

Bridge Farm Meath Green Lane Horley Surrey RH6 8JA

> office@stripeuk.com www.stripeuk.com 01293 850794

QA HOSPITAL MSCP PORTSMOUTH, COSHAM, PORTSMOUTH, PO6 3LY

DRAINAGE STRATEGY REPORT

Director: Russell Simmons BSc (Hons), MCIOB, CBuildE, MCABE, MCIHT, MBPA, AMICE

Client	Noviniti				
Project No.	J1708	J1708			
Project Title	QA Hospital MS	CP Portsmouth			
Document		_			
Title	Drainage Strate	Drainage Strategy Report			
Version	Status	Author	Approved by	Date of Issue	
1	DRAFT	AJ	DB	28.01.21	
2	FINAL	AJ	DB	10.02.21	

Contents

1.0	Introduction	4
2.0	Location of Site	4
3.0	Site Description	5
4.0	Site Run-Off	8
5.0	Proposed Development	10
6.0	Sustainable Drainage Assessment	11
7.0	Drainage Proposal	14
8.0	Water Quality	18
9.0	Summary and Conclusions	22

Appendices

Appendix A	Location Plan
Appendix B	Topographical Survey
Appendix C	Existing Sewer Plans
Appendix D	Site Boreholes
Appendix E	Magic Map Geology Information
Appendix F	Greenfield Run-Off
Appendix G	Proposed Site Plan
Appendix H	Schematic Drainage Layout (To Follow)
Appendix J	MicroDrainage Calculations (To Follow)

1.0 Introduction

- 1.1.1 Noviniti is planning a proposed development on the site at QA Hospital MSCP Portsmouth, Cosham, Portsmouth, PO6 3LY.
- 1.1.2 Stripe Consulting has been instructed to produce a Drainage Strategy to support the Planning Application.
- 1.1.3 This report aims to demonstrate that a reduction in surface water run-off from the site can be achieved.
- 1.1.4 The general limitations of this assessment are that:
 - Several data sources have been used in compiling this report. Whilst Stripe Consulting believe them to be trustworthy; it is unable to guarantee the accuracy of the information that has been provided by others.
 - This report is based on information available at the time of preparation. There is potential for further information to become available, which may create a need to modify conclusions drawn in this report.

2.0 Location of Site

- 2.1.1 The site is off Harvey Road in Portsmouth. A location plan is enclosed in **Appendix A**.
- 2.1.2 The Local Authority is Portsmouth City Council.

3.0 Site Description

3.1 Existing Site

3.1.1 The existing site is the car park serving Queen Alexandra Hospital. A topographical survey has been commissioned for the site and can be found in **Appendix B**.

3.2 Existing Drainage System

3.2.1 Detailed surveys of the existing infrastructure have been undertaken and drawings have been included at **Appendix C**. Existing sewers have been included on the proposed drainage plan where relevant.

3.3 Existing Geology

- 3.3.1 The geology of the site has been ascertained by reference to the 1:50,000 British Geological Survey website. The data provided on the website indicates the bedrock and superficial drift geology for the site.
- 3.3.2 The strata of the site (bedrock geology) comprises chalk formation, described as follows:

"Lewes Nodular Chalk Formation, Seaford Chalk Formation, Newhaven Chalk Formation, Culver Chalk Formation and Portsdown Chalk Formation (undifferentiated) - Chalk. Sedimentary Bedrock formed approximately 72 to 94 million years ago in the Cretaceous Period. Local environment previously dominated by warm chalk seas. These sedimentary rocks are shallow-marine in origin. They are biogenic and detrital, generally comprising carbonate material (coccoliths), forming distinctive beds of chalk."

3.3.3 The strata of the site (superficial drift) head, described as follows:

"Head - Clay, Silt, Sand and Gravel. Superficial Deposits formed up to 3 million years ago in the Quaternary Period. Local environment previously dominated by subaerial slopes (U). These sedimentary deposits are subaerial in origin. They are detrital, comprising coarse- to fine- grained materials, forming down-slope layers and fans of accumulated material."

3.4 Geological Assessment

- 3.4.1 Boreholes in the local area indicate head over chalk. A site-specific investigation has been undertaken by Tweedie Evans Consulting in 2019, and borehole logs can be found at **Appendix D**.
- 3.4.2 Soakage testing was undertaken in two locations on site (TP1 and TP3), in general accordance with BRE 365, within the underlying chalk. Both locations, TP1 and TP3, drained fully during the 3 No. tests undertaken with indicative infiltration rates of between 6.54 x 10⁻⁵ m/s and 1.82 x 10⁻⁴ m/s.
- 3.4.3 Based on the soakage test data collected in 2019, it is considered that the encountered chalk may provide a suitable drainage medium, should suitable and sufficient attenuation be available.

- 3.4.4 It should be noted that CIRIA C574 guidance 'Engineering in Chalk' (2002) recommends that soakaways within medium (or higher) density chalk should be located at least 5m from any foundations, with additional distance considered in low density chalk or potential solution features.
- 3.4.5 It should be noted that CIRIA Report 156 (1996) "*Infiltration drainage Manual of good practice*" suggests that infiltration systems should normally be built at least 6m away from the nearest foundation of any buildings, although the SuDS manual (CIRIA C753) suggests 5m is acceptable.
- 3.4.6 In addition, CIRIA C753 indicates that, on sloping sites, an assessment should also be made to ensure that infiltrating water will not cause raised groundwater levels and/or waterlogging of downhill areas, and that slopes are not made unstable.
- 3.4.7 In addition, the requirements of Building Regulations and the Environment Agency would need to be incorporated into any design which drains into an aquifer, such as on this site.

3.5 Further Investigations

- 3.5.1 Further site investigations were undertaken by Crossfield Consulting in March 2020.
- 3.5.2 A falling head permeability test undertaken in one windowless sample hole indicated very low permeability strata with an estimated equivalent soil infiltration rate of less than 1 x 10⁻⁷ m/s. Therefore, soakaway drainage is precluded for this site and an alternative drainage solution should be identified.
- 3.5.3 Further investigations were undertaken by Structural Soils Limited in December 2020 and January 2021 to support the scheme.
- 3.5.4 The reports do not provide any further relevant information to determine the viability of soakaways on site.

3.6 Geotechnical Summary

- 3.6.1 The viability of infiltration on site is not governed by the suitability of the underlying strata, but rather the site constraints.
- 3.6.2 There is minimal space on the site to install a new soakaway system to serve the car park. There is also a potential for contamination due to the current use of the site.
- 3.6.3 In addition, it should be noted that the existing overall drainage network for the QA Hospital has been designed to accommodate the surface water run-off from the car park area and so a discharge into this system would mimic the existing situation.
- 3.6.4 Based on the information above, infiltration has been discounted for the development site and a positive connection will be considered to the existing surface water network.

3.7 Hydrogeology Setting

3.7.1 The Environment Agency (EA) mapping service, as provided by Magic Map, indicates the aquifer designation for the bedrock and superficial drift geology and the groundwater vulnerability in the area. The mapping, as included at **Appendix E**, provide the following information for the site:

Geology Map	Site Description	
Aquifer Designation (Bedrock)	Principal	
Aquifer Designation (Superficial Drift)	Secondary (undifferentiated)	
Groundwater Vulnerability	Medium / High	
Groundwater Source Protection Zone	None	

3.8 Hydrology

3.8.1 The nearest strategic watercourse is Portsmouth Harbour, located 1.5km to the south of the site.

4.0 Site Run-Off

4.1 Existing Surface Water Runoff

- 4.1.1 The site has been previously developed, but an analysis of the Greenfield run-off rate is appropriate and will be made for the developable site area (redline) of 0.453 hectares.
- 4.1.2 The Greenfield run-off rates have been calculated for the existing site. The existing site run-off rates have been calculated based on the Interim Code of Practice for Sustainable Drainage Systems, Chapter 6 using the Micro Drainage design software. The output from the software analysis can be found at **Appendix F**.
- 4.1.3 The Qbar (rural) value for the site is 1.8 litres per second. A conservative value of 70% hardstanding has been used to calculate the urban run-off from site. The Qbar (urban) value for the site is 4.6 litres per second.
- 4.1.4 A technical assessment has been made for the site of the most appropriate flow rate suiting the site constraints as follows:

Flow Rate (Standard)	Flow Rate (I/s)	Method of control	Constraints
Qbar Rural	1.8	-	Too low for a flow control
Qbar Urban	4.6	Hydro-Brake	 Low flow rate indicates high level of silt removal required. Hydrobrake chamber must be constructible.
3 x Qbar	5.4	Orifice	Minimum flow rate of 5.0 l/s to prevent blockages (or 50mm diameter orifice)
-	2.0	Hydro-Brake	 Low flow rate indicates high level of silt removal required. Hydrobrake chamber must be constructible.
-	5.0	Orifice	Minimum flow rate of 5.0 l/s to prevent blockages (or 50mm diameter orifice)
Infiltration	0	None	Site must be suitable for infiltration

4.2 Hardstanding Assessment

- 4.2.1 An assessment of the existing and proposed hardstanding areas for the site has been undertaken to provide guidance as to the most appropriate flow rate on site.
- 4.2.2 Brownfield run-off has been calculated using the Modified Rational Method for a 1 in 1 year storm event. The information is as follows:

	Hardstanding /	Porous Hard	Green Space /	Brownfield Flow
	Roof (m³)	Surfaces (m³)	Landscaping (m³)	Rate (I/s)
Existing	4530	-	-	72.91

4.3 Greenfield Run-Off Assessment

- 4.3.1 An assessment of the most appropriate flow restriction on site can be made with an engineering judgement made on the following parameters:
 - Proposed depth of surface water system. Shallow systems will not be able to construct certain flow controls.
 - Risk of blockages, open drainage systems and conventional piped systems will have a significantly higher chance of blockage.
 - Potential for soakage or a hybrid solution with some infiltration and some positive discharge.
 - The existing use of the site (green/brown field) and the most appropriate reduction in surface water flows from the proposed development.
 - Potential development costs and the viability of achieving very low flow rates on sites.
 - Manufacturer limits, with Hydro-International stating they can achieve between 0.7 and 550 I/s on their product range.
- 4.3.2 Infiltration has not been selected, based on the geotechnical information provided within this report.
- 4.3.3 The approved strategy for the QAH Ward building (as referenced in drawing 13772/2000 Rev B) was to reduce the flows by 30% on existing, as the catchment lies within the larger drainage network serving the entire hospital.
- 4.3.4 This approved approach has been taken forward for the MSCP design, with a 30% reduction on the existing 1 in 1 year flow rate proposed.
- 4.3.5 The 1 in 1 year flow rate for the site, as shown in this report, is 72.91 l/s. Based on this, a flow control of 51 litres per second has been selected for the scheme.

4.4 Further Assessment

- 4.4.1 The existing surface water sewer to which the system is discharging is 150mm diameter at an approximate fall of 1 in 30. This indicates a full bore velocity of 32 litres per second.
- 4.4.2 It is not good practice to discharge at full bore, so it is suggested that the surface water system be throttled with a 150mm diameter pipe laid at 1 in 80 falls. This equates to a flow control of approximately 19 litres per second.
- 4.4.3 This represents a significant betterment to the design rate of 51 litres per second and has minimal impact on the attenuation requirements on site.

5.0 Proposed Development

5.1.1 The proposal is for a new multi-storey car park (MSCP) on the site. A site layout can be found at **Appendix G**.

5.2 Infiltration Potential

- 5.2.1 The geotechnical information provided in this report indicates that standard infiltration methods will not be suitable on site.
- 5.2.2 The table below summarises the potential for infiltration.

 Low infiltration potential: There is a low potential for infiltration SuDS in parts of the Site. Comments: It is likely that the underlying geology at the Site, or in areas of the site, is relatively impermeable which would limit the effectiveness of a proposed infiltration SuDS scheme. Recommendations: Infiltration SuDS should be focused in more suitable parts of the site. If a site investigation confirms that infiltration SuDS are not possible at the site, then attenuation SuDS with a controlled discharge into a nearby surface water feature or existing surface water drainage is recommended. Moderate infiltration potential: There is a moderate potential for infiltration SuDS in parts of the Site. Comments: It is likely that the permeability of the underlying material at the site would be suitable for infiltration drainage. However, there may be constraints on the use of infiltration SuDS because of any of the following: a high water-table, the limited thickness of the receiving 	YES
formation, the potential for a significant range in permeability in the underlying geology and confirmation of the infiltration capacity is recommended. Recommendations: A site investigation is recommended to investigate groundwater levels and formation thickness and to confirm that infiltration rates at the site are sufficient to accommodate an infiltration SuDS feature. If a site investigation confirms that infiltration SuDS are possible at the Site then assorted options can be considered for infiltration SuDS and these include infiltration trenches, soakaways, swales, permeable pavements and infiltration basins without outlets.	NO
 <u>High infiltration potential:</u> There is a high potential for infiltration SuDS in parts of the Site. Comments: It is likely that the underlying geology at the Site is highly permeable and an infiltration SuDS scheme should be possible at the Site. Groundwater levels are expected to be sufficiently deep at the site. Recommendations: A site investigation is recommended to confirm the high infiltration capacity and the depth of the winter water table. Assorted options can be considered for infiltration SuDS and these include infiltration trenches, soakaways, swales, permeable pavements and infiltration basins without outlets. 	NO

6.0 Sustainable Drainage Assessment

6.1 SuDS Hierarchy

6.1.1 Options for the destination for the run-off generated on site have been assessed in line with the prioritisation set out in the Building Regulations Part H document and DEFRA's Draft National Standards for SuDS as follows:

Discharge to Ground	Not viable based on exploratory study
Discharge to Watercourse	No watercourses in area
Discharge to Surface Water Sewer	Selected Option
Discharge to Other Sewer	N/A

6.1.2 The indicative potential for different SuDS devices has been assessed and can be seen in the table below:

SuDS Feature	Environmenta I benefits	Water quality improvement	Suitability for low permeability soils (k<10 ⁻⁶)	Ground- water recharge	Suitable for small / confined sites?	Site specific restrictions	Appropriate for subject site?
Wetlands	~	~	\checkmark	х	x	Site Constraints	No
Retention ponds	~	~	~	х	x	Site Constraints	No
Detention basins	~	~	\checkmark	х	x	Site Constraints	No
Infiltration basins	~	~	x	~	x	Site Constraints	No
Soakaways	x	~	x	~	~	Site Constraints	No
Underground storage	x	x	\checkmark	х	~	None	Yes
Swales	~	~	√	~	x	Site Constraints	No
Filter strips	~	~	\checkmark	~	x	Site Constraints	No
Rainwater harvesting	x	~	\checkmark	~	~	No demand	No
Permeable paving	x	~	~	~	~	Site Constraints	No
Green roofs	~	~	~	х	~	Site Constraints	No
Rain Garden (external)	~	~	\checkmark	х	x	Site Constraints	No
Rain Garden (planter)	~	~	√	х	х	Site Constraints	No

6.2 Detailed SuDS Assessment

- 6.2.1 To maximize the potential use of SuDS at the site, a review has been undertaken in accordance with the SuDS Hierarchy (refer to SuDS: A Practical Guide prepared by the Environment Agency).
- 6.2.2 The following table indicates the potential setting for SuDS elements:

	Description	Setting	Required Area
Green Roof	A planted soil layer is constructed on the roof of a building to create a living surface. Water is stored in the soil layer and absorbed by vegetation.	Building	Building integrated
Rainwater Harvesting	Rainwater is collected from the roof of a building or from other paved surfaces and stored in an overground or underground tank for treatment and reuse locally. Water could be used for toilet flushing and irrigation.	Building	Water storage (underground or above ground)
Soakaway	A soakaway is designed to allow water to quickly soak into permeable layers of soil. Constructed like a dry well, an underground pit is dug filled with gravel or rubble. Water can be piped to a soakaway where it will be stored and allowed to gradually seep into the ground.	Open Space	Dependant on Run-off volumes and soils
Filter Strip	Filter strips are grassed or planted areas that runoff can run across to promote infiltration and cleansing.	Open Space	Maximum length 5 metres
Permeable Paving	Paving which allows water to soak through. Can be in the form of paving blocks with gaps between solid blocks or porous paving where water filters through the block itself. Water can be stored in the sub-base beneath or allowed to infiltrate into ground below.	Street / Open Space	Can typically drain double its area
Bioretention Area	A vegetated area with gravel and sand layers below designed to channel, filter and cleanse water vertically. Water can infiltrate into the ground below or drain to a perforated pipe and be conveyed elsewhere. Bioretention systems can be integrated with tree-pits or gardens.	Street / Open Space	Typically, surface area is 5- 10% of drained area with storage below.
Swale	Swales are vegetated shallow depressions designed to convey and filter water. These can be 'wet' where water gathers above the surface, or 'dry' where water gathers in a gravel layer beneath. Can be lined or unlined to allow infiltration.	Street / Open Space	Account for width to allow safe maintenance typically 2- 3 metres wide.
Hardscape Storage	Hardscape water features can be used to store run- off above ground within a constructed container. Storage features can be integrated into public realm areas with a more urban character.	Open Space	Could be above or below ground and sized to storage need.
Pond / Basin	Ponds can be used to store and treat water. 'Wet' ponds have a constant body of water and run-off is additional, while 'dry' ponds are empty during periods without rainfall. Ponds can be designed to allow infiltration into the ground or to store water for a period of time before discharge.	Open Space	Dependant on runoff volumes and soils.
Wetland	Wetlands are shallow vegetated water bodies with a varying water level. Specially selected plant species are used to filter water. Water flows horizontally and is gradually treated before being discharged. Wetlands can be integrated with a natural or hardscape environment.	Open Space	Typically, 5-15% of drainage area to provide good treatment.
Underground Storage	Water can be stored in tanks, gravel or plastic crates beneath the ground to provide attenuation.	Open Space	Dependant on runoff volumes and soils.

6.2.3 This review highlights the components referenced in the SuDS Hierarchy and provides recommendations on whether the components could be incorporated into the development.

Component	Recommendation / Opinion	
Green (living) roofs or Blue/Green roof systems	There is no scope for blue or green roofs on the scheme.	↓
Basins and Ponds	There is no potential for basins and ponds on the site.	↓
Filter Strips and Swales	There is no scope for use of surface mounted SuDS on the scheme to convey water.	↓
Infiltration Devices	Infiltration devices will not be viable on site.	↓
Permeable Surfaces and Filter Drains	Porous surfaces cannot be used on site.	↓
Tanked Systems	It is unlikely that these will be required.	↓

6.2.4 The proposed drainage system incorporates sustainable drainage features in accordance with the SuDS hierarchy, current legislation and best practice as much as practicable on site.

7.0 Drainage Proposal

7.1 Surface Water Drainage

- 7.1.1 Surface water drainage at the site will follow the Sustainable Drainage Systems (SuDS) management train. The surface water from the site will discharge into the existing sewer at a restricted rate. A Drainage Plan can be found at **Appendix H**.
- 7.1.2 New climate change allowances have been in force since February 19th 2016. The new allowances take into consideration the design life of the development, flood zone, development type and geographical location.
- 7.1.3 Based on these parameters, the Central value for rainfall intensity should be used. Based on Table 2 (shown below), this is a range between 20% and 40% for the central and upper end values. Therefore, it is appropriate to use 40% on this development for design.

Applies across all of England	Total potential change anticipated for the '2020s' (2015 to 2039)	Total potential change anticipated for the '2050s' (2040 to 2069)	Total potential change anticipated for the '2080s' (2070 to 2115)
Upper end	10%	20%	40%
Central	5%	10%	20%

Table 2 peak rainfall intensity allowance in small and urban catchments (use 1961 to 1990 baseline)

- 7.1.4 Any water up to a 1 in 100 year storm event including 40% climate change will be attenuated within the curtilage of the site in the proposed drainage system.
- 7.1.5 National SuDS standards, the Design and Construction Guidance 2020 and Sewers for Adoption recommend that the 1 in 30 year storm event is managed below ground with exceedance flows managed above ground.
- 7.1.6 As the rainfall will land on the top deck level, the below ground drainage system will be designed to manage the 1 in 30 year event.
- 7.1.7 The surface water for the 1 in 100 year storm event including 40% climate change will be managed within the site via the top deck, the proposed system and the existing drainage systems around the site.
- 7.1.8 MicroDrainage calculations have been undertaken, which can be found at Appendix J.

