DRAINAGE STRATEGY REPORT FOR 10 EVELINA ROAD, NUNHEAD, LONDON, SE15 2DX

DOCUMENT NUMBER - C2465-R1-REV-A

Prepared by

Contents

1.	INT	RODUCTION	3
-	1.1	Appointment	3
-	1.2	Objectives	3
-	1.3	Limitations	3
2.	SUS	STAINABLE URBAN DRAINAGE SYSTEMS	4
3.	PR	OPOSED SUDS SOLUTION	8
4.	PR	OPOSED FOUL DRAINAGE STRATEGY1	.0
5.	ТІМ	IESCALE AND MAINTENANCE OF WORKS1	.1
6.	CO	NCLUSIONS1	.7

APPENDICES

APPENDIX A – SURFACE WATER RUN OFF CALCULATIONS

APPENDIX B – DRAWINGS

1. INTRODUCTION

1.1 Appointment

Nimbus Engineering Consultants Ltd have been appointed by Toucan Lofts Limited to provide a proposed Drainage Strategy solution on the management of Foul and Surface Water run off at 10 Evelina Road, Nunhead, London, SE15 2DX.

1.2 Objectives

This report will address the concerns raised by the Borough and provide details on a suitable drainage strategy.

1.3 Limitations

The general limitations of this report are:

- A number of data and information sources have been used to prepare this report.
 Whilst Nimbus Engineering believes them to be trustworthy, Nimbus Engineering is unable to guarantee the accuracy of data and information that has been provided by others;
- This report has been prepared using best data and information that was available at the time of writing. There is the potential for further information or data to become available, leading to changes in the conclusions drawn by this report, for which Nimbus Engineering cannot be held responsible.

2. SUSTAINABLE URBAN DRAINAGE SYSTEMS

Surface water arising from a developed site should, as far as is practicable, be managed in a sustainable manner to mimic the surface water flows arising from the site prior to the proposed development, while reducing the flood risk to the site itself and elsewhere, taking climate change into account.

Reducing the rate of surface water discharge from urban sites is one of the most effective ways of reducing and managing flood risk.

Traditional piped surface water systems work by removing surface water from our developments as quickly as possible, however this can cause various adverse impacts:

- Increased downstream flooding, and sudden rises in flow rates and water levels in local water courses.
- Reduction in groundwater levels and dry weather flows in watercourses.
- Reduce amenity and adversely affect biodiversity due to the surface water run-off containing contaminants such as oil, organic matter and toxic materials.

SuDS are defined as a sequence of management principles and control structures designed to drain surface water in a more sustainable fashion than conventional piped

drainage techniques. SuDS should utilise the natural landscape of an area which as well as slowing down the rate of runoff provides a number of environmental, ecological and social benefits.

These include:

Protection and enhancement of water quality – As well as providing on-site attenuation, SuDS treat the water, resulting in an improved quality of water leaving the site. This is achieved when the water passes through fine soils and the roots of specially selected plants, pollutants washed off the hard landscaping by rainfall will be safely removed before the water reaches the natural receiving water course.

- A sympathetic approach to the environmental setting by providing opportunities to create habitats for flora and fauna in urban watercourses and open spaces.
- Meeting the amenity and social needs of the local community and residents in the creation of attractive green spaces.

The various types of SuDS include:

Permeable paving	
Soakaways;	
Swales and basins;	
Bioretention/ rain gardens;	
Green roofs and rainwater re- use;	

Infiltration trenches and filter drains	
Ponds and wetlands.	

Preferably a combination of these techniques should be used as part of the surface water management train, and it is important for all stakeholders, such as developers, architects, landscape architects and engineers to work together at the planning stage in order to determine a feasible solution.

3. PROPOSED SUDS SOLUTION

The total site area is 212m², with the impermeable areas at the existing site being approximately 212m². Following the development at this site, the impermeable areas will have decreased to 203m².

Pre and post development peak flow rate of run off and peak flow storage calculations were carried out using these pre and post development impermeable area figures in order to determine a suitable surface water management solution. All surface water calculations are included in Appendix A.

In order to ensure that the SuDS Management train has been followed, the proposed solution involves a small area of green roof, where the roof is not pitched. One wall mounted rainwater harvesting tank will be provided at each rear amenity area.

Due to the underlying geology consisting of London Clay and the size of the dwelling, and small surrounding areas within the property extents it was deemed a BRE365 Percolation test would be counterproductive as infiltration would be unsuitable for the site. Therefore, surface water had to be attenuated on site with restricted flow leaving the site at a calculated rate of 1 l/s.

Hydrograph storage calculations were carried out for a 1 in 100 year storm event with a 40% allowance for climate change, with a flow restriction of 1 l/s and these show that

8.4m³ of storage will be required, these calculations can be found in Appendix A, and this storage will be provided in the attenuation tank, the manholes, catchpit chamber, flow control and pipes. This proposed surface water and SuDS solution can be found on drawing number C2465-01, which can be found in Appendix B.

We believe the Sustainable Urban Drainage System hierarchy has been considered fully and is proportionate to the nature and scale of the development.

4. PROPOSED FOUL DRAINAGE STRATEGY

The proposed foul drainage strategy can be found on drawing number C2465-01 in Appendix B. The peak flow rate leaving the proposed site has been calculated as 0.19 l/s, using Sewers for adoption formula.

5. TIMESCALE AND MAINTENANCE OF WORKS

All drainage works shall be completed prior to first occupation and there shall be no adoption of any of the drainage works within the site and the homeowner will be responsible to oversee the long-term maintenance their drains.

- Regular inspection and cleaning of catchment, gutters reduce the likelihood of contamination, typically every 3 to 6 months.
- The catch pit chamber to the attenuation tank and flow control chamber from the attenuation tank should be emptied every 3 months, and after every large storm event to ensure that there are no blockages.

The following table outlines the maintenance requirements for the proposed attenuation

tank:

Maintenance schedule	Required action	Typical frequency
	Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Monthly for 3 months, then annually
	Remove debris from the catchment surface (where it may cause risks to performance).	Monthly
Regular maintenance	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockage by sediment, algae or other matter; remove and replace surface infiltration medium as necessary.	Annually
	Remove sediment pre-treatment structures and/or internal forebays.	Annually, or as required
Remedial actions	Repair/rehabilitate inlets, outlet, overflows and vents.	As required
	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed	Annually
Monitoring	Survey inside of tank for sediment build-up and remove if necessary	Every 5 years or as required
	Inspect slit accumulation rates and establish appropriate brushing frequencies	Annually
	Monitor inspection chambers	Annually

Table 1: Operation and maintenance requirements for proposed attenuation tank.

The following table outlines the maintenance requirements for the permeable paving:

Maintenance schedule	Required action	Typical frequency
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface	Once a year, after autumn leaf fall, or reduced frequency as required, based on site- specific observations or clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this is the most likely to collect the most sediment
Occasional maintenance	Stabilise and mow contributing and adjacent areas Removal of weeds or management using glyphospate applied directly into the weeds by an applicator rather than spraying	As required As required
	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving.	As required
Remedial Actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material.	As required
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)
	Initial inspection	Monthly for three months after installation
Monitoring	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action	Three-monthly, 48hr after large storms in six months

Inspect slit accumulation rates and establish appropriate brushing frequencies	Annually
Monitor inspection chambers	Annually

Table 2: Operation and maintenance requirements for permeable paving.

The following table outlines the maintenance requirements for the rainwater harvesting tanks:

Maintenance schedule	Required action	Typical Frequency
Regular maintenance	Inspection of the tank for debris and sediment build-up, inlets/outlets/withdraw devices, overflow areas, pumps, filters	Annually (and following poor performance)
	Cleaning of tank, inlets, outlets, gutters. Withdrawal devices and roof drain filters of silts and other debris	Annually (and following poor performance)
Occasional maintenance	Cleaning and/ or replacement of any filters	Three monthly (or as required)
Remedial actions	Repair of overflow erosion damage or damage to tank	As required
	Pump repairs	As required

Table 3: Operation and maintenance requirement for RWH systems.

The following table outlines the maintenance requirements for the green roof:

Maintenance schedule	Required action	Typical Frequency
	Inspect all components including soil substrate vegetation, drains irrigation systems (if applicable), membranes and roof structure for proper operation integrity of waterproofing and structural stability	Annually and after severe storms
	Inspect soil substrate for evidence of erosion channels and identify any sediment sources	Annually and after severe storms
Regular Inspections	Inspect drain inlets to ensure unrestricted runoff from the drainage layer to the conveyance or roof drain system	Annually and after severe storms
	Inspect underside of roof for evidence of leakage	Annually and after severe storms
	Remove debris and litter to prevent clogging of inlet drains and interference with plant growth	Six monthly and annually or as required
	During establishment (i.e year one) replace dead plants as required	Monthly (but usually responsibility of manufacturer)
	Post establishment, replace dead plants as required (where > 5% of coverage)	Annually (in autumn)
	Remove fallen leaves and debris from deciduous plant foliage	Six monthly or as required

Regular Maintenance	Remove nuisance and invasive vegetation, including weeds	Six monthly or as required
	Mow grasses, prune shrubs and manage other planting (if appropriate) as required- clippings should be removed and not allowed to accumulate	Six monthly or as required
Remedial	If erosion channels are evident, these should e stabilised with extra soil substrate similar to the original material and sources of erosion damage should be identified and controlled	As required
Actions	If drain inlet has settled, cracked, or moved, investigate and repair as appropriate	As required

Table 4: Operation and maintenance requirements for sedum/green roofs.

6. CONCLUSIONS

The purpose of this report and associated drawings, is to present a drainage strategy solution to satisfy the local planning authority that the proposed development will not increase surface water flows, and hence increase flood risk in the surrounding area.

All surface water will be conveyed into the attenuation tank with restricted flow leaving the site at 1 l/s.

This proposed development will reduce the surface water run off leaving the site, and therefore reduce flood risk at the site and elsewhere.

The foul flows leaving the development have also been considered with a solution evaluated.

The timetable of works is to complete all drainage prior to occupation of dwellings, and maintenance requirements are also included in this report, therefore it is considered that all requirements of the drainage strategy solution have been met, and therefore can be discharged.

APPENDIX A – SURFACE WATER RUN OFF CALCULATIONS

	Nimbus Engineering Consultants Ltd					Kemp House, 152 City Road,				Job No. C2465 Sheet no. 1 Date 07/01/01			
						London, EC1V 2NX Mob:0772 339 3155							
nunn Junni, nunnnunnunnun	Project					email: info@nimbusengineering.co.uk					D.	07/01/21	Reviewed
MasterDrain HY 10.01					, London, prior to S						By S.L	Checked	Reviewed
		p					3						
Data:- Hydrology Location = Long refer M5-60 (mm) r Hyd. area Hydrograph	= LONI cence	DON (SC	0175 L 1			SAAR Soil Hyd.	(mm/yr zone	-	rQ4075 600 .47 8				
Site values Total site Pre-dev ar Imperm rur	e area cea di	a rained	= 0. = 0.	0212 h 0212 h 00%	-	Post-	-dev ar	nge fac ea dra: facto:	ined =	= 40% = 0.02(= 20%)3 ha		
<i>Pre-develo</i> Area to so Perv. area <i>Post-devel</i>	akawa a to S	ays SUDS		0000 h 0000 h	-			er SUD: w to d:	-	= 0.000 = 0.00			
Area to so Perv. area		-		0000 h 0000 h	-			er SUD: ow to o		= 0.000 = 0.00			
Calculations	s : –												
Equiv. Pos Equiv. Pos Total Pre- Total Post 100 yr 6 h Results:-	st-dev -dev e -dev nour n	7 Perm. equiv. equiv. nean in	. area area h . area ntensit	= 0 ha = 0 ha = 0 y = 10	0.000 h 0.021 h 0.020 h 0.08mm/	a a a							
Pre-dev pe R.P.	akflo 15	ow rund 30	off (1/ 60	's) <mark>(m³/</mark> 120	's) 240	360	480	600	Max	CCF	Fina	1 5	ъ
	4.8	3.1	1.9	1.2	0.7	0.5	480 0.4	0.4	4.8	N/A	4.8		.P. 1
	11.6	7.4	4.6	2.7	1.6	1.1	0.9	0.8	11.6	N/A	11.6		0
100	15.1	9.7	6.0	3.6	2.1	1.5	1.2	1.0	15.1	N/A	15.1	10	0
Post-dev p	eakf]	Low run	noff (1	./s)									
R.P.	15	30	60	120	240	360	480	600	Max	CCF	Fina	1 R	.P.
	4.6	3.0	1.9	1.1	0.7	0.5	0.4	0.3	4.6	40	6.4		1
	11.2	7.2 9.4	4.4 5.8	2.6 3.4	1.5 2.0	1.1 1.4	0.9 1.1	0.7 0.9	11.2 14.6	40 40	15.7 20.4	3 10	
100 year 6 hour (x Climate Change Factor) storm gives:- Pre-dev runoff volume $m^3 = 12.8m^3$ Post-dev rainfall volume $= 17.3m^3$ Post-dev volume m^3 (excess above SUDS) $= 17.3m^3$ 100 yr 6 hour mean intensity $= 10.08mm/hr$ Pre-dev volume to drain at 0 1/s $= 0.0 m^3$ Post-dev volume to drain at 0 1/s $= 0.0 m^3$ Post-dev storage volume $= 17.3m^3$ Post-dev 5mm imperm volume $= 1.0 m^3$ Post-dev 5mm perm volume $= 0.0 m^3$ Q _{BAR(rural)} $= 0.085 l/s$ or 4.031 1/s/ha or 0.000 cumecs - from IoH 124.													
								the lo alling:					

