	2 P S Design	PAGE:	1
PROJECT:	THE MALTHOUSE, BEAUWORTH	CALCS BY:	KP
ELEMENT:	STRUCTURAL CALCULATIONS	DATE:	08/09/2020

Reference drawings

Fowler Architecture drawing numbers 191125/201 to 204 inclusive.

General loading data

Pitched roof load

Weight of rafters = 0.15 x 0.05 x 6 x 1000/400 = 0.12 kN/m² Weight of tiles or thatch, = say 0.7 kN/m² Weight of battens, felt, insulation etc = say 0.18 kN/m² Weight of plasterboard and skim coat = 0.2 kN/m² Total roof dead load = 0.12 + 0.7 + 0.18 + 0.2 = 1.2 kN/m² Roof imposed load (snow) = 0.3 kN/m² Total roof load (unfactored) = 1.2 + 0.3 = 1.5 kN/m^2 Roof load at ULS = $(1.4 \times 1.2) + (1.6 \times 0.3) = 2.2 \text{ kN/m^2}$

<u>Floor load</u>

Weight of floor joists = 0.15 kN/m² Weight of floor boards = 0.12 kN/m² Weight of plasterboard ceiling and skim coat = 0.3 kN/m² Total dead load = 0.15 + 0.12 + 0.3 = 0.57, say 0.6 kN/m² Floor imposed load = 1.5 kN/m² Total floor load (unfactored) = 0.6 + 1.5 = 2.1 kN/m^2 Floor loading at ULS = (1.4 x 0.6) + (1.6 x 1.5) = 3.3 kN/m^2

	2 P S Design	PAGE:	2
PROJECT:	THE MALTHOUSE, BEAUWORTH	CALCS BY:	KP
ELEMENT:	STRUCTURAL CALCULATIONS	DATE:	08/09/2020

<u>Ceiling load</u>

Weight of 50 x 100 ceiling joists = $0.05 \times 0.1 \times 6 \times 1000/400 = 0.1 \text{ kN/m}^2$ Weight of plasterboard ceiling and skim coat = 0.3 kN/m^2 Total dead load = $0.1 + 0.3 = 0.4 \text{ kN/m}^2$ Imposed load = 0.25 kN/m^2 Total ceiling load (unfactored) = $0.4 + 0.25 = 0.65 \text{ kN/m}^2$ Ceiling loading at ULS = $(1.4 \times 0.4) + (1.6 \times 0.25) = 1.0 \text{ kN/m}^2$

Cavity wall load

Weight of 100 thick leaf of bricks or blocks = 2.2 kN/m² Weight of plaster lining = 0.3 kN/m² Total weight = 2.2 + 0.3 = <u>2.5 kN/m²</u> Weight at ULS = 1.4 x 2.5 = <u>3.5 kN/m²</u>

Note

Dimensions in these calculations are for structural purposes only, having been scaled from copies of drawings. The building contractor is to obtain detailed dimensions from site measurements.

The contractor is responsible for ensuring the stability of the structure at all times and that the works are carried out in accordance with the Construction, Design and Management Regulations.

These calculations only apply to the elements included in these documents. If any discrepancies are found on site the Engineer is to be informed.

	2 P S Design	PAGE:	3
PROJECT:	THE MALTHOUSE, BEAUWORTH	CALCS BY:	KP
ELEMENT:	STRUCTURAL CALCULATIONS	DATE:	08/09/2020

Load on rafters

Udl from pitched roof

Load = 1.5 x 0.4 = 0.6 kN/m

Maximum span between centres of supports = 3.0 m

From page 4 use 50 x 150 C16 timbers at 400 mm centres

Load on existing beam over sitting room

Point load from floor beam

Load = 2.1 x 4.3 x 0.5 x 3.1 x 0.5 = 7.0 kN

Udl from floor

Load = 2.1 x 2.6 x 0.5 = 2.8 kN/m

Udl from lathe and plaster wall

Load = 0.6 x 2.4 = 1.5 kN/m

From beam self weight

Load at ULS = 0.14 x 0.3 x 6 = 0.3 kN/m

<u>Total udl on beam</u> = 2.8 + 1.5 + 0.3 = <u>4.6 kN/m</u>

Maximum span between centres of supports = 4.4 m

Load on post = 4.6 x 4.4 / 2 + 7.0 = <u>17.1 kN</u>

Post is to be removed and beam is to be supported from purlins above

By inspection use 127 x 76 x 13 kg/m UB

Nominal tensile capacity of M16 bolt is 30.1 kN therefore use M16 bar grade 8.8 threaded bar.

	2 P S Design			SHEET NO	4
PROJECT:	THE MALTHOUSE, BEAUWORTH			CALCS BY	KP
ELEMENT:	RAFTERS			DATE	08/09/2020
Reference	Timber Type and Geometry				
(to BS5268	Span, L =	3.000	т		
Part 2	Section width, b =	50	mm		
1996)	Section depth, d =	150	mm		
	Timber arade =	<i>C16</i>			
	Loadina				
	UDL per rafter. w =	0.60	kN/m		
	Point load P =	0.00	kN		
	Point of action of P from I H end a =	0.00	m		
	Moment $M = wl^2/8 + Pa(l-a)/l =$	0.68	kNIm		
	Shear force $E = wl /2 + P(l - a)/l =$	0.00	LNI		
	Modification factors	0.70			
	Load duration factor K = -	1 25			
d 2106	Loud duration fuctor, $K_3 =$	1.23			
c/ 2.10.0	$\int depint factor, K_7 = (500/depint) = \int depint factor K_7 = (500/depint) = \int depint factor K_7 = \int depint fa$	1.00			
CT 2.9	Loud Sharing factor, K 8 -	1.10			
	Grada strasses	1.40		Madified	atroacca
Tabla 7	Brude Silvesses	F 20	N1/	7 04	<u>STRESSES</u>
Table 7	Benaing parallel to grain	9.30	N/mm	7.00	N/mm
Table /	Snear parallel to grain	0.67	N/mm^{-2}	0.99	N/mm^{-2}
Table /	Bearing perpendicular to grain	1.70	N/mm^2	2.92	N∕mm⁻
Table /	$E_{(mean)}$	8800	N/mm⁻		
	Check for Benaing:	107500	3		
	Section modulus, Z = bd = 76 =	187500	mm°		
	Bending stress = M/Z =	3.60	N/mm ⁻		<i></i>
	Permissible stress =	7.86	N∕mm⁺		OK
	Check for Deflection	44040500	Δ		
	Moment of Inertia, I = bd ° /12 =	14062500	mm		
	Area = bd =	/500	mm '		
	UDL bending defl'n = 5wL [*] /384EI =	5.11	mm		
	Point bending defl'n = PL ³ /48EI =	0.00	mm		
	UDL Shear defl'n = 12wL ² /5EA =	0.20	mm		
	Point shear defl'n = 24PL/5EA =	0.00	mm		
	Total deflection =	5.31	mm		
cl 2.10.7	Permissible deflection = 0.003 x span =	9.00	mm		ОК
	<u>Check for Shear</u>				
	Shear stress = 3F _v /2A =	0.18	N/mm^2		
	Permissible stress =	0.99	N/mm^2		ОК
	Check for Lateral Buckling				
Table 16	Max depth:breadth ratio =	5.00			
	Actual d/b =	3.00			ОК
	Check for Bearing				
	Bearing width, b " =	100	mm		
	Bearing stress = F _v /(b _w x b) =	0.18	N/mm²		
	Permissible stress =	2.52	N/mm²		ОК
	Hence section selected is	OK	50 x	<i>< 150</i>	C16

