Structural Calculation Itd

Site Address

Structural Engineer Checking Engineer

Brook House, Cockshutt, Ellesmere SY12 0JR

Eng Alessia Masini, PhD

Jason Pritchard BEng

Description of Works

JP1524 Structural steelwork details relating to proposed house remodelling.

Standards

BS 5268:part 2: 1996 Structural use of timber
BS 6399 part 2-1995 Wind loads
BS 5950 part 1 - 2000 Structural use of steelwork in building
BS 8110 part 1-1997 Structural use of concrete
BS 5628 part 1-1992 Code of practice for use of masonry
BS 6399 part 1-1996 Loading for buildings: dead and imposed
BS 6399 part 3-1988 Loading for buildings: imposed roof load
Wind loads

Notes

The contractor is responsible for all temporary works involved with the project. Advice may be requested from the engineer, but additional fees may be involved for further designs.

Any and all structural steelwork is now required by law to be CE Marked and must be supplied by an execution class 2 capable fabricator with an externally assessed and approved FPC.

Only the work requested and as contained within this report has been undertaken, no checks on other observations or information gained either on site or from the drawing have been made. Further checks can be carried out but again additional fees may be involved.

In the absence of detailed ground condition information the foundations are assumed satisfactory for ground bearing. This must be verified on site and agreed with L.A. Officer. Further consideration to detail may have to be undertaken at a design stage however written instruction will be required and additional fees may be involved.

These drawings are not architectural and are provided only to indicate the position of the calculated structural elements. Further advice should be sort from a suitably qualified architect to ensure compliance with current building regulations and best practices.

If something is missing from the report or an item is left unresolved or unclear please contact the engineer for clarification prior to carrying out the work.

Structural Calculation Itd

Mobbs Wood Farm,
Coventry, CV7 9JN

Start of supporting Calculations

General Imposed Load Values	extracts from BS6399 Part 1	
	UDL	Point
Domestic and residential		1.5
Offices	2.5	1.4
Factories workshops etc.	5	4.7
Roof super imposed		0.6

General Dead Load Values	
Timber Joist suspended floor	
Timber Joist with ceiling underneath	0.5
Concrete slab 150mm thick	0.7
Concrete slab 200mm thick	3.7
Mezzanine floor joists + boards	4.8
Ceiling only	0.4
Ceiling plus loft storage	0.2
5mm thick steel sheet	1.3

General Dead Load Values	
Stud wall plasterboard	$\mathrm{kN} / \mathrm{m} 3$
Brick/block solid	
Brick/block solid + finishes	19.6
Brick/block 2 skin + sml cavity + finishes	18.4
Brick/block 2 skin + 100mm cavity +	16.6
finishes	13.1
Lght weight block solid	7.9
Lght weight block inner Brick outer +	10.2

General Roof Load Values				
	Concrete			
Roof Tiles		0.69	Slate	0.39
Roof Battens \& Felt		0.05		
Roof Rafters		0.09		
Roof Insulation	0.10			
Roof Plasterboard lining		0.05		
Roof Services	0.10			
Roof and Ceiling Superimposed Load		0.60		
Roof Snow load	0.50			

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section				Sheet no./rev 1	
	Calcs by AM	$\begin{aligned} & \text { date } \\ & 10 / 01 / 2020 \end{aligned}$	Chk'd by JP	date 10/01/2020	App'd by JP	$\begin{aligned} & \text { date } \\ & 10 / 01 / 2020 \end{aligned}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section			Bearing Beam B1	Sheet no./rev	
	Calcs by AM	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { date } \\ 10 / 01 / 2020 \end{array}$	Chk'd by JP	$\begin{array}{\|l} \mid \text { date } \\ 10 / 01 / 2020 \end{array}$	App'd by JP	$\begin{array}{\|l} \text { date } \\ \text { 10/01/2020 } \end{array}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section				Sheet no.rev	
	Calcs by AM	$\begin{aligned} & \text { date } \\ & \text { 10/01/2020 } \end{aligned}$	Chk'd by JP	$\begin{aligned} \hline \text { date } \\ 10 / 01 / 2020 \end{aligned}$	App'd by JP	$\begin{aligned} & \hline \text { date } \\ & \quad 10 / 01 / 2020 \end{aligned}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook Hous				Job no. JP1524	
					Sheet no./rev5	
	Calcs by AM	$\begin{aligned} & \text { date } \\ & \text { 10/01/2020 } \end{aligned}$	Chk'd by JP	date 10/01/2020	App'd by JP	$\begin{array}{\|l} \text { date } \\ 10 / 01 / 2020 \end{array}$

Beam End Reaction =	6.88	kN (factored)	Variable Load Safety Factor $=1.6$ Permanent Load Safety Factor $=1.4$	
Masonry				
Masonry type =	Weak Brickwork			
Characteristic strength of masonry =	2.8	$\mathrm{N} / \mathrm{mm}^{2}$		
Width of beam end bearing =	88.7	mm	Bearing factor $=$	1.25
Length of beam end bearing =	100	mm	$\mathrm{ym}=$	3.00
Stress				
Maximum Bearing Stress =	1.17	$\mathrm{N} / \mathrm{mm}^{2}$		
Actual Bearing Stress =	0.78	$\mathrm{N} / \mathrm{mm}^{2}$		
Capacity	66\%		Padstone Not Required	

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Beam B3				Sheet no./rev	
	Calcs by AM	$\begin{array}{\|l} \text { date } \\ \text { 10/01/2020 } \end{array}$	Chk'd by JP	date 10/01/2020	App'd by JP	date 10/01/2020

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook Hous				Job no. JP1524	
					Sheet no./rev	
	Calcs by AM	date 10/01/2020	Chk'd by JP	date 10/01/2020	App'd by JP	date 10/01/2020

Beam End Reaction =	17.69	kN (factored)	Variable Load Safety Factor $=1.6$ Permanent Load Safety Factor $=1.4$	
Masonry				
Masonry type =	Weak Brickwork			
Characteristic strength of masonry =	2.8	$\mathrm{N} / \mathrm{mm}^{2}$		
Width of beam end bearing =	154.4	mm	Bearing factor $=$	1.25
Length of beam end bearing =	100	mm	$\mathrm{ym}=$	3.00
Stress				
Maximum Bearing Stress $=$	1.17	$\mathrm{N} / \mathrm{mm}^{2}$		
Actual Bearing Stress $=$	1.15	$\mathrm{N} / \mathrm{mm}^{2}$		
Capacity	98\%		Padstone Not Required	

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook Hous				Job no. JP1524	
					Sheet no./rev	
	Calcs by AM	$\begin{aligned} & \text { date } \\ & 10 / 01 / 2020 \end{aligned}$	Chk'd by JP	date 10/01/2020	App'd by JP	$\begin{array}{\|l} \text { date } \\ 10 / 01 / 2020 \end{array}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section			Bearing Beam B4	Sheet no./rev	
	Calcs by AM	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { date } \\ 10 / 01 / 2020 \end{array}$	Chk'd by JP	$\begin{array}{\|l\|} \mid \text { date } \\ 10 / 01 / 2020 \end{array}$	App'd by JP	$\begin{array}{\|l\|} \text { date } \\ 10 / 01 / 2020 \end{array}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section		Beam B5		Sheet no./rev	
	Calcs by AM	$\begin{aligned} & \hline \text { date } \\ & \text { 10/01/2020 } \end{aligned}$	Chk'd by JP	date $10 / 01 / 2020$	App'd by JP	$\begin{aligned} \hline \text { date } \\ 10 / 01 / 2020 \end{aligned}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook Hous				Job no. JP1524	
	Bearing Beam B5				Sheet no./rev 12	
	Calcs by AM	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { date } \\ \text { 10/01/2020 } \end{array}$	Chk'd by JP	$\begin{array}{\|l\|} \hline \text { date } \\ 10 / 01 / 2020 \end{array}$	App'd by JP	$\begin{aligned} & \text { date } \\ & \text { 10/01/2020 } \end{aligned}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section Bearing Beam B6				Sheet no./rev 14	
	Calcs by AM	$\begin{array}{\|l\|} \hline \text { date } \\ 10 / 01 / 2020 \end{array}$	Chk'd by JP	date 10/01/2020	App'd by JP	$\begin{array}{\|l} \mid \text { date } \\ 10 / 01 / 2020 \end{array}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section		Beam B7		Sheet no./rev 15	
	Calcs by AM	$\begin{array}{\|l\|} \hline \text { date } \\ 10 / 01 / 2020 \end{array}$	Chk'd by JP	$\begin{aligned} \hline \text { date } \\ 10 / 01 / 2020 \end{aligned}$	App'd by JP	$\begin{aligned} & \hline \text { date } \\ & \quad 10 / 01 / 2020 \end{aligned}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section			Bearing Beam B7	Sheet no./rev	
	Calcs by AM	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { date } \\ 10 / 01 / 2020 \end{array}$	Chk'd by JP	$\begin{array}{\|l} \mid \text { date } \\ 10 / 01 / 2020 \end{array}$	App'd by JP	$\begin{array}{\|l} \text { date } \\ \text { 10/01/2020 } \end{array}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section				Sheet no./rev	
	Calcs by AM	$\begin{aligned} & \hline \text { date } \\ & \text { 10/01/2020 } \end{aligned}$	Chk'd by JP	date $10 / 01 / 2020$	App'd by JP	$\begin{aligned} \hline \text { date } \\ 10 / 01 / 2020 \end{aligned}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section Bearing Beam B8				Sheet no./rev 18	
	Calcs by AM	$\begin{array}{\|l\|} \hline \text { date } \\ 10 / 01 / 2020 \end{array}$	Chk'd by JP	date 10/01/2020	App'd by JP	$\begin{array}{\|l} \mid \text { date } \\ 10 / 01 / 2020 \end{array}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no.	
	Brook House				JP1524	
	Section				Sheet no./rev	
	Calcs by	date	Chk'd by	date	App'd by	date
	AM	10/01/2020	JP	10/01/2020	JP	10/01/2020