	Nimbus Engineering	Kemp House, 152 City Road,	Job No. C2465						
	Consultants Ltd	London, EC1V 2NX Mob:0772 339 3155	Sheet no.	2					
	www.nimbusengineering.co.uk	Date 07/01/21							
MasterDrain	Project 10 Evelina Road, Nunhead, London, S	SE15 2DX	Ву	Checked	Reviewed				
HY 10.01	Title Pre & post dev't SW Calcs prior to Su		S.L						
	Da	ta summary.		1					
Use the data	Use the data below for the SUR1 form								
Pre-dev Post-de	e area = elopment impermeable area = elopment permeable area = velopment impermeable area = velopment permeable area =	0.0212 ha ;211.6 m² [3, 0.0212 ha [3B] 0.0000 ha 0.0203 ha [3C] 0.0009 ha	A]						
Pre-dev Post-de	Peak runoff:-Pre-development 1 year storm (15min) =4.8 l/s [6A]Pre-development 100 year storm (15min) =15.1 l/s [6C]Post-development 1 year storm (15min) =4.6 l/s [6B]Post-development 100 year storm (15min)=14.58 l/s [6D]								
Greenfield rur Q _{BAR(rural)}		or 0.000 cumecs - from IoH 124							
	ange factor:- CF = 40%								
Volumes:-									
P P	re-development 100 yr/6hr sto ost-development 100 yr/6hr sto ost-development 100 yr/6hr sto ost-development add. predicted	orm (add. volume with no SUDS) orm (add. volume with SUDS)	=	= 17.3m = 17.3m = -0.6m	3				
E	ata relating to the infiltrati vidence to show runoff reducti	on test calculations (if appli on (if applicable) ods (if applicable see next sh							
Note									
N	umbers in square brackets rela	to to the							

Numbers in square brackets relate to the Nov. 2010 v1.1 / issued 11/02/10 copy of SUR1 $\,$

MasterDrain HY 10.01

Kemp House. Nimbus Engineering Consultants Ltd www.nimbusengineering.co.uk

Title Pre & post dev't SW Calcs prior to SuDS mitigation

152 City Road, London, EC1V 2NX Mob:0772 339 3155 email: info@nimbusengineering.co.uk ^{Project}10 Evelina Road, Nunhead, London, SE15 2DX

Job No C2465 Sheet no. 3 Date 07/01/21 Checked Reviewed Вν S.L

Definitions and methods

Hydrology

The hydrological constants are derived from the Wallingford maps. They are used to calculate location specific rainfall figures.

Site values and factors

Areas of the site should be entered in hectares (10000 m²). If the Pre-development site is a green field, this box is blank.

Climate Change Factor is initially set at 20% - this may be changed as required.

Greenfield runoff is calculated using the method described in IoH 124.

Runoff factors

The impermeable runoff factor is initially set at 98%

The permeable runoff factor is initially set at 20%

Note: the CCF and the runoff factors may be changed by the user to suit the development The areas draining to soakaways and other SUDS are entered in the appropriate box (in hectares)

Calculations

The post-development area is reduced by subtracting the areas that drain to soakaways or other SUDS, to give a revised figure.

All areas are then multiplied by the appropriate runoff factor to give an equivalent area with 100% runoff. These are then summated.

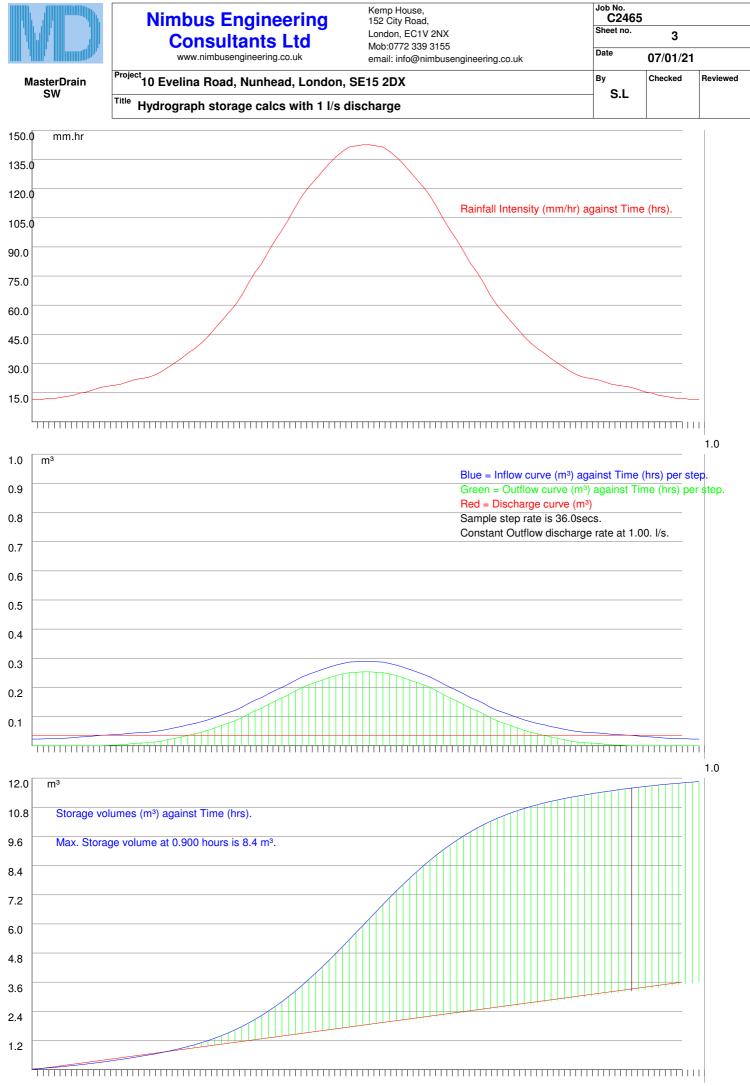
This gives a total pre-development equivalent area, and a similar figure for the post-development area.

The 'Post-dev volume to drain (no SUDS)' gives the total runoff to drain if no SUDS were used.

Results

The pre- and post-development areas are subjected to 1,30 and 100 year return period storms with a duration of 15 to 600 minutes.

The Revised Post-dev Imperm. area is the area (in ha) that is not going to SUDS x impervious runoff factor.


The runoff rates are calculated for the chosen hydrograph (Summer or Winter) as I/s. Figures in red indicate m³/s The peak value is measured, multiplied by the CCF and the total maximum rate is shown.

The pre- and post-development volumes for a 100 year / 6 hour storm are calculated from the area under the hydrograph curve.

Post-dev volume (i.e. excess above SUDS) is that volume produced by the drained area that does not go to SUDS. Qbar(rural) is calculated in accordance with the procedure laid down in IoH 124