7.2 Designing for Exceedance Events

- 7.2.1 Current best practice guidance on flood risk requires an evaluation of how rainfall events beyond the design capacity of the proposed drainage system would be managed and what effects they are likely to have on flood risk at the site or surrounding areas.
- 7.2.2 Should a rainfall event exceeding the 1.0% AEP (1 in 100 year) event plus climate change event occur, the proposed storage and flow paths of surface water should be considered.
- 7.2.3 The surface water SuDS features included for the 1 in 100 year storm will be designed with sufficient resilience to manage and convey exceedance flows away from any properties to minimise risk.
- 7.2.4 Indicative exceedance pathways have been shown on the drainage layout, with further information to be defined once the detailed levels of the scheme have been developed.

7.3 Designing for System Failure

- 7.3.1 Current best practice on sustainable drainage design should consider failure of the surface water system and potential blockages from multiple sources.
- 7.3.2 The potential risks to the surface water system have been indicated below:

Risk	Description	Comments / Recommendations
Blockage	Potential blockage of outfall from surface water system	Regular inspection and maintenance of the drainage system should be undertaken in line with the findings of this report.
Failure	Potential blockage of outfall from flow control failure or build-up of debris	Regular inspection and maintenance of the drainage system should be undertaken in line with the findings of this report.
Surcharge	Potential back-up of system due to surcharging or poorly maintained public surface water infrastructure or watercourse	Regular inspection and maintenance of the drainage system should be undertaken in line with the findings of this report.
Blockage	Potential risk of flooding due to build-up of sediment within system	Catchpit manholes have been provided to remove solids and sediment. Regular inspection and maintenance of the drainage system should be undertaken in line with the findings of this report.
Failure	Potential risk of surface water flows from poor maintenance of surface mounted SuDS features (such as porous paving or swales)	Regular inspection and maintenance of the surface mounted SuDS should be undertaken in line with the findings of this report.
Surcharge	Potential risk of additional surface water flows or overland flows from extreme (exceedance storm) events in adjacent sites causing the surface water system to be overloaded.	Exceedance flow routes have been assessed and shown on the drainage layout.
Failure	Potential risk from failure of third-party specialist equipment such as pump stations or interceptors	Any pump stations or interceptors installed on site should be maintained in line with the specialist manufacturer's recommendations.
Blockage	Potential risk from poor maintenance of gullies	Regular inspection and maintenance of the underground drainage system should be undertaken in line with the findings of this report.
Blockage	Potential reduction in infiltration on site from compaction of soils during the construction phase	Ground consolidation should not have a major impact.
Failure	Poor planting and maintenance of green areas could reduce the hydraulic properties of SuDS devices (and amenity/biodiversity benefits)	Not applicable

7.4 Urban Creep

- 7.4.1 Urban Creep is the conversion of permeable surfaces to impermeable over time. e.g. impermeable surfacing of front gardens to provide additional parking spaces, extensions to existing buildings, creation of large patio areas. The consideration of urban creep (is best) assessed on a site by site basis but is limited to residential development only.
- 7.4.2 It is important that the appropriate allowance for urban creep is included in the design of the drainage system over the lifetime of the proposed development. The allowances set out below are applied to the impermeable area within the property curtilage:

Residential development density Dwellings per hectar	Change allowance % of impermeable area
≤ 25	10
30	8
35	6
45	4
≥ 50	2
Flats & apartments	0

- 7.4.3 Note where the inclusion of the appropriate allowance would increase the total impermeable area to greater than 100%, 100% should be used as the maximum.
- 7.4.4 The proposed development has limited scope for expansion. Based on this, zero allowance for urban creep is required for the development.

7.5 Construction Phase Drainage

- 7.5.1 It is an offence to cause or knowingly permit the entry of poisonous, noxious or polluting material into the water environment. Prosecution may ensue if the pollution is serious enough to lower the ecological status of the water body in terms set by the Water Framework Directive (2000/60/EC).
- 7.5.2 The polluter does not have to be prosecuted first for remediation of damage to be required. If water pollution is serious enough to be classed as environmental damage the damage will require to be remediated such that the area is returned to the condition it would have been in if the damage had not occurred.
- 7.5.3 An offence may also be committed if environmental damage or the threat of environmental damage is not reported by the polluter or if no action is taken by the polluter to prevent further damage. Third parties (e.g. private water supply users, landowners, recreational users and the public) who may be affected by possible damage may also report 'risk' of environmental damage

to the enforcing authority; in this instance an offence may be committed if action is not taken to prevent the potential environmental damage occurring.

- 7.5.4 The principles of Sustainable Drainage Systems (SuDS) shall be applied to all components of design and construction regarding surface water management. Any design or site works that may impact on the site drainage or water quality shall:
 - Soakaway where soils allow
 - Consider and manage erosion
 - Retain any silts on site and prevent silts from discharging into watercourses or drains
 - Remove pollutants in surface water
 - Keep runoff rates at existing greenfield runoff
 - Prevent accidental spillages reaching watercourses.
- 7.5.5 As infiltration is not expected to be viable on site, the temporary drainage for the development will be in the form of land drainage with discharge into the existing sewer, with the appropriate levels of treatment.
- 7.5.6 Pollution will be controlled via the use of catchpit manholes and geotextiles.
- 7.5.7 Any potentially hazardous substances (i.e. form plant / deliveries) will be within a controlled compound with a separate drainage system that will contain a penstock valve / containment kit in the event of a spillage.

8.0 Water Quality

8.1 Water Quality Overview

- 8.1.1 A key requirement of any SuDS system is that it protects the receiving water body from the risk of pollution. This can be effectively managed by an appropriate "train" or sequence of SuDS components that are connected in series.
- 8.1.2 The frequent and short duration rainfall events are those that are most loaded with potential contaminants (silts, fines, heavy metals and various organic and inorganic contaminants). Therefore, the first 5-10 mm of rainfall (first flush) should be adequately treated with SuDS.
- 8.1.3 The minimum number of treatment stages will depend on the sensitivity of the receiving water body and the potential hazard associated with the proposed development SuDS Manual (CIRIA, 2015).
- 8.1.4 The proposed development is medium hazard (runoff from large car parking areas), as indicated on the table below:

Hazard	Source of Hazard	Present
Very Low	Residential Roof drainage.	NO
Low	Residential amenity uses including low usage car parking spaces and roads, other roof drainage	NO
Medium	Commercial, industrial uses including car parking spaces and roads (excluding low usage road, trunk roads and motorways)	YES
High	Areas used for handling and storage of chemicals and fuels, handling of storage and waste	NO

- 8.1.5 The site does lie within a source protection zone and therefore additional treatment stages are required.
- 8.1.6 The treatment processes provided by different SuDS components will have varying capabilities for removal of different types of contaminants as per the table below:

Hazard	Requirements for discharge to surface water and groundwater	Present
Very Low	Removal of gross solids and sediments only.	NO
Low	Simple index approach	NO
Medium	Surface water: Simple index approach Ground water: Simple index approach and risk screening	YES
High	Guidance and risk assessment process in HA (2009). Discharge may require environmental permit or licence. Obtain pre-permitting advice from environmental regulator. Risk assessment likely to be required.	NO

8.2 Simple Index Approach

8.2.1 The index approach as defined by CIRIA C753 (the SuDS Manual) defines the index approach to water quality in three steps as defined in Box 26.2 below:

BOX 26.2	Steps of the simple index approach
20.2	Step 1 – Allocate suitable pollution hazard indices for the proposed land use
	Step 2 – Select SuDS with a total pollution mitigation index that equals or exceeds the pollution hazard index
	Step 3 – Where the discharge is to protected ¹ surface waters or groundwater, consider the need for a more precautionary approach
	Note: 1 Designated as those protected for the supply of drinking water (Table 4.3).

8.3 Step 1- Allocate Potential Hazards

8.3.1 To deliver adequate treatment, the selected SuDS components should have a total pollution mitigation index (for each contaminant type) that equals or exceeds the pollution hazard index (for each contaminant type):

Total SuDS mitigation index ≥ pollution hazard index

(for each contaminant type) (for each contaminant type)

- 8.3.2 Where the only destination of the runoff is to a surface water that is there is no infiltration from the SuDS to groundwater the surface water indices should be used.
- 8.3.3 In England and Wales, where the principal destination of the runoff is to a surface water, but small amounts of infiltration may occur from unlined components (Interception), then the groundwater indices should be used for the discharge to groundwater, and the surface water indices should be used for the main surface water discharge (as suggested in Table 26.3).
- 8.3.4 Where the principal destination of the runoff is to groundwater, but discharges to surface waters may occur once the infiltration capacity is exceeded, the groundwater indices should be used, as suggested in Table 26.4. The risk to surface waters will be low, as dilution will be high for large events, so treatment is not required.
- 8.3.5 The pollution indices for this site have been selected using the guidance in CIRIA C753 and are as per Table 26.2 below:

TAR	I.F.	Dol	10.00	h n

LE	Pollution hazard	indices for differ	ent land use cl	assifications
2	a second contractor	and the second se	and an inclusion of the second second	

Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro- carbons
Residential roofs	Very low	0.2	0.2	0.05
Other roofs (typically commercial/ industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, homezones and general access roads) and non- residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.5	0.4	0.4
Commercial yard and delivery areas, non-residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways ¹	Medium	0.7	0,6	0.7
Sites with heavy pollution (eg haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk roads and motorways ¹	High	0.82	0.8²	0.92

Notes

Motorways and trunk roads should follow the guidance and risk assessment process set out in Highways Agency (2009). 1

These should only be used if considered appropriate as part of a detailed risk assessment - required for all these land use types 2 (Table 4.3). When dealing with high hazard sites, the environmental regulator should first be consulted for pre-permitting advice. This will help determine the most appropriate approach to the development of a design solution.

Where a site land use falls outside the defined categories, the indices should be adapted (and agreed with the drainage approving body) or else the more detailed risk assessment method should be adopted.

Where nutrient or bacteria and pathogen removal is important for a particular receiving water, equivalent indices should be developed for these pollutants (if acceptable to the drainage approving body) or the risk assessment method adopted.

The identified hazard levels are as follows: 8.3.6

-	Total Suspended Solids (TSS)	0.70
_	Metals	0.60

Hydrocarbons 0.70

8.4 Treatment with Discharge to Surface Water

8.4.1 As the site is discharging to a watercourse or sewer, Table 26.3 of the CIRIA C753 manual is used to evaluate the water quality mitigation measures offered by the proposed drainage system. The identified hazard remediation levels are as follows:

the second statement of		Mitigation indices ¹	
Type of SuDS component	TSS	Metals	Hydrocarbons
Filter strip	0.4	0.4	0.5
Filter drain	0.4 ²	0.4	0.4
Swale	0.5	0.6	0.6
Bioretention system	0.8	0.8	0.8
Permeable pavement	0.7	0.6	0.7
Detention basin	0.5	0.5	0.6
Pond ⁴	0.73	0.7	0.5
Wetland	0.83	0.8	0.8
Proprietary treatment systems ^{5,6}	acceptable levels for frequ	that they can address each lent events up to approximations relevant to the	ately the 1 in 1 year return

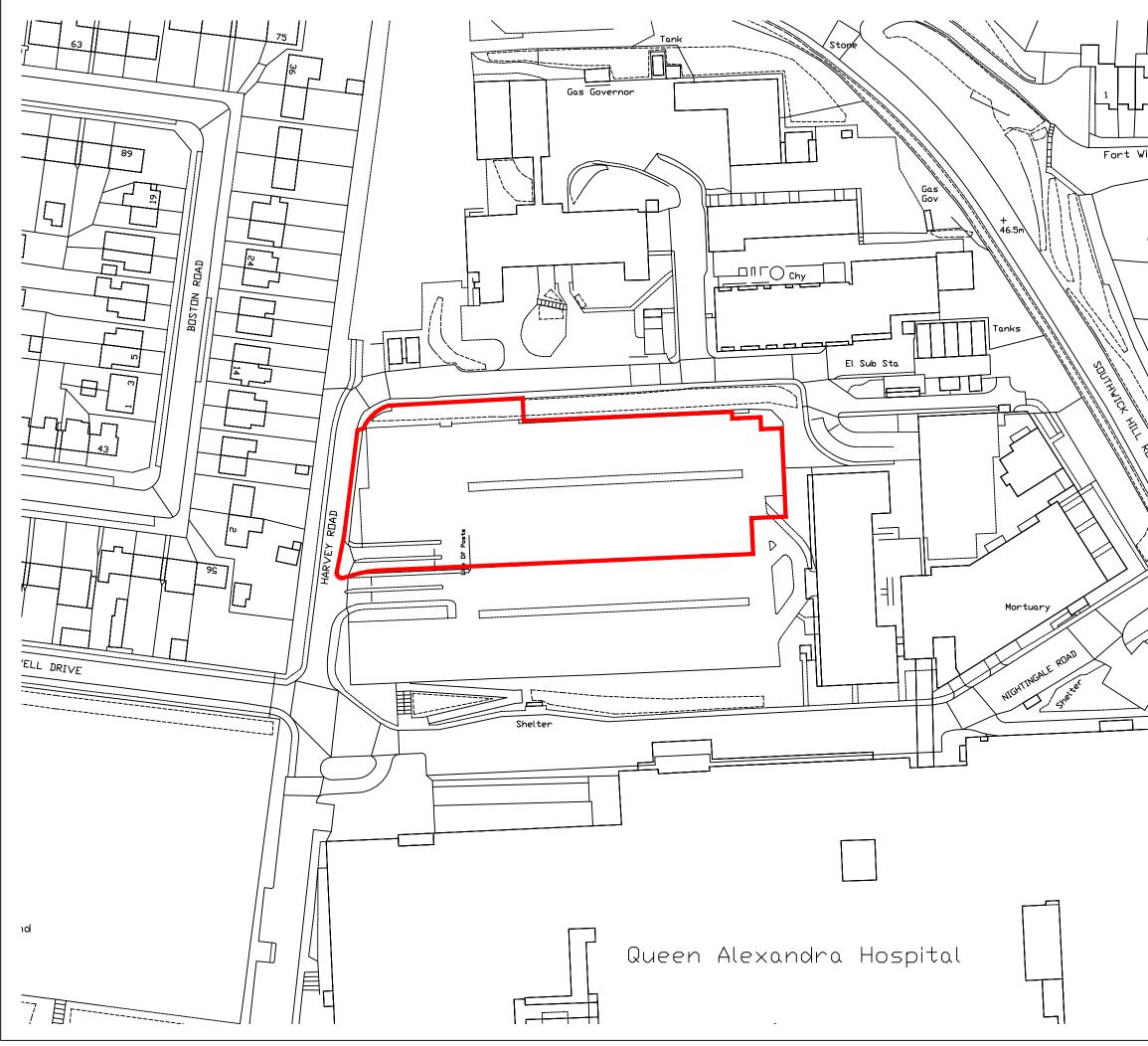
Notes

- 1 SuDS components only deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters.
- 2 Filter drains can remove coarse sediments, but their use for this purpose will have significant implications with respect to maintenance requirements, and this should be taken into account in the design and Maintenance Plan.
- 3 Ponds and wetlands can remove coarse sediments, but their use for this purpose will have significant implications with respect to the maintenance requirements and amenity value of the system. Sediment should normally be removed upstream, unless they are specifically designed to retain sediment in a separate part of the component, where it cannot easily migrate to the main body of water.
- 4 Where a wetland is not specifically designed to provide significantly enhanced treatment, it should be considered as having the same mitigation indices as a pond.
- 5 See Chapter 14 for approaches to demonstrate product performance. A British Water/Environment Agency assessment code of practice is currently under development that will allow manufacturers to complete an agreed test protocol for systems intended to treat contaminated surface water runoff. Full details can be found at: http://tinyurl.com/qf7yuj7
- 6 SEPA only considers proprietary treatment systems as appropriate in exceptional circumstances where other types of SuDS component are not practicable. Proprietary treatment systems may also be considered appropriate for existing sites that are causing pollution where there is a requirement to retrofit treatment. SEPA (2014) also provides a flowchart with a summary of checks on suitability of a proprietary system.

		Hazard	Treatment	Result
_	Total Suspended Solids (TSS)	0.70	0.7	0
_	Metals	0.60	0.6	0
_	Hydrocarbons	0.70	0.7	0

- 8.4.2 There are existing treatment devices and interceptors on site. The existing car park (and therefore the proposed MSCP) drains to an interceptor upstream of chamber MACP04.
- 8.4.3 The interceptor is a Klargester NSB72 (as identified on the Buro Happold plans) and should be inspected prior to commencement of works and deemed suitable for the development.

9.0 Summary and Conclusions


- 9.1.1 Noviniti is planning a proposed development on the site at QA Hospital MSCP Portsmouth, Cosham, Portsmouth, PO6 3LY.
- 9.1.2 Stripe Consulting has been instructed to produce a Drainage Strategy to support the Planning Application.
- 9.1.3 The surface water system will discharge into the surface water sewer at a restricted rate.
- 9.1.4 The report has demonstrated that the proposed drainage measures ensure that no property will be at risk of flooding if the development proceeds and that suitable means of surface water drainage can be achieved for the proposed development.

Appendix A

Location Plan

J1708 Drainage Strategy Report January 2021 23

	Notes:
	1. Do not scale from this drawing.
	2. All dimensions are in millimeters unless noted
	otherwise.
	3. This drawing is to be read in conjunction with all
	relevant Architect's and Engineer's drawings.
┶┛	
idley	
۲ [∞] ۲	
7	
\	
\setminus	
$\setminus \setminus$	
$\langle \rangle \rangle$	
///	
$\sqrt{1}$	
, Č ļi	
$\langle \rangle \rangle$	
(//)	
//X	
K	
	P01 25.01.21 Initial Issue AJ DB RH
	Rev Rev Date Revision Description Drawn Check'd Apprv'd
<	© copyright Stripe Consulting Ltd.
	Bridge Farm Web: www.stripeuk.com
	Horley Email: office@stripeuk.com
~ /	Surrey RH6 8JA
Δ	Client
	QA HOSPITAL TRUST
	PORTSMOUTH
Ĩ	
	Title
_	LOCATION PLAN
_	
Γ	
F	FOR INFORMATION
	Issue Date 25.01.2021
	DO NOT SCALE
	Job Number Scale Revision Original Size
	J1708 1:1000 P01 A3
	Drawing Number
	J1708-A20312-0100

Appendix B

Topographical Survey

J1708 Drainage Strategy Report January 2021 24

A Ground Penetrating Radar (GPR) survey was conducted at Queen Alexandra Hospital, North Car Park, Cosham, Portsmouth. The survey objective was to search for evidence of buried services and other features. The survey used a GSSI Dual Frequency Radar in conjunction with 300 MHz and 800MHz antennae, giving a maximum depth penetration of roughly 1.3 m and 0.8 metres respectively.

Most ground conditions contain electrically contrasting layers, which produce reflection events on the GPR profiles. Features such as soil or fill boundaries provide the background signals around unusual features such as pipes or voids. Processing and interpretation procedures are designed to separate the reflections into various target categories, and then map the different reflection types on to a plan diagram. This process involves the interpretation of each individual radar profile, followed by an areal interpretation of all the radar profiles. Features identified across several profiles are interpolated in areas where the data is well constrained. The confidence levels placed on a plan interpretation depend on the spacing of the survey grid. A target must be intersected by at least one radar profile to be detected. Ideally, the profile spacing should allow any target to be intersected by several profiles. Consequently, the survey line spacing is selected to provide a good indication of site conditions at a reasonable cost and allow for available access.

The data interpretation identified five significant categories of reflection targets which are described below.