	2 P S Design	PAGE:	5
PROJECT:	THE MALTHOUSE, BEAUWORTH	CALCS BY:	KP
ELEMENT:	STRUCTURAL CALCULATIONS	DATE:	08/09/2020

Load on purlins over bedrooms 3 and 4

Point load from beam over sitting room

Load = 17.1 x 1.5 / 2 = <u>12.9 kN</u>

Udl from pitched roof

Load = 2.2 x 2.8 = 6.2 kN/m

Udl from ceiling

Load = 1.0 x 1.8 x 0.5 = 0.9 kN/m

From beam self weight

Load at ULS = 1.4 x 0.3 = 0.4 kN/m

<u>Total udl on beam</u> = 6.2 + 0.9 + 0.4 = <u>7.5 kN/m</u>

Design Moment and Shear Force

Maximum span between centres of supports = 7.1 m

Maximum bending moment, M = 7.5 x 7.1 x 7.1 / 8 + 12.9 x 2.7 x 4.4 / 7.1 = <u>68.9 kNm</u>

Maximum shear force, Fv = 7.5 x 7.1 / 2 + 12.9 x 4.4 / 7.1 = <u>34.7 kN</u>

From page 6 use 305 x 165 x 54 kg/m UB

	2 P S Design	PAGE:	6
PROJECT:	THE MALTHOUSE, BEAWORTH	BY:	KP
ELEMENT:	PURLIN OVER BEDS 3 AND 4	DATE:	08/09/2020
<u>Reference</u>			
(to BS 5950:	Design bending moment, M =	68.90 kNm	
Part 1: 2000)	Design shear force, $F_v =$	34.70 kN	
	Span between lateral supports, L =	7.100 m	
	Steel grade selected =	S275	
	Section selected =	305 x 165 x 54	UB
Table 9	Steel strength, p_y =	275 N/mm	2
Table 11	$\varepsilon = (275/p_y)^{0.5} =$	1.00	
	Flange thickness, T =	13.7 mm	
	Web thickness, t =	7.9 mm	
Section tables	Overall depth, D =	310.4 mm	
	b/T =	6.09	
	d/t =	33.60	
Table 11	Section is Class	1 (plast	iic)
4.2.3	Shear area, Av = t.D =	2452 mm ²	
4.2.3	Shear capacity, $P_v = 0.6p_yA_v =$	404.61 kN	
	Shear ratio $F_v/P_v =$	0.09	
	The shear load is	Low	
4.2.3	d/t < 70, hence no need to check for web shear buckling		
Section	Plastic section modulus, S =	846 cm ³	
tables	Elastic section modulus, Z =	754 cm ³	
4.2.5.2	For class 1 and 2 sections moment capacity, $M_{\rm c}$ = p_yS =	232.65 kNm	
4.2.5.1	Moment capacity limit for simply supported beam = $1.2p_yZ$ =	248.82 kNm	
	Moment capacity is lesser of above values, hence $\rm M_{c}$ =	232.65 kNm	
4.2.2	Section is not fully restrained against lateral torsional buckling betwee	n supports	
Table 10	Effective length, $L_E =$	1.2 L	
Table 13	+	0.0 D	
	Hence effective length, $L_E =$	8520 mm	
	Radius of gyration, r_y =	3.93 cm	
4.3.6.9	Ratio β _W =	1.0	
	$\beta_W^{0.5}$.L _E /r _y =	216.8	
	D/T =	22.7	
Table 20	Bending strength, $p_b =$	89 N/mm	2
4.3.7	Buckling resistance moment, $M_b = p_b S =$	75.22 kNm	

	2 P S Design	PAGE:	7
PROJECT:	THE MALTHOUSE, BEAUWORTH	CALCS BY:	KP
ELEMENT:	STRUCTURAL CALCULATIONS	DATE:	08/09/2020

Bedroom 4 purlin support post

Assume column is $100 \times 100 \times 4.0$ SH5, held in position at both ends and in direction at one end. Length of column between ends = 5.0 m End reaction from purlin = 34.7 kN, assumed to act 100 mm from the column face. Distance from column x axis to beam load point = 100 + (100 / 2) = 150 mm Moment in x axis from beam load = $34.7 \times 0.15 = 5.2$ kNm Self weight of column = $5.0 \times 0.12 \times 1.4 = 0.9$ kN Hence design loads are: F = 34.7 + 0.9 = 35.6 kN $M_x = 5.2$ kNm

