

Former Lombard Service Station, Bristol

Interpretive Report on Ground Investigation

Project No: 733272

Client: Sandy Lane Construction Ltd.

JANUARY 2019

Project N	o.:	733272			
Report No	o.:	733272-1 (00)			
Project N	on, Bristol				
Documen	t Title	Interpretive Report on Ground	Investigation		
Client: Sandy Lane Construction Lt					
Status:		Final			
Author			J Evans MSci MSc FGS		
Technical Reviewer			A Watts BSc (Hons) FGS		
Approved	l by		S Pond BSc CChem MRSC		
Report Is:	sue Date		24 January 2019		
DOCUME	NT ISSUE R	ECORD			
Revision	Date	Description of revisions	Prepared by		
00	24/01/2019	Final	JE		
			STRUCTURAL SOILS LIMITE		

STRUCTURAL SOILS LIMITED The Old School Stillhouse Lane Bedminster BRISTOL BS3 4EB Tel: 0117 947 1000 Email: <u>ask@soils.co.uk</u> www.soils.co.uk

CONTENTS

1	INTRODUCTION
2	SITE DESCRIPTION
2	2.1 Location and Topography
	2.2 History of Site and Surrounding Area
3	PHYSICAL SETTING
J	3.1 Geology
	3.2 Hydrogeology and Hydrology
	3.3 Ground Gas
	3.4 Archaeology / Ecology
	3.5 Utilities
4	ENVIRONMENTAL SETTING 12
	4.1 Environmental Data
5	GEOENVIRONMENTAL ASSESSMENT
•	5.1 Initial Conceptual Model
	5.2 Preliminary Risk Assessment
6	FIELDWORK
•	6.1 General
	6.2 Exploratory Holes
	6.3 Instrumentation
	6.4 In-Situ Testing
	6.5 Monitoring and Post Fieldwork Environmental Sampling
7	LABORATORY TESTING 22
	7.1 Geoenvironmental Laboratory Testing
8	GROUND CONDITIONS
	8.1 General
	8.2 Made Ground
	8.3 Alluvium
	8.4 Mercia Mudstone Group
	8.5 Groundwater8.6 Indications of Contamination
•	
9	GEOENVIRONMENTAL ASSESSMENT
	9.2 General
	9.3 Linkages for assessment
	9.4 Contamination Conclusions
	9.5 Outline Remediation and Risk Reduction Recommendations
10	OFF-SITE DISPOSAL OF SPOIL
11	SUMMARY
	REFERENCES
1 4	- ILLI LILIULU

AF	PE	NDIX A - PLANS AND DRAWINGSI
	(i)	Site Location Plan
	(ii)	Exploratory Hole Location Plan
AF	PE	NDIX B - EXPLORATORY HOLE RECORDS II
	(i)	Key to Exploratory Hole Logs
	• •	Borehole Logs
	• •	Window Sample Logs
	• •	Standpipe Summary Table
AF	PE	NDIX C - GEOENVIRONMENTAL TESTING III
	(i)	Laboratory Test Results
	• •	Initial Waste Characterisation (Haswaste)
	(iii)	Laboratory UKAS Accreditation Certificate
AF	PE	NDIX D - BACKGROUND TO GEOENVIRONMENTAL
	AS	SESSMENTIV
	(i)	RSK Group Generic Assessment Criteria (GAC)
	(ii)	UKWIR Guidelines
	(iii)	Risk Assessment Methodology
AF	PE	NDIX E - MONITORING RECORDSV
	(i)	Gas/Groundwater Monitoring Results
AF	PE	NDIX F - CALIBRATION CERTIFICATES
		SPT Calibration Records
	(ii)	Gas Analyser Calibration Records
	(iii)	Photo ionisation Detector (PID) Calibration Records
AF	PE	NDIX G - DESK STUDY DATAVII
_		Landmark Environmental Data sheets
	(ii)	Historical Mapping
	/:::>	Detroloum Licence Coerch

(iii) Petroleum License Search

1 INTRODUCTION

This investigation was carried out by Structural Soils Ltd (SSL) on the instructions of and on behalf of Sandy Lane Construction Ltd (the Client) at the site of the Former Lombard Service Station on Brook Road in Southville, Bristol. The purpose of the work was to obtain geoenvironmental information to advance the clearance of anticipated land contamination conditions regarding the demolition of a vehicle garage and the construction of residential dwellings.

The scope of the investigation comprised cable percussion drilling, window sampling, laboratory testing and the preparation of this report. The report contains a description of the site and the works carried out, the exploratory hole logs, in-situ and laboratory testing results.

The ground investigation has been carried out in accordance with the general requirements of BS 5930:2015, BS 10175:2011+A2:2017, BS EN 1997-2 (2007), BS EN ISO 22475-1 (2006) and other relevant standards as identified below.

This report presents the factual records of the fieldwork and laboratory testing together with an interpretation of the findings with respect to the proposed development. The report presents an appraisal of geoenvironmental aspects such as soil contamination and gives recommendations on risk reduction. It should not be assumed that these would meet the requirements of the local authority, whose advice should be sought regarding planning permission.

All information, comments and opinions given in this report are based on the ground conditions encountered during the site work, and on the results of laboratory and field tests performed during the investigation. Whilst every attempt is made to record full details of the strata encountered in the exploratory holes, techniques of hole formation and sampling will inevitably lead to disturbance, mixing or loss of material in some soils and rocks. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations and water conditions between or below exploratory holes.

All information, comments and opinions given in the desk study in this report are based on the information obtained. The information search cannot be exhaustive and there may be records that have not come to light. There may also be circumstances at the site that are not documented.

This report was prepared by SSL for the sole and exclusive use of Sandy Lane Developments Ltd. in response to particular instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded. No liability will be accepted after a period of 6 years from the date of the report.

1.1 Information Sources

The following sources of information have been used in the preparation of this report.

Sandy Lane Construction Ltd.

- Extracts of available historical Ordnance Survey (OS) maps covering the period from 1886 to 2018 which are presented in Appendix G.
- An Envirocheck report produced by Envirocheck for an area up to 1 km from the centre of the site which is reproduced in Appendix G. The report is compiled from the database of information maintained by various statutory bodies listed within Appendix G.
- The MAGIC website (DEFRA and Environment Agency data)
- British Geological Survey (BGS) website.
- Structural Soils Report 80856 of 1988 St Johns Road Bedminster
- Services Information Sources.
- Know Your Place Bristol Mapping Service, available at: <u>http://maps.bristol.gov.uk/kyp/?edition</u>

Sandy Lane Construction Ltd.

2 SITE DESCRIPTION

2.1 Location and Topography

The site is located on the corner of Brook Road and St Paul's Road in Bedminster, approximately 1.3 km south west of Bristol Temple Meads Railway Station. (see Site Location Map in Appendix A). The British National Grid Reference of the site is ST 586 717. Access to the site is gained via a set of steel gates off Brook Road.

The L-shaped site is approximately 30 m by 20 m in size with its long axis orientated from north to south parallel with St Pauls Road (see Existing Site Layout Plan in Appendix A). The site is occupied by an active vehicle service and repair garage building in the north with an approximately square car sales and parking yard area to the south.

The yard is a former petrol sales forecourt and is surfaced by uneven, cracked concrete slabs with two steel covers at its centre indicating the position of possibly a pair of tanks or possible a single twin compartment tank. The inspection chambers beneath the covers have been filled with a sand and cement slurry. It is certain that the tank(s) remain in-situ and considered very likely that they have been slurry filled as a part of decommissioning. An area of scarred concrete approximately 1 m to the south of the covers indicates the location of a former pump island and potentially the supports for a canopy.

No evidence of vent pipes or a petroleum interceptor was evident on the forecourt.

The garage building comprises a single storey front constructed with multi-tiered concrete floor slabs connected by ramps. Walls are generally constructed from a mixture of brick masonry and concrete blocks, whilst the roof is corrugated metal sheeting over steel trusses. A shallow 0.15 m deep service pit is present at the centre of the garage and straddled by one of a pair of car lifts. Used lubricants were collected and stored within 205 It steel drums for later disposal, and surface staining of the floor was generally limited.

Some storage of used car parts and material is undertaken within the garage, including small volumes of paints in the form of spray cans, and 25 lt drums of lubricating oils.

The site is located in a residential area with dwellings located immediately to the north, east and west and on the far side of Brook Road to the south. In the wider area the nearest non-residential land use is a construction site and an ASDA superstore located 30m to the east on the far side of St John's Road.

The site is set at an elevation of approximately 8 m above Ordnance Datum (AOD), similar to the surrounding ground in the near vicinity of the site, however to the north ground levels rise at around 5 degrees from the line of Dean Crescent to the line of Lucky Lane 130 m from the site. East of St John's Road, the ground elevation quickly returns to around 8 m in the area of the superstore car park.

Sandy Lane Construction Ltd.

Interpretive Report on Ground Investigation

Buried electricity, water and overhead telecommunications services were identified to enter the site from the west whilst a buried gas pipe enters the site from the south and runs along the east margin.

2.2 History of Site and Surrounding Area

2.2.1 Historic Mapping

A search of Ordnance Survey maps was undertaken to establish the land-use history of the site and surroundings. Extracts of the maps that are discussed below can be found in Appendix G of this report, except for the pre-1886 mapping and 1946 aerial photography which can be viewed on the Know Your Place website. Unless otherwise stated, all quoted distances are measured from the site boundary that is marked on the maps.

TABLE 1 :SUMMARY OF HISTORICAL MAP DATA						
		Significant features, change	s and developments:			
Dates	Scale	On site	In surroundings [distance(m)]			
1828	Not Given	Undeveloped – part of an open field	Tan Yard 75m E			
1840	Not Given	No significant changes	No significant changes			
1886 – 1896	1:10,560 & 1:2,500	Site occupied by 7 terraced houses with back gardens/yards.	<i>Timber yard</i> 100 m NE, <i>Bedminster Tannery</i> 50 – 100 m E, <i>Coal Yard</i> 100 m SE, <i>Tannery</i> 250 m SE, <i>Bedminster Smelting Works</i> 300 m SE, <i>Dean lane Colliery</i> including 3 shafts 300 m SW. <i>Tannery</i> 300 m W. <i>Malago</i> <i>Vale Iron Works</i> 500 m S			
1903 - 1905	1:10,560 & 1:2,500	No significant changes	Bedminster Tannery now Tobacco Factory			
1918 – 1921	1:10,560 & 1:2,500	No significant changes	Dean Lane Colliery now appears closed. Coal Yard appears no longer in use. <i>Timber Yard</i> appears no longer in use.			
1930 – 1938	1:10,560	No significant changes	No significant changes			

Sandy Lane Construction Ltd.

TABLE 1 :SUMMARY OF HISTORICAL MAP DATA						
		Significant features, changes and developments:				
Dates	Scale	On site	In surroundings [distance(m)]			
1946	Aerial Photographs	5 of the 7 houses have been demolished leaving only the two in the SE of the site (No.s 10 and 11 <i>Brook</i> <i>Road</i>)	Builders Yard immediately NE.			
1953 - 1969	1:10,560 & 1:2,500	Current garage building apparently present but unlabelled until 1964 by which time No.11 and 12 have been demolished.	<i>Oil Tanks</i> now present 95 m to NE			
1972 – 1989	1:10,000 & 1:2,500	No significant changes	Oil Tanks no longer shown. Iron works no longer shown. Terrace properties to north and builders yard no longer recorded.			
1990 - 1991	1:10,000 & 1:2,500	No significant changes	Factory adjacent to site now Superstore. Tannery 75 m from site now redeveloped.			
1991 – 2006	1:10,000	No significant changes	Residences to N recorded from 2003.			
2018	1:10,000	No significant changes	Petrol Station now present within <i>Superstore</i> car park 240 m NE.			

Note: N = north, S = south, E = east, W = west.

2.2.2 Planning History

A search of the records available via a search of the Bristol City Council (BCC) online planning search identifies that outline permission was granted for the erection of a petrol filling and service station together with a vehicular access to St John's Square in 1960, with further permission for alternations to (the) existing workshop and layout of (the) petrol filling station in 1961.

2.2.3 Site History from Other Sources

Preliminary discussions with the Contaminated Land Officer at BCC indicates that the council suspect that the site may have been subjected to bomb damage in the

Sandy Lane Construction Ltd.

Second World War resulting in the missing buildings observed in 1946 aerial photography.

A Petroleum Licensing Search undertaken with BCC, the relevant Petroleum Licensing Authority, has returned no records. The search response is presented in Appendix G. Unfortunately historic data within Bristol is not always complete and some historic records are known to have been lost through damage in storage.

Previous discussions with the former site owners (Ms Kim Marchant) suggested that petrol sales at the site ceased in the late 1980's.

2.2.4 Summary of Site History

Save for the temporary presence of a Builders Yard to the north east of the site for a period post Second World War, the site has been set within a mainly residential area.

Tanneries, timber yards and tobacco factories have been present to the east of the site, on the flat low-lands associated with the now culverted Malago river. Many of these historic industrial sites have been redeveloped.

The site itself may have been subject to bomb damage during the war, with the first garage buildings appearing shortly after. The full forecourt area was associated with the site by the mid-1960s when it is assumed that petrol sales would have commenced, before ceasing in the late 1980s.

3 PHYSICAL SETTING

3.1 Geology

Information on the geology of the site was obtained from the following sources published by the British Geological Survey (BGS):

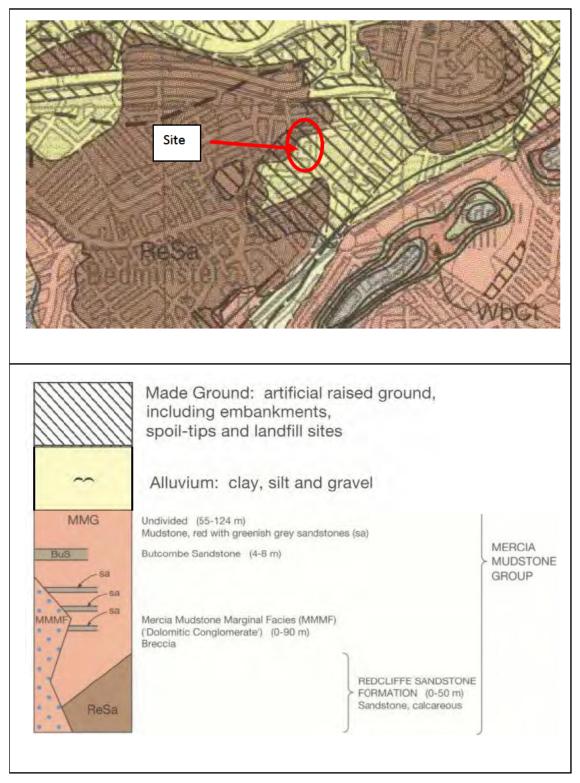
- BGS map (sheet 264, scale 1:50,000 published 2004).
- The BGS digital geology map, which utilises the most up to date names for geological units (<u>www.bgs.ac.uk/data</u>).
- The BGS Lexicon of Named Rock Units, which provides typical descriptions for most geological units (<u>www.bgs.ac.uk/lexicon</u>).

The site is shown to be underlain by the following descending sequence of strata:

TABLE 2 : SUMMARY OF EXPECTED SITE GEOLOGY					
Geological Unit Name	Description				
ANTHROPOG	SENIC GROUND				
Artificial Ground shown	Yes				
SUPERFICI	AL DEPOSITS				
Alluvium	Clay, Silt and Gravel				
SOLID C	GEOLOGY				
Redcliffe Sandstone Member (Previously called Redcliffe Sandstone Formation)	'Fine- to medium-grained, deep red, calcareous and ferruginous sandstone'				
Mercia Mudstone Group	'Dominantly red, less commonly green- grey, mudstones and subordinate siltstones. Sandstone horizons are also present'				

Note: Information obtained from BGS digital records © NERC.

The BGS geological map shows the site to be underlain by Made Ground over superficial Alluvium deposits and then the Redcliffe Sandstone Member of the Mercia Mudstone Group at depth.


Borehole logs from a ground investigation conducted by SSL in 1988 (Ref: 80856) for the construction of housing immediately to the north of the site indicate the Alluvium to be present to a depth between 8.5 m to 9.0 m below ground level, and that there may locally be present a thin basal gravel which could represent a terrace deposit of the River Avon.

The mapped Alluvium below the site is associated with an embayment at the mouth of the channel of the Malago river where it would have joined the former tidal channel of the Avon between the high grounds of Southville/Bedminster and Redcliffe.

Interpretive Report on Ground Investigation

The BGS online maps portal provides access to scans of almost all maps produced by the BGS since 1932. An extract of the most recent available scanned map for the site is included below:

Note: Above images contain British Geological Survey materials ©NERC [2018].

Sandy Lane Construction Ltd.

3.2 Hydrogeology and Hydrology

3.2.1 Aquifer Designation

The Environment Agency (EA) website (http://apps.environmentagency.gov.uk/wiyby/default.aspx) has classified the geological units underlying the site as follows:

- Alluvium as Unproductive Strata
- Redcliffe Sandstone Formation as a Secondary 'A' Aquifer (variably permeable)

'Unproductive Strata' are rock layers or superficial deposits with low permeability that have negligible significance for water supply or river base flow.

'Secondary' aquifers include a wide range of rock layers or superficial deposits with an equally wide range of water permeability and storage. Secondary 'A' Aquifers are permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers.

3.2.2 Groundwater Vulnerability Zones

Information on the leaching potential of the soils directly under the site is given on the Environment Agency (EA) groundwater vulnerability map - Southern Cotswolds (sheet 37, scale 1:100,000).