Master Trans Nimbus Engineering Networksongivering out The Strength of the Strength			Nlinele			Kemp House,		Job No.			
Weakerstein Weakerstein Weakerstein Weakerstein Weakerstein Weakerstein Weakerstein Data: Image: Mydrograph storage calcs with 1 lis discharge Data: Image: Mydrograph storage calcs with 1 lis discharge Image: Mydrograph storage calcs with 1 lis discharge Image: Mydrograph storage calcs with 1 lis discharge Data: Image: Mydrograph storage calcs with 1 lis discharge Image: Mydrograph storage calcs with 1 lis discharge Image: Mydrograph storage calcs with 1 lis discharge Difference Image: Mydrograph storage calcs with 1 lis discharge Image: Mydrograph storage calcs with 1 lis discharge Image: Mydrograph storage calcs with 1 lis discharge Difference Image: Mydrograph storage calcs with 1 lis discharge Image: Mydrograph storage calcs with 1 lis discharge Image: Mydrograph storage Image: Mydrograph storage Difference Image: Mydrograph storage						152 City Road, London, EC1V 2NX		C2465 Sheet no. 1			
Str S.L Data: Data: Colspan="2">Grid reference = T04075 r = 0.44 Soli index = 0.45 SAR (mm/yr) = 600 WRAP = 4 WTM UCWI = 0.0 Clayey, or loamy over clayey soils with an impermeable layer at shallow depth. Pipeline storage = 0.0 m ³ Available MH storage = 0.0 m ³ Office storage = 0.0 m ³ Period storage = 0.0 m ³ Calcut area = 203 m ² Culv area = 203 m ² Culv area = 203 m ² (Tot. area x % runoff). Total area = 203 m ² Culv area = 203 m ² (Tot. area x % runoff). Total area = 203 m ² Calcutations :- Total area = 203 m ² (Tot. area x % runoff). Total area = 203 m ² Calcutations :- Total area = 200 :: 1: 4 Calcutations :- Calcutations :- Calcutations :- Calcutations :- <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Date</td> <td colspan="3">Dete</td>							Date	Dete			
Str S.L Data: Data: Colspan="2">Grid reference = T04075 r = 0.44 Soli index = 0.45 SAR (mm/yr) = 600 WRAP = 4 WTM UCWI = 0.0 Clayey, or loamy over clayey soils with an impermeable layer at shallow depth. Pipeline storage = 0.0 m ³ Available MH storage = 0.0 m ³ Office storage = 0.0 m ³ Period storage = 0.0 m ³ Calcut area = 203 m ² Culv area = 203 m ² Culv area = 203 m ² (Tot. area x % runoff). Total area = 203 m ² Culv area = 203 m ² (Tot. area x % runoff). Total area = 203 m ² Calcutations :- Total area = 203 m ² (Tot. area x % runoff). Total area = 203 m ² Calcutations :- Total area = 200 :: 1: 4 Calcutations :- Calcutations :- Calcutations :- Calcutations :- <th>MasterDr</th> <th>ain</th> <th>Project 10 Evelin</th> <th>a Road, Nunhe</th> <th>Ву</th> <th>Checked</th> <th>Reviewed</th>	MasterDr	ain	Project 10 Evelin	a Road, Nunhe	Ву	Checked	Reviewed				
Deta:- Location = LONDON (SOUTH) Soli index = 0.43 Soli index = 0.45 Return period = 100 UCWI = 0.0 Clayey, or loamy over clayey solis with an impermeable layer at shallow depth. Pipeline storage = 0.0 m ³ Percentage runoff = 100.0% (manual setting) Imperv. area = 203 m ² Total area = 203 m ³ Claret in figure 110.0% (manual setting) Imperv. area = 203 m ² Total area = 203 m ² Total area = 203 m ³ Claretations = - Total area = 203 m ³ Total area = 203 m ³ Claretations = - Total area = 203 m ³ Claretations = - Total area = 203 m ³ Claretations = - Total area = - (m ³) 1.1.6 m ³ Claretations = - Time = - (m ³) 1.1.4 0.023 0.036 0.000 0.0000 0.020 2.0.0 11.4 0.023 0.036 0.000 0.0000 0.030 2.1.0 11.4 0.023 0.036 0.000 0.0000 0.000 2.0 0.1 1.4 0.027 0.036 0.000 0.0000 0.000 2.0 0.1 1.4 0.031 0.036 0.000 0.0000 0.000 2.0 0.1 1.4 0.031 0.036 0.000 0.0000 0.000 2.0 0.5.0 0.042 0.036 0.000 0.0000 0.000 2.0 0.0 0.0 0.000 0.0000 0.000 2.0 0.0 0.0 0.0 0.000 0.000 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.								S.L			
	Data:-		nyulogia	Sill Storage Calc	.5 WILLI 1/5	uischarge					
Solt max SAAR (mm/yr) = 600 WRAP SAAR (mm/yr) = 600 WRAP Hetum period = 100 WCWI 0.0 Climate change = 40% Clayey, or loamy over clayey soils with an impermeable layer at shallow depth. Pipeline storage = 0.0 m ³ Available MH storage = 0.0 m ³ Available MH storage = 0.0 m ³ Percentage runoff = 100.0% (manual setting) Imperv. area = 203 m ³ Imperv. area = 203 m ³ Pervious area = 0 m ² Equiv area = 2030 m ³ Total aron = 203 m ³ Equiv area = 2.03 m ³ Storage (m) = 8.4 m ³ (Sum of all balance quantiles) Total rainfail depth = 57.0 m Calculations :- Time Note 0.020 20.0 11.4 0.023 0.036 0.000 0.040 21.0 0.021 20.0 12.0 0.024 0.036 0.000 0.040 21.0 0.031 0.336 0.032 12.0 0.034 0.036 0.035 0.036 0.040 21.0 12.0 0.24	Dulu.	Loca	tion = LON	IDON (SOUTH	H) G	arid reference = T	Q4075				
$ \begin{array}{c} \label{eq:result} \hline Peruly = 0.0 & WRAP = = 4 \\ UCWI = 0.0 & WRAP = = 4 \\ UCWI = 0.0 & WRAP = = 40\% \\ \hline \\ \mbox{Clayey, or loamy over clayey soils with an impermeable layer at shallow depth. \\ \mbox{Pipeline storage = 0.0 m^3} & Available MH storage = 0.0 m^3 \\ \hline \\ \mbox{Precentage runoff = 100.0\% (manual setting) \\ \mbox{Immervariants} & Pervious area = 0 m^2 \\ \mbox{Total area = 203 m^2} & Pervious area = 0 m^2 \\ \mbox{Total area = 203 m^2} & Pervious area = 20 m^2 (Tot. area x % runoff). \\ \mbox{Total area = 203 m^2} & Discharge rate = 1.000 /s \\ \mbox{Storage (m) = 8.4 m^3} & (Sum of all balance quantities) \\ \mbox{Total around 1 = 11.6 m^3} & Discharge rate = 1.000 /s \\ \mbox{Storage (m) = 8.4 m^3} & (Sum of all balance quantities) \\ Total around 1 = 12.0 & 0.224 & 0.036 & 0.000 & 0.000 \\ \mbox{0.030 & 21.0 & 11.4 & 0.023 & 0.036 & 0.000 & 0.000 \\ \mbox{0.040 & 21.0 & 12.4 & 0.024 & 0.036 & 0.000 & 0.000 \\ \mbox{0.040 & 21.0 & 12.4 & 0.024 & 0.036 & 0.000 & 0.000 \\ \mbox{0.060 & 22.0 & 11.4 & 0.023 & 0.036 & 0.000 & 0.000 \\ \mbox{0.060 & 22.0 & 11.4 & 0.023 & 0.036 & 0.000 & 0.000 \\ \mbox{0.060 & 22.0 & 12.5 & 0.025 & 0.036 & 0.000 & 0.000 \\ \mbox{0.060 & 22.0 & 13.7 & 0.028 & 0.036 & 0.000 & 0.000 \\ \mbox{0.060 & 22.0 & 13.4 & 0.031 & 0.036 & 0.000 & 0.000 \\ \mbox{0.060 & 22.0 & 14.8 & 0.031 & 0.036 & 0.000 & 0.000 \\ \mbox{0.060 & 23.0 & 16.7 & 0.036 & 0.000 & 0.000 \\ \mbox{0.060 & 23.0 & 16.7 & 0.036 & 0.000 & 0.000 \\ \mbox{0.100 & 23.0 & 16.7 & 0.036 & 0.003 & 0.000 \\ \mbox{0.100 & 23.0 & 16.7 & 0.036 & 0.000 & 0.000 \\ \mbox{0.100 & 23.0 & 16.7 & 0.036 & 0.000 & 0.000 \\ \mbox{0.100 & 23.0 & 16.7 & 0.036 & 0.000 & 0.000 \\ \mbox{0.100 & 23.0 & 16.7 & 0.036 & 0.000 & 0.000 \\ \mbox{0.100 & 23.0 & 16.7 & 0.036 & 0.000 & 0.000 \\ \mbox{0.100 & 23.0 & 16.7 & 0.036 & 0.000 & 0.000 \\ \mbox{0.100 & 23.0 & 16.7 & 0.036 & 0.000 & 0.000 \\ \mbox{0.100 & 23.0 & 16.7 & 0.036 & 0.000 & 0.000 \\ \mbox{0.100 & 23.0 & 16.7 & 0.036 & 0.000 & 0.000 \\ \mbox{0.100 & 23.0 & 16.7 & 0.036 & 0.000 & 0.000 \\ \mbox{0.100$			· · ·		-		600				
Climate change = 40% Climate change = 0.0 m³ Available MH storage = 0.0 m³ Offline storage = 0.0 m³ Percentage runoff = 100.0% (manual setting) Imperv. area = 203 m² Total area = 1.000 % Storage (m²) = 8.4 m² Storage (m²) = 8.4 m² Total area m² Calculations : Time Total area m² Total area m² Total area m²							600				
Available MH storage = 0.0 m ³ Available MH storage = 0.0 m ³ Percentage runoff = 100.0% (manual setting) Imperv. area = 203 m ³ Pervious area = 0 m ² Total area = 203 m ³ Pervious area = 0 m ² Total area = 203 m ³ Pervious area = 0 m ² Total area = 203 m ³ Description of all balance quantities) Total area = 8.4 m ³ (Sum of all balance quantities) Total area = m ³ /n (m ³) Calculations := Time Name Cumulative (m ³) (m ³) (m ³) 0.011.4 0.0223 0.036 Cumulative (m ³) (m ³) (m ³) (m ³) 0.011.4 0.0223 0.036 0.000 0.000 0.011.4 0.0223 0.036 (m ³) 0.011.4 0.0223 0.036 Cumulative (m ³) 0.016.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
Offline storage = 0.0 m³ Percentage runoff = 100.0% (manual setting) Imperv. area = 203 m² Total area = 203 m² Total runoff = 11.6 m³ Discharge rate = 00 m² Equivarea = 203 m² Total runoff = 1.6 m³ Discharge rate = 1.000 l/s Storage (m) = 6.4 m² Discharge rate = 1.000 l/s Storage (m) = 6.4 m² Otil 20.0 11.4 0.0223 0.036 0.000 0.000 0.010 20.0 11.4 0.0223 0.036 0.000 0.000 0.060 21.0 12.0 0.022 0.0 0.000 0.000 0.060 21.0 12.5 0.025 0.036 0.000 0.000 0.060 22.0 13.7 0.026 0.036 0.000 0.000 0.060 22.0 14.8 0.036 0.036 0.000 0.000 0.070 24.0 13.7 0.026 0.036 0.000 0.000 0.080 27.0 16.4 0.		Claye	ey, or loamy o	over clayey so	oils with an	n impermeable lay	ver at shallow	depth.			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
		Perce	entage runoff	= 100.0% (m	nanual sett	ting)					
		Imne	rv. area - 20'	3 m²	P	ervious area = 0	m²				
Storage (m ²) = 8.4 m ² (Sum of all balance quantities) Time WMean Rain Inflow Outflow Balance Cumulative (hrs) intens mm/hr (m3) (m3) (m3) (m3) 0.010 20.0 11.4 0.023 0.036 0.000 0.000 0.020 20.0 11.4 0.023 0.036 0.000 0.000 0.030 21.0 12.0 0.024 0.036 0.000 0.000 0.040 21.0 12.0 0.024 0.036 0.000 0.000 0.050 22.0 12.5 0.027 0.036 0.000 0.000 0.060 23.0 13.1 0.027 0.036 0.000 0.000 0.080 26.0 14.8 0.031 0.036 0.000 0.000 0.100 29.0 15.5 0.034 0.036 0.000 0.000 0.110 31.0 17.7 0.036 0.036 0.001 0.001 0.110 31.0 17.7 0.036 0.036 0.002 0.003 <th< td=""><td></td><td></td><td></td><td></td><td>E</td><td>quiv area = 203</td><td>3 m² (Tot. area</td><td>a x % runoff).</td><td></td><td></td></th<>					E	quiv area = 203	3 m² (Tot. area	a x % runoff).			
Tata Financian Structure Calculations := Time Notations (m3) Cumulative (m3) Out flow Balance Cumulative (m3) (m3) Out flow Balance Cumulative Out flow Balance Cumulative 0.010 20.0 11.4 0.023 0.036 0.000 0.000 0.030 21.0 12.0 0.024 0.036 0.000 0.000 0.040 21.0 12.0 0.024 0.036 0.000 0.000 0.050 22.0 12.5 0.025 0.036 0.000 0.000 0.070 24.0 13.7 0.028 0.036 0.000 0.000 0.080 26.0 14.8 0.030 0.036 0.000 0.000 0.100 29.0 16.5 0.034 0.036 0.001 0.001 0.110 31.0 17.7						•	.000 l/s				
Calculations :- Time Wean Rain Inflow Outflow Balance Cumulative (hrs) intens mm/hr (m3) (m3) (m3) (m3) 0.010 20.0 11.4 0.023 0.036 0.000 0.000 0.030 21.0 12.0 0.024 0.036 0.000 0.000 0.040 21.0 12.0 0.024 0.036 0.000 0.000 0.050 22.0 12.5 0.027 0.036 0.000 0.000 0.060 25.0 13.1 0.027 0.036 0.000 0.000 0.080 26.0 14.8 0.030 0.036 0.000 0.000 0.100 29.0 15.5 0.034 0.036 0.000 0.000 0.110 31.0 17.7 0.036 0.036 0.001 0.001 0.130 33.0 18.8 0.038 0.036 0.002 0.003 0.140				-	all balance	e quantities)					
TimeMeanRainInflowOutflowBalaceCumulative(hrs)intensmm/hr(m3)(m3)(m3)(m3)(m3)0.02020.011.40.0230.0360.0000.0000.03021.012.00.0240.0360.0000.0000.04021.012.00.0240.0360.0000.0000.06023.013.10.0270.0360.0000.0000.06023.013.10.0270.0360.0000.0000.07024.013.70.0280.0360.0000.0000.09027.015.40.0310.0360.0000.0000.10029.016.50.0340.0360.0000.0000.11031.017.70.0360.0360.0010.0010.12032.018.80.0380.0360.0020.0030.13033.018.80.0380.0360.0020.0200.15036.020.50.0420.0360.0080.0220.16038.021.70.0360.0130.0420.18042.023.80.0460.0360.0130.0420.18042.023.90.0360.0160.0360.12039.022.20.0450.0360.0130.0420.16038.021.70.0360.0210.0860.17039.022.20.0450.0		lotai	raintali depti	1 = 57.0 mm							
				Dain	Tafler	0	Polongo				
0.020 20.0 11.4 0.023 0.036 0.000 0.000 0.030 21.0 12.0 0.024 0.036 0.000 0.000 0.040 21.0 12.0 0.025 0.036 0.000 0.000 0.050 22.0 12.5 0.025 0.036 0.000 0.000 0.060 23.0 13.1 0.027 0.036 0.000 0.000 0.070 24.0 13.7 0.028 0.036 0.000 0.000 0.080 26.0 14.8 0.031 0.036 0.000 0.000 0.100 29.0 16.5 0.034 0.036 0.000 0.000 0.110 31.0 17.7 0.036 0.001 0.001 0.001 0.120 32.0 18.2 0.037 0.036 0.002 0.003 0.140 34.0 19.4 0.036 0.002 0.002 0.160 38.0 21.7 0.044 <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>					-						
0.030 21.0 12.0 0.024 0.036 0.000 0.000 0.040 21.0 12.0 0.024 0.036 0.000 0.000 0.050 22.0 12.5 0.025 0.036 0.000 0.000 0.060 23.0 13.1 0.027 0.036 0.000 0.000 0.070 24.0 13.7 0.028 0.036 0.000 0.000 0.080 26.0 14.8 0.031 0.036 0.000 0.000 0.100 29.0 16.5 0.034 0.036 0.000 0.000 0.110 31.0 17.7 0.036 0.000 0.000 0.120 32.0 18.2 0.037 0.036 0.002 0.003 0.130 33.0 18.8 0.036 0.002 0.002 0.002 0.160 38.0 21.7 0.044 0.036 0.008 0.029 0.160 38.0 21.7 0.045 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
0.040 21.0 12.0 0.024 0.036 0.000 0.000 0.050 22.0 12.5 0.027 0.036 0.000 0.000 0.060 23.0 13.1 0.027 0.036 0.000 0.000 0.070 24.0 13.7 0.028 0.036 0.000 0.000 0.080 26.0 14.8 0.030 0.036 0.000 0.000 0.090 27.0 15.4 0.031 0.036 0.000 0.000 0.100 29.0 16.5 0.036 0.000 0.000 0.000 0.110 31.0 17.7 0.036 0.000 0.000 0.001 0.120 32.0 18.2 0.037 0.036 0.002 0.003 0.140 34.0 19.4 0.039 0.036 0.006 0.012 0.160 38.0 21.7 0.044 0.036 0.006 0.020 0.150 36.0 22.7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
0.050 22.0 12.5 0.025 0.036 0.000 0.000 0.060 23.0 13.1 0.027 0.036 0.000 0.000 0.070 24.0 13.7 0.028 0.036 0.000 0.000 0.080 26.0 14.8 0.030 0.036 0.000 0.000 0.090 27.0 15.4 0.031 0.036 0.000 0.000 0.100 29.0 16.5 0.034 0.036 0.000 0.000 0.110 31.0 17.7 0.036 0.001 0.001 0.001 0.120 32.0 18.2 0.037 0.036 0.002 0.003 0.130 33.0 18.8 0.036 0.002 0.002 0.012 0.160 38.0 21.7 0.042 0.036 0.002 0.029 0.170 39.0 22.2 0.045 0.036 0.013 0.052 0.200 45.0 25.7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
0.060 23.0 13.1 0.027 0.036 0.000 0.000 0.070 24.0 13.7 0.028 0.036 0.000 0.000 0.080 26.0 14.8 0.031 0.036 0.000 0.000 0.990 27.0 15.4 0.031 0.036 0.000 0.000 0.100 29.0 16.5 0.034 0.036 0.000 0.000 0.110 31.0 17.7 0.036 0.036 0.001 0.001 0.130 33.0 18.8 0.033 0.036 0.002 0.003 0.140 34.0 19.4 0.039 0.036 0.008 0.020 0.150 36.0 21.7 0.044 0.036 0.008 0.020 0.160 38.0 21.7 0.045 0.036 0.010 0.040 0.190 42.0 23.9 0.049 0.036 0.016 0.068 0.210 49.0 27.9 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
0.080 26.0 14.8 0.031 0.036 0.000 0.000 0.090 27.0 15.4 0.031 0.036 0.000 0.000 0.100 29.0 16.5 0.034 0.036 0.000 0.000 0.110 31.0 17.7 0.036 0.036 0.000 0.000 0.120 32.0 18.2 0.037 0.036 0.001 0.003 0.130 33.0 18.8 0.039 0.036 0.002 0.003 0.140 34.0 19.4 0.039 0.036 0.008 0.220 0.150 36.0 21.7 0.044 0.036 0.009 0.229 0.180 40.0 22.8 0.046 0.36 0.010 0.040 0.190 42.0 23.9 0.057 0.036 0.021 0.089 0.220 53.0 30.2 0.061 0.036 0.036 0.144 0.230 57.0 32.5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.07	0	24.0	13.7	0.028	0.036	0.000	0.000			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
0.110 31.0 17.7 0.036 0.036 0.000 0.000 0.120 32.0 18.2 0.037 0.036 0.001 0.001 0.130 33.0 18.8 0.039 0.036 0.002 0.003 0.140 34.0 19.4 0.039 0.036 0.006 0.012 0.150 36.0 21.7 0.044 0.036 0.008 0.020 0.170 39.0 22.2 0.045 0.036 0.010 0.040 0.180 40.0 23.9 0.049 0.036 0.016 0.062 0.200 45.0 25.7 0.057 0.036 0.016 0.068 0.210 49.0 27.9 0.057 0.036 0.025 0.114 0.230 57.0 32.5 0.066 0.036 0.036 0.180 0.240 62.0 35.3 0.072 0.036 0.046 0.220 0.260 71.0 40.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
0.27077.043.90.0890.0360.0530.3200.28084.047.90.0970.0360.0610.3810.29091.051.90.1050.0360.0690.4500.30098.055.90.1130.0360.0770.5280.310105.059.90.1220.0360.0860.6130.320114.065.00.1320.0360.1090.8180.330125.071.30.1450.0360.1200.9380.350143.081.50.1650.0360.1291.0670.360154.087.80.1780.0360.1421.2100.370164.093.50.1900.0360.1541.3630.380173.098.60.2000.0360.1641.5280.390183.0104.30.2120.0360.1761.703											
0.28084.047.90.0970.0360.0610.3810.29091.051.90.1050.0360.0690.4500.30098.055.90.1130.0360.0770.5280.310105.059.90.1220.0360.0860.6130.320114.065.00.1320.0360.1090.8180.330125.071.30.1450.0360.1200.9380.350143.081.50.1650.0360.1291.0670.360154.087.80.1780.0360.1541.3630.380173.098.60.2000.0360.1641.5280.390183.0104.30.2120.0360.1761.703											
0.29091.051.90.1050.0360.0690.4500.30098.055.90.1130.0360.0770.5280.310105.059.90.1220.0360.0860.6130.320114.065.00.1320.0360.0960.7090.330125.071.30.1450.0360.1200.9380.340135.077.00.1560.0360.1291.0670.360154.087.80.1780.0360.1421.2100.370164.093.50.1900.0360.1541.3630.380173.098.60.2000.0360.1641.5280.390183.0104.30.2120.0360.1761.703											
0.30098.055.90.1130.0360.0770.5280.310105.059.90.1220.0360.0860.6130.320114.065.00.1320.0360.0960.7090.330125.071.30.1450.0360.1090.8180.340135.077.00.1560.0360.1200.9380.350143.081.50.1650.0360.1291.0670.360154.087.80.1780.0360.1421.2100.370164.093.50.1900.0360.1541.3630.380173.098.60.2000.0360.1641.5280.390183.0104.30.2120.0360.1761.703											
0.310105.059.90.1220.0360.0860.6130.320114.065.00.1320.0360.0960.7090.330125.071.30.1450.0360.1090.8180.340135.077.00.1560.0360.1200.9380.350143.081.50.1650.0360.1291.0670.360154.087.80.1780.0360.1421.2100.370164.093.50.1900.0360.1541.3630.380173.098.60.2000.0360.1641.5280.390183.0104.30.2120.0360.1761.703											
0.320114.065.00.1320.0360.0960.7090.330125.071.30.1450.0360.1090.8180.340135.077.00.1560.0360.1200.9380.350143.081.50.1650.0360.1291.0670.360154.087.80.1780.0360.1421.2100.370164.093.50.1900.0360.1541.3630.380173.098.60.2000.0360.1641.5280.390183.0104.30.2120.0360.1761.703											
0.340135.077.00.1560.0360.1200.9380.350143.081.50.1650.0360.1291.0670.360154.087.80.1780.0360.1421.2100.370164.093.50.1900.0360.1541.3630.380173.098.60.2000.0360.1641.5280.390183.0104.30.2120.0360.1761.703	0.32	0	114.0	65.0	0.132	0.036	0.096	0.709			
0.350143.081.50.1650.0360.1291.0670.360154.087.80.1780.0360.1421.2100.370164.093.50.1900.0360.1541.3630.380173.098.60.2000.0360.1641.5280.390183.0104.30.2120.0360.1761.703											
0.360154.087.80.1780.0360.1421.2100.370164.093.50.1900.0360.1541.3630.380173.098.60.2000.0360.1641.5280.390183.0104.30.2120.0360.1761.703											
0.370164.093.50.1900.0360.1541.3630.380173.098.60.2000.0360.1641.5280.390183.0104.30.2120.0360.1761.703											
0.380173.098.60.2000.0360.1641.5280.390183.0104.30.2120.0360.1761.703											
0.390 183.0 104.3 0.212 0.036 0.176 1.703											
0.400 194.0 110.6 0.224 0.036 0.188 1.892	0.39	0	183.0	104.3	0.212	0.036	0.176				
	0.40	0	194.0	110.6	0.224	0.036	0.188	1.892			

