluble)	mg/kg	0.73	Air Dried	No	Yes	Yes
DETSC2123		mg/kg	0.2	Air Dried	No	Yes	Yes
	Arsenic Barium		1.5	Air Dried			Yes
DETSC2301		mg/kg	0.2		No No	Yes	
DETSC2301	Beryllium	mg/kg		Air Dried	No	Yes	Yes
DETSC2301	Cadmium Available	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cadmium	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cobalt	mg/kg	0.7	Air Dried	No	Yes	Yes
DETSC2301	Chromium	mg/kg	0.15	Air Dried	No	Yes	Yes
DETSC2301	Copper	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Manganese	mg/kg	20	Air Dried	No	Yes	Yes
DETSC2301	Molybdenum	mg/kg	0.4	Air Dried	No	Yes	Yes
DETSC2301	Nickel	mg/kg	1	Air Dried	No	Yes	Yes
DETSC2301	Lead	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC2301	Selenium	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC2301	Zinc	mg/kg	1	Air Dried	No	Yes	Yes
DETSC 3072	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	0.5	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	0.6	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETS 062	Benzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Ethylbenzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Toluene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	m+p Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	o Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3311	C10-C24 Diesel Range Organics (DRO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	C24-C40 Lube Oil Range Organics (LORO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	EPH (C10-C40)	mg/kg	10	As Received	No	Yes	Yes
	•	3. 5					

Limit of

Sample

Appendix A - Details of Analysis

			Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 3303	Acenaphthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Acenaphthylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(b)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(k)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(g,h,i)perylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Dibenzo(a,h)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Indeno(1,2,3-c,d)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	mg/kg	0.01	As Received	No	Yes	Yes

Method details are shown only for those determinands listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

Certificate Number 19-24415

06-Dec-19

Client Geotechnics LTD

203 Torrington Avenue

Tile Hill Coventry CV4 9AP

Our Reference 19-24415

Client Reference PN194054

Order No (not supplied)

Contract Title Stockport Inter

Description 6 Soil samples, 4 Leachate samples.

Date Received 29-Nov-19

Date Started 29-Nov-19

Date Completed 06-Dec-19

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

11.800

Adam Fenwick Contracts Manager

Summary of Chemical Analysis Matrix Descriptions

1605667

06/12/2019

Our Ref 19-24415
Client Ref PN194054
Contract Title Stockport Inter

1.7

BH302A

Sample ID	Depth	Lab No	Completed	Matrix Description
WS318	0.2	1605662	06/12/2019	Dark brown gravelly, clayey SAND
WS305	3	1605663	06/12/2019	Dark brown gravelly SAND (Possible made ground - brick)
WS308	1	1605664	06/12/2019	Dark brown clayey SAND
WS307	0.5	1605665	06/12/2019	Dark brown clayey SAND
WS307	2	1605666	06/12/2019	Dark brown gravelly SAND

Dark brown gravelly, clayey SAND (Possible made ground - brick)

Our Ref 19-24415 Client Ref PN194054 Contract Title Stockport Inter

Lab No	1605662	1605663	1605664	1605665	1605666	1605667
Sample ID	WS318	WS305	WS308	WS307	WS307	BH302A
Depth	0.20	3.00	1.00	0.50	2.00	1.70
Other ID						
Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sampling Date	n/s	n/s	n/s	n/s	n/s	n/s
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s
LOD Units						

		Sampii	ng rime[n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg	3.9	20	12	8.4	7.5	16
Barium	DETSC 2301#	1.5	mg/kg	36	140	150	58	54	69
Beryllium	DETSC 2301#	0.2	mg/kg	< 0.2	2.0	0.5	0.8	8.0	0.6
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	< 0.2	0.9	< 0.2	0.3	0.3	0.5
Cadmium	DETSC 2301#	0.1	mg/kg	0.5	0.2	1.6	0.2	0.3	< 0.1
Chromium	DETSC 2301#	0.15	mg/kg	4.3	11	16	13	21	11
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	150	120	59	53	17	64
Lead	DETSC 2301#	0.3	mg/kg	25	120	160	45	19	59
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	0.38	0.12	0.12	< 0.05	0.10
Nickel	DETSC 2301#	1	mg/kg	4.9	23	13	15	20	12
Selenium	DETSC 2301#	0.5	mg/kg	0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Vanadium	DETSC 2301#	0.8	mg/kg	5.2	39	16	20	30	23
Zinc	DETSC 2301#	1	mg/kg	49	91	230	53	54	34
Inorganics									
рН	DETSC 2008#		рН	8.2	8.0	7.9	8.2	7.9	7.5
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	0.3	< 0.1	< 0.1	0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Organic Carbon	DETSC 2084#	0.5	%		11	2.4	2.7		4.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	34	82	20	23	21	120
Petroleum Hydrocarbons			<u>-</u>						
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	1.8	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	2.1	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	4.0	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	76	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	84	< 10	< 10	< 10	< 10	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	4.7	6.0	< 0.9	< 0.9	< 0.9	< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	8.7	12	< 0.5	< 0.5	< 0.5	< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	16	38	< 0.6	< 0.6	< 0.6	< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	150	58	< 1.4	< 1.4	< 1.4	< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg	170	110	< 10	< 10	< 10	< 10
TPH Ali/Aro Total	DETSC 3072*	10	mg/kg	260	110	< 10	< 10	< 10	< 10
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Our Ref 19-24415
Client Ref PN194054
Contract Title Stockport Inter

Lab No	1605662	1605663	1605664	1605665	1605666	1605667
Sample ID	WS318	WS305	WS308	WS307	WS307	BH302A
Depth	0.20	3.00	1.00	0.50	2.00	1.70
Other ID						
Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sampling Date	n/s	n/s	n/s	n/s	n/s	n/s
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units						
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PAHs									
Naphthalene	DETSC 3301	0.1	mg/kg	0.3	29	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	3.0	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	1.0	33	0.1	< 0.1	< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	0.7	25	0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	3.9	130	0.6	0.2	< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	0.9	24	0.2	< 0.1	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	4.3	110	0.7	0.2	< 0.1	< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	4.4	110	0.7	0.3	< 0.1	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	1.9	45	0.4	0.1	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	2.1	49	0.4	0.2	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	1.3	30	0.2	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	0.7	16	0.2	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	1.8	42	0.4	0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	1.0	23	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	0.2	6.3	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	1.2	27	< 0.1	< 0.1	< 0.1	< 0.1
PAH Total	DETSC 3301	1.6	mg/kg	26	700	4.0	< 1.6	< 1.6	< 1.6
Phenols									
Phenol	DETSC 3451*	0.01	mg/kg	< 0.10	1.3	< 0.01	< 0.01	< 0.01	< 0.01
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg	< 0.10	< 0.10	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.10	< 0.10	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.10	1.1	< 0.01	< 0.01	< 0.01	< 0.01
p-cresol	DETSC 3451*	0.01	mg/kg	< 0.10	1.6	< 0.01	< 0.01	< 0.01	< 0.01
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.10	< 0.10	< 0.01	< 0.01	< 0.01	< 0.01
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.10	< 0.10	< 0.01	< 0.01	< 0.01	< 0.01
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.10	< 0.10	< 0.01	< 0.01	< 0.01	< 0.01
VOCs									
Vinyl Chloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1 Dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Trans-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Cis-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chloroform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,1-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Carbon tetrachloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Our Ref 19-24415 Client Ref PN194054 Contract Title Stockport Inter

Lab No	1605662	1605663	1605664	1605665	1605666	1605667
Sample ID	WS318	WS305	WS308	WS307	WS307	BH302A
Depth	0.20	3.00	1.00	0.50	2.00	1.70
Other ID						
Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sampling Date	n/s	n/s	n/s	n/s	n/s	n/s
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units						
Trichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibromomethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromodichloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
cis-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
trans-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,2-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tetrachloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dibromoethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,1,2-tetrachloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
m+p-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
o-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Styrene	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromoform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Isopropylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,3-trichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
n-propylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3,5-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
4-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tert-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,4-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
sec-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
p-isopropyltoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,4-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
n-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dibromo-3-chloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,4-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobutadiene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,3-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
MTBE	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Summary of Asbestos Analysis Soil Samples

Our Ref 19-24415 Client Ref PN194054 Contract Title Stockport Inter

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
1605662	WS318 0.20	SOIL	NAD	none	Colin Patrick
1605664	WS308 1.00	SOIL	NAD	none	Colin Patrick
1605665	WS307 0.50	SOIL	NAD	none	Colin Patrick
1605667	BH302A 1.70	SOIL	NAD	none	Colin Patrick

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos.

Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos

Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 19-24415 Client Ref PN194054 Contract Title Stockport Inter Sample Id WS308 1.00

Sample Numbers 1605664 1605668 1605669 Date Analysed 06/12/2019

Test Results On Waste		
Determinand and Method Reference	Units	Result
DETSC 2084# Total Organic Carbon	%	2.4
DETSC 2003# Loss On Ignition	%	4.0
DETSC 3321# BTEX	mg/kg	< 0.04
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01
DETSC 3311# TPH (C10 - C40)	mg/kg	< 10
DETSC 3301 PAHs	mg/kg	4.0
DETSC 2008# pH	pH Units	7.9
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1

WAC Limit Values					
Inert	SNRHW	Hazardous			
Waste	SINKHW	Waste			
3	5	6			
n/a	n/a	10			
6	n/a	n/a			
1	n/a	n/a			
500	n/a	n/a			
100	n/a	n/a			
n/a	>6	n/a			
n/a	TBE	TBE			
n/a	TBE	TBE			

Test Results On Leachate

Determinand and Method Reference	Conc in E	Conc in Eluate ug/l		Amount Leached* mg/kg	
Determinand and Method Reference	2:1	8:1	LS2	LS10	
DETSC 2306 Arsenic as As	1.8	1	0.004	0.011	
DETSC 2306 Barium as Ba	16	9.4	0.03	0.1	
DETSC 2306 Cadmium as Cd	0.06	< 0.03	< 0.004	< 0.02	
DETSC 2306 Chromium as Cr	1.4	0.52	< 0.02	< 0.1	
DETSC 2306 Copper as Cu	6.1	1.5	0.012	0.022	
DETSC 2306 Mercury as Hg	0.02	0.01	< 0.0004	< 0.002	
DETSC 2306 Molybdenum as Mo	1.7	< 1.1	< 0.02	< 0.1	
DETSC 2306 Nickel as Ni	< 0.5	< 0.5	< 0.02	< 0.1	
DETSC 2306 Lead as Pb	4.6	1.8	< 0.01	< 0.05	
DETSC 2306 Antimony as Sb	1.7	0.39	< 0.01	< 0.05	
DETSC 2306 Selenium as Se	0.46	< 0.25	< 0.006	< 0.03	
DETSC 2306 Zinc as Zn	7.7	5.9	0.015	0.062	
DETSC 2055 Chloride as Cl	3500	1000	< 20	< 100	
DETSC 2055* Fluoride as F	450	130	0.9	1.78	
DETSC 2055 Sulphate as SO4	4300	1700	< 20	< 100	
DETSC 2009* Total Dissolved Solids	76000	21000	152	291.8	
DETSC 2130 Phenol Index	< 100	< 100	< 0.2	< 1	
DETSC 2085 Dissolved Organic Carbon	10000	2900	20	< 50	

Limit values for LS10 Leachate				
Inert	SNRHW	Hazardous		
Waste	SINKHAN	Waste		
0.5	2	25		
20	100	300		
0.04	1	5		

WAC Limit Values

0.5 10 70 2 50 100 0.01 0.2 2 0.5 10 30 0.4 10 40 0.5 10 50 0.06 0.7 5 0.1 0.5 7 50 200 4 800 15,000 25,000 10 150 500 1000 20,000 50,000 4000 60,000 100,000 n/a 1 n/a 500 800 1000