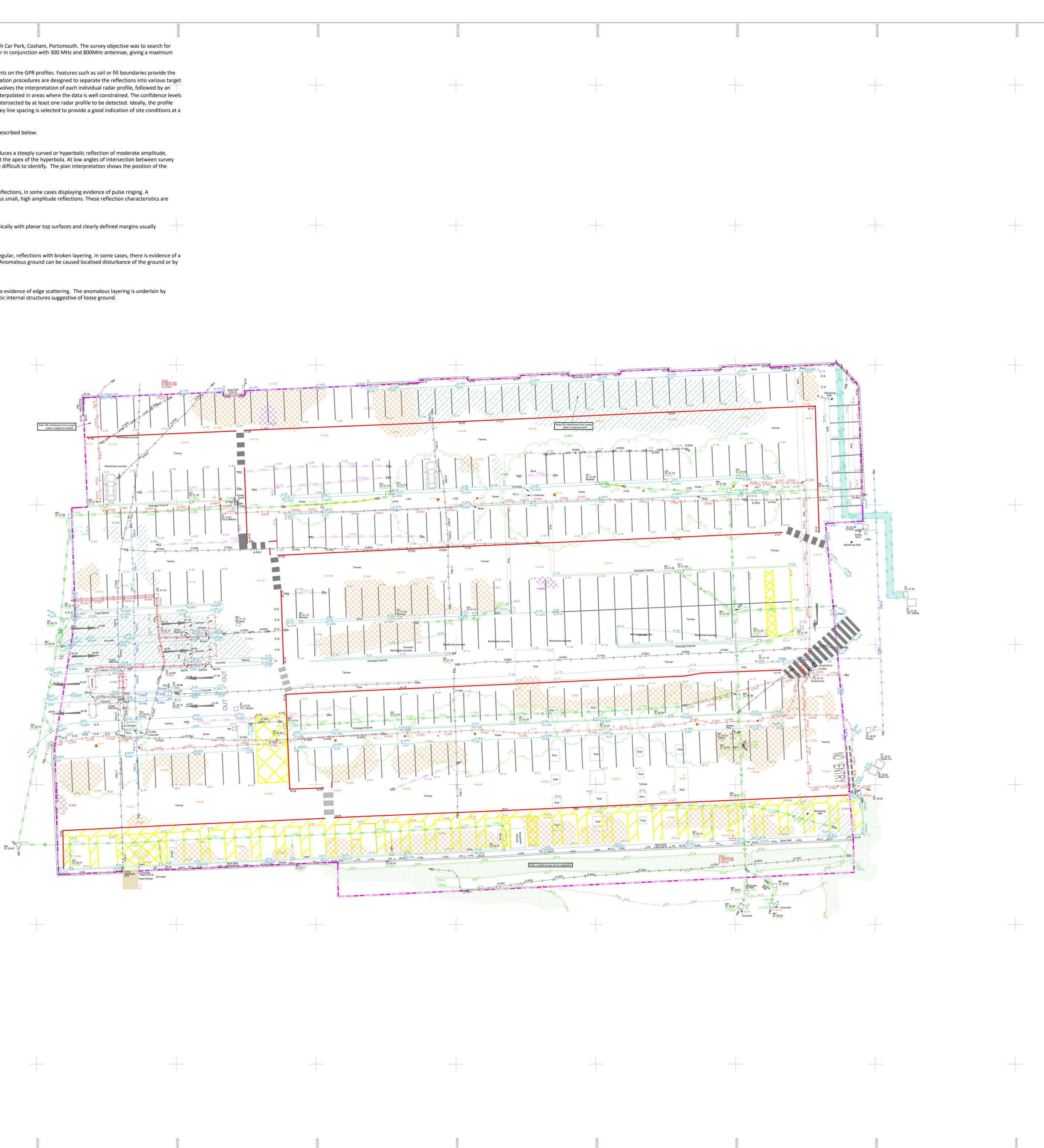
i) Possible pipe/service

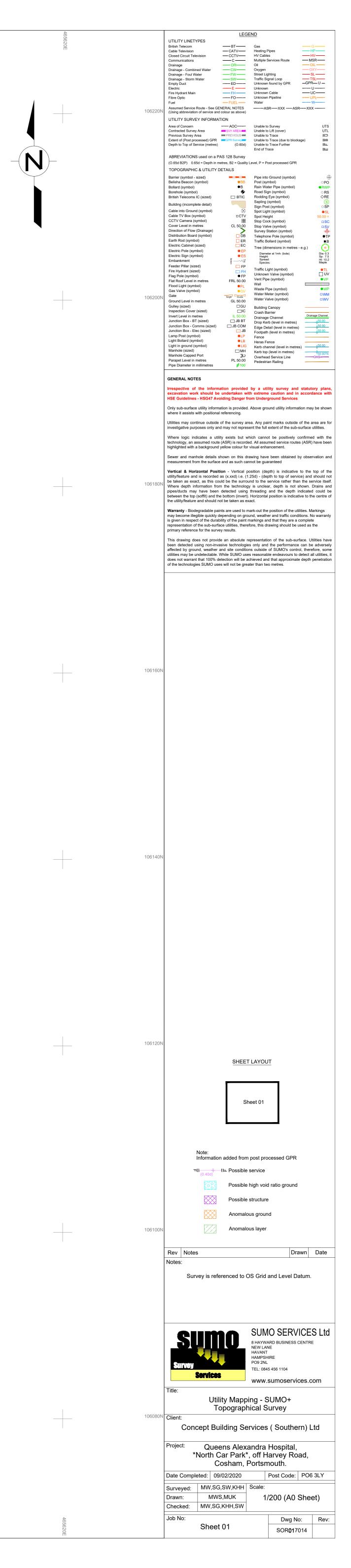
A GPR profile either orthogonal or at a high angle to a length of pipe or service typically produces a steeply curved or hyperbolic reflection of moderate amplitude, which should be discernible against background reflections. The service position is located at the apex of the hyperbola. At low angles of intersection between survey lines and pipe tracks, the resultant planar reflection response is more ambiguous and can be difficult to identify. The plan interpretation shows the position of the interpreted pipe tracks. Possible services has been detected only by GPR.

ii) Possible high void ratio ground

Possible high void ratio ground appears on the GPR data as dense zones of high amplitude reflections, in some cases displaying evidence of pulse ringing. A characteristic chaotic structure is evident caused by complex interference between numerous small, high amplitude reflections. These reflection characteristics are generally indicative of loose, high void ratio ground.

iii) Possible structure

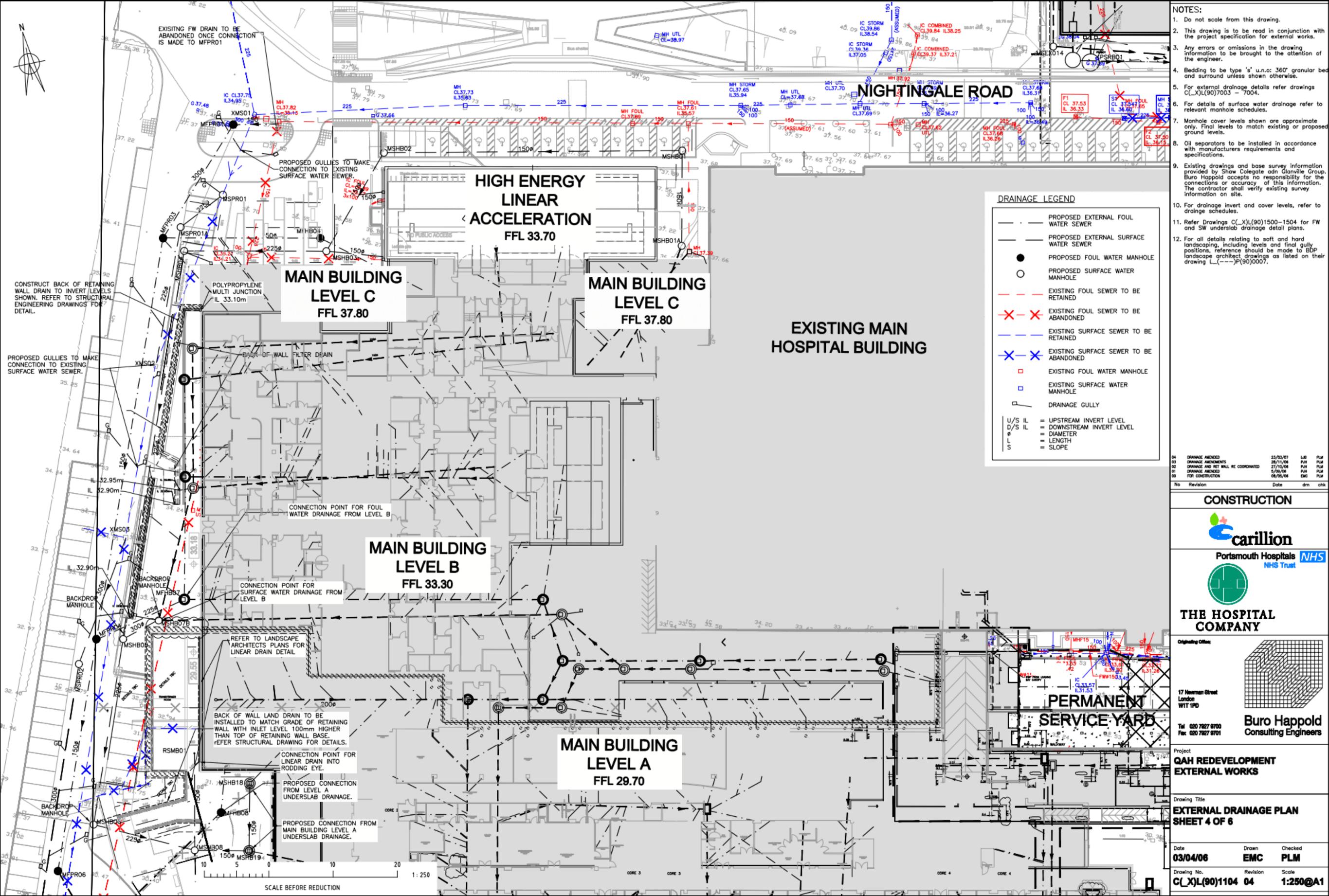

This reflection category consists of moderate to high amplitude, well defined reflections, typically with planar top surfaces and clearly defined margins usually characterised by edge scattering.

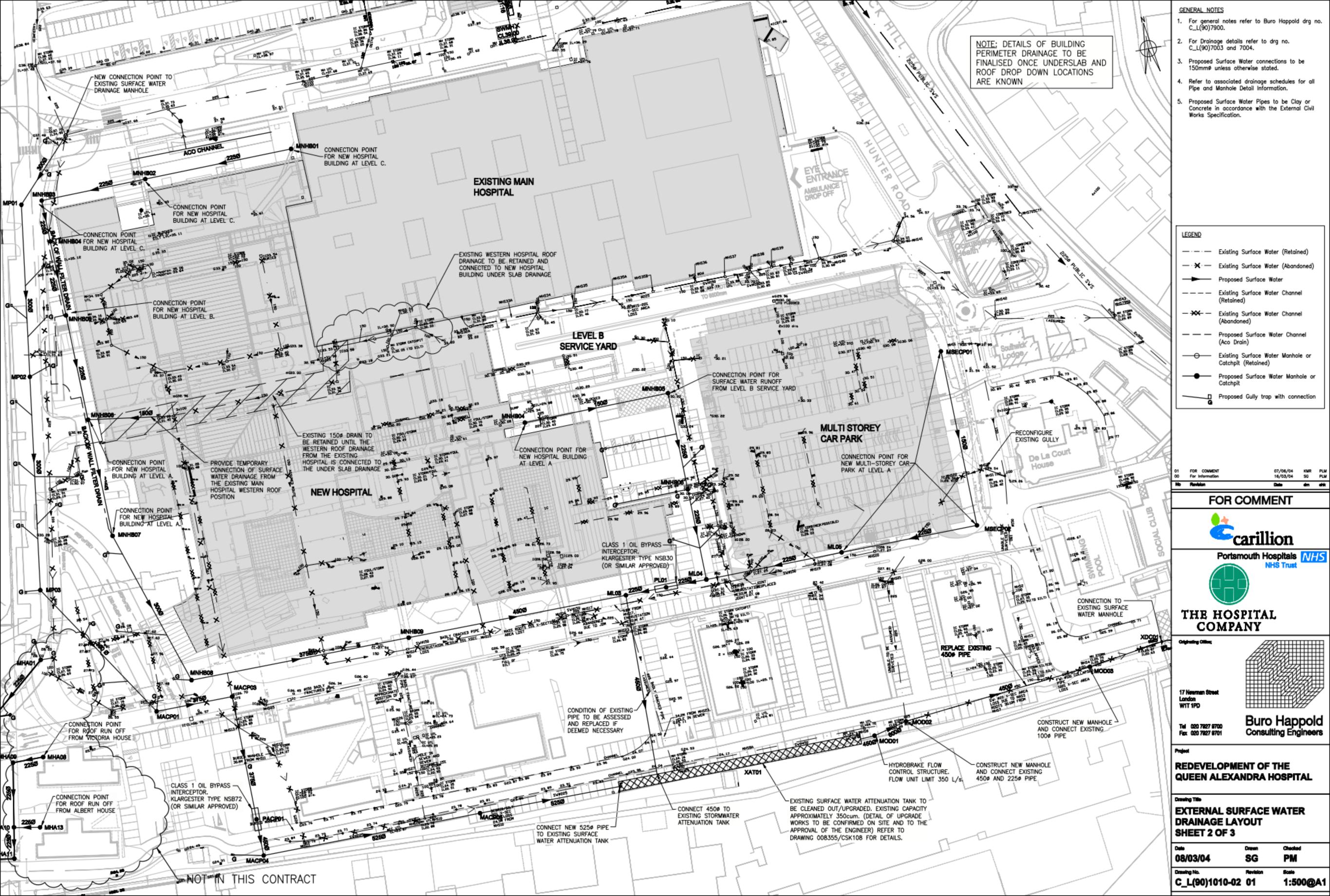

iv) Anomalous ground

Areas identified as anomalous ground generally appear as zones of moderate amplitude, irregular, reflections with broken layering. In some cases, there is evidence of a slightly chaotic internal structure, resulting from interaction between individual reflections. Anomalous ground can be caused localised disturbance of the ground or by discrete variations in ground composition.

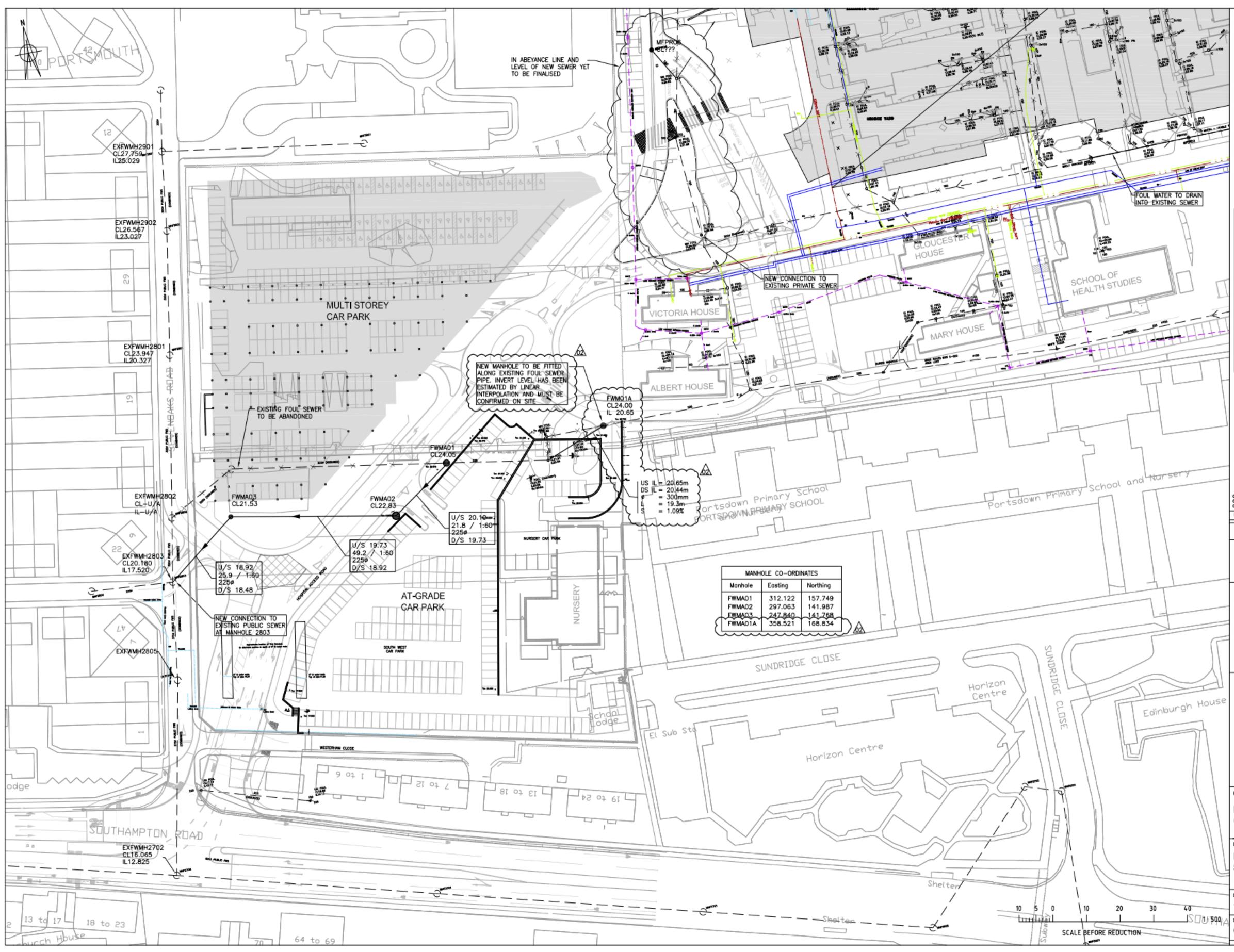
v) Anomalous layer

Anomalous layers occur as fairly amplitude, planar, sub-horizontal reflections with little or no evidence of edge scattering. The anomalous layering is underlain by irregular, broken moderate to high amplitude reflections sometimes displaying a more chaotic internal structures suggestive of loose ground.