From pages 8 and 9 use 100 x 100 x 4.0 SHS

Post foundations

Safe ground bearing pressure assumed to be 100 kN/m^2

Design load = 35.6 / 1.5 = 23.8 kN

Therefore provide 450 x 550 wide mass concrete foundation

	2 P S Design	PAGE:	8
PROJECT:	THE MALTHOUSE, BEAUWORTH	BY:	KP
ELEMENT:	SUPPORT POST TO BED 4 PURLINS	DATE:	08/09/20
<u>Reference</u>	Column loads and geometry		
(to BS 5950:	Design bending moment, M _x =	5.2	kNm
Part 1: 2000)	Design bending moment, M _y =	0.0	kNm
	Design shear force, F _{vx} =	0.0	kN
	Design shear force, F _{vy} =	0.0	kN
	Axial Force, F _c =	35.6	kN
4.7.1.1	Segment length, L =	5.000	m
	Steel grade selected =	5275	
	Section selection and classification		
	Section selected =	100 x	100 x 4.0 SHS
Table 9	Steel strength, p _y =	275	N/mm²
Table 12 note b	$\varepsilon = (275/p_{\gamma})^{0.5} =$	1.00	
Section tables	Local buckling ratio, d/t =	22.0	
Table 12	Since d/t < 56e section is class 1 (plastic)		
	<u>Shear capacity</u>		
	Cross section area, A _g =	15.2	cm ²
Section tables	Depth of section, D =	100.0	mm
	Width of section, B =	100.0	mm
4.2.3 c)	Shear area, A _v = AD/(D + B) =	760	mm ²
4.2.3	Shear capacity, P _v = 0.6p _y .A _v =	125.4	kN OK
	Shear ratio for x-axis, F _{vx} /P _v =	0.00	
	Shear ratio for y-axis, F _{vy} /P _v =	0.00	
4.2.5.2	Since both shear ratios < 0.6, shear load is low in b	oth direc	tions
	Cross-section capacity		
Section tables	Plastic section modulus, S =	54.4	cm ³
Section tables	Elastic section modulus, Z =	46.4	cm ³
4.2.5.2	For class 1 and 2 sections, $M_c = p_y S =$	15.0	kNm
4.2.5.1	Moment capacity general limit = 1.5p _y Z =	19.1	kNm
	Hence $M_{cx} = M_{cy} =$	15.0	kNm OK
Table 22	Effective length, x-axis, L _{Ex} =	0.9	L
Section tables	Radius of gyration, r _y =	<i>3.91</i>	ст
	$L_{Ex}/r_y =$	108.7	
Table 24	Compressive strength, for x-axis fixity, p _{cx} =	139	N/mm²
4.7.4	Compressive resistance, for x-axis fixity, P _{cx} = A _g .p _{cx} =	211.3	kN
Table 22	Effective length, y-axis, L _{Ey} =	0.9	L
Section tables	Radius of gyration, r _x =	3.91	ст

	2 P S Design	PAGE:	9
PROJECT:	THE MALTHOUSE, BEAUWORTH	BY:	KP
ELEMENT:	SUPPORT POST TO BED 4 PURLINS	DATE:	08/09/20
	$L_{Ey}/r_x =$	108.7	
Table 24	Compressive strength, for y-axis fixity, p _{cy} =	139	N/mm²
4.7.4	Compressive resistance, for y-axis fixity, $P_{cy} = A_g p_{cy} =$	211.3	kN
	Minimum compressive resistance, P _c =	211.3	kN
	$A_{g.}p_{y} =$	418.0	kN
	$F_c / A_g . p_y =$	0.09	
	$M_{x}/M_{cx} =$	0.35	
	$M_y / M_{cy} =$	0.00	
4.8.3.2	Cross section check, $F_c/A_g.p_y + M_x/M_{cx} + M_y/M_{cy} =$	0.43	<1 so OK
	Member buckling resistance		
Table 26	Equivalent uniform moment factor, m _x =	0.95	
Table 26	Equivalent uniform moment factor, m _y =	0.95	
	$F_c/P_c =$	0.17	
	$m_x M_x / p_y Z =$	0.39	
	$m_{\gamma}M_{\gamma}/p_{\gamma}Z =$	0.00	
4.8.3.3.1	Buckling check 1 - $F_c/P_c + m_x M_x/p_y Z + m_y M_y/p_y Z =$	0.56	< 1 so OK
	$F_c/P_{cy} =$	0.17	
4.3.6.1	For SHS sections $M_b = M_c =$	15.0	kNm
Table 18	Equivalent uniform moment factor, m_{LT} =	0.93	
	Maximum major axis moment, M $_{LT}$ =	5.2	kN
	$m_{LT}M_{LT}/M_{b} =$	0.32	
	$m_{y}M_{y}/p_{y}Z =$	0.00	
4.8.3.3.1	Buckling check 2 - F_c/P_{cy} + $m_{LT}M_{LT}/M_b$ + m_yM_y/p_yZ =	0.49	<1 so OK

	2 P S Design	PAGE:	10
PROJECT:	THE MALTHOUSE, BEAUWORTH	CALCS BY:	KP
ELEMENT:	STRUCTURAL CALCULATIONS	DATE:	08/09/2020

Load on purlins over bedroom 2

Udl from pitched roof

Load = 2.2 x 2.5 = 5.5 kN/m

<u>Udl from ceiling</u>

Load = 1.0 x 2.2 x 0.5 = 1.1 kN/m

From beam self weight

Load at ULS = 1.4 x 0.3 = 0.4 kN/m

<u>Total udl on beam</u> = 5.5 + 1.1 + 0.4 = <u>7.0 kN/m</u>

Design Moment and Shear Force

Maximum span between centres of supports = 5.8 m

Maximum bending moment, M = 7.0 x 5.8 x 5.8 / 8 = <u>29.5 kNm</u>

Maximum shear force, Fv = 7.0 x 5.8 / 2 = <u>20.3 kN</u>

From page 11 use 254 x 146 x 31 kg/m UB

	2 P S Design	PAGE:	11
PROJECT:	THE MALTHOUSE, BEAWORTH	BY:	КР
ELEMENT:	PURLINS OVER BED 2	DATE:	08/09/2020
<u>Reference</u>			
(to BS 5950:	Design bending moment, M =	29.50 kNm	
Part 1: 2000)	Design shear force, $F_v =$	20.30 kN	
	Span between lateral supports, L =	5.800 m	
	Steel grade selected =	S275	
	Section selected =	254 x 146 x 31	UB
Table 9	Steel strength, p_y =	275 N/mm	1 ²
Table 11	$\varepsilon = (275/p_y)^{0.5} =$	1.00	
	Flange thickness, T =	8.6 mm	
	Web thickness, t =	6.0 mm	
Section tables	Overall depth, D =	251.4 mm	
	b/T =	8.49	
	d/t =	36.50	
Table 11	Section is Class	1 (plas	tic)
4.2.3	Shear area, Av = t.D =	1508 mm ²	
4.2.3	Shear capacity, $P_v = 0.6p_yA_v =$	248.89 kN	
	Shear ratio $F_v/P_v =$	0.08	
	The shear load is	Low	
4.2.3	d/t < 70, hence no need to check for web shear buckling		
Section	Plastic section modulus, S =	393 cm ³	
tables	Elastic section modulus, Z =	351 cm ³	
4.2.5.2	For class 1 and 2 sections moment capacity, $M_{\rm c}$ = p_yS =	108.08 kNm	
4.2.5.1	Moment capacity limit for simply supported beam = $1.2p_yZ$ =	115.83 kNm	
	Moment capacity is lesser of above values, hence $\rm M_{c}$ =	108.08 kNm	
4.2.2	Section is not fully restrained against lateral torsional buckling betwee	n supports	
Table 10	Effective length, $L_E =$	1.2 L	
Table 13	+	0.0 D	
	Hence effective length, $L_E =$	6960 mm	
	Radius of gyration, $r_y =$	3.36 cm	
4.3.6.9	Ratio $\beta_W =$	1.0	
	$\beta_W^{0.5}$.L _E /r _y =	207.1	
	D/T =	29.2	
Table 20	Bending strength, $p_b =$	79 N/mm	12
4.3.7	Buckling resistance moment, $M_b = p_b S =$	31.23 kNm	