TBE - To Be Evaluated SNRHW - Stable Non-Reactive Hazardous Waste

Additional	Information

DETSC 2008 pH	6.7	6.9
DETSC 2009 Conductivity uS/cm	109	29.5
* Temperature*	18	18
Mass of Sample Kg*	0.140	
Mass of dry Sample Kg*	0.120	
Stage 1	•	_
Volume of Leachant L2*	0.219	
Volume of Eluate VE1*	0.178	
Stage 2		_
Volume of Leachant L8*	0.957	
Volume of Eluate VE2*	0.907	

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

st DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 19-24415 Client Ref PN194054 Contract Title Stockport Inter Sample Id WS307 2.00

Sample Numbers 1605666 1605670 1605671 Date Analysed 06/12/2019

Test Results On Waste		
Determinand and Method Reference	Units	Result
DETSC 2084# Total Organic Carbon	%	< 0.5
DETSC 2003# Loss On Ignition	%	1.7
DETSC 3321# BTEX	mg/kg	< 0.04
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01
DETSC 3311# TPH (C10 - C40)	mg/kg	< 10
DETSC 3301 PAHs	mg/kg	< 1.6
DETSC 2008# pH	pH Units	7.9
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1

WAC Limit Values					
Inert	SNRHW	Hazardous			
Waste	SINULIAN	Waste			
3	5	6			
n/a	n/a	10			
6	n/a	n/a			
1	n/a	n/a			
500	n/a	n/a			
100	n/a	n/a			
n/a	>6	n/a			
n/a	TBE	TBE			
n/a	TBE	TBE			

Test Results On Leachate

Determinand and Method Reference	Conc in E	Conc in Eluate ug/l		Amount Leached* mg/kg	
Determinand and Method Reference	2:1	8:1	LS2	LS10	
DETSC 2306 Arsenic as As	0.35	0.28	< 0.002	< 0.01	
DETSC 2306 Barium as Ba	1.7	0.71	< 0.02	< 0.1	
DETSC 2306 Cadmium as Cd	< 0.03	< 0.03	< 0.004	< 0.02	
DETSC 2306 Chromium as Cr	0.4	< 0.25	< 0.02	< 0.1	
DETSC 2306 Copper as Cu	0.6	< 0.4	< 0.004	< 0.02	
DETSC 2306 Mercury as Hg	< 0.01	< 0.01	< 0.0004	< 0.002	
DETSC 2306 Molybdenum as Mo	< 1.1	< 1.1	< 0.02	< 0.1	
DETSC 2306 Nickel as Ni	< 0.5	< 0.5	< 0.02	< 0.1	
DETSC 2306 Lead as Pb	0.17	< 0.09	< 0.01	< 0.05	
DETSC 2306 Antimony as Sb	< 0.17	< 0.17	< 0.01	< 0.05	
DETSC 2306 Selenium as Se	0.8	< 0.25	< 0.006	< 0.03	
DETSC 2306 Zinc as Zn	9.6	2.6	0.019	0.038	
DETSC 2055 Chloride as Cl	4700	1300	< 20	< 100	
DETSC 2055* Fluoride as F	< 100	< 100	< 0.02	< 0.1	
DETSC 2055 Sulphate as SO4	8800	1600	< 20	< 100	
DETSC 2009* Total Dissolved Solids	47000	10000	94	162.7	
DETSC 2130 Phenol Index	< 100	< 100	< 0.2	< 1	
DETSC 2085 Dissolved Organic Carbon	5500	5600	11	55.8	

WAC Limit Values				
Limit values for LS10 Leachate				
Inert	Hazardous			

Limit values for LS10 Leachate					
Inert	SNRHW	Hazardous			
Waste	SINULIAN	Waste			
0.5	2	25			
20	100	300			
0.04	1	5			
0.5	10	70			
2	50	100			
0.01	0.2	2			
0.5	10	30			
0.4	10	40			
0.5	10	50			
0.06	0.7	5			
0.1	0.5	7			
4	50	200			
800	15,000	25,000			
10	150	500			
1000	20,000	50,000			
4000	60,000	100,000			
1	n/a	n/a			
500	800	1000			

TBE - To Be Evaluated SNRHW - Stable Non-Reactive Hazardous Waste

Additional Information

DETSC 2008 pH	6.8	7
DETSC 2009 Conductivity uS/cm	66.7	14.9
* Temperature*	18	18
Mass of Sample Kg*	0.120	
Mass of dry Sample Kg*	0.116	
Stage 1		-
Volume of Leachant L2*	0.227	
Volume of Eluate VE1*	0.196	
Stage 2		-
Volume of Leachant L8*	0.925	
Volume of Eluate VE2*	0.864	

The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Disclaimer: Values are correct at time of issue.

^{*} DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

Information in Support of the Analytical Results

Our Ref 19-24415 Client Ref PN194054 Contract Stockport Inter

Containers Received & Deviating Samples

Lab No Sample ID Sampled Containers Received Holding time exceeded for tests GJ 250ml, GJ 60ml, PT 1L Sample date not supplied, Anions 2:1 (365 days), Aliphatics/Aromatics (14 days), Boron (365 days), Mercury (365 days), LCP WS Boron (365 days), Metals ICP (365 days), ICP WS Boron (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), PAH FID (14 days), PH + Conductivity (7 days), Phenols MS (365 days), Cyanide/Mono pHoh (14 days), VOC (7 days) GJ 60ml, PT 1L Sample date not supplied, Anions 2:1 (365 days), Aliphatics/Aromatics (14 days), Boron (365 days), BTEX (14 days), Chromium, Hexavalent (365 days), Metals ICP (365 days), Metals ICP (365 days), Metals ICP (365 days), Metals ICP (365 days), Metals ICP (365 days), Metals ICP (365 days), Metals ICP (365 days), Metals ICP (365 days), Metals ICP (365 days), Metals ICP (365 days), Metals ICP (365 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), PH + Conductivity (7 days), Phenols MS (365 days), Cyanide/Mono pHoh (14 days), VOC (7 days)	ntainer for
GJ 250ml, GJ 60ml, PT 1L Sample date not supplied, Anions 2:1 (365 days), Aliphatics/Aromatics (14 days), Boron (365 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (365 days), Chromium, Hexavalent (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days), Cyanide/Mono pHoh (14 days), VOC (7 days) GJ 60ml, PT 1L Sample date not supplied, Anions 2:1 (365 days), Aliphatics/Aromatics (14 days), Boron (365 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (365 days), Chromium, Hexavalent (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days),	-4-
Aliphatics/Aromatics (14 days), Boron (365 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (365 days), ICP WS Boron (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days), Cyanide/Mono pHoh (14 days), VOC (7 days) GJ 60ml, PT 1L Sample date not supplied, Anions 2:1 (365 days), Aliphatics/Aromatics (14 days), Boron (365 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (365 days), ICP WS Boron (365 days), Mercury (365 days), ICP WS Boron (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days),	STS
BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (365 days), ICP WS Boron (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days), Cyanide/Mono pHoh (14 days), VOC (7 days) GJ 60ml, PT 1L Sample date not supplied, Anions 2:1 (365 days), Aliphatics/Aromatics (14 days), Boron (365 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (365 days), ICP WS Boron (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days),	
Mercury (365 days), ICP WS Boron (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days), Cyanide/Mono pHoh (14 days), VOC (7 days) GJ 60ml, PT 1L Sample date not supplied, Anions 2:1 (365 days), Aliphatics/Aromatics (14 days), Boron (365 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (365 days), ICP WS Boron (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days),	
Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days), Cyanide/Mono pHoh (14 days), VOC (7 days) GJ 60ml, PT 1L Sample date not supplied, Anions 2:1 (365 days), Aliphatics/Aromatics (14 days), Boron (365 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (365 days), ICP WS Boron (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days),	
Kone Cr6 (1095 days), Naphthalene (14 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days), Cyanide/Mono pHoh (14 days), VOC (7 days) GJ 60ml, PT 1L Sample date not supplied, Anions 2:1 (365 days), Aliphatics/Aromatics (14 days), Boron (365 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (365 days), ICP WS Boron (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days),	
FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days), Cyanide/Mono pHoh (14 days), VOC (7 days) WS305 3.00 SOIL GJ 60ml, PT 1L Sample date not supplied, Anions 2:1 (365 days), Aliphatics/Aromatics (14 days), Boron (365 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (365 days), ICP WS Boron (365 days), Metals ICP (365 days), Metals ICP (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days),	
MS (365 days), Cyanide/Mono pHoh (14 days), VOC (7 days) GJ 60ml, PT 1L Sample date not supplied, Anions 2:1 (365 days), Aliphatics/Aromatics (14 days), Boron (365 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (365 days), ICP WS Boron (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days),	
(7 days) GJ 60ml, PT 1L Sample date not supplied, Anions 2:1 (365 days), Aliphatics/Aromatics (14 days), Boron (365 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (365 days), ICP WS Boron (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days),	
Aliphatics/Aromatics (14 days), Boron (365 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (365 days), ICP WS Boron (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days),	
Aliphatics/Aromatics (14 days), Boron (365 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (365 days), ICP WS Boron (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days),	
BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (365 days), ICP WS Boron (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days),	
Mercury (365 days), ICP WS Boron (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days),	
Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days),	
Kone Cr6 (1095 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days),	
Organic Matter (Auto) (28 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days),	
pH + Conductivity (7 days), Phenols MS (365 days),	
1605664 WS308 1.00 SOIL GJ 250ml, GJ 60ml, PT 1L Sample date not supplied, Anions 2:1 (365 days),	
Aliphatics/Aromatics (14 days), ANC (1095 days),	
Boron (365 days), BTEX (14 days), Chromium,	
Hexavalent (365 days), Mercury (365 days), ICP WS	
Boron (365 days), Metals ICP	
Prep (365 days), Kone Cr6 (1095 days), Loss on	
Ignition (730 days), Naphthalene (14 days), Organic	
Matter (Auto) (28 days), PAH FID (14 days), PCB (30	
days), pH + Conductivity (7 days), Phenols MS (365	
days), Cyanide/Mono pHoh (14 days), EPH/TPH (14	
days), VOC (7 days)	
1605665 WS307 0.50 SOIL GJ 250ml, GJ 60ml, PT 1L Sample date not supplied, Anions 2:1 (365 days),	
Aliphatics/Aromatics (14 days), Boron (365 days),	
BTEX (14 days), Chromium, Hexavalent (365 days),	
Mercury (365 days), ICP WS Boron (365 days),	
Metals ICP (365 days), Metals ICP Prep (365 days),	
Kone Cr6 (1095 days), Naphthalene (14 days),	
Organic Matter (Auto) (28 days), PAH FID (14 days),	
pH + Conductivity (7 days), Phenols MS (365 days),	
Cyanide/Mono pHoh (14 days), VOC (7 days)	

Information in Support of the Analytical Results

Our Ref 19-24415 Client Ref PN194054 Contract Stockport Inter

					Inappropriate
		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1605666	WS307 2.00 SOIL		GJ 250ml, GJ 60ml, PT 1L	Sample date not supplied, Anions 2:1 (365 days),	
				Aliphatics/Aromatics (14 days), ANC (1095 days),	
				Boron (365 days), BTEX (14 days), Chromium,	
				Hexavalent (365 days), Mercury (365 days), ICP WS	
				Boron (365 days), Metals ICP (365 days), Metals ICP	
				Prep (365 days), Kone Cr6 (1095 days), Loss on	
				Ignition (730 days), Naphthalene (14 days), Organic	
				Matter (Auto) (28 days), PAH FID (14 days), PCB (30	
				days), pH + Conductivity (7 days), Phenols MS (365	
				days), Cyanide/Mono pHoh (14 days), EPH/TPH (14	
				days), VOC (7 days)	
1605667	BH302A 1.70 SOIL		GJ 250ml, GJ 60ml, PT 1L	Sample date not supplied, Anions 2:1 (365 days), Aliphatics/Aromatics (14 days), Boron (365 days),	
				BTEX (14 days), Chromium, Hexavalent (365 days),	
				Mercury (365 days), ICP WS Boron (365 days),	
				Metals ICP (365 days), Metals ICP Prep (365 days),	
				Kone Cr6 (1095 days), Naphthalene (14 days),	
				Organic Matter (Auto) (28 days), PAH FID (14 days),	
				pH + Conductivity (7 days), Phenols MS (365 days),	
				Cyanide/Mono pHoh (14 days), VOC (7 days)	
1605668	WS308 1.00 LEACHATE		GJ 250ml, GJ 60ml, PT 1L	Sample date not supplied	
1605669	WS308 1.00 LEACHATE		GJ 250ml, GJ 60ml, PT 1L	Sample date not supplied	
1605670	WS307 2.00 LEACHATE		GJ 250ml, GJ 60ml, PT 1L	Sample date not supplied	
1605671	WS307 2.00 LEACHATE		GJ 250ml, GJ 60ml, PT 1L	Sample date not supplied	

