SUDS REPORT FOR LAND ADJACENT TO 1 MOUNT VIEW, ENFIELD, EN2 8LF

DOCUMENT NUMBER.: C2362-R1-REV-A

PREPARED BY

Contents

1.	INTRODUCTION			
	1.1	Appointment	. 3	
	1.2	Objectives	. 3	
	1.3	Limitations	. 3	
2.	GEC	DLOGY OF THE AREA	. 5	
3.	SUS	TAINABLE URBAN DRAINAGE SYSTEMS	. 8	
4.	PRO	POSED SOLUTION	11	
5.	TIME	ESCALE AND MAINTENANCE OF WORKS	13	
6.	CO	NCLUSIONS	16	

APPENDICES

APPENDIX A – HISTORIC BOREHOLES & PERCOLATION TEST RESULTS

APPENDIX B - SURFACE WATER RUN OFF CALCULATIONS

APPENDIX C – DRAWINGS

APPENDIX D – WATER AUTHORITY ASSET PLANS

1. INTRODUCTION

1.1 Appointment

Nimbus Engineering have been appointed by John Perrin & Sons to provide an outline solution on the management of Surface Water run-off and to ensure that there is no risk of flooding caused by the proposed construction of a three story dwelling, with associated, hard standing, car parking, and landscaping.

1.2 Objectives

This report will provide information on a suitable Sustainable Urban Drainage System (SuDS) in order to reduce the surface water run off leaving the site and show that the proposed development will not increase Flood Risk at the site or elsewhere.

1.3Limitations

The general limitations of this report are:

 A number of data and information sources have been used to prepare this report. Whilst Nimbus Engineering believes them to be trustworthy, Nimbus Engineering is unable to guarantee the accuracy of data and information that has been provided by others; • This report has been prepared using the best data and information that was available at the time of writing. There is the potential for further information or data to become available, leading to changes in the conclusions drawn by this report, for which Nimbus Engineering cannot be held responsible.

2. GEOLOGY OF THE AREA

According to, the British geological survey, the superficial deposits at the proposed site consist of an amalgamation of clay, silt, sand and gravel as shown in Figure 1, below. The bedrock in the area is a member of London Clay Formation, as shown in Figure 2, below.

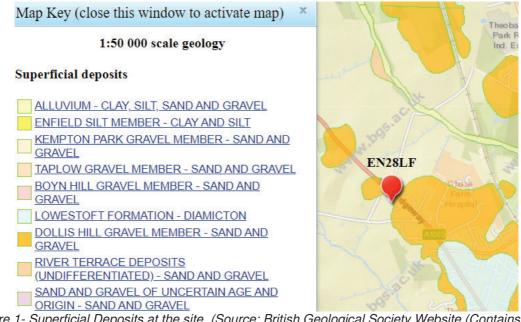


Figure 1- Superficial Deposits at the site. (Source: British Geological Society Website (Contains_British Geological Survey materials © URKI [2020]. Base mapping is provided by ESRI)).

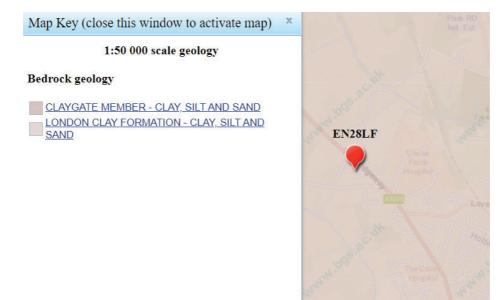


Figure 2 – Bedrock at the site. (Source: British Geological Society Website (Contains_British Geological Survey materials © URKI [2020]. Base mapping is provided by ESRI)).

The London Borough of Enfield have requested that historic boreholes within the vicinity of the site are consulted in order to ascertain the suitability of infiltration, the location of the boreholes is shown on the plan overleaf, and the results can be found in Appendix A.

Figure 3 - Historic Boreholes at the site. (Source: British Geological Society Website (Contains_British Geological Survey materials © URKI [2019]. Base mapping is provided by ESRI)).

The results of these boreholes show that infiltration is not feasible. A percolation test was also undertaken on site on the 23rd and 24th November which confirmed infiltration was not feasible these results can be found in Appendix A.

3. SUSTAINABLE URBAN DRAINAGE SYSTEMS

The total area of the site is $283m^2$, and the existing impermeable areas at the site are $0m^2$. Following the development proposals, the impermeable areas at the site will have increased to $173m^2$. Surface water run off calculations can be found in Appendix B.

Surface water arising from a developed site should, as far as is practicable, be managed in a sustainable manner to mimic the surface water flows arising from the site prior to the proposed development, while reducing the flood risk to the site itself and elsewhere, taking climate change into account.

Reducing the rate of surface water discharge from urban sites is one of the most effective ways of reducing and managing flood risk.

Traditional piped surface water systems work by removing surface water from our developments as quickly as possible, however this can cause various adverse impacts:

- Increased downstream flooding, and sudden rises in flow rates and water levels in local water courses.
- Reduction in groundwater levels and dry weather flows in watercourses.
- Reduce amenity and adversely affect biodiversity due to the surface water runoff containing contaminants such as oil, organic matter and toxic materials.

SuDS are defined as a sequence of management principles and control structures designed to drain surface water in a more sustainable fashion than conventional piped drainage techniques. SuDS should utilise the natural landscape of an area which as well as slowing down the rate of runoff provides a number of environmental, ecological and social benefits.

These include:

- Protection and enhancement of water quality. As well as providing on-site attenuation, SuDS treat the water, resulting in an improved quality of water leaving the site. This is achieved when the water passes through fine soils and the roots of specially selected plants. Pollutants washed off the hard landscaping by rainfall will be safely removed before the water reaches the natural receiving water course.
- A sympathetic approach to the environmental setting by providing opportunities to create habitats for flora and fauna in urban watercourses and open spaces.
- Meeting the amenity and social needs of the local community and residents in the creation of attractive green spaces.

The various types of SuDS include:

Permeable paving	
Soakaways;	
Swales and basins;	
Bioretention/ rain gardens;	
Green roofs and rainwater re- use;	

Preferably a combination of these techniques should be used as part of the surface water management train, and it is important for all stakeholders, such as developers, architects, landscape architects and engineers to work in order to determine a feasible solution.

4. PROPOSED SOLUTION

In order to ensure that the SuDS management train has been followed, the proposals involve raingarden planters for the two rainwater downpipes at the eastern edge of the building, in order to treat and slow down the peak rate of surface water runoff from the roof areas.

All proposed hardstanding areas will be formed of permeable paving, and slot drains will be provided for all sloped areas.

The percolation test calculations showed an infiltration rate of $5x10^{-6}$ m/s and would require a soakaway of $35m^2$ footprint which would not be feasible due to spatial constraints at both the front and rear of the property.

Hydrograph run off storage calculations were carried out using the total contributing area, for a 1 in 100 year storm event, with a 40% allowance for climate change, with a flow restriction leaving the site set to 0.5 l/s, the existing site's greenfield run-off rate was 0.118l/s, and as the solution had to be pumped it was deemed this was too small and could potentially lead to pump failure. Having a discharge rate of 0.5 l/s it was calculated that 8.6m³ of storage was required. This surface water run-off will be stored in the subbase of the permeable paving within the car parking out with the basement's extents, as shown on drawing number C2362-03, in Appendix C.

We believe the Sustainable Urban Drainage System hierarchy has been considered fully, with as much of the surface water runoff to be treated at source and attenuated within the

permeable paving sub-base and restricted to a lower rate of 0.5l/s, in line with the London Borough of Enfield's requirements. All surface water run off calculations can be found in Appendix B.

This restricted surface water run-off will be from the pumping station will then connect into a combined sewer manhole within 1 Mount View as previously agreed with Enfield Council as shown on drawing number C2362-03, in Appendix C, and on the asset plans provided in Appendix D.

5. TIMESCALE AND MAINTENANCE OF WORKS

All drainage works will be completed prior to first occupation and there will be no adoption of any of the drainage works within the site, a management company will be formed, which will be responsible in overseeing the long-term maintenance of all the communal drains.