	2 P S Design	PAGE:	12
PROJECT:	THE MALTHOUSE, BEAUWORTH	CALCS BY:	KP
ELEMENT:	STRUCTURAL CALCULATIONS	DATE:	08/09/2020

Load on purlins over bedroom 1

Udl from pitched roof

Load = 2.2 x 3.0 = 6.6 kN/m

<u>Udl from ceiling</u>

Load = 1.0 x 2.6 x 0.5 = 1.3 kN/m

From beam self weight

Load at ULS = 1.4 x 0.3 = 0.4 kN/m

<u>Total udl on beam</u> = 6.6 + 1.3 + 0.4 = <u>8.3 kN/m</u>

Design Moment and Shear Force

Maximum span between centres of supports = 6.2 m

Maximum bending moment, M = 8.3 x 6.2 x 6.2 / 8 = 40.0 kNm

Maximum shear force, Fv = 8.3 x 6.2 / 2 = <u>25.8 kN</u>

From page 13 use 254 x 146 x 37 kg/m UB

By inspection use same size over bathroom and landing

	2 P S Design	PAGE:	13
PROJECT:	THE MALTHOUSE, BEAWORTH	BY:	КР
ELEMENT:	PURLINS OVER BED 1	DATE:	08/09/2020
<u>Reference</u>			
(to BS 5950:	Design bending moment, M =	40.00 kNm	
Part 1: 2000)	Design shear force, $F_v =$	25.80 kN	
	Span between lateral supports, L =	6.200 m	
	Steel grade selected =	S275	
	Section selected =	254 x 146 x 3	7 UB
Table 9	Steel strength, $p_y =$	275 N/mr	n ²
Table 11	$\varepsilon = (275/p_y)^{0.5} =$	1.00	
	Flange thickness, T =	10.9 mm	
	Web thickness, t =	6.3 mm	
Section tables	Overall depth, D =	256.0 mm	
	b/T =	6.72	
	d/t =	34.80	
Table 11	Section is Class	1 (plas	stic)
4.2.3	Shear area, Av = t.D =	1613 mm ²	
4.2.3	Shear capacity, $P_v = 0.6p_yA_v =$	266.11 kN	
	Shear ratio $F_v/P_v =$	0.10	
	The shear load is	Low	
4.2.3	d/t < 70, hence no need to check for web shear buckling		
Section	Plastic section modulus, S =	483 cm ³	
tables	Elastic section modulus, Z =	433 cm ³	
4.2.5.2	For class 1 and 2 sections moment capacity, $M_{\rm c}$ = p_yS =	132.83 kNm	
4.2.5.1	Moment capacity limit for simply supported beam = $1.2p_yZ$ =	142.89 kNm	
	Moment capacity is lesser of above values, hence $\rm M_{c}$ =	132.83 kNm	
4.2.2	Section is not fully restrained against lateral torsional buckling betwee	n supports	
Table 12	Effective length, $L_E =$	1.2 L	
Table 13	+	0.0 D	
	Hence effective length, L_E =	7440 mm	
	Radius of gyration, $r_y =$	3.48 cm	
4.3.6.9	Ratio β _w =	1.0	
	$\beta_W^{0.5}$.L _E /r _y =	213.8	
	D/T =	23.5	
Table 20	Bending strength, p_b =	88 N/mr	n ²
4.3.7	Buckling resistance moment, $M_b = p_b S =$	42.52 kNm	

	2 P S Design	PAGE:	14
PROJECT:	THE MALTHOUSE, BEAUWORTH	CALCS BY:	KP
ELEMENT:	STRUCTURAL CALCULATIONS	DATE:	08/09/2020

Check on cantilever purlins over bedroom 2

Point load from landing purlin

Load = 2.2 x 2.1 x 3.2 x 0.5 = 7.4 kN

Udl from pitched roof

Load = 2.2 x 2.1 = 4.6 kN/m

Udl from ceiling

Load = 1.0 x 2.6 x 0.5 = 1.3 kN/m

From beam self weight

Load at ULS = 1.4 x 0.3 = 0.4 kN/m

<u>Total udl on beam</u> = 4.6 + 1.3 + 0.4 = <u>6.3 kN/m</u>

Design Moment and Shear Force

Maximum cantilever span = 1.4 mMaximum bending moment, $M = 6.3 \times 1.4 \times 1.4 / 2 + 7.4 \times 1.4 = <u>16.6 kNm</u>$ Maximum shear force, $Fv = 6.3 \times 1.4 + 7.4 = <u>16.2 kN</u>$

By comparison to bed 2 purlin calculations use 254 x 146 x 31 kg/m UB

	2 P S Design	PAGE:	15
PROJECT:	THE MALTHOUSE, BEAUWORTH	CALCS BY:	KP
ELEMENT:	STRUCTURAL CALCULATIONS	DATE:	08/09/2020

Load on beam to support bedroom 2 purlin

Point load from purlins

Load = 20.3 + 16.2 = <u>36.5 kN</u>

Design Moment and Shear Force

Maximum cantilever span = 0.6 m Maximum bending moment, M = 36.5 x 0.6 = <u>21.9 kNm</u> Maximum shear force, Fv = <u>36.5 kN</u>

From page 16 use 152 x 89 x 16 kg/m UB

Bedroom 2 purlin support post

Assume column is $70 \times 70 \times 3.6$ SHS, held in position at both ends and in direction at one end.

Length of column between ends = 3.1 m

End reaction from purlin = 36.5 kN, assumed to act 100 mm from the column face.

