

THE RED HOUSE, DEE BANKS, CHESTER

FLOOD RISK AND DRAINAGE ASSESSMENT FINAL REPORT V1.0

December 2020

Weetwood Park House Broncoed Business Park Ffordd Byrnwr Gwair Mold CH7 1FQ

01352 700045 info@weetwood.net www.weetwood.net

Report TitleThe Red House, Dee Banks, Chester
Flood Risk and Drainage Assessment
Final Report v1.0ClientSterling Property CO. LimitedDate of issue17 December 2020

Prepared by	Flora Lockey MEnvSci Graduate Flood Risk Consultant	
	Owen Astbury BSc (Hons) GradCIWEM Assistant Flood Risk Consultant	
Checked by	Rebecca Murphy BSc (Hons) Associate Director	
	Geoff Waite BSc CEng C.WEM MICE MCIWEM Consultant	
Approved by	Adam Edgerley BSc (Hons) Technical Director	

This document has been prepared solely as a Flood Risk and Drainage Assessment for Sterling Property CO. Limited. This report is confidential to Sterling Property CO. Limited and Weetwood Services Ltd accepts no responsibility or liability for any use that is made of this document other than by Sterling Property CO. Limited for the purposes for which it was originally commissioned and prepared.

Contents

Signa Conte	ature Sheet	i
	of Tables, Figures & Appendices	
LISUU	or rables, rightes & Appendices	
1	Introduction	1
1.1	Purpose of Report	1
1.2	Structure of the Report	1
1.3	Relevant Documents	1
2	Site Details and Proposed Development	2
2.1	Site Location	2
2.2	Existing and Proposed Development	
2.2	Waterbodies in the Vicinity of the Site	
2.3	Ground Conditions	
2.5	Site Levels	
2.5	Access and Egress	
2.0	Flood Zone Designation	
2.7		
3	Planning Policy and Guidance	7
3.1	European Union Legislation	7
3.2	National Planning Policy and Guidance	
3.3	Local Planning Policy and Guidance	8
3.4	Environmental Permitting and Land Drainage Consent	
4	Review of Flood Risk	
4.1	Sequential Test and Exception Test	
4.2	Historical Records of Flooding	
4.3	Fluvial Flood Risk	
4.4	Flood Risk from Surface Water	
4.5	Flood Risk from Reservoirs, Canals and Other Artificial Sources	
4.6	Flood Risk from Groundwater	
5	Flood Risk Mitigation Measures	
5.1	Finished Floor Levels	
5.2	Basement	
5.3	Flood Risk Elsewhere	
5.4	Access and Egress	
5.4		
6	Surface Water Management	
6.1	Surface Water Drainage at the Existing Site	
6.2	Surface Water Drainage at the Redeveloped Site	
_		
7	Summary and Recommendations	

List of Tables

Table 1:	Modelled Flood Information Adjacent to Site (Baseline)	12
	Floodwater Displacement	
	Peak Runoff Rate - Existing Site	
Table 4:	Maintenance Requirements	20

List of Figures

Figure 1:	Site Location	2
Figure 2:	Location and Designation of Waterbodies	
Figure 3:	Digital Terrain Model from Topographic Survey	
Figure 4:	Flood Map for Planning	
Figure 5:	Flood Map from the Strategic Flood Risk Assessment	
Figure 6:	Existing Flood Defences	
Figure 7:	River Dee Modelled Flood Depths	
Figure 8:	Flood Risk from Surface Water	
Figure 9:	Flood Risk from Reservoirs	
Figure 10:	Groundwater Flooding Hazard Map	14
Figure 11:	Proposed Compensatory Storage	

List of Appendices

Appendix A:	Development Proposals
Appendix B:	Topographic Survey
Appendix C:	Dŵr Cymru Welsh Water Public Sewer Record
Appendix D:	Greenfield Runoff Calculations
Appendix E:	Peak Runoff Rate from Existing Site
Appendix F:	MicroDrainage Calculations
Appendix G:	MicroDrainage Calculations (Drowned Outfall)
Appendix H:	MicroDrainage Calculations – Sensitivity
Appendix I:	MicroDrainage Calculations – Sensitivity (Drowned Outfall)
Appendix J:	Preliminary Surface Water Drainage Layout

1 INTRODUCTION

1.1 Purpose of Report

Weetwood Services Ltd ('Weetwood') has been instructed by Sterling Property CO. Limited to prepare a Flood Risk and Drainage Assessment (FRDA) report to accompany a detailed planning application for the proposed redevelopment of The Red House, Dee Banks, Chester.

The assessment has been undertaken in accordance with the requirements of the revised National Planning Policy Framework (NPPF) updated on 19 February 2019 and the National Planning Practice Guidance (NPPG) updated on 1 October 2019.

1.2 Structure of the Report

The report is structured as follows:

Section 1	Introduction and report structure
Section 2	Provides background information relating to the development site, the development
	proposals, ground conditions, existing site access arrangements and the flood zone designation
Section 3	Presents national and local flood risk and drainage planning policy
Section 4	Assesses the potential sources of flooding to the development site
Section 5	Presents flood risk mitigation measures based on the findings of the assessment
Section 6	Addresses the effect of the proposed development on surface water runoff and presents an illustrative surface water drainage scheme to ensure that surface water runoff is sustainably managed and flood risk is not increased elsewhere
Section 7	Presents a summary of key findings and the recommendations

1.3 Relevant Documents

The assessment has been informed by the following documents:

- Level 1 Strategic Flood Risk Assessment (SFRA), Cheshire West and Chester Council, March 2016
- Preliminary Flood Risk Assessment (PFRA), Cheshire West and Chester Council, November 2011
- Water Cycle Study (WCS), Cheshire West and Chester Council, June 2010

2 SITE DETAILS AND PROPOSED DEVELOPMENT

2.1 Site Location

The approximately 0.17 hectare (ha) site is located to the west of Dee Banks at Ordnance Survey National Grid Reference SJ 419 653, as shown in **Figure 1**.

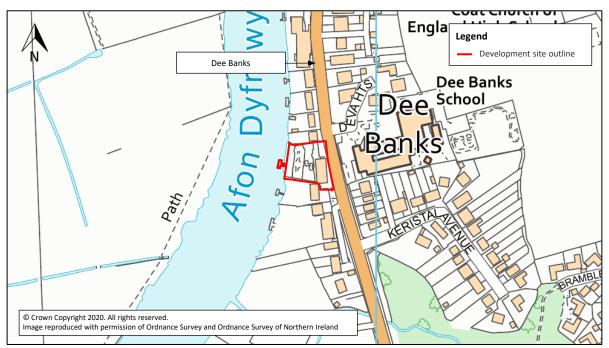


Figure 1: Site Location

2.2 Existing and Proposed Development

The site currently comprises of a restaurant and bar, along with a residential flat on the top floor of the existing building.

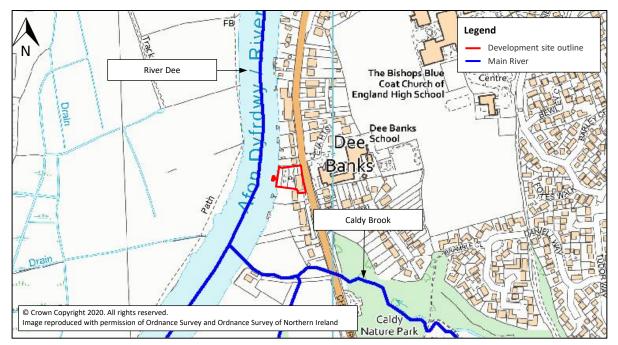
Proposals are for the demolition of the existing building and for the construction of nine new residential apartments with a communal basement parking facility, associated infrastructure and landscaping. Private garden terraces will be located off the west face of the building at levels of 11.18 m AOD to the north and 9.54 m AOD to the south (**Appendix A**).

The NPPG classifies residential development as More Vulnerable to flood risk.

2.3 Waterbodies in the Vicinity of the Site

The waterbodies within the vicinity of the site have been identified in Figure 2.

The River Dee is located adjacent to the western boundary of the site and flows in a northerly direction.


Caldy Brook is located approximately 130 metres (m) south of the site and flows in a westerly direction, outfalling into the River Dee.

Larger rivers and streams are usually designated as 'main river'; other rivers are called 'ordinary watercourses'. The main river map¹ shows which rivers in England are designated as 'main river'.

¹ https://environment.maps.arcgis.com/apps/webappviewer/index.html?id=17cd53dfc524433980cc333726a56386

The Environment Agency carries out maintenance, improvement and construction work on main rivers to manage flood risk. Lead local flood authorities, district councils and internal drainage boards carry out flood risk management work on ordinary watercourses.

Development • Planning

According to the main river map (Figure 2) both the River Dee and Caldy Brook are classified as main river.

Figure 2: Location and Designation of Waterbodies Source: gov.uk website; Accessed: 2 September 2020

2.4 Ground Conditions

According to the Soilscapes soils dataset produced by the Cranfield Soil and AgriFood Institute², soil conditions at the site and within the surrounding area are described as 'slowly permeable seasonally wet slightly acid but base-rich loamy and clayey soils'.

British Geological Survey mapping of surface geology³ indicates the underlying bedrock formation comprises Chester Formation – Sandstone, Pebbly (gravelly), overlain by Till, Devensian – Diamicton superficial deposits.

According to the MAGIC website⁴ the Till, Devensian - Diamicton superficial deposits at the site are classified as a Secondary (undifferentiated) aquifer whilst the underlying Chester Formation – Sandstone, Pebbly (gravelly) bedrock is classified as a Principal aquifer. A Principal aquifer is defined by its high level of water storage. They may support water supply and/or river base flow on a strategic scale. Whilst a Secondary (undifferentiated) aquifer has been assigned where it has not been possible to attribute either category A or B to a rock type.

The site is not shown to be located within a designated groundwater source protection zone.

² www.landis.org.uk/soilscapes/

³ http://mapapps.bgs.ac.uk/geologyofbritain/home.html

⁴ https://magic.defra.gov.uk/MagicMap.aspx

2.5 Site Levels

A topographic survey of the site has been undertaken by Site Scan and is provided in **Appendix B**. This information has been utilised to develop a digital terrain model as illustrated in **Figure 3**.

Site levels generally fall from east to west, from approximately 16.0 Above Ordnance Datum (AOD) to 5.5 m AOD, towards the River Dee. Levels from the road to the end of the private garden terraces on site in the east are generally in the region of 6.69 to 15.74 m AOD.

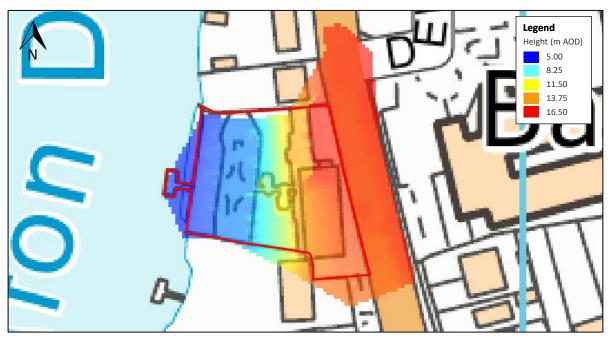


Figure 3: Digital Terrain Model from Topographic Survey

2.6 Access and Egress

Access and egress is provided via Dee Banks to the east of the site. The topographic survey indicates that levels along Dee Banks are generally in the region of 14.42 to 16.28 m AOD within the vicinity of the site.

2.7 Flood Zone Designation

Flood zones refer to the probability of river and sea flooding. Table 1 of the NPPG defines flood zones as follows⁵:

- Flood zone 1: Low Probability. Land having a less than 1 in 1,000 annual probability of river or sea flooding
- Flood zone 2: Medium Probability. Land having between a 1 in 100 and 1 in 1,000 annual probability of river flooding or between a 1 in 200 and 1 in 1,000 annual probability of sea flooding
- Flood zone 3a: High Probability. Land having a 1 in 100 or greater annual probability of river flooding or a 1 in 200 or greater annual probability of sea flooding
- Flood zone 3b: Functional Floodplain. Land where water has to flow or be stored in times of flood.

The flood zones are shown on the Environment Agency Flood Map for Planning (Rivers and Sea)⁶.

⁵ https://www.gov.uk/guidance/flood-risk-and-coastal-change#flood-zone-and-flood-risk-tables

⁶ https://flood-map-for-planning.service.gov.uk/

The flood zones shown on the flood map are defined by the predicted extent of flooding during the present day 1 in 100 (non-tidal rivers), 1 in 200 (tidal rivers and sea) and 1 in 1,000 (rivers and sea) annual exceedance probability (AEP) events. The zones do not take account of the possible impacts of climate change and consequent changes in the future probability of flooding.

Flood zone 3b (functional floodplain) is not separately distinguished on the Flood Map for Planning but is usually identified by local planning authorities in their SFRAs. The boundary of flood zone 3b is normally defined as land that would flood during the present day 1 in 20 AEP event, although definitions may vary particularly in some districts and in urban areas.

Where an area benefits from formal flood defences providing a minimum standard of protection, the defended area may be indicated as an area benefiting from flood defences. However, not all areas are shown as such, and unless specifically indicated, the Flood Map for Planning conservatively shows land at risk of flooding in the absence of flood defences.

The Flood Map for Planning (Figure 4) indicates the eastern part of the site is located in flood zone 1, whilst the western part is located in flood zone 2 and flood zone 3.

Appendix A, detailed map 124, of the Level 1 SFRA reaffirms the above flood zone designation (**Figure 5**). The majority of the site, including all proposed buildings, are located within flood zone 3a, with a small area to the west adjacent to the River Dee defined as flood zone 3b.

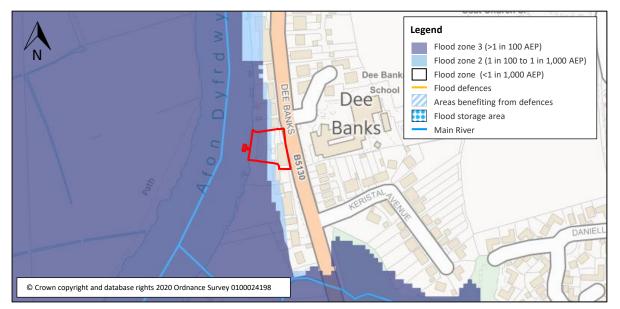
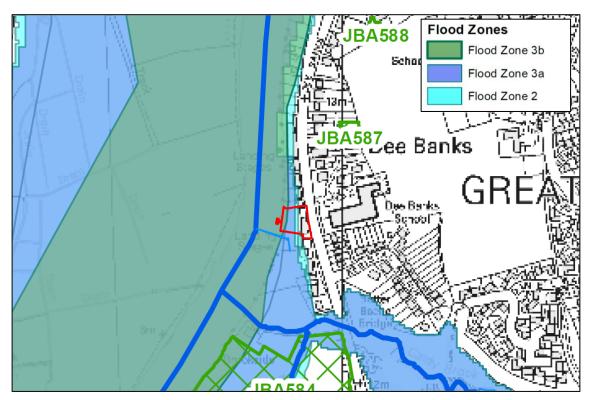



Figure 4: Flood Map for Planning Source: gov.uk website; Accessed: 2 September 2020

Figure 5: Flood Map from the Strategic Flood Risk Assessment Source: Cheshire West and Chester Council SFRA, March 2016 – Appendix A, detailed map 124

3 PLANNING POLICY AND GUIDANCE

3.1 European Union Legislation

The Water Framework Directive (WFD) provides a legal framework for the protection, improvement and sustainable use of inland surface waters, groundwater, transitional waters, and coastal waters across England, and seeks to:

- Prevent deterioration in the status of aquatic ecosystems, protect them and improve the ecological condition of waters
- Achieve at least 'good' status for all waterbodies by 2015
- Promote the sustainable use of water as a natural resource
- Conserve habitats and species that depend directly on water
- Progressively reduce or phase out the release of individual pollutants or groups of pollutants that present a significant threat to the aquatic environment
- Progressively reduce the pollution of groundwater and prevent or limit the entry of pollutants; and
- Contribute to mitigating the effects of floods and droughts.

The WFD applies to any proposed development which has the potential to impact on a waterbody. Where this is the case, the Environment Agency may require evidence demonstrating that the proposed development does not compromise the aims of the WFD.

3.2 National Planning Policy and Guidance

The NPPF sets out government's planning policies for England and how these are expected to be applied. The NPPF seeks to ensure that flood risk is taken into account at all stages in the planning process and is appropriately addressed.

Footnote 50 of the NPPF states that a site-specific flood risk assessment should be submitted for all development proposed in flood zone 2 and flood zone 3 whilst in flood zone 1, an assessment should accompany all proposals involving: sites of 1 ha or more; land identified as having critical drainage problems or as being at increased flood risk in future; or land that may be subject to other sources of flooding, where its development would introduce a more vulnerable use.

NPPF paragraph 155 states that inappropriate development in areas at risk of flooding should be avoided by directing development away from areas at highest risk but accepts that where development is necessary in such areas, the development should be made safe for its lifetime without increasing flood risk elsewhere. The policy of seeking to direct development away from areas at highest risk of flooding is implemented through the application of the sequential test (NPPF paragraph 158).

Paragraph 159 of the NPPF states that if it is not possible for a development to be located in zones with a lower risk of flooding, taking into account wider sustainable development objectives, the exception test may have to be applied.

The need for the exception test will depend on the flood zone of the site and the vulnerability of the development proposed (as set out in NPPG Table 2 and 3).

NPPF paragraph 160 states that application of the exception test for development proposals at the application stage should be informed by a site-specific flood risk assessment. For the test to be passed it should be demonstrated that: the development would provide wider sustainability benefits to the community that outweigh the flood risk; and the development will be safe for its lifetime taking account of the vulnerability of its users, without increasing flood risk elsewhere, and, where possible, will reduce flood risk overall.

NPPF Paragraph 161 states that both elements of the exception test should be satisfied for development to be permitted.

NPPF paragraph 163 states that development should only be allowed in areas at risk of flooding if it incorporates sustainable drainage systems (SuDS) unless there is clear evidence that this would be inappropriate. NPPF paragraph 165 states that applications for major developments should incorporate sustainable drainage systems to appropriate operational standards and with maintenance arrangements in place unless there is clear evidence that this would be inappropriate.

Non-statutory technical standards for sustainable drainage published by DEFRA in March 2015 set out how surface water runoff generated during the present day 1 in 30 and 1 in 100 AEP rainfall events and for events exceeding the present day 1 in 100 AEP event should be managed, how peak runoff rates should be restricted and how runoff volumes should be controlled.

3.3 Local Planning Policy and Guidance

3.3.1 Local Plan (Part One) Strategic Policies, Cheshire West and Chester Council, January 2015

The Cheshire West and Chester Council Local Plan (Part One) was adopted on 25 January 2015 with the purpose of providing the overall vision, strategic objectives, spatial strategy and strategic planning policies for the borough for the period up to 2030.

The following policy is relevant in respect of flood risk and drainage:

Policy ENV 1; Flood Risk and Water Management

The Local Plan will seek to reduce flood risk, promote water efficiency measures, and protect and enhance water quality through the following mechanisms:

- All development must follow the sequential approach to determining the suitability of land for development, directing new development to areas at the lowest risk of flooding and where necessary apply the exception test, as outlined in national planning policy.
- Developers will be required to demonstrate, where necessary, through an appropriate [FRA] at the planning application stage, that development proposals will not increase flood risk on site or elsewhere, and should seek to reduce the risk of flooding. New development will be required to include or contribute to flood mitigation, compensation and/or protection measures, where necessary, to manage flood risk associated with or caused by the development.
- Development proposals should comply with the [WFD] by contributing to the North West River Basin Management Plan and Dee River Basin Management Plan objectives, unless it can be demonstrated that this would not be technically feasible.
- The drainage of new development shall be designed to reduce surface water run-off rates to include the implementation of [SuDS] unless it can be demonstrated that it is not technically feasible or viable.
- Proposals within areas of infrastructure capacity and/or water supply constraint should demonstrate that there is adequate wastewater infrastructure and water supply capacity to serve the development or adequate provision can be made available.

3.3.2 Local Plan (Part Two) Land Allocations and Detailed Policies, Cheshire West and Chester Council, July 2019

The Cheshire West and Chester Council Local Plan (Part Two) was adopted on 18 July 2019, with the purpose of providing further detailed policies and land allocations which support the strategic objectives and policies set out in the Local Plan (Part One).

The following policies are relevant in respect of flood risk and drainage:

Policy DM 40; Development and Flood Risk

In line with Local Plan (Part One) policy ENV 1, flood risk must be avoided or reduced by:

• Locating development within areas of lower flood risk through the application of a borough-wide sequential test and then, where required, applying the exception test in line with the [NPPF]; and

• Ensuring development proposals in flood risk areas are actively managed and reduce flood risk by applying the sequential approach at site level.

Where a site specific [FRA] is required in line with the [NPPF], this will be expected to demonstrate whether a proposed development is likely to be affected by current or future flooding (including effects of climate change) from any source. Development proposals for sites that are at risk will only be supported where the site-specific [FRA] shows that:

- The effects of climate change have been taken into account;
- There is no loss in floodplain storage resulting from the development;
- The development will not increase flood risk elsewhere;
- There is no adverse effect on the operational functions of any existing flood defence infrastructure;
- Proposed resistance / resilience measures designed to deal with current and future risks are appropriate;
- Where applicable, appropriate [SuDS] techniques have been considered and are to be incorporated into the design of the site, in line with Local Plan (Part Two) policy DM 41; and
- The development will be safe and pass the exceptions test, if applicable.

A [FRA] will be required for development within a Critical Drainage Area (CDA) as notified by the Environment Agency. All development in a designated CDA will be required to incorporate measures to alleviate surface water flood risk through the layout and form of the development, including the appropriate application of SuDS to intercept and attenuate overland flow and drained water in line with Local Plan (Part Two) policy DM 41 and the Council's Draft SuDS Design and Technical Guidance.

Flood risk should be considered at an early stage in deciding the layout and design of a site to provide an opportunity to reduce flood risk within the development. Applicants will be required to provide schemes to reduce flood risk on individual sites through flood resilient design and on site flood risk management measures. It is essential that the scheme proposed does not create any additional flood risk outside the development in any part of the catchment, either upstream or downstream.

Existing structures and other features that help to reduce the risk of flooding or mitigate its impacts should be protected. Their loss, alteration or replacement will only be permitted where there would be no increase in flood risk.

Where appropriate, the Council may request that phasing of development should be carried out to avoid any cumulative impacts of flood risk.

Policy DM 41; Sustainable Drainage Systems (SuDS)

In line with Local Plan (Part One) policy ENV 1, proposals for major development will be required to incorporate [SuDS].

SuDS must be included in the early stages of the site design in order to incorporate appropriate SuDS within the development. SuDs schemes will be required to satisfy technical standards and design requirements having regard to the Council's Draft SuDS Design and Technical Guidance.

On greenfield sites, restrictions on surface water runoff from new development should be incorporated into the development at the planning stage and must mimic or improve upon greenfield rates. On brownfield sites, site runoff rates should be reduced to the greenfield rates wherever possible. Where this cannot be achieved a reduction of at least 30 per cent of the actual existing runoff must be provided, unless it can be demonstrated that this is unachievable or hydraulically impractical to do so.

Policy DM 43; Water quality, supply and treatment

In line with Local Plan (Part One) policies ENV 1, ENV 4 and SOC 5, development proposals will be supported where it can be demonstrated that the proposal will not cause unacceptable deterioration to water quality or have an unacceptable impact on water quantity (including drinking water supplies) or waste water infrastructure capacity by ensuring that:

• wastewater infrastructure already exists or can be provided in time to serve the development. Development should connect to the nearest point of adequate capacity.

The discharge of surface water to combined drainage systems will be regulated in accordance with requirements set by the relevant utility provider. The Council will support the development or expansion of infrastructure associated with water supply, surface water drainage and wastewater treatment facilities where proposals are consistent with other relevant development plan policies such as the development strategy (including development in the Green Belt), flood risk, contamination, health and wellbeing and protection of the natural and built environment.