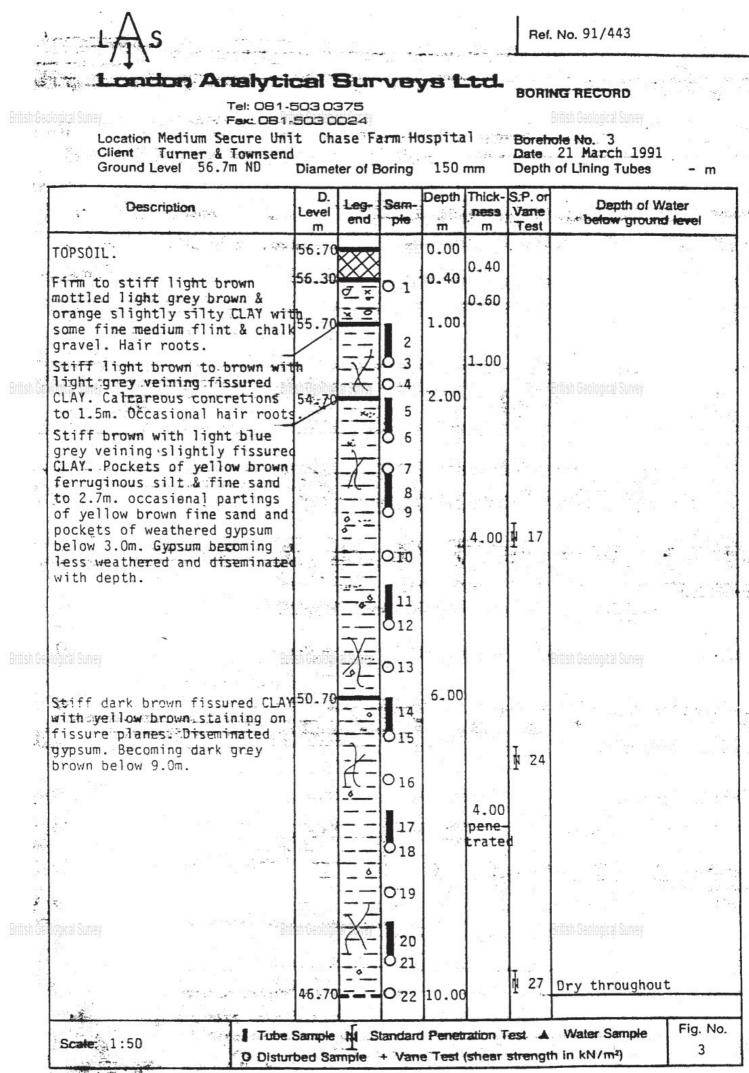
- Gullies should be cleaned every 3 months in order to ensure that there are no blockages.
- The catch pit chambers to the sub-base storage and flow control chamber should be checked and emptied every 3 months, especially after a heavy rain storm, this to ensure that the system does not get clogged up with silt or blocked.

The following table outlines the maintenance requirements for the permeable paving:

Maintenance schedule	Required action	Typical frequency
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations or clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this is the most likely to collect the most sediment
Occasional maintenance	Stabilise and mow contributing and adjacent areas Removal of weeds or management using glyphospate applied directly into the weeds by an applicator rather than spraying	As required As required
	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving.	As required
Remedial Actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material.	As required
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to

		significant clogging)
	Initial inspection	Monthly for three months after installation
Monitoring	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action	Three-monthly, 48hr after large storms in six months
	Inspect slit accumulation rates and establish appropriate brushing frequencies	Annually
	Monitor inspection chambers	Annually

The following table outlines the maintenance requirements for the raingarden planters:


Maintenance schedule	Required action	Typical frequency
Regular	Pipe inlets to the raingarden planters should be checked every month and especially after an extreme rainstorm to ensure that there are no blockages.	Monthly
maintenance	Periodic inspections & removal of debris or other items that represent blockage risks particularly in vicinity of the inlet to the raingarden planters	Monthly
	Weeding, cutting of plants and removal of any dead plants to ensure that the system works effectively	Every three months
	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockages by sediment, algae or other matter: remove and replace surface infiltration medium as necessary.	Annually
Remedial actions	Repair inlets, outlets, overflows	As required
	Inspect/check all inlets, outlets, vents and overflows to ensure that the are in good	Annually
Monitoring	condition and operating as designed	

6. CONCLUSIONS

The purpose of this report and associated drawings, is to satisfy the local planning authority that the surface water run of arising from the proposed development will be dealt with at source, through the use of Sustainable Urban Drainage Systems.

The timetable of works is to complete all drainage prior to occupation of dwellings, and maintenance requirements are also included in this report.

APPENDIX A – HISTORIC BOREHOLES & PERCOLATION TEST RESULTS

.

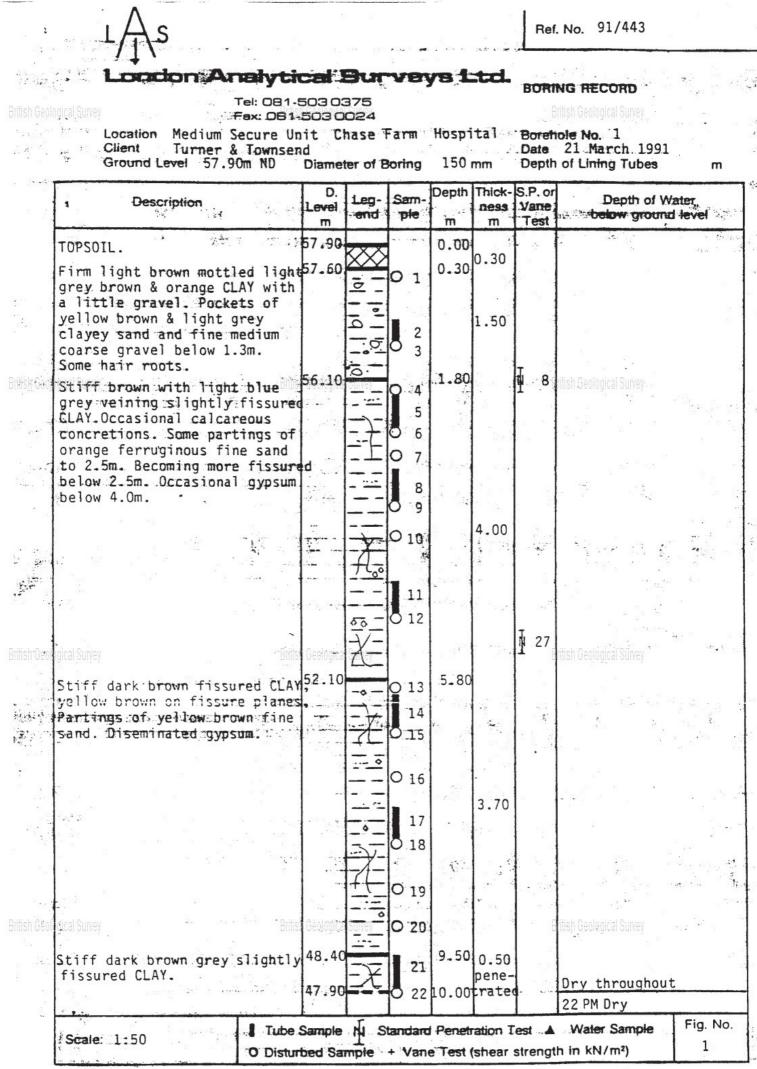
Page 323

GROUND EXPLORATIONS LIMITED

British Geological Survey		E SECTION	SHEET	ritish Geological	
					192.
CONTRACT NAME	RHFIELD.		O	RDER NO.	-
Bored for :	isers. James & Parts	14 F# •			
Address : 64	. Lower Grosvenor 1	lass, S.W.l.			
Address of Site	Chase Farm Hospits	41.			
District or Town			County	· Mid.	L.
Standing Water	Level: 3. 4"	Below Surface	Dia. of	Borehole :	6 Inches.
Water Struck (1) 3*9*Ft. B.S. (2) :	Ft. B.S. (3):	Ft. B.S.		
Boring Commen	ced: 5. 10. 51.	Boring	Completed : 5. 1	0. 51.	
Special Remarks British Geological Survey	DALLMON TAANT	823-0 Geological Survey		ritish Geological	
Jar Samples :	5106048; 7166 Reter-6093;	i0491 15*0*+60501	29*9*+69/33	24 *:- -6 05	52 a - 12 - 12 a - 12 a
Core Samples :	15* 0*-11*6*-60 545	×			
	DESCRIPTION OF	STRATA	Thicl Feet	inches	Depth Below Surface Feet Inches
descriptions em	requested to examine the sam ployed below are general term ition to commercial purposes.	nples of the Strata submitted ns and responsibility is not Geological Survey oring.	accepted	riish Geological	Survey

	DESCRIPTION OF	STRATA	Feet	Inches	Feet	Inches
Client description for their a British Geological Survey c	as employed below are general terr	nples of the Strata submitted, as the ns and responsibility is not accepted Geological Survey oring.		inish Geologio	I Survey	
	Topsdl Cley and Stones Gravel Brown Loodo- Glay Blue London Cley	0.30m 1.52m 0.76m 3.12m 1.60n	1 5 2 10 5	0 0 6 3 3	1 6 3 18 24	(m) 0 0.30 0 1.83 6 2.59 9 5.72 0 7.32
• British Geological Survey	Britisi	i Geological Survey	E	friish Geologic	l Survey	
		TOTAL FROM SURFACE 7.32 m	24	0	24	0 7.32

This form is to be returned to Head Office immediately the borehole is finished.


.

	5130,803
•	256.
GROUND EXPLORATIONS LIMITE	D Payel of 3
BOREHOLE SECTION SH	
British Geological Survey Dat	Emish Geological Survey
CONTRACT NAME EXPLUSIO	Order No.
Bored for : Meante. R. T. James & Partners.	
Address : 6a, Lower Greavener Place, 5.4.1.	
Address of Site: Chase For Hassissig 127 S.R. Ridgeway.	
District or Town : "mfleld.	County : Midde.
Standing Water Level : 3° 6" Below Surface	Dia. of Borehole : 6 Inches.
Water Struck (1): 3 Ft. B.S. (2): Ft. B.S. (3):	Ft. B.S.
Boring Commenced : Boring Comple	eted :
Special Remarks : Gurface Lovel - 325.4	
British Geological Survey British Geological Survey	British Geological Survey
Jar Samples : 3'0"-6028; 5'0"-6029; 8'0"-6039; 10'0"-6	031; 15*3*+60:2; 3**0*+6033;
25*0°+6034; 35*0*+6035;	

Core Samples : 22'0"-23'6"-6037: 33'0"-34'6"-0038:

	DESCRIPTION OF STRATA		Thickne	ass Inches	Depth Surfa Feet	Below ace Inches
C descri for th British Geological Survey	Clients are requested to examine the samples of the Strata s ptions employed below are general terms and responsibility teir application to commercial purposes. No. Boring.	ubmitted, as the is not accepted	British Geol	logical Sune	Y.	
	Topsoil Glay and Stones Gravel and Sandy Clay Sand Clay and Stones Black Stones Black Stones Blac London Clay	0.23 m 0.84 m 1.07 m 0.46 m 0.61 m 2.13 m 8.69 m	0 2 3 1 2 7 28	9 9 6 6 0 0 6	0 3 7 8 10 17 46	(m) 9 0.23 6 1.07 0 2.13 6 2.59 6 3.20 6 5.33 0 14.02
British Geological Survey	British Geological Survey		British Geo	logical Sune	• •	
	Total, Fro	M SURFACE i4.02m	46	0	46	B 14.0,2n

This form is to be returned to Head Office immediately the borehole is finished.