Distance from column x axis to beam load point = 100 + (70 / 2) = 135 mm

Moment in x axis from beam load = 36.5 x 0.135 = 5.0 kNm

Self weight of column = 3.1 x 0.08 x 1.4 = 0.4 kN

Hence design loads are:

F = 36.5 + 0.4 = 36.9 kN

M_x = 5.0 kNm

From pages 17 and 18 use 70 x 70 x 5.0 SHS

	2 P S Design	PAGE:	16
PROJECT:	THE MALTHOUSE, BEAWORTH	BY:	KP
ELEMENT:	BEAM TO SUPPORT BED 2 PURLIN	DATE:	08/09/2020
<u>Reference</u>			
(to BS 5950:	Design bending moment, M =	21.90 kNr	n
Part 1: 2000)	Design shear force, $F_v =$	36.50 kN	
	Span between lateral supports, L =	0.600 m	
	Steel grade selected =	S275	
	Section selected =	152 x 89 x 1	6 UB
Table 9	Steel strength, p _y =	275 N/n	nm²
Table 11	$\varepsilon = (275/p_y)^{0.5} =$	1.00	
	Flange thickness, T =	7.7 mm	1
	Web thickness, t =	4.5 mm	1
Section tables	Overall depth, D =	152.4 mm	1
	b/T =	5.76	
	d/t =	27.10	
Table 11	Section is Class	1 (pla	astic)
4.2.3	Shear area, Av = t.D =	686 mm	1 ²
4.2.3	Shear capacity, $P_v = 0.6p_yA_v =$	113.16 kN	
	Shear ratio $F_v/P_v =$	0.32	
	The shear load is	Low	
4.2.3	d/t < 70, hence no need to check for web shear buckling		
Section	Plastic section modulus, S =	123 cm	3
tables	Elastic section modulus, Z =	109 cm	3
4.2.5.2	For class 1 and 2 sections moment capacity, M_{c} = $p_{y}S$ =	33.83 kNr	n
4.2.5.1	Moment capacity limit for simply supported beam = $1.2p_yZ$ =	35.97 kNi	n
	Moment capacity is lesser of above values, hence $\rm M_{c}$ =	33.83 kNi	n
4.2.2	Section is not fully restrained against lateral torsional buckling betwee	n supports	
T / / /0	Effective length, $L_E =$	1.2 L	
Table 13	+	0.0 D	
	Hence effective length, L_E =	720 mm	1
	Radius of gyration, r _y =	2.10 cm	
4.3.6.9	Ratio β _W =	1.0	
	$\beta_W^{0.5}.L_E/r_v =$	34.3	
	D/T =	19.8	
Table 20	Bending strength, $p_b =$	275 N/n	nm²
4.3.7	Buckling resistance moment, $M_b = p_b S =$	33.83 kNr	n

	2 P S Design	PAGE:	17
PROJECT:	THE MALTHOUSE, BEAUWORTH	BY:	KP
ELEMENT:	SUPPORT POST TO BED 2 PURLINS	DATE:	08/09/20
Reference	Column loads and geometry	1	
(to BS 5950:	Design bending moment, M _x =	5.0	kNm
Part 1: 2000)	Design bending moment, M _y =	0.0	kNm
	Design shear force, F _{vx} =	0.0	kN
	Design shear force, F _{vy} =	0.0	kN
	Axial Force, F _c =	36.9	kN
4.7.1.1	Segment length, L =	3.100	т
	Steel grade selected =	5275	
	Section selection and classification		
	Section selected =	70 x	70 x 5.0 SHS
Table 9	Steel strength, p _y =	275	N/mm²
Table 12 note b	$\varepsilon = (275/p_{\gamma})^{0.5} =$	1.00	
Section tables	Local buckling ratio, d/t =	11.0	
Table 12	Since d/t < 56e section is class 1 (plastic)		
	<u>Shear capacity</u>		
	Cross section area, A _g =	12.7	cm ²
Section tables	Depth of section, D =	70.0	mm
	Width of section, B =	70.0	mm
4.2.3 c)	Shear area, A _v = AD/(D + B) =	635	mm ²
4.2.3	Shear capacity, P _v = 0.6p _y .A _v =	104.8	kN OK
	Shear ratio for x-axis, F _{vx} /P _v =	0.00	
	Shear ratio for y-axis, F _{vy} /P _v =	0.00	
4.2.5.2	Since both shear ratios < 0.6, shear load is low in b	oth direc	tions
	Cross-section capacity		
Section tables	Plastic section modulus, S =	30.8	cm ³
Section tables	Elastic section modulus, Z =	25.3	cm ³
4.2.5.2	For class 1 and 2 sections, $M_c = p_y S =$	8.5	kNm
4.2.5.1	Moment capacity general limit = 1.5p _y Z =	10.4	kNm
	Hence $M_{cx} = M_{cy} =$	8.5	kNm OK
Table 22	Effective length, x-axis, L _{Ex} =	0.9	L
Section tables	Radius of gyration, r _y =	2.64	ст
	$L_{Ex}/r_y =$	99.8	
Table 24	Compressive strength, for x-axis fixity, p _{cx} =	157	N/mm²
4.7.4	Compressive resistance, for x-axis fixity, P _{cx} = A _g .p _{cx} =	199.4	kN
Table 22	Effective length, y-axis, L _{Ey} =	0.9	L
Section tables	Radius of gyration, r _x =	2.64	ст

	2 P S Design	PAGE:	18
PROJECT:	THE MALTHOUSE, BEAUWORTH	BY:	KP
ELEMENT:	SUPPORT POST TO BED 2 PURLINS	DATE:	08/09/20
	$L_{EY}/r_x =$	99.8	
Table 24	Compressive strength, for y-axis fixity, p _{cy} =	157	N/mm²
4.7.4	Compressive resistance, for y-axis fixity, P _{cy} = A _g .p _{cy} =	199.4	kN
	Minimum compressive resistance, P _c =	199.4	kN
	$A_{g.}p_{y} =$	349.3	kN
	$F_c / A_g . p_y =$	0.11	
	$M_x/M_{cx} =$	0.59	
	$M_y/M_{cy} =$	0.00	
4.8.3.2	Cross section check, $F_c/A_g.p_y + M_x/M_{cx} + M_y/M_{cy} =$	0.70	<1 so OK
	Member buckling resistance		
Table 26	Equivalent uniform moment factor, m _x =	0.95	
Table 26	Equivalent uniform moment factor, m _y =	0.95	
	$F_c/P_c =$	0.19	
	$m_x M_x / p_y Z =$	0.68	
	$m_y M_y / p_y Z =$	0.00	
4.8.3.3.1	Buckling check 1 - $F_c/P_c + m_x M_x/p_y Z + m_y M_y/p_y Z =$	0.87	< 1 so OK
	$F_c/P_{cy} =$	0.19	
4.3.6.1	For SHS sections $M_b = M_c =$	8.5	kNm
Table 18	Equivalent uniform moment factor, m _{LT} =	0.93	
	Maximum major axis moment, M _{LT} =	5.0	kN
	$m_{LT}M_{LT}/M_{b} =$	0.55	
	$m_y M_y / p_y Z =$	0.00	
4.8.3.3.1	Buckling check 2 - F_c/P_{cy} + $m_{LT}M_{LT}/M_b$ + m_yM_y/p_yZ =	0.73	<1 so OK