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Appendix A - Details of Analysis

			Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 2002	Organic matter	%	0.1	Air Dried	No	Yes	Yes
DETSC 2003	Loss on ignition	%	0.01	Air Dried	No	Yes	Yes
DETSC 2008	рН	pH Units	1	Air Dried	No	Yes	Yes
DETSC 2024	Sulphide	mg/kg	10	Air Dried	No	Yes	Yes
DETSC 2076	Sulphate Aqueous Extract as SO4	mg/l	10	Air Dried	No	Yes	Yes
DETSC 2084	Total Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2084	Total Organic Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2119	Ammoniacal Nitrogen as N	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide free	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide total	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Phenol - Monohydric	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC 2130	Thiocyanate	mg/kg	0.6	Air Dried	No	Yes	Yes
DETSC 2321	Total Sulphate as SO4	%	0.01	Air Dried	No	Yes	Yes
DETSC 2325	Mercury	mg/kg	0.05	Air Dried	No	Yes	Yes
DETSC 3049	Sulphur (free)	mg/kg	0.75	Air Dried	No	Yes	Yes
DETSC2123	Boron (water soluble)	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Arsenic	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Barium	mg/kg	1.5	Air Dried	No	Yes	Yes
DETSC2301	Beryllium	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Cadmium Available	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cadmium	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cobalt	mg/kg	0.7	Air Dried	No	Yes	Yes
DETSC2301	Chromium	mg/kg	0.15	Air Dried	No	Yes	Yes
DETSC2301	Copper	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Manganese	mg/kg	20	Air Dried	No	Yes	Yes
DETSC2301	Molybdenum	mg/kg	0.4	Air Dried	No	Yes	Yes
DETSC2301	Nickel	mg/kg	1	Air Dried	No	Yes	Yes
DETSC2301	Lead	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC2301	Selenium	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC2301	Zinc	mg/kg	1	Air Dried	No	Yes	Yes
DETSC 3072	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	0.5	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	0.6	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETS 062	Benzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Ethylbenzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Toluene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	m+p Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	o Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3311	C10-C24 Diesel Range Organics (DRO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	C24-C40 Lube Oil Range Organics (LORO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	EPH (C10-C40)	mg/kg	10	As Received	No	Yes	Yes

Limit of

Sample

Appendix A - Details of Analysis

			Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 3303	Acenaphthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Acenaphthylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(b)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(k)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(g,h,i)perylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Dibenzo(a,h)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Indeno(1,2,3-c,d)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	mg/kg	0.01	As Received	No	Yes	Yes

Method details are shown only for those determinands listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

Certificate Number 19-24561

06-Dec-19

Client Geotechnics LTD

203 Torrington Avenue

Tile Hill Coventry CV4 9AP

Our Reference 19-24561

Client Reference PN194054

Order No (not supplied)

Contract Title Exchange Square Stockport GI

Description 2 Soil samples.

Date Received 02-Dec-19

Date Started 02-Dec-19

Date Completed 06-Dec-19

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Our Ref 19-24561
Client Ref PN194054
Contract Title Exchange Square Stockport GI

Lab No	1606490	1606491
Sample ID	WS312	WS315
Depth	2.00	0.20
Other ID		
Sample Type	SOIL	SOIL
Sampling Date	22/11/19	22/11/19
Sampling Time	n/s	n/s

		Sampi	ing rime	n/s	n/s
Test	Method	LOD	Units		
Metals					
Arsenic	DETSC 2301#	0.2	mg/kg	7.3	11
Barium	DETSC 2301#	1.5	mg/kg	70	130
Beryllium	DETSC 2301#	0.2	mg/kg	0.5	0.4
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	< 0.2	0.2
Cadmium	DETSC 2301#	0.1	mg/kg	0.2	0.9
Chromium	DETSC 2301#	0.15	mg/kg	15	13
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	16	29
Lead	DETSC 2301#	0.3	mg/kg	9.8	220
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	0.11
Nickel	DETSC 2301#	1	mg/kg	19	9.4
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	1.2
Vanadium	DETSC 2301#	0.8	mg/kg	19	17
Zinc	DETSC 2301#	1	mg/kg	39	81
Inorganics	•	<u>'</u>	<u> </u>	<u>'</u>	
pH	DETSC 2008#		рН	8.2	8.3
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	0.2
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1
Total Organic Carbon	DETSC 2084#	0.5	%	< 0.5	
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	16	56
Petroleum Hydrocarbons	•			•	
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	0.02	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	0.02	0.02
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	0.02	0.02
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10
TPH Ali/Aro Total	DETSC 3072*	10	mg/kg	< 10	< 10
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01

Our Ref 19-24561 Client Ref PN194054 Contract Title Exchange Square Stockport GI

Lab No	1606490	1606491
Sample ID	WS312	WS315
Depth	2.00	0.20
Other ID		
Sample Type	SOIL	SOIL
Sampling Date	22/11/19	22/11/19
Sampling Time	n/s	n/s
LOD Units		

		Janipi	ing inne	11/5	11/5
Test	Method	LOD	Units		
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01
PAHs					
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
PAH Total	DETSC 3301	1.6	mg/kg	< 1.6	< 1.6
Phenols	•			•	
Phenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01
p-cresol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01
VOCs	•			•	
Vinyl Chloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1 Dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Trans-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Cis-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
2,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Bromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Chloroform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1,1-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Carbon tetrachloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Benzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01

Our Ref 19-24561
Client Ref PN194054
Contract Title Exchange Square Stockport GI

Lab No	1606490	1606491
Sample ID	WS312	WS315
Depth	2.00	0.20
Other ID		
Sample Type	SOIL	SOIL
Sampling Date	22/11/19	22/11/19
Sampling Time	n/s	n/s

Test	Method	LOD	Units		
Trichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Dibromomethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Bromodichloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
cis-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Toluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
trans-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1,2-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Tetrachloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,3-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Dibromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dibromoethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Chlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,1,1,2-tetrachloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Ethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
m+p-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
o-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Styrene	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01
Bromoform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Isopropylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Bromobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,3-trichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
n-propylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
2-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,3,5-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
4-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Tert-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,4-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
sec-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
p-isopropyltoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,3-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,4-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
n-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2-dibromo-3-chloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,4-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
Hexachlorobutadiene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
1,2,3-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01
MTBE	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01

Summary of Asbestos Analysis Soil Samples

Our Ref 19-24561 Client Ref PN194054

Contract Title Exchange Square Stockport GI

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
1606490	WS312 2.00	SOIL	NAD	none	Joanne Luscombe
1606491	WS315 0.20	SOIL	NAD	none	Joanne Luscombe

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 19-24561 Client Ref PN194054

Contract Exchange Square Stockport GI

Containers Received & Deviating Samples

		Date			Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1606490	WS312 2.00 SOIL	22/11/19	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
1606491	WS315 0.20 SOIL	22/11/19	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
Key: G-Glas	ss P-Plastic J-Jar T-Tub				

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Certificate Number 19-24723

11-Dec-19

Client Geotechnics LTD

203 Torrington Avenue

Tile Hill Coventry CV4 9AP

Our Reference 19-24723

Client Reference PN194054

Order No (not supplied)

Contract Title Stockport Interchange - Exchange Square

Description 12 Soil samples, 8 Leachate samples.

Date Received 04-Dec-19

Date Started 04-Dec-19

Date Completed 11-Dec-19

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Our Ref 19-24723 Client Ref PN194054

Lab No	1607332	1607333	1607334	1607335	1607336	1607337
Sample ID	WS316	WS316	WS306	WS309	WS309	WS310
Depth	0.20	2.00	0.50	0.20	1.50	0.50
Other ID						
Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sampling Date	n/s	n/s	20/11/19	20/11/19	20/11/19	13/11/19
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

		Sampi	ıng rimel	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg	35	20	23	27	4.9	21
Barium	DETSC 2301#	1.5	mg/kg	150	480	300	150	43	48
Beryllium	DETSC 2301#	0.2	mg/kg	0.8	0.7	0.7	1.2	0.5	0.4
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	0.9	0.4	0.3	0.7	0.3	< 0.2
Cadmium	DETSC 2301#	0.1	mg/kg	0.8	3.3	7.0	0.6	0.2	0.2
Chromium	DETSC 2301#	0.15	mg/kg	41	23	24	22	18	13
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	100	160	250	200	14	13
Lead	DETSC 2301#	0.3	mg/kg	160	850	950	160	23	14
Mercury	DETSC 2325#	0.05	mg/kg	0.37	0.40	0.28	0.50	< 0.05	< 0.05
Nickel	DETSC 2301#	1	mg/kg	26	20	17	31	22	12
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Vanadium	DETSC 2301#	0.8	mg/kg	26	22	21	35	24	14
Zinc	DETSC 2301#	1	mg/kg	120	570	760	290	77	49
Inorganics			•		•	·	·		
рН	DETSC 2008#		рН	5.9	7.9	8.1	6.3	6.6	7.9
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.5	0.5	1.2	0.7	< 0.1	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Organic Carbon	DETSC 2084#	0.5	%		2.2	2.2		< 0.5	
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	47	14	21	32	98	31
Petroleum Hydrocarbons	•		•	•			•	•	
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	0.02	< 0.01	0.10	1.1	0.46	0.47
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	0.03	< 0.01	0.03	0.03	0.03
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	0.02	0.06	0.01	0.08	0.10
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	5.9	1.7	< 0.9	< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	0.8	< 0.5	8.9	4.0	< 0.5	< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	5.3	< 0.6	9.1	6.4	< 0.6	< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	18	< 1.4	11	19	< 1.4	< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg	24	< 10	35	31	< 10	< 10
TPH Ali/Aro Total	DETSC 3072*	10	mg/kg	24	< 10	35	33	< 10	< 10
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Our Ref 19-24723 Client Ref PN194054

Lab No	1607332	1607333	1607334	1607335	1607336	1607337
Sample ID	WS316	WS316	WS306	WS309	WS309	WS310
Depth	0.20	2.00	0.50	0.20	1.50	0.50
Other ID						
Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sampling Date	n/s	n/s	20/11/19	20/11/19	20/11/19	13/11/19
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units	•			·	·	
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PAHs	•	,		•		·			
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	0.2	< 0.1	< 0.1	0.2	< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	0.3	0.1	< 0.1	0.2	< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	0.5	< 0.1	< 0.1	0.2	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	2.0	0.3	0.2	1.4	< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	0.6	< 0.1	< 0.1	0.4	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	3.9	0.6	0.4	2.4	< 0.1	0.1
Pyrene	DETSC 3301	0.1	mg/kg	4.1	0.6	0.4	2.6	< 0.1	0.2
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	1.8	0.3	0.3	1.1	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	2.0	0.3	0.2	1.3	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	1.3	0.2	0.2	1.3	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	0.8	0.1	0.2	0.5	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	1.8	0.4	0.3	1.2	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	1.0	0.2	0.2	0.7	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	0.1	< 0.1	0.2	0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	1.2	0.2	0.2	0.7	< 0.1	< 0.1
PAH Total	DETSC 3301	1.6	mg/kg	22	3.5	3.1	14	< 1.6	< 1.6
Phenols									
Phenol	DETSC 3451*	0.01	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg	0.03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
p-cresol	DETSC 3451*	0.01	mg/kg	0.04	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
VOCs	T								
Vinyl Chloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1 Dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Trans-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Cis-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chloroform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,1-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Carbon tetrachloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Our Ref 19-24723 Client Ref PN194054