1. Walt 1.

MD	Nimbus Eng Consultar www.nimbusengine	ineering 15 nts Ltd ^{Lo}	mp House, 2 City Road, ndon, EC1V 2NX vb:0772 339 3155 nail: info@nimbusengineering		Job No. C2362 Sheet no. Date	1 15/12/20)
MasterDrain	Project Land Adjacent to 1 I	Mount View			Ву	Checked	Reviewed
SW 16.02	Title BRE365 Trench Soal				S.L		
Rectangular j	pit design data:-						
	= 8 m	Pit	width =	4.5 m			
Depth below	invert = 1.2 m	Per	centage voids =	100.0%			
	$a = 173 m^2$	Inf	ilt. factor =	0.000005 m/s			
Return perio	od = 100 yrs	Cli	mate change =	30%			
Calculations Surface area	a of soakaway to 50%	storage depth (n a _{s50} = 2 x (length	•	$/2 = 15.0 m^2$			
Outflow fact	cor :	O = a _{s50} x Infiltr	ation rate = 0.00	0075 m/s			
Soakaway sto	orage volume :	$S_{actual} = length x w$	idth x depth x %	voids/100 = 43	3.2 m ³		
Duration	Rainfall	Inflow	Depth	Outflow		Stor	age

			-		_
	mm/hr	m ³	(hmax) m	m ³	m ³
5 mins	222.4	3.2	0.09	0.02	3.17
10 mins	164.6	4.7	0.13	0.04	4.68
15 mins	131.6	5.7	0.16	0.07	5.62
30 mins	85.3	7.4	0.20	0.14	7.25
1 hrs	52.7	9.1	0.25	0.27	8.84
2 hrs	31.4	10.9	0.29	0.54	10.33
4 hrs	18.3	12.6	0.32	1.08	11.55
6 hrs	13.2	13.7	0.33	1.62	12.04
10 hrs	8.7	15.1	0.34	2.70	12.39
24 hrs	4.3	17.8	0.31	6.48	11.29

Actual volume :	S _{actual}	$= 43.200 \text{ m}^3$
Required volume :	S _{reqd.}	= 12.390 m^3
Soakaway volume storage OK.		

Minimum required a _{s50} :	4.30 m ²
Actual a _{s50} :	15.00 m ²
Minimum depth required:	0.34 m
Time to maximum	10 hrs

Emptying time to 50% volume = $t_{s50} = S_{reqd} \times 0.5 / (a_{s50} \times Infiltration rate) = 22:56 (hr:min))$ Soakaway emptying time is OK.

MD	Nimbus Engineering Consultants Ltd www.nimbusengineering.co.uk	Kemp House, 152 City Road, London, EC1V 2NX Mob:0772 339 3155 email: info@nimbusengineering.co.uk	Job No. C2362 Sheet no. Date	2 2 15/12/20)
MasterDrain	Project Land Adjacent to 1 Mount View		By S.L	Checked	Reviewed
500 10.02	W 16.02 Title BRE365 Trench Soakaway calcs		5.L		
Location hyd	rological data (FSR):-				
Location	= ENFIELD	Grid reference = TQ3296			
Location M5-60 (mm)	= ENFIELD = 20	Grid reference = TQ3296 r = 0.43			
		-			

Soil classification for WRAP type 4 Clayey, or loamy over clayey soils with an impermeable layer at shallow depth.

 ${\tt N.B.}$ The rainfall rates are calculated using the location specific values above in accordance with the Wallingford procedure.

CHECK SHEET

1. Please specify the size of the soakaway that you are proposing to use:

Width (m) Length (m)	Depth (m)
----------------------	-----------

2. Please specify the area that is to be drained to the soakaway:

m²

3. Please specify the size of the trial pit:

	Width (m) 1 m	Length (m)	Depth (m)
		1m	1m
4.	Please specify the propo	osed invert level of	the drain:

m

5. Below is a table for you to input the data (times) gathered from the Soil Infiltration Rate tests:

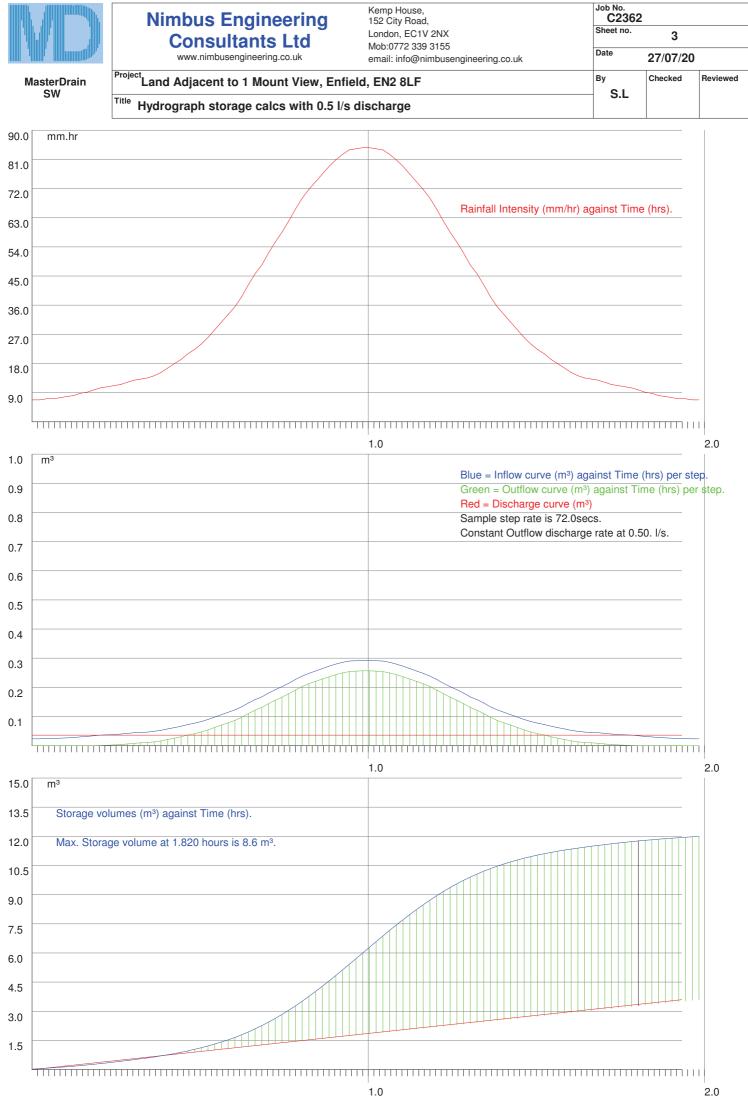
Test Number	75%	25%	25% - 75%
1	50 minutes	570 minutes	520 minutes
2	60 minutes	630 minutes	530 minutes
3	60 minutes	630 minutes	530 minutes

Key: 75% - The time taken in minutes for the water level to fall to 75% full. 25% - The time taken in minutes for the water level to fall to 25% full. 25% - 75% - The 25% time minus the 75% time. (This will give the time for the water level to fall from 75% full to 25% full.)