3.4 Environmental Permitting and Land Drainage Consent

Under the Environmental Permitting (England and Wales) Regulations 2016 an Environmental Permit for Flood Risk Activities⁷ is required from the Environment Agency for any permanent or temporary works:

- In, over or under a designated main river
- Within 8 m of the top of bank of a designated main river or of the landward toe of a flood defence (16 m if it is a tidal main river or a sea defence).

In addition, any permanent or temporary works within the floodplain of a designated main river may also require an Environmental Permit for Flood Risk Activities. A permit is separate to and in addition to any planning permission granted.

Land drainage consent may be required from the lead local flood authority or drainage board for work to an ordinary watercourse.

Undertaking activities controlled by local byelaws also requires the relevant consent.

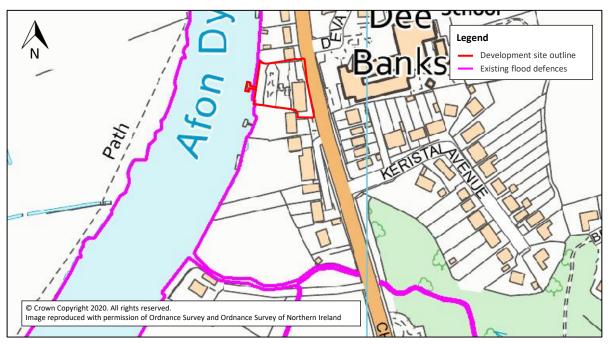
⁷ https://www.gov.uk/guidance/flood-risk-activities-environmental-permits

4 REVIEW OF FLOOD RISK

4.1 Sequential Test and Exception Test

As outlined in **Section 4.3**, the proposed buildings will be located outside the 1 in 1,000 plus climate change (20%) AEP flood extent. This will effectively locate all built development within flood zone 1 taking into account the lifetime of the development. As such the application of the sequential test and exception test is not deemed to be necessary; however, the proposals should still meet the requirements for site specific FRAs.

4.2 Historical Records of Flooding


The Environment Agency historic flood map⁸ indicates that two historic flood events impacted the eastern boundary of the site, in January 1964 caused by the overtopping of defences and the other in November 2000 caused by the exceedance of the River Dee channel capacity (no raised defences).

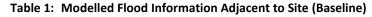
It should be noted that none of the aforementioned historic flood events impacted the location of the existing or proposed building.

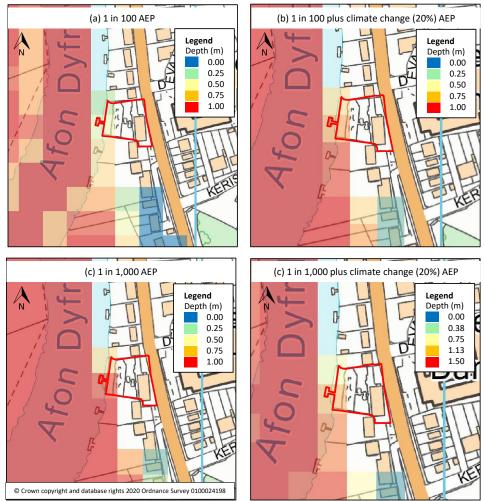
4.3 Fluvial Flood Risk

The River Dee flows in a northerly direction adjacent to the western boundary of the site. Caldy Brook is located approximately 130 m south of the site and outfalls into the River Dee.

The Environment Agency Spatial Flood Defences database indicates that flood defences are present along the River Dee (**Figure 6**) within the vicinity of the site, which comprise of high ground with a crest level of 5.01 m AOD. Flood defences are also present along Caldy Brook, comprising of high ground with crest levels ranging between 5.52 to 5.57 m AOD.

Figure 6: Existing Flood Defences


⁸ https://data.gov.uk/dataset/76292bec-7d8b-43e8-9c98-02734fd89c81/historic-flood-map



A 1D-2D Estry-TUFLOW hydraulic model of the River Dee was developed by Natural Resources Wales (formerly Environment Agency Wales) as part of River Dee Catchment Flood Management Plan, September 2008. This assesses the risk of flooding from the River Dee for the present day 1 in 100 and 1 in 1,000 AEP events and the 1 in 100 and 1 in 1,000 plus climate change (20%) AEP events.

Modelled flood outputs are provided in **Figure 7**. Only modelled flood depths have been made available from the Environment Agency, which are summarised in **Table 1**. However, it should be noted that the 2008 hydraulic model is very coarse, utilising a grid size of 50 m, which is evident by the large cell sizes of the modelled outputs below. Each cell will provide an average flood depth for the entire 50 m cell, which includes areas within the River Dee itself. As such, the flood depths presented below should not be considered to be representative of the flood depths expected at the site itself and the flood extents will be inaccurate.

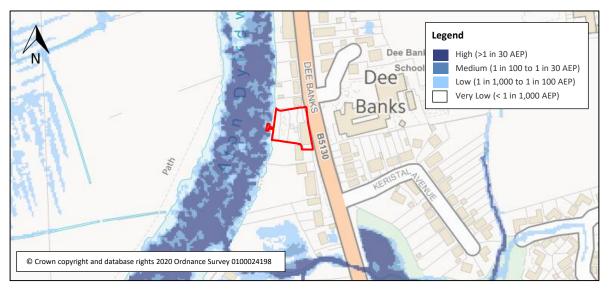
AED Event	Depth (m)		
AEP Event	Highest	Mean	
Present day 1 in 100	0.46	0.41	
1 in 100 plus climate change (20%)	0.76	0.72	
Present day 1 in 1,000	0.92	0.83	
1 in 1,000 plus climate change (20%)	1.07	0.98	

Figure 7: River Dee Modelled Flood Depths

Source: River Dee Catchment Flood Management Plan, Natural Resources Wales, September 2008

The Environment Agency have provided flood level data for the node located approximately 140 m southwest of the site (upstream) for the 1 in 100 AEP event, which is 6.99 m AOD. Utilising this flood level and the known increases in flood depth for other AEP events presented in **Table 1**, calculated flood levels of 7.29 and 7.45 m AOD are derived for the 1 in 100 plus climate change (20%) and 1 in 1,000 AEP events, respectively.

Given the sites partial flood zone 3 designation and the more vulnerable nature of the proposals a +25% and +45% increase in peak river flow for the 1 in 100 AEP event must be considered over the lifetime of the development to account for the likely impacts of climate change. A simple level-discharge relationship has been developed to estimate peak flood levels for the 1 in 100 plus climate change AEP events (25% and 45%), which are 7.37 and 7.67 m AOD respectively.


Based on the above flood levels and the topographic survey data in **Appendix B**, no flooding of the proposed building areas or access and egress is expected during any of the modelled flood events. Some flooding in western extent of the developable area may occur to depths of up to 0.56 m during the 1 in 100 plus climate change (25%) AEP event, in parts of the proposed garden terrace areas.

The Environment Agency has confirmed that no detailed hydraulic modelling information is available for Caldy Brook. In the absence of such information, the Flood Risk from Surface Water map (**Figure 8**) may be used as a reasonable proxy to assess the risk of flooding from this source. This indicates that the site is not expected to be at risk of flooding from Caldy Brook in up to a 1 in 1,000 AEP event.

4.4 Flood Risk from Surface Water

The Flood Risk from Surface Water map (**Figure 8**) indicates that the majority of the site is at 'very low' risk, with a small area of 'low' to 'medium' risk along the western boundary, associated with the River Dee.

The majority of Dee Banks is located at a 'very low' risk, with an area of 'high' risk associated with Caldy Brook to the south of the site.

Figure 8: Flood Risk from Surface Water Source: gov.uk website; Accessed: 2 September 2020

4.5 Flood Risk from Reservoirs, Canals and Other Artificial Sources

The Flood Risk from Reservoirs map (**Figure 9**) indicates that the western area of the site may be at residual risk from such sources, presumably from the failure of upstream reservoirs within the Dee catchment. However, all large reservoirs are regularly inspected by reservoir panel engineers with essential safety work carried out as required. As detailed on the gov.uk website, reservoir flooding is therefore extremely unlikely to occur.

There are no canals or other impounded waterbodies within the vicinity of the site.

Figure 9: Flood Risk from Reservoirs Source: gov.uk website; Accessed: 2 September 2020

4.6 Flood Risk from Groundwater

The British Geological Survey Groundwater Flooding Hazard map (**Figure 10**) indicates that the site is at a moderate to significant susceptibility to groundwater flooding. However, ground levels at the site fall steeply to the west, towards the River Dee and it is considered unlikely that emerging groundwater could accumulate to significant depths at the site itself.

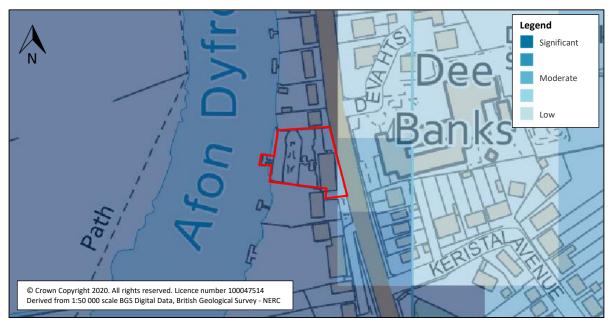


Figure 10: Groundwater Flooding Hazard Map Source: Findmaps; Accessed: 2 September 2020

5 FLOOD RISK MITIGATION MEASURES

The risk of flooding to the proposed development from the River Dee and the residual risk of groundwater flooding will be mitigated through the implementation of the measures proposed within the following section of this report.

5.1 Finished Floor Levels

Ground floor finished floor levels should be set at a minimum of 7.97 m AOD. This provides a freeboard of 600 mm above the estimated flood level at the site during the 1 in 100 plus climate change (25%) AEP event (i.e. 7.37 m AOD). This also provides a freeboard of 300 mm above the estimated 1 in 100 plus climate change (45%) AEP event.

In accordance with Building Regulations Approved Document C⁹, the ground floor finished floor levels of the buildings should be set at a minimum of 0.15 m above adjacent ground levels following reprofiling of the site.

This will, subject to the implementation of an appropriately designed surface water drainage scheme (**Section 6**), enable any potential overland flows to be conveyed safely across the site without affecting property in accordance with the approach promoted by government policy¹⁰.

5.2 Basement

Proposals are to set the finished floor level of the basement at 5.63 m AOD, which is required to allow for car stackers.

The following mitigation measures are subsequently proposed for the basement:

- The basement should be appropriately tanked to prevent groundwater ingress
- The threshold level of access points to the basement should be set no lower than 7.97 m AOD
- The threshold level of ventilation intake should be set no lower than 7.97 m AOD

5.3 Flood Risk Elsewhere

Any proposal to modify ground levels should demonstrate that there is no increase in flood risk to the development itself, or to any existing buildings which are known to, or are likely to flood.

Developers must ensure there will be no loss of flood flow or flood storage capacity for floods up to the severity of the 1 in 100 AEP fluvial event. Whilst not specified by the NPPF, current national guidance recommends that this should generally be assessed considering the 'higher central' climate change allowance, which is +25% in this instance.

The flood level during the 1 in 100 plus 25% climate change AEP event is assessed to be 7.37 m AOD. Based on the development proposals (**Appendix A**) and the topographic survey (**Appendix B**) most of the developable area will be located on land that would be expected to remain dry during the aforementioned event. However, some of the proposed private garden terraces are to be located on land below that flood level and are to be raised to levels of 9.54 and 11.18 m AOD.

Table 2 provides an assessment of the displacement of floodwater from raising the proposed private garden terraces during the 1 in 100 plus climate change (25%) AEP event. As shown, 81.1 m³ of floodwater would be expected to be displaced as a result of the proposals.

⁹ Approved Document C - Site preparation and resistance to contaminants and moisture, 2004 edition (with 2010 and 2013 amendments)

¹⁰ Making Space for Water, Taking forward a new Government strategy for flood and coastal erosion risk management in England, March 2005, Dept for Environment, Food and Rural Affairs

1 in 100 +CC (25%) Flood Level (m AOD)	Area of proposed garden terrace that is currently below the flood level (m ²)	Average existing ground level in the 144.8 m ² area (m AOD)	Calculated average flood depth (m)	Calculated floodwater displaced (m ³)
7.37	144.8	6.81	0.56	81.1

Table 2: Floodwater Displacement

5.3.1 Compensatory Storage

Given the size and steep nature of the site, it will not be feasible to provide level-for-level compensatory flood storage. Therefore, in this instance it is proposed to provide compensatory flood storage on a volume-for-volume basis.

The proposed compensatory storage area (**Figure 11**) will be located within the higher communal garden area. It is proposed to lower a 196 m² area of land by 0.41 m, providing 81.1 m³ of floodplain storage.

Given the compensatory storage area has an existing average ground level of 6.64 m AOD, lowering by approximately 0.41 m will afford a new level of 6.23 m AOD for that area.

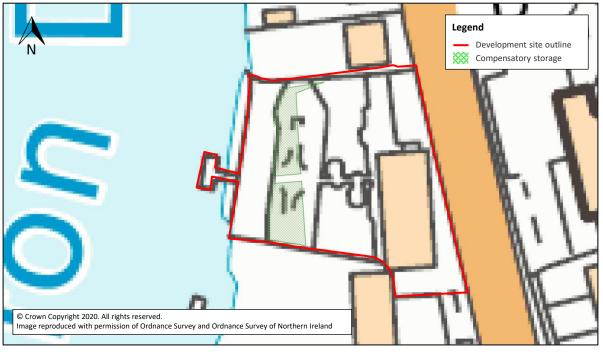


Figure 11: Proposed Compensatory Storage

5.4 Access and Egress

Dry access and egress may be provided via Dee Banks heading north in up to the 1 in 100 plus climate change (45%) AEP event.

The majority of Dee Banks is located at a 'very low' risk of surface water flooding.

6 SURFACE WATER MANAGEMENT

6.1 Surface Water Drainage at the Existing Site

The existing site has previously been developed. Therefore, it is likely that it is served by a formal surface water drainage system; however, no details of this system are currently available.

Based on ground levels surface water runoff from the existing site would naturally drain to the River Dee to the western boundary of the site.

An extract of the Dŵr Cymru Welsh Water public sewer record is provided in **Appendix C**. This indicates a 225 mm diameter public combined sewer located in Dee Banks to the east of the site.

Recognising the above, surface water runoff from the front of the existing building on site is considered to connect into the public combined sewer in Dee Banks. This is evidenced by downpipes at the front of the building on Dee Banks discharging surface water directly onto the footway. Based on ground levels, it is assumed that surface water runoff from the rear of the building, along with hardstanding areas to the rear, discharges either directly or indirectly to the River Dee.

6.1.1 Existing Runoff Rates

The site has a total area of 0.17 ha. Existing impermeable areas have been estimated to be 0.06 ha based on **Appendix B**.

The greenfield runoff rate for the site has been calculated using the ICP SUDS method within MicroDrainage. Runoff rates from existing impermeable areas have been calculated using the Modified Rational Method. Details of the input parameters and the output results are provided in **Appendix D** and **Appendix E** respectively.

AEP of rainfall event	Permeable Runoff Rate 0.11 ha (l/s)	Impermeable Runoff Rate 0.06 ha (l/s)	Total (l/s)
1 in 1	0.4	4.7	5.1
1 in 2	0.5	6.1	6.6
1 in 30	0.8	11.5	12.3
1 in 100	1.1	14.8	15.9

The runoff rates from the existing site are presented in **Table 3**.

Table 3: Peak Runoff Rate - Existing Site

6.2 Surface Water Drainage at the Redeveloped Site

6.2.1 Disposal of Surface Water

In accordance with the NPPG¹¹, surface water runoff should be disposed of according to the following hierarchy: Into the ground (infiltration); To a surface water body; To a surface water sewer, highway drain, or another drainage system; To a combined sewer.

As detailed in **Section 2.4** the site is underlain by soils with impeded drainage. As such the disposal of surface water via infiltration is unlikely to be feasible; however, infiltration tests have not been undertaken at this stage. Such tests should be undertaken at the detailed design stage in accordance with the guidelines in BRE365¹².

¹¹ Paragraph 080, Reference ID: 7-080-20150323

¹² BRE Digest 365 Soakaway Design, Building Research Establishment, 2016

It is subsequently proposed to direct all runoff from the redeveloped site to the River Dee, located adjacent to the western boundary of the site.

6.2.2 Post Development Impermeable Area

The area of impermeable surfaces within the proposed development has been calculated to be 0.056 ha, based on **Appendix A**. A 10% allowance has been made for urban creep and so the post development impermeable area at the site is taken as 0.062 ha. The estimated impermeable area excludes minor hardstanding areas such as external footpaths and steps which are expected to drain to the soft landscaping and have a negligible impact on the proposed surface water regime at the site. There is therefore a slight reduction of impermeable area post development.

6.2.3 Peak Flow Control

It is proposed to restrict surface water runoff to the existing 1 in 1 AEP event rate, as outlined in **Table 3**, with a 30% betterment post development. It is therefore proposed to limit runoff from the redeveloped site to 3.6 I/s in up to the 1 in 100 AEP rainfall event including an allowance for climate change, providing betterment when compared to the existing situation.

6.2.4 Volume Control:

It is proposed to restrict peak discharge rates to the existing 1 in 1 AEP event rate with a 30% betterment in up to the 1 in 100 AEP rainfall event, including an allowance for climate change. This will minimise the impact of the increase in the volume of surface water discharged from the site.

6.2.5 Attenuation Storage

Attenuation storage will be provided to restrict surface water runoff generated across roofs and hardstanding.

The attenuation storage facility has been modelled using the Network module of MicroDrainage (**Appendix F**). The required storage volume has been sized to store the 1 in 100 AEP rainfall event including a 20% increase in rainfall intensity to allow for climate change in accordance with Environment Agency guidance¹³.

Assuming a peak discharge rate of 3.6 l/s, a total storage volume of 13.4 m³ would be required. The required surface water storage volume for the site may be provided in a geocellular attenuation storage tank and within the on site pipe network system.

The geocellular attenuation storage tank would have an area of 15 m^2 and a depth of 0.8 m. It would fill to a depth of 0.569 m providing a 0.231 m freeboard.

An area of permeable paving is also proposed adjacent to the site entrance. Surface water runoff will pass through an aggregate sub-base beneath the permeable surfacing. Runoff will then be directed into the proposed pipe network on site. The permeable paving structure is based upon an 80 mm thick block paving, 30 mm thick bedding aggregate and 320 mm thick granular sub-base with 30% porosity. The permeable paving will not provide any attenuation but will provide a level of treatment for the runoff.

Given that the site is at fluvial flood risk, the attenuation storage facility has also been modelled with a drowned outfall, using a water level of 7.67 m AOD and surcharge duration of 1440 minutes. As discussed in **Section 4.3**, this is the estimated flood level on site for the 1 in 100 plus climate change (45%) AEP event. The results provided in **Appendix G** show no flooding of the proposed surface water drainage system.

In accordance with Environment Agency guidance, a sensitivity analysis has been undertaken using a 40% increase in rainfall intensity in order to allow for uncertainty with respect to climate change (**Appendix H** and **Appendix I** (drowned outfall)).

¹³ Flood Risk Assessments: climate change allowances (https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances)

The results indicate that the additional volume of surface water would be catered for within the freeboard of the geocellular attenuation storage tank and within the remaining capacity available within the on site pipe network. As such, no flooding of the drainage system would therefore be expected in the 1 in 100 AEP rainfall event including a 40% increase in rainfall intensity.

6.2.6 Preliminary Surface Water Drainage Layout

A preliminary surface water drainage layout is provided in **Appendix J**.

6.2.7 Exceedance Routes

Flows resulting from rainfall in excess of the 1 in 100 AEP rainfall event including an allowance for climate change will be managed in exceedance routes. It is assumed that as the development proposals progress, the design of the site would ensure flood flows are directed towards carriageways, with the site being profiled to ensure that flood flows are directed away from built development and ultimately towards the River Dee.

6.2.8 Water Quality and Pollution Control

The CIRIA SuDS Manual¹⁴ and Table G3.1 of the Statutory Standards for SuDS identifies individual property driveways, roofs and low traffic roads as having a low pollution hazard level.

Table 26.2 of the CIRIA SuDS Manual 2015 indicates that the pollution hazard indices associated with such uses for total suspended solids, hydrocarbons and metals are 0.50, 0.40 and 0.40 respectively.

As discussed in **Section 6.2.5**, surface water runoff from trafficked areas will be treated within an aggregate sub-base beneath the proposed area of permeable paving. Runoff will be directed the proposed pipe network.

Table 26.3 of the CIRIA SuDS Manual 2015 indicates that the SuDS mitigation indices for permeable paving for total suspended solids, hydrocarbons and metals are 0.70, 0.60 and 0.70 respectively. As such, the proposed drainage system would incorporate adequate water quality treatment from trafficked areas through the treatment of surface water runoff at source.

In addition, trapped gullies and catchpit manholes provide quality treatment for the surface water and will help minimise the risk of siltation in the geocellular attenuation storage tank.

6.2.9 Adoption and Maintenance of SuDS

The pipe network and SuDS elements within the curtilage of the site are likely to remain private and will therefore be maintained by the landowner.

An indicative maintenance schedule is presented in **Table 4**.

¹⁴ Table 26.2

Schedule	Required action	Frequency		
Flow Control Unit				
Routine maintenance	Remove litter and debris and inspect for sediment, oil and grease accumulation	Six Monthly		
	Remove sediment, oil, grease and floatables	As necessary – Indicated by system inspections or immediately following significant spill		
Remedial actions	Replace malfunctioning parts or structures	As required		
Monitoring	Inspect for evidence of poor operation	Six Monthly		
	Inspect sediment accumulation rates and establish appropriate removal frequencies	Monthly during first year of operation, then every six months		
Permeable Paving				
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations.		
Occasional	Stabilise and mow contributing and adjacent areas	As required		
maintenance	Removal of weeds or management using glyphosphate applied directly into the weeds by an applicator rather than spraying	As required – once per year on less frequently used pavements		
Remedial actions	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50mm of the level of the paving			
	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required		
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required		
Monitoring	Initial inspection	Monthly for three months after installation		
	Inspect for evidence of poor operation and/or weed growth- if required, take remedial action	Three-monthly, 48h after large storms in first six months		
	Inspect silt accumulation rates and establish appropriate brushing frequencies accumulation rates and establish appropriate removal frequencies	Annually		
	Monitor inspection chambers			

Geocellular attenuation storage tank			
Regular	Inspect and identify any areas that are not operating correctly	Monthly for 3 months, then annually	
maintenance	Remove debris from the catchment surface	Monthly	
	Remove sediment from internal forebays	Annually, or as required	
Remedial action	Repair inlet/outlet and vents	As required	
	Inspect catchpit manholes and note rate of sediment accumulation	Monthly in the first year and then annually	
	Inspect inlet/outlet and vents to ensure that they are in good condition and operating as designed	Annually	
Monitoring	Survey inside of tank for sediment build-up and remove if necessary	Every 5 years, or as required	
	Inspect sediment accumulation rates and establish appropriate removal frequencies	Monthly during first year of operation, then every six months	

7 SUMMARY AND RECOMMENDATIONS

This report has been prepared on behalf of Sterling Property CO. Limited and relates to the proposed redevelopment of The Red House, Dee Banks, Chester.

According to the Flood Map for Planning the eastern part of the site is located in flood zone 1, whilst the western part is located in flood zone 2 and flood zone 3.

The proposed buildings will be located outside the 1 in 1,000 plus climate change (20%) AEP flood extent, effectively locating all built development within flood zone 1 taking into account the lifetime of the development. As such the application of the sequential test and exception test is not deemed to be necessary; however, the proposals should still meet the requirements for site specific FRAs.