	2 P S Design	PAGE:	19
PROJECT:	THE MALTHOUSE, BEAUWORTH	CALCS BY:	KP
ELEMENT:	STRUCTURAL CALCULATIONS	DATE:	08/09/2020

Load on beam to support bedroom 1 purlin

Point load from purlin

Load = 8.3 x 9.8 x 0.5 = <u>40.7 kN</u>

Design Moment and Shear Force

Maximum span between centres of supports = 4.4 m Maximum bending moment, M = 40.7 x 4.4 / 4 = <u>44.8 kNm</u> Maximum shear force, Fv = 40.7 / 2 = <u>20.4 kN</u>

From page 20 use 254 x 146 x 37 kg/m UB

Bedroom 1 purlin support post

Assume column is 70 x 70 x 3.6 SHS, held in position at both ends and in direction at one end. Length of column between ends = 3.1 m End reaction from beam = 20.4 kN, assumed to act 100 mm from the column face. End reaction from purlin = $8.3 \times 7.8 / 2 = 32.4$ kN Distance from column x axis to beam load point = 100 + (70 / 2) = 135 mm Moment in x axis from beam load = $(32.4 - 20.4) \times 0.135 = 1.6$ kNm Self weight of column = $3.1 \times 0.08 \times 1.4 = 0.4$ kN Hence design loads are: F = 20.4 + 32.4 + 0.4 = 53.2 kN

 $M_x = 1.6 \ kNm$

From pages 21 and 22 use 70 x 70 x 3.6 SHS

	2 P S Design	PAGE:	20
PROJECT:	THE MALTHOUSE, BEAWORTH	BY:	КР
ELEMENT:	BEAM TO SUPPORT BED 1 PURLIN	DATE:	08/09/2020
<u>Reference</u>			
(to BS 5950:	Design bending moment, M =	44.80 kl	Nm
Part 1: 2000)	Design shear force, $F_v =$	20.40 kl	N
	Span between lateral supports, L =	4.400 m	
	Steel grade selected =	S275	
	Section selected =	254 x 146	x 37 UB
Table 9	Steel strength, $p_y =$	275 N	/mm²
Table 11	$\varepsilon = (275/p_y)^{0.5} =$	1.00	
	Flange thickness, T =	10.9 m	m
	Web thickness, t =	6.3 m	m
Section tables	Overall depth, D =	256.0 m	m
	b/T =	6.72	
	d/t =	34.80	
Table 11	Section is Class	1 (p	plastic)
4.2.3	Shear area, Av = t.D =	1613 m	m ²
4.2.3	Shear capacity, $P_v = 0.6p_yA_v =$	266.11 kl	N
	Shear ratio $F_v/P_v =$	0.08	
	The shear load is	Low	
4.2.3	d/t < 70, hence no need to check for web shear buckling		
Section	Plastic section modulus, S =	483 CI	m ³
tables	Elastic section modulus, Z =	433 CI	m ³
4.2.5.2	For class 1 and 2 sections moment capacity, $M_{\rm c}$ = p_yS =	132.83 kl	Nm
4.2.5.1	Moment capacity limit for simply supported beam = $1.2p_yZ$ =	142.89 kl	Nm
	Moment capacity is lesser of above values, hence $\rm M_{c}$ =	132.83 ki	Nm
4.2.2	Section is not fully restrained against lateral torsional buckling betwee	n supports	
Table 10	Effective length, $L_E =$	1.2 L	
Table 13	+	0.0 D	
	Hence effective length, $L_E =$	5280 m	m
	Radius of gyration, $r_y =$	3.48 cr	n
4.3.6.9	Ratio β_W =	1.0	
	$\beta_W^{0.5}$.L _E /r _y =	151.7	
	D/T =	23.5	
Table 20	Bending strength, $p_b =$	121 N	/mm ²
4.3.7	Buckling resistance moment, $M_b = p_b S =$	58.66 kl	Nm

	2 P S Design	PAGE:	21
PROJECT:	THE MALTHOUSE, BEAUWORTH	BY:	KP
ELEMENT:	SUPPORT POST TO BED 1 PURLINS	DATE:	08/09/20
<u>Reference</u>	Column loads and geometry		
(to BS 5950:	Design bending moment, M _x =	1.6	kNm
Part 1: 2000)	Design bending moment, M _y =	0.0	kNm
	Design shear force, F _{vx} =	0.0	kN
	Design shear force, F _{vy} =	0.0	kN
	Axial Force, F _c =	<i>53.2</i>	kN
4.7.1.1	Segment length, L =	3.100	m
	Steel grade selected =	5275	
	Section selection and classification		
	Section selected =	70 x	70 x 3.6 SHS
Table 9	Steel strength, p _y =	275	N/mm²
Table 12 note b	$\varepsilon = (275/p_y)^{0.5} =$	1.00	
Section tables	Local buckling ratio, d/t =	16.4	
Table 12	Since d/t < 56e section is class 1 (plastic)		
	<u>Shear capacity</u>		
	Cross section area, A _g =	9.4	cm²
Section tables	Depth of section, D =	70.0	mm
	Width of section, B =	70.0	mm
4.2.3 c)	Shear area, A _v = AD/(D + B) =	471	mm²
4.2.3	Shear capacity, P _v = 0.6p _y .A _v =	77.7	kN OK
	Shear ratio for x-axis, F _{vx} /P _v =	0.00	
	Shear ratio for y-axis, F _{vy} /P _v =	0.00	
4.2.5.2	Since both shear ratios < 0.6, shear load is low in b	oth direc	tions
	Cross-section capacity		
Section tables	Plastic section modulus, S =	23.3	cm ³
Section tables	Elastic section modulus, Z =	19.6	cm ³
4.2.5.2	For class 1 and 2 sections, $M_c = p_y S =$	6.4	kNm
4.2.5.1	Moment capacity general limit = 1.5p _y Z =	8.1	kNm
	Hence $M_{cx} = M_{cy} =$	6.4	kNm OK
Table 22	Effective length, x-axis, L _{Ex} =	0.9	L
Section tables	Radius of gyration, r _y =	2.70	ст
	$L_{Ex}/r_y =$	97.6	
Table 24	Compressive strength, for x-axis fixity, p _{cx} =	162	N/mm²
4.7.4	Compressive resistance, for x-axis fixity, P _{cx} = A _g .p _{cx} =	152.6	kN
Table 22	Effective length, y-axis, L _{Ey} =	0.9	L
Section tables	Radius of gyration, r _x =	2.70	ст