Name: Sarah Curtis

Signature: 3 June 45

Date: 21/11/2020


Company No.: 7513737

APPENDIX B – SURFACE WATER RUN OFF CALCULATIONS

	100 ₀ .					Job No.		
	Nimt	ous Engine	erina	Kemp House, 152 City Road,		C236	2	
		onsultants	-	London, EC1V 2NX		Sheet no.	1	
		ww.nimbusengineering.		Mob:0772 339 3155		Date	27/07/20	า
		0 0		email: info@nimbus	sengineering.co.uk			-
MasterDra	in Froject Land Ad	ljacent to 1 Mou	nt View, Enfiel	d, EN2 8LF		By	Checked	Reviewed
SW		aph storage calc				S.L		
Data:-	Tiyarogra	apri storage care	3 With 0.0 1/3 C	lisenarge				
Dala:-			Crid	reference = T	02206			
		FIELD	Gild r	= 0.43	03290			
	M5-60 (mm) = 2 Soil index = 0.4		500	R (mm/yr) =	670			
	Return period =		WR		010			
	UCWI = 0.0			nate change =	40%			
	- 0.0							
	Clayey, or loamy	over clayey so	ils with an in	permeable lay	er at shallow	depth.		
						•		
	Pipeline storage	= 0.0 m ³	Ava	ilable MH stora	age = 0.0 m ³			
	Offline storage :	= 0.0 m³						
	-							
	Percentage runof	ff = 100.0% (m	anual setting	1)				
	-							
	Imperv. area = 17	73 m²		vious area = 0				
	Total area = 173		Equ	iv area = 173	3 m² (Tot. area	x % runoff).		
	Total runoff = 11	.7 m³	Disc	harge rate = 0	.500 l/s			
	Storage (m ³) = 8.	6 m ³ (Sum of a	all balance qu	uantities)				
	Total rainfall dep	th = 67.7 mm						
	-							
Calculati Time	ons :- %Mean	Rain	Inflow	Outflow	Balance	Cumulativ	•	
(hrs)		mm/hr	(m3)	(m3)	(m3)	(m3)	e	
0.020		6.8	0.023	0.036	0.000	0.000		
0.040		6.8	0.023	0.036	0.000	0.000		
0.060		7.1	0.025	0.036	0.000	0.000		
0.080 0.100		7.1 7.4	0.025 0.026	0.036 0.036	0.000 0.000	0.000 0.000		
0.120		7.8	0.027	0.036	0.000	0.000		
0.140	24.0	8.1	0.028	0.036	0.000	0.000		
0.160		8.8	0.030	0.036	0.000	0.000		
0.180 0.200		9.1 9.8	0.032 0.034	0.036 0.036	0.000 0.000	0.000 0.000		
0.200		10.5	0.034	0.036	0.000	0.000		
0.240		10.8	0.037	0.036	0.001	0.002		
0.260		11.2	0.039	0.036	0.003	0.004		
0.280 0.300		11.5	0.040	0.036	0.004	0.008		
0.300		12.2 12.9	0.042 0.044	0.036 0.036	0.006 0.008	0.014 0.023		
0.340		13.2	0.044	0.036	0.010	0.033		
0.360	40.0	13.5	0.047	0.036	0.011	0.043		
0.380		14.2	0.049	0.036	0.013	0.057		
0.400 0.420		15.2 16.6	0.053 0.057	0.036 0.036	0.017 0.021	0.073 0.095		
0.420		17.9	0.062	0.036	0.021	0.121		
0.460		19.3	0.067	0.036	0.031	0.151		
0.480		21.0	0.073	0.036	0.037	0.188		
0.500		22.3	0.077	0.036	0.041	0.229		
0.520 0.540		24.0 26.1	0.083 0.090	0.036 0.036	0.047 0.054	0.276 0.330		
0.560		28.4	0.098	0.036	0.062	0.393		
0.580	91.0	30.8	0.107	0.036	0.071	0.463		
0.600		33.2	0.115	0.036	0.079	0.542		
0.620 0.640		35.5 38.6	0.123 0.133	0.036 0.036	0.087 0.097	0.629 0.727		
0.640		38.6 42.3	0.133	0.036	0.110	0.727		
0.680	135.0	45.7	0.158	0.036	0.122	0.959		
0.700	143.0	48.4	0.167	0.036	0.131	1.090		
0.720		52.1	0.180	0.036	0.144	1.235		
0.740 0.760		55.5 58.5	0.192 0.203	0.036 0.036	0.156 0.167	1.391 1.557		
0.780		58.5 61.9	0.203	0.036	0.178	1.557		
0.800		65.6	0.227	0.036	0.191	1.927		

		Kemp House.						
	Nimbus Engineering 152 City Road,		Nimbus Engineering 152 City Road,			Job No. C2362		
		nsultants	-	London, EC1V 2NX		Sheet no.	2	
		.nimbusengineering		Mob:0772 339 3155 email: info@nimbus		Date	27/07/20)
MasterDrain	Project	acent to 1 Mou			3	Ву	Checked	Reviewed
SW			-	-		S.L		
	Hydrograp	h storage calo	s with 0.5 I/s	discharge				
Calculations	. ,				_			
Time	%Mean	Rain	Inflow	Outflow	Balance	Cumulativ	e	
(hrs)	intens	mm/hr	(m3)	(m3)	(m3)	(m3)		
0.820	204.0	69.0	0.239	0.036	0.203	2.129		
0.840	212.0	71.7	0.248	0.036	0.212	2.342		
0.860	219.0	74.1	0.256	0.036	0.220	2.562		
0.880	226.0	76.5	0.265	0.036	0.229	2.791		
0.900	233.0	78.8	0.273	0.036	0.237	3.027		
0.920	239.0	80.9	0.280	0.036	0.244	3.271		
0.940	244.0	82.6	0.286	0.036	0.250	3.521		
0.960	248.0	83.9	0.290	0.036	0.254	3.775		
0.980	249.0	84.3	0.292	0.036	0.256	4.031		
1.000	250.0	84.6	0.293	0.036	0.257	4.288		
1.020	250.0	84.6	0.293	0.036	0.257	4.544		
1.040	249.0	84.3	0.292	0.036	0.256	4.800		
1.060	248.0	83.9	0.290	0.036	0.254	5.054		
1.080	244.0	82.6	0.286	0.036	0.250	5.304		
1.100	239.0	80.9	0.280	0.036	0.244	5.548		
1.120	233.0	78.8	0.273	0.036	0.237	5.784		
1.140	226.0	76.5	0.265	0.036	0.229	6.013		
1.160	219.0	74.1	0.256	0.036	0.220	6.233		
1.180	212.0	71.7	0.248	0.036	0.212	6.446		
1.200	204.0	69.0	0.239	0.036	0.203	6.649		
1.220	194.0	65.6	0.227	0.036	0.191	6.840		
1.240	183.0	61.9	0.214	0.036	0.178	7.018		
1.260	173.0	58.5	0.203	0.036	0.167	7.184		
1.280	164.0	55.5	0.192	0.036	0.156	7.340		
1.300	154.0	52.1	0.180	0.036	0.144	7.485		
1.320	143.0	48.4	0.167	0.036	0.131	7.616		
1.340	135.0	45.7	0.158	0.036	0.122	7.738		
1.360	125.0	42.3	0.146	0.036	0.110	7.849		
1.380	114.0	38.6	0.133	0.036	0.097	7.946		
1.400	105.0	35.5	0.123	0.036	0.087	8.033		
1.420	98.0	33.2	0.115	0.036	0.079	8.112		
1.440	91.0	30.8	0.107	0.036	0.071	8.182		
1.460	84.0	28.4	0.098	0.036	0.062	8.245		
1.480	77.0	26.1	0.090	0.036	0.054	8.299		
1.500	71.0	24.0	0.083	0.036	0.047	8.346		
1.520	66.0	22.3	0.077	0.036	0.041	8.387		
1.540	62.0	21.0	0.073	0.036	0.037	8.424		
1.560	57.0	19.3	0.067	0.036	0.031	8.455		
1.580	53.0	17.9	0.062	0.036	0.026	8.481		
1.600	49.0	16.6	0.057	0.036	0.021	8.502		
1.620	45.0	15.2	0.053	0.036	0.017	8.519		
1.640	42.0	14.2	0.049	0.036	0.013	8.532		
1.660	40.0	13.5	0.047	0.036	0.011	8.543		
1.680	39.0	13.2	0.046	0.036	0.010	8.552		
1.700	38.0	12.9	0.044	0.036	0.008	8.561		
1.720	36.0	12.2	0.042	0.036	0.006	8.567		
1.740	34.0	11.5	0.040	0.036	0.004	8.571		
1.760	33.0	11.2	0.039	0.036	0.003	8.573		
1.780	32.0	10.8	0.037	0.036	0.001	8.575		
1.800	31.0	10.5	0.036	0.036	0.000	8.575		
1.820	29.0	9.8	0.034	0.036	0.000	8.573		
1.840	27.0	9.1	0.032	0.036	0.000	8.569		
1.860	26.0	8.8	0.030	0.036	0.000	8.563		
1.880	24.0	8.1	0.028	0.036	0.000	8.555		
1.900	23.0	7.8	0.027	0.036	0.000	8.546		
1.920	22.0	7.4	0.026	0.036	0.000	8.536		
1.940	21.0	7.1	0.025	0.036	0.000	8.525		
1.960	21.0	7.1	0.025	0.036	0.000	8.513		
1.980	20.0	6.8	0.023	0.036	0.000	8.501		
2.000	20.0	6.8	0.023	0.036	0.000	8.488		

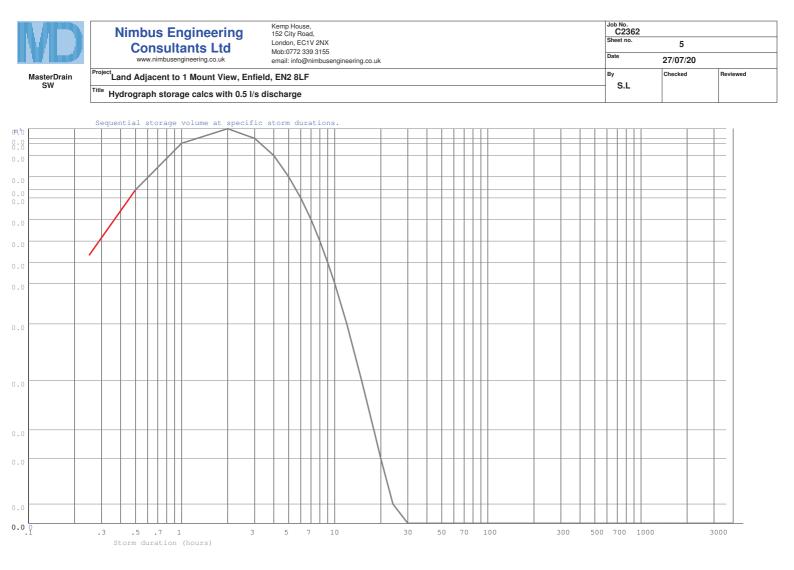
Storage volume (m³) = 8.6 m³ (Sum of all balance quantities)

Nimbus Engineering Consultants Ltd www.nimbusengineering.co.uk

Kemp House, 152 City Road, London, EC1V 2NX Mob:0772 339 3155 email: info@nimbusengineering.co.uk Job No. C2362 Sheet no. Date

Ву

27/07/20 Checked Reviewed S.L


4

MasterDrain SW

Project Land Adjacent to 1 Mount View, Enfield, EN2 8LF Title Hydrograph storage calcs with 0.5 l/s discharge

Maximum storage volumes for varying duration storms.