	Kemp House,					Job No.		
	Nimb	us Engine	ering	152 City Road,		C246		
		nsultants	_	London, EC1V 2NX		Sheet no.	2	
		w.nimbusengineering		Mob:0772 339 3155 email: info@nimbus		Date	07/01/21	1
MasterDrain	Project 10 Evelin	a Road, Nunhe	ad, London, S	SE15 2DX		Ву	Checked	Reviewed
SW		ph storage calo				S.L		
	inyarogra	ph storage can	,5 with 1 //5 di	isenarge				
Calculations Time	(cont.) :- %Mean	Rain	Inflow	Outflow	Palango	Cumulativ	_	
(hrs)	intens	mm/hr	(m3)	(m3)	Balance (m3)	(m3)	3	
0.410	204.0	116.3	0.236	0.036	0.200	2.092		
0.420	212.0	120.9	0.245	0.036	0.209	2.301		
0.430	219.0	124.8	0.253	0.036	0.217	2.519		
0.440	226.0	128.8	0.262	0.036	0.226	2.744		
0.450	233.0	132.8	0.270	0.036	0.234	2.978		
0.460	239.0	136.2	0.277	0.036	0.241	3.218		
0.470	244.0	139.1	0.282	0.036	0.246	3.465		
0.480	248.0	141.4	0.287	0.036	0.251	3.716		
0.490	249.0	141.9	0.288	0.036	0.252	3.968		
0.500	250.0	142.5	0.289	0.036	0.253	4.221		
0.510	250.0	142.5	0.289	0.036	0.253	4.474		
0.520	249.0	141.9	0.288	0.036	0.252	4.727		
0.530	248.0	141.4	0.287	0.036	0.251	4.978		
0.540	244.0	139.1	0.282	0.036	0.246	5.224		
0.550	239.0	136.2	0.277	0.036	0.241	5.464		
0.560	233.0	132.8	0.270	0.036	0.234	5.698		
0.570	226.0	128.8	0.262	0.036	0.226	5.924		
0.580	219.0	124.8	0.253	0.036	0.217	6.141		
0.590	212.0	120.9	0.245	0.036	0.209	6.350		
0.600	204.0	116.3	0.236	0.036	0.200	6.550		
0.610	194.0	110.6	0.224	0.036	0.188	6.739		
0.620	183.0	104.3	0.212	0.036	0.176	6.915		
0.630 0.640	173.0 164.0	98.6 93.5	0.200 0.190	0.036 0.036	0.164 0.154	7.079 7.233		
0.640	154.0	87.8	0.190	0.036	0.142	7.375		
0.660	143.0	81.5	0.178	0.036	0.129	7.504		
0.670	135.0	77.0	0.156	0.036	0.120	7.625		
0.680	125.0	71.3	0.145	0.036	0.109	7.733		
0.690	114.0	65.0	0.132	0.036	0.096	7.829		
0.700	105.0	59.9	0.122	0.036	0.086	7.915		
0.710	98.0	55.9	0.113	0.036	0.077	7.992		
0.720	91.0	51.9	0.105	0.036	0.069	8.061		
0.730	84.0	47.9	0.097	0.036	0.061	8.123		
0.740	77.0	43.9	0.089	0.036	0.053	8.176		
0.750	71.0	40.5	0.082	0.036	0.046	8.222		
0.760	66.0	37.6	0.076	0.036	0.040	8.262		
0.770	62.0	35.3	0.072	0.036	0.036	8.298		
0.780	57.0	32.5	0.066	0.036	0.030	8.328		
0.790	53.0	30.2	0.061	0.036	0.025	8.353		
0.800	49.0	27.9	0.057	0.036	0.021	8.374		
0.810	45.0	25.7	0.052	0.036	0.016	8.390		
0.820	42.0	23.9	0.049	0.036	0.013	8.403		
0.830	40.0	22.8	0.046	0.036	0.010	8.413		
0.840	39.0	22.2	0.045	0.036	0.009	8.422		
0.850 0.860	38.0 36.0	21.7 20.5	0.044 0.042	0.036 0.036	0.008 0.006	8.430 8.436		
0.870	34.0	19.4	0.039	0.036	0.003	8.430		
0.880	33.0	18.8	0.038	0.036	0.002	8.441		
0.890	32.0	18.2	0.037	0.036	0.001	8.442		
0.900	31.0	17.7	0.036	0.036	0.000	8.442		
0.910	29.0	16.5	0.034	0.036	0.000	8.440		
0.920	27.0	15.4	0.031	0.036	0.000	8.435		
0.930	26.0	14.8	0.030	0.036	0.000	8.429		
0.940	24.0	13.7	0.028	0.036	0.000	8.421		
0.950	23.0	13.1	0.027	0.036	0.000	8.411		
0.960	22.0	12.5	0.025	0.036	0.000	8.401		
0.970	21.0	12.0	0.024	0.036	0.000	8.389		
0.980	21.0	12.0	0.024	0.036	0.000	8.377		
0.990	20.0	11.4	0.023	0.036	0.000	8.365		
1.000	20.0	11.4	0.023	0.036	0.000	8.352		

