

2 Wymeswold Road, Hoton Loughborough Leicestershire LE12 5SN

Phase 1 Land Contamination Risk Assessment

for

conversion of first and second floor to residential units

on the site of

160-162 High Street, Bushey, WD23 3HF

Date: November 2018

Status:

Reference:

Date:

Final Report

1452R Uplift Bushey

18/11/2018

Castledine & Co

EXECUTIVE SUMMARY

The site is currently occupied by a 3 story office building.

Based on the information contained in this report, it is the opinion of Castledine & Co that the site represents a Low risk with respect to the proposed development.

It is recommended that the Buildings on site should be subject to an asbestos survey and removal by appropriately qualified personal prior to any demolition or redevelopment occurring in order to ensure site works do not cause future contamination of the site.

It is not envisaged that any further works will be required.

CONT				4
<u>1.0</u>		TIONO	URANCE	1
<u>2.0</u>		<u>HONS</u>		1
<u>3.0</u>		DUCTIC -	JN	2
<u>4.0</u>	SCOPE	<u>.</u>		2
<u>5.0</u>	SITE DESCRIPTION			
<u>6.0</u>				3
	6.1	HYDR	DLOGICAL	3
		6.1.1 6.1.2 6.1.3 6.1.4 6.1.5	AQUIFER ABSTRACTIONS AND PRIVATE WATER SUPPLIES SOURCE PROTECTION ZONE GROUNDWATER VULNERABILITY AND SOIL LEACHING POTENTIAL POTENTIAL SURFACE WATER	3 3 3 4 4
		6.1.6	DISCHARGE CONSENTS	4
	6.2	PERMI	TTED PROCESSES	4
	6.3	POLLU	ITION INCIDENTS	4
	6.4	RADIO	ACTIVE SUBSTANCES REGISTRATIONS	4
	6.5	WASTE		
		6.5.1 6.5.2	LICENSED WASTE MANAGEMENT FACILITIES (LOCATIONS) LANDFILL SITES	4 4
	6.6	HAZAF	RDOUS SUBSTANCES	4
	6.7	ECOLO	DGICAL RECEPTORS	4
	6.8	SOILS	AND GEOLOGY	4
		6.8.1 6.8.2 6.8.3 6.8.4 6.8.5	SUPERFICIAL DEPOSITS BEDROCK COAL MINING NON-COAL MINING RADON	5 5 5 5 5 5
	6.9	AERIA	L PHOTOGRAPHY	5
		6.9.1 6.9.2 6.9.3 6.9.4	BING GOOGLE MAPS GOOGLE EARTH ENVIRONMENTAL SEARCH	5 5 5 6
	6.10	GOOG	LE STREET VIEW	6
	6.11	HISTO	RIC MAPPING	6
	6.12	CURRE	ENT LAND USE DATA	8
	6.13	PETRO	DL AND FUEL SITES	8
	6.14	HISTO	RICAL PETROL AND FUEL SITE DATABASE	8

1452R Uplift Bushey			Castledine & Co			
	6.15	POTENTIAL CONTAMINATIVE LAND USES IDE	NTIFIED ON			
		MAPPING	8			
	6.16	HISTORICAL TANK DATABASE	8			
	6.17	HISTORICAL ENERGY FACILITIES				
	6.18	HISTORICAL GARAGE AND MOTOR VEHICLE REPAIR				
		DATABASE				
	6.19	POTENTIALLY INFILLED LAND	9			
<u>7.0</u>	POLL	UTANT LINKAGE ASSESSMENT	9			
	7.1	SOURCES	10			
		7.1.1 ONSITE 7.1.2 OFFSITE	10 10			
	7.2	PATHWAYS	10			
	7.3	RECEPTORS	11			
<u>8.0</u>	CONC	CEPTUAL SITE MODEL	11			
	8.1	PRELIMINARY CONCEPTUAL SITE MODEL	11			
		8.1.1 SOIL CONTAMINATION8.1.2 HAZARDOUS GROUND GAS AND VAPO	11 DURS 11			
<u>9.0</u>	PREL	IMINARY ENVIRONMENTAL RISK ASSESSMENT	14			
<u>10.0</u>	<u>FURT</u>	HER ENVIRONMENTAL INVESTIGATION	15			
<u>11.0</u>	REME	DIAL ACTIONS AND VERIFICATION	15			
<u>12.0</u>	<u>REFE</u>	RENCES	16			
	12.1	LEGISLATION AND REGULATIONS	16			
		12.1.1 ACTS 12.1.2 PLANNING REGULATIONS 12.1.3 CONTAMINATED LAND REGULATIONS	16 16 16			
	12.2	STATUTORY GUIDANCE	16			
	12.3	BRITISH STANDARDS	17			
	12.4	NON STATUTORY TECHNICAL GUIDANCE	17			
		12.4.1 ENVIRONMENT AGENCY 12.4.2 CIRIA PUBLICATIONS 12.4.3 CL:AIRE	17 17 17			
13.0	APPE	NDICES	18			

LIST OF APPENDICES

APPENDIX A	ENVIRONMENTAL SEARCH	19
APPENDIX B	PROPOSED AND CURRENT SITE PLANS	20
APPENDIX C	SOIL SCREENING CRITERIA	22

LIST OF TABLES

TABLE 1.	SUMMARY OF SIGNIFICANT POLLUTION LINKAGES	12
TABLE 2.	RISK CLASSIFICATION MATRIX	13
TABLE 3.	CLASSIFICATION OF RISK	14

Castledine & Co

1.0 QUALITY ASSURANCE

Castledine & Co. confirm that all reasonable efforts have been made to ensure that the information outlined within this report is accurate.

Castledine & Co. would further confirm that due care, attention and technical skill were used in the creation of this report.

For and on behalf of Castledine & Co.

Kevin Castledine

(Proprietor)

2.0 LIMITATIONS

The conclusions and recommendations made in this report are limited to those based on the findings of the investigation. Where comments are made based on information obtained from third parties, Castledine & Co. assumes that all third party information is true and correct. No independent action has been undertaken to validate the findings of third parties. The assessments and interpretation have been made in line with legislation and guidelines in force at the time of writing, representing best practice at the time.

This survey has not included asbestos within existing structures, invasive plant species or any elements unconnected with potential ground contamination at the site. If required, such surveys should be undertaken by suitably accredited organisations.

There may be other conditions prevailing at the site which have not been disclosed by this investigation and which have not been taken into account by this report. Responsibility cannot be accepted for conditions not revealed by the investigation.