The soils on this site have been classified as having a high (urban) leaching potential (HU), as soil information for restored mineral workings and urban areas is based on fewer observations than elsewhere. A worst-case vulnerability (HU) classification is assumed for these areas and for current mineral workings until proved otherwise.

3.2.3 Source Protection Zones

The site is not located with a Source Protection Zone (SPZ).

3.2.4 Anticipated Groundwater flow / direction

Groundwater beneath the site is expected to be present within the Alluvium and present within 2 m or so of the ground surface. Based on the geological mapping this is expected to be an unconfined aquifer and it is expected to be recharged by precipitation which infiltrates at the site. Groundwater flow within this unit is expected to be dominated by intergranular flow, and is expected to be very slow north-eastwards towards the River Avon which flows east to west through a man-made channel (the New Cut) 200 m north of the site.

The culverted course of the Malago is present 180 m east of the site which flows northwards to empty into the River Avon.

Groundwater movements in the Mercia Mudstone is expected to be very limited, except for within the sandstone units of the Redcliffe Sandstone Member, which are

Sandy Lane Construction Ltd.

Interpretive Report on Ground Investigation

exposed in the side of the New Cut. Flow in this formation is expected to be towards the north or northwest.

3.3 Ground Gas

3.3.1 Radon

According to the Envirocheck the estimated proportion of homes near the site that are above the radon action level is 1 %. Therefore no radon protection measures are considered necessary in the construction of new buildings (including extensions, conversions and refurbishment projects).

3.3.2 Coal Measures

Coal Measures strata are considered likely to be too deep to pose a plausible risk of ground gas migration to the site.

3.3.3 Made Ground

Made ground present at the site is likely to comprise of building materials associated with the previous buildings at the site and any construction that has subsequently taken place. Should the site have been subjected to bomb damage, there may be ash and other organic material such as timber in the ground, as well as any other material used to subsequently level the site. These may generate methane and carbon dioxide at very low rates as they decay.

3.3.4 Natural Soils

The SSL ground investigation undertaken to the north of the site in 1988 recorded the presence of peat inclusions and layers of peat rich clay within the Alluvium. These deposits can be expected to contain elevated concentrations of methane and carbon dioxide, but actual generation rates for such deposits are low, with the low permeability ground containing historically generated gas.

3.4 Archaeology / Ecology

No archaeological or ecological consultation has been undertaken for this study.

3.5 Utilities

The site and surrounding area are likely to contain underground services; a copy of utility data has been provided by the Client at the time of writing this report:

- Bristol Water
- Wessex Water
- Wales & West Utilities
- Western Power Distribution

Interpretive Report on Ground Investigation

- BT Openreach
- Virgin Media

Other utilities not included in this data may be present.

Sandy Lane Construction Ltd.

4 ENVIRONMENTAL SETTING

4.1 Environmental Data

Environmental features such as landfills, groundwater abstraction points, etc, are detailed in the Landmark Envirocheck report that can be found in Appendix G of this report. 'Notable' features in these data sets are listed below.

TABLE 3 : SUMMARY OF SIGNIFICANT ENVIRONMENTAL DATA						
Data Types Showing <u>Notable</u> Issues	No. of <u>Notable</u> Listings (or Yes/No) and Distance (m) from Site				Details of <u>Notable</u> Listings	
	On site	0- 250	250- 500	>500		
AGENCY AND HYDROLOG	ICAL					
BGS Flooding Susceptibility	-	Yes	Yes	-	Limited potential for groundwater flooding to occur.	
Discharge Consents	-	11	13	31	Nearest: <i>Asda</i> <i>Superstore</i> , 71 m to NE.	
Local Authority Pollution Prevention and Controls (and enforcements)	-	1	5	10	Nearest: <i>Johnson</i> <i>Cleaners UK Ltd</i> ., 148 m to E.	
Nearest Surface Waters	-	1	N/A	N/A	<i>The Malago</i> , 186 m to SE. (Culverted)	
Prosecutions Relating to Authorised Processes	-	-	-	1	Sheene Road, (Illegal dumping of waste) - 613 m to S.	
Registered Radioactive Substances	-	-	13	-	Nearest: <i>Bristol</i> <i>General Hospital</i> , 380 m to NE.	
River Quality	-	-	1	1	Nearest: <i>Floating</i> <i>Harbour</i> (River Quality B), 487 m to N.	
Substantiated Pollution Incidents	-	-	-	1	Category 1 – Major water impact incident, 741 m to S.	

Sandy Lane Construction Ltd.

TABLE 5. SUMMP	TABLE 3 : SUMMART OF SIGNIFICANT ENVIRONMENTAL DATA							
Data Types Showing <u>Notable</u> Issues	No. of <u>Notable</u> Listings (or Yes/No) and Distance (m) from Site				Details of <u>Notable</u> Listings			
	On site	0- 250	250- 500	>500				
Water Abstractions (Licensed)	-	-	-	19	Nearest: <i>Lloyds Bank</i> <i>Plc.</i> , surface water abstraction for cooling, 513 m to NW.			
Risk of Flooding/Flood Storage Areas	Yes	-	-	-	At risk from an extreme flood event (Zone 2).			
WASTE								
Management and Transfer Sites	-	-	-	7	Nearest: <i>11</i> <i>Whitehouse Place</i> (End of life vehicles), 598 m to E.			
Potentially Infilled Land	-	1	1	6	Nearest: Infilled Pit / Quarry mapped in 1887, 187 m to W.			
Treatment and Disposal Sites	-	-	-	2	Nearest: <i>Atex Breakers</i> (Scrapyard), 594 m to E.			
HAZARDOUS SUBSTANCE	S							
Hazardous Substances (Installations, Consents & Enforcements)	-	-	-	2	Nearest: <i>British Gas</i> <i>Plc.,</i> 848 to NW.			
INDUSTRIAL LAND USE								
Fuel Station Entries	-	-	2	4	Nearest: <i>Asda,</i> 275 m to NE.			
Contemporary Trade Directory Entries	2	33	81	183	On site: Lombard Service Station, Garage Services - Inactive. Nearest: Done & Dusted, Commercial cleaning services – 99 m to NW.			
SENSITIVE LAND USE								
No entries within 2000 m								

TABLE 3 : SUMMARY OF SIGNIFICANT ENVIRONMENTAL DATA

Note: N = north, S = south, E = east, W = west.

Sandy Lane Construction Ltd.

4.1.1 Summary of Environmental Data

The datasheets indicate that industrial occupation of the site has principally been limited to Lombard Service Station, with a general absence of potentially contaminative land uses in the records for nearby land.

Sandy Lane Construction Ltd.

5 GEOENVIRONMENTAL ASSESSMENT

5.1 Initial Conceptual Model

The information presented in Sections 2, 3 and 4 have been used to compile an initial conceptual model. The identified potential sources of contamination, associated contaminants and receptors have been considered with plausible pathways that may link them. The resulting potential pollutant linkages are considered in Section 5.2. The risk classification has been estimated in accordance with information in Appendix D.

5.1.1 Summary of Potential Contamination Sources

Potential sources and their associated contaminants of concern are summarised in the table below.

TABLE 4 :SUMMARY OF POTENTIAL SOURCES AND CONTAMINANTS				
On Site (Historical)	Contaminants of Concern			
Made Ground	Heavy metals, asbestos, hydrocarbons (PAH)			
On Site (Current)	Contaminants of Concern			
Buried fuel tanks	Fuel hydrocarbons (petrol and diesel)			
Vehicle Garage	Lubricating oils, fuel hydrocarbons (petrol and diesel) degreasers (VOCs), asbestos			
Peat / Alluvium beneath site	Ground gas – methane, carbon dioxide			

The potential sources of contamination at the site are primarily associated with the previous commercial activities that have taken place and the demolition of three properties on the site prior to the development of the garage. The alluvium underlying the site is expected to contain deposits of peat which may generate natural ground gas.

5.1.2 Summary of Potential Receptors

Details of the proposed scheme of development have not been provided by the client at the time of writing. However, it is understood that the development will be flats, potentially with some small areas of communal landscaping if space allows. Accordingly, sensitive receptors are considered to include:

- future site occupants
- adjacent site users
- potable water supply pipes
- groundwater beneath the site

Sandy Lane Construction Ltd.

Please note that construction workers have not been identified in the conceptual model as receptors because risks are considered to be managed through health and safety procedures including CDM regulations.

5.1.3 Pathways

Pathways that could results in a potentially complete contaminant linkage include:

- direct contact (soil and dust ingestion, dust inhalation and dermal contact)
- inhalation of ground gas
- inhalation of vapour
- permeation of plastic water supply pipes
- leaching
- lateral and vertical migration of gas, vapour or dissolved phase contamination
- preferential pathways including permeable pipe surrounds
- dissolution of non-aqueous phase liquids

5.1.4 Data Gaps and Uncertainty

Although attempts have been made to identify potential sources of contamination, there may be sources or incidents, such as pollution events, that have not been recorded in the historical and environmental records consulted as part of this investigation.

5.1.5 Potentially Complete Contaminant Linkages

The potentially complete contaminant linkages identified for the proposed end use are:

- 1. Direct contact by future site residents with soil that may be impacted by heavy metals and hydrocarbons.
- 2. Direct contact by future site residents with soil that may be impacted by asbestos.
- 3. Ingress of hydrocarbon vapours into structures and inhalation by future site residents.
- 4. Direct contact of potable water supply pipes with contaminated soils leading to ingress of contaminants or degradation of the pipe.
- 5. Leaching of soil contaminants into the Secondary A Aquifer beneath the site.
- 6. Migration and accumulation of ground gas in properties potentially resulting in asphyxiation or explosion.

Sandy Lane Construction Ltd.

5.2 Preliminary Risk Assessment

5.2.1 Risk Estimation for Potentially Complete Contaminant Linkages

The potentially complete contaminant linkages are detailed above with the estimated risk associated with each being detailed in Table 5 below. The risk classification has been undertaken in accordance with CIRIA C552, with a summary of the relevant section being included in Appendix D.

Sandy Lane Construction Ltd.

TABLE 5 :RISK ESTIMATION FOR POTENTIALLY COMPLETE CONTAMINANT LINKAGES						
Contaminant Linkage	Probability	Consequence	Risk and justification			
1. Direct contact by future site residents with soil that may be impacted by heavy metals and hydrocarbons.	Low Liklihood	Medium	Moderate/Low – The proposed development may include limited soft landscaping areas where residents may be exposed to contaminated soils, but no existing topsoil is likely to be present and contact would be minimised through the use of clean imported topsoil. Growth and consumption of produce on site is unlikely.			
2. Direct contact by future site residents with soil that may be impacted by asbestos.	Low Likelihood	Medium	Moderate/Low –The proposed development may include limited soft landscaping areas where residents may be exposed to contaminated soils.			
3. Ingress of hydrocarbon vapours into structures and inhalation by future site residents.	Likely	Medium	Moderate– Hydrocarbon contamination is likely to be found on the site within the former forecourt area and potentially beneath the garage building. Vapour generation is a possibility and ingress into the new structure which will cover these areas is plausible.			
4. Direct contact of potable water supply pipes with contaminated soils leading to ingress of contaminants or degradation of the pipe.	Likely	Medium	Moderate – Hydrocarbon contaminants within the Made Ground and Alluvium might contact water supply pipes, and thresholds for acceptable contamination are very low for standard water supply pipes.			
5. Leaching of soil contaminants into the Secondary A Aquifer beneath the site.	Low likelihood	Medium	Moderate / Low – Groundwater expected to be present within the Alluvium at the site. However, the low expected permeability of this unit may limit the potential for contaminants to leach down into the Secondary 'A' Aquifer. Additionally			

Sandy Lane Construction Ltd.

TABLE 5 :RISK ESTIMATION FOR POTENTIALLY COMPLETE CONTAMINANT LINKAGES						
Contaminant Linkage Probability		Consequence	Risk and justification			
			the Mercia Mudstone beneath the site is likely to be dominated by mudstone rather than the sandstone units of the Redcliffe Sandstone Member.			
6. Migration and accumulation of ground gas in properties potentially resulting in asphyxiation or explosion.	Low Likelihood	Severe	Moderate – Potential sources of ground gas have been identified below the site and gas generation rates are expected to be low, however absolute concentrations may be sufficiently elevated to warrant the inclusion of gas protection measures within future buildings.			

The review of the available information and the production of the initial conceptual model and risk assessment has identified risks associated with potentially complete pollutant linkages that vary from Low to Moderate.

Linkages with risk estimations of Moderate/Low or above would typically require further investigation. To further investigate these linkages we have undertaken a ground investigation to collect information on the completeness of these linkages.

6 FIELDWORK

6.1 General

The ground investigation was carried out by SSL between 15 and 18 October 2018. The investigation was supervised by an engineer from SSL. The scope of works and positions were selected, set out and adjusted where necessary by SSL to take account of buried or overhead services, or other restrictions. The exploratory hole and in-situ test locations are shown on the Exploratory Hole Location Plan presented in Appendix A.

6.2 Exploratory Holes

TABLE 6 :SCOPE OF INTRUSIVE WORKS							
Quantity	Exploratory Hole Type	Maximum depth (m)	Hole / Test Numbers				
3	Cable Percussion Boreholes.	9.30	BH1-BH3				
3	Window Sample Boreholes	6.00	WS1, WS3 & WS4				

The exploratory holes are listed in the following table.

The exploratory hole logs are presented in Appendix B. These provide information including the equipment and methods used, samples taken, tests carried out, water observations and descriptions of the strata encountered. Explanation of the terms and abbreviations used on the logs is given in the Key to Exploratory Hole Records in Appendix B, together with other explanatory information.

The holes were logged by an engineer in general accordance with the recommendations of BS 5930:2015 (which incorporates the requirements of BS EN ISO 14688-1, 14688-2 and 14689-1). Detailed descriptions, together with relevant comments, are given on the logs.

Prior to the commencement of any exploratory hole or intrusive test all positions were checked for buried services by a specialist utility surveyor using a cable avoidance tool (CAT), signal generator ('genny'), and ground penetrating radar (GPR).

Inspection pits were hand dug at exploratory locations where noted on the relevant exploratory hole logs or in-situ test results.

The surveying of exploratory hole positions relative to the British National Grid and ground levels relative to Ordnance Datum has not been requested or undertaken as part of this investigation.

Interpretive Report on Ground Investigation

6.3 Instrumentation

On completion 50 mm and 40 mm diameter gas/groundwater monitoring wells were installed in selected exploratory holes the design having been decided by SSL. The installation details are shown on the exploratory hole logs and on a summary table presented within Appendix B.

6.4 In-Situ Testing

The in-situ tests are listed in the following table.

TABLE 7 :SCOPE OF IN-SITU TESTING				
Quantity	In-situ Test	Remarks		
12	Standard Penetration Tests (SPT).	Carried out in boreholes; test results included on exploratory hole logs presented in Appendix B.		
47	Hand Penetrometer (HP).	Set of three readings for each test.		

6.5 Monitoring and Post Fieldwork Environmental Sampling

Groundwater levels were recorded in the monitoring wells on 1, 7 and 16 November and 13 December 2018 by SSL engineers. The results together with the temporal (weather) conditions are tabulated in Appendix E.

Ground gas monitoring was carried out over the same period. An infrared gas meter was used to measure concentrations of carbon dioxide (CO2), methane (CH4) and oxygen (O2) in percentage by volume, whilst hydrogen sulphide (H2S) and carbon monoxide (CO) were recorded in parts per million. Initial and steady state concentrations were recorded. An integral flow meter was used to measure borehole flow rates (initial and steady state) in litres per hour (I/hr). In addition the atmospheric pressure before and during monitoring.

It should be noted that groundwater levels, gas concentrations and gas flows usually vary due to seasonal, atmospheric and/or other effects and may at times differ to those measured during the investigation.

The calibration certificate for the gas analyser and PID used are contained in Appendix F.

The wells were purged on the first monitoring visit. Sampling was then undertaken on the second monitoring visit using low-flow sampling techniques to minimise sample disturbance and the effects of sediment mobilisation into the samples.

Sandy Lane Construction Ltd.

Interpretive Report on Ground Investigation

7 LABORATORY TESTING

Samples for potential geoenvironmental testing were sent to a sister company Envirolab Limited, a MCERTS and UKAS accredited testing laboratory. Laboratory tests were scheduled by SSL. Tests carried out in accordance with MCERTS/UKAS standards where noted on the results sheets.

7.1 Geoenvironmental Laboratory Testing

The geoenvironmental testing carried out is summarised in the following table. The results are included as Appendix C of this report, and include details of the test method.