	2 P S Design	PAGE:	22
PROJECT:	THE MALTHOUSE, BEAUWORTH	BY:	КР
ELEMENT:	SUPPORT POST TO BED 1 PURLINS	DATE:	08/09/20
	$L_{EY}/r_x =$	97.6	
Table 24	Compressive strength, for y-axis fixity, p _{cy} =	162	N/mm²
4.7.4	Compressive resistance, for y-axis fixity, P _{cy} = A _g .p _{cy} =	152.6	kN
	Minimum compressive resistance, P _c =	152.6	kN
	$A_g.p_y =$	259.1	kN
	$F_c/A_g.p_y =$	0.21	
	$M_x/M_{cx} =$	0.25	
	$M_y / M_{cy} =$	0.00	
4.8.3.2	Cross section check, $F_c/A_g.p_y + M_x/M_{cx} + M_y/M_{cy} =$	0.46	<1 so OK
	Member buckling resistance		
Table 26	Equivalent uniform moment factor, m _× =	0.95	
Table 26	Equivalent uniform moment factor, m _y =	0.95	
	$F_c/P_c =$	0.35	
	$m_x M_x / p_y Z =$	0.28	
	$m_y M_y / p_y Z =$	0.00	
4.8.3.3.1	Buckling check 1 - $F_c/P_c + m_x M_x/p_y Z + m_y M_y/p_y Z =$	0.63	< 1 so OK
	$F_c/P_{cy} =$	0.35	
4.3.6.1	For SHS sections $M_b = M_c =$	6.4	kNm
Table 18	Equivalent uniform moment factor, m_{LT} =	0.93	
	Maximum major axis moment, M _{LT} =	1.6	kN
	$m_{LT}M_{LT}/M_{b} =$	0.23	
	$m_y M_y / p_y Z =$	0.00	
4.8.3.3.1	Buckling check 2 - F_c/P_{cy} + $m_{LT}M_{LT}/M_b$ + m_yM_y/p_yZ =	0.58	<1 so OK

	2 P S Design	PAGE:	23
PROJECT:	THE MALTHOUSE, BEAUWORTH	CALCS BY:	KP
ELEMENT:	STRUCTURAL CALCULATIONS	DATE:	08/09/2020

Load on new floor joists

Udl from floor

Load = 2.1 x 0.4 = <u>0.84 kN/m</u>

Maximum span between centres of supports = 3.4 m

From page 24 use 50 x 150 C24 timbers at 400 mm centres

Load on beam over dining

Udl from new floor

Load = 3.3 x 6.0 x 0.5 = 9.9 kN/m

From beam self weight

Load at ULS = 1.4 x 0.5 = 0.7 kN/m

<u>Total udl on beam</u> = 9.9 + 0.7 = <u>10.6 kN/m</u>

Design Moment and Shear Force

Maximum span between centres of supports = 6.5 m

Maximum bending moment, M = 10.6 x 6.5 x 6.5 / 8 = <u>56.0 kNm</u>

Maximum shear force, Fv = 10.6 x 6.5 / 2 = <u>34.5 kN</u>

From page 25 use 254 x 146 x 43 kg/m UB

Check deflection

Allowable = 6500 / 360 = 18 but limit to 14.0 mm

Actual = 5 x 10.6 x 6.5 x 6500³ / 1.5 x 384 x 205 x 6540 x 10⁴ = 12.3 mm

Therefore ok

	2 P S Design			SHEET NO	24
PROJECT:	THE MALTHOUSE, BEAUWORTH			CALCS BY	KP
ELEMENT:	FLOOR JOISTS			DATE	08/09/2020
Reference	Timber Type and Geometry			1	
(to B55268	Span, L =	3.400	т		
Part 2	Section width, b =	50	mm		
1996)	Section depth, d =	150	mm		
	Timber grade =	<i>C24</i>			
	Loading				
	UDL per joist, w =	0.84	kN/m		
	Point load, P =	0.00	kΝ		
	Point of action of P from LH end, a =	0.00	т		
	Moment. $M = wL^2/8 + Pa(L-a)/L =$	1,21	kNm		
	Shear force, $F_{v} = wL/2 + P(L-a)/L =$	1,43	kΝ		
	Modification factors				
	Load duration factor. K 3 =	1.00			
cl 2.10.6	Depth factor $K_{\tau} = (300/depth)^{0.11} =$	1.08			
cl 2.9	Load sharina factor, K s =	1.10			
	Total modification factor =	1.19			
	Grade stresses			Modified	stresses
Table 7	Bending parallel to grain	7.50	N/mm ²	8 90	N/mm^2
Table 7	Shear parallel to arain	0.71	N/mm^2	0.84	N/mm^2
Table 7	Bearing perpendicular to arain	190	N/mm^2	2 26	N/mm^2
Table 7	F (max)	10800	N/mm^2	2.20	
, abro ,	Check for Bendina:	10000	/ •/ //////		
	Section modulus $7 = hd^2 / 6 =$	187500	mm ³		
	Rending stress = M/7 =	6 47	$\Lambda 1/mm^2$		
	Permissible stress -	8 90	N/mm^2		OK
	Check for Deflection	0.70	/ // /////		UK
	$\frac{CHECK + OF - DEFICE + OH}{Moment of Thentia T - bd^3 / 12 - 12}$	14062500	mm ⁴		
	Area - bd -	7500	11111 mm ²		
	$\frac{1}{10} = \frac{1}{10} $	962	///// mm		
	Dol bending $def(n - SWL - SO4E1 - Deint banding def(n - DL^3) / ABET - DL^3) / ABE$	9.02	///// mm		
	Point Denaing deft $n = PL / 40EL =$	0.00	///// /////		
	UDL Shear defi'n = 12WL /JEA =	0.29			
	Point snear define = 24PL/JEA =	0.00	mm		
-1 2 10 7	Total deflection =	9.91	mm		01
<i>CI 2.10.7</i>	Permissible deflection = 0.003 x span =	10.20	mm		ÛK
	Check for Shear	0.20			
	Shear stress = $3F_v/2A$ =	0.29	N/mm ⁻		04
	Permissible stress =	0.84	N/mm⁻		OK
	Check for Lateral Buckling	5.00			
Table 16	Max depth:breadth ratio =	5.00			<i></i>
	Actual d/b =	3.00			ΟΚ
	Check for Bearing				
	Bearing width, b w =	100	mm		
	Bearing stress = $F_v / (b_w \times b)$ =	0.29	N/mm ²		
	Permissible stress =	2.26	N/mm²		ОК
	Hence section selected is	OK	50 x	<i>< 150</i>	C24