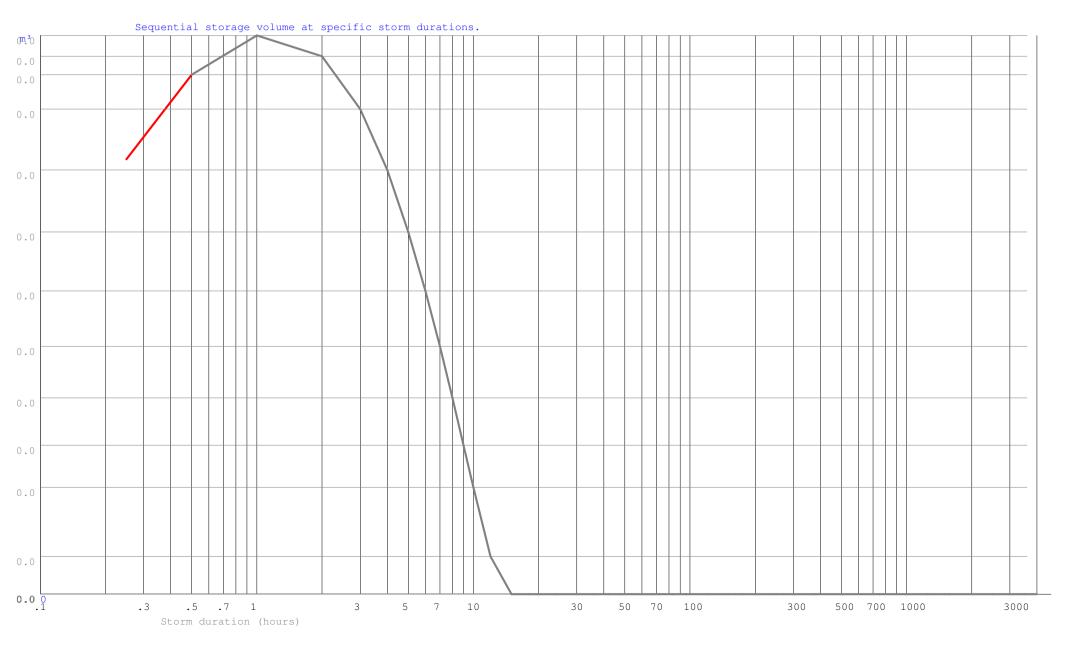
Nimbus Engineering Consultants Ltd

www.nimbusengineering.co.uk

Kemp House, 152 City Road, London, EC1V 2NX Mob:0772 339 3155 email: info@nimbusengineering.co.uk Job No. C2465 Sheet no. Date

Ву

e 07/01/21 S.L Checked Reviewed


4

MasterDrain SW Project 10 Evelina Road, Nunhead, London, SE15 2DX ^{Title} Hydrograph storage calcs with 1 I/s discharge

Maximum storage volumes for varying duration storms.

Storm length	Max. Vol	Max. Vol	Mean intens	Step time.	Peak found
(hrs)	(m³)	time	(mm/hr)	(mins)	
0.25	6.57	0.25	143.61	0.2	
0.5	7.85	0.50	92.75	0.3	
1	8.44	1.00	57.00	0.6	Peak found
2	8.13		33.87	1.2	
3	7.33		24.67	1.8	
4	6.41		19.60	2.4	
5	5.47		16.35	3.0	
6	4.58		14.11	3.6	
7	3.74		12.46	4.2	
8	2.97		11.18	4.8	
9	2.25		10.16	5.4	
10	1.61		9.33	6.0	
12	0.57		8.04	7.2	
15	0.00		6.70	9.0	
18	0.00		5.77	10.8	
20	0.00		5.29	12.0	
24	0.00		4.56	14.4	
30	0.00		3.79	18.0	
36	0.00		3.26	21.6	
42	0.00		2.87	25.2	
48	0.00		2.57	28.8	
54	0.00		2.33	32.4	
60	0.00		2.14	36.0	
66	0.00		1.98	39.6	
72 84	0.00		1.84	43.2	
84 96	0.00		1.62	50.4	
120	0.00 0.00		1.45 1.20	57.6 72.0	
150	0.00		1.00	90.0	
175	0.00		0.88	105.0	
200	0.00		0.88	120.0	
250	0.00		0.65		
300	0.00		0.56	150.0 180.0	
375	0.00		0.46	225.0	
500	0.00		0.36	300.0	
750	0.00		0.26	450.0	
1000	0.00		0.20	600.0	
1250	0.00		0.17	750.0	
1500	0.00		0.15	900.0	
1570	0.00		0.14	942.0	
2000	0.00		0.14	1200.0	
2500	0.00		0.10	1500.0	
3000	0.00		0.08	1800.0	
3500	0.00		0.07	2100.0	
4000	0.00		0.06	2400.0	
-000	0.00		0.00	2400.0	

MD)	Nimbus Engineering Consultants Ltd	Kemp House, 152 City Road, London, EC1V 2NX Mob:0772 339 3155	Job No. C2465 Sheet no. Date	5	
	www.nimbusengineering.co.uk	email: info@nimbusengineering.co.uk	Date	07/01/21	
MasterDrain SW	^{Project} 10 Evelina Road, Nunhead, London, S	E15 2DX	By S.L	Checked	Reviewed
3₩	Title Hydrograph storage calcs with 1 l/s di	scharge	3.L		

MasterDrain SW

Nimbus Engineering Consultants Ltd	Kemp House, 152 City Road, London, EC1V 2NX Mob:0772 339 3155	Job No. C2465 Sheet no. 6		
www.nimbusengineering.co.uk	email: info@nimbusengineering.co.uk	Date	07/01/21	
Project 10 Evelina Road, Nunhead, London, S	SE15 2DX	By S.L	Checked	Reviewed
Title Hydrograph storage calcs with 1 I/s d	ischarge	3.L		

Explanatory notes for Peak Flow Storage

- 1) This system uses the rainfall intensity/ duration curve calculated using either the Wallingford or FEH method as selected.
- 2) The balance is calculated from the inflow minus the outflow.
- 3) The storage volume is the maximum value of the balance curve.
- 4) This method was described by Davis (1963) see Butler & Davies, 2nd edition, p294
- 5) References to 'storm duration' relate only to the hydrograph method (qv).
- 6) There are always 600 steps in the calculation process, thus a 'run' time of 10 hours will be sampled every minute,

Explanatory notes for Hydrograph Storage

- 1) The user has the choice of Summer or Winter curves
- 2) The mean intensity varies with the duration of the storm curve
- 3) There are always 120 steps in the calculation process, irrespective of storm duration.
- 4) The balance is calculated from the inflow minus the outflow.
- 5) The storage volume is the sum of the balance values for each step.
- 6) Varying durations should be tried to find the maximum storage value this can be narrowed down very closely.

*Modelling using the flow characteristics of the restrictor is available using Vortex Control modelling function. Please be aware that this function needs the full design data file to function.

Why do the two methods give different results?

The rainfall characteristics for each method are very different.

The Peak flow (using the Intensity/Duration/Frequency curve) does not model the actual rainfall. This curve is joined points which represent the mean intensity of a storm at a given duration i.e. a value of 19.5 mm/hr for a 60 minute storm indicates that over the sixty minute period, the mean intensity was 19.5 mm/hr. The calculation method samples the IDF curve for a given location and frequency (Return Period) and calculates the storage for that rate and duration less the outflow volume. The maximum value is displayed as the 'worst case' storage.

The hydrograph method uses a standard curve for either Winter or Summer storms. Traditionally these are symmetrical about the central peak. UK rainfall does not fit into this convenient curve, so the calculations are dealing with a stylised set of data. The mean intensity for the storm is calculated from the IDF curve and applied to the curve data, calculating the storage for that step less the outflow volume. The final storage volume is the sum of the storage for all the steps.

It can be seen that these two methods are very different, and the user may have the choice of which result to use. This is not an exact science, though is often treated as such by those that do not understand the principles of the calculations.

		Kemp House,	Job No. C2465	:	
	Nimbus Engineering	152 City Road, London, EC1V 2NX	Sheet no. 1		
	Consultants Ltd www.nimbusengineering.co.uk	Mob:0772 339 3155	Date	07/01/21	
		email: info@nimbusengineering.co.uk			1
MasterDrain HY 10.01	Project 10 Evelina Road, Nunhead, London	, SE15 2DX	By S.L	Checked	Reviewed
	Title IoH 124 (Qbar(urban))Runoff calcs				
Hydrologica					
FSR Hydro					
Location	= LONDON (SOUTH)	Grid reference = $TQ4075$			
M5-60 (mm Soil runo:		$\mathbf{r} = 0.44$			
WRAP	ff = 0.45 = 4	SAAR $(mm/yr) = 600$			
	= 4 cal area = 6	Area = England & Wales Hydrological zone = 8			
Hydrologi	cal alea - b	Hydrological zone - 8			
Soil clas	sification for WRAP type 4				
		n an impermeable layer at shalld	w dept	h.	
1 - 1 / -		1	· · · •		
Design data	:-				
Area $= 0$.	000212 Km ² - 0.021 Ha	- 212 m ² % Urbanisati	ion = 1	00.00%	
Q _{BAR} where:-		R:- Chen NC = 0.92 - 0.00024SAAR			
	for 1100 <saar<3000 mm="" t<="" th=""><th>then NC = $0.74 - 0.000082SAAR$</th><th></th><th></th><th></th></saar<3000>	then NC = $0.74 - 0.000082SAAR$			
CI	ND = 102.4SOIL + 0.28(CWI - 12)	25) CWI = Catchment Wetness	Index		
so					
CI	ND =28.107 CWI =60	0.811 NC =0.776			
	the 50Ha runoff value by the	modified calculation which mult ratio of the site area to 50Ha for these calculations is 0.000	is use		
Q _{BA}	_{R(rural)} = 0.078 (1/s)				
Q _{BA}	$R_{(urban)} = 0.329 (1/s)$				
Q _{BA}	$R_{(urban)}$ is then multiplied by a	growth factor - GC(T) - for dif	ferent	storm	

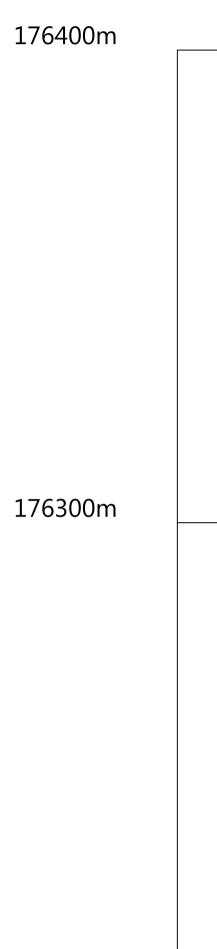
 $Q_{\text{BAR}(urban)}$ is then multiplied by a growth factor - GC(T) - for different return periods derived from EA publication W5-074/A.