Storm length	Max. Vol	Max. Vol	Mean intens	Step time.	Peak found
(hrs)	(m ³)	time	(mm/hr)	(mins)	
0.25	5.83	0.25	141.69	0.2	
0.5	7.25	0.50	91.88	0.3	
1	8.26	1.00	56.71	0.6	
2	8.58	2.00	33.84	1.2	Peak found
3	8.36		24.70	1.8	
4	7.99		19.66	2.4	
5	7.53		16.41	3.0	
6	7.07		14.18	3.6	
7	6.60		12.52	4.2	
8	6.13		11.25	4.8	
9	5.67		10.23	5.4	
10	5.21		9.39	6.0	
12	4.33		8.10	7.2	
15	3.10		6.76	9.0	
18	2.03		5.83	10.8	
20	1.40		5.35	12.0	
24	0.42		4.61	14.4	
30	0.00		3.84	18.0	
36	0.00		3.31	21.6	
42	0.00		2.91	25.2	
48	0.00		2.61	28.8	
54	0.00		2.37	32.4	
60	0.00		2.17	36.0	
66	0.00		2.01	39.6	
72	0.00		1.87	43.2	
84	0.00		1.65	50.4	
96	0.00		1.47	57.6	
120	0.00		1.22	72.0	
150	0.00		1.02	90.0	
175	0.00		0.89	105.0	
200	0.00		0.80	120.0	
250	0.00		0.66	150.0	
300	0.00		0.57	180.0	
375	0.00		0.47	225.0	
500	0.00		0.37	300.0	
750	0.00		0.27	450.0	
1000	0.00		0.21	600.0	
1250	0.00		0.17	750.0	
1500	0.00		0.15	900.0	
1570	0.00		0.14	942.0	
2000	0.00		0.12	1200.0	
2500	0.00		0.10	1500.0	
3000	0.00		0.08	1800.0	
3500	0.00		0.07	2100.0	
4000	0.00		0.07	2400.0	

MasterDrain SW

Nimbus Engineering Consultants Ltd

www.nimbusengineering.co.uk

Kemp House, 152 City Road, London, EC1V 2NX Mob:0772 339 3155 email: info@nimbusengineering.co.uk

Job No. C2362		
Sheet no.	6	
Date	27/07/20	
Ву	Checked	Reviewed

Title Hydrograph storage calcs with 0.5 I/s discharge

Land Adjacent to 1 Mount View, Enfield, EN2 8LF

Explanatory notes for Peak Flow Storage

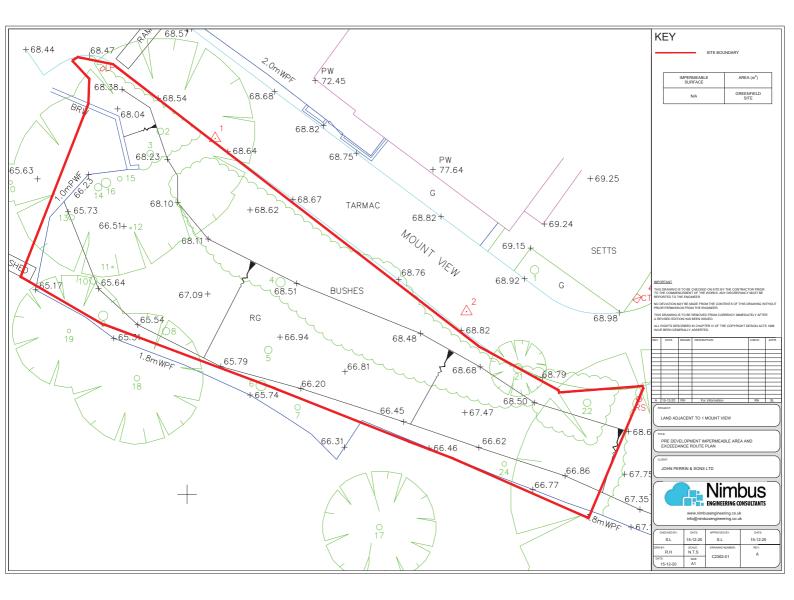
- 1) This system uses the rainfall intensity/ duration curve calculated using either the Wallingford or FEH method as selected.
- 2) The balance is calculated from the inflow minus the outflow.
- 3) The storage volume is the maximum value of the balance curve.
- 4) This method was described by Davis (1963) see Butler & Davies, 2nd edition, p294
- 5) References to 'storm duration' relate only to the hydrograph method (qv).
- 6) There are always 600 steps in the calculation process, thus a 'run' time of 10 hours will be sampled every minute,

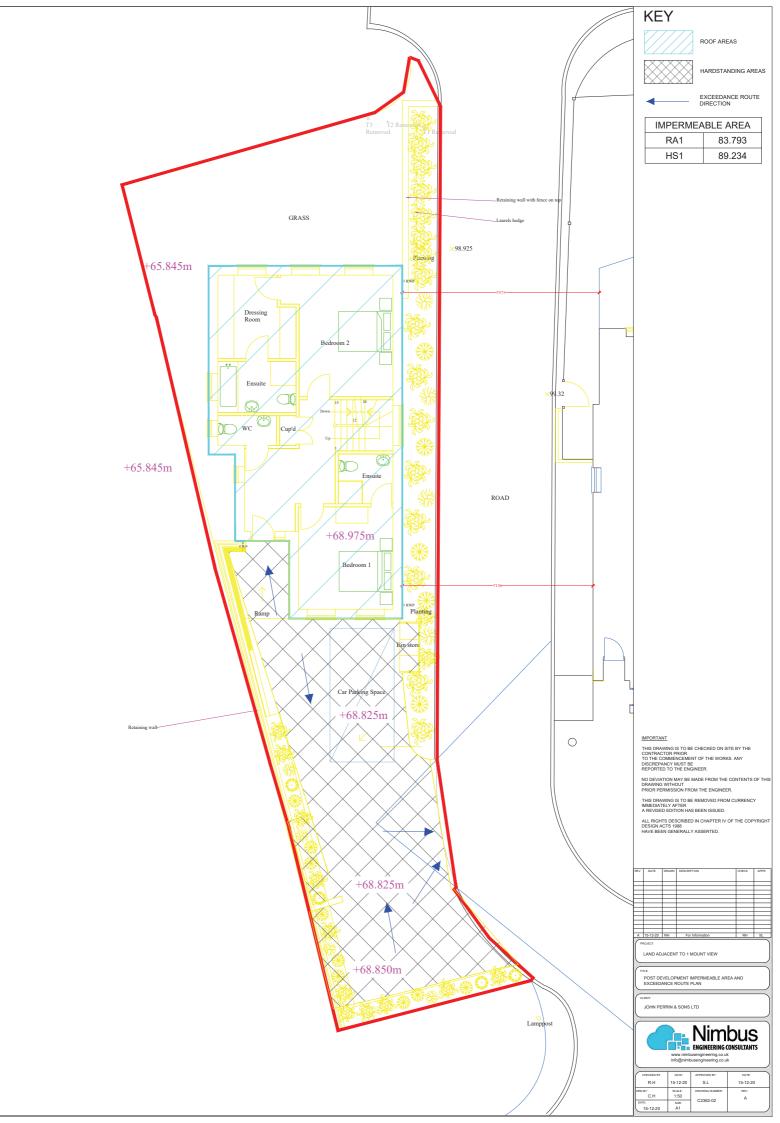
Explanatory notes for Hydrograph Storage