TABLE 8 : SUMMARY OF GEOENVIRONMENTAL LABORATORY TESTING				
Numbers of tests	Description	Notes		
		SOIL		
6	SSL contamination screening suite	Comprises arsenic, cadmium, chromium (total), lead, mercury, selenium, copper, nickel, zinc, speciated polycyclic aromatic hydrocarbons (PAH), total petroleum hydrocarbons (TPH banded 1 with ID), soluble organic matter, soluble sulphate and pH.		
3	TPHCWG	VPH and EPH with CWG banding, plus BTEX and MTBE. (C5-C35)		
3	Volatile organic compounds (VOC).			
10	Asbestos presence screen.	Identification was undertaken if/where asbestos fibres were detected.		
	WATER			
3	SSL GWS Groundwater Screening suite.	Comprises arsenic, cadmium, chromium (total), lead, mercury, selenium, copper, nickel, zinc, speciated polycyclic aromatic hydrocarbons (PAH), total petroleum hydrocarbons (TPHCWG (speciated) with CWG bandings), sulphate, hardness and pH.		
6	VOC	Volatile organic compounds		
3	DOC	Dissolved organic carbon		
3	Calcium			
9	TPHCWG	Comprises VPH and EPH with CWG banding, plus BTEX and MTBE. (C5-C35)		

8 **GROUND CONDITIONS**

8.1 General

Descriptions of the strata encountered are given on the exploratory holes logs presented in Appendix B. The downward succession encountered is broadly consistent with the published geology. This sequence is summarised in Table 9 below:

TABLE 9 : SUMMARY OF GROUND CONDITIONS					
Strata EncounteredDepth to top of stratumRange of Thicknesses (m bgl)Exploratory h encountered					
Made Ground	0.00	1.25 - >2.00	BH1-BH3, WS1, WS3 & WS4		
Alluvium	1.25 – 1.80	6.00 - 6.45	BH1-BH3, WS1 & WS3		
Mercia Mudstone Group	7.50 - 8.00	Not proved	BH1-BH3		

Further description of the ground conditions is present below.

8.2 Made Ground

Below the concrete surfaces the Made Ground comprised a variable mixture of sands gravels and clays in differing proportions but most typically as slightly sandy gravelly clays and very sandy very clayey gravels. The gravel clasts were typical of demolition rubble and included brick, concrete, ceramics, clinker and lime mortar with rare inclusions of glass and coal. Natural clasts were limited to the occasional presence of mudstone.

The thickness of the made ground does not appear to vary systematically across the site, and ranges from 1.25 m in BH3 to greater than 2.00 m in WS4. WS4 was intentionally drilled in the near vicinity of the underground storage tanks, and met refusal at 2.00m depth. This may be related to material in the ground relating to the tanks, such as a concrete base on which they may be sat.

8.3 Alluvium

Alluvium was encountered at all locations except for WS4 which was terminated on an obstruction in the made ground.

The Alluvium was typically firm organic silty clays which decreased in strength with depth, to become soft and very soft below 3.0 to 4.0 metres. These deposits contained frequent decaying organic remains, which were particularly prevalent and becoming abundant from around 5.0 m depth, with the clays being interbedded with

Interpretive Report on Ground Investigation

fibrous and psuedofibrous peats. A band of predominately fibrous and pseudo fibrous peat subordinately interbedded with a soft or very soft grey clay was identified in BH2 and BH3 from 6.0 m to 6.5 m. Whilst not recorded in BH1, it is very likely to have been present also.

Below 6.5 m depth the organic content of the Alluvium reduces again and the clays pass into slightly sandy gravelly or slightly gravelly clays between 7.1 m (BH3) and 7.7 m (BH1). This coarse material includes mudstone, sandstone and chert, and represents the base of the Alluvium, being underlain by deposits of the Mercia Mudstone between 7.5 m and 8.0 m depth.

8.4 Mercia Mudstone Group

Partially weathered mudstones of the Mercia Mudstone Group were encountered beneath the Alluvium in all three boreholes. Depths ranged from 7.5 m in BH2 to 8.0 m in BH1. The mudstones are reported to be extremely to very weak and were frequently recovered as a gravel. Sandstone was only encountered within BH3 at the base of the hole at 9.25 m depth.

8.5 Groundwater

No perched water was encountered within the made ground during the field works, and no notable water strikes were encountered within the Alluvium. Slow groundwater strikes were recorded within the Mercia Mudstone with water continuing to enter the bores even with the drill casing advanced into the mudstone. Rises to between 7.5 m and 8.1 m below ground level were recorded.

Monitoring undertaken has indicated slow entry of groundwater from the Alluvium and variable groundwater elevations across the site from 0.91 m to 3.12 m depth. Groundwater elevations within the deep wells are typically around 3 m below ground level, with those in the Alluvium being slightly shallower. Some perched water is anticipated in the made ground from around 1 m below ground level.

8.6 Indications of Contamination

No perched water was encountered within the made ground during the field works, and no indications of contamination were noted during the fieldwork beyond the presence of fragments of coal and clinker within the made ground.

PID headspace screening results for soil samples recovered from the exploratory holes ranged up to 0.3 ppm isobutylene equivalent.

9 GEOENVIRONMENTAL ASSESSMENT

9.1 Purpose of Investigation

The purpose of the work was to obtain geoenvironmental information to support the clearance of anticipated land contamination conditions regarding the demolition of a vehicle garage and the construction of residential dwellings.

9.2 General

In line with CLR11 (EA, 2014), there are two stages of quantitative risk assessment, generic and detailed. The Generic Quantitative Risk Assessment (GQRA) comprises the comparison of soil, groundwater, soil gas and ground gas results with generic assessment criteria (GAC) that are appropriate to the linkage being assessed. This comparison can be undertaken directly against the laboratory results or following statistical analysis depending upon the sampling procedure that was adopted.

9.3 Linkages for assessment

The linkages that required assessment after the findings of the ground investigation had been considered are detailed below together with the method of assessment.

	TABLE 10 : LINKAGES FOR GENERIC QUANTITATIVE RISK ASSESSMENT					
	Relevant pollutant linkage	Assessment method				
1.	Direct contact by future site residents with soil that may be impacted by heavy metals and hydrocarbons,	Human health GAC in Appendix D for residential land use without consumption of home-grown produce.				
2.	Direct contact by future site residents with soil that may be impacted by asbestos.	Qualitative assessment of the type, form and quantity of asbestos present in consideration of the prosed land use.				
3.	Ingress of hydrocarbon vapours into structures and inhalation by future site residents.	Human health GAC in Appendix D include the vapour pathway.				
4.	Direct contact of potable water supply pipes with contaminated soils leading to ingress of contaminants or degradation of the pipe.	Comparison of soil data to GAC in Appendix D for plastic water supply pipes using UKWIR (2010) guidance.				
5.	Leaching of soil contaminants into the Secondary A Aquifer beneath the site.	Comparison of groundwater data to Controlled Waters GAC in Appendix D to inform on whether this contamination is already occurring.				

Interpretive Report on Ground Investigation

6.	Migration and accumulation of ground	Gas Screening Values compared to the
	gas in properties potentially resulting in	Revised Wilson and Card Classification
	asphyxiation or explosion.	(residential) presented within CIRIA Report
		665 and BS:8485 2015.

9.3.1 Linkage 1 – Direct contact by future site residents with soil that may be impacted by heavy metals and hydrocarbons

9.3.1.1 General

To determine whether contaminants are present at levels that may be deemed to pose a significant hazard to human health, measured contamination levels in soil at the site are compared against derived guideline values ('Tier 2' soil screening), either directly or following statistical analysis. Where contaminants are present above the screening values it is probable that site-specific information will be required to further examine the potential risk of harm arising from such contamination.

The background to the assessment is contained in Appendix D and the findings are summarised in the following pages.

The proposed use of the site is flats potentially with small areas of soft landscaping if space allows, and thus residential land use without consumption of homegrown produce generic assessment criteria (GAC) have been used to assess the results.

Due to the limited number of samples tested we have compared the results directly to the residential land use without consumption of homegrown produce GAC without the use of the statistics.

9.3.1.2 Results

Except as follows the results did not exceed the residential without consumption of home-grown produce GACs. A summary of the assessment is presented in Appendix C.

TABLE 11 : RESULTS ABOVE GUIDELINES Land Use – Residential without consumption of home-grown produce					
Exploratory hole Depth Contaminant Result GAC Limit mg/kg mg/kg					
BH1	0.70		839		
BH3	1.00	Lead	442	310	
WS3	0.60		862		

The investigation has identified elevated level of lead in the made ground across the site at concentrations which could pose a risk to end user of the site if such material was to remain in the near surface beneath future areas of soft landscaping or unmade surfaces.

Sandy Lane Construction Ltd.

9.3.2 Linkage 2 - Direct contact by future site residents with soil that may be impacted by asbestos

No suspected asbestos was observed in the soils on the site during the site investigation and none of the 10 asbestos-in-soil screens undertaken returned positive results. Accordingly, on the basis of the available information, the risk from asbestos in the soils on the site to future site users appears low, and this linkage is considered to be incomplete.

9.3.3 Linkage 3 - Ingress of hydrocarbon vapours into structures and inhalation by future site residents

The vapour inhalation pathway from soils to indoor air is included within the land use generic assessment criteria discussed above in section in 9.3.1.

No exceedances were found for volatile contaminants in the tested soils. This accords with the general absence of indications of hydrocarbon contamination within the soils recovered as a part of this investigation.

Furthermore, comparison of the groundwater chemical analysis results with the GrAC, which considers the generation potential for vapour generation from dissolved phase contamination in groundwater also identifies no exceedances.

This linkage is considered to be incomplete.

9.3.4 Linkage 4 - Direct contact of potable water supply pipes with contaminated soils leading to ingress of contaminants or degradation of the pipe.

9.3.4.1 General

It should be noted that at the time of this investigation the future routes of water supply pipes had not been established, hence the investigation and sampling strategy may not be fully compliant with UKWIR recommendations. Consequently, a targeted investigation and specific sampling/analytical strategy may be required at a later date once the route of the supply pipes is known.

For possible pollutant linkages to proposed water supply pipes, the laboratory test results have been subject to initial assessment against the GAC presented in Appendix D (reproduced from the Table 3.1 of UKWIR).

Full testing has not been undertaken to determine the suitability of metallic pipe materials.

9.3.4.2 Results

The soil test results showed several exceedances of the UKWIR guidelines for polythene pipe in the made ground soils as shown in the table below.

Sandy Lane Construction Ltd.

TABLE 12: RESULTS ABOVE GUIDELINES					
Exploratory hole	Depth m	Contaminant	Result mg/kg	Guideline mg/kg	
BH3	1.00	Benzo(a)pyrene	0.57	0.50 for PE pipes.	
BH2	0.30		13		
BH3	1.00	TPH C11-C20	18	10 for PE pipes.	
WS1	0.30	1111011-020	37	To for the pipes.	
WS4	1.10		14		
WS1	0.30	TPH C ₂₁ -C ₄₀	993	500 for PE pipes.	

Note: PE - Polyethylene (also known as Alkathene or MDPE)

The investigation has identified a number of exceedances of the UKWIR guidelines for standard polyethylene pipes in the made ground soils. This linkage is considered to be potentially complete.

9.3.5 Linkage 5 - Leaching of soil contaminants into the Secondary A Aquifer beneath the site

9.3.5.1 General

The site lies over Unproductive Strata (the Alluvium) with a concealed Secondary A Aquifer (the Mercia Mudstone Group) at depth. Future groundwater abstractions from the mudstones of the Mercia Mudstone Group are implausible, and accordingly the most sensitive receptor in the vicinity of the site is considered to be surface water of the River Avon present in the New Cut 200 m north of the site, or the culverted channel of the Malago 180m east of the site.

The chemical analysis results for the groundwater have been compared to available Environmental Quality Standards for freshwater, presented in Appendix D which is considered to be protective surface water courses discussed above. In line with the Environment Agency's Remedial Targets Methodology, the GAC for controlled waters are termed 'Target Concentrations' (TC).

9.3.5.2 Results

None of the freshwater EQS values were exceeded for metals, semi metals, BTEX compounds or VOCs. There are no EQS values published for speciated total petroleum hydrocarbons and the results have been compared to the World Health Organisation limits for petroleum hydrocarbons in drinking water as presented in Table 21.

Sandy Lane Construction Ltd.

TABLE 13: SUMMARY OF TARGET CONCENTRATION EXCEEDANCES – HYDROCARBONS					
Determinant	Maximum Concentration (µg/l)	Location	Aqueous Solubility (μg/l)	Drinking Water Assessment Criteria	Freshwater EQS
TPH Aromatic <c8-c10< td=""><td>472</td><td>BH1</td><td>65000</td><td>300</td><td>-</td></c8-c10<>	472	BH1	65000	300	-
TPH Aromatic <c10-c12< td=""><td>169</td><td>BH1</td><td>25000</td><td>90</td><td>-</td></c10-c12<>	169	BH1	25000	90	-
TPH Aromatic <c12-c16< td=""><td>132</td><td>BH1</td><td>5800</td><td>90</td><td>-</td></c12-c16<>	132	BH1	5800	90	-

Sandy Lane Construction Ltd.

Interpretive Report on Ground Investigation

733272-1 (00) - Former Lombard, Service Station, Bristol

This screening identified limited exceedances for a small number of aromatic hydrocarbon bands. It is noted that the results returned are significantly lower than the aqueous solubilities of each fraction by a least an order of magnitude. There is no evidence from the fieldwork, monitoring or analysis that free product has been encountered at the site. Accordingly, this limited contamination appears to be already present in the water in the dissolved phase.

No basal gravels have been encountered at the base of the Alluvium, and the Mercia Mudstone was found to be represented by stiff clays and mudstone which are expected to have very limited hydraulic conductivities. Inspection of the water monitoring data indicates variable groundwater levels across the site, with no clear indication of gradient of the piezometric surface in either the shallow or deeper well arrays.

It is considered that mobilisation from the site via groundwater to impact on the identified surface water receptors is implausible. Consequently, this linkage is considered to be incomplete.

It should be noted that the constituents of petrol and diesel are considered to be hazardous substances, and the historic tanks and pipework represent potentially significant sources of these contaminants that under the guise of the EU Water Framework Directive should be prevented from entering groundwater. Whist there is no evidence that significant contamination is currently occurring we would recommend the removal of theses feature as a part of the development to guard against potential future contamination of soils and groundwater from deterioration of the remaining infrastructure.

9.3.6 Linkage 6 - Migration and accumulation of ground gas in properties potentially resulting in asphyxiation or explosion

9.3.6.1 General

In order to assess the significance of ground gases at the site, measured concentrations (by volume in air) and flow rates have been used to generate Gas Screening Values (GSVs). These have then been compared to the Revised Wilson and Card Classification presented within CIRIA Report 665. BS8485 has also been referenced.

It is recommended that the gas risk should be assessed by the consideration of pathways to human receptors as follows:

- Gas entering the building through the substructure and building up to hazardous levels; and
- Subsequent householder exposure through potential areas of soft landscaping.

9.3.6.2 Results

The following ground gas parameters have been recorded over the 4 no. gas monitoring rounds conducted on 1, 7 and 16 November and 13 December 2018. This included a visit undertaken at low pressure (<995 mb). Measured flow rates during

Interpretive Report on Ground Investigation

the monitoring campaign across the site were found to be below the limit of measurement except for in BH1 during the third monitoring visit when groundwater had risen beyond the response zone of the installation causing pressurisation of the well headspace resulting in short term flow readings up to -0.5 l/hr. This result is not considered to be representative of the flow of gas from the ground.

TABLE 14: SUMMARY OF MAXIMUM GAS CONCENTRATIONS					
Exploratory Position	Methane (%)	Carbon Dioxide (%)			
BH1	0.9	0.7			
BH2	1.3	0.2			
BH3	12.6	4.2			
WS1	0.0	0.7			
WS3	0.0	0.7			
WS4	0.0	1.7			

Maximum gas concentrations by position are recorded in Table 14 below:

Levels of methane and carbon dioxide have been found to be elevated within the deep boreholes which intercept bands of peat between 6.00 m and 6.50 m below ground level.

Ground gases present in peat and very organic alluvium are generated over very long periods of time and trapped or adsorbed within the deposits, accordingly there is very limited scope for lateral or vertical migration of the gas through the saturated natural soil profile. Actual generation rates within these deposits is expected to be very low.

The shallower window sample holes show no methane and significantly lower concentrations of carbon dioxide in the near surface beneath the existing concrete slabs which cover the site. This is considered to be an additional line of evidence that a significant flux of ground gas is not occurring from the deep alluvium to the near surface.

It is considered that there is currently no viable pathway from the identified source to impact on the future residents of the proposed flats, and that as long as the construction works do not increase the risk, this linkage will remain incomplete.

The proposed building is likely to make use of deep piled foundations to transmit foundation loads down into the stiff clays of the Mercia Mudstone Group at depth. Piles

Given the thickness and low strength of the alluviual soils it is considered highly likely that they would form a good seal around any pile type which may be adopted (displacement or replacement) and that use of these techniques will generate preferential pathways for ground gas migration which could impact the requirement for gas protection measures.

Ground improvement techniques however, such as installation of vibro-stone columns, wick drains or similar, may create pathways for ground gas migration and we would advise against their use in this circumstance.

Interpretive Report on Ground Investigation

9.3.6.3 Conclusion

This linkage is considered to be incomplete and the ground gas regime at the site is considered to fall into Characteristic Situation 1 of BS 8485:2015. Table 8.6 of CIRIA 665 indicates that no special protection measures are required in the new buildings.

The designer of the foundations for the development should consider the presence of a plausible source of ground gas at depth beneath the site and note that whilst the use of piles would not increase the risk of ground gas migration, techniques such as the installation of vibro stone columns or wick drains should be avoided.

9.4 Contamination Conclusions

Soil contamination has been identified at the site resulting in complete pollutant linkages. The linkages are summarised below:

- Direct contact by future site users with soil that may be impacted by lead.
- Direct contact of potable water supply pipes with contaminated soils leading to ingress of contaminants or degradation of the pipe.

9.5 Outline Remediation and Risk Reduction Recommendations

As a part of the planning process it is anticipated that Bristol City Council will place conditions relating to land contamination requiring the submission of a remedial strategy for the development of the site, and then validation of the implementation of that strategy.

The following may be taken as indicative of the remedial measures that would be required as a part of the development of the site with flats.