MD	Nimbus Engineering Consultants Ltd www.nimbusengineering.co.uk	Kemp House, 152 City Road, London, EC1V 2NX Mob:0772 339 3155 email: info@nimbusengineering.co.uk	Job No. C2465 Sheet no. Date	2 07/01/21	
MasterDrain HY 10.01	Project 10 Evelina Road, Nunhead, London,	SE15 2DX	By S.L	Checked	Reviewed
Calculated data:-	Title IoH 124 (Qbar(urban))Runoff calcs		3.L		

Mean Annual Peak Flow $Q_{BAR(urban)} = 0.33$ 1/s

Values for $Q_{BAR(urban)}$

Ret. per. 1yr	m³/hr 0.000	1/s 0.280	l/s/ha 13.230	Ret. per. 100yr	m³/hr 0.001	1/s 1.037	1/s/ha 49.030
2yr	0.000	0.290	13.697	100yr+20%	0.001	1.245	58.836
5yr	0.000	0.422	19.923	100yr+30%	0.001	1.349	63.739
10yr	0.001	0.534	25.216	200yr	0.001	1.219	57.591
30yr	0.001	0.734	34.710	200yr + 30%	0.002	1.584	74.869
50yr	0.001	0.863	40.781	500yr	0.001	1.479	69.888
				1000yr	0.002	1.699	80.316


Growth factors	-									
	lyr	2yr	5yr	10yr	30yr	50yr	100yr	200yr	500yr	1000yr
	0.85	0.88	1.28	1.62	2.23	2.62	3.15	3.70	4.49	5.16

The above is based on the Institute of Hydrology Report 124 to which you are referred for further details (see Sect 7). Note that the 200 year growth curve was taken from W5-074/A.

For WRAP type 1 soils, CIND can become negative for lower values of SAAR. In this case the CIND value is multiplied by -1 to return a positive value (CIND is very small at this point).

APPENDIX B – DRAWINGS

535300m

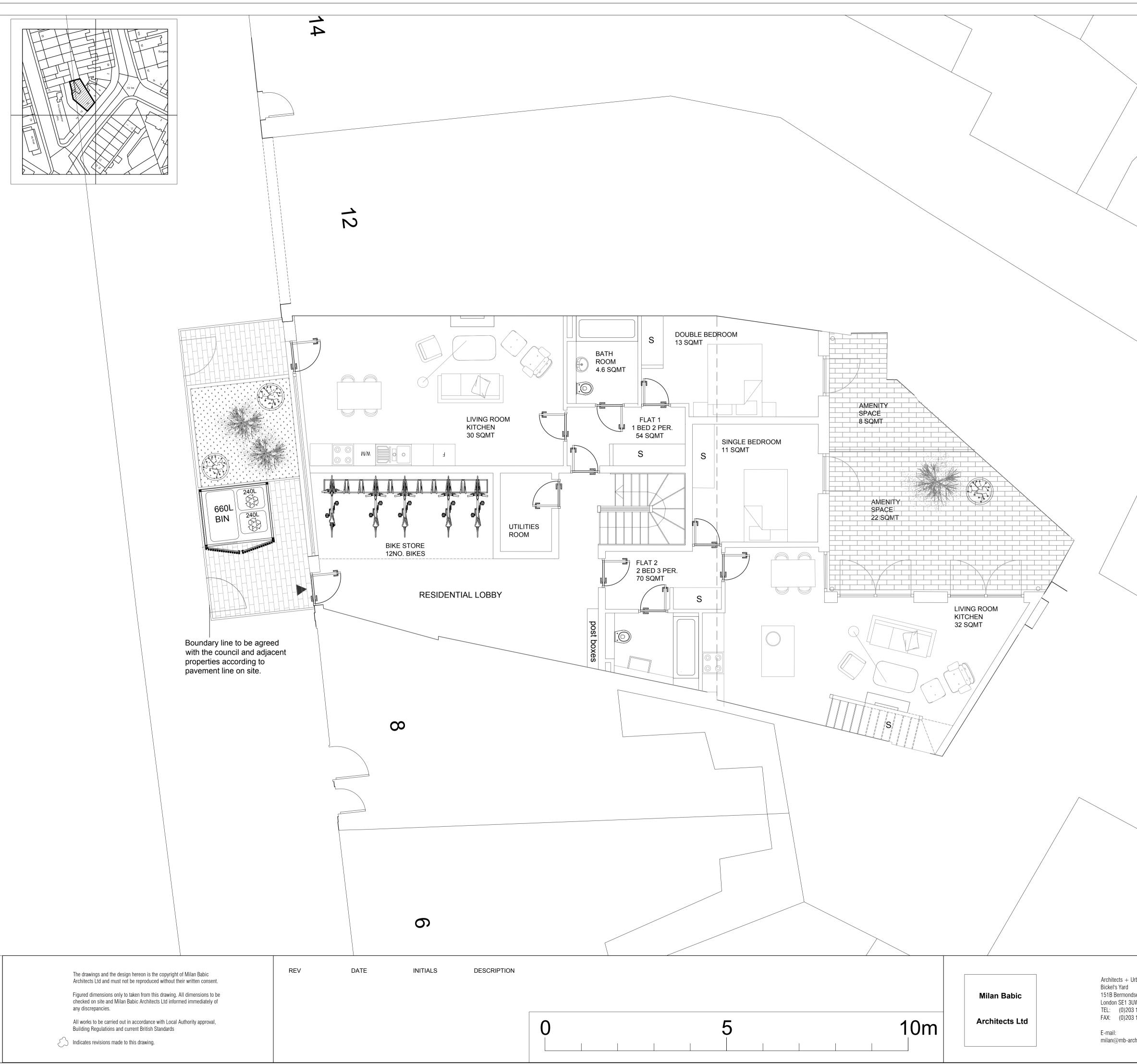
176200m

535300m

*Site Boundary to be confirmed on site. The drawings and the design hereon is the copyright of Milan Babic Architects Ltd and must not be reproduced without their written consent. REV DATE INITIALS DESCRIPTION Figured dimensions only to taken from this drawing. All dimensions to be checked on site and Milan Babic Architects Ltd informed immediately of any discrepancies. All works to be carried out in accordance with Local Authority approval, Building Regulations and current British Standards Mil works to be carried out in accordance with Local Authority approval, Building Regulations made to this drawing. Indicates revisions made to this drawing.

535400m

535500m


Milan Babic

Architects + Urban Bickel's Yard 151B Bermondsey London SE1 3UW TEL: (0)203 11 FAX: (0)203 11

E-mail: milan@mb-archit

Architects Ltd

ban Designer	PROJECT: Residential Developme 10 Evelina F London, SE	Road	
ey Street N 117 0120 117 0122	CLIENT:		
nitects.co.uk	DWG TITLE: Location Plan DWG NO: 1023-MB-000-100	REV:	DECEMBER 2020
	^{SCALE:} 1:1250 @ A3		IN

		/		
				/
		/		
			/	
/	7			
			,	
				<u> </u>
				/
	Pronosed Sc	hedule of Acco	ommodation	
	Proposed Sc FLAT	hedule of Acco TYPE	ommodation GIA (sqmt)	
	FLAT	TYPE	GIA (sqmt)	
	FLAT 01	TYPE 1Bed/2Per	GIA (sqmt) 54 sqmt	
	FLAT 01 02	TYPE1Bed/2Per2Bed/3Per	GIA (sqmt) 54 sqmt 70 sqmt	
	FLAT 01	TYPE 1Bed/2Per	GIA (sqmt) 54 sqmt 70 sqmt 61 sqmt	
	FLAT 01 02 03	TYPE1Bed/2Per2Bed/3Per2Bed/3Per	GIA (sqmt) 54 sqmt 70 sqmt	
	FLAT 01 02 03 04	TYPE1Bed/2Per2Bed/3Per2Bed/3Per1Bed/2Per	GIA (sqmt) 54 sqmt 70 sqmt 61 sqmt 52 sqmt 61 sqmt 52 sqmt	
	FLAT 01 02 03 04 05 06 07	TYPE1Bed/2Per2Bed/3Per2Bed/3Per1Bed/2Per2Bed/3Per1Bed/2Per1Bed/2Per5tudio	GIA (sqmt) 54 sqmt 70 sqmt 61 sqmt 52 sqmt 61 sqmt 52 sqmt 39 sqmt	
	FLAT 01 02 03 04 05 06	TYPE1Bed/2Per2Bed/3Per2Bed/3Per1Bed/2Per2Bed/3Per1Bed/2Per1Bed/2Per	GIA (sqmt) 54 sqmt 70 sqmt 61 sqmt 52 sqmt 61 sqmt 52 sqmt	
	FLAT 01 02 03 04 05 06 07	TYPE1Bed/2Per2Bed/3Per2Bed/3Per1Bed/2Per2Bed/3Per1Bed/2Per1Bed/2Per5tudio	GIA (sqmt) 54 sqmt 70 sqmt 61 sqmt 52 sqmt 61 sqmt 52 sqmt 39 sqmt	
	FLAT 01 02 03 04 05 06 07	TYPE1Bed/2Per2Bed/3Per2Bed/3Per1Bed/2Per2Bed/3Per1Bed/2Per1Bed/2Per5tudio	GIA (sqmt) 54 sqmt 70 sqmt 61 sqmt 52 sqmt 61 sqmt 52 sqmt 39 sqmt	
	FLAT 01 02 03 04 05 06 07 08	TYPE1Bed/2Per2Bed/3Per2Bed/3Per1Bed/2Per2Bed/3Per1Bed/2PerStudioStudio	GIA (sqmt) 54 sqmt 70 sqmt 61 sqmt 52 sqmt 61 sqmt 52 sqmt 39 sqmt	
	FLAT 01 02 03 04 05 06 07 08	TYPE1Bed/2Per2Bed/3Per2Bed/3Per1Bed/2Per2Bed/3Per1Bed/2Per1Bed/2Per5tudio	GIA (sqmt) 54 sqmt 70 sqmt 61 sqmt 52 sqmt 61 sqmt 52 sqmt 39 sqmt	
	FLAT 01 02 03 04 05 06 07 08	TYPE1Bed/2Per2Bed/3Per2Bed/3Per1Bed/2Per2Bed/3Per1Bed/2Per2Bed/3Per5tudioStudioStudio	GIA (sqmt) 54 sqmt 70 sqmt 61 sqmt 52 sqmt 61 sqmt 52 sqmt 39 sqmt	
Street 0120	FLAT 01 02 03 04 05 06 07 08	TYPE1Bed/2Per2Bed/3Per2Bed/3Per1Bed/2Per2Bed/3Per1Bed/2Per2Bed/3Per1Bed/2PerStudioStudioStudioStudioLondon, SE15 2DX	GIA (sqmt) 54 sqmt 70 sqmt 61 sqmt 52 sqmt 61 sqmt 52 sqmt 39 sqmt	
Street 0120 0122	FLAT 01 02 03 04 05 06 07 08	TYPE 1Bed/2Per 2Bed/3Per 2Bed/3Per 1Bed/2Per 2Bed/3Per 1Bed/2Per 3Eudio Studio Studio Studio Id Development at: 10 Evelina Road London, SE15 2DX	GIA (sqmt) 54 sqmt 70 sqmt 61 sqmt 52 sqmt 61 sqmt 39 sqmt 37 sqmt	
Designer Street 10120 10122 cts.co.uk	FLAT 01 02 03 04 05 06 07 08	IBed/2Per 2Bed/3Per 2Bed/3Per 2Bed/3Per 1Bed/2Per 2Bed/3Per 1Bed/2Per Studio Studio Studio IBed/2Per 1Bed/2Per 2Bed/3Per 2Bed/2Per 2Bed/3Per 2Bed/2Per 2Bed/2Per 2Bed/2Per 2Bed/2Per 2Bed/2Per 2Bed/2Per 2Bed/3Per 2Bed/2Per	GIA (sqmt) 54 sqmt 70 sqmt 61 sqmt 52 sqmt 61 sqmt 52 sqmt 39 sqmt	