Castledine & Co

3.0 INTRODUCTION

Castledine & Co. have been appointed by Uplift Capital to undertake a Phase 1 Desk study on 160-162 High Street, Bushey, WD23 3HF

4.0 SCOPE

Castledine & Co. have prepared this report for the sole use and reliance of Uplift Capital and his appointees for the purpose of ensuring compliance with:

- paragraph 170, 178, & 179 of the National Planning Policy Framework 2018,
- part C1 of the building regulations.
- Paragraph O.2(b) Class O offices to dwellinghouses Schedule 2 The Town and Country Planning (General Permitted Development) (England) Order 2015 as amended.

This report may not be used or relied upon by any unauthorised third party, or for any other proposed use than that specified above, without the explicit written agreement of Castledine & Co.

The report consists of a preliminary risk assessment in accordance with BS10175:2011+A1:2013 and CLR11 "Model Procedures for the Management of Land Contamination".

The objectives of the report are:-

- To assess historical activities at the site with respect to their potential impact on the site environment.
- To characterise the environmental setting of the site, identify migration pathways and vulnerable receptors for contamination originating at the site, focusing on potential soil and groundwater liabilities.
- To assess historical and current surrounding land use in relation to known or potential off site contamination issues that may impact on the subject site and
- To develop a preliminary conceptual site model (CSM).

Castledine & Co

5.0 SITE DESCRIPTION

The site is located in Bushey at National Grid Reference 513584,195042 and is approximately 0.03ha in area.

Site is the upper 2 floors of a 3 story brick building.

6.0 **REGULATORY AUTHORITY AND OTHER ENVIRONMENTAL DATA**

An environmental search listing historical and environmental factors likely to affect the property has been reviewed.

The most pertinent information is summarised in the following sections.

A copy is presented in Appendix A

Additional geological and hydrological data was obtained from the British Geological Survey.

6.1 HYDROLOGICAL

6.1.1 AQUIFER

6.1.1.1 SUPERFICIAL GEOLOGY

None recorded.

6.1.1.2 BEDROCK GEOLOGY

ID	Distance (m)	Direction	Designation	Description
1	0	On Site	Unproductive	These are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow

6.1.2 ABSTRACTIONS AND PRIVATE WATER SUPPLIES

None within 250m

6.1.3 SOURCE PROTECTION ZONE

Not in a source protection sone

6.1.4 GROUNDWATER VULNERABILITY AND SOIL LEACHING POTENTIAL

None recorded on site

6.1.5 POTENTIAL SURFACE WATER

To the W/SW there is an unnamed river.

6.1.6 DISCHARGE CONSENTS

None within 250m

6.2 PERMITTED PROCESSES

None within 250m

6.3 POLLUTION INCIDENTS

None within 250m

6.4 RADIOACTIVE SUBSTANCES REGISTRATIONS

None within 250m.

6.5 WASTE

6.5.1 LICENSED WASTE MANAGEMENT FACILITIES (LOCATIONS)

None within 250m

6.5.2 LANDFILL SITES

None within 250m

6.6 HAZARDOUS SUBSTANCES

None within 250m

6.7 ECOLOGICAL RECEPTORS

None within 250m

6.8 SOILS AND GEOLOGY

"Contains British Geological Survey materials © NERC 2018" obtained from <u>http://www.bgs.ac.uk/data/mapViewers/home.html</u> under the <u>Open</u> <u>Government Licence</u>

Castledine & Co

6.8.1 SUPERFICIAL DEPOSITS

None recorded

6.8.2 BEDROCK

London Clay Formation - Clay, Silt And Sand. Sedimentary Bedrock formed approximately 48 to 56 million years ago in the Palaeogene Period. Local environment previously dominated by deep seas.

6.8.3 COAL MINING

Property is not in a coal mining area

6.8.4 NON-COAL MINING

No non-coal mining areas on site

6.8.5 RADON

The property is not in a Radon Affected Area, as less than 1% of properties are above the Action Level. No radon protective measures are necessary as described in publication BR211:2015 by the Building Research Establishment

6.9 AERIAL PHOTOGRAPHY

Aerial photography shows the following

6.9.1 BING

Site is shown as occupied by a building.

6.9.2 GOOGLE MAPS

Site is shown as occupied by a building.

6.9.3 GOOGLE EARTH

14 images are held in the historic imagery dataset, as follows:

Date	Description
1945	No site details can be made out.

Castledine & Co

Date	Description
1999	Site is shown as occupied by a building.
2000	No discernable change.
09/06/2005	No discernable change.
14/02/2011	Site is shown as a 3 story building.
19/03/2011	Site is shown as occupied by a building.
28/03/2012	No discernable change.
30/03/2012	No discernable change.
20/04/2013	No discernable change.
28/08/2013	No discernable change.
08/10/2015	No discernable change.
03/10/2016	No discernable change.
25/03/2017	No discernable change.
07/05/2018	No discernable change.

6.9.4 ENVIRONMENTAL SEARCH

Image taken 20/04/2015 site is shown as occupied by a building.

6.10 GOOGLE STREET VIEW

Site is shown as occupied by a 3 story brick building.

6.11 HISTORIC MAPPING

The following historic maps have been reviewed as part of this assessment. Castledine and Co. do not hold a license for the reproduction and/or distribution of this data.

Мар	Onsite	Offsite
OS County Series:	Building on site.	Smithy to the N. site
HERTFORDSHIRE		surrounded by buildings and
1872 1:2,500		agricultural fields.
OS County Series:	No discernable change.	No discernable change.
MIDDLESEX 1877		
1:10,560		
OS County Series:	No discernable change.	Some additional buildings
MIDDLESEX (partial)		nearby.
1897-1899 1:10,560		
OS County Series:	No discernable change.	No discernable change.
HERTFORDSHIRE		
1897-1899 1:10,560		
OS County Series:	No discernable change.	Fish pond to the N.
HERTFORDSHIRE		
1898 1:2,500		
OS County Series:	No discernable change.	No discernable change.
HERTFORDSHIRE		
1914 1:2,500		
OS County Series:	No discernable change.	No discernable change.
HERTFORDSHIRE		5
1919-1920 1:10,560		
OS County Series:	No discernable change.	No discernable change.
MIDDLESEX (partial)	0	5
1919-1920 1:10,560		
OS County Series:	No discernable change.	No discernable change.
HERTFORDSHIRE	0	5
1934-1938 1:10,560		
OS County Series:	No discernable change.	No discernable change.
HERTFORDSHIRE	0	5
1934 1:2,500		
OS County Series:	No discernable change.	No discernable change.
MIDDLESEX (partial)	5	5
1938 1:10,560 [°]		
OS Plan 1951-1961	No discernable change.	Fish pond no longer present.
1:10,560	0	
OS Plan 1958-1959	Site is a public house.	2 unidentified works shown to
1:1,250		the E of the site.
OS Plan 1959-1961	No discernable change.	No discernable change.
1:2,500	ger and the second second ger	ger and a second second ger
OS Plan (partial) 1969-	Site is part of a larger	Buildings to the immediate S
1971 1:1,250	empty field	are no longer present.
OS Plan 1973-1976	No discernable change.	No discernable change.
1:10,000		
OS Plan 1990-1993	New building on site.	New buildings to the S.
1:10,000		
OS Plan (partial) 1991	Building currently present	No discernable change.
1:1,250	on site now shown.	