9.5.1 General Considerations

9.5.1.1 Discovery of Unexpected Contamination

Given the existence of made ground on the site and the site's past use, vigilance should be maintained during site clearance and construction, in case any areas of suspected contamination are encountered (e.g. suspicious in appearance or odour, etc).

When any such contamination is found then the Principal Contractor should stop all work in that area and they or the Client should contact a suitably qualified person such as Structural Soils Ltd to assess the situation. Appropriate sampling, testing and further risk assessment may be required.

Given the potential for volatile contamination on the site we consider that the developer should ensure that Structural Soils Ltd or alternative suitably qualified person visit site and inspect each set of foundation trenches for signs of contamination, before the foundations are constructed. Structural Soils Ltd should inspect each set of excavations for visual signs or odours of contamination. A photo-

ionisation detector (PID) should also be used as an additional line of evidence to assess the excavations for the presence of volatile hydrocarbons.

The site manager for the Principal Contractor at the site should provide a written statement regarding any visual or olfactory evidence of contamination observed (or lack of) whilst groundwork, service laying or landscaping is underway. Such a statement will form part of the final validation reporting

9.5.1.2 Forecourt Area Decommissioning

The presence of the tanks and associated pipework represent a significant risk of future contamination to the site and the wider environment. Accordingly we would recommend an approach of primary source removal of the tanks and associated infrastructure, with a limited over-dig of the excavations to remove any soils that contain visible mobile free-product.

We recommend that all of the underground tanks, their vent pipes, filling pipes, and the oil/water interceptor etc, be properly removed in line with recognised procedures, using a specialist contractor having sufficient and suitable experience in such work. The contractor selected for this work should provide a risk assessment and Safety Method Statement identifying the proposed decommissioning procedures prior to commencement of work on site.

This should include proposals on how the tanks will be 'inerted' or certified gas free if they are in fact found not to be filled with concrete, and whether they will be transported off site, or dismantled on site.

The removal of the tanks should include the excavation of any concrete, brick or sand surrounds to allow inspection of the surrounding soils. As a part of this any excavations should be over-dug to remove any soils or materials noted to contain mobile free phase product, such that it would enter and collect on the face of an excavation. This is not intended to include product within micro-fissures within the soil and any excavation would necessarily be limited by the land ownership constraints and the requirement not to cause instability to any adjacent properties of the pavement.

Care should be taken on the storage of any excavated arisings that it does not cause contamination of the underlying soils. As such is should be stored on concrete hard standing, or areas that have been prepared with a high quality virgin polymer DPM type membrane. Stockpiles should be sheeted over during periods of rain to prevent the generation of potentially contaminated leachate or runoff.

Care should be taken to avoid excessive rainwater accumulation in any open excavations as this may drive migration of contamination. Any water pumped from excavation should be appropriately disposed off site, or to foul sewer subject to obtaining appropriate discharge consents.

Any excavations should be infilled with an acceptable, adequately compacted, low permeability fill, to limit future infiltration, and to minimise the potential for hydrocarbon vapour posing a potential odour nuisance.

Sandy Lane Construction Ltd.

Interpretive Report on Ground Investigation

Particular care should be taken to protect the existing array of groundwater and shallow vapour monitoring wells present on the garage until such a time as it is agreed with the environmental regulators that they may be decommissioned. Loss of these before this time may require additional works to reinstate these wells.

9.5.1.3 Monitoring Well Decommissioning

Once agreement has been received from the environmental regulators that the existing monitoring wells are no longer required, the deep monitoring wells present in BH1, BH2 and BH3 should be decommissioned in accordance with the latest guidance from the Environment Agency as the wells form potential migration pathways for migration of contamination vertically within the soil profile.

We anticipate that the most appropriate form of decommissioning is likely to be by pressure grouting.

9.5.1.4 Imported Topsoil

Currently few of the soils seen on the site would be considered as suitable topsoil and thus imported soils will have to be sourced to complete the gardens and soft landscaping areas.

The imported soil should meet the requirements of BS3882:2015 Specification for topsoil with regards to the presence of physical and chemical contaminants so that it poses no health risks to the future residents or maintenance workers. The assessment of chemical contamination will be undertaken by comparison against the RSK generic assessment presented in Appendix G.

Imported soils should be sourced from a reputable supplier and must be accompanied by the supplier's certificates. Additionally, following import the soils should be independently sampled and verified for quality and chemical contamination compliance. Chemical contamination testing should be undertaken at a UKAS and MCERTS accredited laboratory using the following suite of contamination analysis.

TABLE 15: TOPSOIL CONTAMINATION SCREENING SUITE
Determinant
Arsenic
Cadmium
Chromium III
Chromium VI
Copper
Lead
Mercury
Nickel
Selenium
Zinc
рН
Soil Organic Matter
Speciated Polycyclic Aromatic Hydrocarbons
Total Petroleum Hydrocarbons (total, banded or speciated)
Asbestos Screen

Testing frequencies for topsoil quality and chemical contamination should reflect the confidence in the provenance and suitability of the topsoil. For BS3882 topsoil quality this should meet a minimum of 1 no. sample per site. For chemical contamination the following is recommended:

- For natural soils the frequency should not fall below a minimum of 3 no. tests per source, or 1 no. test per 250 m3 of imported soil, whichever is the greater.
- For manufactured or recycled topsoil the frequency should not fall below a minimum of 3 no. tests per source or 1 no. test per 50 m3, whichever is the greater.

Prospective sources of topsoil should be discussed with Structural Soils Ltd prior to import, as failure to meet the required standard will result in the need to replace the affected soil. This data will be required for inclusion in the validation report for the site.

Validation of the topsoil quality is best undertaken by random sampling once the soil has been imported.

Sandy Lane Construction Ltd.

Interpretive Report on Ground Investigation

9.5.2 Specific Pathway Breaks

9.5.2.1 Linkage 1 – Direct contact by future site residents with soil that may be impacted by lead

A practical solution to the presence of soil contaminants that pose a risk to humans is often to provide a clean cover layer in any garden or landscaped areas above any contamination (e.g. made ground) that will remain in place.

It is recommended that in any proposed soft landscaping areas all made ground within 300 mm of finished level is removed and replaced with clean subsoil and topsoil.

The type of soil should be adequate for plant cultivation. The proposed imported soils should be tested to confirm that they are uncontaminated and the final thickness of the cover will require validating.

Site, landscape and maintenance workers should wear gloves, boots and overalls and wash their hands before eating, drinking and smoking. Excessive dust generation should be avoided.

9.5.2.2 Linkage 4 -Direct contact of potable water supply pipes with contaminated soils leading to ingress of contaminants or degradation of the pipe.

The investigation has shown hydrocarbon exceedances in the shallow made ground across the site.

Therefore, we anticipate that Bristol Water will require the use of barrier pipeworks and fittings (Protecta-line, Puriton or similar) to be used throughout the development for water supply pipes in the ground. It is recommended that this report be presented to Bristol Water to confirm their requirements for pipe materials.

Correspondence with the water company and photographs of the pipe work being installed should be kept for inclusion in a remediation validation report which can be submitted to the planning authority.

10 OFF-SITE DISPOSAL OF SPOIL

10.1.1 General

All excavated material and excess spoil must be classified for waste disposal purposes prior to disposal at landfill. Under the Landfill (England and Wales) Regulations 2002 (as amended), prior to disposal all wastes must be classified as:

- 'inert', or
- 'non-hazardous', or
- 'hazardous'.

The Environment Agency's *Guidance on the Assessment and Classification of Waste*, Environment Agency, WM3, First Edition May 2015 document outlines the methodology for classifying wastes. Currently all wastes may require pre-treatment prior to disposal at landfill.

10.1.2 Initial Waste Characterisation

Envirolab have produced an assessment tool, 'Haswaste', that characterises contaminated waste soil by following the guidance within WM3. The 'total solid testing' results from this investigation have been run through this assessment tool to aid potential future off-site disposal of materials. This assessment produces an 'initial' characterisation of the waste which determines if it is hazardous or not (if it is 'not' hazardous, then it may be either inert (insoluble and inorganic) or non-hazardous. However, due to complications with the terminology of 'inert waste' it is best not to refer to it as such until after Waste Acceptance Criteria testing).

The assessment is included in Appendix E. Any samples that are classed as hazardous will have yellow cells with bold text, in the respective sample columns. The majority of the samples would be classified as non-hazardous waste with one exception, WS4 at 1.10 m depth has a corrosive pH of 13.4, which is classified as hazardous waste.

It is important to note that whilst we believe our in-house assessment tool to be an accurate interpretation of the requirements of WM3, thereby producing initial classifications in accordance with it, landfill operators often have their own assessment tools and can often come to a different conclusion. As a result, some landfill operators could even refuse to take apparently suitable waste.

11 SUMMARY

- **11.1** The purpose of the work was to obtain geoenvironmental information to advance the clearance of anticipated land contamination conditions regarding the demolition of a vehicle garage and the construction of residential dwellings.
- **11.2** The site is located on the corner of Brook Road and St Paul's Road in Bedminster, approximately 1.3 km south west of Bristol Temple Meads Railway Station. The British National Grid Reference of the site is ST 585 717.
- **11.3** The L-shaped site is approximately 30 m by 20 m in size and is occupied by an active vehicle service and repair garage building with a car sales and parking yard area. Two steel covers at the centre of the yard indicate the position of possibly a pair of tanks or possible a single twin compartment tank. The inspection chambers beneath the covers have been filled with a sand and cement slurry. No evidence of vent pipes or a petroleum interceptor was evident on the forecourt.
- **11.4** A desk study has been carried out. Early maps show the site to have initially been occupied by several residential properties which may have been subject to bomb damage in the Second World War. The first garage buildings appearing shortly after 1946 with a forecourt area by the mid-1960s when it is assumed that petrol sales would have commenced. Anecdotal sources indicate that fuel sales ceased in the late 1980s.
- **11.5** The geological map shows the site to be underlain by Made Ground over superficial Alluvium deposits and then the Redcliffe Sandstone Member of the Mercia Mudstone Group at depth
- **11.6** A ground investigation was carried out by SSL between 15 and 18 October 2018 that comprised three cable percussion boreholes and three window sample boreholes with associated geoenvironmental testing.
- **11.7** The ground investigation identified the site to be covered by 1.25 m >2.00 m of made ground overlying superficial alluvium which extended to a depth between 7.50 m and 8.00 m. The superficial deposits were underlain by the Mercia Mudstone Group which was confirmed to a depth of 9.30 m.
- **11.8** No perched water was encountered within the made ground during the field works, and no notable water strikes were encountered within the Alluvium. Slow groundwater strikes were recorded within the Mercia Mudstone with rises to between 7.50 m and 8.10 m below ground level. Groundwater monitoring undertaken identified variable groundwater elevations across the site from 0.91 m to 3.12 m depth.
- **11.9** The investigation has identified elevated level of lead in the made ground across the site at concentrations which pose a risk to end user of the site if such material was to remain in the near surface beneath future areas of soft landscaping or unmade surfaces. It is recommended that in any proposed soft landscaping areas all made ground within 300 mm of finished level is removed and replaced with clean subsoil and topsoil.
- **11.10** The investigation has shown several hydrocarbon results that exceedance the thresholds for standard polyethylene pipes in the made ground across the site. Consequently, we anticipate that Bristol Water will require the use of barrier pipe for

Sandy Lane Construction Ltd.

Interpretive Report on Ground Investigation

all water supply pipe and fittings lain in the ground on the scheme. It is recommended that this report be presented to Bristol Water to confirm their requirements for pipe materials.

- **11.11** Levels of methane and/or carbon dioxide have been found to be elevated within the deep boreholes where bands of peat are present. No complete linkage exists between the peat ground gas source and the shallow soils on the site. Piled foundations are not likely to increase the mobility and risk of ground gas thus should not drive a need to incorporate ground gas protection measures. Techniques which may create a pathway for ground gas migrations such as vibro-stone columns or wick drains should be avoided.
- **11.12** The Initial Waste Characterisation indicates that the majority of the samples would be classified as non-hazardous waste with one exception, WS4 at 1.10 m depth has a corrosive pH of 13.4, which is classified as hazardous waste.
- **11.13** No radon protection measures are considered necessary in the construction of new buildings.
- **11.14** Outline remedial measures anticipated to be required in the development of the site are presented in Section 9.5 and are expected to include decommissioning of the forecourt area infrastructure, specific decommissioning of the monitoring well arrays, use of specific barrier pipe and fittings for new water supply pipes and provision of certified clean cover soils in future areas of soft landscaping.

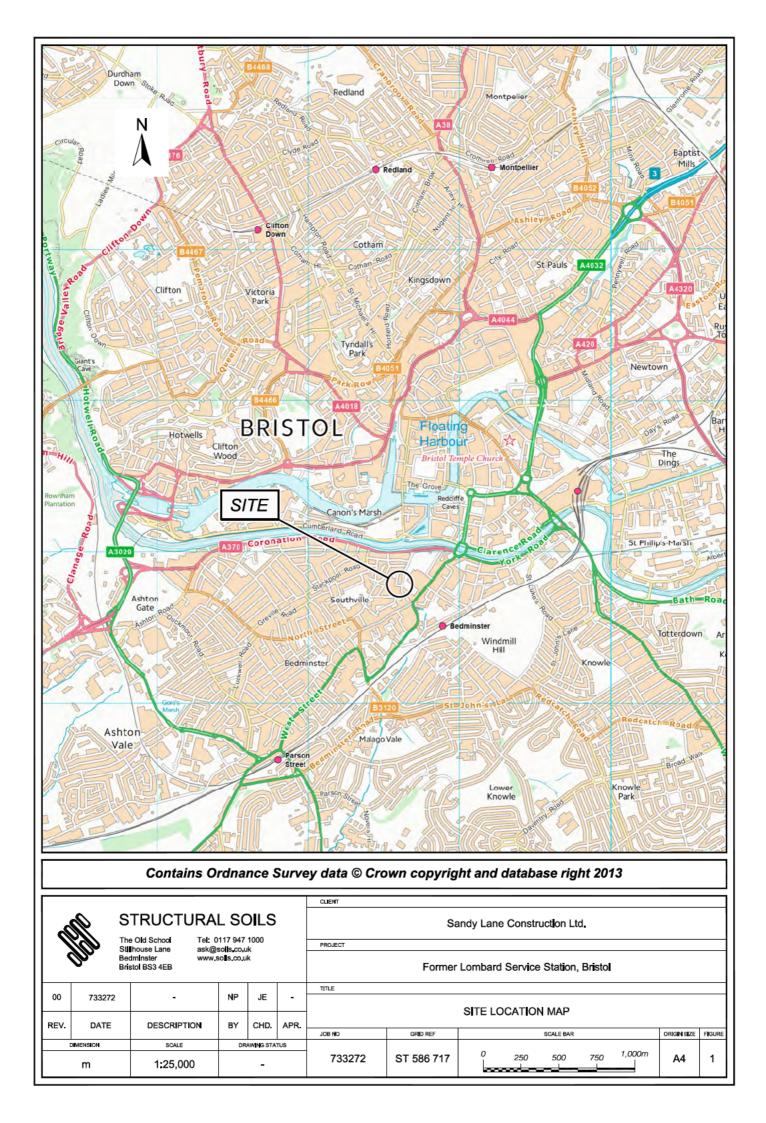
12 REFERENCES

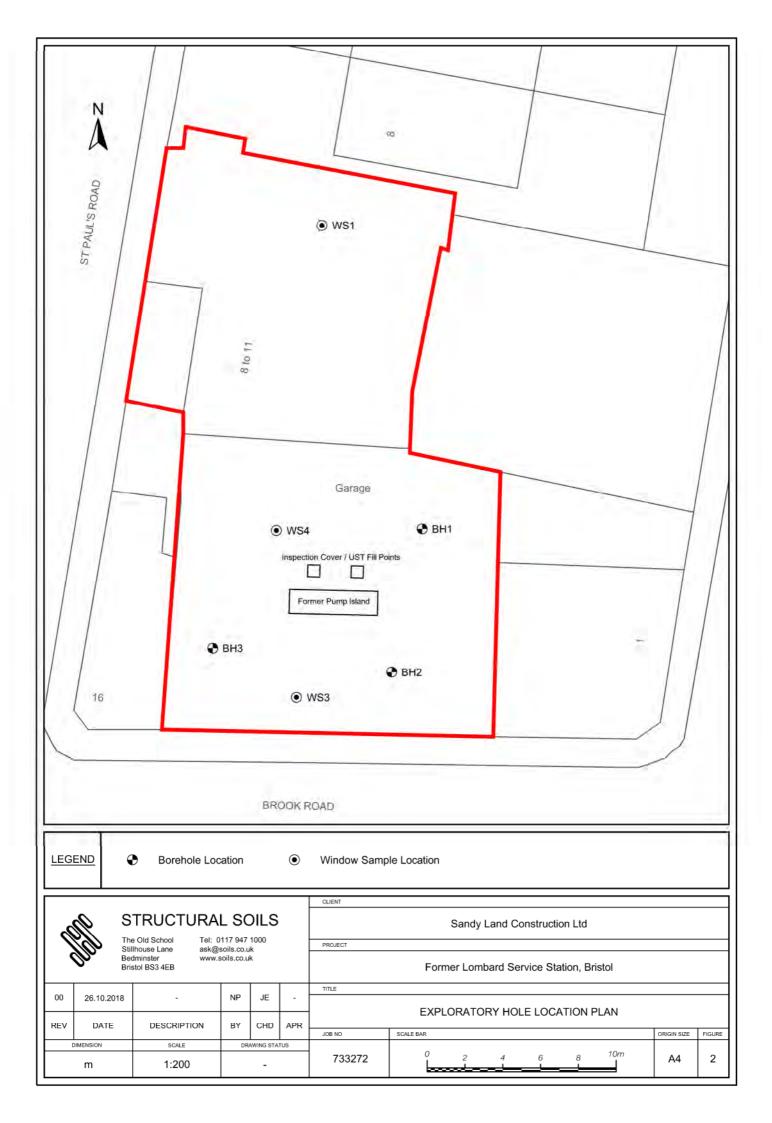
- 12.1 BS 5930:2015 Code of practice for ground investigations
- **12.2** BS 10175:2011 Investigation of potentially contaminated sites: Code of practice, including amendment A2 2017
- **12.3** BS EN 1997-2:2007 Eurocode 7 Geotechnical design Part 2: Ground Investigation and testing
- **12.4** BS EN ISO 22475-1:2006 Geotechnical Investigation and Testing Sampling methods and groundwater measurements, Part 1 Technical principals for execution
- **12.5** Structural Soils, 1988. Report Ref 80856 Report on Site Investigation at St Johns Road, Bedminster, Bristol
- 12.6 http://maps.bristol.gov.uk/kyp/?edition
- 12.7 British Geological Survey sheet 264 scale 1:50,000, published 2004
- **12.8** British Geological Survey online digital geological map, www.bgs.ac.uk/data
- **12.9** British Geological Survey Lexicon of Named Rock Units, www.bgs.ac.uk/lexicon
- **12.10** Environment Agency website, www.environment–agency.gov.uk
- **12.11** Environment Agency Groundwater Vulnerability Map: Southern Cotswolds, sheet 37, scale 1:100,000
- **12.12** CIRIA Report C552 (2001), Contaminated Land Risk Management; A Guide to Good Practice
- **12.13** BS EN ISO 14688-1:2018 Geotechnical investigation and testing Identification and classification of soil: Part 1: Identification and description
- **12.14** BS EN ISO 14688-2:2018 Geotechnical investigation and testing Identification and classification of soil: Part 2: Principles for a classification

Sandy Lane Construction Ltd.