The River Dee is located adjacent to the western boundary of the site. Based on the calculated flood levels and the topographic survey data, no flooding of the proposed building areas or access and egress is expected during any of the modelled flood events. Some flooding in the western extent of the developable area may occur to depths of up to 0.56 m during the 1 in 100 plus climate change (25%) AEP event, in parts of the proposed garden terrace areas.

The Flood Risk from Surface Water map indicates that the site is not expected to be at risk of flooding from Caldy Brook.

The Flood Risk from Surface Water map indicates that the majority of the site is located at 'very low' risk, with a 'low' to 'medium' risk along the western boundary, associated with the River Dee.

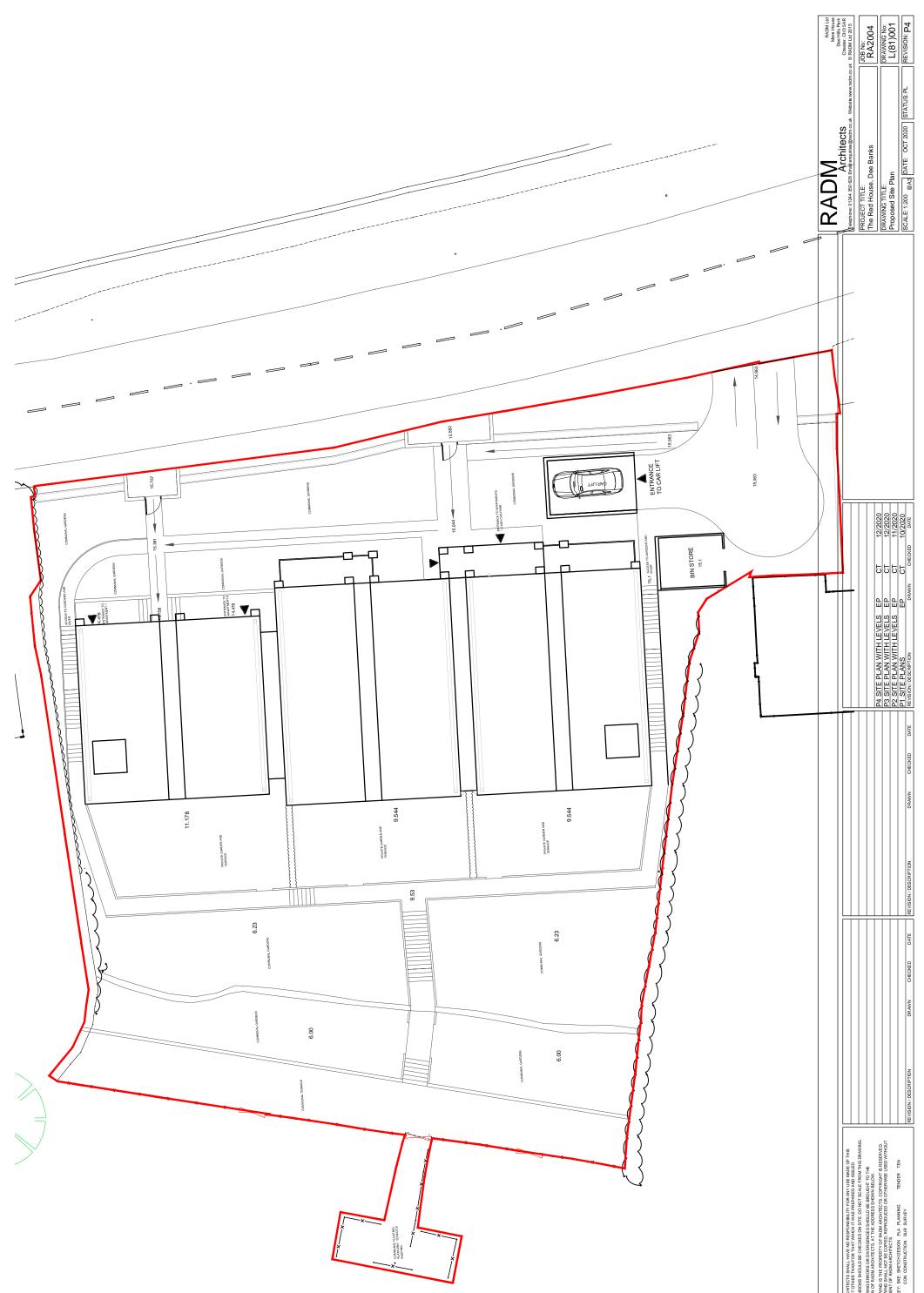
The Flood Risk from Reservoirs map indicates that the west of the site may be at risk from such sources.

There may be a moderate to significant susceptibility to groundwater flooding at the site.

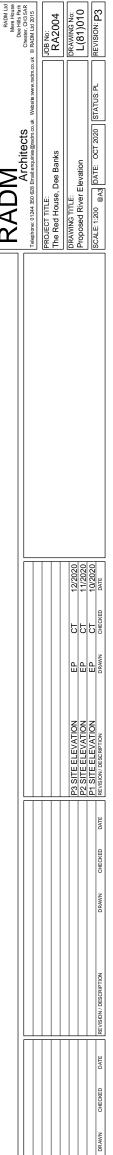
This report has demonstrated that the proposed development may be completed in accordance with the requirements of planning policy subject to the following:

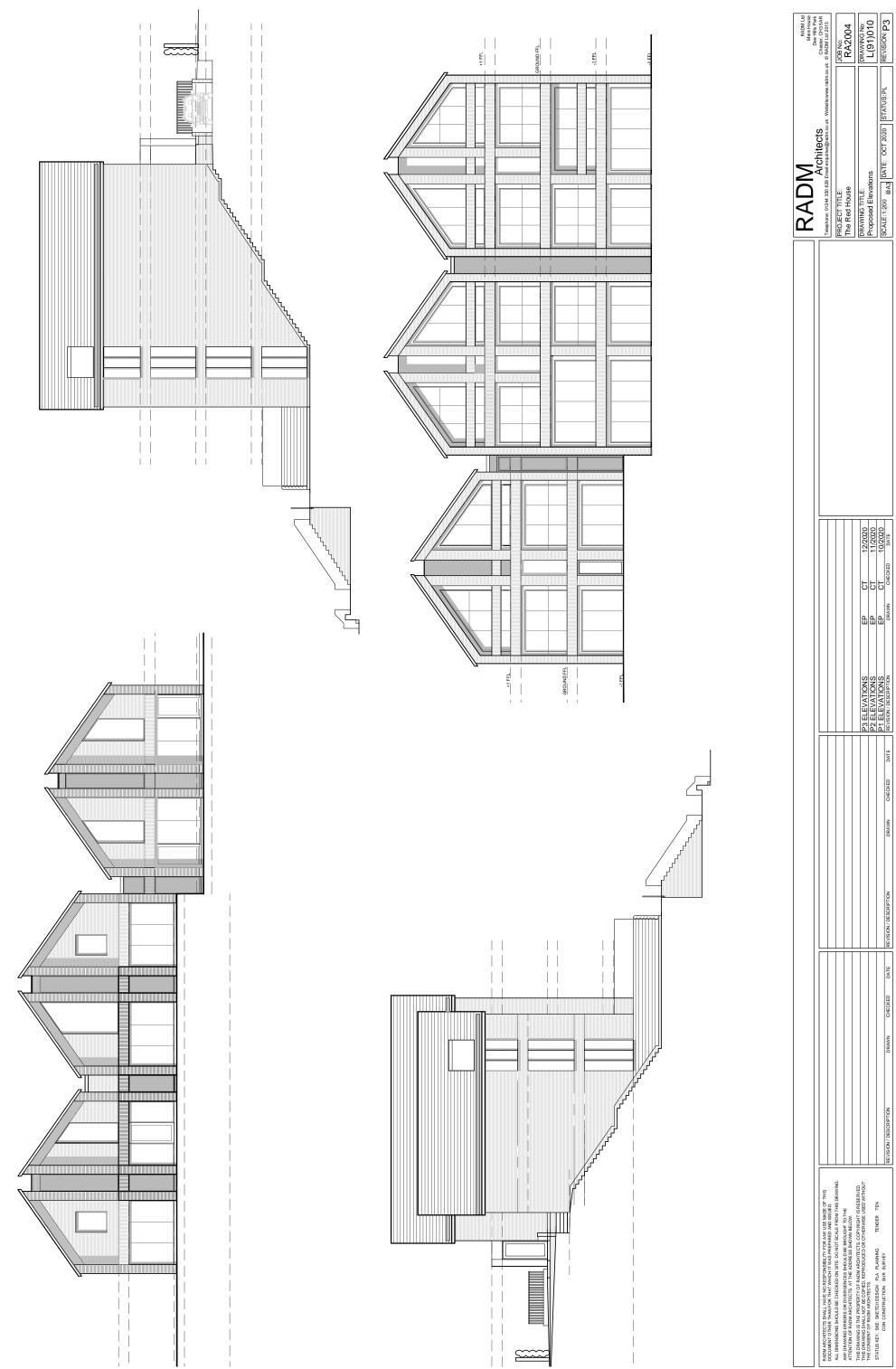
- Finished floor levels to be set at a minimum of 7.97 m AOD
- Finished floor levels to be set 0.15 m above adjacent ground levels
- The basement should be appropriately tanked
- The threshold level of access points to the basement should be set no lower than 7.97 m AOD
- The threshold level of ventilation intake should be set no lower than 7.97 m AOD
- The detailed drainage design to be submitted to and approved by the local planning authority prior to the commencement of development

Construction of the proposed garden terrace areas may displace 81.1 m^3 of floodwater during a 1 in 100 plus climate change (25%) AEP event, which is proposed to be compensated for in the communal garden area in the west of the site by lowering a 196 m² area of land by approximately 0.41 m.


Dry access and egress is expected to be available via Dee Banks heading north.

Surface water runoff from the developed site can be sustainably managed in accordance with planning policy.


APPENDIX A


Development Proposals

RADM ARCHTECTS SHALL HAVE NO RESPONSIBILITY FOR ANY USE MADE OF THIS DOCUMENT OTHER THAN TRONT THAT WINCH IT WARE PARTIEL AND RESULD. ALL DIMENSIONS SHOLLD BE CHACER DON SITE. DO NOT SCALE FROM THIS DRAWNG. ANY DRAWNG ERRORS FOR DIVERGENCES SHOLLD BE BROUGHT TO THE ANY DRAWNG ERRORS FOR DIVERGENCES SHOLLD BE BROUGHT TO THE ANY DRAWNG ERRORS STAT THE ADDRESS SHOWN BE LAND. THERITON OF RADM MICHTECTS AT THE ADDRESS SHOWN BE RADWING TO THE PLAST RADWING IS AND ARCHTECTS COPED. REPROLUCE OR OTHERWISE USED WITHOUT THE CONSTRICT OF BADM ARCHTECTS.

ADM ARCHTECTS BMLLI MAR TO RESPONSELLTY FOR ANY USE MARE OF THIS DOCUMENT OTHER TIMM FOR THAN TWHCHIT WAS PREPARED AND SSUED ALL DIMENSIONS SHOLD BE CHARCE ON ONE CALLE FROM THIS DRAWING. ANY DRAWING ERRORS SHOLD BE CHARCE ON SIGN ER FROM THIS DRAWING. THETTON OR NAM ROHTERTS TA THE LODGER SS SHOWN BELOW. THE OND WARNING IS THE ROPERTY OF FAMIL MACHTERT CONFIGATING REPORT THE CONSERT OF FAMIL MACHTERTS. THE DRAWING SKALL LOTTE COPEL, REPRODUCED OR OTHERWISE USED WITHOUT THE CONSERT OF FAMIL MACHTERTS.

DATE

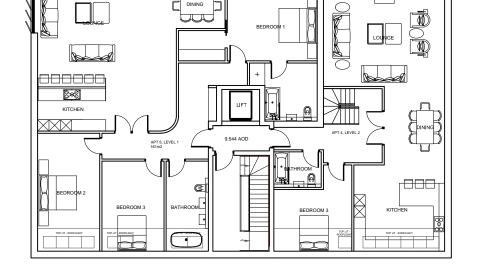
DATE

CHECKED

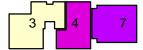
DRAWN

DESCRIPTION

REVISION / I

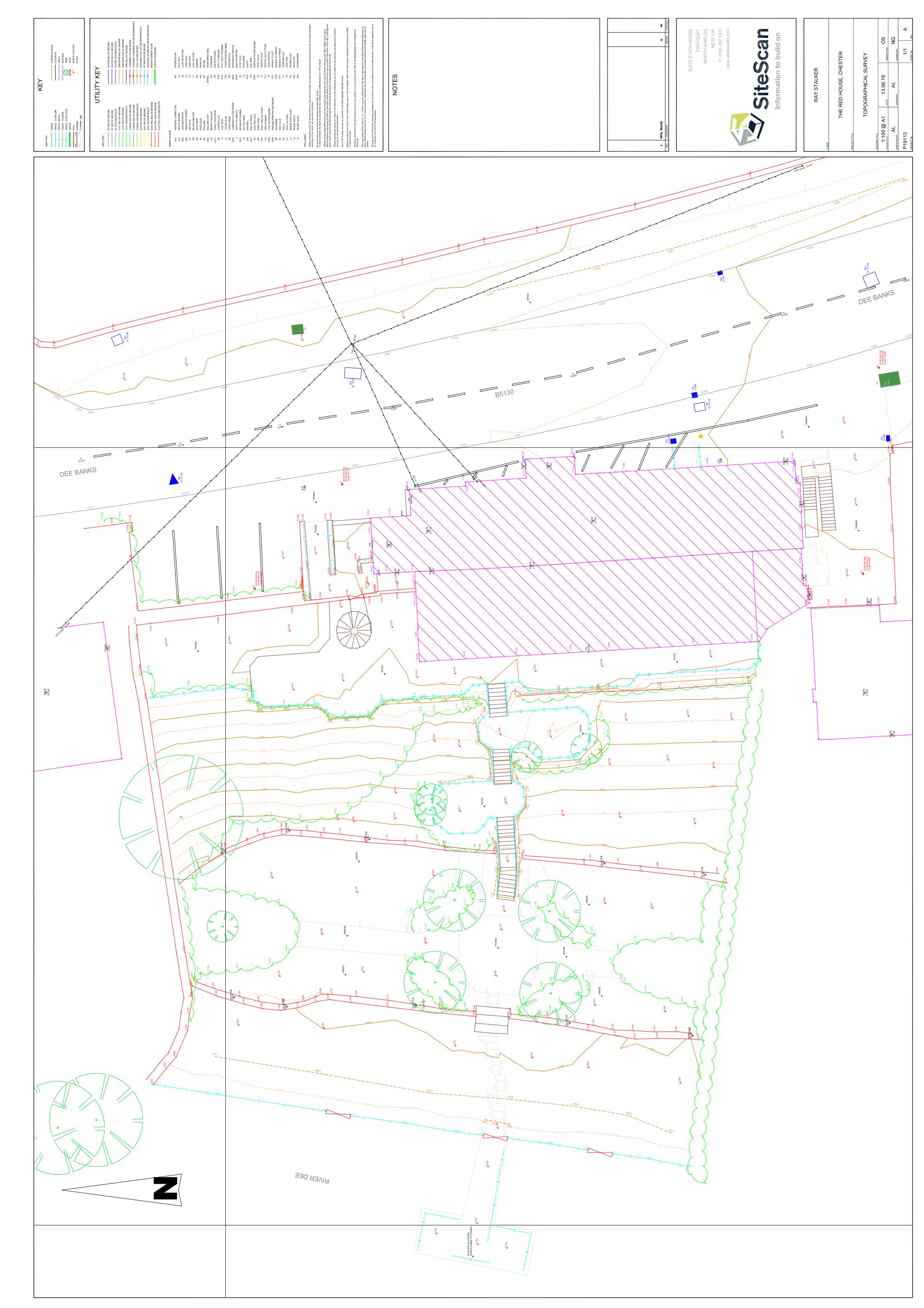


6 1 2 6 7


GROUND

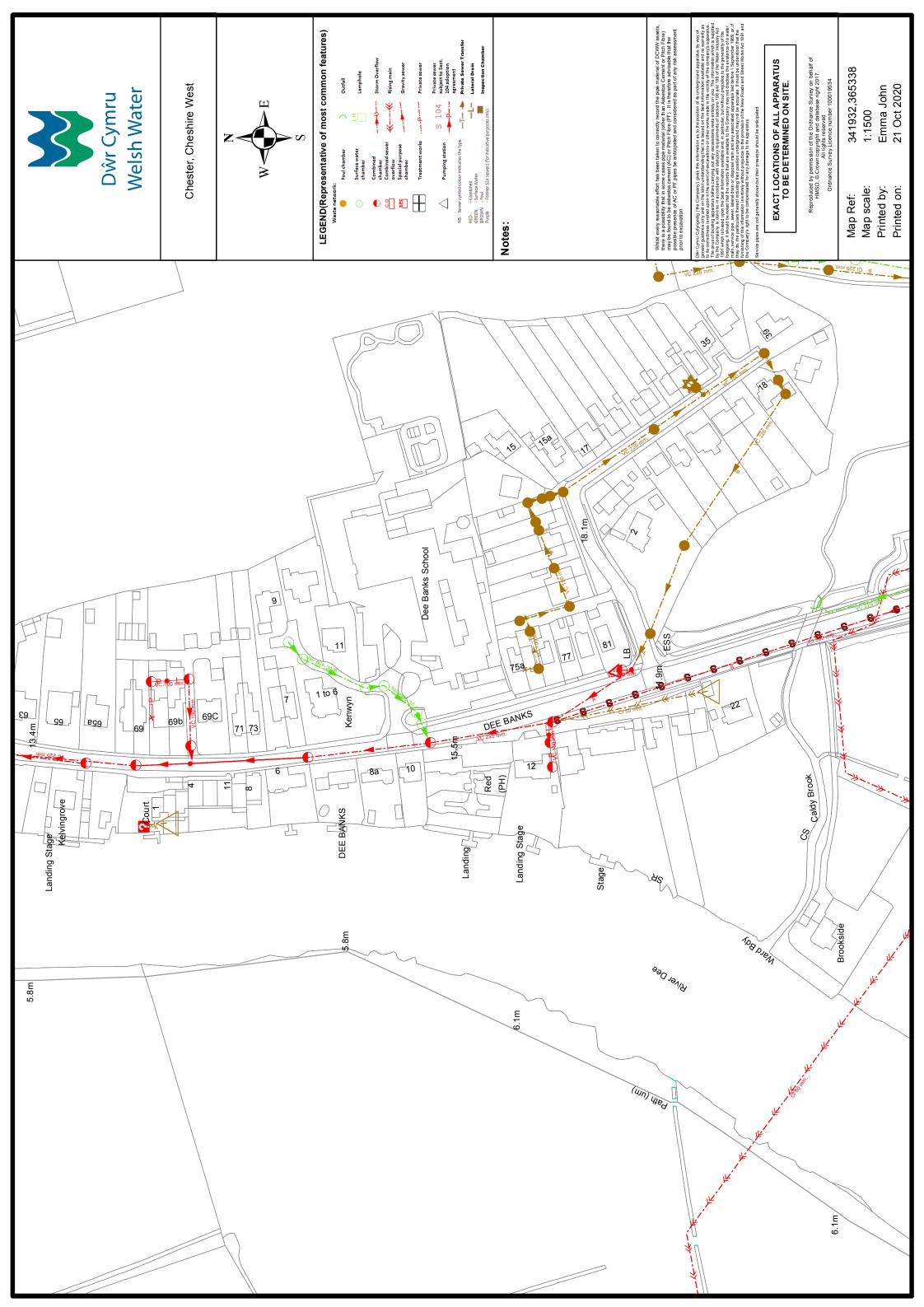
-1

+1



RADM ARCHITECTS SHALL HAVE NO RESPONSIBILITY FOR ANY USE MADE OF THIS DOCUMENT OTHER THAN FOR THAT WHICH IT WAS PREPARED AND ISSUED.]]				Telephone: 01244 350 628 Email enquiries@radm.co.uk Website www.rad	RADM Ltd Mere House Dee Hills Park Chester, CH3 Sark :www.radm.co.uk © RADM Ltd 2020
ALL DIMENSIONS SHOULD BE CHECKED ON SITE. DO NOT SCALE FROM THIS DRAWING. ANY DRAWING ERRORS OR DIVERGENCES SHOULD BE BROUGHT TO THE ATTENTION OF RADM ARCHITECTS. AT THE ADDRESS SHOWN BELOW.									PROJECT TITLE: The Red House	JOB No: RA2004
THIS DRAWING IS THE PROPERTY OF RADM ARCHITECTS. COPYRIGHT IS RESERVED. THIS DRAWING SHALL NOT BE COPIED, REPRODUCED OR OTHERWISE USED WITHOUT THE CONSENT OF RADM ARCHITECTS. STATUS KEY: SKE: SKETCH DESIGN PLA PLANNING TENDER TEN					P3 FLOOR PLANS P2 FLOOR PLANS	EP EP	CT CT	12/2020 11/2020	DRAWING TITLE: Proposed Floor Plans	DRAWING No: L(91)001
CON CONSTRUCTION SUR SURVEY	REVISION / DESCRIPTION	DRAWN	CHECKED	DATE	P1 FLOOR PLANS REVISION / DESCRIPTION	EP DRAWN	CT	10/2020 DATE	SCALE: 1:200 @A3 DATE: OCT 2020 STATUS: SKE	REVISION: P3

APPENDIX B


Topographic Survey

APPENDIX C

Dŵr Cymru Welsh Water Public Sewer Record

APPENDIX D

Greenfield Runoff Calculations

Weetwood		Page 1
Suite 1 Park House		
Broncoed Bus Park		
Wrexham Rd Mold		Micro
Date 18/09/2020 15:11	Designed by OwenAstbury	—— Micro Drainage
File	Checked by	Drainiacje
Micro Drainage	Source Control 2020.1	
IC	CP SUDS Mean Annual Flood	
	Input	
	od (years) 100 Soil 0.450 Area (ha) 1.000 Urban 0.000 SAAR (mm) 700 Region Number Region 9	
	Results 1/s	
	QBAR Rural 4.4 QBAR Urban 4.4	
	Q100 years 9.6	
	Q1 year 3.9	
	Q30 years 7.7	
	Q100 years 9.6	

APPENDIX E

Peak Runoff Rate from Existing Site

The peak discharge rates of surface water runoff from the impermeable areas at the site have been calculated based on the Modified Rational Method¹⁵.

The following parameters have been obtained from the maps in Volume 3 of the Wallingford Procedure:

M5-60 minute rainfall depth:	18.0 mm
Ratio of M5-60 to M5-2 day rainfall:	0.38
Average Annual Rainfall:	700 mm
Winter Rain Acceptance Potential/ Soil Type :	0.45/4
The Urban Catchment Wetness Index (UCWI) value:	70.0

A time of concentration of 15.0 minutes has been used.

A rainfall estimation calculation has been carried out to convert the M5-60 minute rainfall to the 15-minute duration rainfall for the 1 in 1, 1 in 2, 1 in 30 and 1 in 100 annual exceedance probability (AEP) rainfall events. The calculated rainfall intensities for these events are 27.5, 35.6, 67.3 and 86.6 mm/hr respectively.