Castledine & Co

6.12 CURRENT LAND USE DATA

ID	Distance [m]	Direction	Company	Activity	Category
1	47	NW	Electricity Sub Station	Electrical Features	Infrastructure and Facilities
2	100	SE	Electricity Sub Station	Electrical Features	Infrastructure and Facilities
3	115	SE	Gas Governor Station	Gas Features	Infrastructure and Facilities
4	194	NW	Kipling Autos	Vehicle Repair, Testing and Servicing	Repair and servicing.
5	240	NW	Electricity Sub Station	Electrical Features	Infrastructure and Facilities

6.13 PETROL AND FUEL SITES

None within 250m

6.14 HISTORICAL PETROL AND FUEL SITE DATABASE

None within 250m

6.15 POTENTIAL CONTAMINATIVE LAND USES IDENTIFIED ON MAPPING

ID	Distance [m]	Direction	Use	Date
1	119	NW	Unspecified Tank	1990
2	169	NW	Smithy	1895
3A	188	NW	Smithy	1898
4A	188	NW	Smithy	1898
5A	188	NW	Smithy	1899
6A	190	NW	Smithy	1912
7A	190	NW	Smithy	1920

6.16 HISTORICAL TANK DATABASE

None within 250m

Castledine & Co

6.17 HISTORICAL ENERGY FACILITIES

ID	Distance(m)	Direction	Use	Date
22F	244	E	Electricity Substation	1982
23F	244	E	Electricity Substation	1987
24F	245	E	Electricity Substation	1993
25F	245	E	Electricity Substation	1991

6.18 HISTORICAL GARAGE AND MOTOR VEHICLE REPAIR DATABASE

ID	Distance (m)	Direction	Use	Date
59P	170	NW	Garage	1958
60P	170	NW	Garage	1958
61P	170	NW	Garage	1971
62P	170	NW	Garage	1996
63P	170	NW	Garage	1980

6.19 POTENTIALLY INFILLED LAND

ID	Distance (m)	Direction	Use	Date
64Q	64	NE	Ponds	1935
65Q	64	NE	Ponds	1938
66Q	64	NE	Ponds	1912
67Q	64	NE	Ponds	1920
68Q	65	N	Ponds	1895
69	144	SE	Pool	1974

7.0 POLLUTANT LINKAGE ASSESSMENT

The risk posed by any contaminants in soil or groundwater will depend on the nature of the hazard, the probability of exposure, the pathway by which exposure occurs, and the likely effects on the receptors. A contaminant is defined as a substance that has the potential to cause harm, while a risk is considered to exist if such a substance is present in sufficient concentration to cause harm and a pathway exists for a receptor to be exposed to the substance.

The following sections discuss all the identified potential on and off site sources, pathways and receptors in the context of the proposed development and plausible pollutant linkages which may represent a risk to identified receptors from the data gained from the desk study. At this

Castledine & Co

stage the assessment is qualitative and aimed to determine all pollutant linkages, irrespective of significance or allowing for uncertainty.

Three impact potentials exist for any given site, these are:

- The site impacting upon itself;
- The site impacting on its surroundings; and
- The surroundings impacting on the site.

All three impacts need to be considered in a risk assessment.

7.1 SOURCES

The following potential sources of contamination have been identified.

7.1.1 ONSITE

• none

7.1.2 OFFSITE

- Made ground (ponds)
- Unknown works
- blacksmith

7.2 PATHWAYS

A pathway is defined as a mechanism or route by which a contaminant comes into contact with, or otherwise affects a receptor. Pathways by which the identified receptors may be impacted upon in the context of the proposed development are identified as follows:

- Ingestion;
- Skin contact;
- Inhalation;
- Direct contact by buried structures;
- Leaching of soluble contamination into groundwater

Castledine & Co

7.3 RECEPTORS

Receptors are defined as people, living organisms, ecological systems, controlled waters, atmosphere, structures and utilities that could be adversely affected by contaminant(s).

- Human Health
 - Current users of the site;
 - \circ Future users of the site;
 - Users of neighbouring sites;
 - o Construction workers; and
 - Services personnel working in trenches.
 - Construction Materials
- Buried concrete, which may be affected by high concentrations of sulphate and/or low pH, in the soils and groundwater underlying the site; and
- Buried water pipes.
- Controlled Waters

8.0 CONCEPTUAL SITE MODEL

The Conceptual Site Model (CSM) is a hypothesis of the nature and sources of contamination, potential receptors that may be the recipient of contamination arising from those sources and any pathways that may exist. It creates a plausible source-pathway-receptor pollutant linkage (hazard), set within the context of the ground and proposed end use of the site.

8.1 PRELIMINARY CONCEPTUAL SITE MODEL

8.1.1 SOIL CONTAMINATION

The proposal is to convert the 1st and 2nd floor of an office building to residential and the ground floor will be retained as offices.

The proposal has no substantial soft landscaping so there is unlikely to be any significant risk to any future residents.

8.1.2 HAZARDOUS GROUND GAS AND VAPOURS

The proposal is for the conversion of the 1st and 2nd floor. These are unlikely to be affected by ground gasses or vapours.