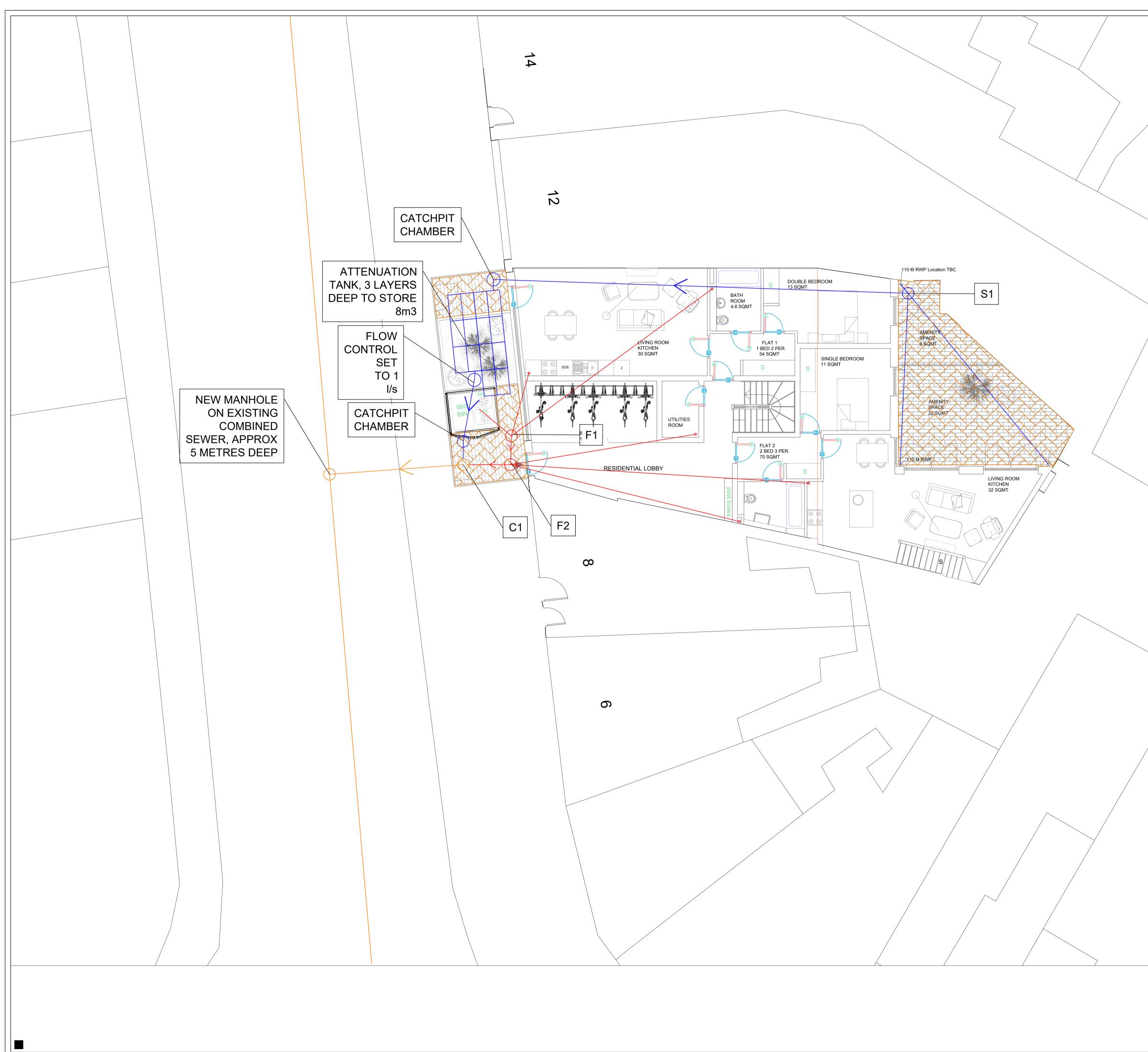
> /	/				
	/				
				/	
	7				
\longrightarrow /					
			/	/	
		/	/		
				/	
	/				
			/		
			\checkmark		
Drop	anad Caba	dulo of Acco	mm	adation	
<		dule of Acco			
FLA	T	TYPE	GIA	A (sqmt)	
	01	1Bed/2Per		54 sqmt	
	02	2Bed/3Per		70 sqmt	
	03	2Bed/3Per		61 sqmt	
	/ 04	1Bed/2Per		52 sqmt	
	05	2Bed/3Per		61 sqmt	
	06	1Bed/2Per		52 sqmt	
/	07 08	Studio Studio	/	39 sqmt 37 sqmt	
	00		· / '		
	D 1-1	iol Daviolarmentet	/		
Irban Daoignor	PROJECT: Resident	ial Development at: 10 Evelina Road			
Jrban Designer dsey Street		London, SE15 2DX			
UW 3 117 0120	CLIENT:				
3 117 0122		d First Floor Plan			
chitects.co.uk	DWG NO: 1023-MB	-00-101		DECEMBER 2020	
	SCALE:	1:100 @ A3		IN	

/

Υ

Proposed Schedule of Accommodation						
FLAT	TYPE	GIA (sqmt)				
01	1Bed/2Per	54 sqmt				
02	2Bed/3Per	70 sqmt				
03	2Bed/3Per	61 sqmt				
04	1Bed/2Per	52 sqmt				
05	2Bed/3Per	61 sqmt				
06	1Bed/2Per	52 sqmt				
07	Studio	39 sqmt				
08	Studio	37 sqmt				

	PROJECT:	Residential Development 10 Evelina Roa					
n Designer	London, SE15 2DX						
Street							
7 0120 7 0122	CLIENT:						
	DWG TITLE: Proposed Second Floor Plan						
ects.co.uk	DWG NO:	1023-MB-00-102	REV:	DATE:	DECEMBER 2020		
	SCALE:	1:100 @ A3		IN			


	/	/			/	/			
				/					
								/	
				/					
			7						
							/		
	/								
	\rightarrow								
,						/			
					/				
				/					
							/		
				<					
						_ /			
	Propo	osed	Sche	dule of A	4cco	mm	odation		
	FLAT	Γ		TYPI	E	GI	A (sqmt))	
		01		1Bed/2	Per		54 sqmt	_	
		02		2Bed/3			70 sqmt	-	
		$\frac{03}{04}$		2Bed/3			61 sqmt	- /	
	/	<u>04</u> 05		1Bed/2 2Bed/3			52 sqmt 61 sqmt		
		06		1Bed/2			52 sqmt		
		07		Studio			39 sqmt	- /	
/	/	08		Studio			37 sqmt		
/		PROJECT:	Residentia	al Development 10 Evelina Roa		/			
rban Designer sev Street				London, SE15					
sey Street JW 117 0120		CLIENT:							
117 0122	-	DWG TITLE:	Proposed	Third Floor Pl	an REV:				
chitects.co.uk	_	DWG NO:	1:100 @ A				DECEME IN	3ER 2020	
									1

The drawings and the design hereon is the copyright of Milan Babic Architects Ltd and must not be reproduced without their written consent. Figured dimensions only to taken from this drawing. All dimensions to be checked on site and Milan Babic Architects Ltd informed immediately of any discrepancies.

All works to be carried out in accordance with Local Authority approval, Building Regulations and current British Standards

/			
	KEY		
		SURFACE WATER U	PVC PIPES
		SURFACE WATER	BERS
		- FOUL UPVC WATER	PIPES
/		FOUL WATER INSPE CHAMBERS	ECTION
		- COMBINED UPVC V	VATER PIPES
		COMBINED WATER CHAMBERS	INSPECTION
		PERMEABLE PAVING	6
/			
	REV DATE DRAWN D	DESCRIPTION	CHECK APPR.
	A 07-01-21 S,L	For Information	SL SL
	10 EVELINA ROAD		
	TITLE:		
		WATER DRAINAGE LAY	OUT PLAN
/	CLIENT:		
	TOUCAN LOFTS LI	IMITED	
		.nimbusengineering.co.uk	
	CHECKED BY: DATE		DATE:
	S.L 07-01		07-01-21
	S.LN.T.SDATE:SIZE	S 	A
	07-01-21 A1		

Asset location search

Nimbus Engineering Consultants LTD Kemp House 152City road LONDON EC1V 2NX

Search address supplied

10 Evelina Road London SE15 2DX

Your reference

C2465

Our reference

ALS/ALS Standard/2020_4323752

Search date

15 December 2020

Knowledge of features below the surface is essential for every development

The benefits of this knowledge not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility of any development.

Did you know that Thames Water Property Searches can also provide a variety of utility searches including a more comprehensive view of utility providers' assets (across up to 35-45 different providers), as well as more focused searches relating to specific major utility companies such as National Grid (gas and electric).

Contact us to find out more.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0845 070 9148

Search address supplied: 10, Evelina Road, London, SE15 2DX

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>

Asset location search

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4WW, DX 151280 Slough 13 T 0845 070 9148 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

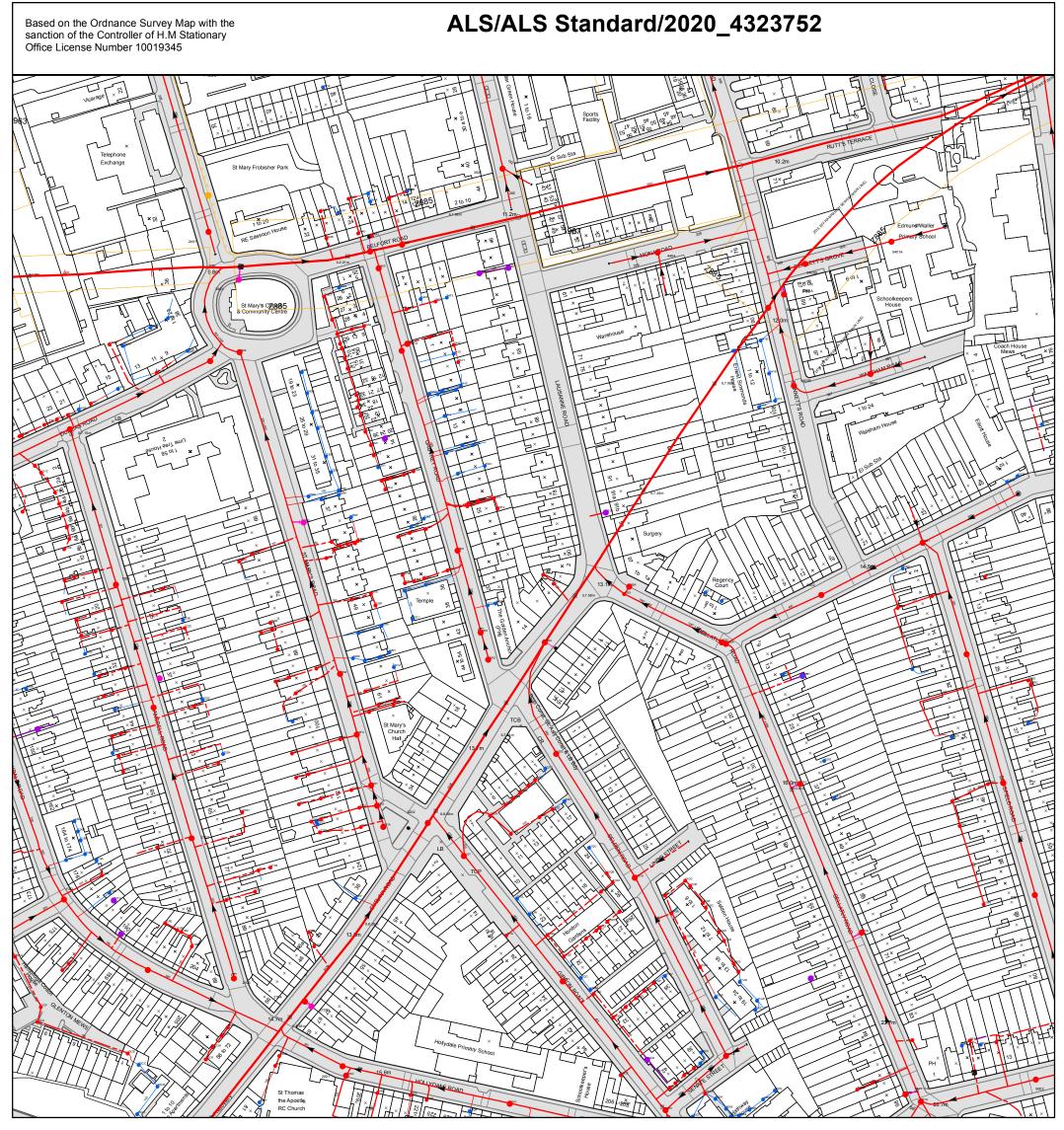
Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB


Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Scale:	1:1792	Comments:
Width:	500m	
Printed By:	G1KANAGA	
Print Date:	15/12/2020	
Map Centre:	535391,176313	
Grid Reference:	TQ3576SW	

ALS/ALS Standard/2020_4323752

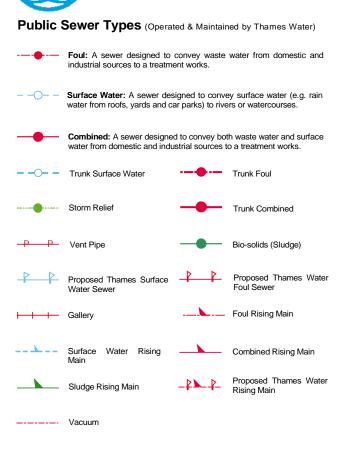
NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