The flow rate as given by the Modified Rational Method is:

Q=2.78 x $C_v x C_r x$ rainfall intensity x impermeable area

where:

 C_v is the volumetric runoff coefficient = $P_r/PIMP = 0.79$ where P_r is Percentage Runoff and PIMP is Percentage Impermeable Area C_r is the routing coefficient = 1.3 Impermeable Area = 0.06 ha

The peak discharges of surface runoff from impermeable areas of the existing site are shown in the table below:

AEP of rainfall event	Peak discharge for 0.06 ha impermeable area (I/s)
1 in 1	4.7
1 in 2	6.1
1 in 30	11.5
1 in 100	14.8

¹⁵ The Wallingford Procedure, Volume 4, 1981

APPENDIX F

MicroDrainage Calculations

Veetwood		Page 1
Suite 1 Park House	(4902)	
Broncoed Bus Park	The Red House,	
Wrexham Rd Mold	Dee Banks, Chester	Micro
Date 17/12/2020 10:30	Designed by OA	Drainag
File 2020-12-17 4902 SW Calculati	Checked by	Diamay
Micro Drainage	Network 2020.1	
STORM SEWER DES	IGN by the Modified Rational Method	
De	ign Criteria for Storm	
Pipe Size	STANDARD Manhole Sizes STANDARD	
Return Period (ye M5-60 Rat Maximum Rainfall (mm Maximum Time of Concentration (m Foul Sewage (l/s Volumetric Runoff Co	(mm)18.000Add Flow / Climate Chario R0.380Minimum Backdrop Her(/hr)50Maximum Backdrop Herins)30 Min Design Depth for Optimisat(/ha)0.000Min Vel for Auto Design on	ight (m) 0.000 ight (m) 0.000 tion (m) 0.000 ly (m/s) 1.00
	Area Diagram for Storm	
	Afea Diagram for Storm	
	Time Area Time Area nins) (ha) (mins) (ha)	
	0-4 0.036 4-8 0.026	
Total	rea Contributing (ha) = 0.062	
	1 Pipe Volume $(m^3) = 1.306$	
	i i je volume (m) = 1.500	
Netwo	rk Design Table for Storm	
« - I	dicates pipe capacity < flow	
PN Length Fall Slope I.Are (m) (m) (1:X) (ha)	T.E. Base k HYD DIA Sectio (mins) Flow (l/s) (mm) SECT (mm)	on Type Auto Design
S1.000 8.558 0.850 10.1 0.01 S1.001 8.711 0.860 10.1 0.00	L ·	
1	etwork Results Table	
PN Rain T.C. US/IL (mm/hr) (mins) (m)	E I.Area Σ Base Foul Add Flow Vel (ha) Flow (l/s) (l/s) (l/s) (m/s)	Cap Flow (1/s) (1/s)
\$1.000\$0.00\$.04\$12.320\$1.001\$0.00\$5.09\$.610	0.0130.00.00.03.190.0130.00.00.03.18	
	©1982-2020 Innovyze	

Weetwood		Page 2
Suite 1 Park House	(4902)	
Broncoed Bus Park	The Red House,	
Wrexham Rd Mold	Dee Banks, Chester	Micro
Date 17/12/2020 10:30	Designed by OA	Drainage
File 2020-12-17 4902 SW Calculati	Checked by	Diamage
Micro Drainage	Network 2020.1	I

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ase (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.002	5.895	0.590	10.0	0.018	0.00	0.0	0.600	0	150	Pipe/Conduit	ď
S2.001	11.889 2.840 12.851 3.636	0.270	99.1 10.5 0.0 10.4	0.007 0.024 0.000 0.000	5.00 0.00 0.00 0.00	0.0	0.600 0.600 0.600 0.600	0	150 <mark>150</mark>	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	0 0 0 0 0 0
S1.003	19.500	0.310	62.9	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	8

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S1.002	50.00	5.12	8.240	0.031	0.0	0.0	0.0	3.21	56.7	4.2
S2.000 S2.001 S2.002 S2.003	50.00 50.00 50.00 50.00	5.20 5.21 7.52 7.54	10.330 9.170 8.000 8.000	0.007 0.031 0.031 0.031	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.01 3.12 0.09 3.14	17.8 55.2 1.6« 55.6	0.9 4.2 4.2 4.2
S1.003	50.00	7.80	5.410	0.062	0.0	0.0	0.0	1.27	22.4	8.4

Weetwood		Page 3
Suite 1 Park House	(4902)	
Broncoed Bus Park	The Red House,	
Wrexham Rd Mold	Dee Banks, Chester	Micro
Date 17/12/2020 10:30	Designed by OA	Drainage
File 2020-12-17 4902 SW Calculati	Checked by	Diamage
Micro Drainage	Network 2020.1	

Manhole Schedules for Storm

th Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
60 Open Manhole	450	S1.000	12.320	150				
10 Open Manhole	450	S1.001	9.610	150	S1.000	11.470	150	1860
60 Open Manhole	450	S1.002	8.240	150	S1.001	8.750	150	510
50 Open Manhole	450	S2.000	10.330	150				
10 Open Manhole	1200	S2.001	9.170	150	s2.000	10.210	150	1040
40 Open Manhole	1200	S2.002	8.000	150	S2.001	8.900	150	900
40 Open Manhole	1200	S2.003	8.000	150	S2.002	8.000	150	
30 Open Manhole	1200	S1.003	5.410	150	S1.002	7.650	150	2240
					s2.003	7.650	150	2240
	1 1							
00 Open Manhole	0		OUTFALL		S1.003	5.100	150	
6 5 1 4	 Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole Open Manhole 	50Open Manhole45050Open Manhole45050Open Manhole120010Open Manhole120010Open Manhole1200	50 Open Manhole 450 S1.002 60 Open Manhole 450 S2.000 60 Open Manhole 1200 S2.001 60 Open Manhole 1200 S2.002 60 Open Manhole 1200 S2.002 60 Open Manhole 1200 S2.003	50 Open Manhole 450 \$1.002 8.240 60 Open Manhole 450 \$2.000 10.330 60 Open Manhole 1200 \$2.001 9.170 60 Open Manhole 1200 \$2.002 8.000 60 Open Manhole 1200 \$2.003 8.000 60 Open Manhole 1200 \$2.003 8.000	50 Open Manhole 450 \$1.002 8.240 150 60 Open Manhole 450 \$2.000 10.330 150 60 Open Manhole 1200 \$2.001 9.170 150 60 Open Manhole 1200 \$2.002 8.000 150 60 Open Manhole 1200 \$2.003 8.000 150	50Open Manhole450\$1.0028.240150\$1.00150Open Manhole450\$2.00010.33015050Open Manhole1200\$2.0019.170150\$2.00060Open Manhole1200\$2.0028.000150\$2.00160Open Manhole1200\$2.0038.000150\$2.00260Open Manhole1200\$1.0035.410150\$1.002	50 Open Manhole 450 \$1.002 8.240 150 \$1.001 8.750 50 Open Manhole 450 \$2.000 10.330 150 50 50 50 50 50 51.001 8.750 8.240 150 51.001 8.750 50 Open Manhole 1200 \$2.001 9.170 150 \$2.000 10.210 60 Open Manhole 1200 \$2.002 8.000 150 \$2.001 8.900 60 Open Manhole 1200 \$2.003 8.000 150 \$2.002 8.000 60 Open Manhole 1200 \$1.003 5.410 150 \$1.002 7.650	50Open Manhole450\$1.0028.240150\$1.0018.75015050Open Manhole450\$2.00010.3301505050505050Open Manhole1200\$2.0019.170150\$2.00010.21015050Open Manhole1200\$2.0028.000150\$2.0018.90015060Open Manhole1200\$2.0038.000150\$2.0028.00015060Open Manhole1200\$1.0035.410150\$1.0027.650150

561.585 - 552.886 -	-250902.676 -250903.146	1724570.127 1724561.585 1724552.886	-250902.676	Required	• •
552.886 -	-250903.146			-	
		1724552.886	-250903.146	Required	
550.829 -	050060 040				
	-250868.042	1724550.829	-250868.042	Required	•
547.894 -	-250879.563	1724547.894	-250879.563	Required	4
548.034 -	-250882.400	1724548.034	-250882.400	Required	
548.691 -	-250895.234	1724548.691	-250895.234	Required	
	548.034 -	548.034 -250882.400	548.034 -250882.400 1724548.034	548.034 -250882.400 1724548.034 -250882.400	547.894 -250879.563 1724547.894 -250879.563 Required 548.034 -250882.400 1724548.034 -250882.400 Required 548.691 -250895.234 1724548.691 -250895.234 Required

Weetwood							Page 4
Suite 1 P				902)			
Broncoed Bu				e Red House,			
Wrexham Rd			De	e Banks, Ches	ter		— Micro
Date 17/12/	2020 10:30)	De	signed by OA			
File 2020-1	2-17 4902	SW Calculat	zi Ch	ecked by			Drainago
Micro Drain	age		Ne	twork 2020.1			
		М	anhala G	chedules for a	2+ 0 22		
		Ma	annoie se				
	MH Name	Manhole Easting (m)	Manhole Northing (m)		Intersection Northing (m)	Manhole Access	
	S2	1724548.831	-250898.8	67 1724548.831	-250898.867	Required	1
	S1-HW	1724529.348	-250899.6	87		No Entry	
	01 111	1,11010,010	2000000.00				—

Weetwood		Page 5
Suite 1 Park House	(4902)	
Broncoed Bus Park	The Red House,	
Wrexham Rd Mold	Dee Banks, Chester	Micro
Date 17/12/2020 10:30	Designed by OA	Drainage
File 2020-12-17 4902 SW Calculati	Checked by	Diamage
Micro Drainage	Network 2020.1	

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
S1.000	0	150	S5	15.080	12.320	2.610	Open Manhole	450
S1.001	0	150	S4	12.320	9.610	2.560	Open Manhole	450
S1.002	0	150	S3	9.600	8.240	1.210	Open Manhole	450
S2.000	0	150	S2D	11.180	10.330	0.700	Open Manhole	450
S2.001	0	150	S2C	11.180	9.170	1.860	Open Manhole	1200
S2.002	0	150	S2B - GEOCELL	9.540	8.000	1.390	Open Manhole	1200
S2.003	0	150	S2A	9.540	8.000	1.390	Open Manhole	1200
S1.003	0	150	S2	9.540	5.410	3.980	Open Manhole	1200

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
S1.000	8.558	10.1	S4	12.320	11.470	0.700	Open Manhole	450
S1.001	8.711	10.1	S3	9.600	8.750		Open Manhole	450
S1.002	5.895	10.0	S2	9.540	7.650		Open Manhole	1200
	11.889 2.840 12.851	99.1 10.5 0.0 10.4	S2C	11.180 9.540 9.540 9.540	10.210 8.900 8.000 7.650	0.820 0.490 1.390	Open Manhole Open Manhole Open Manhole Open Manhole	1200 1200 1200 1200
s1.003	19.500	62.9	S1-HW	5.400	5.100		Open Manhole	0

Weetwood	Page 6
Suite 1 Park House	(4902)
Broncoed Bus Park	
	The Red House,
Wrexham Rd Mold	Dee Banks, Chester Micro
Date 17/12/2020 10:30	Designed by OA Drainage
File 2020-12-17 4902 SW Calculati	Checked by
Micro Drainage	Network 2020.1
Area	Summary for Storm
Pipe PIMP PIMP P Number Type Name	IMP Gross Imp. Pipe Total (%) Area (ha) Area (ha) (ha)
1.000	100 0.013 0.013 0.013
	100 0.000 0.000 0.000
1.002	100 0.018 0.018 0.018
2.000	
	100 0.024 0.024 0.024
	100 0.000 0.000 0.000 100 0.000 0.000 0.000
	100 0.000 0.000 0.000 100 0.000 0.000 0.000
1.003	Total Total Total
	0.062 0.062 0.062
Outfall Outfall Pipe Number Name S1.003 S1-HW Simulati Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s) Number of Input Hydrographs 0 Number	on Criteria for Storm 0.750 Additional Flow - % of Total Flow 0.000 1.000 MADD Factor * 10m ³ /ha Storage 2.000 0 Inlet Coefficcient 0.800 0 Flow per Person per Day (1/per/day) 0.000 0.500 Run Time (mins) 60
Synthe	tic Rainfall Details
Rainfall Model	FSR Profile Type Summer
Return Period (years) Region Engl	2 Cv (Summer) 0.750 and and Wales Cv (Winter) 0.840
M5-60 (mm)	18.000 Storm Duration (mins) 30
Ratio R	0.380
	82-2020 Innovyze

Weetwood				Page 7
Suite 1 Park House	(4902)			
Broncoed Bus Park	The Red Ho	ouse,		
Wrexham Rd Mold	Dee Banks,	Chester		- Micro
Date 17/12/2020 10:30	Designed k	ру ОА		Drainage
File 2020-12-17 4902 SW Calculati.	Checked by	7		Diamage
Micro Drainage	Network 20	020.1		
<u>On</u> 2	line Controls	for Storm		
Hydro-Brake® Optimum Ma	anhole: S2, DS	/PN: S1.003, Volum	ue (m³):	4.8
	Unit Reference	MD-SHE-0069-3600-3100	-3600	
	Design Head (m)		3.100	
De	sign Flow (l/s)		3.6	
	Flush-Flo™	Calcu	lated	
	-	Minimise upstream st	-	
	Application	Su	rface	
	Sump Available		Yes	
-	Diameter (mm)		69	
	nvert Level (m)		5.410 100	
Minimum Outlet Pip Suggested Manhol			1200	
Control Points Head (m)	Flow (l/s)	Control Points	Head (m)	Flow (l/s)
Design Point (Calculated) 3.100	3.6	Kick-Flo	0.621	1.7
Flush-Flo™ 0.305	5 2.1 Mean	n Flow over Head Range	è –	2.6
The hydrological calculations have be Optimum as specified. Should another utilised then these storage routing ca	type of control	device other than a	-	-

Depth (m)	Flow (l/s)						
0.100	1.8	1.200	2.3	3.000	3.5	7.000	5.3
0.200	2.1	1.400	2.5	3.500	3.8	7.500	5.4
0.300	2.1	1.600	2.6	4.000	4.0	8.000	5.6
0.400	2.1	1.800	2.8	4.500	4.3	8.500	5.8
0.500	2.0	2.000	2.9	5.000	4.5	9.000	5.9
0.600	1.8	2.200	3.1	5.500	4.7	9.500	6.1
0.800	1.9	2.400	3.2	6.000	4.9		
1.000	2.1	2.600	3.3	6.500	5.1		

Weetwood						Page 8
Suite 1 Park House		(4902)			
Broncoed Bus Park		The F	ed House,			
Wrexham Rd Mold			anks, Ches	ter		Micco
Date 17/12/2020 10:30			ned by OA			Micro
File 2020-12-17 4902 S			-			Drainago
	W Calculat.		ed by			
Micro Drainage		Netwo	ork 2020.1			
	Sto	erage Struc	tures for	Storm		
	<u>Porous Car</u>	Park Manh	ole: S5, D	S/PN: S1.0	00	
Infiltratio	n Coefficient	Base (m/hr)	0 00000	T	Nidth (m) 8.	3
	orane Percola				ength (m) 10.	
		lation (l/s)	23.1	Slo	ope (1:X) 0.	
	S	afety Factor		pression Sto		5
	T	Porosity		Evaporation		3
	Inve	rt Level (m)	14.030	cap volume l	Depth (m) 0.32	.0
Collin	lar Storage	Manhole	S2B - CFOC	יאס/פת	· S2 002	
	iai Scorage	namore.	520 0000	, D0/IN	. 52.002	
		Invert Lev	el (m) 8.0	00 Safety Fa	ctor 2.0	
Infilt	ration Coeff:			=	sity 0.95	
	ration Coeff:				1	
Depth (m)	Area (m²) I	nf. Area (m²) Depth (m)	Area (m ²) In	nf. Area (m²)	
0.000	15.0	0.	0 0.801	0.0	0.0	
0.800	15.0	0.				
	2	Volume Sum	mary (Stat:	ic)		
	Length	Calculation	s based on Ti	rue Length		
				Storage		
Pipe	USMH	Manhole	Pipe	Structure	Total	
Number	Name	Volume (m ³)	Volume (m ³)	Volume (m ³)	Volume (m ³)	
S1.000	S5	0.439	0.143	7.968	8.550	
S1.000	S4	0.431	0.146	0.000	0.577	
S1.002	S3	0.216	0.090	0.000	0.306	
S2.000	S2D	0.135	0.196	0.000	0.331	
S2.001	S2C	2.273	0.029	0.000	2.302	
	2B - GEOCELL	1.742	0.206	11.405	13.352	
S2.003	S2A	1.742	0.043	0.000	1.785	
S1.003	S2	4.671	0.334	0.000	5.005	
Total		11.649	1.186	19.373	32.208	
iotal		11.049	1.100	10.010	52.200	