Castledine & Co

TABLE 1. SUMMARY OF SIGNIFICANT POLLUTION LINKAGES

Contaminant	Pathway	Receptor	Probability of Pollutant Linkage	Consequence	Risk	Possible Mitigation
Contaminated Soils	Direct Ingestion & Direct Contact	Site Workers	UI	Md	L	Site workers to wear appropriate PPE for health
Contaminated Soils	Inhalation of Dust	Site Workers	UI	Md	L	and safety reasons
Contaminated Soils	Direct Ingestion & Direct Contact	End Users	UI	Md	L	
Contaminated Soils	Inhalation of Dust	End Users	UI	Md	L	
Contaminated Soils	Direct Ingestion	Flora and Fauna	UI	Md	L	
Contaminated Soils	Vertical and lateral migration	Controlled Waters	UI	Md	L	
Contaminated Soils	Direct contact	Services	UI	Md	L	
Ground Gases (Methane and CO ₂)	Vertical and lateral migration	End Users & Building Envelope	UI	Md	L	
Volatile and Semi-volatile Organic Compounds	Vertical and lateral migration	End Users & Building Envelope	UI	Md	L	
Radon	Vertical and lateral migration	End Users & Building Envelope	UI	Md	L	
KEY: Probability of pollutant linkage	Hi = Highly likely, Li = Likel	y, Lw = Low Likelihood,	UI = Unlikely			
Overall Risk	Sv = Severe, Ma = Me VH = Very High, H = High	, $M = Moderate$,	M/L = Modera	te/Low,	L = Low,	VL = Very Low

Based on the preliminary CSM for the site, an environmental risk assessment has been undertaken. A simple matrix can provide a consistent basis for decision making. It should be used with caution, recognising the over-simplification that it will normally represent. The probability and consequences are defined according to parameters relevant to the situation; the boundaries of risk acceptability (and tolerability, where relevant) indicated on the matrix provided in Table 2, can be tailored to the factors influencing the significance of the risk. Individual situations are mapped onto the matrix to provide a ready and consistent indication of their acceptability or tolerability.

		Consequence											
		Severe (Sv)	Medium (Md)	Mild (Mi)	Minor (Mr)								
	High (Hi)	Very high risk	High risk	Moderate Risk	Moderate/ Low Risk								
bility	Likely (Li)	High risk	Moderate Risk	Moderate/Lo w Risk	Low Risk								
Proba	Low Likelihood (Lw)	Moderate Risk	Moderate/ Low Risk	Low Risk	Very Low Risk								
	Unlikely (UI)	Moderate/ Low Risk	Low Risk	Very Low Risk	Very Low Risk								

TABLE 2. RISK CLASSIFICATION MATRIX

Source: CIRIA Report C552, Contaminated Land Risk Assessment. A Guide to Good Practice, 2001

These attributes are evaluated qualitatively against individual hazard assessments to determine the likelihood of a given hazard occurring. The risk evaluations for each plausible pollutant linkage are given in the last three columns of Table 1..

TABLE 3. CLASSIFICATION OF RISK

Very high risk (Vh)	There is a high probability that severe harm could arise to a designated receptor from an identified hazard, OR, there is evidence that severe harm to a designated receptor is currently happening. This risk, if realised, is likely to result in a substantial liability. Urgent investigation (if not undertaken already) and remediation are likely to be required.
High risk (Hi)	Harm is likely to arise to a designated receptor from an identified hazard. Realisation of the risk is likely to present a substantial liability. Urgent investigation (if not undertaken already) is required and remedial works may be necessary in the short-term and are likely over the longer term.
Moderate risk (Md)	It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild. Investigation (if not already undertaken) is normally required to clarify the risk and to determine the potential liability. Some remedial works may be required in the longer-term.
Low risk (Lw)	It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realised, would at worst normally be mild.
Very low risk (VI)	There is a low possibility that harm could arise to a receptor. In the event of such harm being realised it is not likely to be severe.

Source: CIRIA Report C552, Contaminated Land Risk Assessment. A Guide to Good Practice, 2001

9.0 PRELIMINARY ENVIRONMENTAL RISK ASSESSMENT

Based on the information contained in this report, it is the opinion of Castledine & Co that the site represents a low risk with respect to the proposed development.

It is not envisaged that any further works will be required.

It is recommended that the Buildings on site should be subject to an asbestos survey and removal by appropriately qualified personal prior to any demolition or redevelopment occurring in order to ensure site works do not cause future contamination of the site.

This should be Discussed with the Local Planning Authority / Local council Contaminated Land Officer

Castledine & Co

10.0 FURTHER ENVIRONMENTAL INVESTIGATION

It is not envisaged that further testing will be required.

This should be Discussed with the Local Planning Authority / Local council Contaminated Land Officer

11.0 REMEDIAL ACTIONS AND VERIFICATION

It is not envisaged that any remediation will be required.

Castledine & Co

12.0 REFERENCES

12.1 LEGISLATION AND REGULATIONS

12.1.1 ACTS

[1] Environmental Protection Act 1990, Part IIA: inserted by Environment Act 1995, Section 57. See Environment Act 1995 for text of Part IIA.

12.1.2 PLANNING REGULATIONS

- [2] The Town and Country Planning (Environmental Impact Assessment) (England and Wales) Regulations 1999 SI1999/No.293
- [3] The Town and Country Planning (Environmental Impact Assessment) (England and Wales) (Amendment) Regulations 2000
 SI2000/No.2867

12.1.3 CONTAMINATED LAND REGULATIONS

- [4] The Contaminated Land (England) Regulations 2000. SI2000/No.227
- [5] The Contaminated Land (England) (Amendment) Regulations 2001SI2001/No.663
- [6] The Contaminated Land (England) Regulations 2006SI2006/No.1380

12.2 STATUTORY GUIDANCE

- [7] Department of Environment, Food and Rural Affairs. 2012.
 Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance. Department of Environment, Food and Rural Affairs
- [8] Communities and local Government, 2012: National Planning Policy Framework.

Castledine & Co

12.3 BRITISH STANDARDS

- [9] BS 5930:1999 Code of practice for site investigations
- [10] BS 10175:2011+A1:2013 Investigation of potentially contaminated sites Code of practice
- [11] BS 8485:2015 bs 8485 2015 Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings
- [12] BS 8576:2013 Guidance on investigations for ground gas.Permanent gases and Volatile Organic Compounds (VOCs)

12.4 NON STATUTORY TECHNICAL GUIDANCE

12.4.1 ENVIRONMENT AGENCY

 [13] Cassella Stranger, 2002. Model Procedures for the Management of Contaminated Land, Contaminated Land Report (CLR) 11,
 Department for Environment, Food, and Rural Affairs.

12.4.2 CIRIA PUBLICATIONS

- [14] Wilson, S., Oliver, S., Mallett, H., Hutchings, H., and Card, G. 2007, C 665 Assessing risks posed by hazardous ground gases to buildings London: Construction Industry Research and Information Association
- [15] Mallett, H., Cox, L., Wilson, S. and ,Corban M... 2014, C 735 Good practice on the testing and verification of protection systems for buildings against hazardous ground gases London: Construction Industry Research and Information Association

12.4.3 CL:AIRE

 [16] Card G, Wilson S, Mortimer S. 2012. A Pragmatic Approach to Ground Gas Risk Assessment. CL:AIRE Research Bulletin RB17.
 CL:AIRE, London, UK. ISSN 2047- 6450 (Online)

Castledine & Co

13.0 APPENDICES

Castledine & Co

APPENDIX A ENVIRONMENTAL SEARCH

Castledine & Co

APPENDIX B PROPOSED AND CURRENT SITE PLANS

Castledine & Co

1452R Uplift Bushey

1.