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook Hour				Job no. JP1524	
	Beam B10_External				20	
	Calcs by AM	$\begin{aligned} & \text { date } \\ & 10 / 01 / 2020 \end{aligned}$	Chk'd by JP	date 10/01/2020	App'd by JP	$\begin{aligned} & \text { date } \\ & 10 / 01 / 2020 \end{aligned}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section Beam B5_internal				Sheet no./rev21	
	Calcs by AM	$\begin{aligned} & \text { date } \\ & 10 / 01 / 2020 \end{aligned}$	Chk'd by JP	$\begin{array}{r} \text { date } \\ 10 / 01 / 2020 \end{array}$	App'd by JP	$\begin{aligned} & \text { date } \\ & 10 / 01 / 2020 \end{aligned}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section				Sheet no.rev	
	Calcs by AM	$\begin{aligned} & \text { date } \\ & \text { 10/01/2020 } \end{aligned}$	Chk'd by JP	$\begin{aligned} \hline \text { date } \\ 10 / 01 / 2020 \end{aligned}$	App'd by JP	$\begin{aligned} & \hline \text { date } \\ & \quad 10 / 01 / 2020 \end{aligned}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook Hous				Job no. JP1524	
	Section Bearing Beam B11				Sheet no./rev23	
	Calcs by AM	date 10/01/2020	Chk'd by JP	date 10/01/2020	App'd by JP	$\begin{array}{\|l} \text { date } \\ 10 / 01 / 2020 \end{array}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section				Sheet no./rev	
	Calcs by AM	$\begin{array}{\|l\|} \hline \text { date } \\ 10 / 01 / 2020 \end{array}$	Chk'd by JP	date $10 / 01 / 2020$	$\begin{array}{r} \text { App'd by } \\ \text { JP } \end{array}$	$\begin{aligned} & \hline \text { date } \\ & 10 / 01 / 2020 \end{aligned}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section			Bearing Beam B12	Sheet no./rev 25	
	Calcs by AM	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { date } \\ 10 / 01 / 2020 \end{array}$	Chk'd by JP	$\begin{array}{\|l} \mid \text { date } \\ 10 / 01 / 2020 \end{array}$	App'd by JP	$\begin{array}{\|l} \text { date } \\ \text { 10/01/2020 } \end{array}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section				Sheet no.rev	
	Calcs by AM	$\begin{aligned} & \hline \text { date } \\ & \text { 10/01/2020 } \end{aligned}$	Chk'd by JP	$\begin{aligned} \hline \text { date } \\ 10 / 01 / 2020 \end{aligned}$	App'd by JP	$\begin{aligned} & \hline \text { date } \\ & \quad 10 / 01 / 2020 \end{aligned}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook Hous				Job no. JP1524	
	Section Bearing Beam B13				Sheet no./rev27	
	Calcs by AM	date 10/01/2020	Chk'd by JP	date 10/01/2020	App'd by JP	date 10/01/2020

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no. SP1524 1524	
	Calcs for Portal Frame					
	Calcs by AM	Calcs date 10/01/2020	Checked by JP	Checked date 10/01/2020	Approved by JP	Approved date 10/01/2020

STEEL MEMBER ANALYSIS \& DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Tedds calculation version 4.3.04

ANALYSIS

Tedds calculation version 1.0.27

Geometry

Loading

Self weight included

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no. JP1524 Start page no./Revision 29	
	Calcs for Portal Frame					
	Calcs by AM	$\begin{array}{\|l} \hline \text { Calcs date } \\ 10 / 01 / 2020 \end{array}$	Checked by JP	$\begin{array}{\|l\|} \hline \text { Checked date } \\ 10 / 01 / 2020 \end{array}$	Approved by JP	$\begin{gathered} \hline \text { Approved date } \\ 10 / 01 / 2020 \end{gathered}$

Imposed - Loading (kN)

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no. JP1524 Start page no./Revision 30	
	Calcs for Portal Frame					
	Calcs by AM	$\begin{aligned} & \text { Calcs date } \\ & 10 / 01 / 2020 \end{aligned}$	Checked by JP	$\begin{aligned} & \text { Checked date } \\ & \text { 10/01/2020 } \end{aligned}$	Approved by JP	$\begin{array}{\|c\|} \hline \text { Approved date } \\ \hline 10 / 01 / 2020 \end{array}$

Results

Forces

Strength combinations - Moment envelope (kNm)

Strength combinations - Shear envelope (kN)

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no. JP1524 Start page no./Revision 31	
	Calcs for Portal Frame					
	Calcs by AM	$\begin{aligned} & \text { Calcs date } \\ & 10 / 01 / 2020 \end{aligned}$	Checked by JP	$\begin{array}{\|l\|} \hline \text { Checked date } \\ 10 / 01 / 2020 \end{array}$	Approved by JP	$\begin{gathered} \hline \text { Approved date } \\ 10 / 01 / 2020 \end{gathered}$

Service combinations - Deflection envelope (mm)

Partial factors - Section 6.1

Resistance of cross-sections
Resistance of members to instability
Resistance of tensile members to fracture

Column design

Section details

Section type
Steel grade - EN 10025-2:2004
Nominal thickness of element
Nominal yield strength
Nominal ultimate tensile strength
Modulus of elasticity
γ мо $=\mathbf{1}$
$\gamma_{\mathrm{M} 1}=1$
γ м $2=1.1$

UB $152 \times 89 \times 16$ (BS4-1)
S275
$\mathrm{t}_{\mathrm{nom}}=\max \left(\mathrm{t}_{\mathrm{f}, \mathrm{t}} \mathrm{t}\right)=7.7 \mathrm{~mm}$
$\mathrm{f}_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{u}}=410 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}=\mathbf{2 1 0 0 0 0} \mathrm{N} / \mathrm{mm}^{2}$

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no.JP1524	
	Calcs for Portal Frame				Start page no./Revision 32	
	Calcs by AM	$\begin{aligned} & \text { Calcs date } \\ & 10 / 01 / 2020 \end{aligned}$	Checked by JP	$\begin{aligned} & \hline \text { Checked date } \\ & 10 / 01 / 2020 \end{aligned}$	Approved by JP	$\begin{array}{\|c\|} \hline \text { Approved date } \\ \hline 10 / 01 / 2020 \\ \hline \end{array}$

Lateral restraint

Both flanges have lateral restraint at supports only
Consider Combination 1-1.35G+1.5Q +1.5RQ (Strength)
Classification of cross sections - Section 5.5

$$
\varepsilon=\sqrt{ }\left[235 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{fy}\right]=0.92
$$