											Page	e 9
Suite 1	Park Hous	e		(4	902)							
Broncoed	Bus Park			Tł	ne Rec	d House	€,					
Irexham R	d Mold			De	e Bar	nks, Ch	neste	er			M	icro
ate 17/1	2/2020 10:	30		De	esigne	ed by (DA					ainago
'ile 2020	-12-17 490	2 SW Calc	ulati.	Ch	neckeo	d by						
licro Dra	inage			Ne	etwork	c 2020.	.1					
<u>l year l</u>	Return Per:	iod Summar	ry of	Critic	cal Re	esults	by 1	Maxin	num Leve	el (Ran)	x 1) fo	or Storm
	Manhole Hea Foul Sewa er of Input H	Hot Start I adloss Coeff age per hect Nydrographs	art (mi Level (f (Glob Lare (1 0 Nu	tor 1. ns) mm) al) 0. /s) 0. mber o	000 0 500 F1 000 f Off1	MAD ow per ine Con	nal E D Fac Persc trols	ctor ' Ir on per s 0 Nu	f 10m³/ha alet Coef Day (1/ amber of	Storage fiecient per/day) Time/Are	2.000 0.800 0.000 a Diagr	
Num	ber of Onlin	e Controls	1 Numb	er of	Storag	e Struc	tures	s 2 Ni	umber of	Real Tim	e Contr	ols O
	Rainfa	all Model Region E		-	FSR M5		n) 18	.000	Cv (Summ Cv (Wint)			
	Μ	Margin for H		nalysis	s Time:	step F	ine 1		7D Status .a Status			
			rofile	(s)	DTS Sta		ON		ummer and			
	Retu	P Duration(rn Period(s Climate C	s) (min) (year	(s) ns) 15, rs)			240	, 360	, 480, 9 1,	50, 1440 30, 100 0, 0, 20		
	US/MH	Duration(rn Period(s	s) (min) (yean Thange	(s) ns) 15, rs) (%)		60, 120, US/CL	240 Wate Lev	, 360 er Su el	, 480, 90 1, rcharged Depth	50, 1440 30, 100 0, 0, 20 Flooded Volume	Flow /	
PN		Duration(rn Period(s	s) (min) (year	(s) ns) 15, rs) (%)		60, 120,	240 Wate	, 360 er Su el	, 480, 90 1, rcharged	50, 1440 30, 100 0, 0, 20 Flooded		Overfloo (1/s)
s1.000	US/MH Name S5	Duration(rn Period(s Climate C 30 minute	s) (min) (yean Hange Event 1 year	(s) ns) 15, rs) (%) Summer	30, 6 I+0%	<pre>60, 120, US/CL (m) 15.080</pre>	Wate Lev (m)	, 360 er Su el	, 480, 90 1, rcharged Depth	50, 1440 30, 100 0, 0, 20 Flooded Volume	Flow / Cap. 0.03	
S1.000 S1.001	US/MH Name S5 S4	Duration(rn Period(s Climate C 30 minute 15 minute	s) (min) (year Hange Event 1 year 1 year	(s) ns) 15, rs) (%) Summer Summer	30, 6 I+0% I+0%	<pre>60, 120, US/CL (m) 15.080 12.320</pre>	240 Wate Lev (m) 12.3 9.6	, 360 er Su el 39 27	<pre>, 480, 90 1, rcharged Depth (m) -0.131 -0.133</pre>	<pre>50, 1440 30, 100 30, 0, 20 Flooded Volume (m³) 0.000 0.000</pre>	Flow / Cap. 0.03 0.03	
S1.000 S1.001 S1.002	US/MH Name S5 S4 S3	Duration(rn Period(s Climate C 30 minute 15 minute 15 minute	s) (min) (year Hange Event 1 year 1 year 1 year 1 year	(s) ns) 15, rs) (%) Summer Summer Summer	30, 6 I+0% I+0% I+0% I+0%	<pre>60, 120, US/CL (m) 15.080 12.320 9.600</pre>	Wate Lev (m) 12.3 9.6 8.2	, 360 er Su el 39 27 66	<pre>, 480, 90</pre>	<pre>50, 1440 30, 100 30, 100 0, 0, 20 Flooded Volume (m³) 0.000 0.000 0.000</pre>	Flow / Cap. 0.03 0.03 0.06	
S1.000 S1.001	US/MH Name S5 S4 S3 S2D	Duration(rn Period(s Climate C 30 minute 15 minute	s) (min) (year Hange Event 1 year 1 year 1 year 1 year 1 year	(s) ns) 15, rs) (%) Summer Summer Summer Winter	30, 6 I+0% I+0% I+0% I+0% I+0%	<pre>60, 120, US/CL (m) 15.080 12.320 9.600 11.180</pre>	Wate Lev (m) 12.3 9.6 8.2	, 360 er Su el 39 27 66 52	<pre>, 480, 90 1, rcharged Depth (m) -0.131 -0.133</pre>	<pre>50, 1440 30, 100 30, 0, 20 Flooded Volume (m³) 0.000 0.000</pre>	Flow / Cap. 0.03 0.03	
\$1.000 \$1.001 \$1.002 \$2.000 \$2.001 \$2.002 \$2	US/MH Name S5 S4 S3 S2D S2C 2B - GEOCELL	Duration(rn Period(s Climate C 30 minute 15 minute 15 minute 15 minute 15 minute 30 minute	s) (min) (year Hange Event 1 year 1 year 1 year 1 year 1 year 1 year 1 year	(s) ns) 15, rs) (%) Summer Summer Summer Winter Winter Winter	30, 6 I+0% I+0% I+0% I+0% I+0% I+0% I+0%	<pre>60, 120, US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540</pre>	Wate Lev (m) 12.3 9.6 8.2 10.3	, 360 er Su el 39 27 66 52 02	<pre>, 480, 90</pre>	50, 1440 30, 100 0, 0, 20 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.03 0.03 0.06 0.05 0.10 0.40	
S1.000 S1.001 S1.002 S2.000 S2.001 S2.002 S2 S2.003	US/MH Name S5 S4 S3 S2D S2C 2B - GEOCELL S2A	Duration(rn Period(s Climate C 30 minute 15 minute 15 minute 15 minute 15 minute 30 minute 30 minute	s) (min) (year Hange Event 1 year 1 year 1 year 1 year 1 year 1 year 1 year 1 year 1 year	(s) ns) 15, rs) (%) Summer Summer Summer Winter Winter Winter	30, 6 1+0% 1+0% 1+0% 1+0% 1+0% 1+0% 1+0%	<pre>60, 120, US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540</pre>	Wate Lev (m) 12.3 9.6 8.2 10.3 9.2 8.0 8.0	, 360 er Su el 39 27 66 52 02 66 23	<pre>, 480, 94</pre>	50, 1440 30, 100 0, 0, 20 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.03 0.03 0.06 0.05 0.10 0.40 0.06	
\$1.000 \$1.001 \$1.002 \$2.000 \$2.001 \$2.002 \$2	US/MH Name S5 S4 S3 S2D S2C 2B - GEOCELL S2A	Duration(rn Period(s Climate C 30 minute 15 minute 15 minute 15 minute 15 minute 30 minute	s) (min) (year Hange Event 1 year 1 year 1 year 1 year 1 year 1 year 1 year 1 year 1 year	(s) ns) 15, rs) (%) Summer Summer Summer Winter Winter Winter	30, 6 1+0% 1+0% 1+0% 1+0% 1+0% 1+0% 1+0%	<pre>60, 120, US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540</pre>	240 Wate Lev (m) 12.3 9.6 8.2 10.3 9.2 8.0	, 360 er Su el 39 27 66 52 02 66 23	<pre>, 480, 94</pre>	50, 1440 30, 100 0, 0, 20 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.03 0.03 0.06 0.05 0.10 0.40	
S1.000 S1.001 S1.002 S2.000 S2.001 S2.002 S2 S2.003	US/MH Name S5 S4 S3 S2D S2C 2B - GEOCELL S2A	Duration(rn Period(s Climate C 30 minute 15 minute 15 minute 15 minute 15 minute 30 minute 30 minute	s) (min) (year Hange Event 1 year 1 year 1 year 1 year 1 year 1 year 1 year 1 year 1 year	(s) ns) 15, rs) (%) Summer Summer Summer Winter Winter Winter	30, 6 1+0% 1+0% 1+0% 1+0% 1+0% 1+0% 1+0%	US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540 9.540	240 Wate Lev (m) 12.3 9.6 8.2 10.3 9.2 8.0 8.0 6.4	, 360 er Su el 39 27 66 52 02 66 23 55	<pre>, 480, 94</pre>	50, 1440 30, 100 0, 0, 20 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.03 0.03 0.06 0.05 0.10 0.40 0.06	
S1.000 S1.001 S1.002 S2.000 S2.001 S2.002 S2 S2.003	US/MH Name S5 S4 S3 S2D S2C 2B - GEOCELL S2A	Duration(rn Period(s Climate C 30 minute 15 minute 15 minute 15 minute 15 minute 30 minute 30 minute	s) (min) (year Hange Event 1 year 1 year 1 year 1 year 1 year 1 year 1 year 1 year 1 year	(s) ns) 15, rs) (%) Summer Summer Winter Winter Winter Winter	30, 6 1+0% 1+0% 1+0% 1+0% 1+0% 1+0% 1+0%	<pre>60, 120, US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540</pre>	240 Wate Lev (m) 12.3 9.6 8.2 10.3 9.2 8.0 8.0 6.4	<pre>, 360</pre> <pre>er Su el 39 27 66 52 02 66 23 55 Pipe</pre>	<pre>, 480, 94</pre>	50, 1440 30, 100 0, 0, 20 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.03 0.03 0.06 0.05 0.10 0.40 0.06	
S1.000 S1.001 S1.002 S2.000 S2.001 S2.002 S2 S2.003	US/MH Name S5 S4 S3 S2D S2C 2B - GEOCELL S2A	Duration(rn Period(s Climate C 30 minute 15 minute 15 minute 15 minute 15 minute 30 minute 30 minute	s) (min) (year hange Event 1 year 1 year 1 year 1 year 1 year 1 year 1 year 1 year	(s) ns) 15, rs) (%) Summer Summer Winter Winter Winter Winter	30, 6 1+0% 1+0% 1+0% 1+0% 1+0% 1+0% 1+0%	<pre>60, 120, US/CL (m) 15.080 12.320 9.600 11.180 9.540 9.540 9.540 9.540 9.540</pre>	240 Wate Lev (m) 12.3 9.6 8.2 10.3 9.2 8.0 8.0 8.0 6.4	<pre>, 360</pre> <pre>er Su el 39 27 66 52 02 66 23 55 Pipe</pre>	<pre>, 480, 94</pre>	50, 1440 30, 100 0, 0, 20 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.03 0.03 0.06 0.05 0.10 0.40 0.06	
S1.000 S1.001 S1.002 S2.000 S2.001 S2.002 S2 S2.003	US/MH Name S5 S4 S3 S2D S2C 2B - GEOCELL S2A	Duration(rn Period(s Climate C 30 minute 15 minute 15 minute 15 minute 30 minute 30 minute 30 minute	s) (min) (year hange Event 1 year 1 year 1 year 1 year 1 year 1 year 1 year 1 year 1 year	(s) ns) 15, rs) (%) Summer Summer Winter Winter Winter Winter Winter	30, 6 1+0%	<pre>60, 120, US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540 9.540 9.540 Maxim n Veloc) (m/s</pre>	240 Wate Lev (m) 12.3 9.6 8.2 10.3 9.2 8.0 8.0 6.4 num ity s)	<pre>, 360 er Su el 39 27 66 52 02 66 23 55 Pipe Flow (1/s)</pre>	<pre>, 480, 94</pre>	50, 1440 30, 100 0, 0, 20 Flooded Volume (m ³) 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	Flow / Cap. 0.03 0.03 0.06 0.05 0.10 0.40 0.06	
S1.000 S1.001 S1.002 S2.000 S2.001 S2.002 S2 S2.003	US/MH Name S5 S4 S3 S2D S2C 2B - GEOCELL S2A	Duration(rn Period(s Climate C 30 minute 15 minute 15 minute 15 minute 30 minute 30 minute 30 minute	s) (min) (year hange Event 1 year 1 year 1 year 1 year 1 year 1 year 1 year 1 year 1 year	(s) ns) 15, rs) (%) Summer Summer Winter Winter Winter Winter	30, 6 1+0%	60, 120, US/CL (m) 15.080 12.320 9.600 11.180 9.540 9.540 9.540 9.540 Maxim n Veloc) (m/s	240 Wate Lev (m) 12.3 9.6 8.2 10.3 9.2 8.0 8.0 8.0 6.4	<pre>, 360 er Su el 39 27 66 52 02 66 23 55 Pipe Flow</pre>	<pre>, 480, 94</pre>	50, 1440 30, 100 0, 0, 20 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.03 0.03 0.06 0.05 0.10 0.40 0.06	
S1.000 S1.001 S1.002 S2.000 S2.001 S2.002 S2 S2.003	US/MH Name S5 S4 S3 S2D S2C 2B - GEOCELL S2A	Duration (rn Period (s Climate C 30 minute 15 minute 15 minute 15 minute 30 minute 30 minute 30 minute 30 minute 30 minute 30 minute	s) (min) (year hange Event 1 year 1 year 1 year 1 year 1 year 1 year 1 year 1 year 1 year	(s) hs) 15, rs) (%) Summer Summer Winter Winter Winter Winter Winter Winter Winter Winter S5 S4 S3	30, 6 1+0% 1+0% 1+0% 1+0% 1+0% 1+0% 1+0% 1+0% 0.00 0.000 0.000 0.000	60, 120, US/CL (m) 15.080 12.320 9.600 11.180 9.540 9.540 9.540 Maxim N Veloc) (m/s 2 2 3	240 Wate Lev (m) 12.3 9.6 8.2 10.3 9.2 8.0 8.0 6.4 num ity 1.4 1.3 1.6	<pre>, 360 er Su el 39 27 66 52 02 66 23 55 Pipe Flow (1/s) 1.4 1.3 2.8</pre>	<pre>, 480, 94</pre>	50, 1440 30, 100 0, 0, 20 Flooded Volume (m ³) 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000000	Flow / Cap. 0.03 0.03 0.06 0.05 0.10 0.40 0.06	
S1.000 S1.001 S1.002 S2.000 S2.001 S2.002 S2 S2.003	US/MH Name S5 S4 S3 S2D S2C 2B - GEOCELL S2A	Duration (rn Period (s Climate C 30 minute 15 minute 15 minute 15 minute 30 minute 30 minute 30 minute 30 minute 30 minute	s) (min) (year hange Event 1 year 1 year 1 year 1 year 1 year 1 year 1 year 1 year 1 year	(s) ns) 15, rs) (%) Summer Summer Winter Winter Winter Winter Winter Winter Winter	30, 6 1+0% 1+0% 1+0% 1+0% 1+0% 1+0% 1+0% 1+0% 1+0% 0.000 0.000	60, 120, US/CL (m) 15.080 12.320 9.600 11.180 9.540 9.540 9.540 Maxim n Veloc) (m/s 2 2 3	240 Wate Lev (m) 12.3 9.6 8.2 10.3 9.2 8.0 8.0 6.4 num ity 5) 1.4 1.3	<pre>, 360 er Su el 39 27 66 52 02 66 23 55 Pipe Flow (1/s) 1.4 1.3</pre>	<pre>, 480, 94</pre>	50, 1440 30, 100 0, 0, 20 Flooded Volume (m ³) 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	Flow / Cap. 0.03 0.03 0.06 0.05 0.10 0.40 0.06	

Weetwood		Page 10
Suite 1 Park House	(4902)	
Broncoed Bus Park	The Red House,	
Wrexham Rd Mold	Dee Banks, Chester	Micro
Date 17/12/2020 10:30	Designed by OA	Drainage
File 2020-12-17 4902 SW Calculati	Checked by	Diamage
Micro Drainage	Network 2020.1	

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Maximum Vol (m³)	Maximum Velocity (m/s)	Pipe Flow (l/s)	Status
S2.001	S2C	0.031	1.2	3.3	OK
S2.002	S2B - GEOCELL	1.011	0.3	2.0	OK
S2.003	S2A	0.041	1.2	2.0	OK
S1.003	S2	1.177	0.8	2.2	SURCHARGED

								Page	e 11
Suite 1 Park Hou	ise		(4902)						
Broncoed Bus Park			The Red	House,					
Vrexham Rd Mold			Dee Banks, Chester					Mi	cro
ate 17/12/2020 10) : 30		Designe	d by OA					ainago
ile 2020-12-17 49	02 SW Calcu	ulati	Checked	by		Dialitat			
licro Drainage			Network	2020.1					
<u>30 year Return Pe</u>	eriod Summa:	ry of Cr.	itical Re	esults by	Maxi	mum Leve	l (Ran)	< 1) fo	or Stori
Manhole H Foul Se Number of Input	Hot Start I eadloss Coeff wage per hect Hydrographs	on Factor art (mins) Level (mm) C (Global) Care (l/s) 0 Numbe	0 0.500 Flo 0.000 r of Offli	Additional MADD Fa bw per Pers .ne Control	actor ' Ir son per Ls 0 Nu	10m³/ha hlet Coeff Day (l/p umber of I	Storage Tiecient Der/day) Cime/Area	2.000 0.800 0.000 a Diagra	
Number of Onl	ine Controls	1 Number	of Storage	e Structure	es 2 Nu	umber of F	Real Time	e Contro	ols O
Rair	nfall Model Region En	<u>Synth</u> ngland and	FSR M5	<u>fall Detai</u> -60 (mm) 1 Ratio R	8.000				
	Margin for F		ysis Times	tep Fine					
			DTS Sta	itus ON					
Ret) (years)		utus ON 0, 120, 24		1, 3			
Ret	Duration(curn Period(s	s) (mins)) (years)		0, 120, 24	0, 360	, 480, 960 1, 3 0,	0, 1440 30, 100 , 0, 20		
US/MH	Duration(curn Period(s	s) (mins)) (years) hange (%)		0, 120, 24 Wa US/CL Le	0, 360 ter Su evel	, 480, 960 1, 3 0, urcharged Depth	0, 1440 30, 100 , 0, 20 Flooded Volume	Flow /	
	Duration(curn Period(s	s) (mins)) (years)		0, 120, 24 Wa US/CL Le	0, 360 ter Su	, 480, 960 1, 3 0, archarged	0, 1440 30, 100 , 0, 20 Flooded		Overflor (1/s)
US/MH PN Name	Duration(curn Period(s	s) (mins)) (years) hange (%) Event	15, 30, 6	0, 120, 24 Wa US/CL Le (m) (0, 360 ter Su avel m)	, 480, 960 1, 3 0, urcharged Depth	0, 1440 30, 100 , 0, 20 Flooded Volume	Flow /	
US/MH PN Name S1.000 S. S1.001 S	Duration(curn Period(s Climate C 5 15 minute 3 4 15 minute 3	s) (mins)) (years) hange (%) Event 30 year Wi 30 year Wi	15, 30, 6 nter I+0% nter I+0%	0, 120, 24 Wa US/CL Le (m) (15.080 12 12.320 9	0, 360 ter Su avel m) .348 .638	<pre>, 480, 960 1, 3 0, urcharged Depth (m) -0.122 -0.122</pre>	<pre>D, 1440 30, 100 30, 20 Flooded Volume (m³) 0.000 0.000</pre>	Flow / Cap. 0.08 0.08	
US/MH PN Name S1.000 S S1.001 S S1.002 S	Duration(curn Period(s Climate C 5 15 minute 3 4 15 minute 3 3 15 minute 3	s) (mins)) (years) hange (%) Event 30 year Wi 30 year Wi 30 year Wi	15, 30, 6 nter I+0% nter I+0% nter I+0%	0, 120, 24 Wa US/CL Le (m) (15.080 12 12.320 9 9.600 8	0, 360 ter Su avel m) .348 .638 .286	<pre>, 480, 960 1, 3 0, archarged Depth (m) -0.122 -0.122 -0.104</pre>	<pre>D, 1440 30, 100 30, 100 C, 0, 20 Flooded Volume (m³) 0.000 0.000 0.000</pre>	Flow / Cap. 0.08 0.08 0.20	
US/MH PN Name S1.000 S S1.001 S S1.002 S S2.000 S2	Duration(curn Period(s Climate C 5 15 minute 3 4 15 minute 3	s) (mins)) (years) hange (%) Event 30 year Wi 30 year Wi 30 year Wi 30 year Wi	15, 30, 6 nter I+0% nter I+0% nter I+0% nter I+0%	0, 120, 24 Wa US/CL Le (m) (15.080 12 12.320 9 9.600 8 11.180 10	0, 360 ter Su avel m) .348 .638 .286	<pre>, 480, 960 1, 3 0, urcharged Depth (m) -0.122 -0.122</pre>	<pre>D, 1440 30, 100 30, 20 Flooded Volume (m³) 0.000 0.000</pre>	Flow / Cap. 0.08 0.08	
US/MH PN Name S1.000 S S1.001 S S1.002 S S2.000 S2 S2.001 S2B	Duration (curn Period(s Climate C 5 15 minute 3 4 15 minute 3 3 15 minute 3 D 15 minute 3 C 15 minute 3 L 60 minute 3	s) (mins)) (years) hange (%) Event 30 year Wi 30 year Wi 30 year Wi 30 year Wi 30 year Wi 30 year Wi	15, 30, 6 nter I+0% nter I+0% nter I+0% nter I+0% nter I+0% nter I+0%	<pre>0, 120, 24</pre>	0, 360 ter Su evel m) .348 .638 .286 .366	<pre>, 480, 960 1, 3 0, archarged Depth (m) -0.122 -0.122 -0.104 -0.114</pre>	<pre>D, 1440 30, 100 30, 100 7, 0, 20 Flooded Volume (m³) 0.000 0.000 0.000 0.000</pre>	Flow / Cap. 0.08 0.08 0.20 0.13	
US/MH PN Name \$1.000 \$\$ \$1.001 \$\$ \$2.000 \$\$ \$2.000 \$\$2.000 \$2.002 \$\$28 \$2.003 \$\$2.003	Duration (curn Period(s Climate C 5 15 minute 3 4 15 minute 3 3 15 minute 3 0 15 minute 3 C 15 minute 3 L 60 minute 3 A 60 minute 3	s) (mins)) (years) hange (%) Event 30 year Wi 30 year Wi 30 year Wi 30 year Wi 30 year Wi 30 year Wi	15, 30, 6 nter I+0% nter I+0% nter I+0% nter I+0% nter I+0% nter I+0%	Wa US/CL Le (m) (15.080 12 12.320 9 9.600 8 11.180 10 11.180 9 9.540 8 9.540 8	0, 360 ter Su evel m) .348 .638 .286 .366 .226 .218 .212	<pre>, 480, 960</pre>	<pre>D, 1440 30, 100 30, 100 30, 20 Flooded Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</pre>	Flow / Cap. 0.08 0.08 0.20 0.13 0.30 0.76 0.10	
US/MH PN Name \$1.000 \$\$ \$1.001 \$\$ \$2.000 \$\$ \$2.000 \$\$2.000 \$2.002 \$\$28 \$2.003 \$\$2.003	Duration (curn Period(s Climate C 5 15 minute 3 4 15 minute 3 3 15 minute 3 D 15 minute 3 C 15 minute 3 L 60 minute 3	s) (mins)) (years) hange (%) Event 30 year Wi 30 year Wi 30 year Wi 30 year Wi 30 year Wi 30 year Wi	15, 30, 6 nter I+0% nter I+0% nter I+0% nter I+0% nter I+0% nter I+0%	Wa US/CL Le (m) (15.080 12 12.320 9 9.600 8 11.180 10 11.180 9 9.540 8 9.540 8	0, 360 ter Su evel m) .348 .638 .286 .366 .226 .218	<pre>, 480, 960</pre>	<pre>D, 1440 30, 100 30, 100 30, 20 Flooded Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000</pre>	Flow / Cap. 0.08 0.08 0.20 0.13 0.30 0.76	
US/MH PN Name S1.000 S1 S1.001 S1 S1.002 S1 S2.000 S2 S2.001 S2 S2.002 S2B S2.003 S2B S2.003 S2B	Duration (curn Period(s Climate C 5 15 minute 3 4 15 minute 3 3 15 minute 3 0 15 minute 3 C 15 minute 3 L 60 minute 3 A 60 minute 3	s) (mins)) (years) hange (%) Event 30 year Wi 30 year Wi 30 year Wi 30 year Wi 30 year Wi 30 year Wi	15, 30, 6 nter I+0% nter I+0% nter I+0% nter I+0% nter I+0% nter I+0%	Wa US/CL Le (m) (15.080 12 12.320 9 9.600 8 11.180 10 11.180 9 9.540 8 9.540 8 9.540 8	0, 360 ter Su evel m) .348 .638 .286 .366 .226 .218 .212 .210	<pre>, 480, 960</pre>	<pre>D, 1440 30, 100 30, 100 30, 20 Flooded Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</pre>	Flow / Cap. 0.08 0.08 0.20 0.13 0.30 0.76 0.10	
US/MH PN Name S1.000 S1 S1.001 S1 S1.002 S1 S2.000 S2 S2.001 S2 S2.002 S2B S2.003 S2B S2.003 S2B	Duration (curn Period(s Climate C 5 15 minute 3 4 15 minute 3 3 15 minute 3 0 15 minute 3 C 15 minute 3 L 60 minute 3 A 60 minute 3	s) (mins)) (years) hange (%) Event 30 year Wi 30 year Wi 30 year Wi 30 year Wi 30 year Wi 30 year Wi	15, 30, 6 nter I+0% nter I+0% nter I+0% nter I+0% nter I+0% nter I+0%	<pre>0, 120, 24</pre>	0, 360 ter Su evel m) .348 .638 .286 .366 .226 .218 .212 .210 Pipe	<pre>, 480, 960</pre>	<pre>D, 1440 30, 100 30, 100 30, 20 Flooded Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</pre>	Flow / Cap. 0.08 0.08 0.20 0.13 0.30 0.76 0.10	
US/MH PN Name S1.000 S1 S1.001 S1 S1.002 S1 S2.000 S2 S2.001 S2 S2.002 S2B S2.003 S2B S2.003 S2B	Duration (curn Period(s Climate C 5 15 minute 3 4 15 minute 3 3 15 minute 3 0 15 minute 3 C 15 minute 3 L 60 minute 3 A 60 minute 3	s) (mins)) (years) hange (%) Event 30 year Wi 30 year Wi 30 year Wi 30 year Wi 30 year Wi 30 year Wi	15, 30, 6 nter I+0% nter I+0% nter I+0% nter I+0% nter I+0% nter I+0%	<pre>0, 120, 24</pre>	0, 360 ter Su evel m) .348 .638 .286 .366 .226 .218 .212 .210 Pipe	<pre>, 480, 960</pre>	<pre>D, 1440 30, 100 30, 100 30, 20 Flooded Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</pre>	Flow / Cap. 0.08 0.08 0.20 0.13 0.30 0.76 0.10	
US/MH PN Name S1.000 S1 S1.001 S1 S1.002 S1 S2.000 S2 S2.001 S2 S2.002 S2B S2.003 S2B S2.003 S2B	Duration (Curn Period(s Climate C 5 15 minute 3 4 15 minute 3 3 15 minute 3 0 15 minute 3 C 15 minute 3 1 60 minute 3 2 60 minute 3 2 60 minute 3	s) (mins)) (years) hange (%) Event 30 year Wi 30 year Wi	15, 30, 6 nter I+0% nter I+0% nter I+0% nter I+0% nter I+0% nter I+0% nter I+0% Maximum Vol (m³)	Wa US/CL Le (m) (15.080 12 12.320 9 9.600 8 11.180 10 11.180 9 9.540 8 9.540 8 9.540 8 9.540 8 9.540 8	0, 360 ter St evel m) .348 .638 .286 .226 .218 .212 .210 Pipe Flow (l/s)	<pre>, 480, 960</pre>	<pre>D, 1440 30, 100 30, 100 70, 20 Flooded Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</pre>	Flow / Cap. 0.08 0.08 0.20 0.13 0.30 0.76 0.10	Overflo (l/s)
US/MH PN Name S1.000 S1 S1.001 S1 S1.002 S1 S2.000 S2 S2.001 S2 S2.002 S2B S2.003 S2B S2.003 S2B	Duration (curn Period(s Climate C 5 15 minute 3 4 15 minute 3 3 15 minute 3 0 15 minute 3 C 15 minute 3 L 60 minute 3 A 60 minute 3 2 60 minute 3	s) (mins)) (years) hange (%) Event 30 year Wi 30 year Wi 30 year Wi 30 year Wi 30 year Wi 30 year Wi 30 year Wi	15, 30, 6 nter I+0% nter I+0% nter I+0% nter I+0% nter I+0% nter I+0% Maximum Vol (m³) 5 0.004	Wa US/CL Le (m) (15.080 12 12.320 9 9.600 8 11.180 10 11.180 9 9.540 8 9.540 8 9.540 8 9.540 8 9.540 8 9.540 8 1.180 11.180 10 11.180 9 9.540 8 9.540	0, 360 ter St evel m) .348 .638 .286 .226 .218 .212 .210 Pipe Flow (1/s) 3.9	<pre>, 480, 960</pre>	<pre>D, 1440 30, 100 30, 100 30, 20 Flooded Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</pre>	Flow / Cap. 0.08 0.08 0.20 0.13 0.30 0.76 0.10	
US/MH PN Name S1.000 S1 S1.001 S1 S1.002 S1 S2.000 S2 S2.001 S2 S2.002 S2B S2.003 S2B S2.003 S2B	Duration (Curn Period (s Climate C 5 15 minute 3 4 15 minute 3 3 15 minute 3 5 15 minute 3 C 15 minute 3 C 15 minute 3 A 60 minute 3 2 60 minute 3 PN S1.000	s) (mins)) (years) hange (%) Event 30 year Wi 30 year Wi	15, 30, 6 nter I+0% nter I+0% nter I+0% nter I+0% nter I+0% nter I+0% Maximum Vol (m³) 5 0.004 4 0.004	Wa US/CL Le (m) (15.080 12 12.320 9 9.600 8 11.180 10 11.180 9 9.540 8 9.540 8 9.540 8 9.540 8 9.540 8 1.17 4 1.7	0, 360 ter St evel m) .348 .638 .286 .226 .218 .212 .210 Pipe Flow (1/s) 3.9	<pre>, 480, 960</pre>	D, 1440 30, 100 , 0, 20 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.08 0.08 0.20 0.13 0.30 0.76 0.10	
US/MH PN Name S1.000 S1 S1.001 S1 S1.002 S1 S2.000 S2 S2.001 S2 S2.002 S2B S2.003 S2B S2.003 S2B	Duration (Curn Period (s Climate C 5 15 minute 3 4 15 minute 3 3 15 minute 3 5 15 minute 3 1 5 minute 3 C 15 minute 3 2 60 minute 3 2 7 2 7 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8	s) (mins)) (years) hange (%) Event 30 year Wi 30 year S S	15, 30, 6 nter I+0% nter I+0% nter I+0% nter I+0% nter I+0% nter I+0% Maximum Vol (m³) 5 0.004 4 0.004 3 0.007	Wa US/CL Le (m) (15.080 12 12.320 9 9.600 8 11.180 10 11.180 9 9.540 8 9.540 8 9.540 8 9.540 8 9.540 8 1.17 4 1.7 4 1.7 4 1.7 2.1	0, 360 ter St evel m) .348 .638 .286 .226 .218 .212 .210 Pipe Flow (1/s) 3.9 3.9	<pre>, 480, 960</pre>	D, 1440 30, 100 , 0, 20 Flooded Volume (m ³) 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000000	Flow / Cap. 0.08 0.08 0.20 0.13 0.30 0.76 0.10	