	1	1	٦ r	1
REFERENCE	COVER LEVEL	INVERT LEVEL	REFERENCE	COVER LEVEL
230D			122D	
122E			212K	
141C			141B	
132E			132D	
344X			354Z	
354C			231H	
231G			134B	
341A			13B1	
33D2			631A	
14GE			122J	
22E2			33O1	
4404	11.41	9.35	2105	14.31
402B	11.24	7.76	403B	13.19
3501	10.56	7.59	401A	11.19
402A	38.68		211F	
211G			221A	
121U			33K1	
330E			233A	
.004			41QV	
41QU			41QM	
5301	14.56	12	501A	
203			40GH	
006			41GF	
1QJ			41QK	
1QA			41GC	
1GB			31QN	
IGK			3207	
1QD			41QB	
1GP			41GI	
1GD			3201	
0ZG			4003	
1QH			41GL	
12ZI			4101	
4221 41QS			4005 41QO	
41QI			41QC	
31QG			4303	
41GM			4303 41QF	
31QL			41QF 41GJ	
41GH			41GJ 41GE	
3204	13.46		41GE 41QR	
3204 3206	13.40		41QR 40ZC	
3206 41QP				
			41QT 41GG	
41UD				
41GA	12 70		540B	45.50
3202 001B	13.79	16.25	101A	15.56
5302	19.61	16.25	430A	13.6
302 2ZD	14.35	11.47	4203	13.96
			31ZG	
ZH			32ZO	
205			32ZJ	
)GA			63CA	
3CB			40GC	
			50QB	
DQA			41QE	
1GN			511A	
21C			121D	
31F			431B	
104	10.39	6.56	3401	
30E			122F	
4D2			34A2	
401			134C	
3203	13.25	10.24	230F	
33A1			33H3	
33J1			3311	
33G3			33F2	
33E2			331M	
332M			242P	
4A1			341C	
41B			354W	
54Y			354B	
34G2			33M1	
33N2			34M2	
33NZ			33B2	
			34L1	
33C2			34J2	
33C2 33DH				
3C2 3DH 3N1				
3C2 3DH 3N1 4C2			22G1	
33C2 33DH 33N1 34C2 3202			22G1 22C2	
3C2 3DH 3N1 4C2 202 2B2			22G1 22C2 32A1	
0C2 0DH 0N1 0C2 002			22G1 22C2	

ALS/ALS Standard/2020_4323752

NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

REFERENCE	COVER LEVEL	INVERT LEVEL	REFERENCE	COVER LEVEL	INVERT LEVEL
320Z			320Y		
320X			320W		
22A1			22C1		
221D			221E		
221F			320T		
320V			320U		
320S			232B		
330P			330O		
330N			330K		
230J			2301		
330D			230A		
231B			330F		
230M			230L		
240C			240H		
211D			211C		
211B			211A		
223H			22GA		
223K			223E		
222E			223C		
233B			132F		
132B			132C		
132A			122H		
1221			132F		
14GA			141A	1	1
341Y			32A2	+	
344D			2420	+	+
34H2			2103	14.21	11.12
220A			2205		
2301	11.16	7.95	2203		
2202			3201		
2201			2102		
2402	10.16	6.71	1305	12.09	8.6
121A			121B		
33H2			33G2		
33F1			33E1		
33D1			33C1		
33B1			131D		
131C			613G		
131F			242Q		
24GF			131B		
131H			341J		
3311			331K		
33H1			3311		
33G1			341H		
341G			341D		
341G 341F			341E		
34F3			34A3		
34E3			34D3		
33EH			33F4		
33AH			240G		
230A			2401	8.43	5.58
230B			131E		
131A			24B2		
24E2			354A		
34F2			3403	11.75	7.84
3301	12.9	9.54	3402		
24GC	12.0		24GB	1	
2403	9.91	<u> </u>	431A		
	3.31				
2104			20CY		
30HD			20CF		
20CZ			20CK		
20CM			21CL		
21CJ			21BE		
21BF			21BC		
21BD			21BB		
11QE		1	01QK	T	
11QG			11QC		
11QA			11QB		
				+	
01QL			30QI		
30BA			12BA		
20CH		ļ	20CD		
20CC			10CB		
11CA			11BC		
			12KA		
11CG			11BB		
11CG 12KD		1	11CF		
12KD					
12KD 11BF	20.06	16.78			
12KD 11BF 4001	20.06	16.78	2001	13.98	10.47
12KD 11BF 4001 4101	20.06	16.78	2001 3101	13.98	10.47
12KD 11BF 4001 4101 3001			2001 3101 2101	13.98	10.47
12KD 11BF 4001 4101	20.06	16.78 10.74	2001 3101	13.98	10.47


ALS/ALS Standard/2020_4323752

NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

REFERENCE	COVER LEVEL	INVERT LEVEL	REFERENCE
4201			61AH
62AI			62AG
62AF			52ZA
62BA			62BC
62BD			53AD
53AB			53AA
52AE			520C
510A	19.79		6203
60NA			6002
5201	16.33	13.85	500B
6301	23.17	20.32	321Z
322A			1304
24GD			311A
521E			521F
244F			244E
241P			111T
320R			320Q
322B			221V
221W			2203
32D1			122G
332Q			332R
40ZB			40ZA
40QZ			40QY
521G			5211
40QW			40QX
521H			5404
121V			121W
5102			601U
601V			502L
431E			431F
251A			341Z
111U			332S
631E			311F
441A			541A
541B			441B
441C			342A
342B			

REFERENCE	COVER LEVEL	INVERT LEVEL
61AH		
62AG		
52ZA		
62BC		
53AD		
53AA		
520C	15.94	
6203	19.08	15.86
6002	28.58	25.49
500B	25.68	
321Z		
1304	10.81	7.12
311A		
521F		
244E		
111T		
320Q		
221V		
2203		
122G		
332R		
40ZA		
40QY		
5211		
40QX		
5404	12.93	9.33
121W		
601U		
502L		
431F		
341Z		
332S		
311F		
541A		
441B		
342A		

ALS Sewer Map Key

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

- Air Valve Dam Chase Fitting
- ≥ Meter

Π

0 Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

X Control Valve Ф Drop Pipe Ξ Ancillary Weir

Outfall

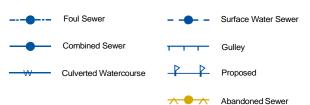
Inlet

Undefined End

End Items

いし

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.


- **Other Symbols** Symbols used on maps which do not fall under other general categories
- ****/ Public/Private Pumping Station
- * Change of characteristic indicator (C.O.C.I.)
- Ø Invert Level
- < Summit

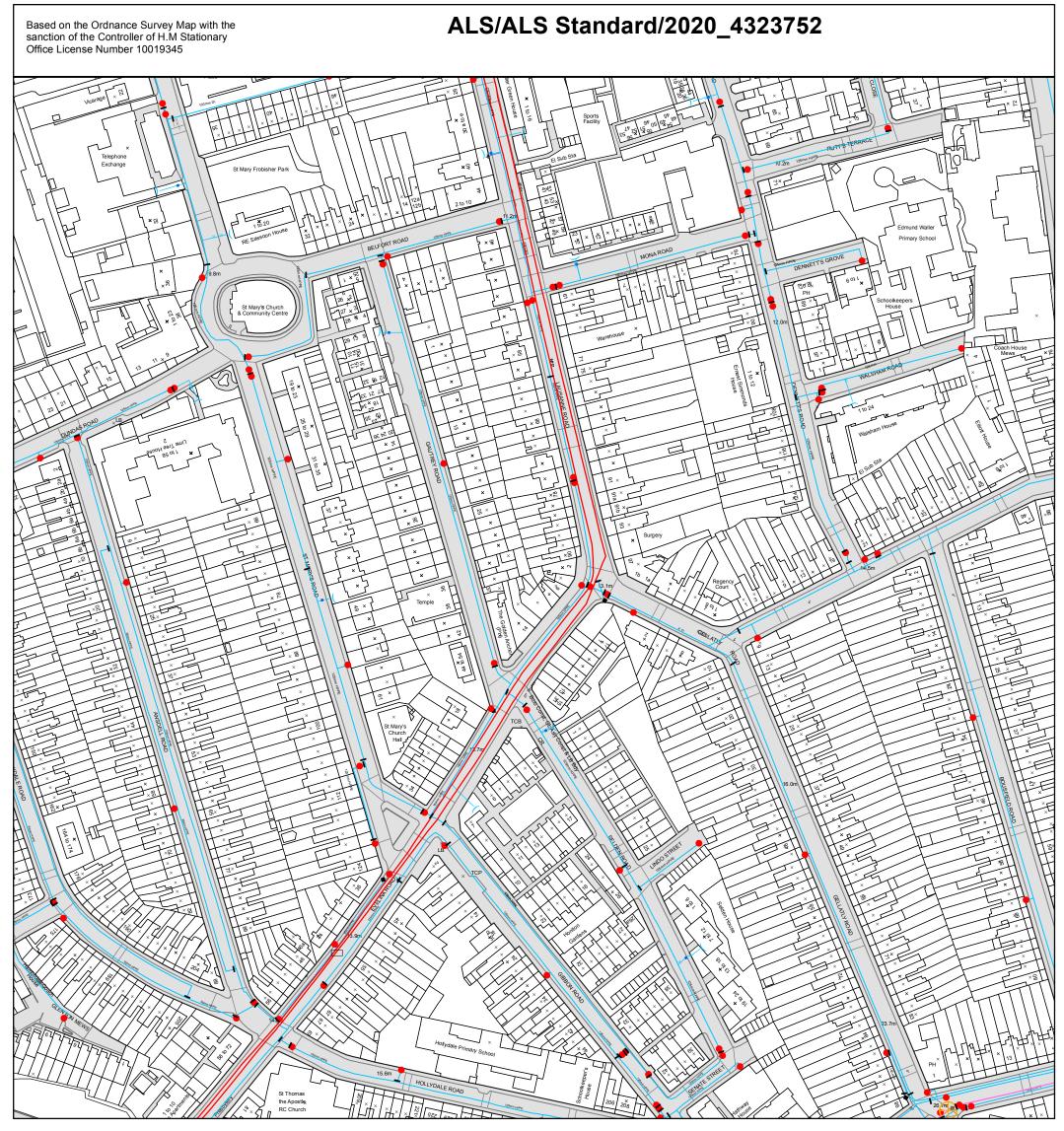
Areas

Lines denoting areas of underground surveys, etc.

Agreement **Operational Site** :::::: Chamber Tunnel Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Notes:


hames

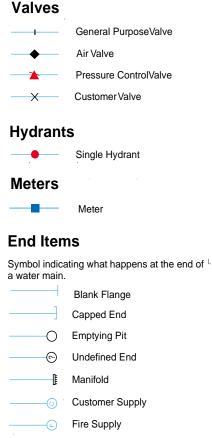
Water

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plans are metric.
- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

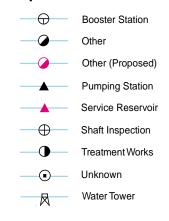
6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Scale:	1:1792	Comments:
Width:	500m	
Printed By:	G1KANAGA	
Print Date:	15/12/2020	
Map Centre:	535391,176313	
Grid Reference:	TQ3576SW	


ALS Water Map Key

Water Pipes (Operated & Maintained by Thames Water)


- Distribution Main: The most common pipe shown on water maps.
 With few exceptions, domestic connections are only made to distribution mains.
- Trunk Main: A main carrying water from a source of supply to a treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water mains used for supplying individual customers.
- **Supply Main:** A supply main indicates that the water main is used as a supply for a single property or group of properties.
- STERE
 Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe.
- **Metered Pipe:** A metered main indicates that the pipe in question supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.
- Transmission Tunnel: A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the map provided.
- **Proposed Main:** A main that is still in the planning stages or in the process of being laid. More details of the proposed main and its reference number are generally included near the main.

PIPE DIAMETER	DEPTH BELOW GROUND		
Up to 300mm (12")	900mm (3')		
300mm - 600mm (12" - 24")	1100mm (3' 8")		
600mm and bigger (24" plus)	1200mm (4')		

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Operational Sites

Other Symbols

Data Logger

Other Water Pipes (Not Operated or Maintained by Thames Water)

Other Water Company Main: Occasionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed along them.

Private Main: Indiates that the water main in question is not owned by Thames Water. These mains normally have text associated with them indicating the diameter and owner of the pipe.

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0845 070 9148 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to ' Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Ways to pay your bill

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.