Internal compression parts subject to bending and compression - Table 5.2 (sheet 1 of 3)
Width of section
$\mathrm{c}=\mathrm{d}=121.8 \mathrm{~mm}$
$\alpha=\min \left(\left[h / 2+N_{\mathrm{Ed}} /\left(2 \times \mathrm{t}_{\mathrm{w}} \times \mathrm{ff}_{\mathrm{y}}\right)-\left(\mathrm{t}_{\mathrm{f}}+\mathrm{r}\right)\right] / \mathrm{c}, 1\right)=\mathbf{0 . 5 2 2}$
$c / t_{w}=27.1=29.3 \times \varepsilon<=396 \times \varepsilon /(13 \times \alpha-1) \quad$ Class 1

Outstand flanges - Table 5.2 (sheet 2 of 3)

Width of section

$$
c=\left(b-t_{w}-2 \times r\right) / 2=34.5 \mathrm{~mm}
$$

c $/ \mathrm{t}_{\mathrm{f}}=4.5=4.8 \times \varepsilon<=9 \times \varepsilon$
Class 1
Section is class 1
Check compression - Section 6.2.4
Design compression force
$N_{E d}=6.6 \mathrm{kN}$
Design resistance of section - eq 6.10
$\mathrm{N}_{\mathrm{c}, \mathrm{Rd}}=\mathrm{N}_{\mathrm{pl}, \mathrm{Rd}}=\mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma \mathrm{m} 0=558.8 \mathrm{kN}$
$N_{\mathrm{Ed}} / \mathrm{N}_{\mathrm{c}, \mathrm{Rd}}=\mathbf{0 . 0 1 2}$
PASS - Design compression resistance exceeds design compression
Slenderness ratio for y - y axis flexural buckling - Section 6.3.1.3
Critical buckling length
$L_{\text {cr, }, ~}=L_{m 1 _s 1}=\mathbf{2 8 0 0} \mathbf{m m}$
Critical buckling force
Slenderness ratio for buckling - eq 6.50
$\mathrm{N}_{\mathrm{cr}, \mathrm{y}}=\pi^{2} \times \mathrm{E} \times \mathrm{I}_{\mathrm{y}} / \mathrm{L}_{\mathrm{cr}, \mathrm{y}^{2}}=2205.5 \mathrm{kN}$
$\bar{\lambda}_{y}=\sqrt{ }\left(\mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \mathrm{Nc}_{\mathrm{cr}, \mathrm{y}}\right)=\mathbf{0 . 5 0 3}$
Check y-y axis flexural buckling resistance - Section 6.3.1.1

Buckling curve - Table 6.2
Imperfection factor - Table 6.1
Buckling reduction determination factor
Buckling reduction factor - eq 6.49
Design buckling resistance - eq 6.47
a
$\alpha_{y}=0.21$
$\phi y=0.5 \times\left(1+\alpha_{y} \times\left(\bar{\lambda}_{y}-0.2\right)+\bar{\lambda}_{y}{ }^{2}\right)=\mathbf{0 . 6 5 9}$
$\chi_{y}=\min \left(1 /\left(\phi_{y}+\sqrt{ }\left(\phi y^{2}-\bar{\lambda}_{y}{ }^{2}\right)\right), 1\right)=0.923$
$\mathrm{N}_{\mathrm{b}, \mathrm{y}, \mathrm{Rd}}=\chi_{\mathrm{y}} \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{m} 1}=515.9 \mathrm{kN}$
$\mathrm{NEd}_{\mathrm{Ed}} / \mathrm{N}_{\mathrm{b}, \mathrm{y}, \mathrm{Rd}}=0.013$

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no. JP1524	
	Calcs for Portal Frame				Start page no./Revision 33	
	Calcs by AM	$\begin{aligned} & \text { Calcs date } \\ & 10 / 01 / 2020 \end{aligned}$	Checked by JP	$\begin{aligned} & \text { Checked date } \\ & 10 / 01 / 2020 \end{aligned}$	Approved by JP	$\begin{aligned} & \hline \text { Approved date } \\ & 10 / 01 / 2020 \end{aligned}$

PASS - Design buckling resistance exceeds design compression
Slenderness ratio for $\mathbf{z - z}$ axis flexural buckling - Section 6.3.1.3

Critical buckling length	$L_{c r, z}=L_{m 1 _s 1 _ \text {seg } 1}=\mathbf{2 8 0 0} \mathbf{m m}$
Critical buckling force	$N_{c r, z}=\pi^{2} \times E \times I_{z} / L_{c r, z^{2}}=\mathbf{2 3 7 . 3} \mathrm{kN}$
Slenderness ratio for buckling - eq 6.50	$\bar{\lambda}_{z}=\sqrt{ }\left(A \times f_{y} / N_{c r, z}\right)=\mathbf{1 . 5 3 5}$

Check z-z axis flexural buckling resistance - Section 6.3.1.1

Buckling curve - Table 6.2
Imperfection factor - Table 6.1
Buckling reduction determination factor
Buckling reduction factor - eq 6.49
Design buckling resistance - eq 6.47
b
$\alpha_{z}=0.34$
$\phi_{z}=0.5 \times\left(1+\alpha_{z} \times\left(\bar{\lambda}_{z}-0.2\right)+\bar{\lambda}_{z}{ }^{2}\right)=1.904$
$\chi_{z}=\min \left(1 /\left(\phi z+\sqrt{ }\left(\phi_{z}{ }^{2}-\bar{\lambda}_{z}{ }^{2}\right)\right), 1\right)=0.33$
$N_{\mathrm{b}, \mathrm{z}, \mathrm{Rd}}=\chi z \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{M} 1}=184.3 \mathrm{kN}$
$\mathrm{N}_{\mathrm{Ed}} / \mathrm{N}_{\mathrm{b}, \mathrm{z}, \mathrm{Rd}}=0.036$
PASS - Design buckling resistance exceeds design compression
Check torsional and torsional-flexural buckling - Section 6.3.1.4
Torsional buckling length
Distance from shear centre to centroid in y axis
Distance from shear centre to centroid in z axis
Radius of gyration
Elastic critical torsional buckling force
Torsion factor
Elastic critical torsional-flexural buckling force
$L_{\text {cr, }, T}=L_{m 1 _ \text {_s1_seg1_R }}=\mathbf{2 8 0 0} \mathbf{m m}$
$\mathrm{y}_{0}=\mathbf{0 . 0} \mathrm{mm}$
$\mathrm{z}_{0}=\mathbf{0 . 0} \mathrm{mm}$
$\mathrm{i}_{0}=\sqrt{ }\left(\mathrm{iy}^{2}+\mathrm{i}_{\mathrm{z}}{ }^{2}\right)=\mathbf{6 7 . 4} \mathrm{mm}$
$\mathrm{N}_{\mathrm{cr}, \mathrm{T}}=1 / \mathrm{i}^{2} \times\left(\mathrm{G} \times \mathrm{It}_{\mathrm{t}}+\pi^{2} \times \mathrm{E} \times \mathrm{I}_{\mathrm{w}} /{\mathrm{Lcr}, \mathrm{T}^{2}}^{2}\right)=905.6 \mathrm{kN}$
$\beta \tau=1-(\mathrm{yo} / \mathrm{io})^{2}=1$

$$
N_{c r, T F}=N_{c r, y} /(2 \times \beta T) \times\left[1+N_{c r, T} / N_{c r, y}-\sqrt{ }\left[\left(1-N_{c r, T} / N_{c r, y}\right)^{2}+4 \times\left(y_{0} / \text { io }\right)^{2} \times N_{c r, T} / N_{c r, y}\right]\right]=\mathbf{9 0 5 . 6} \mathrm{kN}
$$

Elastic critical buckling force $\quad \mathrm{N}_{\mathrm{cr}}=\min \left(\mathrm{N}_{\mathrm{cr}, \mathrm{T},} \mathrm{N}_{\mathrm{cr}, \mathrm{TF}}\right)=905.6 \mathrm{kN}$
Slenderness ratio for torsional buckling - eq $6.52 \quad \bar{\lambda}_{T}=\sqrt{ }\left[\mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \mathrm{N}_{\mathrm{cr}]}\right]=\mathbf{0 . 7 8 6}$
Design resistance for torsional and torsional-flexural buckling-Section 6.3.1.1

Buckling curve - Table 6.2
Imperfection factor - Table 6.1
Buckling reduction determination factor
Buckling reduction factor - eq 6.49
Design buckling resistance - eq 6.47