Weetwood		Page 12
Suite 1 Park House	(4902)	
Broncoed Bus Park	The Red House,	
Wrexham Rd Mold	Dee Banks, Chester	Micro
Date 17/12/2020 10:30	Designed by OA	Drainage
File 2020-12-17 4902 SW Calculati	Checked by	Diamage
Micro Drainage	Network 2020.1	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Maximum Vol (m³)	Maximum Velocity (m/s)	Pipe Flow (l/s)	Status
S2.001	S2C	0.058	1.6	9.8	OK
S2.002	S2B - GEOCELL	3.349	0.3	3.8	SURCHARGED
S2.003	S2A	0.440	1.4	3.8	SURCHARGED
S1.003	S2	3.276	0.9	3.4	SURCHARGED

Veetwood								Page	10
Suite 1 Park House		(49	902)						
Broncoed Bus Park		The	e Red	House,					
Vrexham Rd Mold		Dee	e Bank	s, Ches	ter			Mic	
Date 17/12/2020 10:30		Des	signed	l by OA					.IU ipago
File 2020-12-17 4902 S	SW Calculati		ecked	-				Dic	inage
Micro Drainage				2020.1					
Hot Manhole Headlo	Reduction Fac Hot Start (mi Start Level (Ss Coeff (Glok per hectare (1 ographs 0 Nu ontrols 1 Numb	Simula etor 1.00 (mm) oal) 0.50 (/s) 0.00 umber of per of St ynthetic	ation (00 Ad 0 00 Flow 00 Offlir torage c Rainf	Criteria dditional MADD F w per Per ne Contro Structur all Deta	- Flow 'actor In son pe Pls 0 N res 2 N ils	- % of Tota * 10m³/ha S nlet Coeffi r Day (1/pe umber of Ti umber of Re	l Flow (torage 2 ecient (r/day) (me/Area al Time	0.000 2.000 0.800 0.000 Diagram	ıs O
Rainfall	Model Region England			. ,		Cv (Summer) Cv (Winter)			
Marg D [.] Return 1	in for Flood F Profile uration(s) (mi Period(s) (yea limate Change	(s) ns) 15, rs)	Timest IS Stat	ep Fine us ON	Inert:	ia Status O Summer and W , 480, 960, 1, 30	FF Vinter		
Marg D [.] Return 1	Profile uration(s) (mi Period(s) (yea	(s) ns) 15, rs)	Timest IS Stat	tep Fine tus ON	s Inert: 1 40, 360	ia Status O Summer and W , 480, 960, 1, 30	FF 1440), 100 0, 20		
Marg D [.] Return : C. US/MH	Profile uration(s) (mi Period(s) (yea limate Change	(s) (s) ns) 15, rs) (%)	Timest IS Stat	us ON , 120, 2 US/CL	S 40, 360 Water S Level	ia Status O Summer and F , 480, 960, 1, 30 0, Surcharged Depth	FF 1440), 100 0, 20 Flooded Volume	•	
Marg D [.] Return 1 C	Profile uration(s) (mi Period(s) (yea	(s) (s) ns) 15, rs) (%)	Timest IS Stat	tep Fine tus ON	S 40, 360 Water :	ia Status O Tummer and W , 480, 960, 1, 30 0, Surcharged	FF 1440), 100 0, 20 Flooded	Flow / Cap.	Overflo (1/s)
Marg D Return : C US/MH PN Name	Profile uration(s) (mi Period(s) (yea limate Change	(s) (s) ns) 15, rs) (%)	Timest IS Stat 30, 60	us ON US/CL (m)	Water (m)	ia Status O Summer and F , 480, 960, 1, 30 0, Surcharged Depth	FF 1440), 100 0, 20 Flooded Volume	•	Overflo (1/s)
D Return 1 C US/MH PN Name S1.000 S5 15 m S1.001 S4 15 m	Profile uration(s) (mi Period(s) (yea limate Change Event inute 100 year inute 100 year	(s) (s) ns) 15, rs) (%) : : : : : : : : : : : : : : : : : : :	Timest IS Stat 30, 60 I+20% I+20%	tep Fine tus ON , 120, 2 US/CL (m) 15.080 1 12.320	<pre>% Inert: % 40, 360 Water : Level (m) .2.355 9.645</pre>	ia Status O ummer and W , 480, 960, 1, 30 0, Surcharged Depth (m) -0.115 -0.115	<pre>FF Vinter 1440 0, 100 0, 20 Flooded Volume (m³) 0.000 0.000</pre>	Cap. 0.12 0.12	
D Return 1 C US/MH PN Name S1.000 S5 15 m S1.001 S4 15 m S1.002 S3 60 m	Profile uration(s) (mi Period(s) (yea limate Change Event inute 100 year inute 100 year inute 100 year	(s) (s) ns) 15, rs) (%) : : : : : : : : : : : : : : : : : : :	Timest IS Stat 30, 60 I+20% I+20% I+20% I+20%	tep Fine tus ON , 120, 2 US/CL (m) 15.080 1 12.320 9.600	<pre>% Inert: % 40, 360 Water % Level (m) 2.355 9.645 8.565</pre>	ia Status O ummer and W , 480, 960, 1, 30 0, Surcharged Depth (m) -0.115 -0.115 0.175	FF Vinter 1440 0, 100 0, 20 Flooded Volume (m ³) 0.000 0.000 0.000	Cap. 0.12 0.12 0.16	
D Return 1 C US/MH PN Name S1.000 S5 15 m S1.001 S4 15 m S1.002 S3 60 m S2.000 S2D 15 m	Profile uration(s) (mi Period(s) (yea limate Change Event inute 100 year inute 100 year inute 100 year	(s) (s) ns) 15, rs) (%) : : : : : : : : : : : : : : : : : : :	Timest IS Stat 30, 60 I+20% I+20% I+20% I+20% I+20%	tep Fine tus ON , 120, 2 US/CL (m) 15.080 1 12.320 9.600 11.180 1	<pre>x Inert: x 40, 360 Water x Level (m) 2.355 9.645 8.565 0.376</pre>	ia Status O ummer and W , 480, 960, 1, 30 0, Surcharged Depth (m) -0.115 -0.115 0.175 -0.104	FF Vinter 1440 0, 100 0, 20 Flooded Volume (m ³) 0.000 0.000 0.000 0.000	Cap. 0.12 0.12 0.16 0.20	
D Return 1 C US/MH PN Name S1.000 S5 15 m S1.001 S4 15 m S1.002 S3 60 m S2.000 S2D 15 m S2.001 S2C 15 m	Profile uration(s) (mi Period(s) (yea limate Change Event inute 100 year inute 100 year inute 100 year inute 100 year	(s) (s) (s) (s) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%	Timest IS Stat 30, 60 I+20% I+20% I+20% I+20% I+20% I+20%	<pre>tep Fine tus ON , 120, 2 US/CL (m) 15.080 1 12.320 9.600 11.180 1 11.180</pre>	<pre>x Inert: x 40, 360 Water x Level (m) 2.355 9.645 8.565 0.376 9.242</pre>	ia Status O ummer and W , 480, 960, 1, 30 0, Surcharged Depth (m) -0.115 -0.115 0.175 -0.104 -0.078	<pre>FF Vinter 1440 0, 100 0, 20 Flooded Volume (m³) 0.000 0.000 0.000 0.000 0.000</pre>	Cap. 0.12 0.12 0.16 0.20 0.47	
D Return 1 C US/MH PN Name S1.000 S5 15 m S1.001 S4 15 m S1.002 S3 60 m S2.000 S2D 15 m S2.001 S2C 15 m S2.001 S2C 15 m	Profile uration(s) (mi Period(s) (yea limate Change Event dinute 100 year dinute 100 year dinute 100 year dinute 100 year dinute 100 year	(s) (s) (s) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%	Timest IS Stat 30, 60 I+20% I+20% I+20% I+20% I+20% I+20% I+20%	<pre>tep Fine tus ON , 120, 2 US/CL (m) 15.080 1 12.320 9.600 11.180 1 11.180 9.540</pre>	<pre>x Inert: x 40, 360 Water x Level (m) 2.355 9.645 8.565 0.376 9.242 8.569</pre>	ia Status O ummer and W , 480, 960, 1, 30 0, Surcharged Depth (m) -0.115 -0.115 0.175 -0.104 -0.078 0.419	FF Vinter 1440 0, 100 0, 20 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.12 0.12 0.16 0.20 0.47 0.87	
D Return 1 C US/MH PN Name S1.000 S5 15 m S1.001 S4 15 m S1.002 S3 60 m S2.000 S2D 15 m S2.001 S2C 15 m S2.001 S2C 15 m S2.002 S2B - GEOCELL 60 m S2.003 S2A 60 m	Profile uration(s) (mi Period(s) (yea limate Change Event inute 100 year inute 100 year inute 100 year inute 100 year	(s) (s) (s) (s) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%	Timest IS Stat 30, 60 I+20% I+20% I+20% I+20% I+20% I+20% I+20% I+20%	<pre>tep Fine tus ON , 120, 2 US/CL (m) 15.080 1 12.320 9.600 11.180 1 11.180</pre>	<pre>x Inert: x 40, 360 Water x Level (m) 2.355 9.645 8.565 0.376 9.242</pre>	ia Status O ummer and W , 480, 960, 1, 30 0, Surcharged Depth (m) -0.115 -0.115 0.175 -0.104 -0.078	<pre>FF Vinter 1440 0, 100 0, 20 Flooded Volume (m³) 0.000 0.000 0.000 0.000 0.000</pre>	Cap. 0.12 0.12 0.16 0.20 0.47	
D Return 1 C US/MH PN Name S1.000 S5 15 m S1.001 S4 15 m S1.002 S3 60 m S2.000 S2D 15 m S2.001 S2C 15 m S2.001 S2C 15 m S2.002 S2B - GEOCELL 60 m S2.003 S2A 60 m	Profile uration(s) (mi Period(s) (yea limate Change Event inute 100 year inute 100 year inute 100 year inute 100 year inute 100 year inute 100 year	(s) (s) (s) (s) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%	Timest IS Stat 30, 60 I+20% I+20% I+20% I+20% I+20% I+20% I+20% I+20%	<pre>tep Fine tus ON , 120, 2 US/CL (m) 15.080 1 12.320 9.600 11.180 1 11.180 9.540 9.540</pre>	<pre>x Inert: x 40, 360 Water x Level (m) 2.355 9.645 8.565 0.376 9.242 8.569 8.562</pre>	ia Status O ummer and W , 480, 960, 1, 30 0, Surcharged Depth (m) -0.115 -0.115 0.175 -0.104 -0.078 0.419 0.412	FF Vinter 1440 0, 100 0, 20 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.12 0.12 0.16 0.20 0.47 0.87 0.10	
D Return 1 C US/MH PN Name S1.000 S5 15 m S1.001 S4 15 m S1.002 S3 60 m S2.000 S2D 15 m S2.001 S2C 15 m S2.001 S2C 15 m S2.002 S2B - GEOCELL 60 m S2.003 S2A 60 m	Profile uration(s) (mi Period(s) (yea limate Change Event inute 100 year inute 100 year inute 100 year inute 100 year inute 100 year inute 100 year	(s) (s) (s) (s) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%	Timest IS Stat 30, 60 I+20% I+20% I+20% I+20% I+20% I+20% I+20% I+20%	Exep Fine Sus ON 1, 120, 2 US/CL (m) 15.080 1 12.320 9.600 11.180 1 11.180 9.540 9.540 9.540	<pre>x Inert: x 40, 360 Water x Level (m) 2.355 9.645 8.565 0.376 9.242 8.569 8.562 8.560</pre>	ia Status O ummer and W , 480, 960, 1, 30 0, Surcharged Depth (m) -0.115 -0.115 0.175 -0.104 -0.078 0.419 0.412	FF Vinter 1440 0, 100 0, 20 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.12 0.12 0.16 0.20 0.47 0.87 0.10	
D Return 1 C US/MH PN Name S1.000 S5 15 m S1.001 S4 15 m S1.002 S3 60 m S2.000 S2D 15 m S2.001 S2C 15 m S2.001 S2C 15 m S2.002 S2B - GEOCELL 60 m S2.003 S2A 60 m	Profile uration(s) (mi Period(s) (yea limate Change Event inute 100 year inute 100 year inute 100 year inute 100 year inute 100 year inute 100 year	(s) ns) 15, rs) (%)	Timest IS Stat 30, 60 1+20% 1+20% 1+20% 1+20% 1+20% 1+20% 1+20% 1+20%	<pre>tep Fine tus ON , 120, 2 US/CL (m) 15.080 1 12.320 9.600 11.180 1 11.180 9.540 9.540</pre>	<pre>x Inert: x 40, 360 Water x Level (m) 2.355 9.645 8.565 0.376 9.242 8.569 8.562 8.560 8.560 Pipe</pre>	ia Status O ummer and W , 480, 960, 1, 30 0, Surcharged Depth (m) -0.115 -0.115 0.175 -0.104 -0.078 0.419 0.412	FF Vinter 1440 0, 100 0, 20 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.12 0.12 0.16 0.20 0.47 0.87 0.10	
Marg Return : C US/MH PN Name S1.000 S5 15 m S1.001 S4 15 m S1.002 S3 60 m S2.000 S2D 15 m S2.001 S2C 15 m S2.002 S2B - GEOCELL 60 m S2.003 S2A 60 m S1.003 S2 60 m	Profile uration(s) (mi Period(s) (yea limate Change Event dinute 100 year dinute 100 year dinute 100 year dinute 100 year dinute 100 year dinute 100 year dinute 100 year	(s) ns) 15, rs) (%)	Timest IS Stat 30, 60 1+20% 1+20% 1+20% 1+20% 1+20% 1+20% 1+20% 1+20%	<pre>tep Fine tus ON , 120, 2 US/CL (m) 15.080 1 12.320 9.600 11.180 1 11.180 9.540 9.540 9.540 9.540</pre>	<pre>x Inert: x 40, 360 Water x Level (m) 2.355 9.645 8.565 0.376 9.242 8.569 8.562 8.560 8.560 Pipe</pre>	ia Status O ummer and W , 480, 960, 1, 30 0, Surcharged Depth (m) -0.115 -0.115 0.175 -0.104 -0.078 0.419 0.412	FF Vinter 1440 0, 100 0, 20 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.12 0.12 0.16 0.20 0.47 0.87 0.10	
Marg Return : C US/MH PN Name S1.000 S5 15 m S1.001 S4 15 m S1.002 S3 60 m S2.001 S2C 15 m S2.001 S2C 15 m S2.002 S2B - GEOCELL 60 m S2.003 S2A 60 m S1.003 S2 60 m	Profile uration(s) (mi Period(s) (yea limate Change Event inute 100 year inute 100 year Manue 100 year	(s) (s) ns) 15, rs) (%)	Timest IS Stat 30, 60 1+20% 1+20% 1+20% 1+20% 1+20% 1+20% 1+20% 1+20% 1+20%	<pre>tep Fine tus ON , 120, 2 US/CL (m) 15.080 1 12.320 9.600 11.180 1 11.180 9.540 9.540 9.540 9.540 9.540 9.540</pre>	<pre>% Inert: % S 40, 360 % Water % Level (m) 2.355 9.645 8.565 0.376 9.242 8.569 8.562 8.560 % Pipe % Flow (l/s)</pre>	ia Status O Summer and W 480, 960, 1, 30 0, Surcharged Depth (m) -0.115 -0.115 0.175 -0.104 -0.078 0.419 0.412 3.000 Status	FF Vinter 1440), 100 0, 20 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.12 0.12 0.16 0.20 0.47 0.87 0.10	
Marg P Return : C US/MH PN Name S1.000 S5 15 m S1.001 S4 15 m S1.002 S3 60 m S2.000 S2D 15 m S2.001 S2C 15 m S2.001 S2C 15 m S2.002 S2B - GEOCELL 60 m S2.003 S2A 60 m S1.003 S2 60 m	Profile uration(s) (mi Period(s) (yea limate Change Event inute 100 year inute 100 year	(s) (s) ns) 15, rs) (%)	Timest IS Stat 30, 60 1+20%1+20% 1+20%1+20% 1+	<pre>tep Fine tus ON , 120, 2 US/CL (m) 15.080 1 12.320 9.600 11.180 1 11.180 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540</pre>	<pre>% Inert: % S 40, 360 % Water % Level (m) 2.355 9.645 8.565 0.376 9.242 8.569 8.562 8.560 % Flow (l/s) 0 6.1</pre>	ia Status O Summer and W 480, 960, 1, 30 0, Surcharged Depth (m) -0.115 -0.115 0.175 -0.104 -0.078 0.419 0.412 3.000 Status OK	FF Vinter 1440), 100 0, 20 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.12 0.12 0.16 0.20 0.47 0.87 0.10	
Marg D Return 1 C US/MH PN Name S1.000 S5 15 m S1.001 S4 15 m S1.002 S3 60 m S2.000 S2D 15 m S2.001 S2C 15 m S2.001 S2C 15 m S2.002 S2B - GEOCELL 60 m S2.003 S2A 60 m S1.003 S2 60 m	Profile uration(s) (mi Period(s) (yea limate Change Event inute 100 year inute 100 year	(s) (s) ns) 15, rs) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%	Timest IS Stat 30, 60 1+20%1+20% 1+20%1+20% 1+	<pre>tep Fine tus ON , 120, 2 US/CL (m) 15.080 1 12.320 9.600 11.180 1 11.180 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540</pre>	<pre>% Inert: % S 40, 360 Water % Level (m) 2.355 9.645 8.565 0.376 9.242 8.569 8.562 8.560 Pipe 7 Flow (l/s) 0 6.1 0 6.0</pre>	ia Status O Summer and W 480, 960, 1, 30 0, Surcharged Depth (m) -0.115 -0.115 0.175 -0.104 -0.078 0.419 0.412 3.000 Status OK OK	FF Vinter 1440), 100 0, 20 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.12 0.12 0.16 0.20 0.47 0.87 0.10	
Marg D Return : C US/MH PN Name S1.000 S5 15 m S1.001 S4 15 m S2.000 S2D 15 m S2.001 S2C 15 m S2.002 S2B - GEOCELL 60 m S2.003 S2A 60 m S1.003 S2 60 m S1.003 S2 51 S1	Profile uration(s) (mi Period(s) (yea limate Change Event inute 100 year inute 100 year	(s) (s) ns) 15, rs) (%)	Timest IS Stat 30, 60 1+20%1+20% 1+20%1+20% 1+	<pre>tep Fine tus ON , 120, 2 US/CL (m) 15.080 1 12.320 9.600 11.180 1 11.180 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540</pre>	<pre>% Inert: % S 40, 360 Water % Level (m) 2.355 9.645 8.565 0.376 9.242 8.569 8.562 8.560 Pipe Flow (l/s) 0 6.1 0 6.0 0 7.5</pre>	ia Status O Summer and W 480, 960, 1, 30 0, Surcharged Depth (m) -0.115 -0.115 0.175 -0.104 -0.078 0.419 0.412 3.000 Status OK	FF Vinter 1440), 100 0, 20 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.12 0.12 0.16 0.20 0.47 0.87 0.10	

Weetwood		Page 14
Suite 1 Park House	(4902)	
Broncoed Bus Park	The Red House,	
Wrexham Rd Mold	Dee Banks, Chester	Micro
Date 17/12/2020 10:30	Designed by OA	Drainage
File 2020-12-17 4902 SW Calculati	Checked by	Diamage
Micro Drainage	Network 2020.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Maximum Vol (m³)	Maximum Velocity (m/s)	Pipe Flow (l/s)	Status
S2.001	S2C	0.076	1.8	15.2	OK
S2.002	S2B - GEOCELL	8.748	0.3	4.4	SURCHARGED
S2.003	S2A	0.836	1.3	3.7	SURCHARGED
S1.003	S2	3.689	0.9	3.6	SURCHARGED

APPENDIX G

MicroDrainage Calculations (Drowned Outfall)