Lab No	1607332	1607333	1607334	1607335	1607336	1607337
Sample ID	WS316	WS316	WS306	WS309	WS309	WS310
Depth	0.20	2.00	0.50	0.20	1.50	0.50
Other ID						
Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sampling Date	n/s	n/s	20/11/19	20/11/19	20/11/19	13/11/19
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

		Sampi	ıng Tıme [n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Trichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibromomethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromodichloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
cis-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
trans-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,2-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tetrachloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dibromoethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,1,2-tetrachloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
m+p-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
o-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Styrene	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromoform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Isopropylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,3-trichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
n-propylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3,5-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
4-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tert-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,4-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
sec-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
p-isopropyltoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,4-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
n-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dibromo-3-chloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,4-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobutadiene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,3-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
MTBE	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Our Ref 19-24723 Client Ref PN194054

Lab No	1607338	1607339	1607340	1607341	1607342	1607343
Sample ID	WS310	WS311	WS311	WS313	WS314	WS314
Depth	1.00	1.00	4.00	1.00	0.50	1.00
Other ID						
Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sampling Date	13/11/19	20/11/19	20/11/19	13/11/19	n/s	n/s
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units						
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg	11	11	9.5	18	20	26
Barium	DETSC 2301#	1.5	mg/kg	420	230	79	59	220	250
Beryllium	DETSC 2301#	0.2	mg/kg	0.6	0.6	0.5	0.4	1.1	1.3
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	0.4	0.3	0.4	0.3	0.7	0.7
Cadmium	DETSC 2301#	0.1	mg/kg	1.0	0.5	0.3	0.2	1.0	0.5
Chromium	DETSC 2301#	0.15	mg/kg	17	14	12	13	17	18
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	36	26	25	12	140	160
Lead	DETSC 2301#	0.3	mg/kg	97	70	35	16	190	190
Mercury	DETSC 2325#	0.05	mg/kg	0.08	0.07	0.08	< 0.05	2.0	2.7
Nickel	DETSC 2301#	1	mg/kg	17	14	16	12	23	24
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5	1.2	0.6	1.1	0.8
Vanadium	DETSC 2301#	0.8	mg/kg	21	19	17	13	28	35
Zinc	DETSC 2301#	1	mg/kg	97	81	95	47	180	130
Inorganics									
рН	DETSC 2008#		рН	7.7	7.9	7.6	7.9	6.0	5.7
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.2	< 0.1	0.2	0.1	1.8	3.0
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Organic Carbon	DETSC 2084#	0.5	%				< 0.5		
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	25	22	17	39	31	47
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	0.66	< 0.01	0.87
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	0.02	0.03	0.02	0.02	< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	0.05	0.01	0.01	0.02	0.06	0.10
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6	4.0
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	3.3
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10
TPH Ali/Aro Total	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Our Ref 19-24723 Client Ref PN194054

Lab No	1607338	1607339	1607340	1607341	1607342	1607343
Sample ID	WS310	WS311	WS311	WS313	WS314	WS314
Depth	1.00	1.00	4.00	1.00	0.50	1.00
Other ID						
Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sampling Date	13/11/19	20/11/19	20/11/19	13/11/19	n/s	n/s
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units	·	·	·	·		
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PAHs	•		-	•		•	•		
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	0.1	< 0.1	< 0.1	0.2	0.2
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	1.0	< 0.1	< 0.1	0.3	0.6
Acenaphthene	DETSC 3301	0.1	mg/kg	0.5	0.7	< 0.1	< 0.1	0.6	0.6
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	0.4	< 0.1	< 0.1	0.6	0.6
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1	1.3	< 0.1	< 0.1	4.1	4.7
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	1.8	< 0.1	< 0.1	0.8	0.9
Fluoranthene	DETSC 3301	0.1	mg/kg	0.2	19	0.1	< 0.1	6.8	7.9
Pyrene	DETSC 3301	0.1	mg/kg	0.2	24	0.1	< 0.1	6.6	7.4
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	10	< 0.1	< 0.1	2.7	3.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	10	< 0.1	< 0.1	3.5	4.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	0.1	6.4	< 0.1	< 0.1	2.2	2.7
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	0.1	4.0	< 0.1	< 0.1	1.5	1.6
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	0.1	10	< 0.1	< 0.1	2.8	3.3
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	0.2	5.3	< 0.1	< 0.1	1.4	1.9
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	1.3	< 0.1	< 0.1	0.2	0.3
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	0.1	5.8	< 0.1	< 0.1	1.8	2.0
PAH Total	DETSC 3301	1.6	mg/kg	1.9	100	< 1.6	< 1.6	36	42
Phenols			•						
Phenol	DETSC 3451*	0.01	mg/kg	0.01	< 0.01	< 0.01	< 0.01	0.04	< 0.01
4-Chloro-3-methylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	0.04	0.02
p-cresol	DETSC 3451*	0.01	mg/kg	0.01	< 0.01	< 0.01	< 0.01	0.07	0.02
2,6-Dimethylphenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,6-Dichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4,6-Trichlorophenol	DETSC 3451*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
VOCs									
Vinyl Chloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1 Dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Trans-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Cis-1,2-dichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chloroform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,1-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Carbon tetrachloride	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Our Ref 19-24723 Client Ref PN194054

Lab No	1607338	1607339	1607340	1607341	1607342	1607343
Sample ID	WS310	WS311	WS311	WS313	WS314	WS314
Depth	1.00	1.00	4.00	1.00	0.50	1.00
Other ID						
Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sampling Date	13/11/19	20/11/19	20/11/19	13/11/19	n/s	n/s
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

		Janipi	ing rime	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Trichloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibromomethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromodichloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
cis-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Toluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
trans-1,3-dichloropropene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,2-trichloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tetrachloroethylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3-dichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibromochloromethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dibromoethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,1,1,2-tetrachloroethane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
m+p-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
o-Xylene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Styrene	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromoform	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Isopropylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Bromobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,3-trichloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
n-propylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3,5-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
4-chlorotoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Tert-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,4-trimethylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
sec-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
p-isopropyltoluene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,3-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,4-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
n-butylbenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2-dibromo-3-chloropropane	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,4-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobutadiene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
1,2,3-trichlorobenzene	DETSC 3431	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
MTBE	DETSC 3431*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 19-24723 Client Ref PN194054

Contract Title Stockport Interchange - Exchange Square

Sample Id WS316 2.00

Sample Numbers 1607333 1607344 1607345

Date Analysed 11/12/2019

Test Results On Waste					
Determinand and Method Reference	Units	Result			
DETSC 2084# Total Organic Carbon	%	2.2			
DETSC 2003# Loss On Ignition	%	4.20			
DETSC 3321# BTEX	mg/kg	< 0.04			
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01			
DETSC 3311# TPH (C10 - C40)	mg/kg	< 10			
DETSC 3301 PAHs	mg/kg	3.5			
DETSC 2008# pH	pH Units	7.9			
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1			
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	<1			

WAC Limit Values						
Inert	SNRHW	Hazardous				
Waste	SINULIAN	Waste				
3	5	6				
n/a	n/a	10				
6	n/a	n/a				
1	n/a	n/a				
500	n/a	n/a				
100	n/a	n/a				
n/a	>6	n/a				
n/a	TBE	TBE				
n/a	TBE	TBE				

Test Results On Leachate

Determinand and Method Reference	Conc in E	luate ug/l	Amount Leached* mg/kg		
Determinand and Method Reference	2:1	8:1	LS2	LS10	
DETSC 2306 Arsenic as As	25	16	0.05	0.174	
DETSC 2306 Barium as Ba	180	25	0.36	0.5	
DETSC 2306 Cadmium as Cd	0.54	0.11	< 0.004	< 0.02	
DETSC 2306 Chromium as Cr	0.36	0.62	< 0.02	< 0.1	
DETSC 2306 Copper as Cu	2.9	2.2	0.006	0.023	
DETSC 2306 Mercury as Hg	< 0.01	< 0.01	< 0.0004	< 0.002	
DETSC 2306 Molybdenum as Mo	< 1.1	< 1.1	< 0.02	< 0.1	
DETSC 2306 Nickel as Ni	5.7	1	< 0.02	< 0.1	
DETSC 2306 Lead as Pb	0.14	0.85	< 0.01	< 0.05	
DETSC 2306 Antimony as Sb	0.55	0.55	< 0.01	< 0.05	
DETSC 2306 Selenium as Se	< 0.25	< 0.25	< 0.006	< 0.03	
DETSC 2306 Zinc as Zn	68	12	0.136	0.21	
DETSC 2055 Chloride as Cl	120000	8800	240	266.5	
DETSC 2055* Fluoride as F	< 100	< 100	< 0.02	< 0.1	
DETSC 2055 Sulphate as SO4	9400	3100	< 20	< 100	
DETSC 2009* Total Dissolved Solids	350000	36000	700	864	
DETSC 2130 Phenol Index	< 100	< 100	< 0.2	< 1	
DETSC 2085 Dissolved Organic Carbon	5900	3800	11.8	< 50	

WAC Limit Values				
Limit values for LS10 Leachate				

Limit values for LS10 Leachate						
Inert	SNRHW	Hazardous				
Waste	SINULIAN	Waste				
0.5	2	25				
20	100	300				
0.04	1	5				
0.5	10	70				
2	50	100				
0.01	0.2	2				
0.5	10	30				
0.4	10	40				
0.5	10	50				
0.06	0.7	5				
0.1	0.5	7				
4	50	200				
800	15,000	25,000				
10	150	500				
1000	20,000	50,000				
4000	60,000	100,000				
1	n/a	n/a				
500	800	1000				

TBE - To Be Evaluated SNRHW - Stable Non-Reactive Hazardous Waste

Additional	Information

Volume of Eluate VE2*

DETSC 2008 pH	6.1	6.6
DETSC 2009 Conductivity uS/cm	501	51.5
* Temperature*	17	17
Mass of Sample Kg*	0.140	
Mass of dry Sample Kg*	0.115	
Stage 1		-
Volume of Leachant L2*	0.206	
Volume of Eluate VE1*	0.185	
Stage 2		- -
Volume of Leachant L8*	0.922	

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

0.862

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 19-24723 Client Ref PN194054

Contract Title Stockport Interchange - Exchange Square

Sample Id WS309 1.50

Sample Numbers 1607336 1607346 1607347

Date Analysed 11/12/2019

Test Results On Waste						
Determinand and Method Reference	Units	Result				
DETSC 2084# Total Organic Carbon	%	< 0.5				
DETSC 2003# Loss On Ignition	%	2.30				
DETSC 3321# BTEX	mg/kg	< 0.04				
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01				
DETSC 3311# TPH (C10 - C40)	mg/kg	< 10				
DETSC 3301 PAHs	mg/kg	< 1.6				
DETSC 2008# pH	pH Units	6.6				
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1				
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	<1				

WAC Limit Values						
Inert	SNRHW	Hazardous				
Waste	SINULIAN	Waste				
3	5	6				
n/a	n/a	10				
6	n/a	n/a				
1	n/a	n/a				
500	n/a	n/a				
100	n/a	n/a				
n/a	>6	n/a				
n/a	TBE	TBE				
n/a	TBE	TBE				