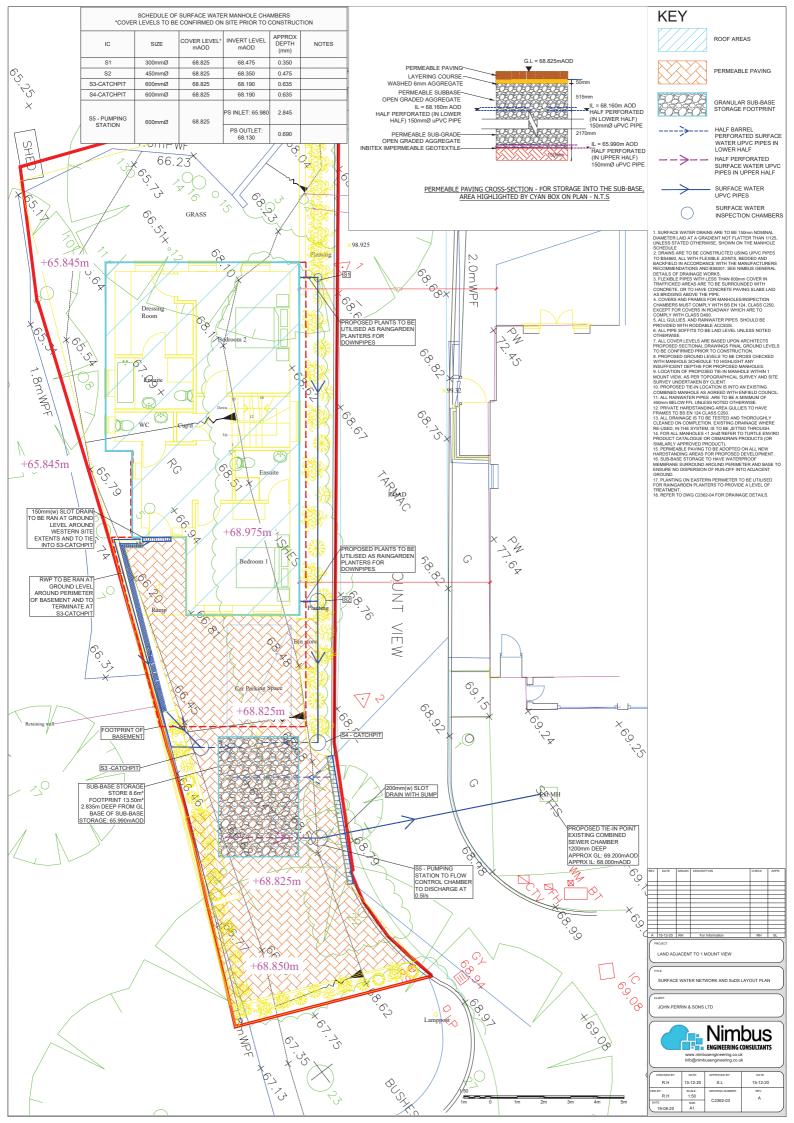
- 1) The user has the choice of Summer or Winter curves
- 2) The mean intensity varies with the duration of the storm curve
- 3) There are always 120 steps in the calculation process, irrespective of storm duration.
- 4) The balance is calculated from the inflow minus the outflow.
- 5) The storage volume is the sum of the balance values for each step.
- 6) Varying durations should be tried to find the maximum storage value this can be narrowed down very closely.

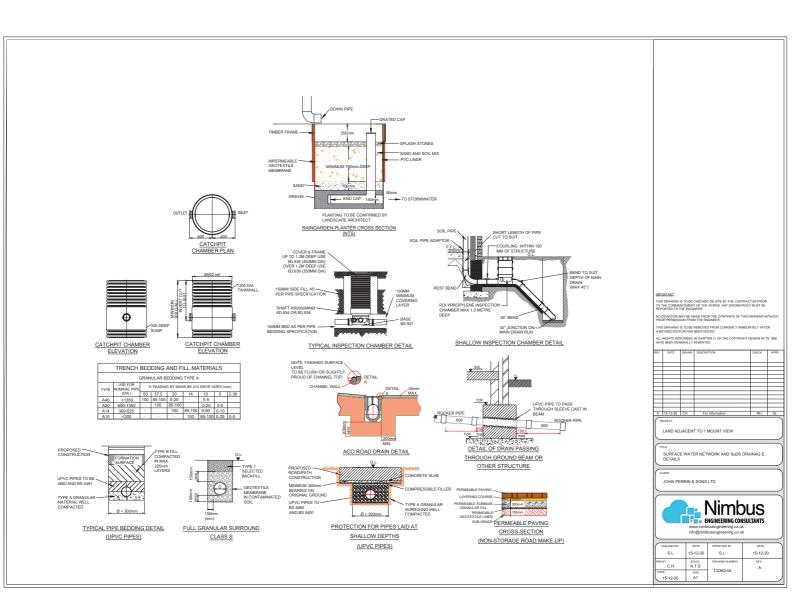
*Modelling using the flow characteristics of the restrictor is available using Vortex Control modelling function. Please be aware that this function needs the full design data file to function.

Why do the two methods give different results?


The rainfall characteristics for each method are very different.


The Peak flow (using the Intensity/Duration/Frequency curve) does not model the actual rainfall. This curve is joined points which represent the mean intensity of a storm at a given duration i.e. a value of 19.5 mm/hr for a 60 minute storm indicates that over the sixty minute period, the mean intensity was 19.5 mm/hr. The calculation method samples the IDF curve for a given location and frequency (Return Period) and calculates the storage for that rate and duration less the outflow volume. The maximum value is displayed as the 'worst case' storage.


The hydrograph method uses a standard curve for either Winter or Summer storms. Traditionally these are symmetrical about the central peak. UK rainfall does not fit into this convenient curve, so the calculations are dealing with a stylised set of data. The mean intensity for the storm is calculated from the IDF curve and applied to the curve data, calculating the storage for that step less the outflow volume. The final storage volume is the sum of the storage for all the steps.


It can be seen that these two methods are very different, and the user may have the choice of which result to use. This is not an exact science, though is often treated as such by those that do not understand the principles of the calculations.

APPENDIX C – DRAWINGS

APPENDIX C – WATER AUTHORITY ASSET PLANS

SUDS REPORT FOR LAND ADJACENT TO 1 MOUNT VIEW, ENFIELD, EN2 8LF

DOCUMENT NUMBER.: C2362-R1-REV-A

PREPARED BY

Contents

1.	INTRODUCTION			
	1.1	Appointment	. 3	
	1.2	Objectives	. 3	
	1.3	Limitations	. 3	
2.	GEC	DLOGY OF THE AREA	. 5	
3.	SUS	TAINABLE URBAN DRAINAGE SYSTEMS	. 8	
4.	PRO	POSED SOLUTION	11	
5.	TIME	ESCALE AND MAINTENANCE OF WORKS	13	
6.	CO	NCLUSIONS	16	

APPENDICES

APPENDIX A – HISTORIC BOREHOLES & PERCOLATION TEST RESULTS

APPENDIX B - SURFACE WATER RUN OFF CALCULATIONS

APPENDIX C – DRAWINGS

APPENDIX D – WATER AUTHORITY ASSET PLANS

1. INTRODUCTION

1.1 Appointment

Nimbus Engineering have been appointed by John Perrin & Sons to provide an outline solution on the management of Surface Water run-off and to ensure that there is no risk of flooding caused by the proposed construction of a three story dwelling, with associated, hard standing, car parking, and landscaping.

1.2 Objectives

This report will provide information on a suitable Sustainable Urban Drainage System (SuDS) in order to reduce the surface water run off leaving the site and show that the proposed development will not increase Flood Risk at the site or elsewhere.

1.3Limitations

The general limitations of this report are:

 A number of data and information sources have been used to prepare this report. Whilst Nimbus Engineering believes them to be trustworthy, Nimbus Engineering is unable to guarantee the accuracy of data and information that has been provided by others; • This report has been prepared using the best data and information that was available at the time of writing. There is the potential for further information or data to become available, leading to changes in the conclusions drawn by this report, for which Nimbus Engineering cannot be held responsible.

2. GEOLOGY OF THE AREA

According to, the British geological survey, the superficial deposits at the proposed site consist of an amalgamation of clay, silt, sand and gravel as shown in Figure 1, below. The bedrock in the area is a member of London Clay Formation, as shown in Figure 2, below.

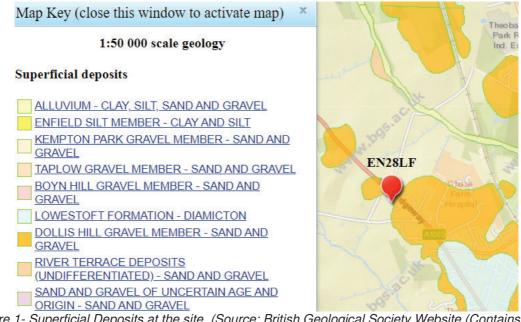


Figure 1- Superficial Deposits at the site. (Source: British Geological Society Website (Contains_British Geological Survey materials © URKI [2020]. Base mapping is provided by ESRI)).

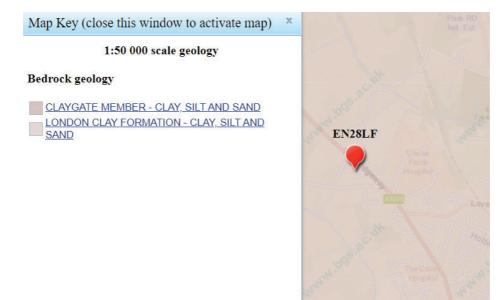


Figure 2 – Bedrock at the site. (Source: British Geological Society Website (Contains_British Geological Survey materials © URKI [2020]. Base mapping is provided by ESRI)).

The London Borough of Enfield have requested that historic boreholes within the vicinity of the site are consulted in order to ascertain the suitability of infiltration, the location of the boreholes is shown on the plan overleaf, and the results can be found in Appendix A.

Figure 3 - Historic Boreholes at the site. (Source: British Geological Society Website (Contains_British Geological Survey materials © URKI [2019]. Base mapping is provided by ESRI)).

The results of these boreholes show that infiltration is not feasible. A percolation test was also undertaken on site on the 23rd and 24th November which confirmed infiltration was not feasible these results can be found in Appendix A.

3. SUSTAINABLE URBAN DRAINAGE SYSTEMS

The total area of the site is $283m^2$, and the existing impermeable areas at the site are $0m^2$. Following the development proposals, the impermeable areas at the site will have increased to $173m^2$. Surface water run off calculations can be found in Appendix B.