eetwood							Pag	
uite 1 Park House		(490)2)					
roncoed Bus Park		The	Red Hous	se,				
rexham Rd Mold		Dee	Banks, C	Chester			M	licro
ate 17/12/2020 10:37		Desi	Igned by	OA				
ile 2020-12-17 4902 :	SW Calculati.	Chec	cked by					rainag
lcro Drainage			vork 2020).1				
Summary of	f Critical Re	esults b	y Maximu	m Level	(Rank	1) for S	torm	
Hot Manhole Headlo Foul Sewage Number of Input Hydr		tor 1.000 ns) 0 mm) 0 al) 0.500 /s) 0.000 mber of 0) MA)) Flow per) Dffline Co	onal Flo DD Facto Person ntrols 0	r * 10m Inlet per Day Number	³ /ha Storag Coeffiecien (l/per/day of Time/Ar	re 2.000 t 0.800) 0.000	
Number of Online O	Controls 1 Numb	er of Sto	orage Stru	ctures 2	Number	of Real Ti	me Conti	rols O
Rainfall	Model	FSI		nm) 18.00		Summer) 0.7		
	Region England	and Wales	s Ratio	R 0.38	30 Cv (V	Vinter) 0.8	40	
	gin for Flood R	iol Mouni		00 0				
Marc	ITH TOT FIOOD R	isk warni	.ng (mm) 3	00.0	DVD St	atus OFF		
Marc		nalysis T	imestep	Fine Ine				
Marc		nalysis T DTS	imestep		rtia St		r	
D Return	A	nalysis T DTS (s) ns) 15, 3 rs)	Timestep T 5 Status	Fine Ine ON	rtia St Summer 860, 480	atus OFF and Winte:), 960, 1440 1, 30, 100 0, 0, 20	0 0 0	
D Return	A Profile uration(s) (min Period(s) (year	nalysis T DTS (s) ns) 15, 3 rs)	Timestep T 5 Status	Fine Ine ON 0, 240, 3	rtia St Summer 360, 480 Water	atus OFF and Winte:), 960, 1440 1, 30, 100 0, 0, 20 Surcharged)) Flooded	
D Return C	A Profile uration(s) (mir Period(s) (year limate Change	nalysis T DTS (s) ns) 15, 3 rs)	Timestep T 5 Status	Fine Ine ON	rtia St Summer 360, 480 Water	atus OFF and Winte:), 960, 1440 1, 30, 100 0, 0, 20	0 0 0	
D Return C US/MH PN Name	A Profile uration(s) (min Period(s) (year limate Change	nalysis T DTS (s) ns) 15, 3 rs) (%) Event	imestep 3 Status 0, 60, 120	Fine Ine ON 0, 240, 3 US/CL (m)	rtia St Summer 360, 480 Water Level (m)	atus OFF and Winte: , 960, 1440 1, 30, 100 0, 0, 20 Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.
D Return C US/MH PN Name S1.000 S5	A Profile uration(s) (min Period(s) (year limate Change E 15 minute 100	nalysis T DTS (s) ns) 15, 3 rs) (%) Event year Win	Timestep 5 5 Status 0, 60, 120 14 Status	Fine Ine ON 0, 240, 3 US/CL (m) 15.080	rtia St Summer 360, 480 Water Level (m) 12.355	atus OFF and Winte: 0, 960, 1440 1, 30, 100 0, 0, 20 Surcharged Depth (m) -0.115	Flooded Volume (m ³) 0.000	Flow / Cap. 0.12
D Return C US/MH PN Name S1.000 S5 S1.001 S4	A Profile uration(s) (min Period(s) (year limate Change I 15 minute 100 15 minute 100	nalysis T DTS (s) hs) 15, 3 rs) (%) Event year Win year Win	Timestep 5 Status 0, 60, 120 nter I+20% nter I+20%	Fine Ine ON 0, 240, 3 US/CL (m) 15.080 12.320	Ttia St Summer 360, 480 Water Level (m) 12.355 9.645	atus OFF atus OFF and Winte: 0, 960, 1440 1, 30, 100 0, 0, 20 Surcharged Depth (m) -0.115 -0.115	Flooded Volume (m ³) 0.000 0.000	Flow / Cap. 0.12 0.12
D Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3	A Profile uration(s) (min Period(s) (year limate Change I 5 minute 100 15 minute 100 120 minute 100	nalysis T DTS (s) hs) 15, 3 rs) (%) Event year Win year Win year Win	Timestep 5 Status 0, 60, 120 uter I+20% uter I+20% uter I+20%	Fine Ine ON US/CL (m) 15.080 12.320 9.600	Vater 12.355 9.645 8.829	atus OFF atus OFF atus OFF atus OFF atus atus OFF atus	Flooded Volume (m ³) 0.000 0.000 0.000	Flow / Cap. 0.12 0.12 0.10
D Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D	A Profile uration(s) (min Period(s) (year limate Change Is minute 100 15 minute 100 15 minute 100 15 minute 100	nalysis T DTS (s) hs) 15, 3 rs) (%) Event year Win year Win year Win year Win	Timestep 5 Status 0, 60, 120 uter I+20% uter I+20% uter I+20%	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180	Vater 12.355 9.645 8.829 10.376	atus OFF atus OFF atus OFF atus OFF atus atus OFF atus	Flooded Volume (m ³) 0.000 0.000 0.000 0.000	Flow / Cap. 0.12 0.12 0.10 0.20
D Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C	A Profile uration(s) (min Period(s) (year limate Change 15 minute 100 15 minute 100 15 minute 100 15 minute 100 15 minute 100	nalysis T DTS (s) hs) 15, 3 rs) (%) Event year Win year Win year Win year Win year Win	Timestep 5 Status 0, 60, 120 hter I+20% hter I+20% hter I+20% hter I+20% hter I+20%	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180	Vater 12.355 9.645 8.829 10.376 9.242	atus OFF c and Winter 0, 960, 1440 1, 30, 100 0, 0, 20 Surcharged Depth (m) -0.115 -0.115 0.439 -0.104 -0.078	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.12 0.12 0.10 0.20 0.47
D Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.001 S2C S2.002 S2B - GEOCELL	A Profile uration(s) (min Period(s) (year limate Change 15 minute 100 15 minute 100 15 minute 100 15 minute 100 15 minute 100 15 minute 100	nalysis T DTS (s) (s) 15, 3 rs) (%) Event year Win year Win year Win year Win year Win year Win	Timestep 5 Status 0, 60, 120 10, 60, 10, 100 10, 60, 100 10, 100 10, 100 10, 100 10, 100 10, 100 10, 100 10, 100 10, 10, 100 10, 100 1	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540	Vater 12.355 9.645 8.829 10.376	atus OFF c and Winter 0, 960, 1440 1, 30, 100 0, 0, 20 Surcharged Depth (m) -0.115 -0.115 0.439 -0.104 -0.078 0.683	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.12 0.12 0.10 0.20 0.47 0.36
D Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A	A Profile uration(s) (min Period(s) (year limate Change 15 minute 100 15 minute 100 15 minute 100 15 minute 100 15 minute 100	nalysis T DTS (s) (s) 15, 3 rs) (%) Event year Win year Win year Win year Win year Win year Win year Win	Timestep 5 Status 0, 60, 120 0, 60, 120 0, 1	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540	Vater 12.355 9.645 8.829 10.376 9.242 8.833	atus OFF c and Winter 0, 960, 1440 1, 30, 100 0, 0, 20 Surcharged Depth (m) -0.115 -0.115 0.439 -0.104 -0.078	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.12 0.12 0.10 0.20 0.47
D Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A	A Profile uration(s) (min Period(s) (year limate Change 15 minute 100 15 minute 100 15 minute 100 15 minute 100 15 minute 100 20 minute 100 20 minute 100	nalysis T DTS (s) (s) 15, 3 rs) (%) Event year Win year Win year Win year Win year Win year Win year Win	Timestep 5 Status 0, 60, 120 0, 60, 120 0, 1	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540	<pre>rtia St Summer 360, 480 Water Level (m) 12.355 9.645 8.829 10.376 9.242 8.833 8.828</pre>	atus OFF c and Winter 0, 960, 1440 1, 30, 100 0, 0, 20 Surcharged Depth (m) -0.115 -0.115 0.439 -0.104 -0.078 0.683 0.678	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.12 0.12 0.10 0.20 0.47 0.36 0.05
D Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A	A Profile uration(s) (min Period(s) (year limate Change 15 minute 100 15 minute 100 15 minute 100 15 minute 100 15 minute 100 20 minute 100 20 minute 100	nalysis T DTS (s) (s) 15, 3 rs) (%) Event year Win year Win year Win year Win year Win year Win year Win year Win	Timestep 5 Status 0, 60, 120 140 140 140 140 140 140 140 14	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540 9.540	<pre>value for the second seco</pre>	atus OFF c and Winter 0, 960, 1440 1, 30, 100 0, 0, 20 Surcharged Depth (m) -0.115 -0.115 0.439 -0.104 -0.078 0.683 0.678	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.12 0.12 0.10 0.20 0.47 0.36 0.05
D Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A S1.003 S2	A Profile uration(s) (min Period(s) (year limate Change 15 minute 100 15 minute 100 15 minute 100 15 minute 100 15 minute 100 120 minute 100 120 minute 100 120 minute 100	nalysis T DTS (s) (s) 15, 3 rs) (%) Event year Win year Win year Win year Win year Win year Win year Win year Win year Win	Timestep S Status 0, 60, 120 uter I+20% uter I+20% uter I+20% uter I+20% uter I+20% uter I+20% uter I+20%	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540 9.540 9.540	<pre>value of the second secon</pre>	atus OFF atus O	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.12 0.12 0.10 0.20 0.47 0.36 0.05
D Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A	A Profile uration(s) (min Period(s) (year limate Change 15 minute 100 15 minute 100 15 minute 100 15 minute 100 15 minute 100 20 minute 100 20 minute 100	nalysis T DTS (s) (s) 15, 3 rs) (%) Event year Win year Win year Win year Win year Win year Win year Win year Win	Timestep 5 Status 0, 60, 120 140 140 140 140 140 140 140 14	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540 9.540	<pre>value for the second seco</pre>	atus OFF c and Winter 0, 960, 1440 1, 30, 100 0, 0, 20 Surcharged Depth (m) -0.115 -0.115 0.439 -0.104 -0.078 0.683 0.678	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.12 0.12 0.10 0.20 0.47 0.36 0.05
D Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A S1.003 S2	A Profile uration(s) (min Period(s) (year limate Change 15 minute 100 15 minute 100 15 minute 100 15 minute 100 15 minute 100 20 minute 100 20 minute 100 20 minute 100 20 minute 100	nalysis T DTS (s) (s) 15, 3 rs) (%) Event year Win year Win year Win year Win year Win year Win year Win year Win year Win	ter I+20% ter I+20%	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540 9.540 9.540 9.540 9.540	<pre>rtia St Summer 360, 480 Water Level (m) 12.355 9.645 8.829 10.376 9.242 8.833 8.828 8.826 Pipe flow (l/s)</pre>	atus OFF c and Winte: 0, 960, 1440 1, 30, 100 0, 0, 20 Surcharged Depth (m) -0.115 -0.115 0.439 -0.104 -0.078 0.683 0.678 3.266 Status	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.12 0.12 0.10 0.20 0.47 0.36 0.05
D Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A S1.003 S2	A Profile uration(s) (min Period(s) (year limate Change 15 minute 100 15 minute 100 15 minute 100 15 minute 100 15 minute 100 120 minute 100 120 minute 100 120 minute 100	nalysis T DTS (s) (s) 15, 3 rs) (%) Event year Win year Win year Win year Win year Win year Win year Win year Win year Win	<pre>dimestep dimestep dimestep dimer I+20% dimer I+20</pre>	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540	<pre>rtia St Summer 360, 480 Water Level (m) 12.355 9.645 8.829 10.376 9.242 8.833 8.828 8.826 Pipe Flow (l/s) 0 6.1</pre>	atus OFF atus O	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.12 0.12 0.10 0.20 0.47 0.36 0.05
D Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A S1.003 S2 PN	A Profile uration(s) (min Period(s) (year limate Change 15 minute 100 15 minute 100 15 minute 100 15 minute 100 120 minute 100 20 minute 100 20 minute 100 20 minute 100 20 minute 100 20 minute 100	nalysis T DTS (s) (s) 15, 3 rs) (%) Event year Win year Win year Win year Win year Win year Win year Win year Win year Win	ter I+20% ter I+20%	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540 9.540 9.540 9.540 9.540	<pre>rtia St Summer 360, 480 Water Level (m) 12.355 9.645 8.829 10.376 9.242 8.833 8.828 8.826 Pipe f Flow (l/s) 0 6.1 0 6.0</pre>	atus OFF atus OFF atus OFF atus OFF atus atus OFF atus	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.12 0.12 0.10 0.20 0.47 0.36 0.05
D Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A S1.003 S2 PN S1.000 S1.001	A Profile uration(s) (min Period(s) (year limate Change 15 minute 100 15 minute 100 15 minute 100 15 minute 100 120 minute 100 20 minute 100	nalysis T DTS (s) (s) 15, 3 rs) (%) Event year Win year Win year Win year Win year Win year Win year Win year Win year Win	<pre>dimestep S Status 0, 60, 120 duter I+20% uter I+20%</pre>	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540	rtia St Summer 360, 480 Water Level (m) 12.355 9.645 8.829 10.376 9.242 8.833 8.828 8.826 Pipe 7 Flow (l/s) 0 6.1 0 6.0 5 4.6	atus OFF c and Winter 0, 960, 1440 1, 30, 100 0, 0, 20 Surcharged Depth (m) -0.115 -0.115 0.439 -0.104 -0.078 0.683 0.678 3.266 Status OK OK	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.12 0.12 0.10 0.20 0.47 0.36 0.05

Weetwood		Page 2
Suite 1 Park House	(4902)	
Broncoed Bus Park	The Red House,	
Wrexham Rd Mold	Dee Banks, Chester	Micro
Date 17/12/2020 10:37	Designed by OA	Drainage
File 2020-12-17 4902 SW Calculati	Checked by	Diamage
Micro Drainage	Network 2020.1	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Overflow (l/s)	Maximum Vol (m³)	-	Pipe Flow (l/s)	Status
S2.001	S2C		0.076	1.8	15.2	OK
S2.002	S2B - GEOCELL		12.341	0.3	1.8	SURCHARGED
S2.003	S2A		1.137	1.1	2.0	SURCHARGED
S1.003	S2		3.991	0.1	2.3	SURCHARGED

APPENDIX H

MicroDrainage Calculations- Sensitivity

Weetwood								Page	
Suite 1 Park Hou	se		(4902)						
Broncoed Bus Park			The Red	d House,					
Wrexham Rd Mold			Dee Bar	nks, Ches	ter			Mic	
Date 17/12/2020 10	:33		Designe	ed by OA				- Mic	
File 2020-12-17 49	02 SW Cal	culati	-	-				Did	inage
Micro Drainage				2020.1					
Manhole He	Areal Reduct Hot St Hot Start eadloss Coes wage per hea Hydrographs	tion Fact tart (min Level (m ff (Globa ctare (l/ s 0 Num	m) 0 1) 0.500 F1 s) 0.000 nber of Offl	<u>Criteria</u> Additional MADD F ow per Per ine Contro	Flow actor In son pe 1s 0 N	- % of Tota * 10m³/ha S hlet Coeffi r Day (1/pe umber of Ti	l Flow (torage 2 ecient (r/day) (me/Area).000 2.000).800).000 Diagram	
Rain	fall Model Region		nthetic Rain FSR M and Wales	5-60 (mm)	18.000	Cv (Summer) Cv (Winter)			
Ret	Duration urn Period(An Profile(s h(s) (mins	s) 15, 30, s)	step Fine atus ON	Inert:	ia Status O Summer and W , 480, 960, 1, 30	FF Winter		
Ret US/MH	Duration urn Period(An Profile(s h(s) (mins (s) (years	alysis Time DTS St s) s) 15, 30, 5	step Fine atus ON 50, 120, 2 1	S Inert: S	ia Status O Summer and W , 480, 960, 1, 30	FF 1440), 100 0, 40 Flooded	Flow /	Overflow
	Duration urn Period(An Profile(s h(s) (mins (s) (years	alysis Time DTS St s) s) 15, 30, 5	step Fine atus ON 60, 120, 2 1	Inert: S 40, 360 Water :	ia Status O Summer and W 480, 960, 1, 30 0, Surcharged	FF 1440), 100 0, 40 Flooded	Flow / Cap.	Overflor (l/s)
US/MH PN Name	Duration urn Period(Climate	An Profile(s n(s) (mins (s) (years Change (s Event	alysis Time DTS St s) s) 15, 30, 5	step Fine atus ON 50, 120, 2 50, 120, 120, 2 50, 120, 120, 120, 10 50, 120, 120, 10 50, 120, 120, 10 50, 120, 10 50, 10, 10 50, 10, 10 50, 10, 10 50, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	Vater (m)	ia Status O ummer and M , 480, 960, 1, 30 0, Surcharged Depth	FF 1440), 100 0, 40 Flooded Volume		
US/MH PN Name S1.000 S5 S1.001 S4	Duration urn Period(Climate 15 minute 1 15 minute 1	An Profile(s n(s) (mins (s) (years Change (s Event 100 year 1	Alysis Time DTS St s) s) 15, 30, 5 s) %) Winter I+40 Winter I+40	step Fine atus ON 50, 120, 2 50, 120, 120, 2 50, 120, 120, 120, 120, 120, 120, 120, 12	Xater : Level (m) 2.358 9.648	ia Status O Summer and W 480, 960, 1, 30 0, Surcharged Depth (m) -0.112 -0.112	<pre>FF Vinter 1440 0, 100 0, 40 Flooded Volume (m³) 0.000 0.000</pre>	Cap. 0.14 0.14	
US/MH PN Name \$1.000 \$5 \$1.001 \$4 \$1.002 \$3	Duration urn Period Climate 15 minute 1 15 minute 1 60 minute 1	An Profile(s n(s) (mins (s) (years Change (s Event 100 year 100 year	Alysis Time DTS St s) s) 15, 30, s) %) Winter I+40 Winter I+40 Winter I+40	step Fine atus ON 50, 120, 2 50, 120, 120, 2 50, 120, 120, 120, 120, 120, 120, 120, 12	Xater (m) 2.358 9.648 8.735	ia Status O ummer and W , 480, 960, 1, 30 0, Surcharged Depth (m) -0.112 -0.112 0.345	<pre>FF Vinter 1440 0, 100 0, 40 Flooded Volume (m³) 0.000 0.000 0.000</pre>	Cap. 0.14 0.14 0.18	
US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D	Duration urn Period Climate	An Profile(s n(s) (mins (s) (years Change (s Event 100 year 100 year 100 year	Alysis Time DTS St S) S) 15, 30, 5 S) %) Winter I+40 Winter I+40 Winter I+40 Winter I+40	step Fine atus ON 50, 120, 2 50, 120, 2 50, 120, 2 50, 120, 2 50, 120, 2 50, 11, 180, 1 50, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	Xater : (m) 2.358 9.648 8.735 0.379	ia Status O ummer and W , 480, 960, 1, 30 0, Surcharged Depth (m) -0.112 -0.112 0.345 -0.101	<pre>FF Vinter 1440 0, 100 0, 40 Flooded Volume (m³) 0.000 0.000 0.000 0.000</pre>	Cap. 0.14 0.14 0.18 0.24	
US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C	Duration urn Period (Climate 15 minute 1 15 minute 1 60 minute 1 15 minute 1	An Profile(s n(s) (mins (s) (years Change (s Event 100 year 100 year 100 year	Alysis Time DTS St S) S) 15, 30, 5 S) %) Winter I+40 Winter I+40 Winter I+40 Winter I+40	step Fine atus ON 50, 120, 2 50, 120, 120, 120, 120, 120, 120, 120, 12	Xater (m) 2.358 9.648 8.735	ia Status O ummer and W , 480, 960, 1, 30 0, Surcharged Depth (m) -0.112 -0.112 0.345	<pre>FF Vinter 1440 0, 100 0, 40 Flooded Volume (m³) 0.000 0.000 0.000</pre>	Cap. 0.14 0.14 0.18	
US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A	Duration urn Period (Climate 15 minute 1 60 minute 1 15 minute 1 15 minute 1 60 minute 1	An Profile(s (s) (mins (s) (years Change (s Event 100 year 100 year 100 year 100 year	Alysis Time DTS St S) S) 15, 30, 5 S) %) Winter I+40 Winter I+40 Winter I+40 Winter I+40	step Fine atus ON 50, 120, 24 50, 120, 120, 120 50, 120, 120, 120 50, 120, 120, 120 50, 120, 120, 120 50, 120, 120, 120, 120 50, 120, 120, 120, 120, 120, 120, 120, 12	Xater (m) 2.358 9.648 8.735 0.379 9.249	ia Status O fummer and W , 480, 960, 1, 30 0, Surcharged Depth (m) -0.112 -0.112 0.345 -0.101 -0.071 0.589 0.583	<pre>FF Vinter 1440 0, 100 0, 40 Flooded Volume (m³) 0.000 0.000 0.000 0.000 0.000</pre>	Cap. 0.14 0.14 0.18 0.24 0.54 0.83 0.11	
US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A	Duration urn Period (Climate 15 minute 15 minute 15 minute 15 minute 15 minute 16 minute 60 minute	An Profile(s (s) (mins (s) (years Change (s Event 100 year 100 year 100 year 100 year 100 year	Alysis Time DTS St DTS St s) s) 15, 30, 5 s) %) Winter I+40 Winter I+40 Winter I+40 Winter I+40 Winter I+40	step Fine atus ON 50, 120, 2 50, 120, 120, 120, 120, 120, 120, 120, 12	Xater (m) 2.358 9.648 8.735 0.379 9.249 8.739	ia Status O fummer and W , 480, 960, 1, 30 0, Surcharged Depth (m) -0.112 -0.112 0.345 -0.101 -0.071 0.589	<pre>FF Vinter 1440 0, 100 0, 40 Flooded Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000</pre>	Cap. 0.14 0.14 0.18 0.24 0.54 0.83	
US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A	Duration urn Period (Climate 15 minute 15 minute 15 minute 15 minute 15 minute 16 minute 60 minute	An Profile(s (s) (mins (s) (years Change (s Event 100 year 100 year 100 year 100 year 100 year	Alysis Time DTS St DTS St s) s) 15, 30, 5 s) %) Winter I+40 Winter I+40 Winter I+40 Winter I+40 Winter I+40 Winter I+40	step Fine atus ON 50, 120, 2 50, 120, 120, 120, 120, 120, 120, 120, 12	Xater (m) 2.358 9.648 8.735 0.379 9.249 8.739 8.733	ia Status O fummer and W , 480, 960, 1, 30 0, Surcharged Depth (m) -0.112 -0.112 0.345 -0.101 -0.071 0.589 0.583	FF Vinter 1440 0, 100 0, 40 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.14 0.14 0.18 0.24 0.54 0.83 0.11	
US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A	Duration urn Period (Climate 15 minute 15 minute 15 minute 15 minute 15 minute 16 minute 60 minute	An Profile(s (s) (mins (s) (years Change (s Event 100 year 100 year 100 year 100 year 100 year	Alysis Time DTS St DTS St s) s) 15, 30, 5 s) %) Winter I+40 Winter I+40 Winter I+40 Winter I+40 Winter I+40 Winter I+40	step Fine atus ON 50, 120, 24 US/CL (m) % 15.080 1 % 12.320 % 9.600 % 11.180 1 % 11.180 1 % 9.540 % 9.540 % 9.540 % 9.540	<pre>S Inert: S S 40, 360 Water Level (m) 2.358 9.648 8.735 0.379 9.249 8.739 8.733 8.730 Pipe</pre>	ia Status O fummer and W , 480, 960, 1, 30 0, Surcharged Depth (m) -0.112 -0.112 0.345 -0.101 -0.071 0.589 0.583	FF Vinter 1440 0, 100 0, 40 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.14 0.14 0.18 0.24 0.54 0.83 0.11	
US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A	Duration urn Period Climate 15 minute 15 minute 15 minute 15 minute 60 minute 60 minute 60 minute	An Profile(s (s) (mins (s) (years Change (s Event 100 year 100 year 100 year 100 year 100 year 100 year 100 year	Alysis Time DTS St DTS St s) s) 15, 30, 5 s) %) Winter I+40 Winter I+40 Winter I+40 Winter I+40 Winter I+40 Winter I+40	step Fine atus ON 50, 120, 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Xater : 40, 360 Xater : Level (m) 2.358 9.648 8.735 0.379 9.249 8.739 8.739 8.733 8.730 Pipe Y Flow	ia Status O Summer and W 480, 960, 1, 30 0, Surcharged Depth (m) -0.112 -0.112 0.345 -0.101 -0.071 0.589 0.583 3.170	FF Vinter 1440 0, 100 0, 40 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.14 0.14 0.18 0.24 0.54 0.83 0.11	
US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A	Duration urn Period (Climate 15 minute 15 minute 15 minute 15 minute 15 minute 16 minute 60 minute	An Profile(s (s) (mins (s) (years Change (s Event 100 year 100 year 100 year 100 year 100 year 100 year	Alysis Time DTS St DTS St s) s) 15, 30, 5 s) %) Winter I+40 Winter I+40 Winter I+40 Winter I+40 Winter I+40 Winter I+40	step Fine atus ON 50, 120, 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>S Inert: S S 40, 360 Water Level (m) 2.358 9.648 8.735 0.379 9.249 8.739 8.733 8.730 Pipe</pre>	ia Status O fummer and W , 480, 960, 1, 30 0, Surcharged Depth (m) -0.112 -0.112 0.345 -0.101 -0.071 0.589 0.583	FF Vinter 1440 0, 100 0, 40 Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.14 0.14 0.18 0.24 0.54 0.83 0.11	
US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B GEOCELL S2.003 S2A	Duration urn Period Climate 15 minute 15 minute 15 minute 15 minute 60 minute 60 minute 60 minute	An Profile(s (s) (mins (s) (years Change (s Event 100 year 100 year 100 year 100 year 100 year 100 year 100 year	Alysis Time DTS St DTS St s) s) 15, 30, 5 s) %) Winter I+40 Winter I+40 Winter I+40 Winter I+40 Winter I+40 Winter I+40	step Fine atus ON 50, 120, 24 US/CL (m) % 15.080 1 % 12.320 % 9.600 % 11.180 1 % 11.180 1 % 9.540 % 9.540 % 9.540 % 9.540 % 9.540 % 9.540 % 9.540	<pre>S Inert: S S 40, 360 Water : Level (m) 2.358 9.648 8.735 0.379 9.249 8.733 8.730 Pipe Flow (l/s)</pre>	ia Status O Summer and W 480, 960, 1, 30 0, Surcharged Depth (m) -0.112 -0.112 0.345 -0.101 -0.071 0.589 0.583 3.170	<pre>FF Vinter 1440 0, 100 0, 40 Flooded Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000</pre>	Cap. 0.14 0.14 0.18 0.24 0.54 0.83 0.11	
US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B GEOCELL S2.003 S2A	Duration urn Period (Climate 15 minute 15 minute 15 minute 15 minute 15 minute 60 minute 60 minute 60 minute 160 minute 17 minute 18 minute 19 minute 10 minute 10 minute 10 minute	An Profile(s (s) (mins (s) (years Change (s Event 100 year 100 year 100 year 100 year 100 year 100 year 100 year	Alysis Time DTS St DTS St s) s) 15, 30, 5 s) %) Winter I+40 Winter I+40 Winter I+40 Winter I+40 Winter I+40 Winter I+40 Winter I+40 Sinter I+40 Winter I+40 Winter I+40	step Fine atus ON 50, 120, 24 US/CL (m) % 15.080 1 % 12.320 % 9.600 % 11.180 1 % 11.180 1 % 11.180 1 % 9.540 % 9.520 % 9.520 % 9.540 % 9.540 % 9.520 % 9.520 % 9.520 % 9.540 % 9.520 % 9.520%%	<pre>S Inert: S S 40, 360 Water tevel (m) 2.358 9.648 8.735 0.379 9.249 8.739 8.733 8.730 Pipe Flow (l/s) 7.1 7.0</pre>	ia Status O Summer and W 480, 960, 1, 30 0, Surcharged Depth (m) -0.112 -0.112 0.345 -0.101 -0.071 0.589 0.583 3.170 Status OK OK	FF Vinter 1440 0, 100 0, 40 Flooded Volume (m ³) 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	Cap. 0.14 0.14 0.18 0.24 0.54 0.83 0.11	
US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B GEOCELL S2.003 S2A	Duration urn Period (Climate 15 minute 1 15 minute 1 15 minute 1 15 minute 1 60 minute 1 60 minute 1 60 minute 1 60 minute 1 80 minute 1	An Profile(s (s) (mins (s) (years Change (s Event 100 year 100 year 100 year 100 year 100 year 100 year 100 year 100 year	Alysis Time DTS St DTS St s) s) 15, 30, 5 s) %) Winter I+40 Winter I+40 Winter I+40 Winter I+40 Winter I+40 Winter I+40 Winter I+40 Winter I+40 Sinter I+40	step Fine atus ON 50, 120, 24 US/CL (m) % 15.080 1 % 12.320 % 9.600 % 11.180 1 % 11.180 1 % 11.180 1 % 9.540 % 9.520 % 0.520 % 0.5200 % 0.52000 % 0.52000 % 0.5200000000000000000000000000000000000	<pre>S Inert: S S 40, 360 Water tevel (m) 2.358 9.648 8.735 0.379 9.249 8.739 8.733 8.730 Pipe Flow (l/s) 7.1 7.0 8.6</pre>	ia Status O Summer and W 480, 960, 1, 30 0, Surcharged Depth (m) -0.112 -0.112 0.345 -0.101 -0.071 0.589 0.583 3.170 Status OK	FF Vinter 1440 0, 100 0, 40 Flooded Volume (m ³) 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	Cap. 0.14 0.14 0.18 0.24 0.54 0.83 0.11	