Appendix C

Existing Sewer Plans


J1708 Drainage Strategy Report January 2021 25

GENERAL_NOTES 1. For general notes refer to Buro Happold drg no. C_L(90)7900. 2. For Drainage details refer to drg no. C_L(90)7003 and 7004. 3. All pipes used for Foul Water Drainage shall be clay type in accordance with The External Civil Works Specification. 4. This drawing shall be read in conjunction with The External Civil Works Specification. **LEGEND** — — Existing Foul Water Sewer to be retained — — Existing Foul Water Sewer to be abandoned — Proposed Foul Water Sewer

	Existing Foul Water Sewer to be									
	retained Existing Foul Water Sewer to be									
	abandoned Proposed Foul Water Sewer									
	Existing Foul Water Sewer Manhole or									
	Catchpit (Retained) Proposed Foul Water Sewer Manhole									
	or Catchpit									
UPSTREAM INVERT LEVEL LENGTH (m)/SLOPE(m/m) DIAMETER (mm) DOWNSTREAM INVERT LEVEL										

02 PROPOSED WANHOLE FMMAD 01 COMMENT/ APPROVAL 00 For Information	(9/05/06 4/08/04 6/03/04	AD KMR SG	08 PUN FN								
No Revision	0	Date	dm	chk								
FOR APPROVAL												
carillion												
Portsmouth Hospitals NHS												
		S Trust										
THE HOSPITAL COMPANY												
Originating Office;												
17 Newman Street London W1T 1PD				₽								
Tel 020 7927 9700 Fax 020 7927 9701	Buro _{Consulti}	Hap	00 inee	d rs								
Project												
REDEVELOPMENT OF THE QUEEN ALEXANDRA HOSPITAL												
Drawing Title FOUL WATER DRAINAGE LAYOUT SHEET 1 OF 3												
Date 10/03/2004	Drawn SG	Checked PLN										
Drawing No. C_L(90)1210-01	Revision 02	Scale 1:50	0@	A1								
				1								

Appendix D

Site Boreholes

J1708 Drainage Strategy Report January 2021 26

BOREHOLE LOG

		ar Par	K, QA	1					N	ovitini L			0		Bl
Contract F		F00			11.12		Ground	Level:		Co-ordinate	S:		Sheet:		
	735	569		End:	15.12	.20	1							1	of
Sa	mples a	and In-si	tu Tests	6	Water	Backfill			г	Description	of Strata			Depth (Thick	Ma Gra
Depth	No	Туре	Re	sults		Ba			L					ness)	Leç
												ndy clayey ang		0.10	X
0.30	1	B ES					suban	gular fine t	o coarse	GRAVEL of	limestone a	nd concrete.		0.50	\bigotimes
0.30		HP	c _u =38	8/50/50			MADE	GROUN	D: Soft t	o firm dark	brown grav	velly CLAY. Gr phalt, brick frac	avel is	0.70	\bigotimes
0.50 _0.50	2	B HP	c_=38	8/38/50			and fli		igulai III.		UI UIIAIN, AS	priait, prick fraç	gineins	(0.80)	$\langle \rangle$
1.00	3 102	B ES										a low cobble c halk and flint. C		[(0.00)	$\langle \rangle$
4 50 4 05		DODT						gular of flir		igulai ilile lo		naik and mint. C		1.50	\square
1.50-1.95	4	DSPT										ed white slightly /EL of flint and		-	
2.00	5	Б					Recov	ered as st	ructureles	s CHALK c	omposed of	slightly sandy g	ravelly	-	╞╦╹
2.00	0	B						Gravel is v				ed orangish brow		(1.50)	L' I'
2.50-2.95	6	UT100	CE I	olows			Suban	yulal.						-	╞╦┸
2.00-2.90	0			recovery										-	╞╦┸
3.00	7	D					Week	off_white	noneiona	ally mottled o	rangish brow			3.00	
5.00	'						vveak,		0000310118		าสาญเรา มายัง	WIT OT IALIN.		-	
3.50	8	DSPT												-	
0.00														-	
4.00	9	В												-	
														-	F
4.50-4.95	10	UT100	901	olows										-	ļ
				recovery										-	
5.00	11	D												-	ľ
														-	F
														-	
6.00	12	в												-	
6.00-6.45	13	DSPT												-	
														-	
														-	
7.00	14	В					Fr	om 7.00m	depth occ	casional loca	ally rinded fli	nts.		_ -	
														-	
7.50-7.95	15	UT100		olows										-	
			100%	recovery										-	
8.00	16	D												-	
														-	
														-	
														-	
		1			, р			11			1			L	·
	Boring	Progres			servatio Boreho		14/- 1	Chisell	ing / Slow	Progress	-	General I	Rema	arks	
Date	Time	Bore De		Casing Depth	Diamet (mm)	er	Water Depth	From	То	Duration (hh:mm)					
11/12/20		0.0	-	-	()	<u> </u>	-				1. Position Radar	n checked with (CAT and Genn	Ground I	Penetrat	ing tion
11/12/20	00.0	6.0	00	-	450		- D				2. Inspect	ion pit hand dug	y to 1.20	m depth	
14/12/20 14/12/20	08:00 17:00			3.00 3.00	150 150		Dry -					undwater encou opletion, boreho		lled with	arisi
15/12/20	12:00			3.00	150		-					,			
Matt								<u> </u>					Scale:	1:50)
Method				Plan	τ				Drilled By:		Logged	KDalton	Checke	ed	ļ

DIG		Boring Pro	ogress and	Water Ob	servations		Chisel	ling / Slo	w Progress	Conorol	Domorko	
The	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General	Remarks	
tol:	Bate	1	Depth	Depth	(mm)	Depth			(hh:mm)	1. Position checked with	Cround Ponotrating	
Bristol:	11/12/20		0.00	-		-				Radar, CAT and Genr		
- əc	11/12/20		6.00	-		-				2. Inspection pit hand du		
Office	14/12/20	08:00	6.00	3.00	150	Dry				3. No groundwater encou		
Head	14/12/20	17:00	20.00	3.00	150	-				4. On completion, boreho	ble backfilled with arisings.	.
	15/12/20	12:00	20.00	3.00	150	-						
Ltd												
Soils									-	AH P	a	-
alS										All dimensions in metres	Scale: 1:50	
ctural	Method			Plan	Plant			Drilled		Logged KDalton	Checked	
Strue	Used:	Cable p	ercussio	on ^{Use}	^{1:} Dando	o 2000 M	lark 2	By:	Kevin Sims	By:	Checked By: AGS	

BOREHOLE LOG

			k, QAH Po					vitini Li				В	
Contract Ref		-00				Ground Level:	C	o-ordinates		Sheet:	-	of	
		569	End:	-								of	
		and In-sit		Water	Backfill		De	escription o	f Strata		Depth (Thick	Ma Gra	
Depth	No	Туре	Results	3	^m						ness)	Leę	
9.00 9.00-9.45 9.00-9.45	17 18 18	B SPT DSPT	N=45			Weak, off-white ocd (stratum copied fro	casionall <u>y</u> m 3.00m	/ mottled or from previo	angish brown CHALK. ous sheet)		-		
10.00	19	В				From 10.00m o	lepth rare	e locally rind	led flints.		- - - -		
10.50-10.95	20	UT100	100 blows 100% recovery								-		
11.00	21	D									- - - (17.00)		
											 - - -		
12.00 12.00-12.45 12.00-12.45	22 23 23	B SPT DSPT	N=41			From 12.00m o		-					
13.00	24	в									- - - - -		
13.50-13.95	25	UT100	100 blows 100% recovery								-		
14.00	26	D				From 14.00m o	lepth rare	e flints and i	rare black specks.		- - - -		
15.00 15.00-15.45 15.00	27 28 28	B SPT DSPT	N=41			From 15.00m c	From 15.00m depth occasional flints.						
16.00	29	В									= = = = =		
16.50-16.95	30	UT100	100 blows 100% recovery								-		
17.00	31	D											
	ring I Fime	Bore	-	serva Bore Diam	hole leter	Vater From	g / Slow F To	Duration	Genera	al Rema	arks		
		Dep	oth Depth	(mi	m)	Depth	_	(hh:mm) -					
								-	All dimensions in met	res Scale:	1:50		

		Boring Pro	ogress and	Water Ob	servations		Chiselling / Slow Progress				General Remarks				
	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То		Duration		General	Remai	KS	
	Dale		Depth	Depth	(mm)	Depth	11011	10		(hh:mm)					
										-	All dimonsi	ons in metres	Scale:	4.50	
.		L			<u> </u>		l	<u> </u>						1:50	
	Method			Plan				Drilled			Logged	KDalton	Checked		
	Used:	Cable p	ercussic	on ∣ ^{Use}	d: Dando	ark 2	By: Kevin Sims		By:		By:		AGS		

BOREHOLE LOG

Contract:								Client:					Boreho	le:	
North	n Ca	ar Par	k, QAH	Por	rtsm	nout	h		Ν	ovitini Li	mited				BH1
Contract Ref								d Level:		Co-ordinates	:		Sheet:		
7	735	569	Er	nd:	15.1	2.20								3	of 3
		and In-si	I		1									Depth	Material
Depth	No	Туре	Result	S	Water	Backfill			I	Description o	f Strata			(Thick ness)	Graphic Legend
18.00	32	B					Wea	k. off-white	occasion	ally mottled or	angish bro	wn CHALK.		-	
18.00-18.45 18.00-18.45	33 33	SPT DSPT	N=46				(stra	tum copied	from 3.00	Om from previo	ous sheet)			-	
10.00-10.45	00	DOFT					8							-	
							8							-	
19.00	34	в					Š.								- I I I I
10.00							Š.							-	- I - I - I
19.50-19.95	35	UT100	100 blow	19			8							-	
10.00-10.00		51100	89% recov				8								
20.00	36	П				XXXX	Perc	holo tormir -	nted at 20	00m dooth				20.00	<u> </u>
20.00	30	D					Bore	nole termina	ated at 20	.00m depth.					
														-	
														-	
														E	
														-	
														-	
														-	
														-	
														-	
														-	
														$\lfloor $	
														F	
	· ·			<u>C</u>	•	•	•			D				<u> </u>	
		Bore	s and Water hole Casi		Boreh	nole	Water		T	v Progress Duration		General	Rema	arks	
Date	Time	De			Diam (mn		Depth	From	То	(hh:mm)					
Mastle '								,				ions in metres	Scale:	1:50	
Method Used: Ca	ahle	percu		Plant Jsed		ndo	2000	Mark 2	Drilled By:	Kevin Sims	Logged By:	KDalton	Checke By:	Ð	AGS
		1									- 1		1		

		Boring Pro	ogress and	Water Ob	servations		Chisel	ling / Slo	w Prog	ress		Conorol	Domor	ko	
	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То		uration		General	Remai	KS	
	Date	TITIC	Depth	Depth	(mm)	Depth	TIOM	10	(h	h:mm) –					
Î															
										-					
i											All dimensi	ons in metres	Scale:	1:50	
	Method			Plant				Drilled			Logged	KDalton	Checked		
	Used:	Cable p	ercussic	on ^{Used}	^{i:} Dando	o 2000 M	lark 2	By:	Keviı	n Sims	By:		By:		AGS

BOREHOLE LOG

Contract:		_				Client:			E	Borehole:		_
North	North Car Park, QAH Portsmouth ontract Ref: Start: 08.12.20 G 735569 End: 09.12.20 G						Ν	ovitini Limited				BH
Contract Re	f:		Start:	08.12	2.20	Ground Level:		Co-ordinates:	S	Sheet:		
7	735	569	End:	09.12	2.20					1		of 🕄
Sam	ples a	nd In-sit	tu Tests	ter	IJIJ					De		Mate
Depth	No	Туре	Results	Water	Backfill		[Description of Strata		(Th ne		Grap Lege
							· ·			0.		
).20-0.30).35-0.45	101	ES B						sh brown slightly sand rse GRAVEL of chall			2 <u>5</u> /1	XX
.40-0.45	102	ES			~~~~~	limestone.			k, aspilait, concrete			\times
.50-0.70 .50	2	B V	c _u =65/36/42			MADE GROU	ND: Soft to	firm dark brown to bla	ick slightly sandy sli	ghtly 🕞		<u> </u>
.00	3	В				gravelly CLAY	. Sand is fir clinker bric	e to coarse. Gravel is k fragments and chalk	angular fine to coars	se of [_(0.	55)	
								UND: Firm brown gr		el is 1.3	30	
.30-1.50 .50-1.95	4	B SPT	N=13			angular to suba	angular fine	to coarse of chalk.	-		35)	r T
.50-1.95	4.1	DSPT	N=15			Firm light brow to coarse of flir		CLAY. Gravel is suban	gular to subrounded		Í	ľ
		_						 mposed of off white	mottled brown sli] <u>- 1.</u> 9 ahtly / -	95	
2.00	5	D				sandy gravelly	SILT. Grav	el is very weak, off wh	ite and subangular.	, it		
						(Grade Dm)	otruoturola	ss CHALK composed	of off white access	[(1.0)5)	1
.50-2.95	6	UT100	50 blows 100% recovery			mottled orangi	structureles	vith rare black specks	s slightly sandy gra	velly -		
			100 /0 recovery			SILT. Gravel is	s weak off w	hite and subangular.	0, , , 0	3.0	00	<u> </u>
.00	7	D						ith rare black specks	and occasional brow			1
						orange staining	g.			-		
.50-3.95	8	SPT	N=17							-		
50-3.95	8.1	DSPT								-	ŀ	- I'
.00	9	в								-	-	
.00		5								-		
50 4 05		117400	0011							-		
.50-4.95	10	UT100	80 blows 89% recovery							-		
			-							E		
.00	11	D								-	·	
										-		1
										-	-	
										-		
.00	12	В				from 6.00r	n to 7.00m	depth occasional flints		-		
.00-6.45 .00-6.45	13 13.1	SPT DSPT	N=42								ŀ	
.00 0.10	10.1	2011								E		-1-1-
										-	-	
00	4.4	P								-	ŀ	
.00	14	В								-		
										-		ľ
.50-7.95	15	UT100	100 blows 83% recovery							-	ŀ	ľ
			5070 1 500 tory							-	ŀ	
.00	16	D				from 8.00r	m to 9.00m	depth rare flints.		E	ŀ	
										-		
										-	ŀ	T.
										- -	ŀ	
										<u>E</u>		

Boring Progress and Water Observations Chiselling / Slow Progress **General Remarks** Borehole Diameter Casing Borehole Water Duration То Date Time From (hh:mm) Depth Depth Depth (mm) 1. Position checked with Ground Penetrating 08/12/20 08:30 0.00 Radar, CAT and Genny prior to excavation. 08/12/20 17:00 13.00 3.00 150 Dry 2. Inspection pit hand dug to ???? depth. 09/12/20 13.00 08:00 3.00 150 3. No groundwater encountered. 09/12/20 14:00 20.00 4. On completion, borehole backfilled with arisings. -5. SPT hammer AR1321-2020 ($E_r = 52.00\%$) used. All dimensions in metres Scale: 1:50 AGS Checked Method Plant Drilled Logged KDalton Kevin Sims Used: Used: By: By: Dando 2000 Cable percussion

BOREHOLE LOG

RAW FIELD DATA

Contract:						Client:				Boreho	ole:	
		ar Par	k, QAH Po				No	vitini Li	mited			BH
Contract Ref			Start:	08.12.2	0 Groun	d Level:	C	o-ordinates	S:	Sheet:		
7	735	569	End:	09.12.2	0						2	of 3
Sam	oles a	and In-si	tu Tests	Water			-		(0) - 1		Depth	Mate
Depth	No	Туре	Results	Water			De	escription o	of Strata		(Thick ness)	Grap Lege
).00).00-9.45	17	B SPT	N-29				HALK with	n rare black	specks and occasic	onal brownish	-	
9.00-9.45 9.00-9.45	18 18.1		N=38		💥 (stra	ge staining. <i>tum copied fr</i> e	om 3.00m	from previ	ous sheet)		-	
					💥f	from 9.00m to	9.45m de	pth flint ba	nds.		-	
					*						-	
0.00	19	В			×						-	
0 50 10 05	20	117100	100 blows								-	
0.50-10.95	20	UT100	100 blows 100% recovery								-	
1.00	21	D									-	
	[_]				*						- -	
					×						(17.00)	
					8						-	
2.00	22	В			*						-	
2.00-12.45 2.00-12.45	23 23.1	SPT DSPT	N=40						-			
									-			
					×				-			
3.00	24	В			💥f	from 13.00m o	depth occa	asional flint	S.		-	
					8						-	_
3.50-13.95	25	UT100	100 blows 100% recovery		×						-	
1.00	00				×			-				
4.00	26	D			8						-	
					8						-	
											-	
5.00	27	В			8						-	-
5.00-15.34	28	SPT	9,9/11,26,13 for 40mm		8						- -	
5.00-15.45	28.1	DSPT			×						-	
					*						-	
6.00	29	В			8						- - -	
					*						-	
6.50-16.95	30	UT100	100 blows 50% recovery		×						-	
7.00		-			*						-	
7.00	31	D			*						-	
					*						-	
					×						-	
					××						-	
Bo	oring l	Progress	s and Water Ob	servations		Chisellin	ig / Slow F	Progress	0		- ul c -	
Date	Time	Bore	Ŭ	Borehole Diameter	Water	From	То	Duration (hh:mm)	Gene	eral Rema	arks	
		Dep	oth Depth	(mm)	Depth							

			I	()										
										All dimensi	ons in metres	Scale:	1:50	
Method			Plan	ł			Drilled	- 1		Logged	KDalton	Checke		
		_									NDallon			100
Used:	Cable p	ercussic	on ^{Used}	ı: Da	ando 200	0	By:	Ke	vin Sims	By:		By:		AGS
										1				

RAW FIELD DATA

Contract:	orth Car Park, QAH Portsmou							Client:					Boreho	le:		
North	n Ca	ar Par	k, QA	H Po	rtsm	nouth	า		Ν	ovitini Li	mited				В	BH2
Contract Ref	f:			Start:	08.1	2.20	Ground	Level:		Co-ordinates	8:		Sheet:			
7	735	569		End:	09.1	2.20								3	of	3
Sam	ples a	and In-sit	tu Tests		Water	Backfill				Description o	of Strata			Depth (Thick	Ma	ateri aph
Depth	No	Туре	Res	sults	3	B B				-				ness)		gen
18.00 18.00-18.32 18.00	32 33 33.1	B SPT DSPT	9,14/17 for 2	7,23,10 20mm			orange	e staining.		<i>i</i> ith rare black Im from previo		nd occasional b	prownish	-		
19.00	34	В												- - - -		
19.50-19.95	35 36	UT100 D	100 ł 89% re	blows ecovery			Boreho	ole terminate	ad at 20	.00m depth.				20.00		
-																
Bo	orina I	Progress	s and W	ater Obs	servati	ions		Chisellin	a / Slov	v Progress			_			
	Boring Progress and Water Observations Borehole Casing Borehole With the second se											Rema	arks			

		Boring Pre	ogress and	Water C	bservations	;	Chisell	ing / Slow I	Progress		General	Domor		
	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)		General	Remai	K5	
			Dopui	Dopui		Doput								
;														
,										All dimensi	ons in metres	Scale:	1:50	
	Method			Pla				Drilled		Logged	KDalton	Checked		
-	Used:	Cable n	ercussio	on ∣Us	ed: Da	ando 200	0	By: K	evin Sims	By:		By:		AGS

RAW FIELD DATA

BOREHOLI	E LOG
----------	-------

Contract:	4L ^	 D		D			Client:					Boreho	ole:	
Nor Contract F		ar Par	k, QAH	Portsm art: 09.1;					ovitini Li			Sheet:		Bł
	735	560				Giound			CO-OFUITIALE			Sneet.	1	of
			En											
Sa Depth	No	and In-si Type	tu Tests Results	Water	Backfill				Description of	of Strata			Depth (Thick ness)	
0.25-0.35 0.30 0.50	101 1 2	ES B B				MADE fine to MADE	coarse GR GROUNE	D: Reddis RAVEL of D: Reddist	h brown slig limestone a	nd flint. tled white slig	angular to sub ghtly sandy an		0.10 0.25 0.35/ (0.65)	
1.00	3	В				Recov	ered as str	ructureles off white	s CHALK co moderately	omposed of s	slightly sandy (ir to subround	gravelly ed with	<u>1.00</u>	
1.50-1.95 1.50-1.95	4 4.1	SPT DSPT	N=16							orangish bro	wn CHALK w	ith rare	- - -	
2.00	5	В											- - -	
2.50-2.95	6	UT100	75 blows 100% recov										- - -	
3.00	7	D											- - -	
3.50-3.95 3.50-3.95	8 8.1	SPT DSPT	N=21				from 3.50 sh orange			specks and	occasionally	mottled	- - - -	
4.00	9	В											-	
4.50-4.95	10	UT100	100 blow 61% recov										-	
5.00	11	D				frc	om 5.00m c	depth no b	black specks	present.				
6.00-6.45 6.00-6.45	12 12.1	SPT DSPT	N=25			frc	om 6.00m t	o 8.00m c	depth no blac	ck specks an	ld occasional f	lints.	-	
7.00	13	В											- - - - -	
7.50-7.95	14	UT100	100 blow 100% recov										-	
8.00	15	D												
	Borina	Progress	and Water	Observat	ions	 	Chiselli	ing / Slow	Progress				£	<u> </u>
Date	Time	Bore	hole Casii	ng Boreh Diam	nole eter	Water Depth	From	То	Duration (hh:mm)		General	Rema	arks	
09/12/20 09/12/20 10/12/20 10/12/20	14:00 17:00 08:00 18:00	0 0.0 0 1.2 0 1.2	20 - 20 -			- - - -				Radar, 0 2. Inspection 3. No groun 4. On com	checked with CAT and Genn on pit hand dug ndwater encou pletion, boreho mmer AR1321	y prior to g to 1.20 intered. le backfi	n excava m depti lled with	ation. n. i arisir
										All dimensi	ons in metres	Scale:	1:5	0
Method	Insp	ection		Plant Jsed:		do 200		Drilled By: K	(evin Sim	Logged S By:	KDalton	Checke By:		A