Check design at start of span

Check shear - Section 6.2.6
Height of web

Design shear force
Shear area - cl 6.2.6(3)
Design shear resistance - cl 6.2.6(2)
b
$\alpha \mathrm{T}=0.34$
$\phi T=0.5 \times\left(1+\alpha T \times\left(\bar{\lambda}_{T}-0.2\right)+\bar{\lambda}^{2}{ }^{2}\right)=0.908$
$\chi^{\top}=\min \left(1 /\left(\phi T+\sqrt{ }\left(\phi T^{2}-\bar{\lambda} T^{2}\right)\right), 1\right)=\mathbf{0 . 7 3 3}$
$\mathrm{N}_{\mathrm{b}, \mathrm{T}, \mathrm{Rd}}=\chi \mathrm{T} \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{M} 1}=409.8 \mathrm{kN}$
$\mathrm{N}_{\mathrm{Ed}} / \mathrm{N}_{\mathrm{b}, \mathrm{T}, \mathrm{Rd}}=0.016$
PASS - Design buckling resistance exceeds design compression
$h_{w}=h-2 \times \mathrm{t}_{\mathrm{f}}=137 \mathrm{~mm} \quad \eta=1.000$
$h_{w} / t_{w}=30.4=32.9 \times \varepsilon / \eta<72 \times \varepsilon / \eta$
Shear buckling resistance can be ignored
$V_{y, E d}=1.7 \mathrm{kN}$
$A_{v}=\max \left(A-2 \times b \times t_{f}+\left(t_{w}+2 \times r\right) \times t_{f}, \eta \times h_{w} \times t_{w}\right)=818 \mathrm{~mm}^{2}$
$V_{c, y, R d}=V_{p l, y, R d}=A_{v} \times\left(f_{y} / \sqrt{ }(3)\right) / \gamma \mathrm{mo}=129.8 \mathrm{kN}$
$V_{\mathrm{y}, \mathrm{Ed}} / \mathrm{V}_{\mathrm{c}, \mathrm{y}, \mathrm{Rd}}=\mathbf{0 . 0 1 3}$
PASS - Design shear resistance exceeds design shear force

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no. JP1524 Start page no./Revision 34	
	Calcs by AM	$\begin{aligned} & \text { Calcs date } \\ & 10 / 01 / 2020 \end{aligned}$	Checked by JP	$\begin{aligned} & \text { Checked date } \\ & 10 / 01 / 2020 \end{aligned}$	Approved by JP	$\begin{array}{\|l\|} \hline \text { Approved date } \\ \hline 10 / 01 / 2020 \end{array}$

Check shear - Section 6.2.6	
Height of web	$\mathrm{h}_{\mathrm{w}}=\mathrm{h}-2 \times \mathrm{t}_{\mathrm{f}}=137 \mathrm{~mm} \quad \eta=1.000$
	$h_{w} / \mathrm{t}_{\mathrm{w}}=30.4=32.9 \times \varepsilon / \eta<72 \times \varepsilon / \eta$
	Shear buckling resistance can be ignored
Design shear force	$\mathrm{V}_{\mathrm{y}, \mathrm{Ed}}=1.7 \mathrm{kN}$
Shear area-cl 6.2.6(3)	$A_{v}=\max \left(\mathrm{A}-2 \times \mathrm{b} \times \mathrm{tf}^{+}\left(\mathrm{t}_{\mathrm{w}}+2 \times \mathrm{r}\right) \times \mathrm{tf}, \eta \times \mathrm{h}_{w} \times \mathrm{tw}_{\mathrm{w}}\right)=818 \mathrm{~mm}^{2}$
Design shear resistance - cl 6.2.6(2)	$V_{c, y, R d}=V_{p l, y, R d}=A_{v} \times\left(\mathrm{fy}_{\mathrm{y}} / \sqrt{ }(3)\right) / \gamma \mathrm{mo}=129.8 \mathrm{kN}$
	$\mathrm{V}_{\mathrm{y}, \mathrm{Ed}} / \mathrm{V}_{\mathrm{c}, \mathrm{y}, \mathrm{Rd}}=0.013$
	PASS - Design shear resistance exceeds design shear force
Check bending moment - Section 6.2.5	
Design bending moment	$\mathrm{M}_{\mathrm{y}, \mathrm{Ed}}=4.9 \mathrm{kNm}$
Design bending resistance moment - eq 6.13	$M_{c, y, R d}=M_{\text {pl, y, Rd }}=W_{\text {pl. }} \times \mathrm{fyy} / \gamma \mathrm{mo}=33.9 \mathrm{kNm}$
	$M_{y, E d} / M_{c, y, R d}=0.143$
PASS - Design bending resistance moment exceeds design bending moment	
Slenderness ratio for lateral torsional buckling	
Correction factor - For cantilever beams	$\mathrm{k}_{\mathrm{c}}=1$
	$\mathrm{C}_{1}=1 / \mathrm{kc}^{2}=1$
Poissons ratio	$v=0.3$
Shear modulus	$\mathrm{G}=\mathrm{E} /\left[2 \times(1+\mathrm{v}) \mathrm{l}=80769 \mathrm{~N} / \mathrm{mm}^{2}\right.$
Unrestrained effective length	$\mathrm{L}=1.0 \times$ Lm1_s1_seg1_b $=\mathbf{2 8 0 0} \mathbf{~ m m}$
Elastic critical buckling moment	$M_{c r}=C_{1} \times \pi^{2} \times E \times I_{z} / L^{2} \times \sqrt{ }\left(I_{w} / I_{z}+L^{2} \times G \times I_{t} /\left(\pi^{2} \times E \times I_{z}\right)\right)=\mathbf{3 1 . 3}$ kNm
Slenderness ratio for lateral torsional buckling	$\bar{\lambda}_{L T T}=\sqrt{ }\left(W_{\text {pl.y }} \times \mathrm{f}_{\mathrm{y}} / \mathrm{M}_{\text {cr }}\right)=1.041$
Limiting slenderness ratio	$\bar{\lambda}_{L T, 0}=\mathbf{0 . 4}$
	$\bar{\lambda}_{L T}>\bar{\lambda}_{L T, 0-L a t e r a l ~ t o r s i o n a l ~ b u c k l i n g ~ c a n n o t ~ b e ~ i g n o r e d ~}^{\text {d }}$
Check buckling resistance - Section 6.3.2.1	
Buckling curve - Table 6.5	b
Imperfection factor - Table 6.3	$\alpha L T=0.34$
Correction factor for rolled sections	$\beta=0.75$
LTB reduction determination factor	$\phi L T=0.5 \times\left[1+\alpha L T \times\left(\bar{\lambda}_{L T}-\bar{\lambda}_{L T, 0}\right)+\beta \times \bar{\lambda}_{L T}{ }^{2}\right]=1.016$
LTB reduction factor - eq 6.57	$\chi L T=\min \left(1 /\left[\phi L T+\sqrt{ }\left(\phi L T^{2}-\beta \times \bar{\lambda} L T^{2}\right)\right], 1,1 / \bar{\lambda} L T^{2}\right)=0.674$
Modification factor	$\mathrm{f}=\min \left(1-0.5 \times\left(1-\mathrm{k}_{\mathrm{c}}\right) \times\left[1-2 \times\left(\bar{\lambda}_{\text {LT }}-0.8\right)^{2}\right], 1\right)=1.000$
Modified LTB reduction factor - eq 6.58	$\chi\left\llcorner T, \bmod =\min \left(\chi\left\llcorner T / f, 1,1 / \bar{\lambda}_{L L^{2}}\right)=0.674\right.\right.$
Design buckling resistance moment-eq 6.55	$\mathrm{M}_{\mathrm{b}, \mathrm{y}, \mathrm{Rd}}=\chi \mathrm{LT}, \bmod \times \mathrm{W}_{\text {pl. }} \times \mathrm{ffy} / \gamma_{\mathrm{M} 1}=\mathbf{2 2 . 9} \mathbf{~ k N m}$
	$M_{y, E d} / M_{\text {b,y,Rd }}=0.212$