WAC Limit Values

Limit values for LS10 Leachate

Test Results On Leachate

Determinand and Method Reference	Conc in E	Conc in Eluate ug/l		Amount Leached* mg/kg	
Determinand and Method Reference	2:1	8:1	LS2	LS10	
DETSC 2306 Arsenic as As	0.18	< 0.16	< 0.002	< 0.01	
DETSC 2306 Barium as Ba	11	1.6	0.02	< 0.1	
DETSC 2306 Cadmium as Cd	0.06	< 0.03	< 0.004	< 0.02	
DETSC 2306 Chromium as Cr	< 0.25	< 0.25	< 0.02	< 0.1	
DETSC 2306 Copper as Cu	0.7	< 0.4	< 0.004	< 0.02	
DETSC 2306 Mercury as Hg	< 0.01	< 0.01	< 0.0004	< 0.002	
DETSC 2306 Molybdenum as Mo	< 1.1	< 1.1	< 0.02	< 0.1	
DETSC 2306 Nickel as Ni	1	< 0.5	< 0.02	< 0.1	
DETSC 2306 Lead as Pb	< 0.09	< 0.09	< 0.01	< 0.05	
DETSC 2306 Antimony as Sb	< 0.17	< 0.17	< 0.01	< 0.05	
DETSC 2306 Selenium as Se	< 0.25	< 0.25	< 0.006	< 0.03	
DETSC 2306 Zinc as Zn	14	4.2	0.028	0.058	
DETSC 2055 Chloride as Cl	7400	1300	< 20	< 100	
DETSC 2055* Fluoride as F	< 100	< 100	< 0.02	< 0.1	
DETSC 2055 Sulphate as SO4	55000	5800	110	139	
DETSC 2009* Total Dissolved Solids	110000	19000	220	339.8	
DETSC 2130 Phenol Index	< 100	< 100	< 0.2	< 1	
DETSC 2085 Dissolved Organic Carbon	4200	< 2000	< 10	< 50	

Inert	SNRHW	Hazardous
Waste	SINKHAN	Waste
0.5	2	25
20	100	300
0.04	1	5
0.5	10	70
2	50	100
0.01	0.2	2
0.5	10	30
0.4	10	40
0.5	10	50
0.06	0.7	5
0.1	0.5	7
4	50	200
800	15,000	25,000

150

20,000

60,000

n/a

800

500

50,000

100,000

n/a

1000

TBE - To Be Evaluated

SNRHW - Stable Non-Reactive

Hazardous Waste

10

1000

4000

1

500

Additional Information

DETSC 2008 pH	6.2	6.4
DETSC 2009 Conductivity uS/cm	152	27.1
* Temperature*	17	17
Mass of Sample Kg*	0.130	
Mass of dry Sample Kg*	0.118	
C1 4		="

Stage 1

Volume of Leachant L2*	0.225
Volume of Eluate VE1*	0.195
Channa 2	

Stage 2

Volume of Leachant L8*	0.948
Volume of Eluate VE2*	0.897

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 19-24723 Client Ref PN194054

Contract Title Stockport Interchange - Exchange Square

Sample Id WS310 0.50

Sample Numbers 1607337 1607348 1607349

Date Analysed 11/12/2019

Test Results On Waste				
Determinand and Method Reference	Units	Result		
DETSC 2084# Total Organic Carbon	%	< 0.5		
DETSC 2003# Loss On Ignition	%	1.30		
DETSC 3321# BTEX	mg/kg	< 0.04		
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01		
DETSC 3311# TPH (C10 - C40)	mg/kg	< 10		
DETSC 3301 PAHs	mg/kg	< 1.6		
DETSC 2008# pH	pH Units	7.9		
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1		
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	<1		

WAC Limit Values			
Inert	SNRHW	Hazardous	
Waste	SINULIAN	Waste	
3	5	6	
n/a	n/a	10	
6	n/a	n/a	
1	n/a	n/a	
500	n/a	n/a	
100	n/a	n/a	
n/a	>6	n/a	
n/a	TBE	TBE	
n/a	TBE	TBE	

Test Results On Leachate

Conc in Eluate ug/l Amount Leached* mg/kg				
Determinand and Method Reference				
	2:1	8:1	LS2	LS10
DETSC 2306 Arsenic as As	0.33	0.35	< 0.002	< 0.01
DETSC 2306 Barium as Ba	17	13	0.03	0.14
DETSC 2306 Cadmium as Cd	< 0.03	< 0.03	< 0.004	< 0.02
DETSC 2306 Chromium as Cr	0.65	< 0.25	< 0.02	< 0.1
DETSC 2306 Copper as Cu	1.3	0.9	< 0.004	< 0.02
DETSC 2306 Mercury as Hg	< 0.01	< 0.01	< 0.0004	< 0.002
DETSC 2306 Molybdenum as Mo	1.6	< 1.1	< 0.02	< 0.1
DETSC 2306 Nickel as Ni	< 0.5	< 0.5	< 0.02	< 0.1
DETSC 2306 Lead as Pb	0.54	0.38	< 0.01	< 0.05
DETSC 2306 Antimony as Sb	0.93	0.28	< 0.01	< 0.05
DETSC 2306 Selenium as Se	< 0.25	< 0.25	< 0.006	< 0.03
DETSC 2306 Zinc as Zn	< 1.3	< 1.3	< 0.002	< 0.01
DETSC 2055 Chloride as Cl	1600	780	< 20	< 100
DETSC 2055* Fluoride as F	440	110	0.88	1.68
DETSC 2055 Sulphate as SO4	7700	1600	< 20	< 100
DETSC 2009* Total Dissolved Solids	82000	44000	164	506.9
DETSC 2130 Phenol Index	< 100	< 100	< 0.2	< 1
DETSC 2085 Dissolved Organic Carbon	4500	2800	< 10	< 50

WAC Limit Values		
Limit values for LS10 Leachate		
Inert	Hazardous	

Limit values for LS10 Leachate			
Inert	SNRHW	Hazardous	
Waste	SINKHAA	Waste	
0.5	2	25	
20	100	300	
0.04	1	5	
0.5	10	70	
2	50	100	
0.01	0.2	2	
0.5	10	30	
0.4	10	40	
0.5	10	50	
0.06	0.7	5	
0.1	0.5	7	
4	50	200	
800	15,000	25,000	
10	150	500	
1000	20,000	50,000	
4000	60,000	100,000	
1	n/a	n/a	
500	800	1000	

TBE - To Be Evaluated SNRHW - Stable Non-Reactive Hazardous Waste

Additional Information

Volume of Leachant L8*

Volume of Eluate VE2*

DE 13C 2008 PH	0.8	7.6
DETSC 2009 Conductivity uS/cm	117	63.1
* Temperature*	17	17
Mass of Sample Kg*	0.130	
Mass of dry Sample Kg*	0.122	
Stage 1	•	_
Volume of Leachant L2*	0.235	
Volume of Eluate VE1*	0.214	
Stage 2		-

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

0.973

0.923

^{*} DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 19-24723 Client Ref PN194054

Contract Title Stockport Interchange - Exchange Square

Sample Id WS311 1.00

Sample Numbers 1607339 1607350 1607351

Date Analysed 10/12/2019

Test Results On Waste			
Determinand and Method Reference	Units	Result	
DETSC 2084# Total Organic Carbon	%	1.0	
DETSC 2003# Loss On Ignition	%	2.90	
DETSC 3321# BTEX	mg/kg	< 0.04	
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01	
DETSC 3311# TPH (C10 - C40)	mg/kg	340.0	
DETSC 3301 PAHs	mg/kg	100.0	
DETSC 2008# pH	pH Units	7.9	
DETSC 2073* Acid Neutralisation Capacity (pH4)	mol/kg	< 1	
DETSC 2073* Acid Neutralisation Capacity (pH7)	mol/kg	< 1	

W	WAC Limit Values										
Inert	SNRHW	Hazardous									
Waste	SINULIAN	Waste									
3	5	6									
n/a	n/a	10									
6	n/a	n/a									
1	n/a	n/a									
500	n/a	n/a									
100	n/a	n/a									
n/a	>6	n/a									
n/a	TBE	TBE									
n/a	TBE	TBE									

Test Results On Leachate

Determinand and Method Reference	Conc in E	luate ug/l	Amount Leached* mg/kg			
Determinand and Method Reference	2:1	8:1	LS2	LS10		
DETSC 2306 Arsenic as As	0.93	0.45	< 0.002	< 0.01		
DETSC 2306 Barium as Ba	8.6	4.1	< 0.02	< 0.1		
DETSC 2306 Cadmium as Cd	< 0.03	< 0.03	< 0.004	< 0.02		
DETSC 2306 Chromium as Cr	0.78	0.26	< 0.02	< 0.1		
DETSC 2306 Copper as Cu	5.1	1.2	0.01	< 0.02		
DETSC 2306 Mercury as Hg	< 0.01	< 0.01	< 0.0004	< 0.002		
DETSC 2306 Molybdenum as Mo	3.1	< 1.1	< 0.02	< 0.1		
DETSC 2306 Nickel as Ni	0.6	< 0.5	< 0.02	< 0.1		
DETSC 2306 Lead as Pb	0.97	0.33	< 0.01	< 0.05		
DETSC 2306 Antimony as Sb	0.47	< 0.17	< 0.01	< 0.05		
DETSC 2306 Selenium as Se	0.33	< 0.25	< 0.006	< 0.03		
DETSC 2306 Zinc as Zn	3.7	7	0.007	0.065		
DETSC 2055 Chloride as Cl	3600	1000	< 20	< 100		
DETSC 2055* Fluoride as F	340	< 100	0.68	0.55		
DETSC 2055 Sulphate as SO4	7800	1400	< 20	< 100		
DETSC 2009* Total Dissolved Solids	94000	20000	188	319.2		
DETSC 2130 Phenol Index	< 100	< 100	< 0.2	< 1		
DETSC 2085 Dissolved Organic Carbon	14000	2800	28	< 50		

WA	AC Limit Values	
Limit valu	ues for LS10 Leachate	
-		

Limit val	ues for LS10) Leachate
Inert	SNRHW	Hazardous
Waste	SINULIAN	Waste
0.5	2	25
20	100	300
0.04	1	5
0.5	10	70
2	50	100
0.01	0.2	2
0.5	10	30
0.4	10	40
0.5	10	50
0.06	0.7	5
0.1	0.5	7
4	50	200
800	15,000	25,000
10	150	500
1000	20,000	50,000
4000	60,000	100,000
1	n/a	n/a
500	800	1000

TBE - To Be Evaluated SNRHW - Stable Non-Reactive Hazardous Waste

Additional information		
DETSC 2008 pH	7.2	7.2
DETSC 2009 Conductivity uS/cm	135	28
* Temperature*	17	18
Mass of Sample Kg*	0.140	
Mass of dry Sample Kg*	0.122	
Stage 1	,	-
Volume of Leachant L2*	0.227	
Volume of Eluate VE1*	0.197	
Stage 2		-
Volume of Leachant L8*	0.979	
Volume of Eluate VE2*	0.928	

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

Summary of Asbestos Analysis Soil Samples

Our Ref 19-24723 Client Ref PN194054

Contract Title Stockport Interchange - Exchange Square

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
1607332	WS316 0.20	SOIL	NAD	none	Colin Patrick
1607333	WS316 2.00	SOIL	NAD	none	Colin Patrick
1607334	WS306 0.50	SOIL	NAD	none	Colin Patrick
1607335	WS309 0.20	SOIL	NAD	none	Colin Patrick
1607336	WS309 1.50	SOIL	NAD	none	Colin Patrick
1607337	WS310 0.50	SOIL	NAD	none	Colin Patrick
1607339	WS311 1.00	SOIL	NAD	none	Colin Patrick
1607341	WS313 1.00	SOIL	NAD	none	Colin Patrick
1607342	WS314 0.50	SOIL	NAD	none	Colin Patrick

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos.

Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos

Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 19-24723 Client Ref PN194054

Contract Stockport Interchange - Exchange Square

Containers Received & Deviating Samples

Contain	iers neceived & L	Date	inpics		Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1607332	WS316 0.20 SOIL	·	GJ 250ml, GJ 60ml, PT 1L	Sample date not supplied, Anions 2:1 (365 days), Aliphatics/Aromatics (14 days), Boron (365 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (365 days), ICP WS Boron (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days), Cyanide/Mono pHoh (14 days), VOC (7 days)	
1607333	WS316 2.00 SOIL		GJ 250ml, GJ 60ml, PT 1L	Sample date not supplied, Anions 2:1 (365 days), Aliphatics/Aromatics (14 days), ANC (1095 days), Boron (365 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (365 days), ICP WS Boron (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Loss on Ignition (730 days), Naphthalene (14 days), Organic Matter (Auto) (28 days), PAH FID (14 days), PCB (30 days), pH + Conductivity (7 days), Phenols MS (365 days), Cyanide/Mono pHoh (14 days), EPH/TPH (14 days), VOC (7 days)	
1607334	WS306 0.50 SOIL	20/11/19	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
1607335	WS309 0.20 SOIL	20/11/19	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
1607336	WS309 1.50 SOIL	20/11/19	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
1607337	WS310 0.50 SOIL	13/11/19	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX (14 days), Naphthalene (14 days), PAH FID (14 days), pH + Conductivity (7 days), Cyanide/Mono pHoh (14 days), EPH/TPH (14 days), VOC (7 days)	
1607338	WS310 1.00 SOIL	13/11/19	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX (14 days), Naphthalene (14 days), PAH FID (14 days), pH + Conductivity (7 days), Cyanide/Mono pHoh (14 days), VOC (7 days)	
1607339	WS311 1.00 SOIL	20/11/19	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
1607340	WS311 4.00 SOIL	20/11/19	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days), VOC (7 days)	
1607341	WS313 1.00 SOIL	13/11/19	GJ 250ml, GJ 60ml, PT 1L	Aliphatics/Aromatics (14 days), BTEX (14 days), Naphthalene (14 days), PAH FID (14 days), pH + Conductivity (7 days), Cyanide/Mono pHoh (14 days), VOC (7 days)	
1607342	WS314 0.50 SOIL		GJ 250ml, GJ 60ml, PT 1L	Sample date not supplied, Anions 2:1 (365 days), Aliphatics/Aromatics (14 days), Boron (365 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (365 days), ICP WS Boron (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days), Cyanide/Mono pHoh (14 days), VOC (7 days)	

Inappropriate

Information in Support of the Analytical Results

Our Ref 19-24723 Client Ref PN194054

Contract Stockport Interchange - Exchange Square

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1607343	WS314 1.00 SOIL		GJ 250ml, GJ 60ml, PT 1L	Sample date not supplied, Anions 2:1 (365 days), Aliphatics/Aromatics (14 days), Boron (365 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (365 days), ICP WS Boron (365 days), Metals ICP (365 days), Metals ICP Prep (365 days), Kone Cr6 (1095 days), Naphthalene (14 days), PAH FID (14 days), pH + Conductivity (7 days), Phenols MS (365 days), Cyanide/Mono pHoh (14 days), VOC (7 days)	
1607344	WS316 2.00 LEACHATE		GJ 250ml, GJ 60ml, PT 1L	Sample date not supplied	
1607345	WS316 2.00 LEACHATE		GJ 250ml, GJ 60ml, PT 1L	Sample date not supplied	
1607346	WS309 1.50 LEACHATE	20/11/19	GJ 250ml, GJ 60ml, PT 1L		
1607347	WS309 1.50 LEACHATE	20/11/19	GJ 250ml, GJ 60ml, PT 1L		
1607348	WS310 0.50 LEACHATE	13/11/19	GJ 250ml, GJ 60ml, PT 1L		
1607349	WS310 0.50 LEACHATE	13/11/19	GJ 250ml, GJ 60ml, PT 1L		
1607350	WS311 1.00 LEACHATE	20/11/19	GJ 250ml, GJ 60ml, PT 1L		
1607351	WS311 1.00 LEACHATE	20/11/19	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

APPENDIX 10

Laboratory Test Results - Contamination (Groundwater)

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Geotechnics
Unit 1B
Borders Industrial Park
River Lane
Chester
Cheshire
CH4 8RJ

Attention: Colin Dodd

Date: 31st January, 2020

Your reference : PN194054

Our reference : Test Report 20/1035 Batch 1

Location : Exchange Square, Stockport

Date samples received : 24th January, 2020

Status: Final report

Issue:

Eight samples were received for analysis on 24th January, 2020 of which seven were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Below

Paul Boden BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Geotechnics Client Name: Report : Liquid PN194054

Reference:

Location: Exchange Square, Stockport

Colin Dodd Contact: Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

EMT Job No: 20/1035 H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

EMT Job No:	20/1035						H=H ₂ SO ₄ , 2	Z=ZNAC, N=	inaoh, hin=	:HNU ₃			
EMT Sample No.	1-4	5-8	9-11	12-15	16-19	20-23	24-27]		
Sample ID	BH303	BH304	BH305	BH306	WS314	WS315	WS316						
Depth											Diana		-t fII
COC No / misc												e attached r ations and a	
Containers	VPG	VPG	V P	VPG	VPG	VPG	VPG						
Sample Date	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020	22/01/2020						
Sample Type				Ground Water									
Batch Number	1	1	1	1	1	1	1				LOD/LOR	Units	Method No.
Date of Receipt	24/01/2020	24/01/2020	24/01/2020	24/01/2020	24/01/2020	24/01/2020	24/01/2020						140.
Dissolved Arsenic#	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5				<2.5	ug/l	TM30/PM14
Dissolved Boron	59	47	44	67	114	40	72				<12	ug/l	TM30/PM14
Dissolved Cadmium #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM30/PM14
Total Dissolved Chromium #	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5				<1.5	ug/l	TM30/PM14
Dissolved Copper#	<7	<7	<7	<7	<7	<7	<7				<7	ug/l	TM30/PM14
Dissolved Lead #	<5	<5	<5	<5	<5	<5	<5				<5	ug/l	TM30/PM14
Dissolved Mercury#	<1	<1	<1	<1	<1	<1	<1				<1	ug/l	TM30/PM14
Dissolved Nickel #	<2	2	<2	2	8	3	12				<2	ug/l	TM30/PM14
Dissolved Selenium #	<3 5	<3 3	<3 5	<3 10	<3	<3	<3 24				<3 <3	ug/l	TM30/PM14 TM30/PM14
Dissolved Zinc #	5	3	5	10	12	<3	24				<3	ug/l	TIVISO/FIVIT4
PAH MS													
Naphthalene#	<0.1	<0.1	5.0	<0.1	0.1	<0.1	<0.1				<0.1	ug/l	TM4/PM30
Acenaphthylene #	<0.013	<0.013	0.291	<0.013	<0.013	<0.013	<0.013				<0.013	ug/l	TM4/PM30
Acenaphthene #	<0.013	<0.013	0.535	<0.013	0.015	<0.013	<0.013				<0.013	ug/l	TM4/PM30
Fluorene #	<0.014	<0.014	1.018	<0.014	<0.014	<0.014	<0.014				<0.014	ug/l	TM4/PM30
Phenanthrene #	<0.011	0.013	1.361	<0.011	0.028	<0.011	<0.011				<0.011	ug/l	TM4/PM30
Anthracene #	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013				<0.013	ug/l	TM4/PM30
Fluoranthene#	<0.012	0.022	0.098	<0.012	0.029	<0.012	<0.012				<0.012	ug/l	TM4/PM30
Pyrene #	<0.013	0.041	0.170	<0.013	0.035	<0.013	<0.013				<0.013	ug/l	TM4/PM30
Benzo(a)anthracene #	<0.015	<0.015	0.017	<0.015	<0.015	<0.015	<0.015				<0.015	ug/l	TM4/PM30
Chrysene#	<0.011	<0.011	0.031	<0.011	0.015	<0.011	<0.011				<0.011	ug/l	TM4/PM30
Benzo(bk)fluoranthene #	<0.018	<0.018	0.018	<0.018	0.018	<0.018	<0.018				<0.018	ug/l	TM4/PM30
Benzo(a)pyrene #	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016				<0.016	ug/l	TM4/PM30
Indeno(123cd)pyrene #	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011				<0.011	ug/l	TM4/PM30
Dibenzo(ah)anthracene#	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				<0.01	ug/l	TM4/PM30
Benzo(ghi)perylene #	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011				<0.011	ug/l	TM4/PM30
PAH 16 Total #	<0.195	<0.195	8.539	<0.195	0.240	<0.195	<0.195				<0.195	ug/l	TM4/PM30
Benzo(b)fluoranthene	<0.01	<0.01	0.01	<0.01	0.01	<0.01	<0.01				<0.01	ug/l	TM4/PM30
Benzo(k)fluoranthene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				<0.01	ug/l	TM4/PM30
PAH Surrogate % Recovery	75	77	82	82	82	78	79				<0	%	TM4/PM30
Methyl Tertiary Butyl Ether #	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1				<0.1	ug/l	TM15/PM10
Benzene #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM15/PM10
Toluene #	<5	<5	<5	<5	<5	<5	<5				<5	ug/l	TM15/PM10
Ethylbenzene #	<1	<1	7	<1	<1	<1	<1				<1	ug/l	TM15/PM10
m/p-Xylene #	<2	<2	55	<2	<2	<2	<2				<2	ug/l	TM15/PM10
o-Xylene #	<1	<1	73	<1	<1	<1	<1				<1	ug/l	TM15/PM10
Surrogate Recovery Toluene D8	106	104	113	105	89	88	91				<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	111	111	117	110	96	92	95				<0	%	TM15/PM10
											<u> </u>		

Client Name: Geotechnics Report : Liquid

Reference: PN194054

Location: Exchange Square, Stockport

Contact: Colin Dodd Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

EMT Job No: 20/1035 H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HNO₃

EMT Job No:	20/1035						H=H ₂ SO ₄ , 2	Z=ZIIAC, IN=	inaon, nin	-HINU3	_		
EMT Sample No.	1-4	5-8	9-11	12-15	16-19	20-23	24-27						
Sample ID	BH303	BH304	BH305	BH306	WS314	WS315	WS316						
Depth											DI		
COC No / misc												e attached n ations and a	
Containers		VPG	V P	VPG	VPG	VPG	VPG						
Sample Date													
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water						1
Batch Number	1	1	1	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	24/01/2020	24/01/2020	24/01/2020	24/01/2020	24/01/2020	24/01/2020	24/01/2020						No.
TPH CWG													
Aliphatics													
>C5-C6#	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM36/PM12
>C6-C8#	<10	<10	52	<10	<10	<10	<10				<10	ug/l	TM36/PM12
>C8-C10 #	<10	<10	386	<10	<10	<10	<10				<10	ug/l	TM36/PM12 TM5/PM16/PM30
>C10-C12# >C12-C16#	<5 <10	<5 <10	193 850	<5 <10	<5 <10	<5 <10	<5 <10				<5 <10	ug/l ug/l	TM5/PM16/PM30 TM5/PM16/PM30
>C12-C16 >C16-C21#	<10	<10	1160	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
>C21-C35#	<10	<10	320	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
Total aliphatics C5-35 #	<10	<10	2961	<10	<10	<10	<10				<10	ug/l	TM5/TM36/PM12/PM16/PM30
Aromatics													
>C5-EC7#	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM36/PM12
>EC7-EC8#	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM36/PM12
>EC8-EC10#	<10	<10	128	<10	<10	<10	<10				<10	ug/l	TM36/PM12
>EC10-EC12#	<5	<5	454	<5	<5	<5	<5				<5	ug/l	TM5/PM16/PM30
>EC12-EC16#	<10	<10	620	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
>EC16-EC21#	<10	<10	480	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
>EC21-EC35#	<10	<10	<10	<10	<10	<10	<10				<10	ug/l	TM5/PM16/PM30
Total aromatics C5-35 #	<10 <10	<10 <10	1682 4643	<10 <10	<10 <10	<10 <10	<10 <10				<10 <10	ug/l ug/l	TM5/TM38/PM12/PM16/PM30 TM5/TM38/PM12/PM16/PM30
Total aliphatics and aromatics(C5-35) #	<10	V10	4043	V10	<10	V10	V10				V10	ug/i	
Total Phenols HPLC	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15				<0.15	mg/l	TM26/PM0
Sulphate as SO4 #	58.1	65.5	78.5	54.0	126.6	66.8	94.7				<0.5	mg/l	TM38/PM0
Free Cyanide #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM89/PM0
Total Cyanide #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM89/PM0
Ammoniacal Nitrogen as N#	0.04	<0.03	<0.03	0.70	0.04	<0.03	7.38				<0.03	mg/l	TM38/PM0
Hexavalent Chromium	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006				<0.006	mg/l	TM38/PM0
Sulphide	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01				<0.01	mg/l	TM107/PM0
pH#	7.58	7.51	7.85	7.21	7.08	7.35	6.89				<0.01	pH units	TM73/PM0