RAW FIELD DATA

BOREHOLE LOG

All dimensions in metres

Logged KDalton

Scale:

Checked By:

1:50

AGS

Contract:								Client:					Borehole	e:		
	th C	ar	Park	, QAH F	Por	tsmo	uth		No	vitini Li	imited				Bł	H٢
Contract R		ar						Ind Level:		Co-ordinate			Sheet:			
			•										Uncel.	•		~
	735	556	9	En	d: '	10.12.2	.0							2	of	3
		-	In-situ	Tests Results		Water	Dackill		D	escription (of Strata			Depth (Thick	Mat Gra	ıр
Depth	No 16		ype B	Results	>			ok off white a	accional	ly mottled	orangish browr			ness)	Leg	je T
.00-9.45	17	' S	PT	N=26			💥 flin	ts.			•	I CHALK WIL				_
.00-9.45	17.	1 D	SPT				(sti	ratum copied f	rom 1.00n	n from previ	ious sheet)		F			_
													E			-
0.00	18	,	в					. from 10.00m	to 10 50m	n donth rara	flipto		F			_
0.00								. 110111 10.00111	10 10.5011	ruepurrare	mins.		Ē			_
0.50-10.9	10		100	90 blows									((19.00)		_
0.00-10.9	95 19			100% recov											-	_
1 00													-			_
1.00	20	'	D										F			_
													F			_
													-			_
													-			-
2.00 2.00-12.4	21 5 22		B PT	N=22									-			-
2.00-12.4			SPT										Ē			-
													F			_
													-			_
3.00	23	3	В					. at 13.00m de	pth occas	ional flints.			-	-		_
													-			_
3.50-13.9	95 24		100	100 blows 100% recov									-			_
				100 /0 TECOV	/eiy								F			_
4.00	25	5	D													
													-]
													-			
													Ę			
5.00	26		B				ី	. from 15.00m	depth rare	e locally rind	led flints.		F			
5.00-15.4 5.00-15.4	15 27 15 27.		SPT	N=38									F			
													-			_
													-			_
6.00	28	3	в										-			
													Ē			
6.50-16.9	95 29) U	100	120 blows									-]
				9% recove	ery								-			
7.00	30		D										F			
													-			
													F			
													-			
							×××								I	_
I	Boring	j Pro	gress a	and Water	Obs	ervation	S	Chiselli	ng / Slow I	Progress	<u> </u>		Jome	rlee		_
Date	Tim	e	Boreho		ng	Borehole Diameter	Wate	From	То	Duration	j G	eneral F	xema	IKS		
2400		~	Deptl	h Dept	th	(mm)	Dept	h		(hh:mm)						-

Drilled

By:

Kevin Sims By:

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 PriVersion: v8_07 | Log CABLE PERCUSSION LOG - A4P | 735569_NORTH_CAR_PARK_QAH_PORTSMOUTH.GPJ - v10_01. Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tei: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 17/12/20 - 11:13 | KD2 |

Method

Used:

Inspection pit +

Cable percussion

Plant

Used:

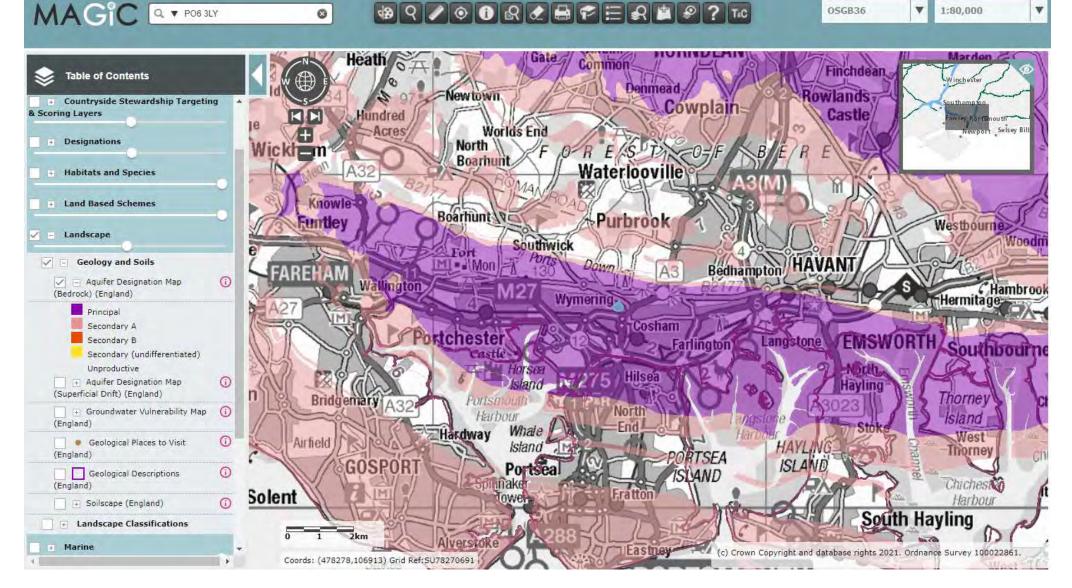
Dando 2000

RAW FIELD DATA

Contract: North		r Dar	k 0^		rten			Client:	No	ovitini Li	imited	Boreho	ole:	BH
Contract Ref		u raf	п, цА					d Level:		Co-ordinate		Sheet:		DΠ
		569		End:									_	of 3
			tu Tests		1	1							Depth	Mate
Depth	No	Туре	Res		Water	Backfill			D	escription	of Strata		(Thick ness)	Grap Lege
18.00 18.00-18.38	31 32	B SPT	5,15/12	.14.19.5			Weal flints.		occasiona	lly mottled	orangish brown CHALK	with rare	-	
	32.1	DSPT	for 5	ōmm					from 1.00n	n from prev	ious sheet)		-	
													-	
19.00	33	В											-	
													-	
19.50-19.95	34	UT100	100 k 67% re										-	
20.00	35	D					Boreł	nole termina	ited at 20.0)0m depth.			20.00	
													-	
													-	
_													-	
													-	
													-	
													-	
-													-	
													-	
													-	
													-	
													-	
													-	
													-	
													-	
													-	
													-	
_													-	
													-	
													-	
_													-	
													-	
													F - -	
													E - -	
-	·				•					D				
		Bore	s and Wa	ater Obs asing	Boreł	nole	Water		ing / Slow	Progress Duration	General	Rema	arks	
Date	Time	De		Depth	Diam (mr	eter	Depth	From	То	(hh:mm)				
Method I	nsn	ection	nit +	Plant					Drilled		All dimensions in metres	Scale: Check	<u>1:50</u> ed	
Used: Ca	ahlo	nercu	ission	Used		Dar	ido 20			evin Sim		By:		A

2		Boring Pro	ogress and	Water O	bservations		Chisell	ing / Slow	Progress	Cono	rol [Remar	ko	
	Date	Time	Borehole	0	Diameter	Water	From	То	Duration (hh:mm)	Gene	iai i	Temai	KS	
			Depth	Depth	(mm)	Depth			()					
Ś														
5														
5														
202														
-														
2														
2										<u></u>		<u> </u>		
5										All dimensions in me	etres	Scale:	<u>1:50</u>	
-ini	Method	Inspec	tion pit -	▶ Pla	nt			Drilled		Logged KDalt	on	Checked		
ź	Used:		ercussio		ed: Da	ando 200	0	By: K	evin Sims	By:		By:		AGS

Appendix E

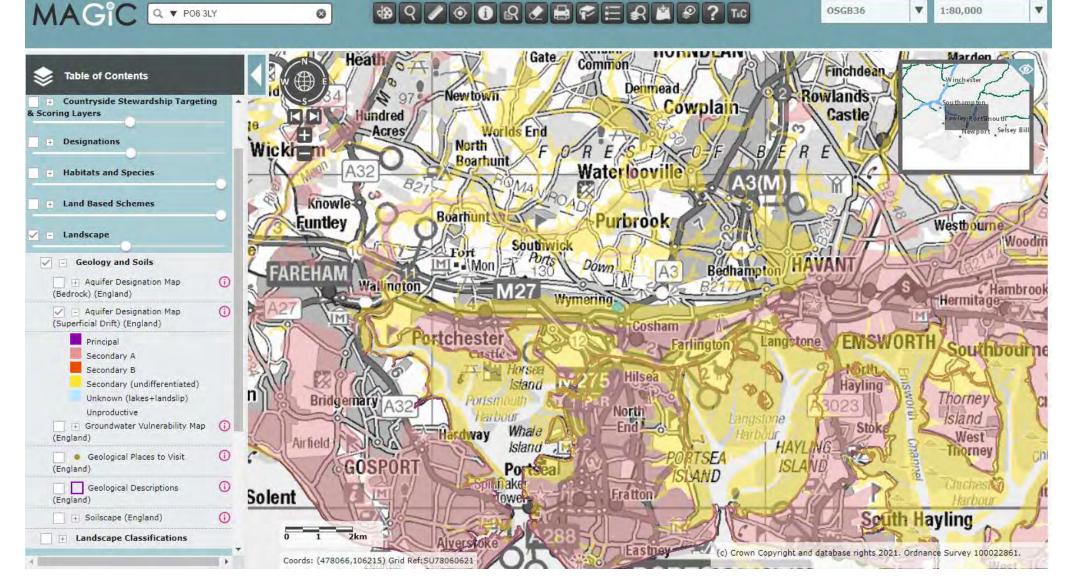

Magic Map Geology Information

働♀◢◈❶Ⴥ๔兽窄≔Ⴥ≌₽?™

0

OSGB36

V 1:80,000 V



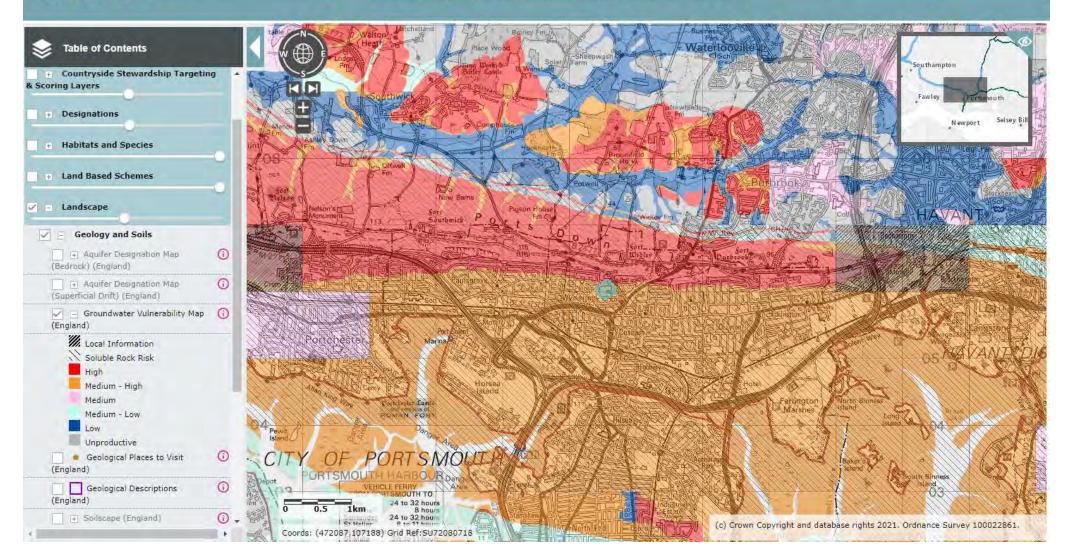
働♀◢◈❶ೀৈৈ₽▤ॎ?Ё◧◾??™

0

OSGB36

V 1:80,000 V

MAGIC Q . POG 3LY


0

働♀↗♥❶₽◢₽?™

OSGB36

▼ 1:40,000

.

Appendix F

Greenfield Run-Off

Patrick Parsons Limited		Page 1
Waterloo House	QAH Portsmouth	
Thornton Street		
Newcastle Upon Tyne, NE1 4AP		Micco
Date 21/01/2021 13:35	Designed by A Johnson	Desinado
File	Checked by D Brooke	Diamage
Innovyze	Source Control 2020.1	

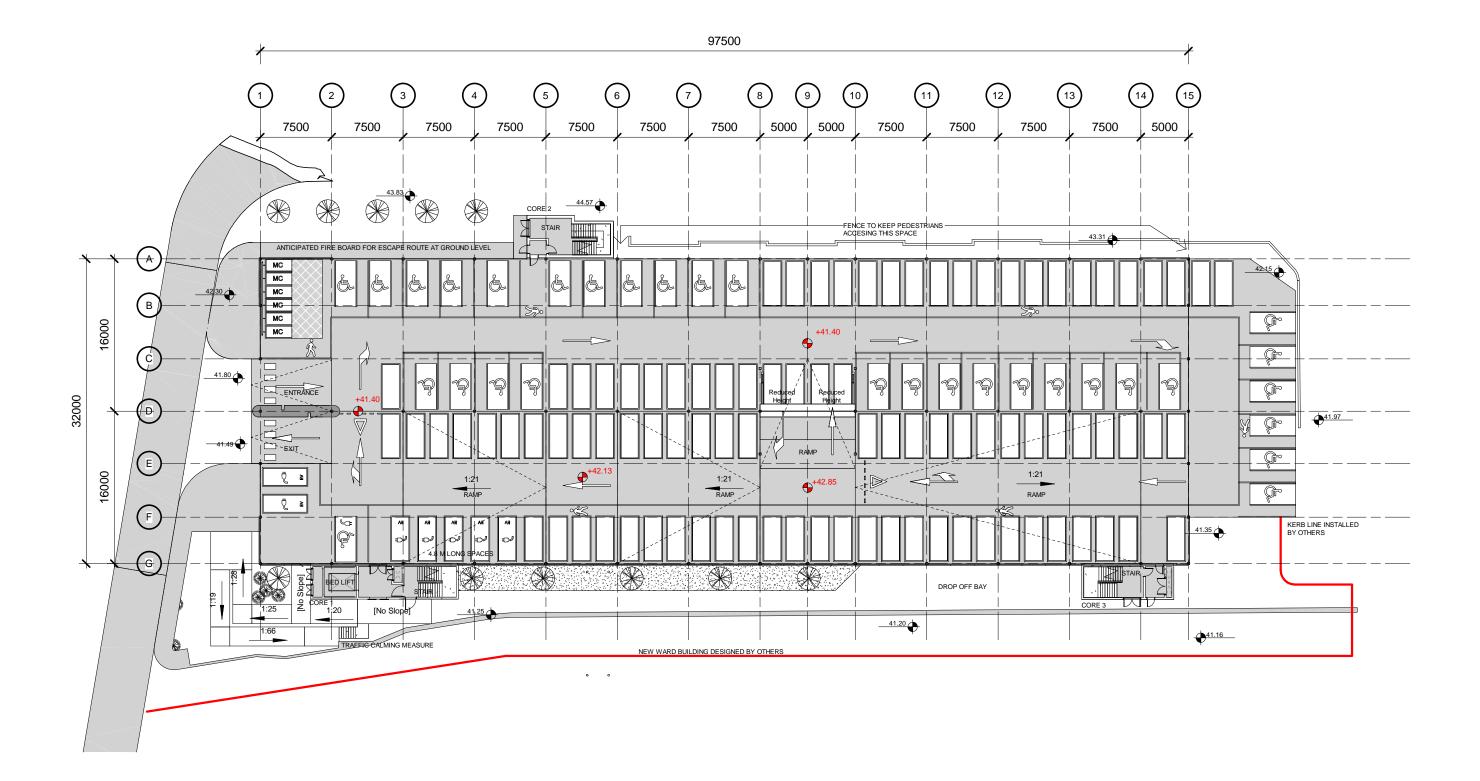
ICP SUDS Mean Annual Flood

Input

Return Period (years)	1	Soil	L 0.400
Area (ha)	0.453	Urban	n 0.700
SAAR (mm)	800	Region Number	r Region 7