EXISTING FIRST FLOOR PLAN 1:200 @ A3

EXISTING GROUND FLOOR PLAN 1:200 @ A3

EXISTING SECOND FLOOR PLAN 1:200 @ A3

 Floor
 Unit 1
 Type
 Proposed Gross Internal Area (approx)
 London Plan

 Ground Floor
 I
 Internal Area (approx)
 Internal Area (approx)
 London Plan

 First Floor
 Unit 1
 1 bed 1 p
 35 sgm
 39 or (37) sgm

 Unit 2
 1 bed 1 p
 37 sgm
 39 or (37) sgm

 Unit 3
 1 bed 1 p
 37 sgm
 39 or (37) sgm

 Unit 4
 1 bed 1 p
 38 sgm
 39 or (37) sgm

 Unit 5
 1 bed 1 p
 35 sgm
 39 or (37) sgm

 Second Floor
 Unit 6
 1 bed 1 p
 35 sgm
 39 or (37) sgm

 Unit 7
 1 bed 1 p
 35 sgm
 39 or (37) sgm
 39 or (37) sgm

 Unit 8
 1 bed 1 p
 37 sgm
 39 or (37) sgm
 39 or (37) sgm

 Unit 8
 1 bed 1 p
 44 sgm
 39 or (37) sgm
 39 or (37) sgm

APPENDIX C SOIL SCREENING CRITERIA

S4ULS are copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3693. All rights reserved

		Human Health Generic Assessment Criteria (mg/kg) 그런금 ND금 GD금 그런금 ND금 GD금 그는 N은 G은 그와 N와 G은 N와 N와 N N N N N N N																	
Contaminant	Source of GAC	residential without plant uptake (1%SOM)	residential without plant uptake (2.5%SOM)	residential without plant uptake (6%SOM)	residential with plant uptake (1%SOM)	residential with plant uptake (2.5%SOM)	residential with plant uptake (6%SOM)	allotments (1%SOM)	allotments (2.5%SOM)	allotments (6%SOM)	commercial (1%SOM)	commercial (2.5%SOM)	commercial (6%SOM)	POSresi (1%SOM)	POSresi (2.5%SOM)	POSresi (6%SOM)	POSpark (1%SOM)	POSpark (2.5%SOM)	POSpark (6%SOM)
Default Suite																			
Arsenic	C4SL			40			37			49			640			79			170
Beryllium	S4UL			1.7			1.7			35			12			2.2			63
Boron	S4UL			290			11000			45			240000			21000			46000
Cadmium	C4SL			22			150			3.9			410			220			880
Chromium (III)	S4UL			910			910			18000			8600			1500			33000
Chromium (VI)	C4SL			21			21			170			49			21			250
Copper	S4UL			2400			7100			520			68000			12000			44000
Lead	C4SL			310			200			80			2330			630			1300
Mercury Elemental	S4UL			1.2			1.2			21			58 ^{VAP} (25.8)			16			30 ^{VAP} (25.8)
Mercury inorganic	S4UL			40			56			19			1100			120			240
Mercury methyl	S4UL			11			19			6			320			40			68
Nickel	S4UL			180			180			230			980			230			3400
Selenium	S4UL			250			430			88			12000			1100			1800
Vanadium	S4UL			410			1200			91			9000			2000			5000
Zinc	S4UL			3700			40000			620			730000			81000			170000
Phenol	S4UL	280	550	1100	750	1300	2300	66	140	280	760 ^{DIR} (31000)	1500 ^{DIR} (35000)	3200 ^{DIR} (37000)	760 ^{DIR} (11000)	1500 ^{DIR} (11000)	3200 ^{DIR} (11000)	760 ^{DIR} (8600)	1500 ^{DIR} (9700)	3200 ^{DIR} (11000)
Acenaphthene	S4UL	3000 ^{SOL} (57)	4700 _{SOL} (141)	6000 _{SOL} (336)	210	510	1100	34	85	200	84000 _{SOL} (57.0)	97000 ^{SOL} (141)	100000	15000	15000	15000	29000	30000	30000
Acenaphthylene	S4UL	2900 ^{SOL} (86.1)	4600 _{SOL} (212)	6000 _{SOL} (506)	170	420	920	28	69	160	83000 _{SOL} (86.1)	97000 ^{SOL} (212)	100000	15000	15000	15000	29000	30000	30000