Client Name: Geotechnics

Reference: PN194054

Location: Exchange Square, Stockport

Contact: Colin Dodd EMT Job No: 20/1035

VOC Report : Liquid

EMT Job No:	20/1035											
EMT Sample No.	1-4	5-8	9-11	12-15	16-19	20-23	24-27]		
Sample ID	BH303	BH304	BH305	BH306	WS314	WS315	WS316					
·												
Depth											e attached n ations and a	
COC No / misc Containers	VPG	VPG	V P	VPG	VPG	VPG	VPG			abbievie	allorio aria a	oronymo
Sample Date	22/01/2020		22/01/2020	-	22/01/2020							
Sample Type	Ground Water		Ground Water			Ground Water	Ground Water			ł		
Batch Number	1	1	1	1	1	1	1					Method
Date of Receipt	24/01/2020		24/01/2020			24/01/2020				LOD/LOR	Units	No.
VOC MS		_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Dichlorodifluoromethane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Methyl Tertiary Butyl Ether #	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1			<0.1	ug/l	TM15/PM10
Chloromethane #	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Vinyl Chloride #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	ug/l	TM15/PM10
Bromomethane	<1	<1	<1	<1	<1	<1	<1			<1	ug/l	TM15/PM10
Chloroethane #	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Trichlorofluoromethane #	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,1-Dichloroethene (1,1 DCE) #	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Dichloromethane (DCM) # trans-1-2-Dichloroethene #	<5 <3	<5 <3	<5 <3	<5 <3	<5 <3	<5 <3	<5 <3			<5 <3	ug/l ug/l	TM15/PM10 TM15/PM10
trans-1-2-Dichloroethene 1,1-Dichloroethane#	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
cis-1-2-Dichloroethene #	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
2,2-Dichloropropane	<1	<1	<1	<1	<1	<1	<1			<1	ug/l	TM15/PM10
Bromochloromethane #	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Chloroform#	<2	<2	10	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,1,1-Trichloroethane#	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,1-Dichloropropene #	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Carbon tetrachloride #	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,2-Dichloroethane#	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Benzene #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM15/PM10
Trichloroethene (TCE)#	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10 TM15/PM10
1,2-Dichloropropane * Dibromomethane *	<2 <3	<2 <3	<2 <3	<2 <3	<2 <3	<2 <3	<2 <3			<2 <3	ug/l	TM15/PM10
Bromodichloromethane #	<2	<2	<2	<2	<2	<2	<2			<2	ug/l ug/l	TM15/PM10
cis-1-3-Dichloropropene	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Toluene #	<5	<5	<5	<5	<5	<5	<5			<5	ug/l	TM15/PM10
trans-1-3-Dichloropropene	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,1,2-Trichloroethane #	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Tetrachloroethene (PCE) #	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,3-Dichloropropane #	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Dibromochloromethane #	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,2-Dibromoethane #	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Chlorobenzene#	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,1,1,2-Tetrachloroethane * Ethylbenzene *	<2 <1	<2 <1	<2 7	<2 <1	<2 <1	<2 <1	<2 <1			<2 <1	ug/l ug/l	TM15/PM10 TM15/PM10
m/p-Xylene #	<2	<2	55	<2	<2	<2	<2			<2	ug/l	TM15/PM10
o-Xylene #	<1	<1	73	<1	<1	<1	<1			<1	ug/l	TM15/PM10
Styrene	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Bromoform#	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
Isopropylbenzene #	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,1,2,2-Tetrachloroethane	<4	<4	<4	<4	<4	<4	<4			<4	ug/l	TM15/PM10
Bromobenzene #	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,2,3-Trichloropropane #	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Propylbenzene #	<3	<3	7	<3	<3	<3	<3			<3	ug/l	TM15/PM10
2-Chlorotoluene #	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,3,5-Trimethylbenzene * 4-Chlorotoluene *	<3	<3 <3	45	<3	<3	<3	<3 <3			<3	ug/l	TM15/PM10 TM15/PM10
4-Chlorotoluene " tert-Butylbenzene #	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3	<3 <3			<3 <3	ug/l ug/l	TM15/PM10 TM15/PM10
1,2,4-Trimethylbenzene #	<3	<3	79	<3	<3	<3	<3			<3	ug/l	TM15/PM10
sec-Butylbenzene#	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
4-Isopropyltoluene #	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,3-Dichlorobenzene #	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,4-Dichlorobenzene#	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
n-Butylbenzene #	<3	<3	7	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,2-Dichlorobenzene #	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
1,2-Dibromo-3-chloropropane	<2	<2	<2	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,2,4-Trichlorobenzene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Hexachlorobutadiene	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM15/PM10
Naphthalene	<2	<2	11	<2	<2	<2	<2			<2	ug/l	TM15/PM10
1,2,3-Trichlorobenzene	<3 106	<3 104	<3 113	<3 105	<3 80	<3 88	<3 91			<3	ug/l %	TM15/PM10
Surrogate Recovery Toluene D8 Surrogate Recovery 4-Bromofluorobenzene	106 111	104	113 117	105 110	89 96	92	91			<0 <0	%	TM15/PM10 TM15/PM10
	111	1 111	117	110	JU	JZ	33	l .		\ U	/0	. 1911 10/11 1911 10

Notification of Deviating Samples

Client Name: Geotechnics Matrix : Liquid

Reference: PN194054

Location: Exchange Square, Stockport

Contact: Colin Dodd

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
20/1035	1	BH305		9-11	EPH	Sample received in inappropriate container

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 20/1035

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is guoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 20/1035

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

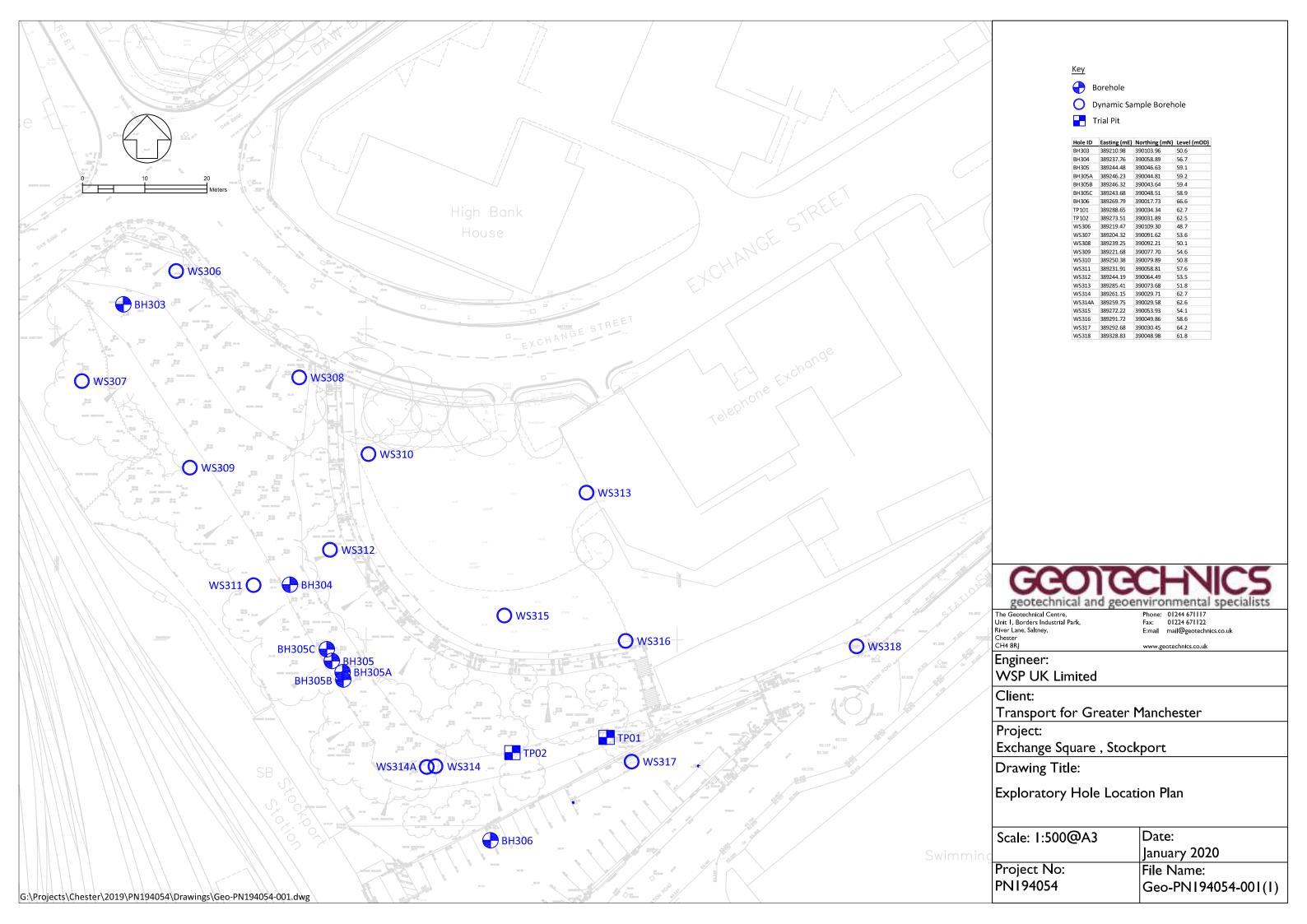
Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range
	· · · · · · · · · · · · · · · · · · ·

EMT Job No: 20/1035


Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM4	Modified USEPA 8270 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM4	Modified USEPA 8270 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5	Modified 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16/PM30	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE/Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5/TM36	please refer to TM5 and TM36 for method details	PM12/PM16/PM30	please refer to PM16/PM30 and PM12 for method details	Yes			
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.				
TM15	Modified USEPA 8260. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM36	Modified US EPA method 8015B. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co-elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results can be confirmed using GCMS.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes			

EMT Job No: 20/1035

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.				
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.	Yes			
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM0	No preparation is required.	Yes			
TM107	Determination of Sulphide/Thiocyanate by Skalar Continuous Flow Analyser	PM0	No preparation is required.				

APPENDIX II

Exploratory Hole Location Plan

APPENDIX 12

Investigation Techniques and General Notes

©

INTRODUCTION

The following brief review of Ground Investigation techniques, generally used as part of most Site Investigations in the UK, summarises their methodology, advantages and limitations. Detailed descriptions of the techniques are available and can be provided on request. This review should be read in conjunction with the accompanying General Notes.

TRIAL PITS

The trial pit is amongst the simplest yet most effective means of identifying shallow ground conditions on a site. Its advantages include simplicity, speed, potential accuracy and cost-effectiveness. The trial pit is most commonly formed using a back-acting excavator which can typically determine ground conditions to some 4 metres below ground level. Hand excavation is often used to locate, expose and detail existing foundations, features or services. In general, it is difficult to extend pits significantly below the water table in predominantly granular soils, where flows can cause instability. Unless otherwise stated, the trial pits will not have been provided with temporary side support during their construction. Under such circumstances, entrance into the pit is not permitted and hence observations will have been made from the ground surface and samples taken from the excavator bucket.