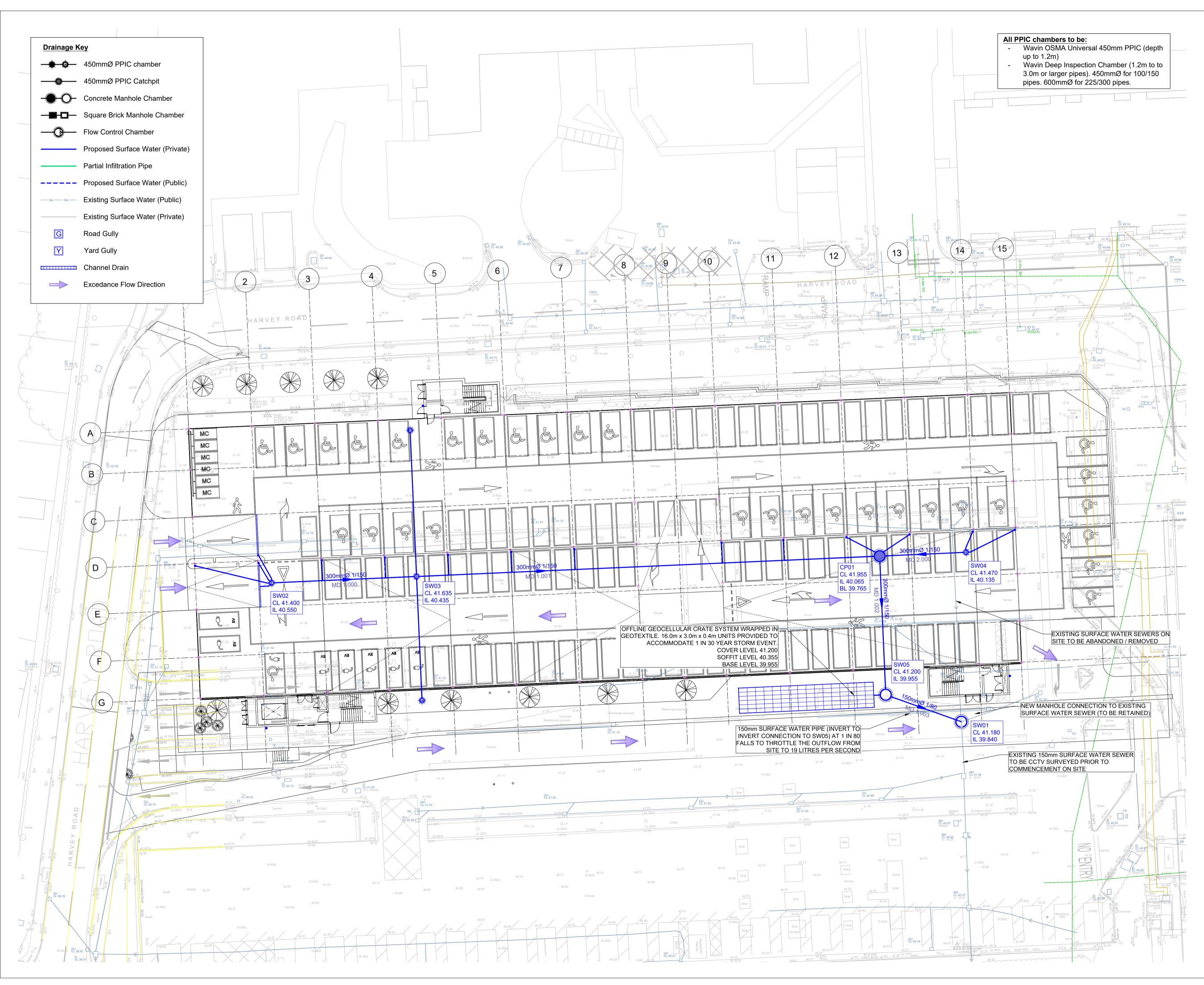
Results 1/s

QBAR Rural 1.8 QBAR Urban 4.6


Q1 year 3.9

Q	l year	3.9
Q30	years	8.1
Q100	years	9.5

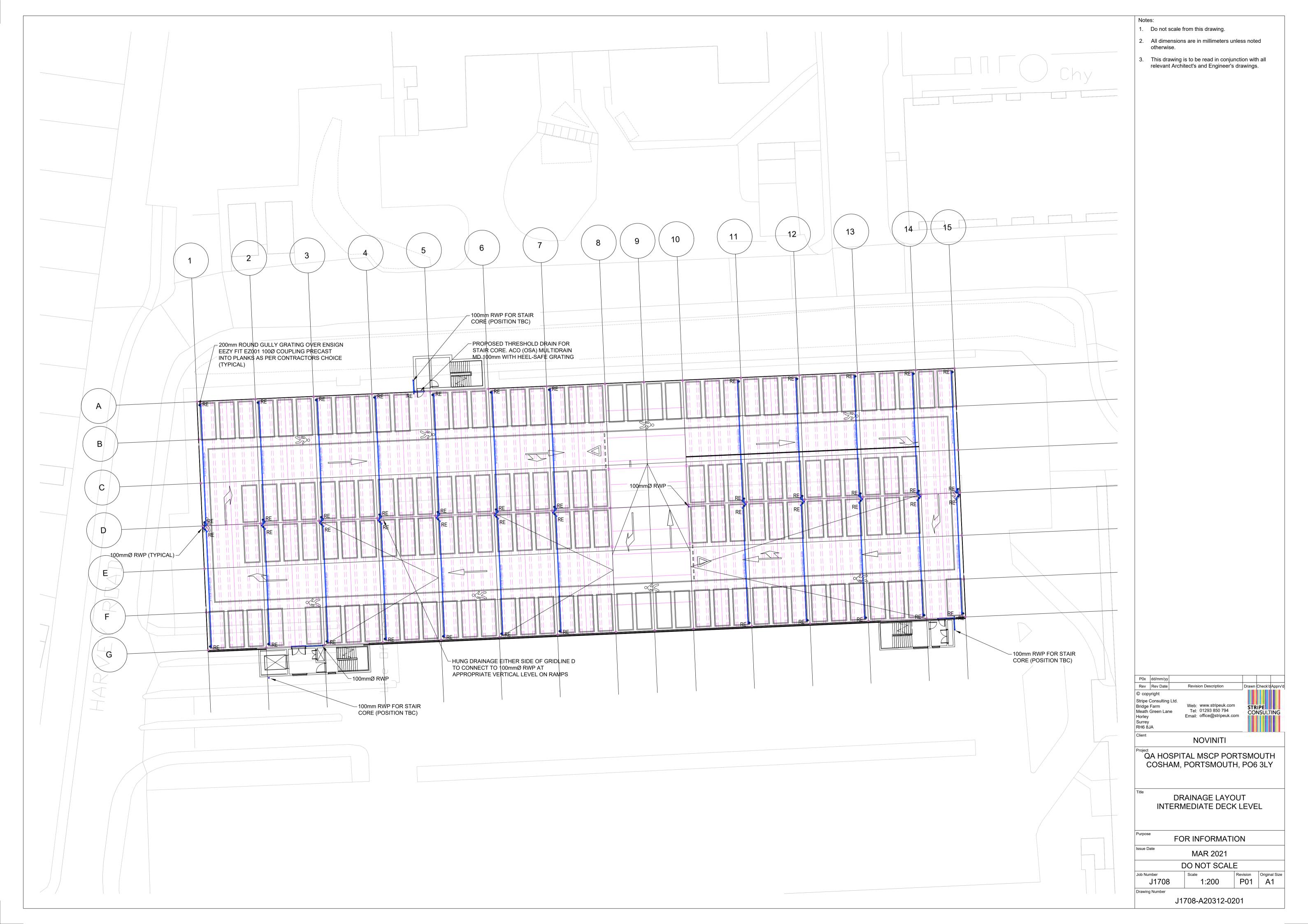
Appendix G

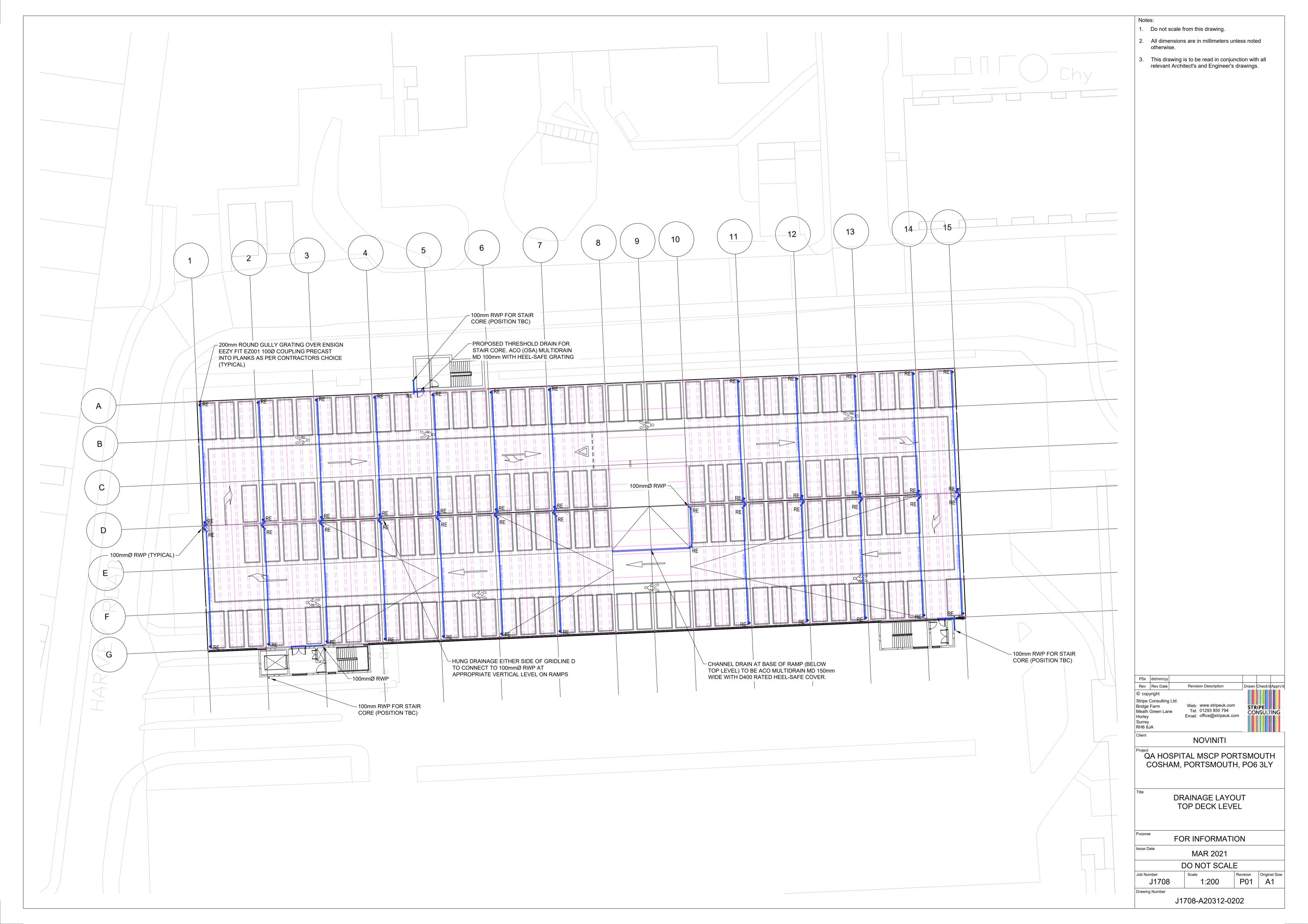

Proposed Site Plan

Appendix H

Schematic Drainage Layout

Notes:


1. Do not scale from this drawing.


- 2. All dimensions are in millimeters unless noted otherwise.
- 3. This drawing is to be read in conjunction with all relevant Architect's and Engineer's drawings.

Drainage Construction Notes

- All materials and workmanship related to private sewers shall be in accordance with Part H of the Building Regulations and BS EN752 and best practice
- All materials and workmanship related to adoptable sewers shall be in accordance with the Design and Construction Guidance 2020 as published by the Water Services Association and any subsequent revisions shown by the water authority
- All sustainable drainage systems to be designed and maintained in accordance with CIRIA C753 The SuDS Manual and best practice guidance.
- 4. Gulley and channel grating shall be ductile iron to BS EN124, Load Class D400, and kitemarked.
- 5. Manhole covers and frames to be ductile iron to BS EN124 Class D400 in carriageways and Class B125 in verges unless otherwise specified. Covers may be kitemarked and badged "SW" or "FW" as appropriate unless otherwise instructed by the water authority. Brick/brick infilled manhole covers are not to be used on adoptable manholes.
- All clayware pipes to be vitrified clay to BS EN 295 or BS 65 and of minimum strength Class 120 or Extra Strength respectively.
- All plastic pipes to be PVC-U in accordance with BS EN 1401.
- 8. All underfloor hung drainage to be ductile iron in accordance with BS EN 545: 1994 and BS EN 598: 1994 unless explicitly noted on the drawing.
- All carrier drains under carriageway to be constructed with BEDDING TYPES S or Z depending on depth of cover as described on Typical Drainage Details drawing.
- 10. First flexible joint in pipes adjacent to a manhole shall be 600mm from inside face of manhole, connecting to rocker pipe. For pipes of 150-450mm, the rocker pipe length shall be 500mm-750mm and for pipe diameters 451-750 rocker pipe shall be 750mm-1000mm.
- 11. Pipes shall be laid to their true line and level by laser or by boning each end and middle.
- 12. All soft spots within pipe trenches shall be removed.
- 13. No water shall be allowed to accumulate in pipe trenches during construction.14. All fill material shall be consolidated in layers not
- exceeding 225mm. 15. P.C concrete lintels to be used over pipes and ducts
- passing through walls, subject to design by structural engineer.
- 16. All insitu concrete used in pipe protection to be min. grade ST2 unless noted otherwise on the typical details.
- 17. Compressible filler for interruption of concrete pipe protection shall consist of bitumen impregnated insulating board to BS 1142 at each pipe joint.
- 18. All redundant drains shall be removed or concrete sealed.
- 19. All pipe runs to be laid with flexible joints.
- 20. All pipe connections to be made soffit to soffit unless noted.
- 21. All pipework with less than 1.2m cover within roads or parking areas to have concrete bed & surround.
- 22. If the contractor finds any discrepancies in the information provided then he must notify the engineer immediately before any materials are ordered or works undertaken
- 23. All underslab drainage at minimum 1 in 40 fall unless noted on the drawing.

rv'c									
5									
Title DRAINAGE LAYOUT GROUND FLOOR LEVEL (STRATEGY)									
Issue Date MAR 2021									
DO NOT SCALE									
ze									
Drawing Number J1708-A20312-0200									