		Human	Health G	eneric A	ssessme	nt Criteria	a (mg/kg)											
Contaminant	Source of GAC	residential without plant uptake (1%SOM)	residential without plant uptake (2.5%SOM)	residential without plant uptake (6%SOM)	residential with plant uptake (1%SOM)	residential with plant uptake (2.5%SOM)	residential with plant uptake (6%SOM)	allotments (1%SOM)	allotments (2.5%SOM)	allotments (6%SOM)	commercial (1%SOM)	commercial (2.5%SOM)	commercial (6%SOM)	POSresi (1%SOM)	POSresi (2.5%SOM)	POSresi (6%SOM)	POSpark (1%SOM)	POSpark (2.5%SOM)	POSpark (6%SOM)
Anthracene	S4UL	31000 _{VAP} (1.17)	35000	37000	2400	5400	11000	380	950	2200	520000	540000	540000	74000	74000	74000	150000	150000	150000
Benz(a)anthracene	S4UL	11	14	15	7.2	11	13	2.9	6.5	13	170	170	180	29	29	29	49	56	62
Benzo(a)pyrene	S4SL	3.2	3.2	3.2	2.2	2.7	3.0	0.97	2.0	3.5	35	35	36	5.7	5.7	5.7	11	12	13
Benzo(b)fluoranthene	S4UL	3.9	4.0	4.0	2.6	3.3	3.7	0.99	2.1	3.9	44	44	45	7.1	7.2	7.2	13	15	16
Benzo(ghi)perylene	S4UL	360	360	360	320	340	350	290	470	640	3900	4000	4000	640	640	640	1400	1500	1600
Benzo(k)fluoranthene	S4UL	110	110	110	77	93	100	37	75	130	1200	1200	1200	190	190	190	370	410	440
Chrysene	S4UL	30	31	32	15	22	27	4.1	9.4	19	350	350	350	57	57	57	93	110	120
Dibenz(ah)anthracen e	S4UL	0.31	0.32	0.32	0.24	0.28	0.3	0.14	0.27	0.43	3.5	3.6	3.6	0.57	0.57	0.58	1.1	1.3	1.4
Fluoranthene	S4UL	1500	1600	1600	280	560	890	52	130	290	23000	23000	23000	3100	3100	3100	6300	6300	6400
Fluorene	S4UL	2800 ^{SOL} (30.9)	3800 _{SOL} (76.5)	4500 _{SOL} (183)	170	400	860	27	67	160	63000 _{SOL} (30.9)	68000	71000	9900	9900	9900	20000	20000	20000
Indeno(123cd)pyrene	S4UL	45	46	46	27	36	41	9.5	21	39	500	510	510	82	82	82	150	170	180
Naphthalene	S4UL	2.3	5.6	13	2.3	5.6	13	4.1	10	24	190 ^{SOL} (76.4)	460 ^{SOL} (183)	1100 ^{SOL} (432)	4900	4900	4900	1200 _{SOL} (76.4)	1900 _{SOL} (183)	3000
Phenanthrene	S4UL	1300 ^{SOL} (36)	1500	1500	95	220	440	15	38	90	22000	22000	23000	3100	3100	3100	6200	6200	6300
Pyrene	S4UL	3700	3800	3800	620	1200	2000	110	270	620	54000	54000	54000	7400	7400	7400	15000	15000	15000
TPH fractions																			
TPH ali EC05-EC06	S4UL	42	78	160	42	78	160	730	1700	3900	3200 ^{SOL} (304)	5900 ^{SOL} (558)	12000 SOL	570000 SOL	590000	600000	95000 SOL	130000 SOL	180000 SOL
											. ,		(1150)	(304)			(304)	(558)	(1150)
TPH ali >EC06-EC08	S4UL	100	230	530	100	230	530	2300	5600	13000	7800 ^{SOL}	17000 ^{SOL} (322)	40000 ^{SOL} (736)	600000	610000	620000	SOL	SOL	SOL
											,		(1.00)				(144)	(322)	(736)
TPH ali >EC08-EC10	S4UL	27	65	150	27	65	150	320	770	1700	2000 ^{SOL} (78)	4800 ^{VAP} (190)	11000 ^{VAP} (451)	13000	13000	13000	14000 ^{SOL} (78)	VAP (190)	VAP (451)

		Human Health Generic Assessment Criteria (mg/kg) 그르글 N르글 에르글 그르글 N르글 에르글 그는 N을 이용 그의 N을 이용 지않 이용 모 N 모 모 N 모 모 N 모 모																	
Contaminant	Source of GAC	residential without plant uptake (1%SOM)	residential without plant uptake (2.5%SOM)	residential without plant uptake (6%SOM)	residential with plant uptake (1%SOM)	residential with plant uptake (2.5%SOM)	residential with plant uptake (6%SOM)	allotments (1%SOM)	allotments (2.5%SOM)	allotments (6%SOM)	commercial (1%SOM)	commercial (2.5%SOM)	commercial (6%SOM)	POSresi (1%SOM)	POSresi (2.5%SOM)	POSresi (6%SOM)	POSpark (1%SOM)	POSpark (2.5%SOM)	POSpark (6%SOM)
TPH ali >EC10-EC12	S4UL	130 ^{VAP} (48)	330 ^{VAP} (118)	770 ^{VAP} (283)	130 ^{VAP} (48)	330 ^{VAP} (118)	760 ^{VAP} (283)	2200	4400	7300	9700 ^{SOL} (48)	23000 ^{VAP} (118)	47000 ^{VAP} (283)	13000	13000	13000	21000 ^{SOL} (48)	23000 _{VAP} (118)	24000 _{VAP} (283)
TPH ali >EC12-EC16	S4UL	1100 ^{SOL} (24)	2400 ^{SOL} (59)	4400 _{SOL} (142)	110 ^{SOL} (24)	2400 ^{SOL} (59)	4300 ^{SOL} (142)	11000	13000	13000	59000 ^{SOL} (24)	82000 ^{SOL} (59)	90000 ^{SOL} (142)	13000	13000	13000	25000 ^{SOL} (24)	25000 ^{SOL} (59)	26000 _{SOL} (142)
TPH ali >EC16-EC35	S4UL	65000 _{SOL} (8.48)	92000 ^{SOL} (21)	110000	65000 ^{SOL} (8.4)	92000 ^{SOL} (21)	110000	260000	270000	270000	1600000	1700000	1800000	250000	250000	250000	450000	480000	490000
TPH ali >EC35-EC44	S4UL	65000 _{SOL} (8.48)	92000 ^{SOL} (21)	110000	65000 _{SOL} (8.48)	92000 ^{SOL} (21)	110000	260000	270000	270000	1600000	1700000	1800000	250000	250000	250000	450000	480000	490000
TPH aro EC05-EC07	S4UL	370	690	1400	70	140	300	13	27	57	26000 _{SOL} (1220)	46000 _{SOL} (2260)	86000 _{SOL} (4710)	56000	56000	56000	76000 _{SOL} (1220)	84000 _{SOL} (2260)	92000 _{SOL} (4710)
TPH aro >EC07- EC08	S4UL	860	1800	3900	130	290	660	22	51	120	56000 ^{VAP} (869)	110000 _{SOL} (1920)	180000 _{VAP} (4360)	56000	56000	56000	87000 _{VAP} (869)	95000 _{SOL} (1920)	100000 _{VAP} (4360)
TPH aro >EC08- EC10	S4UL	47	110	270	34	83	190	8.6	21	51	3500 ^{VAP} (613)	8100 ^{VAP} (1500)	17000 _{VAP} (3580)	5000	5000	5000	7200 _{VAP} (613)	8500 _{VAP} (1500)	9300 _{VAP} (3580)
TPH aro >EC10- EC12	S4UL	250	590	1200	74	180	380	13	31	74	16000 ^{SOL} (364)	28000 ^{SOL} (899)	34000 _{SOL} (2150)	5000	5000	5000	9200 SOL (364)	9700 SOL (899)	10000
TPH aro >EC12- EC16	S4UL	1800	2300 _{SOL} (419)	2500	140	330	660	23	57	130	36000 ^{SOL} (169)	37000	38000	5100	5100	5000	10000	10000	10000
TPH aro >EC16- EC21	S4UL	1900	1900	1900	260	540	930	46	110	260	28000	28000	28000	3800	3800	3800	7600	7700	7800
TPH aro >EC21- EC35	S4UL	1900	1900	1900	1100	1500	1700	370	820	1600	28000	28000	28000	3800	3800	3800	7800	7800	7900
TPH aro >EC35- EC44	S4UL	1900	1900	1900	1100	1500	1700	370	820	1600	28000	28000	28000	3800	3800	3800	7800	7800	7900
TPH >EC44-EC70	S4UL	1900	1900	1900	1600	1800	1900	1200	2100	3000	28000	28000	28000	3800	3800	3800	7800	7800	7900
VOCs - BTEX & MTB	E	I	1	1	1	1	1	1	I		l		I	l			I	1	
Benzene	C4SL			0.87			3.3			0.18			98			140			230