Weetwood		Page 2
Suite 1 Park House	(4902)	
Broncoed Bus Park	The Red House,	
Wrexham Rd Mold	Dee Banks, Chester	Micro
Date 17/12/2020 10:33	Designed by OA	Drainage
File 2020-12-17 4902 SW Calculati	Checked by	Diamage
Micro Drainage	Network 2020.1	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

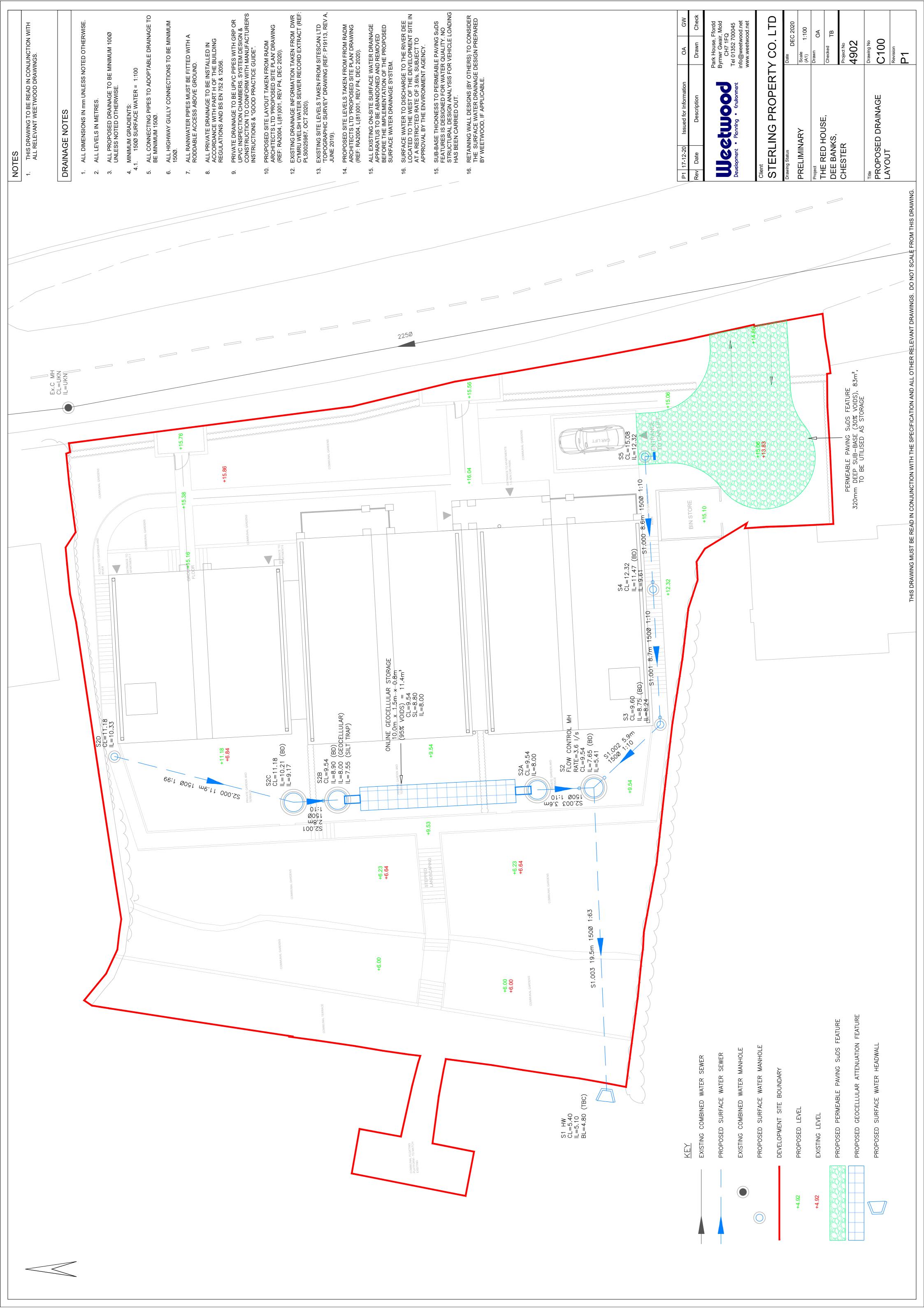
PN	US/MH Name	Maximum Vol (m³)	Maximum Velocity (m/s)	Pipe Flow (l/s)	Status
S2.001	S2C	0.084	1.9	17.7	OK
S2.002	S2B - GEOCELL	11.369	0.3	4.2	SURCHARGED
S2.003	S2A	1.029	1.4	4.0	SURCHARGED
S1.003	S2	3.882	0.9	3.7	SURCHARGED

APPENDIX I

MicroDrainage Calculations- Sensitivity (Drowned Outfall)

eetwood							Pag	
uite 1 Park House		(490)2)					
roncoed Bus Park		The	Red Hous	se,				
rexham Rd Mold		Dee	Banks, C	Chester			N	licco
ate 17/12/2020 10:38		Desi	gned by	OA				
ile 2020-12-17 4902 :	SW Calculati.		cked by					rainag
icro Drainage			ork 2020).1				
1010 D101mayo				• -				
Summary o	f Critical Re	esults by	y Maximu	m Level	(Rank	1) for S	torm	
Hot Manhole Headlo Foul Sewage Number of Input Hydr		tor 1.000 ns) 0 mm) 0 al) 0.500 /s) 0.000 mber of 0) MA)) Flow per))))	onal Flo DD Facto Person ntrols 0	r * 10m Inlet per Day Number	<pre>3/ha Storag Coeffiecien (l/per/day of Time/Ar</pre>	re 2.000 at 0.800 a) 0.000	
Number of Online (Controls 1 Numb	er of Sto	orage Stru	ctures 2	Number	of Real Ti	me Conti	cols O
Rainfall	Model	FSF		um) 18.00		Summer) 0.7		
	Region England	and Wales	s Ratic	R 0.38	30 Cv (1	Winter) 0.8	40	
3.4	gin for Flood R	isk Warni	.ng (mm) 3	00.0	DVD St	atus OFF		
Marq		nalysis T	imestep 1					
D Return		nalysis T DTS (s) ns) 15, 3 ¹ cs)	'imestep 1 5 Status	Fine Ine ON	rtia St Summe:	atus OFF	0 0	
D Return	An Profile(uration(s) (mir Period(s) (year	nalysis T DTS (s) ns) 15, 3 ¹ cs)	'imestep 1 5 Status	Fine Ine ON	rtia St Summer 360, 480	atus OFF and Winte: 0, 960, 1440 1, 30, 100 0, 0, 40	0 0 0	
E Return	An Profile(uration(s) (mir Period(s) (year	nalysis T DTS (s) ns) 15, 3 ¹ cs)	'imestep 1 5 Status	Fine Ine ON	rtia St Summer 360, 480 Water	atus OFF and Winte: 0, 960, 1440 1, 30, 100	0 0 0	
D Return C	An Profile (uration(s) (mir Period(s) (year limate Change (nalysis T DTS (s) ns) 15, 3 ¹ cs)	'imestep 1 5 Status	Fine Ine ON), 240, 3	rtia St Summer 360, 480 Water	atus OFF and Winte: 0, 960, 1440 1, 30, 100 0, 0, 40 Surcharged	0 0 Flooded	
E Return C US/MH PN Name	An Profile(Puration(s) (mir Period(s) (year Climate Change (E	nalysis T DTS (s) hs) 15, 3 (%) (%)	imestep 1 5 Status 0, 60, 120	Fine Ine ON 0, 240, 3 US/CL (m)	rtia St Summer 360, 480 Water Level (m)	atus OFF c and Winte: 0, 960, 1440 1, 30, 100 0, 0, 40 Surcharged Depth (m)	Flooded Volume (m ³)	Flow / Cap.
D Return C US/MH	An Profile (uration(s) (mir Period(s) (year limate Change (nalysis T DTS (s) hs) 15, 3 rs) (%) Event year Win	imestep 1 3 Status 0, 60, 120 140%	Fine Ine ON 0, 240, 3 US/CL (m) 15.080	rtia St Summer 360, 480 Water Level (m)	atus OFF c and Winter), 960, 1440 1, 30, 100 0, 0, 40 Surcharged Depth	0 0 Flooded Volume	Flow / Cap. 0.14
E Return C US/MH PN Name S1.000 S5 S1.001 S4	An Profile(Puration(s) (mir Period(s) (year Climate Change (E 15 minute 100	nalysis T DTS (s) hs) 15, 3 rs) (%) Event year Win year Win	imestep 1 5 Status 0, 60, 120 1ter I+40% 1ter I+40%	Fine Ine ON (), 240, 3 (m) 15.080 12.320	rtia St Summer 360, 480 Water Level (m) 12.358	atus OFF c and Winte: 0, 960, 1440 1, 30, 100 0, 0, 40 Surcharged Depth (m) -0.112	<pre>0 Flooded Volume (m³) 0.000</pre>	Flow / Cap.
E Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3	An Profile(Suration(s) (mir Period(s) (year Climate Change (E 15 minute 100 15 minute 100	nalysis T DTS (s) hs) 15, 3 (%) Event year Win year Win year Win year Win	<pre>imestep 1 5 Status 0, 60, 120 tter I+40% tter I+40% tter I+40%</pre>	Fine Ine ON US/CL (m) 15.080 12.320 9.600	<pre>rtia St Summer 360, 480 Water Level (m) 12.358 9.648 9.499</pre>	atus OFF c and Winter 0, 960, 1440 1, 30, 100 0, 0, 40 Surcharged Depth (m) -0.112 -0.112	<pre> Flooded Volume (m³) 0.000 0.000</pre>	Flow / Cap. 0.14 0.14
E Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C	An Profile (Puration(s) (mir Period(s) (year limate Change (15 minute 100 15 minute 100 120 minute 100 120 minute 100	nalysis T DTS (s) (s) 15, 3 (%) Event year Win year Win year Win year Win year Win year Win	tter I+40% tter I+40% tter I+40% tter I+40% tter I+40% tter I+40% tter I+40%	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180	<pre>rtia St Summer 360, 480 Water Level (m) 12.358 9.648 9.499</pre>	atus OFF c and Winte: 0, 960, 1440 1, 30, 100 0, 0, 40 Surcharged Depth (m) -0.112 -0.112 1.109	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.14 0.14 0.11 0.24 0.17
E Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.001 S2C S2.002 S2B - GEOCELL	An Profile (ouration(s) (mir Period(s) (year limate Change (15 minute 100 15 minute 100 120 minute 100 120 minute 100 120 minute 100	nalysis T DTS (s) (s) 15, 3 (%) Event year Win year Win year Win year Win year Win year Win year Win	tter I+40% tter I+40% tter I+40% tter I+40% tter I+40% tter I+40% tter I+40% tter I+40%	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180	<pre>rtia St Summer 360, 480 Water Level (m) 12.358 9.648 9.499 10.379</pre>	atus OFF c and Winter 0, 960, 1440 1, 30, 100 0, 0, 40 Surcharged Depth (m) -0.112 -0.112 1.109 -0.101 0.185 1.353	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.14 0.14 0.11 0.24 0.17 0.46
E Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A	An Profile (ouration(s) (mir Period(s) (year limate Change (15 minute 100 15 minute 100 120 minute 100 120 minute 100 120 minute 100 120 minute 100	nalysis T DTS (s) (s) 15, 3 (%) Event year Win year Win year Win year Win year Win year Win year Win year Win	tter I+40% tter I+40% tter I+40% tter I+40% tter I+40% tter I+40% tter I+40% tter I+40%	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540	<pre>rtia St Summer 360, 480 Water Level (m) 12.358 9.648 9.499 10.379 9.505 9.503 9.497</pre>	atus OFF c and Winte: 0, 960, 1440 1, 30, 100 0, 0, 40 Surcharged Depth (m) -0.112 -0.112 1.109 -0.101 0.185 1.353 1.347	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.14 0.14 0.11 0.24 0.17 0.46 0.05
E Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A	An Profile (ouration(s) (mir Period(s) (year limate Change (15 minute 100 15 minute 100 120 minute 100 120 minute 100 120 minute 100	nalysis T DTS (s) (s) 15, 3 (%) Event year Win year Win year Win year Win year Win year Win year Win year Win	tter I+40% tter I+40% tter I+40% tter I+40% tter I+40% tter I+40% tter I+40% tter I+40%	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540	<pre>rtia St Summer 360, 480 Water Level (m) 12.358 9.648 9.499 10.379 9.505 9.503</pre>	atus OFF c and Winter 0, 960, 1440 1, 30, 100 0, 0, 40 Surcharged Depth (m) -0.112 -0.112 1.109 -0.101 0.185 1.353	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.14 0.14 0.11 0.24 0.17 0.46
E Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A	An Profile (ouration(s) (mir Period(s) (year limate Change (15 minute 100 15 minute 100 120 minute 100 120 minute 100 120 minute 100 120 minute 100	nalysis T DTS (s) (s) 15, 3 (%) Event year Win year Win year Win year Win year Win year Win year Win year Win	tter I+40% tter I+40% tter I+40% tter I+40% tter I+40% tter I+40% tter I+40% tter I+40%	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540 9.540	<pre>rtia St Summer 360, 480 Water Level (m) 12.358 9.648 9.499 10.379 9.505 9.503 9.497 9.495</pre>	atus OFF c and Winte: 0, 960, 1440 1, 30, 100 0, 0, 40 Surcharged Depth (m) -0.112 -0.112 1.109 -0.101 0.185 1.353 1.347	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.14 0.14 0.11 0.24 0.17 0.46 0.05
E Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A	An Profile (ouration(s) (mir Period(s) (year limate Change (15 minute 100 15 minute 100 120 minute 100 120 minute 100 120 minute 100 120 minute 100 120 minute 100	nalysis T DTS (s) (s) 15, 3 (s) (%) Event year Win year Win year Win year Win year Win year Win year Win year Win	ter I+40% ter I+40% ter I+40% ter I+40% ter I+40% ter I+40% ter I+40% ter I+40%	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540 9.540 9.540	<pre>rtia St Summer 360, 480 Water Level (m) 12.358 9.648 9.499 10.379 9.505 9.503 9.497 9.495 A Pipe</pre>	atus OFF c and Winte: 0, 960, 1440 1, 30, 100 0, 0, 40 Surcharged Depth (m) -0.112 -0.112 1.109 -0.101 0.185 1.353 1.347	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.14 0.14 0.11 0.24 0.17 0.46 0.05
E Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A S1.003 S2	Profile uration(s) (mir Period(s) (year limate Change (15 minute 100 15 minute 100 120 minute 100 120 minute 100 120 minute 100 120 minute 100 120 minute 100	nalysis T DTS (s) (s) 15, 3 (s) (%) Event year Win year Win year Win year Win year Win year Win year Win year Win year Win	<pre>timestep 1 S Status 0, 60, 120 tter I+40% tter I+40%</pre>	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540 9.540 9.540 9.540	<pre>rtia St Summer 360, 480 Water Level (m) 12.358 9.648 9.499 10.379 9.505 9.503 9.497 9.495 A Pipe (Flow</pre>	atus OFF c and Winte: 0, 960, 1440 1, 30, 100 0, 0, 40 Surcharged Depth (m) -0.112 -0.112 1.109 -0.101 0.185 1.353 1.347 3.935	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.14 0.14 0.11 0.24 0.17 0.46 0.05
E Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A	An Profile (ouration(s) (mir Period(s) (year limate Change (15 minute 100 15 minute 100 120 minute 100 120 minute 100 120 minute 100 120 minute 100 120 minute 100	nalysis T DTS (s) (s) 15, 3 (s) (%) Event year Win year Win year Win year Win year Win year Win year Win year Win	ter I+40% ter I+40% ter I+40% ter I+40% ter I+40% ter I+40% ter I+40% ter I+40%	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540 9.540 9.540	<pre>rtia St Summer 360, 480 Water Level (m) 12.358 9.648 9.499 10.379 9.505 9.503 9.497 9.495 A Pipe</pre>	atus OFF c and Winte: 0, 960, 1440 1, 30, 100 0, 0, 40 Surcharged Depth (m) -0.112 -0.112 1.109 -0.101 0.185 1.353 1.347	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.14 0.14 0.11 0.24 0.17 0.46 0.05
E Return C US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A S1.003 S2	Profile uration(s) (mir Period(s) (year limate Change (15 minute 100 15 minute 100 120 minute 100 120 minute 100 120 minute 100 120 minute 100 120 minute 100	nalysis T DTS (s) (s) 15, 3 (s) (%) Event year Win year Win year Win year Win year Win year Win year Win year Win year Win	<pre>timestep 1 S Status 0, 60, 120 0, 60, 1</pre>	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540	rtia St Summer 360, 480 Water Level (m) 12.358 9.648 9.499 10.379 9.505 9.503 9.497 9.505 9.503 9.497 9.495 Pipe 7 Flow (l/s) 1 7.1	atus OFF c and Winte: 0, 960, 1440 1, 30, 100 0, 0, 40 Surcharged Depth (m) -0.112 -0.112 1.109 -0.101 0.185 1.353 1.347 3.935	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.14 0.14 0.11 0.24 0.17 0.46 0.05
US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A S1.003 S2 PN S1.000 S1.001	Profile (puration(s) (mir Period(s) (year limate Change (15 minute 100 15 minute 100 120 minute 100	nalysis T DTS (s) (s) 15, 3 (s) (%) Event year Win year Win year Win year Win year Win year Win year Win year Win year Win	<pre>timestep 1 S Status 0, 60, 120 0, 60, 1</pre>	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540	rtia St Summer 360, 480 Water Level (m) 12.358 9.648 9.499 10.379 9.505 9.503 9.497 9.505 9.503 9.497 9.495 Pipe y Flow (l/s) 1 7.1 0 7.0	atus OFF c and Winter 0, 960, 1440 1, 30, 100 0, 0, 40 Surcharged Depth (m) -0.112 -0.112 1.109 -0.101 0.185 1.353 1.347 3.935 Status OK OK	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.14 0.14 0.11 0.24 0.17 0.46 0.05
US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A S1.003 S2 PN S1.000 S1.001 S1.001 S1.002	An Profile (Puration(s) (mir Period(s) (year limate Change (15 minute 100 15 minute 100 120 minute 100	nalysis T DTS (s) (s) 15, 3 (s) (%) Event year Win year Win year Win year Win year Win year Win year Win year Win year Win	<pre>timestep 1 Status 0, 60, 120</pre>	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540	rtia St Summer 360, 480 Water Level (m) 12.358 9.648 9.499 10.379 9.505 9.503 9.497 9.505 9.503 9.497 9.495 Pipe 7 Flow (l/s) 1 7.1 0 7.0 5 5.3	atus OFF c and Winter 0, 960, 1440 1, 30, 100 0, 0, 40 Surcharged Depth (m) -0.112 -0.112 1.109 -0.101 0.185 1.353 1.347 3.935 Status OK FLOOD RISK	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.14 0.14 0.11 0.24 0.17 0.46 0.05
US/MH PN Name S1.000 S5 S1.001 S4 S1.002 S3 S2.000 S2D S2.001 S2C S2.002 S2B - GEOCELL S2.003 S2A S1.003 S2 PN S1.000 S1.001	Profile (puration(s) (mir Period(s) (year limate Change (15 minute 100 15 minute 100 120 minute 100	nalysis T DTS (s) (s) 15, 3 (s) (%) Event year Win year Win year Win year Win year Win year Win year Win year Win year Win	<pre>timestep 1 S Status 0, 60, 120 0, 60, 1</pre>	Fine Ine ON US/CL (m) 15.080 12.320 9.600 11.180 11.180 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540 9.540	rtia St Summer 360, 480 Water Level (m) 12.358 9.648 9.499 10.379 9.505 9.503 9.497 9.505 9.503 9.497 9.495 A Pipe y Flow (l/s) L 7.1 D 7.0 5.3	atus OFF c and Winter 0, 960, 1440 1, 30, 100 0, 0, 40 Surcharged Depth (m) -0.112 -0.112 1.109 -0.101 0.185 1.353 1.347 3.935 Status OK OK	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.14 0.14 0.11 0.24 0.17 0.46 0.05

Weetwood		Page 2
Suite 1 Park House	(4902)	
Broncoed Bus Park	The Red House,	
Wrexham Rd Mold	Dee Banks, Chester	Micro
Date 17/12/2020 10:38	Designed by OA	Drainage
File 2020-12-17 4902 SW Calculati	Checked by	Diamage
Micro Drainage	Network 2020.1	


Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Overflow (1/s)	Maximum Vol (m³)	Maximum Velocity (m/s)	-	Status
S2.001	S2C		0.373	1.4	5.6	SURCHARGED
S2.002	S2B - GEOCELL		13.128	0.2	2.3	FLOOD RISK
S2.003	S2A		1.894	1.1	2.0	FLOOD RISK
S1.003	S2		4.747	0.2	2.8	FLOOD RISK

APPENDIX J

Preliminary Surface Water Drainage Layout

Delivering client focussed services from offices in Leeds, London and Mold

Flood Risk Assessments Flood Consequences Assessments Surface Water Drainage Foul Water Drainage Environmental Impact Assessments River Realignment and Restoration Water Framework Directive Assessments Environmental Permit and Land Drainage Applications Sequential, Justification and Exception Tests Utility Assessments Expert Witness and Planning Appeals Discharge of Planning Conditions

www.weetwood.net