Appendix J

MicroDrainage Calculations

ewcastle Upon Tyne, NE1 4AP Designed by A Johnson ate 10/02/2021 09:22 Designed by A Johnson ile Planning Simualtion Mod Checked by D Brooke nnovyze Network 2020.1 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Fipe Sizes STANDARD Manhole Sizes STANDARD FSR Rainfall Model - England and Wales Return Period (years) 2 PIMP (%) 10 Maximum Rainfall (mm/hr) S0 Maximum Backdrop Height (m) 0.20 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.20 Foul Sewage (1/s/ha) 0.000	atric				-u								1 a	ge :		
<pre>ile Planning Simualtion Mod Checked by D Brooke nnovyze Network 2020.1 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Pipe Sizes STANDARD Manhole Sizes STANDARD FSR Rainfall Model - England and Wales Return Period (years) 2 FIMP (%) 10 M5-60 (mm) 20.000 Add Flow / Climate Change (%) Ratio R 0.400 Minimum Backdrop Height (m) 0.20 Maximum Rainfall (mn/hr) 50 Maximum Backdrop Height (m) 0.10 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (1:X) 50 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (1:X) 50 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (1:X) 50 Designed with Level Soffits PM Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) * - Indicates pipe capacity < flow PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto Design 1.000 17.291 0.115 150.4 0.077 5.00 0.0 0.600 o 300 Pipe/Conduit 2.000 10.245 0.070 146.4 0.052 5.00 0.0 0.0 0.600 o 300 Pipe/Conduit 1.003 9.5477 0.119 80.0 0.044 0.000 0.0 0.0 0.600 o 300 Pipe/Conduit 1.003 9.547 0.119 80.0 0.044 0.000 0.0 0.0 0.600 o 150 Pipe/Conduit 1.001 50.00 5.23 40.550 0.077 0.0 0.0 0.0 0.0 0.1 1.28 90.5 10.4 1.001 50.00 5.04 40.435 0.219 0.0 0.0 0.0 0.0 1.28 90.5 10.4 1.001 50.00 5.13 40.135 0.052 0.0 0.0 0.0 0.0 1.28 90.5 10.4 1.002 50.00 6.15 40.065 0.345 0.0 0.0 0.0 0.0 1.28 90.5 10.4 </pre>	aterlo	oo Hou	se			QA	H MSC	CP								
Atte 10/02/2021 09:22 Designed by A Johnson Checked by D Brocke ile Planning Simualtion Mod Checked by D Brocke nnovyze Network 2020.1 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm FIMP (%) FIMP (%) Design Criteria for Storm FIMP (%) FIMP (%) Design Criteria for Storm FIMP (%) Design Criteria for Storm FIMP (%) Design Criteria for Storm Maximum Rainfall (mm/hr) Store Min Weign Depth for Optimisation (11:X) Designed with Level Soffits Network Design Table for Storm « - Indicates pipe capacity < flow Privon (11:X) (ba) (mins) Flow (1/s) (mm) SECT (mm) Design Criteria for Storm (m) (m) (1:X) (ba) (mins) Flow (1/s) (mm) SECT (mm) Design Table for Storm « - Indicates pipe capacity < flow Privon (1/s) (mm) SECT (mm) Design Table for Storm	hornto	on Str	eet											4		
Ile Planning Simualtion Mod Checked by D Brooke Network 2020.1 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Fipe Sizes STANDARD Manhole Sizes STANDARD FER Rainfall Model - England and Wales Return Period (years) 2 FIMP (%) 10 M3=60 (mm) 20.000 Add Flow / Climate Change (%) Ratio R 0.400 Minimum Backdrop Height (m) 0.20 Maximum Toime of Concentration (mins) 30 Min Design Depth for Optimisation (11:X) 10.00 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (1:X) 50 Designed with Level Soffits Network Design Table for Storm « - Indicates pipe capacity < flow PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto Design Network Design Table for Storm « - Indicates pipe capacity < flow PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto Design Network Results Table Network Results Table Network Results Table N					JE1 4AP								M	lico	n	
Network 2020.1 Network 2020.1 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm FIRE Rainfall Model - England and Wales FIRE Rainfall Model - England and Wales Return Period (years) PIMP (%) 10.00 MS-60 (mm) 20.000 Add Flow / Climate Change (%) MS-60 (mm) 20.000 Add Flow / Climate Change (%) MS-60 (mm) 20.000 Add Flow / Climate Change (%) MS-60 (mm) 20.000 Add Flow / Climate Change (%) MS-60 (mm) X0.000 Md mainum Backdrop Height (m) 0.50 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (1:X) 50 Metwork Design Table for Storm « - Indicates pipe capacity < flow PM (%) 10 Network Design Table for Storm (m) (m) (%) 1.28 Outo on 0.00 0.600 o 300 Pipe/Conduit 0.00 17.291 0.115 150.4 0.077 5.00 0.00 0.00 0.600 o 300 Pipe/Conduit 1.000 17					_		2	-			1		n	rair	าสต	
STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Fipe Sizes STANDARD Manhole Sizes STANDARD FSR Rainfall Model - England and Wales Retur Period (years) 2 MS-60 (mm) 20.000 Add Flow / Climate Change (%) Maximum Rainfall (mm/hr) Statio R 0.400 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.20 Four Sewage (l/s/ha) Outward Concentration (mins) 30 Min Design Depth for Optimisation (l:x) 50 Designed with Level Soffits Network Design Table for Storm « - Indicates pipe capacity < flow	ile PJ	lannin	g Sim	ualti	on Mod					oke			U	run	nac _j	
Design Criteria for Storm Dipe Sizes STANDARD Manhole Sizes STANDARD FIR (%) 10 MS-60 (mm) 20.000 Add Flow / Climate Change (%) Ratio R 0.400 Minimum Backdrop Height (m) 0.20 MAXIMUM Rainfall (mm/hr) SO Maximum Backdrop Height (m) 0.20 Maximum Rainfall (mm/hr) SO Maximum Backdrop Height (m) 1.50 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (1:X) SO Designed with Level Soffits Network Design Table for Storm Metwork Design Table for Storm (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 1.001 7.291 0.115 15.0.4 0.077 5.00 0.0 0.600 0 300 Pipe/Conduit • 1.001 7.439 0.101 148.6 0.142 0.00 0.0 0.600 0 300 Pipe/Conduit • 1.001 54.979 0.370 148.6 0.142 0.00 <t< td=""><td>nnovyz</td><td>ze</td><td></td><td></td><td></td><td>Ne</td><td>twor]</td><td>k 202</td><td>0.1</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	nnovyz	ze				Ne	twor]	k 202	0.1							
Fain fail Model - England and Wales Return Period (years) 2 PIMP (%) 10 M5-60 (mm) 20.000 Add Flow / Climate Change (%) Ratio R 0.400 Minimum Backdrop Height (m) 0.20 Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.50 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.20 Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.0 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 50 Designed with Level Soffits Network Design Table for Storm « - Indicates pipe capacity < flow			<u>STORI</u>	<u>m sew</u>		_					nal N	<u>Metho</u>	<u>d</u>			
Return Period (years) 2 FIMP (%) 10 M5-60 (mm) 20.000 Add Flow / Climate Change (%) Ratio R 0.400 Minimum Backdrop Height (m) 0.20 Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.50 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.20 Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.0 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 50 Designed with Level Soffits Network Design Table for Storm « - Indicates pipe capacity < flow				Pi	pe Sizes	s STANDA	RD Mai	nhole	Sizes	STAND.	ARD					
Return Period (years) 2 FIMP (%) 10 M5-60 (mm) 20.000 Add Flow / Climate Change (%) 0.20 Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 0.20 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.20 Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.0 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 50 Designed with Level Soffits Network Design Table for Storm « - Indicates pipe capacity < flow	<td></td> <td></td> <td></td> <td></td> <td></td> <td>C 11 M</td> <td></td> <td></td> <td>, ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						C 11 M			, ,						
Ratio R 0.400 Minimum Backdrop Height (m) 0.20 Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.50 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.20 Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.0 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 50 Designed with Level Soffits Network Design Table for Storm			Retu	ırn Pe:	riod (ye	ears)	2	-	na ana	wales	5		PIMP	(응)	10	
Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.50 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.20 Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.0 Volumetric Runoff Coeff. 0.750 Min Stope for Optimisation (1:X) 50 Designed with Level Soffits Network Design Table for Storm « - Indicates pipe capacity < flow					M5-60	(mm) 20.									(
Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.20 Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.0 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 50 Designed with Level Soffits Network Design Table for Storm « - Indicates pipe capacity < flow PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 1.000 17.291 0.115 150.4 0.077 5.00 0.0 0.600 o 300 Pipe/Conduit 1.001 54.979 0.370 148.6 0.142 0.00 0.0 0.600 o 300 Pipe/Conduit 2.000 10.245 0.070 146.4 0.052 5.00 0.0 0.600 o 300 Pipe/Conduit 1.002 16.430 0.110 149.4 0.074 0.00 0.0 0.600 o 300 Pipe/Conduit 1.002 16.430 0.110 149.4 0.074 0.00 0.0 0.600 o 150 Pipe/Conduit 1.003 9.547 0.119 80.0 0.040 0.00 0.0 0.600 o 150 Pipe/Conduit Metwork Results Table PN Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s) 1.000 50.00 5.23 40.550 0.077 0.0 0.0 0.0 0.0 1.28 90.5 10.4 1.001 50.00 5.04 40.435 0.219 0.0 0.0 0.0 0.0 0.0 1.30 91.7 7.0 1.002 50.00 6.15 40.065 0.345 0.0 0.0 0.0 0.0 1.28 90.8 46.7		N	lavimum	Rain								-	-			
Foul Sewage (1/s/ha) 0.000 Volumetric Runoff Coeff. Min Vel for Auto Design only (m/s) 1.0 Min Slope for Optimisation (1:X) 50 Designed with Level Soffits Network Design Table for Storm « - Indicates pipe capacity < flow PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 1.000 17.291 0.115 150.4 0.077 5.00 0.0 0.600 o 300 Pipe/Conduit 0 2.000 10.245 0.070 146.4 0.052 5.00 0.0 0.600 o 300 Pipe/Conduit 0 Network Results Table PN Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s) Network Results Table PN Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s) 1.001 50.00 5.23 40.550 0.077 0.0 0.0 0.0 1.28 90.5 10.4 1.001 Net more flow (1/s) (1/s) (1/s) (1.29 91.0 29.6 N Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow N Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow N Rain T.C. US/II S 0.052	Maximu					. ,		lin Des								
Designed with Level Soffits Metwork Design Table for Storm « - Indicates pipe capacity < flow PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto 1.000 17.291 0.115 150.4 0.077 5.00 0.0 0.600 0 300 Pipe/Conduit • 1.001 17.291 0.115 150.4 0.077 5.00 0.0 0.600 0 300 Pipe/Conduit • 2.000 10.245 0.070 148.6 0.142 0.00 0.0 0.600 0 300 Pipe/Conduit • 1.002 16.430 0.110 149.4 0.074 0.00 0.0 0.600 0 300 Pipe/Conduit • Network Results Table PN Rain T.C. US/TIL E f.Area E Base Foul Add Flow Vel Cap Flow 1.001 50.00 5.23 40.550 0.077 0.0 0.0 0.0 1.28 90			Fou	l Sewa	age (l/s	/ha) 0.	.000	Min	Vel fo	or Aut	o Des	sign or	nly (m/	/s)	1.00	
Network Design Table for Storm « - Indicates pipe capacity < flow PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto Design 1.000 17.291 0.115 150.4 0.077 5.00 0.0 0.600 o 300 Pipe/Conduit Image: Conduct Conduct Image: Conduct Conduct Image: Conduct Conduct Image: Conduct Conduct Conduct Image: Conduct Conduct Conduct Conduct Image: Conduct Con		V	olumet	ric Ru	unoff Co	oeff. 0.	.750	Mi	in Slop	be for	Opti	.misat:	ion (1:	:X)	50	
Network Design Table for Storm « - Indicates pipe capacity < flow PN Length Fall Slope I.Area (mins) Flow (1/s) (mm) SECT (mm) SECT (mm) DIA Section Type Auto Design 1.000 17.291 0.115 150.4 0.077 5.00 0.0 0.600 o 300 Pipe/Conduit Image: Conduit Conduct Image: Conduct Conduct Image: Conduct Conduct Image: Conduct Conduct Conduct Image: Conduct Conduct Conduct Conduct Image: Conduct					De	esigned w	with L	level S	Soffits	5						
N Length (m) Fall (m) Slope (1:x) I.Area (ha) T.E. (mins) Base Flow (1/s) k (mn) HYD SECT DIA (mn) Section Type (mn) Auto Design 1.000 17.291 0.115 150.4 0.077 5.00 0.0 0.600 0 300 Pipe/Conduit Image: Conduit Image: Conduit <td></td>																
N Length (m) Fall (m) Slope (1:x) I.Area (ha) T.E. (mins) Base Flow (1/s) k (mm) HYD SECT DIA (mm) Section Type (mm) Auto Design 1.000 17.291 0.115 150.4 0.077 5.00 0.0 0.600 0 300 Pipe/Conduit Image: Conduit Image: Conduit <th></th>																
PN Length (m) Fall (1:X) (ha) Length (mins) Flow (1/s) (mm) SECT (mm) DIA Section Type Auto Design 1.000 17.291 0.115 150.4 0.077 5.00 0.0 0.600 o 300 Pipe/Conduit Image: Conduit Image: Conduit <th></th> <th></th> <th></th> <th></th> <th>Netwo</th> <th>rk Desi</th> <th>an T</th> <th>able</th> <th>for S</th> <th>torm</th> <th></th> <th></th> <th></th> <th></th> <th></th>					Netwo	rk Desi	an T	able	for S	torm						
PN Length Fall Slope I.Area (ha) T.E. (mins) Base (mins) k HYD (ha) DIA Section Type Auto Design 1.000 17.291 0.115 150.4 0.077 5.00 0.0 0.600 o 300 Pipe/Conduit image: conduct (mm) 1.000 17.291 0.115 150.4 0.077 5.00 0.0 0.600 o 300 Pipe/Conduit image: conduct (mm) 2.000 10.245 0.070 146.4 0.052 5.00 0.0 0.600 o 300 Pipe/Conduit image: conduct (mm) 1.002 16.430 0.110 149.4 0.074 0.00 0.0 0.600 o 300 Pipe/Conduit image: conduct (mm) 1.002 16.430 0.110 149.4 0.074 0.00 0.0 0.600 o 300 Pipe/Conduit image: conduct (mm) 1.002 16.430 0.110 149.4 0.074 0.00 0.0 0.600 o 150 Pipe/Conduit image: conduct (mm) image: conduct (mm) image: conduct (mm) image: conduct (mm)																
(m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 1.000 17.291 0.115 150.4 0.077 5.00 0.0 0.600 0 300 Pipe/Conduit Image: Conduit Image: Condu																
(m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 1.000 17.291 0.115 150.4 0.077 5.00 0.0 0.600 0 300 Pipe/Conduit Image: Conduit Image: Condu																
1.000 17.291 0.115 150.4 0.077 5.00 0.0 0.600 0 300 Pipe/Conduit Image: Conduit Image: Conduit<																
1.001 54.979 0.370 148.6 0.142 0.00 0.0 0.600 o 300 Pipe/Conduit 2.000 10.245 0.070 146.4 0.052 5.00 0.0 0.600 o 300 Pipe/Conduit 1.002 16.430 0.110 149.4 0.074 0.00 0.0 0.600 o 300 Pipe/Conduit 1.003 9.547 0.119 80.0 0.040 0.00 0.0 0.600 o 150 Pipe/Conduit Network Results Table PN Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (l/s) (l/s) (l/s) (l/s) (l/s) (l/s) (l/s) 1.000 50.00 5.23 40.550 0.077 0.0 0.0 0.0 1.28 90.5 10.4 1.001 50.00 5.94 40.435 0.219 0.0 0.0 0.0 1.29 91.0 29.6 2.000 50.00 5.13 40.135 0.052 0.0 0.0 0.0 1.28 90.8 46.7	PN	-		-	« - I: • I.Area	ndicates	pipe Ba	capac	ity < : k	flow HYD		Secti	on Typ			
2.000 10.245 0.070 146.4 0.052 5.00 0.0 0.600 o 300 Pipe/Conduit 1.002 16.430 0.110 149.4 0.074 0.00 0.0 0.600 o 300 Pipe/Conduit 1.003 9.547 0.119 80.0 0.040 0.00 0.0 0.600 o 150 Pipe/Conduit Network Results Table PN Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) 0.01 0.077 0.0 0.0 1.28 90.5 10.4 1.001 50.00 5.13 40.135 0.052 0.0 0.0 0.0 1.30 91.7 7.0 1.002 50.00 6.15 40.065 0.345 0.0 0.0 0.0 1.28 90.8 46.7		(m)	(m)	(1:X)	« - I • I.Area • (ha)	ndicates . T.E. (mins)	pipe Ba Flow	capac ase (1/s)	ity < : k (mm)	flow HYD SECT	(mm)			De	esign	
1.002 16.430 0.110 149.4 0.074 0.00 0.00 0.0 0.600 0 300 Pipe/Conduit 1.003 9.547 0.119 80.0 0.040 0.00 0.00 0.0 0.600 0 150 Pipe/Conduit Network Results Table Network Results Table PN Rain T.C. US/IL ∑ I.Area ∑ Base Foul Add Flow Vel Cap Flow (1/s)	1.000	(m) 17.291	(m) 0.115	(1:X)	« - I • I.Area • (ha) 4 0.077	ndicates T.E. (mins) 5.00	pipe Ba Flow	capac ase (1/s) 0.0	ity < : k (mm) 0.600	flow HYD SECT o	(mm) 300	Pipe/	'Condui	De	esign	
1.003 9.547 0.119 80.0 0.040 0.00 0.0 0.600 o 150 Pipe/Conduit Network Results Table PN Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow (nm/hr) (mins) (m) Cap Flow (1/s) Cap (1/s) <td>1.000</td> <td>(m) 17.291</td> <td>(m) 0.115</td> <td>(1:X)</td> <td>« - I • I.Area • (ha) 4 0.077</td> <td>ndicates T.E. (mins) 5.00</td> <td>pipe Ba Flow</td> <td>capac ase (1/s) 0.0</td> <td>ity < : k (mm) 0.600</td> <td>flow HYD SECT o</td> <td>(mm) 300</td> <td>Pipe/</td> <td>'Condui</td> <td>De</td> <td>esigr</td>	1.000	(m) 17.291	(m) 0.115	(1:X)	« - I • I.Area • (ha) 4 0.077	ndicates T.E. (mins) 5.00	pipe Ba Flow	capac ase (1/s) 0.0	ity < : k (mm) 0.600	flow HYD SECT o	(mm) 300	Pipe/	'Condui	De	esigr	
Network Results Table PN Rain (mm/hr) T.C. US/IL (mins) L.Area (m) E Base Flow (1/s) Foul (1/s) Add Flow (1/s) Vel (1/s) Cap (1/s) Flow (1/s) 1.000 50.00 5.23 40.550 0.077 0.0 0.0 0.0 1.28 90.5 10.4 1.001 50.00 5.13 40.135 0.052 0.0 0.0 0.0 1.30 91.7 7.0 1.002 50.00 6.15 40.065 0.345 0.0 0.0 0.0 1.28 90.8 46.7	1.000 1.001	(m) 17.291 54.979	(m) 0.115 0.370	(1:X) 150.4 148.6	 « - I. e I.Area (ha) 4 0.077 5 0.142 	ndicates T.E. (mins) 5.00 0.00	pipe Ba Flow	capac 158 (1/s) 0.0 0.0	ity < : k (mm) 0.600 0.600	flow HYD SECT o o	(mm) 300 300	Pipe/ Pipe/	'Condui 'Condui	De .t .t	esign	
PN Rain (mm/hr) T.C. (mins) US/IL (m) File E Base Flow Foul (l/s) Add Flow (l/s) Vel (m/s) Cap (l/s) Flow (l/s) 1.000 50.00 5.23 40.550 0.077 0.0 0.0 0.0 1.28 90.5 10.4 1.001 50.00 5.94 40.435 0.219 0.0 0.0 0.0 1.29 91.0 29.6 2.000 50.00 5.13 40.135 0.052 0.0 0.0 0.0 1.30 91.7 7.0 1.002 50.00 6.15 40.065 0.345 0.0 0.0 0.0 1.28 90.8 46.7	1.000 1.001 2.000	(m) 17.291 54.979 10.245	(m) 0.115 0.370 0.070	(1:X) 150.4 148.6 146.4	« - I: I.Area (ha) 4 0.077 5 0.142 4 0.052	ndicates T.E. (mins) 5.00 0.00 5.00	pipe Ba Flow	capac ase (1/s) 0.0 0.0 0.0	<pre>ity < : k (mm) 0.600 0.600 </pre>	flow HYD SECT 0 0	(mm) 300 300 300	Pipe/ Pipe/ Pipe/	'Condui 'Condui 'Condui	De .t .t	esign	
PN Rain (mm/hr) T.C. (mins) US/IL (m) File E Base Flow (1/s) Foul (1/s) Add Flow (1/s) Vel (m/s) Cap (1/s) Flow (1/s) 1.000 50.00 5.23 40.550 0.077 0.0 0.0 0.0 1.28 90.5 10.4 1.001 50.00 5.13 40.135 0.052 0.0 0.0 0.0 1.29 91.0 29.6 2.000 50.00 5.13 40.135 0.052 0.0 0.0 0.0 1.30 91.7 7.0 1.002 50.00 6.15 40.065 0.345 0.0 0.0 0.0 1.28 90.8 46.7	1.000 1.001 2.000 1.002	(m) 17.291 54.979 10.245 16.430	(m) 0.115 0.370 0.070 0.110	(1:X) 150.4 148.6 146.4 149.4	 « - I: I.Area (ha) 0.077 0.142 0.052 0.074 	ndicates T.E. (mins) 5.00 0.00 5.00 0.00 0.00	pipe Ba Flow	capac (1/s) 0.0 0.0 0.0 0.0	<pre>ity < : k (mm) 0.600 0.600 0.600 </pre>	flow HYD SECT 0 0 0	(mm) 300 300 300 300	Pipe/ Pipe/ Pipe/ Pipe/	'Condui 'Condui 'Condui	De t t	esign D D D D	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.000 1.001 2.000 1.002	(m) 17.291 54.979 10.245 16.430	(m) 0.115 0.370 0.070 0.110	(1:X) 150.4 148.6 146.4 149.4	 « - I: e I.Area (ha) 4 0.077 6 0.142 4 0.052 4 0.052 4 0.074 	ndicates T.E. (mins) 5.00 0.00 5.00 0.00 0.00	pipe Ba Flow	capac (1/s) 0.0 0.0 0.0 0.0 0.0	<pre>ity < : k (mm) 0.600 0.600 0.600 0.600 </pre>	flow HYD SECT 0 0 0	(mm) 300 300 300 300	Pipe/ Pipe/ Pipe/ Pipe/	'Condui 'Condui 'Condui	De t t	esign	
1.00050.005.2340.5500.0770.00.00.01.2890.510.41.00150.005.9440.4350.2190.00.00.01.2991.029.62.00050.005.1340.1350.0520.00.00.01.3091.77.01.00250.006.1540.0650.3450.00.00.01.2890.846.7	1.000 1.001 2.000 1.002 1.003	(m) 17.291 54.979 10.245 16.430 9.547	(m) 0.115 0.370 0.070 0.110 0.119	(1:X) 150.4 148.6 146.4 149.4 80.0	 « - I: i.Area (ha) 0.077 0.142 0.052 0.074 0.074 0.040 <u>h</u> 	ndicates T.E. (mins) 5.00 0.00 5.00 0.00 0.00 0.00 <u>Network</u>	pipe Ba Flow	capac (1/s) 0.0 0.0 0.0 0.0 0.0 11ts 5	<pre>k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 Cable</pre>	HYD SECT 0 0 0 0	(mm) 300 300 300 300 150	Pipe/ Pipe/ Pipe/ Pipe/	'Condui 'Condui 'Condui 'Condui	De t t t	esign	
1.001 50.00 5.94 40.435 0.219 0.0 0.0 1.29 91.0 29.6 2.000 50.00 5.13 40.135 0.052 0.0 0.0 1.30 91.7 7.0 1.002 50.00 6.15 40.065 0.345 0.0 0.0 1.28 90.8 46.7	1.000 1.001 2.000 1.002 1.003	(m) 17.291 54.979 10.245 16.430 9.547	(m) 0.115 0.370 0.070 0.110 0.119 in 7	(1:x) 150.4 148.6 146.4 149.4 80.0	 « - I: i.Area (ha) 0.077 0.142 0.052 0.054 0.074 0.074 0.040 <u>h</u> US/IL 2 	ndicates T.E. (mins) 5.00 5.00 5.00 5.00 0.00 0.00 Network E I.Area	pipe Ba Flow Resu	capac (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11ts <u>5</u> Base	<pre>ity < : k (mm) 0.600 0.600 0.600 0.600 Cable Foul</pre>	HYD SECT 0 0 0 0 0 0 8 4dd	(mm) 300 300 300 150 Flow	Pipe/ Pipe/ Pipe/ Pipe/ Vel	(Condui (Condui (Condui (Condui (Condui Cap	De t t t t t	esign e e e e e	
2.000 50.00 5.13 40.135 0.052 0.0 0.0 1.30 91.7 7.0 1.002 50.00 6.15 40.065 0.345 0.0 0.0 1.28 90.8 46.7	1.000 1.001 2.000 1.002 1.003	(m) 17.291 54.979 10.245 16.430 9.547	(m) 0.115 0.370 0.070 0.110 0.119 in 7	(1:x) 150.4 148.6 146.4 149.4 80.0	 « - I: i.Area (ha) 0.077 0.142 0.052 0.054 0.074 0.074 0.040 <u>h</u> US/IL 2 	ndicates T.E. (mins) 5.00 5.00 5.00 5.00 0.00 0.00 Network E I.Area	pipe Ba Flow Resu	capac (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11ts <u>5</u> Base	<pre>ity < : k (mm) 0.600 0.600 0.600 0.600 Cable Foul</pre>	HYD SECT 0 0 0 0 0 0 8 4dd	(mm) 300 300 300 150 Flow 's)	Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s)	(Condui (Condui (Condui (Condui (Condui Cap	De t t t t t	esigr e e e e e	
1.002 50.00 6.15 40.065 0.345 0.0 0.0 0.0 1.28 90.8 46.7	1.000 1.001 2.000 1.002 1.003 PN 1.00	(m) 17.291 54.979 10.245 16.430 9.547 N Rai (mm/ 00 50	(m) 0.115 0.370 0.070 0.110 0.119 in " /hr) (n	(1:X) 150.4 148.6 146.4 149.4 80.0 F.C. mins) 5.23	 « - I: e I.Area (ha) 4 0.077 6 0.142 4 0.052 4 0.052 4 0.074 0.040 <u>h</u> US/IL 3 (m) 40.550 	ndicates T.E. (mins) 5.00 5.00 5.00 5.00 0.00 0.00 Network E I.Area (ha) 0.077	Pipe Ba Flow Resu E I Flow	capac (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11ts 7 Base (1/s) 0.0	<pre>ity < : k (mm) 0.600 0.600 0.600 0.600 Table Foul (1/s) 0.0</pre>	HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 300 300 300 150 Flow (s) 0.0	Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.28	(Condui (Condui (Condui (Condui (Condui (Condui (Condui (1/s) 90.5	De t t t t t t t t t 10	esign	
1.002 50.00 6.15 40.065 0.345 0.0 0.0 0.0 1.28 90.8 46.7	1.000 1.001 2.000 1.002 1.003 PN 1.00	(m) 17.291 54.979 10.245 16.430 9.547 N Rai (mm/ 00 50	(m) 0.115 0.370 0.070 0.110 0.119 in " /hr) (n	(1:X) 150.4 148.6 146.4 149.4 80.0 F.C. mins) 5.23	 « - I: e I.Area (ha) 4 0.077 6 0.142 4 0.052 4 0.052 4 0.074 0.040 <u>h</u> US/IL 3 (m) 40.550 	ndicates T.E. (mins) 5.00 5.00 5.00 5.00 0.00 0.00 Network E I.Area (ha) 0.077	Pipe Ba Flow Resu E I Flow	capac (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11ts 7 Base (1/s) 0.0	<pre>ity < : k (mm) 0.600 0.600 0.600 0.600 Table Foul (1/s) 0.0</pre>	HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 300 300 300 150 Flow (s) 0.0	Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.28	(Condui (Condui (Condui (Condui (Condui (Condui (Condui (1/s) 90.5	De t t t t t t t t t 10	esign	
	1.000 1.001 2.000 1.002 1.003 PN 1.00 1.00	(m) 17.291 54.979 10.245 16.430 9.547 8 Ra. (mm/ 00 50 01 50	(m) 0.115 0.370 0.070 0.110 0.119 in " /hr) (n 0.00	(1:X) 150.4 148.6 146.4 149.4 80.0 F.C. ains) 5.23 5.94	 « - I: e I.Area (ha) 4 0.077 6 0.142 4 0.052 4 0.052 4 0.074 0.040 <u>h</u> <u>w</u> <u>w</u>	ndicates T.E. (mins) 5.00 5.00 5.00 5.00 0.00 0.00 Network E I.Area (ha) 0.077 0.219	Pipe Ba Flow Resu E I Flow	capac (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	<pre>ity < : k (mm) 0.600 0.600 0.600 0.600 Table Foul (1/s) 0.0 </pre>	flow HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 300 300 300 150 Flow (s) 0.0 0.0	Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.28 1.29	(Condui (Condui (Condui (Condui (Condui (Condui (Condui 90.5 91.0	De t t t t t t t t t t t t t t t t t t t	esign	
1.005 50.00 6.29 39.955 0.385 0.0 0.0 0.0 1.12 19.9« 52.2	1.000 1.001 2.000 1.002 1.003 PN 1.00 1.00	(m) 17.291 54.979 10.245 16.430 9.547 V Ra (mm/ 00 50 01 50 00 50	(m) 0.115 0.370 0.070 0.110 0.119 in " /hr) (n 0.00 0.00	(1:X) 150.4 148.6 146.4 149.4 80.0 F.C. ains) 5.23 5.94	 « - I: e I.Area (ha) 4 0.077 6 0.142 4 0.052 4 0.052 4 0.074 0.040 <u>h</u> <u>w</u> <u>w</u>	ndicates T.E. (mins) 5.00 5.00 5.00 5.00 0.00 0.00 Network E I.Area (ha) 0.077 0.219	Pipe Ba Flow Resu E I Flow	capac (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ity < : k (mm) 0.600 0.600 0.600 0.600 0.600 <u>Table</u> Foul (1/s) 0.0 0.0 0.0	flow HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 300 300 300 150 Flow (s) 0.0 0.0	Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.28 1.29	(Condui (Condui (Condui (Condui (Condui (Condui (Condui 90.5 91.0	De t t t t t t t t t t t t t t t t t t t	esigr	
	1.000 1.001 2.000 1.002 1.003 PN 1.00 1.00 2.00 1.00	(m) 17.291 54.979 10.245 16.430 9.547 V Ra (mm/ 00 50 01 50 00 50 00 50 02 50	(m) 0.115 0.370 0.070 0.110 0.119 in " /hr) (n 0.00 0.00 0.00	(1:x) 150.4 148.6 146.4 149.4 80.0 5.23 5.94 5.13 6.15	 « - I: a I.Area (ha) 4 0.077 6 0.142 4 0.052 4 0.052 4 0.074 0.040 <u>h</u> <u>w</u> <u>w</u>	ndicates T.E. (mins) 5.00 5.00 5.00 5.00 0.00 0.00 Network E I.Area (ha) 0.077 0.219 0.052 0.345	Pipe Ba Flow Resu E I Flow	capac (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 11ts 7 Base (1/s) 0.0 0.0 0.0 0.0	ity < : k (mm) 0.600 0.600 0.600 0.600 0.600 <u>Table</u> Foul (1/s) 0.0 0.0 0.0	HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 300 300 300 150 Flow (s) 0.0 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.28 1.29 1.30 1.28	(Condui (Condui (Condui (Condui (Condui (Condui 90.5 91.0 91.7 90.8	De t t t t t t t t t t t t t t t t t t t	• • • • • • • • • • • • • • • • • • •	
	1.000 1.001 2.000 1.002 1.003 PN 1.00 1.00 2.00 1.00	(m) 17.291 54.979 10.245 16.430 9.547 V Ra (mm/ 00 50 01 50 00 50 00 50 02 50	(m) 0.115 0.370 0.070 0.110 0.119 in " /hr) (n 0.00 0.00 0.00	(1:x) 150.4 148.6 146.4 149.4 80.0 5.23 5.94 5.13 6.15	 « - I: a I.Area (ha) 4 0.077 6 0.142 4 0.052 4 0.052 4 0.074 0.040 <u>h</u> <u>w</u> <u>w</u>	ndicates T.E. (mins) 5.00 5.00 5.00 5.00 0.00 0.00 Network E I.Area (ha) 0.077 0.219 0.052 0.345	Pipe Ba Flow Resu E I Flow	capac (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 11ts 7 Base (1/s) 0.0 0.0 0.0 0.0	ity < : k (mm) 0.600 0.600 0.600 0.600 0.600 <u>Table</u> Foul (1/s) 0.0 0.0 0.0	HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 300 300 300 150 Flow (s) 0.0 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.28 1.29 1.30 1.28	(Condui (Condui (Condui (Condui (Condui (Condui 90.5 91.0 91.7 90.8	De t t t t t t t t t t t t t t t t t t t	<pre>sign ww s) .4 .6 .0 .7</pre>	
	1.000 1.001 2.000 1.002 1.003 PN 1.00 1.00 2.00 1.00	(m) 17.291 54.979 10.245 16.430 9.547 V Ra (mm/ 00 50 01 50 00 50 00 50 02 50	(m) 0.115 0.370 0.070 0.110 0.119 in " /hr) (n 0.00 0.00 0.00	(1:x) 150.4 148.6 146.4 149.4 80.0 5.23 5.94 5.13 6.15	 « - I: a I.Area (ha) 4 0.077 6 0.142 4 0.052 4 0.052 4 0.074 0.040 <u>h</u> <u>w</u> <u>w</u>	ndicates T.E. (mins) 5.00 5.00 5.00 5.00 0.00 0.00 Network E I.Area (ha) 0.077 0.219 0.052 0.345	Pipe Ba Flow Resu E I Flow	capac (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 11ts 7 Base (1/s) 0.0 0.0 0.0 0.0	ity < : k (mm) 0.600 0.600 0.600 0.600 0.600 <u>Table</u> Foul (1/s) 0.0 0.0 0.0	HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 300 300 300 150 Flow (s) 0.0 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.28 1.29 1.30 1.28	(Condui (Condui (Condui (Condui (Condui (Condui 90.5 91.0 91.7 90.8	De t t t t t t t t t t t t t t t t t t t	<pre>sign ww s) .4 .6 .0 .7</pre>	
	1.000 1.001 2.000 1.002 1.003 PN 1.00 1.00 2.00 1.00	(m) 17.291 54.979 10.245 16.430 9.547 V Ra (mm/ 00 50 01 50 00 50 00 50 02 50	(m) 0.115 0.370 0.070 0.110 0.119 in " /hr) (n 0.00 0.00 0.00	(1:x) 150.4 148.6 146.4 149.4 80.0 5.23 5.94 5.13 6.15	 « - I: a I.Area (ha) 4 0.077 6 0.142 4 0.052 4 0.052 4 0.074 0.040 <u>h</u> <u>w</u> <u>w</u>	ndicates T.E. (mins) 5.00 5.00 5.00 5.00 0.00 0.00 Network E I.Area (ha) 0.077 0.219 0.052 0.345	Pipe Ba Flow Resu E I Flow	capac (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 11ts 7 Base (1/s) 0.0 0.0 0.0 0.0	ity < : k (mm) 0.600 0.600 0.600 0.600 0.600 <u>Table</u> Foul (1/s) 0.0 0.0 0.0	HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 300 300 300 150 Flow (s) 0.0 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.28 1.29 1.30 1.28	(Condui (Condui (Condui (Condui (Condui (Condui 90.5 91.0 91.7 90.8	De t t t t t t t t t t t t t t t t t t t	<pre>sign ww s) .4 .6 .0 .7</pre>	
	1.000 1.001 2.000 1.002 1.003 PN 1.00 1.00 2.00 1.00	(m) 17.291 54.979 10.245 16.430 9.547 V Ra (mm/ 00 50 01 50 00 50 00 50 02 50	(m) 0.115 0.370 0.070 0.110 0.119 in " /hr) (n 0.00 0.00 0.00	(1:x) 150.4 148.6 146.4 149.4 80.0 5.23 5.94 5.13 6.15	 « - I: a I.Area (ha) 4 0.077 6 0.142 4 0.052 4 0.052 4 0.074 0.040 <u>h</u> <u>w</u> <u>w</u>	ndicates T.E. (mins) 5.00 5.00 5.00 5.00 0.00 0.00 Network E I.Area (ha) 0.077 0.219 0.052 0.345	Pipe Ba Flow Resu E I Flow	capac (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 11ts 7 Base (1/s) 0.0 0.0 0.0 0.0	ity < : k (mm) 0.600 0.600 0.600 0.600 0.600 <u>Table</u> Foul (1/s) 0.0 0.0 0.0	HYD SECT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mm) 300 300 300 150 Flow (s) 0.0 0.0 0.0 0.0	Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.28 1.29 1.30 1.28	(Condui (Condui (Condui (Condui (Condui (Condui 90.5 91.0 91.7 90.8	De t t t t t t t t t t t t t t t t t t t	<pre>sign ww s) .4 .6 .0 .7</pre>	