		Human Health Generic Assessment Criteria (mg/kg) 그 말 같 () 말 ? () 말 ?																	
Contaminant	Source of GAC	residential without plant uptake (1%SOM)	residential without plant uptake (2.5%SOM)	residential without plant uptake (6%SOM)	residential with plant uptake (1%SOM)	residential with plant uptake (2.5%SOM)	residential with plant uptake (6%SOM)	allotments (1%SOM)	allotments (2.5%SOM)	allotments (6%SOM)	commercial (1%SOM)	commercial (2.5%SOM)	commercial (6%SOM)	POSresi (1%SOM)	POSresi (2.5%SOM)	POSresi (6%SOM)	POSpark (1%SOM)	POSpark (2.5%SOM)	POSpark (6%SOM)
Toluene	S4UL	880 ^{VAP} (869)	1900	3900	130	290	660	22	51	120	56000 ^{VAP} (869)	110000 _{VAP} (1920)	180000 _{VAP} (4360)	56000	56000	56000	100000 _{VAP} (869)	100000 _{VAP}	100000 _{VAP} (4360)
Ethylbenzene	S4UL	83	190	440	47	110	260	16	39	91	570 ^{VAP} (518)	13000 VAP (1220)	27000 VAP (2840)	24000	24000	25000	17000 VAP (518)	22000 VAP (1220)	27000 _{VAP} (2840)
Xylene, o-	S4UL	88	210	480	60	140	330	28	67	160	6600 ^{VAP} (478)	15000 _{SOL} (1120)	33000 _{SOL}	41000	42000	43000	17000 _{SOL} (478)	24000 _{SOL}	33000 _{SOL}
Xylene, m-	S4UL	82	190	450	59	140	320	31	74	170	6200 ^{VAP} (625)	14000 VAP (1470)	31000 VAP (3460)	41000	42000	43000	17000 VAP (625)	24000 VAP (1470)	32000 VAP (3460)
Xylene, p- (use this for combined m & p)	S4UL	79	180	430	59	130	310	29	69	160	5900 ^{SOL} (576)	14000 _{SOL} (1350)	30000 _{SOL} (3170)	41000	42000	43000	17000 SOL (576)	23000 SOL (2620)	31000 _{SOL} (3170)
VOCs – chlorobenze	enes		1	1	<u>.</u>	1					1	1	ł	1	I			ł	ł
Chlorobenzene	S4UL	0.46	1	2.4	0.46	1	2.4	5.9	14	32	56	130	290	11000	13000	14000	1300 _{SOL} (675)	2000 _{SOL} (1520)	2900
1,2-Dichlorobenzene	S4UL	24	57	130	23	55	130	94	230	540	2000 ^{SOL} (571)	4800 ^{SOL} (1370)	11000 _{SOL} (3240)	90000	95000	98000	24000 _{SOL} (571)	36000 _{SOL}	51000 _{SOL} (3240
1,3-Dichlorobenzene	S4UL	0.44	1.1	2.5	0.4	1	2.3	0.25	0.6	1.5	30	73	170	300	300	300	390	440	470
1,4-Dichlorobenzene	S4UL	61	150	350	61	150	350	15	37	88	4400 ^{VAP} (224)	10000 ^{VAP} (540)	2500 ^{VAP} (1280)	17000	17000	17000	36000 _{VAP} (224)	36000 _{VAP} (540)	36000 _{VAP} (1280)
Hexachlorobenzene	S4UL	4.1 ^{VAP} (0.2)	5.7 ^{VAP} (0.5)	6.7 ^{VAP} (1.2)	1.8 ^{VAP} (0.2)	3.3 ^{VAP} (0.5)	4.9	0.47	1.1	2.5	110 ^{VAP} (0.2)	120	120	16	16	16	30	30	30
Pentachlorobenzene	S4UL	19	30	38	5.8	12	22	1.2	3.1	7	640 ^{SOL} (43)	770 ^{SOL} (107)	830	100	100	100	190	190	190
1,2,3- trichlorobenzene	S4UL	1.5	3.7	8.8	1.5	3.6	8.6	4.7	12	28	102	250	590	1800	1800	1800	770 ^{VAP} (134)	1100 _{VAP} (330)	1600 _{VAP} (789)
1,2,4- trichlorobenzene	S4UL	2.6	6.4	15	2.6	6.4	15	55	140	320	220	530	1300	15000	17000	19000	1700 _{VAP} (318)	2600 _{VAP} (786)	4000 _{VAP} (1880)