PASS - Design buckling resistance moment exceeds design bending moment
Check bending and axial force - Section 6.2.9
Bending and axial force check-eq.6.33 \& eq.6.34 $N_{y, l i m}=\min \left(0.25 \times N_{p l, R d}, 0.5 \times h_{w} \times t_{w} \times f_{y} / \gamma\right.$ мо $)=84.8 \mathrm{kN}$ $N_{\mathrm{Ed}} / \mathrm{N}_{\mathrm{y}, \mathrm{lim}}=\mathbf{0 . 0 7 1}$
Allowance need not be made for the effect of the axial force on the plastic resistance moment about the y - y axis
Check combined bending and compression - Section 6.3.3
Equivalent uniform moment factors - Table B. 3

$$
\begin{aligned}
& \psi_{y}=0 \mathrm{kNm} /-4.856 \mathrm{kNm}=\mathbf{0 . 0 0 0} \\
& \alpha_{y}=-2.428 \mathrm{kNm} /-4.856 \mathrm{kNm}=\mathbf{0 . 5 0 0}
\end{aligned}
$$

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no. JP1524 Start page no./Revision 35	
	Calcs for Portal Frame					
	Calcs by AM	$\begin{aligned} & \text { Calcs date } \\ & 10 / 01 / 2020 \end{aligned}$	Checked by JP	$\begin{array}{\|l\|} \hline \text { Checked date } \\ \text { 10/01/2020 } \end{array}$	Approved by JP	$\begin{aligned} & \text { Approved date } \\ & 10 / 01 / 2020 \end{aligned}$

$\mathrm{C}_{\text {my }}=\max (0.6+0.4 \times \psi y)=\mathbf{0 . 6 0 0}$
$\psi\llcorner\tau=0 \mathrm{kNm} /-4.856 \mathrm{kNm}=\mathbf{0 . 0 0 0}$
α LT $=-2.428 \mathrm{kNm} /-4.856 \mathrm{kNm}=\mathbf{0 . 5 0 0}$
$C_{\text {mLt }}=\max (0.6+0.4 \times \psi L T)=\mathbf{0 . 6 0 0}$
Interaction factors $\mathbf{k}_{\mathbf{i j}}$ for members susceptible to torsional deformations - Table B. 2

Characteristic moment resistance
Characteristic moment resistance
Characteristic resistance to normal force Interaction factors

Interaction formulae - eq 6.61 \& eq 6.62
$\mathrm{M}_{\mathrm{y}, \mathrm{Rk}}=\mathrm{W}_{\mathrm{pl.y}} \times \mathrm{f}_{\mathrm{y}}=33.9 \mathrm{kNm}$
$M_{z, R k}=W_{\text {pl.z }} \times \mathrm{f}_{\mathrm{y}}=8.6 \mathrm{kNm}$
$N_{R k}=A \times f_{y}=558.8 \mathrm{kN}$
$\mathrm{k}_{\mathrm{yy}}=\mathrm{C}_{\mathrm{my}} \times\left(1+\min \left(\bar{\lambda}_{y}-0.2,0.8\right) \times \mathrm{N}_{\mathrm{Ed}} /\left(\chi_{y} \times \mathrm{N}_{\mathrm{Rk}} / \gamma_{\mathrm{M} 1}\right)\right)=\mathbf{0 . 6 0 2}$
$\mathrm{k}_{\mathrm{zy}}=1-0.1 \times \min \left(1, \bar{\lambda}_{z}\right) \times \mathrm{Ned} /\left(\left(\mathrm{C}_{\text {mLt }}-0.25\right) \times \chi_{z} \times \mathrm{NRk}_{\mathrm{Rk}} / \gamma_{\mathrm{M} 1}\right)=0.991$
$N_{E d} /\left(\chi y \times N_{R k} / \gamma M_{1}\right)+k_{y y} \times M_{y, E d} /\left(\chi L T \times M_{y, R k} / \gamma_{M 1}\right)=\mathbf{0 . 1 4}$
$N_{E d} /\left(\chi_{z} \times N_{R k} / \gamma M_{1}\right)+k_{z y} \times M_{y, E d} /\left(\chi L T \times M_{y, R k} / \gamma M_{1}\right)=0.243$
PASS - Combined bending and compression checks are satisfied

Consider Combination 2-1.0G + 1.0Q + 1.0RQ (Service)

Check design 2217 mm along span
Check y-y axis deflection - Section 7.2.1

Maximum deflection
Allowable deflection
$\delta y=0.2 \mathrm{~mm}$
$\delta_{y, \text { Allowable }}=L_{m 1 _s 1} / 180=15.6 \mathrm{~mm}$
$\delta_{y} / \delta y$,Allowable $=\mathbf{0 . 0 1}$
PASS - Allowable deflection exceeds design deflection

Rafter design

Section details

Section type
Steel grade - EN 10025-2:2004
Nominal thickness of element
Nominal yield strength
Nominal ultimate tensile strength
Modulus of elasticity

UB $152 \times 89 \times 16$ (BS4-1)
S275
$\mathrm{t}_{\mathrm{nom}}=\max \left(\mathrm{t}\right.$ f, $\left.\mathrm{t}_{\mathrm{w}}\right)=7.7 \mathrm{~mm}$
$\mathrm{f}_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{u}}=410 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}=\mathbf{2 1 0 0 0 0 \mathrm { N } / \mathrm { mm } ^ { 2 }}$

UB 152x89x16 (BS4-1)

Section depth, h, 152.4 mm
Section breadth, b, 88.7 mm
Mass of section, Mass, $16 \mathrm{~kg} / \mathrm{m}$
Flange thickness, $\mathrm{t}_{\mathrm{f}}, 7.7 \mathrm{~mm}$
Web thickness, $t_{w}, 4.5 \mathrm{~mm}$
Root radius, r, 7.6 mm
Area of section, A, $2032 \mathrm{~mm}^{2}$
Radius of gyration about y-axis, $i_{y}, 64.074 \mathrm{~mm}$
Radius of gyration about z-axis, $\mathrm{i}_{\mathrm{z}}, 21.016 \mathrm{~mm}$
Elastic section modulus about y-axis, $W_{\text {el. }}, 109483 \mathrm{~mm}^{3}$
Elastic section modulus about z-axis, $\mathrm{W}_{\text {el.z }}, 20237 \mathrm{~mm}^{3}$
Plastic section modulus about y-axis, $W_{\text {pl.y }}, 123256 \mathrm{~mm}^{3}$
Plastic section modulus about z-axis, $\mathrm{W}_{\text {pl.z. }}^{\text {pl.y }}, 31180 \mathrm{~mm}^{3}$
Second moment of area about y-axis, $I_{\mathrm{y}}, 8342621 \mathrm{~mm}^{4}$
Second moment of area about z-axis, $\mathrm{I}, 897506 \mathrm{~mm}^{4}$

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no. JP1524 Start page no./Revision 36	
	Calcs for Portal Frame					
	Calcs by AM	$\begin{aligned} & \text { Calcs date } \\ & 10 / 01 / 2020 \end{aligned}$	Checked by JP	$\begin{array}{\|c\|} \hline \text { Checked date } \\ 10 / 01 / 2020 \end{array}$	Approved by JP	$\begin{aligned} & \hline \text { Approved date } \\ & 10 / 01 / 2020 \end{aligned}$

Lateral restraint
Both flanges have lateral restraint at supports only
Consider Combination 1 -1.35G + 1.5Q + 1.5RQ (Strength)
Classification of cross sections - Section 5.5

$$
\varepsilon=\sqrt{ }\left[235 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{f} y\right]=0.92
$$

Internal compression parts subject to bending and compression - Table 5.2 (sheet 1 of 3)
Width of section

$$
\begin{aligned}
& c=d=121.8 \mathrm{~mm} \\
& \alpha=\min \left(\left[\mathrm{h} / 2+\mathrm{N}_{\mathrm{Ed}} /\left(2 \times \mathrm{t}_{\mathrm{w}} \times \mathrm{f}_{\mathrm{y}}\right)-\left(\mathrm{t}_{\mathrm{f}}+\mathrm{r}\right)\right] / \mathrm{c}, 1\right)=0.515 \\
& \mathrm{c} / \mathrm{t}_{\mathrm{w}}=27.1=29.3 \times \varepsilon<=396 \times \varepsilon /(13 \times \alpha-1) \quad \text { Class } 1
\end{aligned}
$$