Interpretive Report on Ground Investigation

- **12.15** BS EN ISO 14689-1:2018 Geotechnical investigation and testing Identification and classification of rock: Part 1: Identification and description
- **12.16** R & D Publication CLR 11 (September 2004). Model Procedures for the Management of Contaminated Land. Contaminated Land. Environment Agency
- **12.17** UK Water Industry Research (2010) UKWIR Report 10/WM/03/21. Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites (London: UKWIR).
- **12.18** CIRIA Report C665 Assessing risks posed by hazardous ground gases to buildings, London, 2007
- **12.19** BS 8485:2015 Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings
- 12.20 Landfill (England & Wales) Regulations 2002
- **12.21** Guidance on the Assessment and Classification of Waste, Environment Agency, WM3, First Edition May 2015
- **12.22** Wilson S and Mortimer S, Piled Foundations and pathways for ground gas migration in the UK. Environmental Geotechnics, ICE, 2017

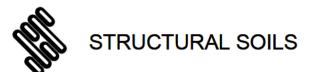

APPENDIX A -PLANS AND DRAWINGS


- (i) Site Location Plan
- (ii) Exploratory Hole Location Plan

Sandy Lane Construction Ltd.

Interpretive Report on Ground Investigation

733272-1 (00) - Former Lombard Service Station, Bristol


APPENDIX B -EXPLORATORY HOLE RECORDS

- (i) Key to Exploratory Hole Logs
- (ii) Borehole Logs
- (iii) Window Sample Logs
- (iv) Standpipe Summary Table

Sandy Lane Construction Ltd.

Interpretive Report on Ground Investigation

733272-1 (00) - Former Lombard Service Station, Bristol

KEY TO EXPLORATORY HOLE LOGS - SUMMARY OF ABBREVIATIONS

SAMPLING

Sample type codes

В	=	Bulk disturbed sample.
DSPT	=	Small disturbed sample originating from SPT test.
ES	=	Soil sample for environmental testing.


IN-SITU TESTING

SPT _(c) SPT	= = =	Standard Penetration Test using a solid 60 degree cone. Standard Penetration Test using split spoon sampler. (_(NR) indicates 'No Sample Recovery'). * denotes extrapolated N value. NP denotes 'No Penetration'.
HP	=	Hand Penetrometer Test. Value given as shear strength c_u , in kPa.
PID	=	Photo Ionisation Detector Results, in ppm.

ADDITIONAL NOTES

1. All soil and rock descriptions and legends in general accordance with BS EN ISO 14688-1, 14688-2, 14689-1, and BS5930:2015.

- 2. Material types divided by a broken line (- -) indicates an unclear boundary.
- 3. The data on any sheet within the report showing the AGS icon is available in the AGS format.

WATER COLUMN SYMBOLS

First water strike, second water strike etc. Standing water level following first strike, standing water level following second strike etc. Seepage.

Standing water level recorded at documented date.

Ø

š

MATERIAL GRAPHIC LEGENDS

PEAT

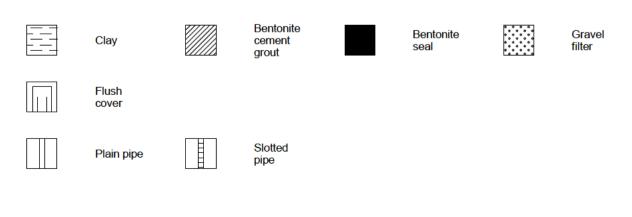
CLAY

Gravelly

silty CLAY

Sandy gravelly CLAY

MADE


GROUND

Mudstone

Silty CLAY

SANDSTONE

INSTRUMENTATION SYMBOLS

	Contract:	Lon	hord	Samiaa Stat		Drie	4.01	Client:	and Construction Ltd	Boreho	ole:	BH1	
	Contract Ret		ibard	Service Stat				d Level:	ane Construction Ltd.	Sheet		БЦІ	
		'332	72				Groui		CO-Ordinates.	Sheet.		of 2	
					15.1		1						
	Samp Depth		nd In-si Type	tu Tests Results	Water	Backfill & Instru- mentation		I	Description of Strata		Depth (Thick ness)	Materia Graphic Legend	
╞	Doptil		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				MAE	DE GROUND: CONC	RETE slab.		110357		
ļ										CAND	0.20		
							_n with	medium a cobble co	n very gravelly clayey fine to coarse intent. Gravel is angular to subangular and clinker. Cobbles are angular of br	fine to r	- 0.35 - 0.45		
┢	0.50-0.80	1	в					DE GROUND: CONC	_		- -(0.35)		
.	0.70	101	ES						rown slightly sandy gravelly CLAY wit is fine to coarse. Gravel is ang		L .	\times	
- [0.70	2	PID B	0.0ppm			∖suba		e of brick, concrete, clinker and coal. C		0.80		
	1.00	∠ 102	ES					<u> </u>	dark brown mottled black slightly	sandy	(0.40)	\otimes	
ļ	1.00		PID	0.0ppm					ow cobble content. Sand is fine to angular fine to coarse of brick, concre		1.20		
-	1.20-1.60	3	В					-	ts. Cobbles are angular of concrete.		(0.40)		
	1.40 1.40	103	ES PID	0.0ppm			angu	ular to subangular f	ine to coarse GRAVEL of brick, co				
	1.60-2.00	4	В	o.opp				mic tile fragments, c DE GROUND: Firm (oal and clinker. Jark brown slightly sandy CLAY. Sand	is fine	1.60		
	1.70 1.80	104	HP ES	c _u =70/85/60			_to m	edium. Mild organic	odour.		1.80	×××	
	1.80 -1.90	101	PID HP	0.0ppm c,,=100/90/100			orga	nic odour.	Y with abundant black speckling. Mo		2.00		
	2.00-2.50	5	В				· · · · · · · · · · · · · · · · · · ·	UVIUM) light grev mottled	light brown CLAY with occasional	/	-		
	2.20 2.20	105	ES PID	0.0ppm			brow	vn silt laminations. M _U∨IUM)		5	-		
	2.40		HP	c _u =110/120/110							(1.00)		
	2.50-3.00	6	В								-		
	2.70	106	ES								-		
	2.70		PID HP	0.0ppm c,=75/70/70							3.00		
	3.00-3.50	7	В	-4					l light brown CLAY with occasional	greyish	-		
	3.20		HP	c _u =60/60/65				vn silt laminations. _UVIUM)			(0.40)		
				-			Cirre	to coff bluich	w mottled grouish brown sith. OLA	V with	3.40	<u> </u>	
; [3.50-4.00	8	в				occa	asional dark brown a	ey mottled greyish brown silty CLA nd yellow f brous organic material.	r with	F		
	3.70		HP	c,=35/35/35			(ALL	_UVIUM)			ŀ		
				J 30/00/00							- -(1.10)		
	4.00-4.50	9	в								-	`	
											Ę	×`	
	4.30		HP	c _u =20/20/15							-	×	
	4.50-5.00	10	в				Ver	coff bluich arou ma	ttled greyish brown and dark grey silty		4.50	x`	
ŀ	+.50-5.00	10	D				with	occasional dark bro	wn and yellow fibrous material. Mild		F		
	4.70		HP	c _u =10/10/15			odou (ALL	ur. _UVIUM)			-		
ł	-							-			(1.00)		

S PIO	E	Boring Pro	gress and	Water (Observations	5	Chisell	ing / Slow	Progress	Conorol	Domarka	
The	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General	Remarks	
stol:	Duto	TITIC	Depth	Depth	(mm)	Depth	TIOIT	10	(hh:mm)	1 CDD and CAT 8 Con	ny convigo coop prior to	1
Brist	15/10/18	12:00	9.00	7.70	150	9.00				 GPR and CAT & Gen commencement. 	The service scart prior to	
8	15/10/18	13:15	9.00	7.70	150	7.50				2. Break out concrete sla	ab.	
Ŭ₩										3. Inspection pit dug to 0		
bee										4. Break out buried cond		
Ť										5. Inspection pit dug to 1		
Ę										6. Borehole stable. Grou	indwater strike present	
al Soils										All dimensions in metres	Scale: 1:28	1
Ictura	Method			Pla						& Logged JDEvans		
Str	Used:	Cable p	percussion	Us	ed: C	Dando 2000		By: M.	Zgrzebnic	ki By:	By: U AGS	

		ibaru	Service Stat			-	Lane Construction Ltd.	Ob a f		BH
Contract Re		170				Ground Level:	Co-ordinates:	Sheet:	-	
	7332			1	0.18				1	of 2
			itu Tests	Water	Backfill & Instru- mentation		Description of Strata		Depth (Thick	
Depth 5.00-5.50	No	Туре	Results	>	B = E				ness)	
5.00-5.50	11	B HP	c _u =5/5/0			with occasional dark odour. (ALLUVIUM)	mottled greyish brown and dark gre brown and yellow fibrous material. 4 50m from previous sheet)		-	
5.50-6.00 5.60	12	B HP	c _u =5/0/5				mottled light brown CLAY containing wn pockets of fibrous and pseudor		- - -	
6.00-6.50 6.20	13	B HP	c _u =10/0/0			9 9 9 9 9 9			_(1.00) 	
6.50-7.00	14	в					y mottled light brown slightly gravell n fibrous material. Gravel is subrou		6.50	
6.80		HP	c _u =60/50/50			carbonate nodules. M (ALLUVIUM)			-(0.50) - 7.00	
7.00-7.50 7.20	15	B HP	c _u =20/10/25	Ţ			ey silty CLAY containing brown lense brown fibrous and pseudofibrous		-(0.70)	
7.70-8.00 7.80	16	B HP	c _u =15/5/5			gravelly CLAY. San	mottled reddish brown slightly sa d is fine to coarse. Gravel is su udstone and sandstone.	andy slightly Ibangular to	7.70 (0.30)	×
3.00-8.50	17	В				(ALLUVIUM)	very weak reddish brown MUDSTO	/ NE. Partially	8.00	·~ ·-
8.20		HP	c _u =225/225/225			weathered. (MERCIA MUDSTON	-		- - (0.70) -	
3.50-9.00	18	В							8.70	
3.70		HP	c _u =25/35/40	ı		slightly sandy gravell	ish brown MUDSTONE recovered a y clay. Sand is fine to coarse. Grav	el is angular	(0.30)	
				<u>▼</u>		to subangular fine to weathered.	 medium of mudstone and sandstone IE GROUP) 	one. Partially	9.00	
						Borehole terminated	at 9.00m depth.		-	
									-	
									F	

I	Boring Pro	gress and	Water Ob	oservations	5	Chisell	ing / Slow	Progress	Conoral	Remarks
Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General	Remarks
Duto		Depth	Depth	(mm)	Depth		10	(hh:mm)	in horehole with water	r observed to rise from
									9.00m to 7.50m depth 7. Groundwater and gas 2.00m of 50mm plain slotted pipe with flush	n on completion. s installation comprising and 5.70m of 50mm
									All dimensions in metres	Scale: 1:28
Method Used:	Cable p	ercussion	Plan Use		ando 2000			Gofmonas . Zgrzebnic	& Logged JDEvans ki By:	Checked L AGS

Contract:			0			Client:	ana Canatanatian I tal	Boreho	ole:	БШа
		nbard	Service Sta			•	ane Construction Ltd.	Chaot		BH2
Contract Re		170		15.10.18	Grour	nd Level:	Co-ordinates:	Sheet:		
	7332		End:	15.10.18						of 2
Sam Depth	ples a	nd In-si Type	tu Tests Results	Water Backfill & Instru-		I	Description of Strata		Depth (Thick ness)	Materia Graphi Legen
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				De ground: conc	CRETE slab.			
0.20-0.40 0.30 0.30	1 101	B ES PID	0.0ppm		suba	DE GROUND: Bro angular fine to coar . Sand is fine to coar	wn very sandy very clayey ang se GRAVEL of brick, concrete, clin se.	ular to ker and /	0.20	
0.50-0.90	2 102	B ES			CLA	Y. Sand is fine to co	ark brown mottled grey slightly sandy parse. Gravel is angular to subangula , ceramic tile fragments, clinker and c	r fine to	(0.50)	
0.70		PID	0.0ppm		MAE	DE GROUND: Soft	orangish brown mottled light brown	slightly	0.90	
1.00-1.20 1.10 1.10	3 103	B ES HP	c _u =30/30/20		to su	ubangular fine to coa	AY. Sand is fine to coarse. Gravel is rse of mudstone, coal, clinker and co	ncrete.	1.20	
1.10 1.20-1.50 1.40	4 104	PID B ES	0.0ppm		grav is si	elly CLAY with abun	to firm dark brown slightly sandy dant black speckling. Sand is coarse edium of coal, roof tile and brick. M	. Gravel	-(0.30) 1.50	
1.40 1.40 1.50-2.00 1.70	5 105	HP PID B ES	c _u =35/40/40 0.1ppm		Stiff	greyish brown slig	ghtly gravelly silty CLAY with occ r to subangular fine. Mild organic odo		- - (0.50)	×° ×
1.70 1.80 2.00-2.50	6	PID HP B	0.1ppm c _u =90/75/85		Stiff	light arey mottled lig	ht brown silty CLAY. Mild organic odo	ur	2.00	× •
2.20	106	HP	c _u =100/85/90	°		_UVIUM)			(0.50)	<u>×</u>
2.30	7	PID	0.0ppm		Stiff	to firm bluish grev n	nottled light brown silty CLAY with oc	rasional	2.50	× ×
2.70		HP	c,,=55/40/50		lens		anic matter. Mild to moderate organic		-	<u> </u>
3.00-3.50	8	В							_ _(1.00)	×
3.20		HP	c _u =35/40/50		•				-	x
3.50-4.00	9	в				to very soft bluish asional dark brown o	grey mottled greyish brown silty CL rganic material.	AY with	3.50	× ×
3.80		HP	c _u =20/10/25			LUVIUM)	-		(1.00)	× ×
4.00-4.50	10	В			•				-	×
4.20		HP	c _u =10/20/20		•				-	×
4.50-5.00	11	В			brov	vn and dark brown fil	led greyish brown silty CLAY with oc prous organic material.	casional	4.50	× ×
4.80		HP	c _u =5/10/10		(ALI	_UVIUM)	-		-(0.50) -	×

old S	E	Boring Pro	ogress and	Water C	bservation	s	Chisell	ing / Slow	Progress	General	Domorko
The	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General	Remarks
ġ	Date	TIME	Depth	Depth	(mm)	Depth	TIOIII	10	(hh:mm)	1 CDD and CAT & Con	nu convice coop prior to
Bristol:	15/10/18	16:45	9.00	7.70	150	9.00				 GPR and CAT & Gen commencement. 	hy service scart prior to
8	15/10/18	17:15	9.00	7.70	150	8.10				2. Break out concrete sla	ab.
Office										3. Inspection pit dug to 1	
Head										4. Borehole stable. Grou	
E E										present in borehole wi rise from 9.00m to 8.1	
										1156 11011 9.0011 10 0.1	on deput on
al Soils										All dimensions in metres	Scale: 1:28
ctural	Method			Pla					Gofmonas		Checked / A
Stru	Used:	Cable p	percussion	Use	ed: 🕻	Dando 2000		By: M .	. Zgrzebnic	ki By:	By: U AGS