Surface water arising from a developed site should, as far as is practicable, be managed in a sustainable manner to mimic the surface water flows arising from the site prior to the proposed development, while reducing the flood risk to the site itself and elsewhere, taking climate change into account.

Reducing the rate of surface water discharge from urban sites is one of the most effective ways of reducing and managing flood risk.

Traditional piped surface water systems work by removing surface water from our developments as quickly as possible, however this can cause various adverse impacts:

- Increased downstream flooding, and sudden rises in flow rates and water levels in local water courses.
- Reduction in groundwater levels and dry weather flows in watercourses.
- Reduce amenity and adversely affect biodiversity due to the surface water runoff containing contaminants such as oil, organic matter and toxic materials.

SuDS are defined as a sequence of management principles and control structures designed to drain surface water in a more sustainable fashion than conventional piped drainage techniques. SuDS should utilise the natural landscape of an area which as well as slowing down the rate of runoff provides a number of environmental, ecological and social benefits.

These include:

- Protection and enhancement of water quality. As well as providing on-site attenuation, SuDS treat the water, resulting in an improved quality of water leaving the site. This is achieved when the water passes through fine soils and the roots of specially selected plants. Pollutants washed off the hard landscaping by rainfall will be safely removed before the water reaches the natural receiving water course.
- A sympathetic approach to the environmental setting by providing opportunities to create habitats for flora and fauna in urban watercourses and open spaces.
- Meeting the amenity and social needs of the local community and residents in the creation of attractive green spaces.

The various types of SuDS include:

Permeable paving	
Soakaways;	
Swales and basins;	
Bioretention/ rain gardens;	
Green roofs and rainwater re- use;	

Preferably a combination of these techniques should be used as part of the surface water management train, and it is important for all stakeholders, such as developers, architects, landscape architects and engineers to work in order to determine a feasible solution.

4. PROPOSED SOLUTION

In order to ensure that the SuDS management train has been followed, the proposals involve raingarden planters for the two rainwater downpipes at the eastern edge of the building, in order to treat and slow down the peak rate of surface water runoff from the roof areas.

All proposed hardstanding areas will be formed of permeable paving, and slot drains will be provided for all sloped areas.

The percolation test calculations showed an infiltration rate of $5x10^{-6}$ m/s and would require a soakaway of $35m^2$ footprint which would not be feasible due to spatial constraints at both the front and rear of the property.

Hydrograph run off storage calculations were carried out using the total contributing area, for a 1 in 100 year storm event, with a 40% allowance for climate change, with a flow restriction leaving the site set to 0.5 l/s, the existing site's greenfield run-off rate was 0.118l/s, and as the solution had to be pumped it was deemed this was too small and could potentially lead to pump failure. Having a discharge rate of 0.5 l/s it was calculated that 8.6m³ of storage was required. This surface water run-off will be stored in the subbase of the permeable paving within the car parking out with the basement's extents, as shown on drawing number C2362-03, in Appendix C.

We believe the Sustainable Urban Drainage System hierarchy has been considered fully, with as much of the surface water runoff to be treated at source and attenuated within the

permeable paving sub-base and restricted to a lower rate of 0.5l/s, in line with the London Borough of Enfield's requirements. All surface water run off calculations can be found in Appendix B.

This restricted surface water run-off will be from the pumping station will then connect into a combined sewer manhole within 1 Mount View as previously agreed with Enfield Council as shown on drawing number C2362-03, in Appendix C, and on the asset plans provided in Appendix D.

5. TIMESCALE AND MAINTENANCE OF WORKS

All drainage works will be completed prior to first occupation and there will be no adoption of any of the drainage works within the site, a management company will be formed, which will be responsible in overseeing the long-term maintenance of all the communal drains.

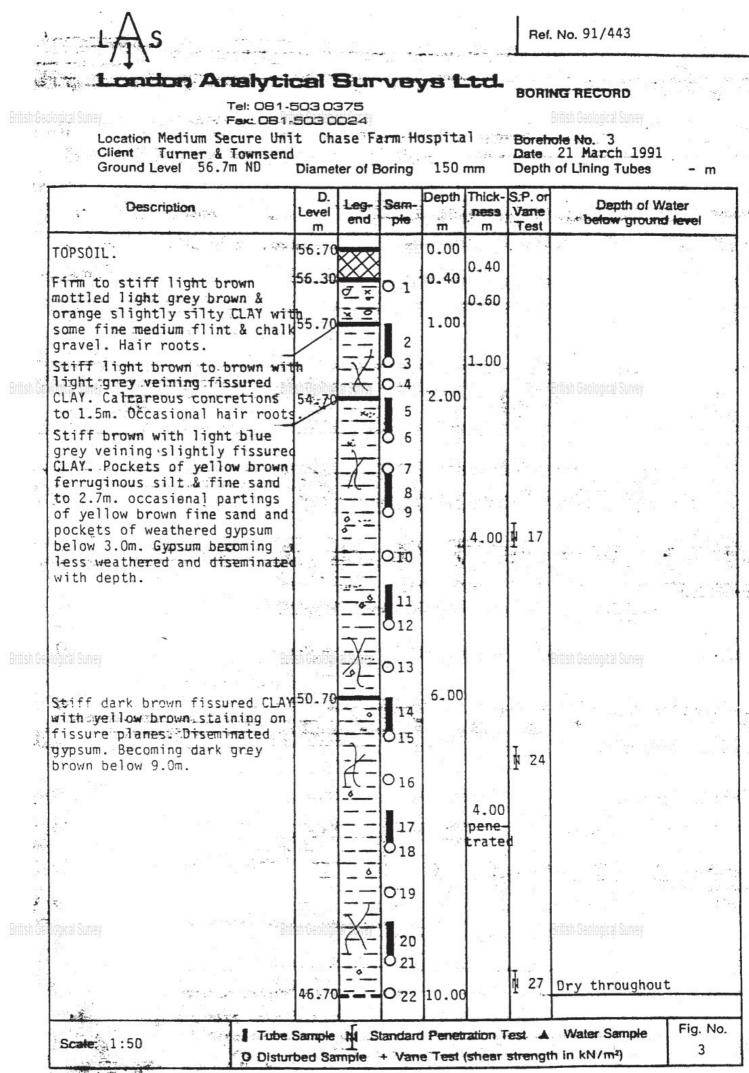
- Gullies should be cleaned every 3 months in order to ensure that there are no blockages.
- The catch pit chambers to the sub-base storage and flow control chamber should be checked and emptied every 3 months, especially after a heavy rain storm, this to ensure that the system does not get clogged up with silt or blocked.

The following table outlines the maintenance requirements for the permeable paving:

Maintenance schedule	Required action	Typical frequency
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations or clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this is the most likely to collect the most sediment
Occasional maintenance	Stabilise and mow contributing and adjacent areas Removal of weeds or management using glyphospate applied directly into the weeds by an applicator rather than spraying	As required As required
	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving.	As required
Remedial Actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material.	As required
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to

		significant clogging)
	Initial inspection	Monthly for three months after installation
Monitoring	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action	Three-monthly, 48hr after large storms in six months
	Inspect slit accumulation rates and establish appropriate brushing frequencies	Annually
	Monitor inspection chambers	Annually

The following table outlines the maintenance requirements for the raingarden planters:


Maintenance schedule	Required action	Typical frequency
Regular	Pipe inlets to the raingarden planters should be checked every month and especially after an extreme rainstorm to ensure that there are no blockages.	Monthly
maintenance	Periodic inspections & removal of debris or other items that represent blockage risks particularly in vicinity of the inlet to the raingarden planters	Monthly
	Weeding, cutting of plants and removal of any dead plants to ensure that the system works effectively	Every three months
	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockages by sediment, algae or other matter: remove and replace surface infiltration medium as necessary.	Annually
Remedial actions	Repair inlets, outlets, overflows	As required
	Inspect/check all inlets, outlets, vents and overflows to ensure that the are in good	Annually
Monitoring	condition and operating as designed	

6. CONCLUSIONS

The purpose of this report and associated drawings, is to satisfy the local planning authority that the surface water run of arising from the proposed development will be dealt with at source, through the use of Sustainable Urban Drainage Systems.

The timetable of works is to complete all drainage prior to occupation of dwellings, and maintenance requirements are also included in this report.

APPENDIX A – HISTORIC BOREHOLES & PERCOLATION TEST RESULTS

.