Outstand flanges - Table 5.2 (sheet 2 of 3)
Width of section
$\mathrm{c}=(\mathrm{b}-\mathrm{t} \mathrm{w}-2 \times \mathrm{r}) / 2=\mathbf{3 4 . 5} \mathrm{mm}$
c / $\mathrm{t}_{\mathrm{f}}=4.5=4.8 \times \varepsilon<=9 \times \varepsilon \quad$ Class 1
Section is class 1
Check compression - Section 6.2.4
Design compression force
$\mathrm{NEd}_{\mathrm{d}}=4.5 \mathrm{kN}$
Design resistance of section - eq 6.10
$N_{\mathrm{c}, \mathrm{Rd}}=\mathrm{N}_{\mathrm{p}, \mathrm{Rd}}=\mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{m}}=\mathbf{5 5 8 . 8} \mathrm{kN}$
$N_{E d} / N_{c, R d}=0.008$
PASS - Design compression resistance exceeds design compression
Slenderness ratio for y - y axis flexural buckling - Section 6.3.1.3
Critical buckling length
$L_{c r, y}=L_{m 2 _s 1}=2766 \mathrm{~mm}$
Critical buckling force
$\mathrm{Ncr}_{\mathrm{cr}, \mathrm{y}}=\pi^{2} \times \mathrm{E} \times \mathrm{I}_{\mathrm{y}} / \mathrm{L}_{\mathrm{cr}, \mathrm{y}^{2}}=\mathbf{2 2 6 0 . 1} \mathrm{kN}$
Slenderness ratio for buckling - eq 6.50
$\bar{\lambda}_{y}=\sqrt{ }\left(\mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \mathrm{N}_{\mathrm{cr}, \mathrm{y}}\right)=\mathbf{0 . 4 9 7}$
Check y-y axis flexural buckling resistance - Section 6.3.1.1
Buckling curve - Table 6.2
a
Imperfection factor - Table 6.1
$\alpha_{y}=0.21$
Buckling reduction determination factor
$\phi_{y}=0.5 \times\left(1+\alpha_{y} \times\left(\bar{\lambda}_{y}-0.2\right)+\bar{\lambda}_{y}{ }^{2}\right)=0.655$
Buckling reduction factor - eq 6.49
$\chi y=\min \left(1 /\left(\phi y+\sqrt{ }\left(\phi y^{2}-\bar{\lambda}_{y}{ }^{2}\right)\right), 1\right)=0.925$
Design buckling resistance - eq 6.47
$N_{b, y, R d}=\chi_{y} \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{m}} 1=517 \mathrm{kN}$
$\mathrm{NEd}_{\mathrm{d}} / \mathrm{N}_{\mathrm{b}, \mathrm{y}, \mathrm{Rd}}=0.009$
PASS - Design buckling resistance exceeds design compression
Slenderness ratio for $\mathbf{z - z}$ axis flexural buckling - Section 6.3.1.3
Critical buckling length
$L_{c r, z}=L_{m 2 _s 1 _ \text {seg } 1}=\mathbf{2 7 6 6} \mathrm{mm}$
Critical buckling force
$\mathrm{N}_{\mathrm{cr}, \mathrm{z}}=\pi^{2} \times \mathrm{E} \times \mathrm{Iz}_{\mathrm{z}} /{\mathrm{Lcr}, \mathrm{z}^{2}}^{2}=\mathbf{2 4 3 . 1} \mathrm{kN}$
Slenderness ratio for buckling - eq 6.50
$\bar{\lambda}_{z}=\sqrt{ }\left(\mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \mathrm{N}_{\mathrm{cr}, \mathrm{z}}\right)=1.516$
Check z-z axis flexural buckling resistance - Section 6.3.1.1
Buckling curve - Table 6.2
b
Imperfection factor - Table 6.1
$\alpha_{z}=0.34$
Buckling reduction determination factor
$\phi z=0.5 \times\left(1+\alpha z \times\left(\bar{\lambda}_{z}-0.2\right)+\bar{\lambda}_{z}{ }^{2}\right)=1.873$
Buckling reduction factor - eq 6.49
$\chi_{z}=\min \left(1 /\left(\phi z+\sqrt{ }\left(\phi_{z}{ }^{2}-\bar{\lambda}_{z}{ }^{2}\right)\right), 1\right)=0.336$
Design buckling resistance - eq 6.47
$N_{\mathrm{b}, \mathrm{z}, \mathrm{Rd}}=\chi_{z} \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{m} 1}=188 \mathrm{kN}$
$\mathrm{N}_{\mathrm{Ed}} / \mathrm{N}_{\mathrm{b}, \mathrm{z}, \mathrm{Rd}}=0.024$
PASS - Design buckling resistance exceeds design compression

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no. JP1524	
	Calcs for Portal Frame				Start page no./Revision 37	
	Calcs by AM	$\begin{aligned} & \text { Calcs date } \\ & \text { 10/01/2020 } \end{aligned}$	Checked by JP	Checked date 10/01/2020	Approved by JP	$\begin{aligned} & \text { Approved date } \\ & 10 / 01 / 2020 \end{aligned}$

Check torsional and torsional-flexural buckling - Section 6.3.1.4

Torsional buckling length
Distance from shear centre to centroid in y axis
Distance from shear centre to centroid in z axis
Radius of gyration
Elastic critical torsional buckling force
Torsion factor
$L_{\text {cr, }, T}=L_{m 2 _s 1}$ seg1_ $^{R}=2766 \mathrm{~mm}$
$\mathrm{y}_{0}=\mathbf{0 . 0} \mathrm{mm}$
$\mathrm{z}_{0}=\mathbf{0 . 0} \mathrm{mm}$
$\mathrm{i}_{0}=\sqrt{ }\left(\mathrm{iy}^{2}+\mathrm{i}_{\mathrm{z}}{ }^{2}\right)=\mathbf{6 7 . 4} \mathrm{mm}$
$\mathrm{N}_{\mathrm{cr}, \mathrm{T}}=1 / \mathrm{i}_{0}{ }^{2} \times\left(\mathrm{G} \times \mathrm{I}_{\mathrm{t}}+\pi^{2} \times \mathrm{E} \times \mathrm{I}_{\mathrm{w}} / \mathrm{L}_{\mathrm{cr}, \mathrm{T}^{2}}\right)=\mathbf{9 1 2 . 3} \mathrm{kN}$
$\beta_{\mathrm{T}}=1-\left(\mathrm{y}_{0} / \mathrm{i}_{0}\right)^{2}=1$

Elastic critical torsional-flexural buckling force

$$
N_{c r, T F}=N_{c r, y} /(2 \times \beta T) \times\left[1+N_{c r, T} / N_{c r, y}-\sqrt{ }\left[\left(1-N_{c r, T} / N_{c r, y}\right)^{2}+4 \times\left(y_{0} / i_{0}\right)^{2} \times N_{c r, T} / N_{c r, y}\right]\right]=\mathbf{9 1 2 . 3} \mathrm{kN}
$$

Elastic critical buckling force $\quad \mathrm{N}_{\mathrm{cr}}=\min \left(\mathrm{N}_{\mathrm{cr}, \mathrm{T},} \mathrm{N}_{\mathrm{cr}, \mathrm{TF}}\right)=\mathbf{9 1 2 . 3} \mathrm{kN}$
Slenderness ratio for torsional buckling - eq $6.52 \quad \bar{\lambda}_{T}=\sqrt{ }\left[\mathrm{A} \times \mathrm{fy}_{\mathrm{y}} / \mathrm{N}_{\text {cr }}\right]=\mathbf{0 . 7 8 3}$
Design resistance for torsional and torsional-flexural buckling - Section 6.3.1.1

Buckling curve - Table 6.2
Imperfection factor - Table 6.1
Buckling reduction determination factor
Buckling reduction factor - eq 6.49
Design buckling resistance - eq 6.47

Check design at start of span

Check shear - Section 6.2.6
Height of web

Design shear force
Shear area - cl 6.2.6(3)
Design shear resistance - cl 6.2.6(2)