Forme	r Lon	nbard	Service Sta	tion.	Bris	tol	Sandy L	ane Construction Ltd.			BH
Contract Re							id Level:	Co-ordinates:	Sheet		
	7332	272	End:	15.1	0.18					2	of 2
Sam	ples a	nd In-si	itu Tests	er	tion tion					Depth	Mate
Depth	No	Туре	Results	Water	Backfill & Instru- mentation			Description of Strata		(Thick ness)	Grap Lege
5.00-5.50	12	В				Very		ottled greyish brown silty CLAN		- /	×
5.20		HP	c _u =0/0/0			Stror	tets of brown and ng organic odour. .UVIUM)	dark brown fibrous and pseudof	fibrous peat.	- (0.50)	
5.50-6.00	13	В				fbro	us and pseudofibro	led greyish brown silty CLAY inter us peat. Strong organic odour.	bedded with	5.50	× ×
5.80		HP	c _u =0/5/0			(ALL	.UVIUM)			-(0.50) 6.00	× ×
6.00-6.50 6.20	14	B HP	c₀=20/15/15			with		fibrous and pseudofibrous PEAT silty clay. Strong organic odour.	interbedded	- -(0.50)	<u> </u>
6.50-7.00	15	в					soft to soft bluish	grey CLAY with occasional yello	owish brown	6.50	<u>~~ ~</u> <u>~ ~</u>
6.70	19	HP	c _u =15/30/30			and	dark brown f brous (UVIUM)	organic material.	JWISH DIOWN	(0.75)	
7.30-7.50	16	В				Grav		sandy gravelly CLAY. Sand is fin subangular fine to coarse of		- - <u>7.25</u> - - 7.50	
7.60-8.00 7.70	17	B HP c	u=>225/>225/>22	25		(ALL Extre mottl	UVIUM)	ry weak reddish brown with rar Partially weathered.	e light grey	-	
3.00-8.50	18	В		Ţ						(1.00) 	
3.40 3.50-9.00	19	HP c B	u=>225/>225/>22	25		Extre	emely weak reddish	brown MUDSTONE. Partially wea	athered.	- 8.50	
3.80		HP	c _u =>225/>225/20	5₽		(MEF	RCIA MUDSTONE	group)		(0.50)	
				<u> </u>		Bore	hole terminated at §	9.00m depth.		<u>9.00</u> - -	
										-	
										-	

S PIO	I	Boring Pro	ogress and	Water O	bservations	6	Chisell	ing / Slow	Progress	General	Domorko	
The	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General	Remarks	
	Date	TIME	Depth	Depth	(mm)	Depth	FIOII	10	(hh:mm)	completion.		
ls Ltd, Head Office - Bristol:										5. Groundwater and gas 2.30m of 50mm plain slotted pipe with flush	and 5.00m of 50mm	
al Soils										All dimensions in metres	Scale: 1:28	
Structural	Method Used:	Cable p	percussion	Plar Use)ando 2000			. Gofmonas . Zgrzebnic		By: Checked L AGS	

Contract: Forme		nhard	Service Sta	tion Brie	Clie		ane Construction Ltd.	Boreh		BH
Contract Re		ibaru		16.10.18		-	Co-ordinates:	• Sheet		DII
	7332	272		16.10.18						of 2
			itu Tests						Depth	Mater
Depth	No	Type	Results	Water Backfill & Instru- mentation			Description of Strata		(Thick ness)	
						ROUND: CON	CRETE slab.		-	$\times\!\!\times\!\!\times$
0.30-0.70	1	в			∖subangul	lar fine to coar	k brown sandy slightly claye se GRAVEL of brick, concrete content. Cobbles are angular o	é, clinker and	0.20 0.30	
0.50 0.50	101	es Pid	0.0ppm		CLAY. S	and is fine to c	soft to soft dark brown slightly s oarse. Gravel is angular to suba iker, concrete and mudstone.		(0.60)	
0.90-1.20	2 102	B ES			SAND. (Gravel is angu	c brown very gravelly clayey f ilar to subangular fine to coa	arse of brick,	0.90	
1.00 1.20-1.50	3	PID B	0.1ppm		concrete, fragment		fragments and clinker. Occ	asional glass	1.25	\bigotimes
1.30 1.35	103	HP ES	c _u =80/100/95		organic o	odour.	CLAY with occasional rootlet st	tructures. Mild	1.50	× ×
1.35 1.50-2.00	4	PID B	0.0ppm			t grey mottled	I light brown silty CLAY with	n rare rootlet	-	×
1.70 1.75 1.75	104	HP ES PID	c _u =110/100/115 0.0ppm		structure (ALLUVII				-	× ×
2.00-2.50	5	В	0.000		•				_(1.00) -	× ×
2.30		HP	c _u =130/120/120		9 9 9				-	× ×
2.50-3.00 2.60	6	B HP	c _u =50/50/45			brown organic	nottled light brown silty CLAY w material. Mild to moderate organ		2.50 - -	
3.00-3.50	7	В			- - 				(1.00)	
3.30		HP	c _u =35/35/35						3.50	
3.50-4.00 3.60	8	B HP	c _u =10/10/20			g occasional bl	n grey with rare light brown n ack and yellow fibrous organic n		(0.50)	
					• • •				4.00	
4.00-4.50	9	В	c,=10/5/10			brown f brous	nottled greyish brown silty CL organic material.	AY with rare	-	× ×
4.20		HP	u_ 10/3/10						- [(1.00)	<u> </u>
4.50-5.00	10	В			•				-	x x
4.80		HP	c _u =0/0/0						5.00	<u> </u>

S PIO	E	Boring Pro	gress and	Water (Observation	s	Chisell	ing / Slow	Progress	Conorol	Domorko	
The	Date	Time	Borehole	Casin	Borehole Diameter	Water	From	То	Duration	General	Remarks	
stol:	Date	TIME	Depth	Depth		Depth	TIOIII	10	(hh:mm)	1 CDD and CAT 8 Con	ny convige coop prior to	-
Brist	16/10/18	12:00	9.00	7.70	150	9.00				 GPR and CAT & Gen commencement. 	iny service scan prior to	
ģ	16/10/18	13:00	9.30	9.00	150	7.90				2. Break out concrete sl	ab.	
ĕ										3. Inspection pit dug to		
ead										4. Borehole stable. Grou		
Í D										9.30m to 7.59m depth	r observed to rise from	
s Lt										3.30m to 7.33m depu	ron completion.	
al Soils										All dimensions in metres	Scale: 1:28	
ctura	Method			Pla	ant				I. Gofmonas		Checked / A	
Stru	Used:	Cable p	ercussion	Us	ed: C	Dando 2000		By: N	A. Zgrzebnic	ki By:	By: C AG	S

Former Contract Re		i sui u				Ground		-	Co-ordinate	struction Ltd.	Sheet		B
	7332	72	End:		0.18	Ground			CO-Orumate		Sheet.	_	of
				1	∞ <u></u>							Depth	
Depth	No	Type	tu Tests Results	Water	Backfill Instru- mentatic)escription			(Thick ness)	Gr
5.00-5.50	11	В				browr				prown silty CLAY with occ fibrous peat. Mild organic		-(0.30) 5.30	
5.30		HP	c _u =5/0/5			Very	soft to sof	it light g	rey mottled	greyish brown silty CL/	AY with	- 3.30	×
5.50-6.00	12	В				: odour		WN IIDFOL	is and pse	udofibrous peat. Strong	organic	- -(0.70) -	
5.80		HP	c _u =20/10/20			• •						-	×
6.00-6.50	13	В				: interb				and pseudofibrous PEA Strong organic odour.	AT with	6.00 - - -(0.50)	<u></u>
6.30		HP	c _u =5/10/10				U (1010)					6.50	<u>\\</u> <u>\</u>
6.50-7.00	14	В				: mater	ial. Modera			onal light brown fibrous	organic	-	
6.80		HP	c _u =25/30/20				J∨IUM)					(0.60)	
7.00-7.50	15	В				Very	soft brown	mottled l	ight grey sli	ghtly sandy gravelly CLA	Y. Sand	7.10	
7.40	16	HP B	c _u =0/5/0			: sands	e to coarse stone, muds JVIUM)	e. Gravel stone and	is angular flint.	to subangular fine to co	barse of	(0.60)	
7.80			u=>225/>225/>2	25 ¹			mely weak STONE. Pa	to very	y weak red	ddish brown mottled lig	ht grey	7.70	<u>•</u> .
8.00-8.50	17	В	u [_] ~ZZ3/~ZZ3/~Z	z⊳ ≚			CIA MUDS					(0.60)	
			. 0054 0054 0							NUDOTONE I	D (;))	8.30	
8.30	18	В	_u =>225/>225/>2	20		weath		-		sh brown MUDSTONE. I	Parually	-	
8.70		HP c	u=>225/>225/>2	25								(0.95)	
9.00-9.30	1	SPT	5,7/8,10,32 for 0mm	Ţ								-	
										edium SANDSTONE.		- <u>9.25</u> - <u>9.30</u> /	
							CIA MUDS tole termina		30m depth.]	- - -	
												-	
Bo	oring F Time	rogress Bore	and Water Ot hole Casing	Bore Diam	hole	Water	Chisellii From	ng / Slow To	Progress	General	Rem	arks	
Buto		Det	pth Depth	(m		Depth			(hh:mm)	 Groundwater and gas 1.50m of 50mm plain slotted pipe with flush SPT hammer EQU08 used. 	and 6.20 h cover.	0m of 50	Dmm
										All dimensions in metres	Scale:	1:28	

	E	Boring Pro	gress and	Water O	bservations	5	Chisell	ing / Slow	Progress	Conoral	Remarks
Г	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General	Remarks
			Depth	Depth	(mm)	Depth		10	(hh:mm)	5. Groundwater and gas	s installation comprising
										 Shoundater und gas 1.50m of 50mm plain slotted pipe with flush SPT hammer EQU08 used. 	and 6.20m of 50mm
										All dimensions in metres	Scale: 1:28
Me Us	ethod ed:	Cable p	ercussion	Plar Use		ando 2000			. Gofmonas I. Zgrzebnic		By: Checked L AGS

Contract: Former Lo	ombard S	ervio	e Sta	ation, Bristo	Clie		Lane Construction Ltd.		w Samp	WS'
Contract Ref:				16.10.18 G		-	Co-ordinates:	Sheet		
73	3272		End:						1	of 2
Progress		Sam	oles / T	Tests	<u> </u>	6		I	Depth	Mater
Window Run	Depth	No	Туре	Results	Water Backfill & Instru-	mentat	Description of Strata		(Thick ness)	
	-						ROUND: CONCRETE slab.		0.20	
	0.30	101	es Pid	0.0ppm		MADE (19m 2mm wire mesh. GROUND: Light brown very sandy a lar fine to coarse GRAVEL of brick,	concrete,	- - 0.45 - 0.55	
	-					are angu MADE G	clinker with a medium cobble content lar of brick. ROUND: CONCRETE slab.		-	
	0.80 0.80 -	102	es Pid	0.0ppm		gravelly	ROUND: Soft dark brown slightly san CLAY. Sand is fine to coarse. Gravel igular fine to coarse of brick, concre	is angular	(0.65)	
	1.20-1.65 1.25	1 103	SPT(c) ES	N=3			GROUND: Soft to firm light grey sligh		1.20	
1.20 - 2.00	- 1.25 - 1.25 - 1.30 - 1.50	103	PID HP ES	0.0ppm c _u =35/20/45	* * • *	fine to c	pravelly CLAY with occasional rootlets coarse. Gravel is subangular fine of	brick and	-(0.35)	× · · · ·
(98mm dia) 90% rec	1.50 1.50		HP PID	c _u =60/60/100 0.0ppm		•:• occasior	ht brown slightly sandy silty Cl al shell fragments and abundant root medium.		1.70	· · · · · ·
	1.90 2.00-2.45	2	HP SPT(c)	c _u =90/70/85 N=10			stiff light grey mottled light brown C brown lenses of silt and occasion s.		 [(0.95)	
l 2.00 - 3.00 (85mm dia) 100% rec	2.40 2.40	105	es Pid	0.0ppm					- - 2.65	
	2.70		HP	c _u =45/50/55		Firm blui	sh grey CLAY. UM)	/	2.80	
	2.90 -2.90 - 2.90 - 2.90	106	ES HP PID	c _u =45/50/50 0.0ppm		Firm blui (ALLUVI	sh grey mottled light brown CLAY. UM)		- -(0.50) -	
3.00 - 4.00	- 3.00-3.45 - -	3	SPT(c)	N=13		🕂 brown s	coming very soft bluish grey mottle ilty CLAY containing rare black a	d greyish nd brown	3.30	
(75mm dia) 100% rec	3.50	107	HP ES	c _u =20/20/15		(ALLUVI			-	
V	3.70		PID	0.0ppm		* * * * * *				×
	4.00-4.45	4	SPT(c)	N=10					-(1.50) - - -	
4.00 - 5.00 (75mm dia) 100% rec	4.50 4.50 4.50 4.50	108	es Hp Pid	с _и =5/5/5 0.0ppm		Descript			- - - 4.80	
	4.80 4.90	109	HP ES	c _u =50/50/50		Descript	on on next sheet		-	×

SPIO	[[Drilling Pro	gress and	Water C	Observation	s			<u> </u>	aaral	Domorko		
stol: The C	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)	4.000				Remarks		
Ltd, Head Office - Bri	16/10/18	14:00	6.45	-	50	Dry	2. Breal 3. Inspe 4. Breal 5. Inspe 6. Wind	c out cone ection pit (c out buri ection dug ow samp	crete slab. dug to 0.45m ed concrete) to 1.20 m d le hole dry b	depth. loor slab epth. it clays s	welling to close		d 4.50m
ral Soils							A	II dimens	ions in metre	s	Scale:	1:28	
Structura	Method Used:		d window npling	Pla Us		ando Terrie	r	Drilled By:	P. Guinness J. Evans	Logge By:	ed JDEvans	By:	AGS

		ombard S	ervio		-				-	ane Const	ruction	Ltd.			W
Contrac	t Ref:			Start:	16.10.18	Grou	ind L	evel		Co-ordinates:			Sheet:		
	73	3272		End:	16.10.18									2	of
Progr	ess		Sam	ples / 1	Fests		er ill &	fion -						Depth	Ma
Window	v Run	Depth	No				Water Backfill ¿	Instru- mentation			ion of Strat			(Thick ness)	
		4.90 5.00-5.45 5.20	5	PID SPT(c) HP	0.0ppm N=9 c _u =20/15/20/5	5/0/5	••••••		occasional (ALLUVIUN	ning soft bluis light brown fibr 1) pied from 4 801	ous materia	ıl.	ntaining /	(0.45) - <u>5.25</u> -	×
5.00 - (65mm - 100%	dia)	-					••••••		Very soft brown and (ALLUVIUM	dark grey silty dark brown fibr	y CLAY co ous materia	ontaining ye al.		<u>5.50</u>	x -
¥		5.70 5.70 5.80 6.00-6.45	110	ES PID HP SPT(c)	0.3ppm c _u =20/10/1 N=7	0	• • • • • •		dark brown	lenses of fibi rganic odour.	rous and p	seudofibrou	s peat.	[[(0.95)	
-		-												- - - 6.45	
-		-					-		Window sa	mple hole term	inated at 6.4	45m depth.		-	
-		-												-	
-		-												-	
-		-												-	
-		-												-	
-		-												-	
-		-												-	
-		-												-	
-		-												-	
-		-												-	
-		-												-	
-		-												-	
	Drilling	g Progress a			bservations Borehole	Wate	r			Gene	eral Re	marks			
Date	Tin			Casing Depth (m)	Diameter (mm)	Deptr (m)	h	of	40 mm slotte	ed pipe with flu	sh cover.				
									All dimensi	ions in metres	Sca	le:	1:28		
Method	Tr	acked windo	w	Plar	nt				Drilled I	P. Guinness &	Logged	JDEvans	Check	ed / A	

Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)	of 40	mm slotte	ed pipe with flu		er.	
						A	ll dimensi	ons in metres		Scale:	1:28
Method Used:		d window npling	Plar Use		ando Terrie	r	Drilled F By:	P. Guinness & J. Evans	Logge By:	d JDEvans	Checked L AGS