Where access for personnel is required to allow close observation of the exposed strata, the taking of samples and the carrying out of in situ tests, the sides of the trial pits (Observation Pits in BS 5930:2015) will be made safe using temporary supports or the sides battered back to a stable angle. Some limited access to such Trial Pits (Observation Pits) at depths less than I m may be allowed in stable conditions or where the sides are benched or battered back to a safe angle.

Trends in strata type, level and thickness can be determined, shear surfaces identified and the behaviour of plant, excavation sides and excavated materials can be related to the construction process. They are particularly valuable in land slip investigations. Some types of in situ test can be undertaken in such pits and large disturbed or block samples obtained.

CABLE PERCUSSION BORING

The light Cable Percussion technique of soft ground boring, typically at a diameter of 150mm, is a well-established simple and flexible method of boring vertical holes and generally allows data to be obtained in respect of strata conditions other than rock. A tubular cutter (for cohesive soils) or shell with a flap valve (for granular soils) is repeatedly lifted and dropped using a winch and rope operating from an "A" frame. Soil which enters these tools is regularly removed and either sampled for subsequent examination or test, or laid to one side for later removal off site and licensed disposal or, if permitted by the Client, use as backfill. Steel casing will have been used to prevent collapse of the borehole sides where necessary. A degree of disturbance of soil and mixing of layers is inevitable and the presence of very thin layers of different soils within a particular stratum may not be identified. Changes in strata type can only be detected on recognition of a change in soil samples at the surface, after the interface has been passed. For the foregoing reasons, depth measurements should not be considered to be more accurate than 0.10 metre. The technique can determine ground conditions to depths in excess of 30 metres under suitable circumstances and usually causes less surface disturbance than trial pitting.

In cohesive soils cylindrical samples are retrieved by driving or pushing in 100mm nominal diameter tubes. In soft soils, piston sampling or vane testing may be undertaken. In granular soils and often in cohesive materials, in situ Standard Penetration Tests (SPT's) are performed. The SPT records the number of standard blows required to drive a 50mm diameter open or cone ended probe for 300mm after an initial 150mm penetration. A modified method of recording is used in denser strata. Small disturbed samples are obtained throughout.

ROTARY DRILLING

Rotary Drilling to produce cores by rotating an annular diamond-impregnated tube or barrel into the ground is the technique most appropriate to the forming of site investigation boreholes through rock or other hard strata. It has the advantage of being able to be used vertically or at an angle. Core diameters of less than 100mm are most common for site investigation purposes. Core is normally retrieved in plastic lining tubes. A flushing fluid such as air, water or foam is used to cool the bit and carry cuttings to the surface. Depths in excess of 60 metres can be achieved under suitable circumstances using rotary techniques, with minimal surface disturbance.

Examination of cores allows detailed rock description and generally enables angled discontinuity surfaces to be observed. However, vertical holes do not necessarily reveal the presence of vertical or near-vertical fissures or joint discontinuities. The core type and/or techniques used will depend on the ground conditions. Where open hole rotary drilling is employed, descriptions of strata result from examination at the surface of small particles ejected from the borehole in the flushing medium. In consequence, no indication of fissuring, bedding, consistency or degree of weathering can be obtained.

DYNAMIC SAMPLING

This technique involves the driving of an open-ended tube into the ground and retrieval of the soil which enters the tube. It was previously called window or windowless sampling. The term "window sample" arose from the original device which had a "window" or slot cut into the side of the tube through which samples were taken. This was superseded by the use of a thin-walled plastic liner to retrieve the soil sample from within a sampler (windowless sampling) which has a solid wall. Line diameters range from 36 to 86mm. Such samples can be used for qualitative logging, selection of samples for classification and chemical analysis and for obtaining a rudimentary assessment of strength.

Driving devices can be hand-held or machine mounted and the drive tubes are typically in 1m lengths. Depending on the type of rig used, the hole formed can be cased to prevent collapse of the borehole sides. Where the type of rig does not allow the insertion of casing, the success of this technique can be limited when soils and groundwater conditions are such that the sides of the hole collapse on withdrawal of the sampler. Obstructions within the ground, the density of the material or its strength can also limit the depth and rate of penetration of this light-weight investigation technique. Nevertheless, it is a valuable tool where access is constrained such as within buildings or on embankments. Depths of up to 10m can be achieved in suitable circumstances depending on the rig type but depths of 5m to 6m are more common.

EXPLORATORY HOLE RECORDS

The data obtained by these techniques are generally presented on Trial Pit, Borehole, Drillhole or Dynamic Sample Records. The descriptions of strata result from information gathered from a number of sources which may include published geological data, preliminary field observations and descriptions, in situ test results, laboratory test results and specimen descriptions. A key to the symbols and abbreviations used accompanies the records. The descriptions on the exploratory hole records accommodate but may not necessarily be identical to those on any preliminary records or the laboratory summaries.

The records show ground conditions at the exploratory hole locations. The degree to which they can be used to represent conditions between or beyond such holes, however, is a matter for geological interpretation rather than factual reporting and the associated uncertainties must be recognised.

DYNAMIC PROBING

This technique typically measures the number of blows of a standard weight falling over a standard height to advance a cone-ended rod over sequential standard distances (typically 100mm). Some devices measure the penetration of the probe per standard blow. It is essentially a profiling tool and is best used in conjunction with other investigation techniques where site-specific correlation can be used to delineate the distribution of soft or loose soils or the upper horizon of a dense or strong layer such as rock.

Both machine-driven and hand-driven equipment is available, the selection depending upon access restrictions and the depth of penetration required. It is particularly useful where access for larger equipment is not available, disturbance is to be minimised or where there are cost constraints. No samples are recovered and some techniques leave a sacrificial cone head in the ground. As with other lightweight techniques, progress is limited in strong or dense soils. The results are presented both numerically and graphically. Depths of up to 10m are commonly achieved in suitable circumstances.

The hand-driven DCP probing device has been calibrated by the Highways Agency to provide a profile of CBR values over a range of depths.

<u>INSTRUMENTATION</u>

The most common form of instrument used in site investigation is either the standpipe or else the standpipe piezometer which can be installed in investigation holes. They are used to facilitate monitoring of groundwater levels and water sampling over a period of time following site work. Normally a standpipe would be formed using rigid plastic tubing which has been perforated or slotted over much of its length whilst a standpipe piezometer would have a filter tip which would be placed at a selected level and the hole sealed above and sometimes below to isolate the zone of interest. Groundwater levels are determined using an electronic "dip meter" to measure the depth to the water surface from ground level. Piezometers can also be used to measure permeability. They are simple and inexpensive instruments for long term monitoring but response times can limit their use in tidal areas and access to the ground surface at each instrument is necessary. Remote reading requires more sophisticated hydraulic, electronic or pneumatic equipment.

Settlement can be monitored using surface or buried target plates whilst lateral movement over a range of depths is monitored using slip indicator or inclinometer equipment.

- 1. The report is prepared for the exclusive use of the Client named in the document and copyright subsists with Geotechnics Limited. Prior written permission must be obtained to reproduce all or part of the report. It is prepared on the understanding that its contents are only disclosed to parties directly involved in the current investigation, preparation and development of the site.
- Further copies may be obtained with the Client's written permission, from Geotechnics Limited with whom the master copy of the document will be retained.
- 3. The report and/or opinion is prepared for the specific purpose stated in the document and in relation to the nature and extent of proposals made available to Geotechnics Limited at that time. Re-consideration will be necessary should those details change. The recommendations should not be used for other schemes on or adjacent to the site without further reference to Geotechnics Limited.
- The assessment of the significance of the factual data, where called for, is provided to assist the Client and their Engineer and/or Advisers in the preparation of their designs.
- 5. The report is based on the ground conditions encountered in the exploratory holes together with the results of field and laboratory testing in the context of the proposed development. The data from any commissioned desk study and site reconnaissance are also drawn upon. There may be special conditions appertaining to the site, however, which are not revealed by the investigation and which may not be taken into account in the report.
- 6. Methods of construction and/or design other than those proposed by the designers or referred to in the report may require consideration during the evolution of the proposals and further assessment of the geotechnical and any geoenvironmental data would be required to provide discussion and evaluations appropriate to these methods.
- 7. The accuracy of results reported depends upon the technique of measurement, investigation and test used and these values should not be regarded necessarily as characteristics of the strata as a whole (see accompanying notes on Investigation Techniques). Where such measurements are critical, the technique of investigation will need to be reviewed and supplementary investigation undertaken in accordance with the advice of the Company where necessary.
- 8. The samples selected for laboratory test are prepared and tested in accordance with the relevant Clauses and Parts of BS EN ISO 17892 and BS 1377 Parts 1 to 8, where appropriate, in Geotechnics Limited's UKAS accredited Laboratory, where possible. A list of tests is given.
- Tests requiring the use of another laboratory having UKAS accreditation where possible are identified.
- Any unavoidable variations from specified procedures are identified in the report.
- Specimens are cut vertically, where this is relevant and can be identified unless otherwise stated
- 12. All the data required by the test procedures are recorded on individual test sheets but the results in the report are presented in summary form to aid understanding and assimilation for design purposes. Where all details are required, these can be made available.
- 13. Whilst the report may express an opinion on possible configurations of strata between or beyond exploratory holes, or on the possible presence of features based on either visual, verbal, written, cartographical, photographic or published evidence, this is for guidance only and no liability can be accepted for its accuracy.

- 14. The Code of Practice for Ground Investigations BS 5930:2015 calls for man-made soils to be described as Anthropogenic Ground with soils placed in an un-controlled manner classified as Made Ground and soils placed in a controlled manner as Fill. In view of the difficulty in always accurately determining the origin of manmade soils in exploratory holes, Geotechnics Limited classify such materials as Made Ground. Where soils can be clearly identified as being placed in a controlled manner then further classification of the soils as Fill has been added to the Exploratory Hole Records.
- 15. Classification of man-made soils is based on the inspection of retrieved samples or exposed excavations. Where it is obvious that foreign matter such as paper, plastic or metal is present, classification is clear. Frequently, however, for man-made soils that arise from the adjacent ground or from the backfilling of excavations, their visual characteristics can closely resemble those of undisturbed ground. Other evidence such as site history, exploratory hole location or other tests may need to be drawn upon to provide clarification. For these reasons, classification of soils on the exploratory hole records as either Made Ground or naturally occurring strata, the boundary between them and any interpretation that this gives rise to should be regarded as provisional and subject to re-evaluation in the light of further data.
- 16. The classification of materials as Topsoil is generally based on visual description and should not be interpreted to mean that the material so described complies with the criteria for Topsoil used in BS 3882:2015. Specific testing would be necessary where such a definition is a requirement.
- 17. Ground conditions should be monitored during the construction of the works and the report should be re-evaluated in the light of these data by the supervising geotechnical engineers.
- 18. Any comments on groundwater conditions are based on observations made at the time of the investigation, unless specifically stated otherwise. It should be noted, however, that the observations are subject to the method and speed of boring, drilling or excavation and that groundwater levels will vary due to seasonal or other effects.
- 19. Any bearing capacities for conventional spread foundations which are given in the report and interpreted from the investigation are for bases at a minimum depth of Im below finished ground level in naturally occurring strata and at broadly similar levels throughout individual structures, unless otherwise stated. Typically they are based on serviceability criteria taking account of an assessment of the shear strength and/or density data obtained by the investigation. The foundations should be designed in accordance with the good practice embodied in BS 8004:2015 Foundations, supplemented for housing by NHBC Standards. Foundation design is an iterative process and bearing pressures may need adjustment or other measures may need to be taken in the context of final layouts and levels prior to finalisation of proposals.
- Unless specifically stated, the investigation does not take account
 of the possible effects of mineral extraction or of gases from fill or
 natural sources within, below or outside the site.
- 21. The costs or economic viability of the proposals referred to in the report, or of the solutions put forward to any problems encountered, will depend on very many factors in addition to geotechnical or geoenvironmental considerations and hence their evaluation is outside the scope of the report.

8 First Street Manchester M15 4RP

wsp.com