Check bending moment - Section 6.2.5
Design bending moment
Design bending resistance moment - eq 6.13
b
$\alpha \mathrm{T}=0.34$
$\phi T=0.5 \times\left(1+\alpha T \times\left(\bar{\lambda}_{T}-0.2\right)+\bar{\lambda}^{2}{ }^{2}\right)=0.905$
$\chi^{\top}=\min \left(1 /\left(\phi T+\sqrt{ }\left(\phi T^{2}-\bar{\lambda}^{2} T^{2}\right)\right), 1\right)=\mathbf{0 . 7 3 5}$
$\mathrm{N}_{\mathrm{b}, \mathrm{T}, \mathrm{Rd}}=\chi \mathrm{T} \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{m}}=410.8 \mathrm{kN}$
$\mathrm{Ned}_{\mathrm{Ed}} / \mathrm{N}_{\mathrm{b}, \mathrm{T}, \mathrm{Rd}}=0.011$
PASS - Design buckling resistance exceeds design compression
$h_{w}=h-2 \times \mathrm{t}_{\mathrm{f}}=137 \mathrm{~mm} \quad \eta=1.000$
$h_{w} / t_{w}=30.4=32.9 \times \varepsilon / \eta<72 \times \varepsilon / \eta$
Shear buckling resistance can be ignored
$V_{y, E d}=4.4 \mathrm{kN}$
$A_{v}=\max \left(A-2 \times b \times t_{f}+\left(t_{w}+2 \times r\right) \times t_{f}, \eta \times h_{w} \times t_{w}\right)=818 \mathrm{~mm}^{2}$
$V_{c, y, R d}=V_{\text {pl, }, \mathrm{Rd}}=A_{v} \times\left(\mathrm{f}_{\mathrm{y}} / \sqrt{ }(3)\right) / \gamma \mathrm{mo}=129.8 \mathrm{kN}$
$V_{\mathrm{y}, \mathrm{Ed}} / \mathrm{V}_{\mathrm{c}, \mathrm{y}, \mathrm{Rd}}=\mathbf{0 . 0 3 4}$
PASS - Design shear resistance exceeds design shear force
$\mathrm{M}_{\mathrm{y}, \mathrm{Ed}}=4.9 \mathrm{kNm}$
$M_{c, y, R d}=M_{\text {pl,y, Rd }}=W_{\text {pl. }} \times \mathrm{f}_{\mathrm{y}} / \gamma \mathrm{mo}=33.9 \mathrm{kNm}$
$M_{y, E d} / M_{c, y, R d}=0.143$
PASS - Design bending resistance moment exceeds design bending moment
Slenderness ratio for lateral torsional buckling
Correction factor - For cantilever beams
$\mathrm{k}_{\mathrm{c}}=1$

Poissons ratio
Shear modulus
Unrestrained effective length
Elastic critical buckling moment

Slenderness ratio for lateral torsional buckling Limiting slenderness ratio
$C_{1}=1 / k^{2}=1$
$v=0.3$
$\mathrm{G}=\mathrm{E} /[2 \times(1+\mathrm{v})]=\mathbf{8 0 7 6 9 \mathrm { N } / \mathrm { mm } ^ { 2 }}$
$L=1.0 \times$ Lm2_s1_seg1_b $=\mathbf{2 7 6 6} \mathbf{m m}$
$M_{c r}=C_{1} \times \pi^{2} \times E \times I_{z} / L^{2} \times \sqrt{ }\left(I_{w} / I_{z}+L^{2} \times G \times I_{t} /\left(\pi^{2} \times E \times I_{z}\right)\right)=31.8$
kNm
$\bar{\lambda}_{\text {LT }}=\sqrt{ }\left(\mathrm{W}_{\text {pl.y }} \times \mathrm{f}_{\mathrm{y}} / \mathrm{Mcr}_{\text {cr }}\right)=1.033$
$\bar{\lambda}_{\llcorner T, 0}=\mathbf{0 . 4}$

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no. JP1524 Start page no./Revision 38	
	Calcs for Portal Frame					
	Calcs by AM	Calcs date 10/01/2020	Checked by JP	Checked date 10/01/2020	Approved by JP	Approved date 10/01/2020

$\bar{\lambda}_{L T}>\bar{\lambda}_{L T, O}$-Lateral torsional buckling cannot be ignored
Check buckling resistance - Section 6.3.2.1

Buckling curve - Table 6.5
Imperfection factor - Table 6.3
Correction factor for rolled sections
LTB reduction determination factor
LTB reduction factor - eq 6.57
Modification factor
Modified LTB reduction factor - eq 6.58
Design buckling resistance moment - eq 6.55
b
$\alpha L T=0.34$
$\beta=0.75$
$\phi L T=0.5 \times\left[1+\alpha L T \times\left(\bar{\lambda}_{L T}-\bar{\lambda}_{L T, 0}\right)+\beta \times \bar{\lambda}_{L T^{2}}\right]=1.008$
$\chi L T=\min \left(1 /\left[\phi L \tau+\sqrt{ }\left(\phi L T^{2}-\beta \times \bar{\lambda}_{L T^{2}}\right)\right], 1,1 / \bar{\lambda} L T^{2}\right)=0.679$
$\mathrm{f}=\min \left(1-0.5 \times\left(1-\mathrm{k}_{\mathrm{c}}\right) \times\left[1-2 \times\left(\bar{\lambda}_{\text {LT }}-0.8\right)^{2}\right], 1\right)=1.000$
$\chi L T, \bmod =\min \left(\chi L T / f, 1,1 / \bar{\lambda} L T^{2}\right)=0.679$
$M_{b, y, R d}=\chi L T, \bmod \times W_{\text {pl. }} \times \mathrm{f}_{\mathrm{y}} / \gamma \mathrm{m} 1=23 \mathrm{kNm}$
$M_{y, E d} / M_{b, y, R d}=0.211$

PASS - Design buckling resistance moment exceeds design bending moment

Check bending and axial force - Section 6.2.9

Bending and axial force check - eq. 6.33 \& eq.6.34 $N_{y, l i m}=\min \left(0.25 \times N_{p l, R d}, 0.5 \times h_{w} \times \mathrm{t}_{\mathrm{w}} \times \mathrm{fy}_{\mathrm{y}} / \gamma \mathrm{m} 0\right)=84.8 \mathrm{kN}$ $N_{\mathrm{Ed}} / \mathrm{N}_{\mathrm{y}, \mathrm{lim}}=0.053$
Allowance need not be made for the effect of the axial force on the plastic resistance moment about the y - y axis
Check combined bending and compression-Section 6.3.3
Equivalent uniform moment factors - Table B. 3
$\psi y=-4.856 \mathrm{kNm} / 6.51 \mathrm{kNm}=\mathbf{- 0 . 7 4 6}$
$\alpha_{y}=1.002 \mathrm{kNm} / 6.51 \mathrm{kNm}=\mathbf{0 . 1 5 4}$
$\mathrm{C}_{\text {my }}=\max \left(0.2+0.8 \times \alpha_{y}, 0.4\right)=\mathbf{0 . 4 0 0}$
$\psi\llcorner\tau=-4.856 \mathrm{kNm} / 6.51 \mathrm{kNm}=\mathbf{- 0 . 7 4 6}$
α Lт $=1.002 \mathrm{kNm} / 6.51 \mathrm{kNm}=\mathbf{0 . 1 5 4}$
$C_{\text {mLt }}=\max (0.2+0.8 \times \alpha L T, 0.4)=\mathbf{0 . 4 0 0}$
Interaction factors $\mathbf{k}_{\mathbf{i j}}$ for members susceptible to torsional deformations - Table B. 2

Characteristic moment resistance
Characteristic moment resistance
Characteristic resistance to normal force Interaction factors