Contract Def			Ctort	46 40 40 0	ound! -	wel		Co-ordinates:	Chart		
Contract Ref:				16.10.18 Gr	ound Le	evel:		Co-ordinates:	Sheet		
-	3272			16.10.18						1	of 1
Progress Window Run	Depth		oles / T Type	Results	Water Backfill &	entation		Description of Strata		Depth (Thick	Mate Grap Lege
	Depui		Type	Results				DUND: CONCRETE slab.		ness) 0.10	XXX
-						Ν	ADE GR	OUND: Greyish brown very gravel		-(0.30)	XX
	0.20 0.20	101	ES PID	0.1ppm		f	ne to coar	rse SAND. Gravel is angular to su se of brick, concrete and clinker.	5	0.40	
-	0.60	102			* * - * * - * * -	· s	andy grav	OUND: Soft brown mottled black elly CLAY. Sand is fine to coarse of subangular fine to coarse of brick, of	Gravel is	(0.40)	
-	0.60		PID	0.0ppm	**	- ° • °		l and ceramic tile fragments. OUND: Reddish brown very gravel	v clavev	0.80	\bigotimes
-	1.00	103	ES PID	0.0ppm		in fi	ne to co Gravel is a	arse SAND with medium cobble ngular to subangular fine to coarse crete and coal.	content.	(0.35) 1.15	
	1.20-1.65		SPT(c)	N=5		1: N	ADE GR	OUND: Very soft to soft dark greyis dy slightly gravelly CLAY with rare		(0.30)	
1.20 - 2.00	1.30 1.30 1.40	104	ES PID HP	0.3ppm c _u =5/10/15	• • • • • •		Sand is fin ine to med	e to coarse. Gravel is angular to su ium of clinker and brick.	bangular /	- 1.45 - 1.55	
(98mm dia) 90% rec	1.50 1.50 1.50	105	ES HP PID	c _u =60/60/70 0.0ppm			andy silty Ingular to	DUND: Firm light grey mottled orang CLAY. Sand is fine to coarse. (subangular fine of clinker an	Gravel is	1.80	× ×
<u>¥</u>	1.70 1.70 1.70 1.90	106	ES HP PID HP	c _u =90/100/90 0.0ppm c _u =80/95/100				brown mottled light grey silty CL rootlet structures.	AY with	- -(0.50)	× ×
	2.00-2.45 2.00 2.00	2 107	SPT(c) ES PID	N=7 0.0ppm			ALLUVIUN	1) rey mottled light brown silty CLAY	with rare	2.30	
2.00 - 3.00 (85mm dia) 100% rec	2.35		HP	c _u =80/90/75			ALLUVIUN Stiff bluish naterial.	1) grey silty CLAY with rare browr	fibrous	-	
	2.60		HP	c _u =60/60/50		:: (ALLUVIUN			E	
<u>¥</u>	2.90	108	ES PID	0.0ppm		li¦ o		grey mottled light brown CLAY c pockets of greyish brown silt. 1)	ntaining	_(1.00) _	
Ī	3.00-3.45	3	SPT(c)	N=7						-	
3.00 - 4.00 (75mm dia)							oft bluish ALLU∨IUN	grey mottled greyish brown silty CLA 1)	Y.	3.40	×
100% rec	3.60 3.60 3.80	109	ES PID HP	0.0ppm c _u =20/30/20	***						× × ×
¥ [4.00-4.45	4	SPT(c)	N=10	•••					- (1.05) -	×
-	1.00-1.10			11-10						-	× ×
										4.45	×
						V	Vindow sa	mple hole terminated at 4.45m depth		ŀ	
-										ŀ	

PIO	[Drilling Pro	gress and	Water	Observation	S			Con	orol	Domorko		
The	Date	Time	Borehole Depth (m)	Casing Depth (m)		Water Depth (m)					Remarks		-
ls Ltd, Head Office - Bristol:	16/10/18	16:15	4.45	-	50	Dry	2. Breal 3. Inspe 4. Wind 5. Grou	cout con ection pit ow samp ndwater	crete slab. dug to 1.20m c ble hole dry but	lepth. clays station co			
al Soils							A	II dimens	sions in metres		Scale:	1:28	
Structural	Method Used:		d window npling		ant sed: D a	ando Terrie	r	Drilled By:	P. Guinness & J. Evans	Logge By:	ed JDEvans	By: Checked AGS	

	ombard S	ervic		ation, Bristo			-	ane Construction Ltd.			WS4
Contract Ref:			Start:	16.10.18 G	round	Level		Co-ordinates:	Sheet		
73	3272		End:	16.10.18			•			1	of 1
Progress		Samp	oles / T	ests	er	fill & ru- ation				Depth	Materi
Window Run	Depth	No	Туре	Results	Water	Backfill & Instru- mentation		Description of Strata		(Thick ness)	Graph Leger
1.20 - 2.00 (98mm dia) 80% rec	0.10 0.10 0.50 0.50 0.50 0.70 0.70 0.90 0.90 1.10 1.20-1.65 1.60 1.60 1.60 - - - - - - - - - - - - -	101 102 103 104 105 1 106	ES PID ES PID ES PID ES PID ES PID SPT ES HP PID ES PID	0.0ppm c _u =35/40/25 0.0ppm 0.0ppm c _u =0/5/0 0.0ppm 0.1ppm N=4 c _u =65/60/50 0.0ppm			MADE GR clayey fine content. G of brick, c fragments. MADE GR subangulai concrete v coarse. Co MADE GR light grey s fine to coa coarse of r MADE GR gravelly CL to subang clinker. MADE GF mottled bla to coarse. of brick, co MADE GR CLAY. Sa subangulai MADE GF gravelly sill of sandsto	OUND: Soft blackish brown slight AY. Sand is fine to coarse. Gravel is ular fine to coarse of brick, conc ROUND: Very soft to soft greyist ick slightly gravelly sandy SILT. Sar Gravel is angular to subangular fine to ncrete, coal and clinker. OUND: Whitish grey slightly sandy nd is fine to coarse. Gravel is an fine to coarse of lime and concrete. ROUND: Firm dark greyish brown by CLAY. Gravel is angular to subang ne and flint. Mild organic odour.	n cobble o coarse al glass ngular to ick and s fine to mottled Sand is r fine to y sandy a angular ete and d is fine o coarse gravelly ggular to slightly gular fine	0.08 0.15 0.40 0.60 0.80 1.00 1.00 1.50 1.50 1.50 2.00	

OId S([Drilling Pro	gress and	Water C	bservation:	5			Con	orol	Domorko	
ЦЧ	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gene	erai	Remarks	
ls Ltd, Head Office - Bristol:	16/10/18	15:10	(m) 2.00	<u>(m)</u> -	(mm) 98	(m) Dry	2. Breal 3. Inspe 4. Wind 5. Grou	cout cond ction pit c ow sampl ndwater a	rete slab. lug to 1.20m de e hole dry and	epth. relative tion co	mprising 0.50m o	ncement. of 40mm plain and 1.50m
al Soils							A	ll dimensi	ons in metres		Scale:	1:28
Structural	Method Used:		d window npling	Pla Use		ando Terrie	r	Drilled F By:	P. Guinness & J. Evans	Logge By:	d JDEvans	By: Checked AGS

STANDPIPE SUMMARY TABLE

Exploratory Position ID	Pipe ref/ Caption	Ground Level	Length of Pipe (m)	Response Zone Top (m)	Response Zone Base (m)	Slotted Pipe Top (m)	Slotted Pipe Base (m)	Pipe Internal Diameter (mm)		Remarks
BH1	1		7.70	2.00	7.70	2.00	7.70	50		
BH2	1		7.30	2.30	7.30	2.30	7.30	50		
BH3	1		7.70	1.50	7.70	1.50	7.70	50		
WS1	1		6.00	1.50	6.00	1.50	6.00	40		
WS3	1		4.00	0.50	4.00	0.50	4.00	40		
WS4	1		2.00	0.50	2.00	0.50	2.00	40		
						Compiled By			Date	Contract Ref:
ר א	CUCTURAL The Old Sch Stillhouse La	ool	J Contract:	Em	11/		JONATHAN	IEVANS	15.01.19	733272
0-	Bedminste ristol BS3 4	r			Former Lo	ombard Ser	vice Statior	n, Bristol		1 of 1

APPENDIX C -GEOENVIRONMENTAL TESTING

- (i) Laboratory Test Results
- (ii) Initial Waste Characterisation (Haswaste)
- (iii) Laboratory UKAS Accreditation Certificate

Sandy Lane Construction Ltd.

Interpretive Report on Ground Investigation

733272-1 (00) - Former Lombard Service Station, Bristol

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number: 18/08822 1

Date: 02 November, 2018

Client:

Structural Soils Limited (Bristol) The Old School Stillhouse Lane Bedminster Bristol UK BS3 4EB

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed:

Adam Watts/enviro@soils.co.uk/Jonathan Evans Former Lombard Service Station 733272 N/A 22/10/18 22/10/18 02/11/18

Prepared by:

Elisha Hartley Admin Assistant

Approved by:

Tere

Danielle Brierley Client Manager

					Client Proj	ject Ref: 73	3272			
Lab Sample ID	18/08822/1	18/08822/3	18/08822/6	18/08822/7	18/08822/13	18/08822/14	18/08822/17	18/08822/18		
Client Sample No	101	103	106	101	101	102	101	102		
Client Sample ID	BH1	BH1	BH1	BH2	BH3	BH3	WS1	WS1		
Depth to Top	0.70	1.40	2.70	0.30	0.50	1.00	0.30	0.80		
Depth To Bottom										
Date Sampled	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18		
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	<i>"</i>	Method ref				
Sample Matrix Code	4AB	4A	3	4AB		4A	4A		Units	Meth
% Moisture at <40C _A	16.7	-	-	14.0	-	22.8	13.1	-	% w/w	A T 044
% Stones >10mm _A	28.2	32.1	<0.1	31.5	-	7.6	34.8	-	% w/w	A T 044
pH _D ^{M#}	9.47	-	-	10.05	-	9.31	10.25	-	рН	A T 031s
Sulphate (water sol 2 1) _D ^{M#}	0.06	-	-	0.06	-	0.06	0.15	-	g/I	A T 026s
Organic matter _D ^{M#}	9.7	-	-	5.8	-	12.2	5.5	-	% w/w	A T 032 OM
Arsenic _D ^{M#}	18	-	-	16	-	27	16	-	mg/kg	A T 024s
Cadmium _D ^{M#}	0.9	-	-	2.1	-	7.9	3.0	-	mg/kg	A T 024s
Copper _D ^{M#}	65	-	-	61	-	89	48	-	mg/kg	A T 024s
Chromium _D ^{M#}	19	-	-	17	-	19	19	-	mg/kg	A T 024s
Lead _D ^{M#}	839	-	-	290	-	442	221	-	mg/kg	A T 024s
Mercury _D	1.58	-	-	1.05	-	2.46	1.07	-	mg/kg	A T 024s
Nickel ^{D^{M#}}	25	-	-	23	-	34	17	-	mg/kg	A T 024s
Selenium₀ [#]	<1	-	-	<1	-	<1	<1	-	mg/kg	A T 024s
Zinc _D ^{M#}	207	-	-	229	-	210	202	-	mg/kg	A T 024s

						eet Ker. 75	0212			
Lab Sample ID	18/08822/1	18/08822/3	18/08822/6	18/08822/7	18/08822/13	18/08822/14	18/08822/17	18/08822/18		
Client Sample No	101	103	106	101	101	102	101	102		
Client Sample ID	BH1	BH1	BH1	BH2	BH3	BH3	WS1	WS1		
Depth to Top	0.70	1.40	2.70	0.30	0.50	1.00	0.30	0.80		
Depth To Bottom										
Date Sampled	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18		af.
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	<i>"</i>	Method ref				
Sample Matrix Code	4AB	4A	3	4AB		4A	4A		Units	Meth
Asbestos in Soil (inc. matrix)										
Asbestos in soil _A #	NAD	NAD	-	NAD	NAD	NAD	NAD	NAD		A T 045
Asbestos ACM - Suitable for Water Absorption Test?	N/A	N/A	-	N/A	N/A	N/A	N/A	N/A		