©1982-2020 Innovyze

Patrick Parsons Limited		Page 2
Waterloo House	QAH MSCP	
Thornton Street		New mark
Newcastle Upon Tyne, NE1 4AP		Mirro
Date 10/02/2021 09:22	Designed by A Johnson	Drainage
File Planning Simualtion Mod	Checked by D Brooke	Diamaye
Innovyze	Network 2020.1	

<u>Manhole Schedules for Storm</u>

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes Inve: Level	rt	Diameter (mm)	Backdrop (mm)
SW02	41.400	0.850	Open Manhole	600	1.000	40.550	300					
SW03	41.635	1.200	Open Manhole	600	1.001	40.435	300	1.000	40.	435	300	
SW04	41.320	1.185	Open Manhole	600	2.000	40.135	300					
CP01	41.955	1.890	Open Manhole	1200	1.002	40.065	300	1.001	40.	065	300	
								2.000	40.	065	300	
SW05	41.200	1.245	Open Manhole	1200	1.003	39.955	150	1.002	39.	955	300	
SW01	41.180	1.344	Open Manhole	1200		OUTFALL		1.003	39.	836	150	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)		Layout (North)
SW02	465478.247	106155.514	465478.247	106155.514	Required	•
SW03	465495.522	106156.271	465495.522	106156.271	Required	
SW04	465560.683	106159.125	465560.683	106159.125	Required	•
CP01	465550.449	106158.649	465550.449	106158.649	Required	
SW05	465551.185	106142.236	465551.185	106142.236	Required	
SW01	465560.178	106139.029			No Entry	~••

©1982-2020 Innovyze

Patrick Parsons Limited		Page 3
Waterloo House	QAH MSCP	
Thornton Street		Sec. and
Newcastle Upon Tyne, NE1 4AP		Micro
Date 10/02/2021 09:22	Designed by A Johnson	Drainage
File Planning Simualtion Mod	Checked by D Brooke	Diamage
Innovyze	Network 2020.1	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	-	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000 1.001	0		SW02 SW03	41.400 41.635	40.550 40.435		Open Manhole Open Manhole	600 600
2.000	0	300	SW04	41.320	40.135	0.885	Open Manhole	600
1.002 1.003	0 0		CP01 SW05	41.955 41.200	40.065 39.955		Open Manhole Open Manhole	1200 1200

Downstream Manhole

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
	17.291 54.979			41.635 41.955			Open Manhole Open Manhole	600 1200
2.000	10.245	146.4	CP01	41.955	40.065	1.590	Open Manhole	1200
	16.430 9.547			41.200 41.180	39.955 39.836		Open Manhole Open Manhole	1200 1200

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins)	0	Inlet Coeffiecient 0.800
Hot Start Level (mm)	0	Flow per Person per Day (l/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 60
Foul Sewage per hectare (l/s)	0.000	Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model		FSR		Profile Type	Summer
Return Period (years)		2		Cv (Summer)	0.750
Region	England	and Wales		Cv (Winter)	0.840
M5-60 (mm)		20.000	Storm	Duration (mins)	30
Ratio R		0.400			

Patrick Parsons Limited		Page 4
Waterloo House	QAH MSCP	
Thornton Street		The second
Newcastle Upon Tyne, NE1 4AP		Mirco
Date 10/02/2021 09:22	Designed by A Johnson	Desinado
File Planning Simualtion Mod	Checked by D Brooke	Diamage
Innovyze	Network 2020.1	

Storage Structures for Storm

Cellular Storage Manhole: SW05, DS/PN: 1.003

Invert Level (m) 39.955 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	48.0	48.0	0.500	0.0	63.2
0.400	48.0	63.2			

©1982-2020 Innovyze

Patrick Parsons Limited	Pag	e 5
Waterloo House	QAH MSCP	
Thornton Street		-
Newcastle Upon Tyne, NE1 4AP	MI	cro
Date 10/02/2021 09:22		
File Planning Simualtion Mod	Checked by D Brooke	ainage
Innovyze	Network 2020.1	
<u>1 year Return Period Summary of</u>	<u>E Critical Results by Maximum Level (F</u>	<u>ank 1)</u>
	for Storm	
Si	mulation Criteria	
	1.000 Additional Flow - % of Total Flow 0.	000
Hot Start (mins)		
Hot Start Level (mm)		
Manhole Headloss Coeff (Global) Foul Sewage per hectare (l/s)	0.500 Flow per Person per Day (l/per/day) 0.	000
Four Sewage per nectare (1/S)	0.000	
Number of Input Hydrogr	caphs 0 Number of Storage Structures 1	
	crols 0 Number of Time/Area Diagrams 0	
Number of Offline Cont	crols 0 Number of Real Time Controls 0	
Synthe	etic Rainfall Details	
Rainfall Model	FSR Ratio R 0.400	
	gland and Wales Cv (Summer) 0.750	
M5-60 (mm)	20.000 Cv (Winter) 0.840	
Margin for Flood Risk Warr	ning (mm) 300.0	
Analysis	Timestep 2.5 Second Increment (Extended)	
	IS Status ON	
	VD Status ON ia Status ON	
11010		
Profile(s)	Summer and Winter	
	15, 30, 60, 120, 180, 240, 360, 480, 600,	
	720, 960, 1440	
Return Period(s) (years)	1, 30, 100	
Climate Change (%)	0, 0, 40	
US/MH Return Climate	First (X) First (Y) First (Z) Overflo	Water w Leve
PN Name Storm Period Change		оw Leve (m)
	-	
	30/15 Summer 100/15 Summer	40.62
	30/15 Summer 30/15 Summer 100/15 Summer	40.55
	30/15 Summer	40.23
1.003 SW05 15 Winter 1 +0%	1/15 Summer 100/15 Summer	40.19
Surcharged Flooded	Half Drain Pipe	
-	-	evel
-		ceeded
1.000 SW02 -0.226 0.000 0	.14 10.7 ОК	9
	.14 10.7 OK .31 26.8 OK	9
	.11 7.0 OK	9
	.54 41.9 OK	
1.003 SW05 0.088 0.000 1	.34 10 23.6 SURCHARGED	9
	82-2020 Innovyze	
019	OF FORD THHONÀTE	

Patrick Parsons Limited				Page 6
Waterloo House	QAH MSCP			
Thornton Street				Sec. 1
Newcastle Upon Tyne, NE1 4AP				Micro
Date 10/02/2021 09:22	Designed	by A Johnson		
File Planning Simualtion Mod.	_	y D Brooke		Drainage
Innovyze	Network 2	-		
30 year Return Period Summary	y of Critical	Results by M	Maximum Leve	l (Rank 1)
	for Stor	<u>m</u>		
	Simulation Cri	torio		
Areal Reduction Fact			% of Total Flo	w 0.000
		MADD Factor *		
Hot Start Level (m			et Coeffiecien	
Manhole Headloss Coeff (Globa Foul Sewage per hectare (1/	-	er Person per 1	Day (l/per/day) 0.000
Four Sewaye per Hectare (1/	5, 0.000			
Number of Input Hydr		-		
Number of Online (-	
Number of Offline (Controls 0 Numbe	er of Real Time	e Controls 0	
Sv:	nthetic Rainfall	<u>l Details</u>		
Rainfall Model	Ι	TSR Ratio R		
	England and Wal			
M5-60 (mm)	20.0)00 Cv (Winter)	0.840	
Margin for Flood Risk W	Warning (mm)		300.0)
Analys	sis Timestep 2.	5 Second Increm	ent (Extended)	
	DTS Status		ON	
Tn	DVD Status ertia Status		ON ON	
	01014 004040			
Profile(s)		q	ummer and Wint	or
Duration(s) (mins)				
			720, 960, 14	40
Return Period(s) (years) Climate Change (%)			1, 30, 1 0, 0,	
Crimate Change (%)			0, 0,	40
US/MH Return Clima	te First (X)	First (Y)	First (Z) Ove	Water The States
PN Name Storm Period Chang		Flood	• •	ct. (m)
1.000 SW02 30 Winter 30 +	-0% 30/15 Summer	100/15 0		41.37
	-0% 30/15 Summer -0% 30/15 Summer			41.37
	-0% 30/15 Summer			41.26
	-0% 30/15 Summer			41.25
1.003 SW05 30 Winter 30 +	-0% 1/15 Summer	100/15 Summer		41.15
Surcharged Flooded		Half Drain Pi	ipe	
	Flow / Overflow		Low	Level
PN Name (m) (m ³)	Cap. (1/s)	(mins) (1	/s) Status	Exceeded
1.000 SW02 0.529 0.000	0.26	2	0.1 FLOOD RISK	. 9
1.001 SW03 0.632 0.000	0.65		5.6 FLOOD RISK	
2.000 SW04 0.825 0.000	0.18		1.9 FLOOD RISK	
1.002 CP01 0.889 0.000	0.91 3.13		0.4 SURCHARGED 5.1 FLOOD RISK	
1.003 SW05 1.045 0.000				-
1.003 SW05 1.045 0.000				
1.003 SW05 1.045 0.000				

Patrick Parsons Limited	Page 7
Waterloo House	QAH MSCP
Thornton Street	
Newcastle Upon Tyne, NE1 4AP	Mirco
Date 10/02/2021 09:22	Designed by A Johnson
File Planning Simualtion Mod	
Innovyze	Network 2020.1
<u>100 year Return Period Summary</u>	of Critical Results by Maximum Level (Rank
	1) for Storm
	<u>mulation Criteria</u> 1.000 Additional Flow - % of Total Flow 0.000
Hot Start (mins)	
Hot Start Level (mm)	
	0.500 Flow per Person per Day (l/per/day) 0.000
Foul Sewage per hectare (l/s)	0.000
Number of Input Hydrogr	raphs 0 Number of Storage Structures 1
Number of Online Cont	trols 0 Number of Time/Area Diagrams 0
Number of Offline Cont	trols 0 Number of Real Time Controls 0
Sunthe	etic Rainfall Details
Rainfall Model	FSR Ratio R 0.400
Region Eng	gland and Wales Cv (Summer) 0.750
M5-60 (mm)	20.000 Cv (Winter) 0.840
Margin for Flood Risk Warn	ning (mm) 300.0
-	Timestep 2.5 Second Increment (Extended)
	IS Status ON
	VD Status ON ia Status ON
INCL	IA Status ON
Profile(s) Duration(s) (mins)	Summer and Winter 15, 30, 60, 120, 180, 240, 360, 480, 600,
	720, 960, 1440
Return Period(s) (years)	1, 30, 100
Climate Change (%)	0, 0, 40
	Water
US/MH Return Climate	
PN Name Storm Period Change	Surcharge Flood Overflow Act. (m)
	30/15 Summer 100/15 Summer 41.422
	30/15 Summer 41.616
2.000 SW04 15 Winter 100 +40% 1.002 CP01 15 Winter 100 +40%	30/15 Summer 41.328 30/15 Summer 41.456
	1/15 Summer 100/15 Summer 41.456
	_,
Surcharged Flooded	Half Drain Pipe
-	w / Overflow Time Flow Level ap. (1/s) (mins) (1/s) Status Exceeded
1.000 SW02 0.572 21.608 0	45.9 FLOOD 9
1 0.01 0000 0 0.011 0 0.01	0.96 82.9 FLOOD RISK 0.30 19.8 FLOOD 9
	1.30 T3.0 LTOOD 3
	.41 108.6 SURCHARGED
2.000 SW04 0.893 7.883 0 1.002 CP01 1.091 0.000 1	41 108.6 SURCHARGED 8.22 26 56.8 FLOOD 9
2.000 SW04 0.893 7.883 0 1.002 CP01 1.091 0.000 1	
2.000 SW04 0.893 7.883 0 1.002 CP01 1.091 0.000 1 1.003 SW05 1.112 17.435 3	