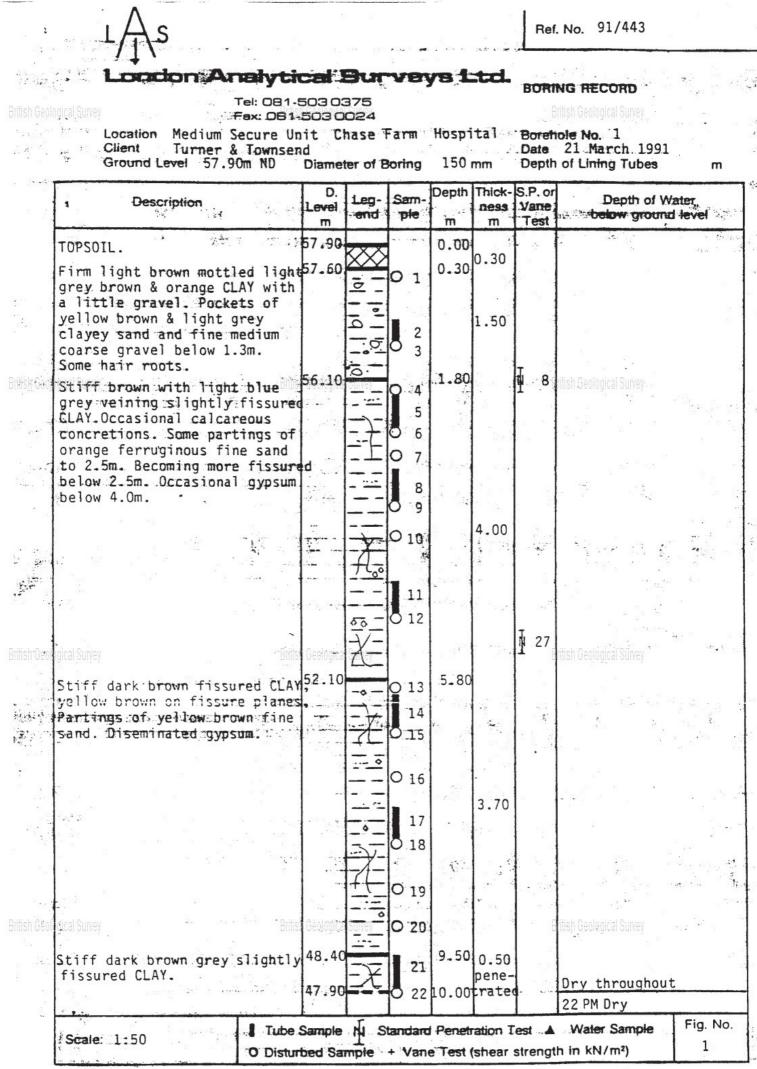
Page 323

GROUND EXPLORATIONS LIMITED

British Geological Survey		E SECTION	SHEET	ritish Geological	
					192.
CONTRACT NAME	RHFIELD.		O	RDER NO.	-
Bored for :	isers. James & Parts	14 F# •			
Address : 64	. Lower Grosvenor 1	lass, S.W.l.			
Address of Site	Chase Farm Hospits	al.			
District or Town			County	· Mid.	L.
Standing Water	Level: 3. 4"	Below Surface	Dia. of	Borehole :	6 Inches.
Water Struck (1) 3*9*Ft. B.S. (2) :	Ft. B.S. (3):	Ft. B.S.		
Boring Commen	ced: 5. 10. 51.	Boring	Completed : 5. 1	0. 51.	
Special Remarks British Geological Survey	DALLMON TAANT	823-0 Geological Survey		ritish Geological	
Jar Samples :	5106048; 7166 Reter-6093;	i0491 15*0*+60501	29*9*+69/33	24 *::" -6 05	52 a - 12 - 12 a - 12 a
Core Samples :	15* 0*-11*6*-60 545	×			
	DESCRIPTION OF	STRATA	Thicl Feet	inches	Depth Below Surface Feet Inches
descriptions em	requested to examine the sam ployed below are general term ition to commercial purposes.	nples of the Strata submitted ns and responsibility is not Geological Survey oring.	accepted	riish Geological	Survey

	DESCRIPTION OF	STRATA	Feet	Inches	Feet	Inches
Client description for their a British Geological Survey c	as employed below are general terr	nples of the Strata submitted, as the ns and responsibility is not accepted Geological Survey oring.		inish Geologio	I Survey	
	Topsdl Cley and Stones Gravel Brown Loodo- Glay Blue London Cley	0.30m 1.52m 0.76m 3.12m 1.60n	1 5 2 10 5	0 0 6 3 3	1 6 3 18 24	(m) 0 0.30 0 1.83 6 2.59 9 5.72 0 7.32
• British Geological Survey	Britisi	i Geological Survey	E	friish Geologic	l Survey	
		TOTAL FROM SURFACE 7.32 m	24	0	24	0 7.32

This form is to be returned to Head Office immediately the borehole is finished.


.

	5130,803
•	256.
GROUND EXPLORATIONS LIMITE	D Payel of 3
BOREHOLE SECTION SH	
British Geological Survey Dat	Emish Geological Survey
CONTRACT NAME EXPLUSIO	Order No.
Bored for : Meante. R. T. James & Partners.	
Address : 6a, Lower Greavener Place, 5.4.1.	
Address of Site: Chase For Hassissig 127 S.R. Ridgeway.	
District or Town : "mfleld.	County : Midde.
Standing Water Level : 3° 6" Below Surface	Dia. of Borehole : 6 Inches.
Water Struck (1): 3 Ft. B.S. (2): Ft. B.S. (3):	Ft. B.S.
Boring Commenced : Boring Comple	eted :
Special Remarks : Gurface Lovel - 325.4	
British Geological Survey British Geological Survey	British Geological Survey
Jar Samples : 3'0"-6028; 5'0"-6029; 8'0"-6039; 10'0"-6	031; 15*3*+60:2; 3**0*+6033;
25*0°+6034; 35*0*+6035;	

Core Samples : 22'0"-23'6"-6037: 33'0"-34'6"-0038:

	DESCRIPTION OF STRATA		Thickne	ass Inches	Depth Surfa Feet	Below ace Inches
C descri for th British Geological Survey	Clients are requested to examine the samples of the Strata s ptions employed below are general terms and responsibility teir application to commercial purposes. No. Boring.	ubmitted, as the is not accepted	British Geol	logical Sune	Y.	
	Topsoil Glay and Stones Gravel and Sandy Clay Sand Clay and Stones Black Stones Black Stones Blac London Clay	0.23 m 0.84 m 1.07 m 0.46 m 0.61 m 2.13 m 8.69 m	0 2 3 1 2 7 28	9 9 6 6 0 0 6	0 3 7 8 10 17 46	(m) 9 0.23 6 1.07 0 2.13 6 2.59 6 3.20 6 5.33 0 14.02
British Geological Survey	British Geological Survey		British Geo	logical Sune	• •	
	Total, Fro	M SURFACE i4.02m	46	0	46	B 14.0,2n

This form is to be returned to Head Office immediately the borehole is finished.

1. Walt 1.

MD	Nimbus Eng Consultar www.nimbusengine	ineering 15 nts Ltd ^{Lo}	mp House, 2 City Road, ndon, EC1V 2NX vb:0772 339 3155 nail: info@nimbusengineering		Job No. C2362 Sheet no. Date	1 15/12/20)
MasterDrain	Project Land Adjacent to 1 I	Mount View			Ву	Checked	Reviewed
SW 16.02	Title BRE365 Trench Soal				S.L		
Rectangular j	pit design data:-						
	= 8 m	Pit	width =	4.5 m			
Depth below	invert = 1.2 m	Per	centage voids =	100.0%			
	$a = 173 m^2$	Inf	ilt. factor =	0.000005 m/s			
Return perio	od = 100 yrs	Cli	mate change =	30%			
Calculations Surface area	a of soakaway to 50%	storage depth (n a _{s50} = 2 x (length	•	$/2 = 15.0 m^2$			
Outflow fact	cor :	O = a _{s50} x Infiltr	ation rate = 0.00	0075 m/s			
Soakaway sto	orage volume :	$S_{actual} = length x w$	idth x depth x %	voids/100 = 43	3.2 m ³		
Duration	Rainfall	Inflow	Depth	Outflow		Stor	age

			-		_
	mm/hr	m ³	(hmax) m	m ³	m ³
5 mins	222.4	3.2	0.09	0.02	3.17
10 mins	164.6	4.7	0.13	0.04	4.68
15 mins	131.6	5.7	0.16	0.07	5.62
30 mins	85.3	7.4	0.20	0.14	7.25
1 hrs	52.7	9.1	0.25	0.27	8.84
2 hrs	31.4	10.9	0.29	0.54	10.33
4 hrs	18.3	12.6	0.32	1.08	11.55
6 hrs	13.2	13.7	0.33	1.62	12.04
10 hrs	8.7	15.1	0.34	2.70	12.39
24 hrs	4.3	17.8	0.31	6.48	11.29

Actual volume :	S _{actual}	$= 43.200 \text{ m}^3$
Required volume :	S _{reqd.}	= 12.390 m^3
Soakaway volume storage OK.		

Minimum required a _{s50} :	4.30 m ²
Actual a _{s50} :	15.00 m ²
Minimum depth required:	0.34 m
Time to maximum	10 hrs

Emptying time to 50% volume = $t_{s50} = S_{reqd} \times 0.5 / (a_{s50} \times Infiltration rate) = 22:56 (hr:min))$ Soakaway emptying time is OK.

MD	Nimbus Engineering Consultants Ltd www.nimbusengineering.co.uk Kemp House, 152 City Road, London, EC1V 2NX Mob:0772 339 3155 email: info@nimbusengineering.co.uk		Job No. C2362 Sheet no. Date 15/12/20		
MasterDrain SW 16.02	Project Land Adjacent to 1 Mount View		By S.L	Checked	Reviewed
	Title BRE365 Trench Soakaway calcs				
Location hyd	rological data (FSR):-				
Location	= ENFIELD	Grid reference = TQ3296			
HOCACION	= ENFIELD	GIIG TETETENCE - 105290			
M5-60 (mm)	= 20	r = 0.43			
		-			

Soil classification for WRAP type 4 Clayey, or loamy over clayey soils with an impermeable layer at shallow depth.

 ${\tt N.B.}$ The rainfall rates are calculated using the location specific values above in accordance with the Wallingford procedure.