Client	Project	Ref:	733272

Client Sample No1010100100100100100100100100100Client Sample Do60406040604060406040604060406040604060406040Boph to Top Dotom700100010001000100010001000100010001000Boph To Botom10001100011000110001000100010001000100010001000Basenpi Mach Xoo Dot60106000601060006	F					-	ect Ref: 73				
Client Sample DBitHBit	Lab Sample ID	18/08822/1	18/08822/3	18/08822/6	18/08822/7	18/08822/13	18/08822/14	18/08822/17	18/08822/18		
numbernumb	Client Sample No	101	103	106	101	101	102	101	102		
Control<	Client Sample ID	BH1	BH1	BH1	BH2	ВНЗ	BH3	WS1	WS1		
Deces ampied 16-oct	Depth to Top	0.70	1.40	2.70	0.30	0.50	1.00	0.30	0.80		
Somple TypeSoli - Soli -	Depth To Bottom										
PA1-60S Image <	Date Sampled	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18		÷
PA1-60S Image <	Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		od re
Acaapahtene,"Rodo </td <td>Sample Matrix Code</td> <td>4AB</td> <td>4A</td> <td>3</td> <td>4AB</td> <td></td> <td>4A</td> <td>4A</td> <td></td> <td>Units</td> <td>Meth</td>	Sample Matrix Code	4AB	4A	3	4AB		4A	4A		Units	Meth
contention content conten content <thcontent< th=""> <</thcontent<>	PAH-16MS										
Antraceess Antraceess Mathracess Mathraceess Mathraceess Mathraces	Acenaphthene _A ^{M#}	<0.01	-	-	<0.01	-	0.02	0.02	-	mg/kg	A T 019s
Benzo(s)anthracene,A"0.000.000.010.030.030.050.0310.010.010.010.01Benzo(s)prene,A"0.010.010.010.010.040.010.050.0310.050.0310.050.0310.050.0310.050.0310.050.0310.050.0310.050.0310.050.0310.050.0310.050.0310.050.0110.0140.050.0150.014 </td <td>Acenaphthylene_A^{M#}</td> <td><0.01</td> <td>-</td> <td>-</td> <td>0.02</td> <td>-</td> <td>0.01</td> <td>0.03</td> <td>-</td> <td>mg/kg</td> <td>A T 019s</td>	Acenaphthylene _A ^{M#}	<0.01	-	-	0.02	-	0.01	0.03	-	mg/kg	A T 019s
Interpretation Interpr	Anthracene _A ^{M#}	<0.02	-	-	0.04	-	0.08	0.06	-	mg/kg	A T 019s
Benzotlyfluoranthene, ^{Mar} 0.111.00.70.540.70.680.460.70.801.7Benzotlyfluoranthene, ^{Mar} 0.051.00.10.10.10.20.310.40.81.7Benzotlyfluoranthene, ^{Mar} 0.0071.00.10.10.10.140.140.10.140.140.110.11Chrysene, ^{Mar} 0.091.00.10.380.10.140.40.14 <t< td=""><td>Benzo(a)anthracene₄^{M#}</td><td>0.08</td><td>-</td><td>-</td><td>0.33</td><td>-</td><td>0.50</td><td>0.31</td><td>-</td><td>mg/kg</td><td>A T 019s</td></t<>	Benzo(a)anthracene₄ ^{M#}	0.08	-	-	0.33	-	0.50	0.31	-	mg/kg	A T 019s
Banzoghi perylenes ^{Ma} 0.05 i.e. 0.31 i.e. 0.29 0.31 i.e. Mode Arrow Banzoghi perylenes ^{Ma} 4.0.07 i.e. 0.18 i.e. 0.19 0.14 i.e. mgk Arrow Banzoghi fluoranthenes ^{Ma} 0.09 i.e. 0.18 0.19 0.14 i.e. mgk Arrow Dibenzoghishtracenes ^{Ma} 0.09 i.e. 0.07 0.68 0.07 i.e. mgk Arrow Fluoranthene, ^{Ma} 0.01 i.e. 0.07 0.08 0.07 i.e. mgk Arrow Fluoranthene, ^{Ma} 0.01 i.e. 0.07 0.02 0.02 i.e. mgk Arrow Fluoranthene, ^{Ma} 0.01 i.e. 0.03 0.02 0.02 0.02 i.e. mgk Arrow Indend(125-collyprene, ^{Ma} 0.06 i.e. 0.03 0.01 0.02 i.e. mgk Arrow Nphthalene, ^{Ma} 0.06 i.e. i.	Benzo(a)pyrene₄ ^{M#}	0.09	-	-	0.44	-	0.57	0.38	-	mg/kg	A T 019s
Bancylfuloranthere,M" co.07 - 0.18 0.19 0.14 - mgkg Arteria Benzolffuloranthere,M" 0.09 - 0.38 - 0.19 0.14 - mgkg Arteria Dibenzolfnamer,M" 0.00 - 0.07 - 0.08 0.05 - mgkg Arteria Flooranthere,M" 0.011 - 0.53 0.02 0.02 - mgkg Arteria Floorene,M" - 0.06 - 0.01 - 0.02 0.02 - mgkg Arteria Floorene,M" - 0.06 - - 0.01 - 0.02 0.02 0.02 - mgkg Arteria Indencif23-cdjpyrene,M" 0.06 - - 0.03 0.02 0.02 0.03 0.03 - mgkg Arteria Naphtalene,M" 0.05 - - 0.03 0.01 0.14 mgkg Arteria	Benzo(b)fluoranthene₄ ^{M#}	0.11	-	-	0.54	-	0.68	0.46	-	mg/kg	A T 019s
Chrysene_M0.090.30.380.00.540.400.0mg/gA ToriseDiberzo(ah)antracene_M.0.040.070.080.050.050.080.050.07Mg/gA ToriseFluoranthone/M0.0110.00.0530.080.080.020.0mg/gA ToriseFluorene/M0.0110.010.030.030.020.020.02mg/gA ToriseIndenci2a-chyprene/M0.0030.030.030.030.030.031.0mg/gA ToriseNaphthalene/M0.060.010.020.030.030.030.03Mg/gA ToriseNaphthalene/M0.0530.030.030.030.030.03Mg/gA TorisePhenathrene/M0.050.050.020.030.030.03Mg/gA TorisePhenathrene/M0.050.050.030.040.030.030.03Mg/gA TorisePhenathrene/M0.050.050.050.040.040.030.030.03Mg/gA ToriseTotal PAH-16MS/M0.050.050.050.050.050.05Mg/gA ToriseTotal PAH-16MS/M0.050.050.050.050.050.05Mg/gA ToriseCoCC0S_M0.050.050.050.050.050.050.05Mg/gA ToriseCoCC0S_MC </td <td>Benzo(ghi perylene₄^{M#}</td> <td>0.05</td> <td>-</td> <td>-</td> <td>0.31</td> <td>-</td> <td>0.29</td> <td>0.31</td> <td>-</td> <td>mg/kg</td> <td>A T 019s</td>	Benzo(ghi perylene₄ ^{M#}	0.05	-	-	0.31	-	0.29	0.31	-	mg/kg	A T 019s
Dibenzo(a)hanthracenest" <th< td=""><td>Benzo(k)fluoranthene_A^{™#}</td><td><0.07</td><td>-</td><td>-</td><td>0.18</td><td>-</td><td>0.19</td><td>0.14</td><td>-</td><td>mg/kg</td><td>A T 019s</td></th<>	Benzo(k)fluoranthene _A ^{™#}	<0.07	-	-	0.18	-	0.19	0.14	-	mg/kg	A T 019s
Fluoranthene,M0.110.530.860.72mg/kgA.ToriaFluorene,M<.0.01	Chrysene _A ^{M#}	0.09	-	-	0.38	-	0.54	0.40	-	mg/kg	A T 019s
Fluorene A ^{MB} < < < < < < <td>Dibenzo(ah)anthracene_A^{M#}</td> <td><0.04</td> <td>-</td> <td>-</td> <td>0.07</td> <td>-</td> <td>0.08</td> <td>0.05</td> <td>-</td> <td>mg/kg</td> <td>A T 019s</td>	Dibenzo(ah)anthracene _A ^{M#}	<0.04	-	-	0.07	-	0.08	0.05	-	mg/kg	A T 019s
Indeno(123-cd)pyrena, ^{WI} 0.06 0.39 0.37 0.28 mg/kg AT origination of the second of the	Fluoranthene _A ^{M#}	0.11	-	-	0.53	-	0.86	0.72	-	mg/kg	A T 019s
Naphthalene, ^{MM} < < < < < < A Naphthalene, ^{MM} < A O D <thd< th=""> D <thd< th=""> <t< td=""><td>Fluorene_A^{M#}</td><td><0.01</td><td>-</td><td>-</td><td><0.01</td><td>-</td><td>0.02</td><td>0.02</td><td>-</td><td>mg/kg</td><td>A T 019s</td></t<></thd<></thd<>	Fluorene _A ^{M#}	<0.01	-	-	<0.01	-	0.02	0.02	-	mg/kg	A T 019s
Maximum of Normalization Concern of Normalization Concern of Normalization Normal	Indeno(123-cd)pyrene_ ^{M#}	0.06	-	-	0.39	-	0.37	0.28	-	mg/kg	A T 019s
Pyrene A ^{MM} 0.09 · · 0.46 · 0.74 0.61 · mg/kg A T 019x Total PAH-16MSA ^{MM} 0.73 · · 3.89 · 5.36 4.25 · mg/kg A T 019x Total PAH-16MSA ^{MM} 0.73 · · 3.89 · 5.36 4.25 · mg/kg A T 019x The PAH-16MSA ^{MM} 0.73 · · · · · · mg/kg A T 019x The Pathene AMM · · · · · · mg/kg A T 019x The Banded 1 with ID ·	Naphthalene _A ^{M#}	<0.03	-	-	<0.03	-	<0.03	0.03	-	mg/kg	A T 019s
Total PAH-16MSA ^{MM} 0.73 - - 3.89 - 5.36 4.25 - mg/kg A T 019s Total PAH-16MSA ^{MM} 0.73 - - 3.89 - 5.36 4.25 - mg/kg A T 019s TC -<	Phenanthrene _A ^{™#}	0.05	-	-	0.20	-	0.41	0.43	-	mg/kg	A T 019s
Number of the state Note Note </td <td>Pyrene_A^{M#}</td> <td>0.09</td> <td>-</td> <td>-</td> <td>0.46</td> <td>-</td> <td>0.74</td> <td>0.61</td> <td>-</td> <td>mg/kg</td> <td>A T 019s</td>	Pyrene _A ^{M#}	0.09	-	-	0.46	-	0.74	0.61	-	mg/kg	A T 019s
< CG-CBA ^{MM} $<$ CS <t< td=""><td>Total PAH-16MS_A^{M#}</td><td>0.73</td><td>-</td><td>-</td><td>3.89</td><td>-</td><td>5.36</td><td>4.25</td><td>-</td><td>mg/kg</td><td>A T 019s</td></t<>	Total PAH-16MS _A ^{M#}	0.73	-	-	3.89	-	5.36	4.25	-	mg/kg	A T 019s
< CG-CBA ^{MM} $<$ CS <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
>C8-C10_A ^{MH} <1<1<12<12mg/kgAT 007s>C10-C12A ^{MH} <1	TPH Banded 1 with ID										
$2 \times C10 \times C12_{A}^{MB}$ $< C1$	>C6-C8 _A ^{M#}	<5	-	-	<5	-	<5	<5	-	mg/kg	A T 007s
>C12-C16A^M#<2 \cdot <22 \cdot 4 5 mg/kg $A^{T 007s}$ >C16-C21A^M#7 \cdot 11 \cdot 14 32 \cdot mg/kg $A^{T 007s}$ >C21-C40A#45 \cdot \cdot 116 \cdot 115 993 \cdot mg/kg $A^{T 007s}$ >C21-C40A#45 \cdot \cdot 116 \cdot 115 993 \cdot mg/kg $A^{T 007s}$ TPH ID (for FID characterisations)APossible PAHs + other unknown heavier \cdot $PossiblePAHs + otherunknownheavierPossiblePAHs + otherunknownheavierPossiblePAHs + otherunknownheavierA^{T 007s}$	>C8-C10 _A ^{M#}	<1	-	-	2	-	<1	2	-	mg/kg	A T 007s
>C16-C21A ^{M#} 7 - 11 - 14 32 - mg/kg AT 007s >C21-C40A [#] 45 - 116 - 115 993 - mg/kg AT 007s TPH ID (for FID characterisations)A Possible PAHs + other unknown heavier - Possible PAHs + other unknown heavier - Possible PAHs + other unknown heavier - Possible PAHs + other unknown heavier - AT 007s	>C10-C12 _A ^{M#}	<1	-	-	<1	-	<1	<1	-	mg/kg	A T 007s
>C21-C40A# 45 - 116 - 115 993 - mg/kg AT 007s TPH ID (for FID characterisations)A Possible PAHs + other unknown heavier - AT 007s	>C12-C16 ^{AM#}	<2	-	-	<2	-	4	5	-	mg/kg	A T 007s
TPH ID (for FID characterisations)A Possible PAHs + other unknown heavier - Possible PAHs + other unknown heavier - Possible PAHs + other unknown heavier Possible PAHs + other unknown heavier - A T 007s	>C16-C21 _A ^{M#}	7	-	-	11	-	14	32	-	mg/kg	A T 007s
PAHs + other unknown heavier	>C21-C40 [#]	45	-	-	116	-	115	993	-	mg/kg	A T 007s
s s s s s	TPH ID (for FID characterisations) _A	PAHs + other unknown heavier hydrocarbon	-	-	PAHs + other unknown heavier hydrocarbon	-	PAHs + other unknown heavier hydrocarbon	PAHs + other unknown heavier hydrocarbon	-		A T 007s
Total TPH Banded 1 with ID _A 52 - 129 - 133 1030 - mg/kg A T 007s	Total TPH Banded 1 with ID _A	52	-	-	129	-	133	1030	-	mg/kg	A T 007s

Client	Projec	t Ref	733272
Oliciit	110,00		133212

					olicite i roj	ject Ref: 73	0212			
Lab Sample ID	18/08822/1	18/08822/3	18/08822/6	18/08822/7	18/08822/13	18/08822/14	18/08822/17	18/08822/18		
Client Sample No	101	103	106	101	101	102	101	102		
Client Sample ID	BH1	BH1	BH1	BH2	BH3	BH3	WS1	WS1		
Depth to Top	0.70	1.40	2.70	0.30	0.50	1.00	0.30	0.80		
Depth To Bottom										
Date Sampled	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18		
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES		od re				
Sample Matrix Code	4AB	4A	3	4AB		4A	4A		Units	Method ref
voc										
DichlorodifluoromethaneA	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
Chloromethane _A	-	<10	-	-	-	-	-	-	µg/kg	A T 006s
Vinyl Chloride _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
Bromomethane _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
Chloroethane _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
Trichlorofluoromethane _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
1,1-Dichloroethene₄ [#]	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
Carbon Disulphide _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
Dichloromethane _A	-	<5	-	-	-	-	-	-	µg/kg	A T 006s
trans 1,2-Dichloroethene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
1,1-Dichloroethane _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
cis 1,2-Dichloroethene [#]	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
2,2-Dichloropropane _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
Bromochloromethane _A #	-	<5	-	-	-	-	-	-	µg/kg	A T 006s
Chloroform₄ [#]	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
1,1,1-Trichloroethane ⁴	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
1,1-Dichloropropene₄ [#]	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
Carbon Tetrachloride [#]	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
1,2-Dichloroethane [#]	-	<2	-	-	-	-	-	-	µg/kg	A T 006s
Benzene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
Trichloroethene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
1,2-Dichloropropane₄ [#]	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
Dibromomethane _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
Bromodichloromethane _A #	-	<10	-	-	-	-	-	-	µg/kg	A T 006s
cis 1,3-Dichloropropene ^{"#}	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
Toluene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
trans 1,3-Dichloropropene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
1,1,2-Trichloroethane _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
1,3-Dichloropropane [#]	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
Tetrachloroethene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
Dibromochloromethane ₄ #	-	<3	-	-	-	-	-	-	µg/kg	A T 006s
1,2-Dibromoethane _A [#]	-	<1	-	-	-	-	-	-	µg/kg	A T 006s

Client Project Name: Former Lombard Service Station

					Client Proj	ect Ref: 73	3272			
Lab Sample ID	18/08822/1	18/08822/3	18/08822/6	18/08822/7	18/08822/13	18/08822/14	18/08822/17	18/08822/18		
Client Sample No	101	103	106	101	101	102	101	102		
Client Sample ID	BH1	BH1	BH1	BH2	BH3	BH3	WS1	WS1		
Depth to Top	0.70	1.40	2.70	0.30	0.50	1.00	0.30	0.80		
Depth To Bottom										
Date Sampled	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18		
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES		od re				
Sample Matrix Code	4AB	4A	3	4AB		4A	4A		Units	Method ref
Chlorobenzene₄ [#]	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
1,1,1,2-Tetrachloroethane _A	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
Ethylbenzene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
m & p Xylene₄ [#]	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
o-Xylene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
Styrene₄ [#]	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
Bromoform _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
lsopropylbenzene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
1,1,2,2-Tetrachloroethane _A	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
1,2,3-Trichloropropane _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
Bromobenzene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
n-Propylbenzene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
2-Chlorotoluene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
1,3,5-Trimethylbenzene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
4-Chlorotoluene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
tert-Butylbenzene ^{"#}	-	<2	-	-	-	-	-	-	µg/kg	A T 006s
1,2,4-Trimethylbenzene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
sec-Butylbenzene [#]	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
4-Isopropyltoluene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
1,3-Dichlorobenzene _A	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
1,4-Dichlorobenzene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
n-Butylbenzene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
1,2-Dichlorobenzene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
1,2-Dibromo-3-chloropropane _A	-	<2	-	-	-	-	-	-	µg/kg	A T 006s
1,2,4-Trichlorobenzene _A	-	<3	-	-	-	-	-	-	µg/kg	A T 006s
Hexachlorobutadiene _A #	-	<1	-	-	-	-	-	-	µg/kg	A T 006s
1,2,3-Trichlorobenzene _A	-	<3	-	-	-	-	-	-	µg/kg	A T 006s

Client	Project	Ref:	733272

						ect Kel. 75				
Lab Sample ID	18/08822/1	18/08822/3	18/08822/6	18/08822/7	18/08822/13	18/08822/14	18/08822/17	18/08822/18		
Client Sample No	101	103	106	101	101	102	101	102		
Client Sample ID	BH1	BH1	BH1	BH2	BH3	BH3	WS1	WS1		
Depth to Top	0.70	1.40	2.70	0.30	0.50	1.00	0.30	0.80		
Depth To Bottom										
Date Sampled	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18		Ŧ
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES		od re				
Sample Matrix Code	4AB	4A	3	4AB		4A	4A		Units	Method ref
трн сwg										
Ali >C5-C6 [#]	-	-	<0.01	-	-	-	-	-	mg/kg	A T 022s
Ali >C6-C8 _A #	-	-	0.01	-	-	-	-	-	mg/kg	A T 022s
Ali >C8-C10₄ ^{M#}	-	-	<1	-	-	-	-	-	mg/kg	A T 055s
Ali >C10-C12 _A ^{M#}	-	-	<1	-	-	-	-	-	mg/kg	A T 055s
Ali >C12-C16 _A ^{M#}	-	-	<1	-	-	-	-	-	mg/kg	A T 055s
Ali >C16-C21 _A ^{M#}	-	-	<1	-	-	-	-	-	mg/kg	A T 055s
Ali >C21-C35₄	-	-	<1	-	-	-	-	-	mg/kg	A T 055s
Total Aliphatics >C5-C35 _A	-	-	<1	-	-	-	-	-	mg/kg	A T 055s
Aro >C5-C7 _A #	-	-	<0.01	-	-	-	-	-	mg/kg	A T 022s
Aro >C7-C8 _A #	-	-	<0.01	-	-	-	-	-	mg/kg	A T 022s
Aro >C8-C10 _A ^{M#}	-	-	<1	-	-	-	-	-	mg/kg	A T 055s
Aro >C10-C12 _A ^{M#}	-	-	<1	-	-	-	-	-	mg/kg	A T 055s
Aro >C12-C16 _A	-	-	<1	-	-	-	-	-	mg/kg	A T 055s
Aro >C16-C21₄ ^{M#}	-	-	<1	-	-	-	-	-	mg/kg	A T 055s
Aro >C21-C35₄ ^{M#}	-	-	1	-	-	-	-	-	mg/kg	A T 055s
Total Aromatics >C5-C35 _A	-	-	1	-	-	-	-	-	mg/kg	A T 055s
TPH (Ali & Aro >C5-C35)₄	-	-	1	-	-	-	-	-	mg/kg	A T 055s
BTEX - Benzene [#]	-	-	<0.01	-	-	-	-	-	mg/kg	A T 022s
BTEX - Toluene [#]	-	-	<0.01	-	-	-	-	-	mg/kg	A T 022s
BTEX - Ethyl Benzene [#]	-	-	<0.01	-	-	-	-	-	mg/kg	A T 022s
BTEX - m & p Xylene _A #	-	-	<0.01	-	-	-	-	-	mg/kg	A T 022s
BTEX - o Xylene _A #	-	-	<0.01	-	-	-	-	-	mg/kg	A T 022s
MTBE _A #	-	-	<0.01	-	-	-	-	-	mg/kg	A T 022s

					Client Proj	ject Ref: 73	3272			
Lab Sample ID	18/08822/22	18/08822/27	18/08822/28	18/08822/30	18/08822/35	18/08822/39	18/08822/40			
Client Sample No	106	101	102	104	109	104	105			
Client Sample ID	WS1	WS3	WS3	WS3	WS3	WS4	WS4			
Depth to Top	2.90	0.20	0.60	1.30	3.60	0.90	1.10			
Depth To Bottom										
Date Sampled	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18	16-Oct-18			if
Sample Type	Soil - ES	Soil - ES			Method ref					
Sample Matrix Code	3		4AB	5	3	4A	4A			Meth
% Moisture at <40C _A	-	-	20.3	-	-	-	25.3	% v	/w	A T 044
% Stones >10mm _A	<0.1	-	6.3	<0.1	<0.1	1.2	4.3	% v	/w	A T 044
рН _D ^{M#}	-	-	9.49	-	-	-	13.40	р	1	A T 031s
Sulphate (water sol 2 1) ^{D^{M#}}	-	-	0.07	-	-	-	0.03	g	n	A T 026s
Organic matter₀ ^{™#}	-	-	8.2	-	-	-	2.7	% v	/w	A T 032 OM
Arsenic _D ^{M#}	-	-	17	-	-	-	13	mg	kg	A T 024s
Cadmium _D ^{M#}	-	-	<0.5	-	-	-	1.6	mg	kg	A T 024s
Copper _D ^{M#}	-	-	141	-	-	-	22	mg	kg	A T 024s
Chromium _D ^{M#}	-	-	14	-	-	-	8	mg	kg	A T 024s
Lead _D ^{M#}	-	-	862	-	-	-	199	mg	kg	A T 024s
Mercury _D	-	-	42.7	-	-	-	1.27	mg	kg	A T 024s
Nickel ^{DM#}	-	-	16	-	-	-	4	mg	kg	A T 024s
Selenium _D #	-	-	<1	-	-	-	<1	mg	kg	A T 024s
Zinc _D ^{M#}	-	-	182	-	-	-	56	mg	kg	A T 024s

Client Project Name: Former Lombard Service Station

Client Project Ref: 733272

Lab Sample ID	18/08822/22	18/08822/27	18/08822/28	18/08822/30	18/08822/35	18/08822/39	18/08822/40		
Client Sample No	106	101	102	104	109	104	105		
Client Sample ID	WS1	WS3	WS3	WS3	WS3	WS4	WS4		
Depth to Top	2.90	0.20	0.60	1.30	3.60	0.90	1.10		
Depth To Bottom									
Date Sampled	16-Oct-18		f						
Sample Type	Soil - ES		od ref						
Sample Matrix Code	3		4AB	5	3	4A	4A	Units	Method
Asbestos in Soil (inc. matrix)									
Asbestos in soil _A #	-	NAD	NAD	-	-	-	NAD		A T 045
Asbestos ACM - Suitable for Water Absorption Test?	-	N/A	N/A	-	-	-	N/A		