	2 P S Design	PAGE:	25
PROJECT:	THE MALTHOUSE, BEAWORTH	BY:	КР
ELEMENT:	BEAM OVER DINING	DATE:	08/09/2020
<u>Reference</u>			
(to BS 5950:	Design bending moment, M =	56.00 kNm	
Part 1: 2000)	Design shear force, $F_v =$	34.50 kN	
	Span between lateral supports, L =	1.000 m	
	Steel grade selected =	S275	
	Section selected =	254 x 146 x 43	UB
Table 9	Steel strength, $p_y =$	275 N/mm	2
Table 11	$\varepsilon = (275/p_y)^{0.5} =$	1.00	
	Flange thickness, T =	12.7 mm	
	Web thickness, t =	7.2 mm	
Section tables	Overall depth, D =	259.6 mm	
	b/T =	5.80	
	d/t =	30.40	
Table 11	Section is Class	1 (plast	ic)
4.2.3	Shear area, Av = t.D =	1869 mm ²	
4.2.3	Shear capacity, $P_v = 0.6p_yA_v =$	308.40 kN	
	Shear ratio $F_v/P_v =$	0.11	
	The shear load is	Low	
4.2.3	d/t < 70, hence no need to check for web shear buckling		
Section	Plastic section modulus, S =	566 cm ³	
tables	Elastic section modulus, Z =	504 cm ³	
4.2.5.2	For class 1 and 2 sections moment capacity, M_{c} = $p_{y}S$ =	155.65 kNm	
4.2.5.1	Moment capacity limit for simply supported beam = $1.2p_yZ$ =	166.32 kNm	
	Moment capacity is lesser of above values, hence $\rm M_{c}$ =	155.65 kNm	
4.2.2	Section is not fully restrained against lateral torsional buckling betwee	n supports	
Table 13	Effective length, $L_E =$	1.2 L	
	+	0.0 D	
	Hence effective length, L_E =	1200 mm	
4.3.6.9	Radius of gyration, $r_y =$	3.52 cm	
	Ratio β _w =	1.0	
	$\beta_W^{0.5}$.L _E /r _y =	34.1	
	D/T =	20.4	
Table 20	Bending strength, $p_b =$	275 N/mm	2
4.3.7	Buckling resistance moment, $M_b = p_b S =$	155.65 kNm	

	2 P S Design	PAGE:	26
PROJECT:	THE MALTHOUSE, BEAUWORTH	CALCS BY:	KP
ELEMENT:	STRUCTURAL CALCULATIONS	DATE:	08/09/2020

Load on beam over wc

Point load from purlin posts

Load = <u>36.9 kN</u>

Design Moment and Shear Force

Maximum span between centres of supports = 3.7 m Maximum bending moment, M = 36.9 x 1.6 = <u>59.0 kNm</u>

Maximum shear force, Fv = <u>36.9 kN</u>

From page 27 use 254 x 146 x 37 kg/m UB

2 P S Design			27
PROJECT:	THE MALTHOUSE, BEAWORTH	BY:	КР
ELEMENT:	BEAM OVER WC	DATE:	08/09/2020
<u>Reference</u>			
(to BS 5950:	Design bending moment, M =	59.00 kNm	
Part 1: 2000)	Design shear force, $F_v =$	36.90 kN	
	Span between lateral supports, L =	3.700 m	
	Steel grade selected =	S275	
	Section selected =	254 x 146 x 3	7 UB
Table 9	Steel strength, $p_y =$	275 N/mr	n ²
Table 11	$\varepsilon = (275/p_y)^{0.5} =$	1.00	
	Flange thickness, T =	10.9 mm	
	Web thickness, t =	6.3 mm	
Section tables	Overall depth, D =	256.0 mm	
	b/T =	6.72	
	d/t =	34.80	
Table 11	Section is Class	1 (plas	tic)
4.2.3	Shear area, Av = t.D =	1613 mm ²	
4.2.3	Shear capacity, $P_v = 0.6p_yA_v =$	266.11 kN	
	Shear ratio $F_v/P_v =$	0.14	
	The shear load is	Low	
4.2.3	d/t < 70, hence no need to check for web shear buckling		
Section	Plastic section modulus, S =	483 cm ³	
tables	Elastic section modulus, Z =	433 cm ³	
4.2.5.2	For class 1 and 2 sections moment capacity, M_{c} = $p_{y}S$ =	132.83 kNm	
4.2.5.1	Moment capacity limit for simply supported beam = $1.2p_yZ$ =	142.89 kNm	
	Moment capacity is lesser of above values, hence $\rm M_{c}$ =	132.83 kNm	
4.2.2	Section is not fully restrained against lateral torsional buckling betwee	n supports	
Table 13	Effective length, $L_E =$	1.2 L	
	+	0.0 D	
	Hence effective length, L_E =	4440 mm	
	Radius of gyration, $r_y =$	3.48 cm	
4.3.6.9	Ratio β_W =	1.0	
	$\beta_W^{0.5}$.L _E /r _y =	127.6	
	D/T =	23.5	
Table 20	Bending strength, $p_b =$	142 N/mr	n ²
4.3.7	Buckling resistance moment, $M_b = p_b S =$	68.64 kNm	

	2 P S Design	PAGE:	28
PROJECT:	THE MALTHOUSE, BEAUWORTH	CALCS BY:	KP
ELEMENT:	STRUCTURAL CALCULATIONS	DATE:	08/09/2020

Beam End Bearing (Reference to BS 5628 Part 1)

The beams have their ends bearings on the internal and external leafs of the cavity walls.

The bearings on the walls are assumed to be Bearing Type 2 as shown at Figure 4 of BS 5628.

End reactions for beams generally

Maximum wall reactions = 53.2 kN

For an end bearing at the wall of 100 mm, and a wall width of 100 mm, the bearing stress under the beams = $53.2 \times 1000 / 100 \times 100 = 5.32 \text{ N/mm}^2$

For a Type 2 bearing the permissible stress = $1.5f_k/\gamma_m$

 γ_m = 3.5 hence permissible stress = 1.5/3.5 f_k = 0.42 f_k

Hence wall strength required = 5.32 / 0.42 = 12.67 N/mm²

Use a concrete padstone.

Bearing stress under the padstone = $53.2 \times 1000 / 100 \times 440 = 1.21 \text{ N/mm}^2$

Wall strength required under padstone = 1.21 / 0.42 = 2.88 N/mm²

Hence, providing supporting walls are constructed with standard format solid concrete blocks or bricks (minimum $f_k = 3.0 \text{ N/mm}^2$) the arrangement is OK.

Use concrete padstones 100 x 440 x 215 deep