		Human	Health G	eneric A	ssessme	nt Criteria	a (mg/kg)											
Contaminant	Source of GAC	residential without plant uptake (1%SOM)	residential without plant uptake (2.5%SOM)	residential without plant uptake (6%SOM)	residential with plant uptake (1%SOM)	residential with plant uptake (2.5%SOM)	residential with plant uptake (6%SOM)	allotments (1%SOM)	allotments (2.5%SOM)	allotments (6%SOM)	commercial (1%SOM)	commercial (2.5%SOM)	commercial (6%SOM)	POSresi (1%SOM)	POSresi (2.5%SOM)	POSresi (6%SOM)	POSpark (1%SOM)	POSpark (2.5%SOM)	POSpark (6%SOM)
1,3,5- trichlorobenzene	S4UL	0.33	0.81	1.9	0.33	0.81	1.9	4.7	12	28	23	55	130	1700	1700	1800	380 ^{VAP} (36.7)	580 ^{VAP} (90.8)	860 ^{VAP} (217)
1,2,3,4- tetrachlorobenzene	S4UL	24	56	120	15	36	78	4.4	11	26	1700 ^{VAP} (122)	3080 ^{VAP} (304)	4400 ^{VAP} (728)	830	830	830	1500 _{VAP} (122)	1600	1600
1,2,3,5- tetrachlorobenzene	S4UL	0.75	1.9	4.3	0.66	1.6	3.7	0.38	0.90	2.2	49 ^{VAP} (39.4)	120 ^{VAP} (98.1)	240 ^{VAP} (235)	78	79	79	110 ^{VAP} (39)	120	130
1,2,4,5- tetrachlorobenzene	S4UL	0.73	1.7	3.5	0.33	0.77	1.6	0.06	0.16	0.37	42 ^{SOL} (19.7)	72 ^{SOL} (49.1)	96	13	13	13	25	26	26
VOCs - chloroalkane	es & alkanes																		
Chloroethene (aka vinyl chloride)	S4UL	0.00077	0.0010	0.0015	0.00064	0.00087	0.0014	0.00055	0.0010	0.0018	0.059	0.077	0.12	3.5	3.5	3.5	4.8	5	5.4
1,2-Dichloroethane	S4UL	0.0092	0.013	0.023	0.0071	0.011	0.019	0.0046	0.0083	0.016	0.67	0.97	1.7	29	29	29	21	24	28
Tetrachloroethene	S4UL	0.18	0.4	0.92	0.18	0.39	0.9	0.65	1.5	3.6	19	42	95	1400	1400	1400	810 ^{SOL} (424)	1100 _{SOL} (951)	1500
1,1,1,2- Tetrachloroethane	S4UL	1.5	3.5	8.2	1.2	2.8	6.4	0.79	1.9	4.4	110	250	560	1400	1400	1400	1500	1800	2100
1,1,2,2- Tetrachloroethane	S4UL	3.9	8	17	1.6	3.4	7.5	0.41	0.89	2.0	270	550	1100	1400	1400	1400	1800	2100	2300
Tetrachloromethane	S4UL	0.026	0.056	0.13	0.026	0.056	0.13	0.45	1	2.4	2.9	6.3	14	890	920	950	190	270	400
Trichloroethene	S4UL	0.017	0.036	0.080	0.016	0.034	0.075	0.041	0.091	0.21	1.2	2.6	5.7	120	120	120	70	91	120
1,1,1-Trichloroethane	S4UL	9	18	40	8.8	18	39	48	110	240	660	1300	3000	140000	140000	140000	57000 _{VAP} (1425)	76000 _{VAP} (2915)	100000 _{VAP} (6392)
Trichloromethane	S4UL	1.2	2.1	4.2	0.91	1.7	3.4	0.42	0.83	1.7	99	170	350	2500	2500	2500	2600	2800	3100
Other phenols & chl	orophenols	-	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	
Chlorophenols	S4UL	0.87	2	4.5	94	150	210	0.13	0.3	0.7	3500	4000	4300	620	620	620	1100	1100	1100
Pentachlorophenol	S4UL	27 ^{VAP} (16.4)	29	31	0.22	0.52	1.2	0.03	0.08	0.19	400	400	400	60	60	60	110	120	120
Pesticides					•														
Aldrin	S4UL	7.3	7.4	7.5	5.7	6.6	7.1	3.2	6.1	9.6	170	170	170	18	18	18	30	31	31

		Human Health Generic Assessment Criteria (mg/kg)																	
Contaminant	Source of GAC	residential without plant uptake (1%SOM)	residential without plant uptake (2.5%SOM)	residential without plant uptake (6%SOM)	residential with plant uptake (1%SOM)	residential with plant uptake (2.5%SOM)	residential with plant uptake (6%SOM)	allotments (1%SOM)	allotments (2.5%SOM)	allotments (6%SOM)	commercial (1%SOM)	commercial (2.5%SOM)	commercial (6%SOM)	POSresi (1%SOM)	POSresi (2.5%SOM)	POSresi (6%SOM)	POSpark (1%SOM)	POSpark (2.5%SOM)	POSpark (6%SOM)
Atrazine	S4UL	610	620	620	3.3	7.6	17.4	0.5	1.2	2.7	9300	9400	9400	1200	1200	1200	2300	2400	2400
Dichlovos	S4UL	6.4	6.5	6.6	0.032	0.066	0.14	0.0049	0.010	0.022	140	140	140	16	16	16	26	26	27
Dieldrin	S4UL	7	7.3	7.4	0.97	2	3.5	0.17	0.41	0.96	170	170	170	18	18	18	30	30	31
Endosulfan - alpha	S4UL	160 ^{VAP} (0.003)	280 ^{VAP} (0.007)	410 ^{VAP} (0.016)	7.4	18	41	1.2	2.9	6.8	5600 ^{VAP} (0.003)	7400 ^{VAP} (0.007)	8400 ^{VAP} (0.016)	1200	1200	1200	2400	2400	2500
Endosulfan - beta	S4UL	190 ^{VAP} (0.0000 7)	320 ^{VAP} (0.0002)	440 ^{VAP} (0.0004)	7	17	39	1.1	2.7	6.4	6300 ^{VAP} (0.0000 7)	7800 ^{VAP} (0.0002)	8700	1200	1200	1200	2400	2400	2500
Hexachlorocyclohexa nes - alpha (inc. Lindane)	S4UL	6.9	9.2	11	0.23	0.55	1.2	0.035	0.087	0.21	170	180	180	24	24	24	47	48	48
Hexachlorocyclohexa nes - beta (inc. Lindane)	S4UL	3.7	3.8	3.8	0.085	0.2	0.46	0.013	0.032	0.077	65	65	65	8.1	8.1	8.1	15	15	16
Hexachlorocyclohexa nes - gamma (inc. Lindane)	S4UL	2.9	3.3	3.5	0.06	0.14	0.33	0.0092	0.023	0.054	67	69	70	8.2	8.2	8.2	14	15	15
Explosives																			
нмх	S4UL	6700	6700	6700	5.7	13	26	0.86	1.9	3.9	110000	110000	110000	13000	13000	13000	23000 VAP	23000 VAP	24000 VAP
RDX	S4UL	13000	13000	13000	120	250	540	17	38	85	210000	210000	210000	26000	26000	27000	(0.33) 49000 _{SOL} (18.7)	51000	53000
2,4,6-Trinitrotoluene	S4UL	65	66	66	1.6	3.7	8.1	0.24	0.58	1.4	1000	1000	1000	130	130	130	260	270	270
Other organics		-																	
Carbon disulphide	S4UL	0.14	0.29	0.62	0.14	0.29	0.62	4.8	10	23	11	22	47	11000	11000	12000	1300	1900	2700
Hexachloro-1,3- butadiene	S4UL	0.29	0.7	1.6	0.32	0.78	1.8	0.25	0.61	1.4	31	66	120	25	25	25	48	50	51

VAP SOL DIR

S4UL exceeds vapour saturation limit (presented in brackets) S4UL exceeds solubility saturation limit (presented in brackets) S4UL based on threshold protective of direct skin contact (value in brackets based on health effects of long term exposure)