Interaction formulae - eq 6.61 \& eq 6.62

Check design at end of span

Check shear - Section 6.2.6
Height of web

Design shear force
Shear area - cl 6.2.6(3)
Design shear resistance - cl 6.2.6(2)
$M_{y, R k}=W_{\text {pl. }} \times \mathrm{f}_{\mathrm{y}}=\mathbf{3 3 . 9 \mathrm { kNm }}$
$M_{z, R k}=W_{p l . z} \times f_{y}=8.6 \mathrm{kNm}$
$N_{R k}=A \times f_{y}=558.8 \mathrm{kN}$
$\mathrm{k}_{\mathrm{yy}}=\mathrm{C}_{\mathrm{my}} \times\left(1+\min \left(\bar{\lambda}_{y}-0.2,0.8\right) \times \mathrm{N}_{\mathrm{Ed}} /\left(\chi_{y} \times \mathrm{N}_{\mathrm{Rk}} / \gamma_{M 1}\right)\right)=\mathbf{0 . 4 0 1}$
$\mathrm{k}_{\mathrm{zy}}=1-0.1 \times \min \left(1, \bar{\lambda}_{z}\right) \times \mathrm{Ned} /\left(\left(\mathrm{C}_{\text {mLt }}-0.25\right) \times \chi_{z} \times \mathrm{N}_{\mathrm{Rk}} / \gamma_{\mathrm{M} 1}\right)=0.984$
$N_{E d} /\left(\chi_{y} \times N_{R k} / \gamma M_{1}\right)+k_{y y} \times M_{y, E d} /\left(\chi_{L T} \times M_{y, R k} / \gamma_{M 1}\right)=0.093$
$N_{\mathrm{Ed}} /\left(\chi_{z} \times \mathrm{N}_{\mathrm{Rk}} / \gamma_{\mathrm{M} 1}\right)+\mathrm{k}_{\mathrm{zy}} \times \mathrm{M}_{\mathrm{y}, \mathrm{Ed}} /\left(\chi_{L T} \times \mathrm{M}_{\mathrm{y}, \mathrm{Rk}} / \gamma_{\mathrm{M} 1}\right)=\mathbf{0 . 2 3 1}$
PASS - Combined bending and compression checks are satisfied
$h_{w}=h-2 \times t_{f}=137 \mathrm{~mm} \quad \eta=1.000$
$h_{w} / t_{w}=30.4=32.9 \times \varepsilon / \eta<72 \times \varepsilon / \eta$
Shear buckling resistance can be ignored
$V_{y, E d}=3.9 \mathrm{kN}$
$A_{v}=\max \left(A-2 \times b \times t_{f}+\left(t_{w}+2 \times r\right) \times t_{f}, \eta \times h_{w} \times t_{w}\right)=818 \mathrm{~mm}^{2}$
$V_{c, y, R d}=V_{p l, y, R d}=A_{v} \times\left(f_{y} / \sqrt{ }(3)\right) / \gamma \mathrm{mo}=129.8 \mathrm{kN}$
$\mathrm{V}_{\mathrm{y}, \mathrm{Ed}} / \mathrm{V}_{\mathrm{c}, \mathrm{y}, \mathrm{Rd}}=\mathbf{0 . 0 3}$
PASS - Design shear resistance exceeds design shear force

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no. JP1524 Start page no./Revision 39	
	Calcs for Portal Frame					
	Calcs by AM	$\begin{aligned} & \text { Calcs date } \\ & 10 / 01 / 2020 \end{aligned}$	Checked by JP	$\begin{array}{\|c\|} \hline \text { Checked date } \\ 10 / 01 / 2020 \end{array}$	Approved by JP	$\begin{aligned} & \hline \text { Approved date } \\ & 10 / 01 / 2020 \end{aligned}$

Check bending moment - Section 6.2.5

Design bending moment
Design bending resistance moment - eq 6.13
$M_{y, E d}=6.5 \mathrm{kNm}$
$M_{c, y, R d}=M_{p l, y, R d}=W_{\text {pl.y }} \times f_{y} / \gamma \mathrm{m}_{\mathrm{M}}=33.9 \mathrm{kNm}$
$M_{y, E d} / M_{c, y, R d}=\mathbf{0 . 1 9 2}$
PASS - Design bending resistance moment exceeds design bending moment
Slenderness ratio for lateral torsional buckling
Correction factor - For cantilever beams
$\mathrm{k}_{\mathrm{c}}=1$
$C_{1}=1 / k_{c}{ }^{2}=1$
Poissons ratio
$v=0.3$
Shear modulus
Unrestrained effective length
$\mathrm{G}=\mathrm{E} /[2 \times(1+v)]=80769 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{L}=1.0 \times \mathrm{Lm}_{\mathrm{m} \text { _s1_seg1_ } \mathrm{T}}=\mathbf{2 7 6 6} \mathrm{mm}$
$M_{c r}=C_{1} \times \pi^{2} \times E \times I_{z} / L^{2} \times \sqrt{ }\left(I_{w} / I_{z}+L^{2} \times G \times I_{t} /\left(\pi^{2} \times E \times I_{z}\right)\right)=31.8$
kNm
Slenderness ratio for lateral torsional buckling Limiting slenderness ratio
$\bar{\lambda}_{\text {LT }}=\sqrt{ }\left(\mathrm{W}_{\text {pl. }} \times \mathrm{f}_{\mathrm{y}} / \mathrm{Mcr}_{\mathrm{c}}\right)=1.033$
$\bar{\lambda}_{L T}, 0=\mathbf{0 . 4}$
$\bar{\lambda}_{L T}>\bar{\lambda}_{L T, O}$-Lateral torsional buckling cannot be ignored
Check buckling resistance - Section 6.3.2.1
Buckling curve - Table 6.5
Imperfection factor - Table 6.3
b
$\alpha L T=0.34$
Correction factor for rolled sections
$\beta=0.75$
LTB reduction determination factor
$\phi L T=0.5 \times\left[1+\alpha L T \times\left(\bar{\lambda}_{L T}-\bar{\lambda}_{L T, 0}\right)+\beta \times \bar{\lambda}_{L T^{2}}\right]=1.008$
$\chi L T=\min \left(1 /\left[\phi L T+\sqrt{ }\left(\phi L T^{2}-\beta \times \bar{\lambda} L T^{2}\right)\right], 1,1 / \bar{\lambda} L T^{2}\right)=\mathbf{0 . 6 7 9}$
$\mathrm{f}=\min \left(1-0.5 \times\left(1-\mathrm{k}_{\mathrm{c}}\right) \times\left[1-2 \times\left(\bar{\lambda}_{L T}-0.8\right)^{2}\right], 1\right)=1.000$
$\chi L T, \bmod =\min \left(\chi L T / f, 1,1 / \bar{\lambda} L T^{2}\right)=0.679$
$\mathrm{M}_{\mathrm{b}, \mathrm{y}, \mathrm{Rd}}=\chi \mathrm{LT}, \bmod \times \mathrm{W}_{\mathrm{pl} . \mathrm{y}} \times \mathrm{f}_{\mathrm{y}} / \gamma \mathrm{M} 1=23 \mathrm{kNm}$
$M_{y, E d} / M_{b, y, R d}=0.283$

PASS - Design buckling resistance moment exceeds design bending moment
Check combined bending and compression-Section 6.3.3
Equivalent uniform moment factors - Table B. 3
$\psi y=-4.856 \mathrm{kNm} / 6.51 \mathrm{kNm}=\mathbf{- 0 . 7 4 6}$
$\alpha_{y}=1.002 \mathrm{kNm} / 6.51 \mathrm{kNm}=\mathbf{0 . 1 5 4}$
$\mathrm{C}_{\text {my }}=\max \left(0.2+0.8 \times \alpha_{y}, 0.4\right)=\mathbf{0 . 4 0 0}$
ψ Lт $=-4.856 \mathrm{kNm} / 6.51 \mathrm{kNm}=\mathbf{- 0 . 7 4 6}$
α LT $=1.002 \mathrm{kNm} / 6.51 \mathrm{kNm}=\mathbf{0 . 1 5 4}$
$C_{\text {mLT }}=\max (0.2+0.8 \times \alpha L T, 0.4)=\mathbf{0 . 4 0 0}$
Interaction factors $\mathbf{k}_{\mathbf{i j}}$ for members susceptible to torsional deformations - Table B. 2

Characteristic moment resistance
Characteristic moment resistance
Characteristic resistance to normal force Interaction factors

Interaction formulae - eq 6.61 \& eq 6.62
$M_{y, R k}=W_{\text {pl. }} \times f_{y}=\mathbf{3 3 . 9} \mathrm{kNm}$
$M_{z, R k}=W_{\text {pl.z }} \times \mathrm{f}_{\mathrm{y}}=8.6 \mathrm{kNm}$
$N_{R k}=A \times f_{y}=558.8 \mathrm{kN}$
$\mathrm{k}_{\mathrm{yy}}=\mathrm{C}_{\mathrm{my}} \times\left(1+\min \left(\bar{\lambda}_{y}-0.2,0.8\right) \times \mathrm{N}_{\mathrm{Ed}} /\left(\chi_{y} \times \mathrm{N}_{\mathrm{Rk}} / \gamma_{\mathrm{m} 1}\right)\right)=\mathbf{0 . 4 0 1}$
$\mathrm{k}_{z y}=1-0.1 \times \min \left(1, \bar{\lambda}_{z}\right) \times \mathrm{N}_{\mathrm{Ed}} /\left(\left(\mathrm{C}_{\mathrm{mLt}}-0.25\right) \times \chi_{z} \times \mathrm{N}_{\mathrm{Rk}} / \gamma_{\mathrm{M} 1}\right)=0.985$
$N_{E d} /\left(\chi_{y} \times N_{R k} / \gamma_{M 1}\right)+K_{y y} \times M_{y, E d} /\left(\chi L T \times M_{y, R k} / \gamma_{M 1}\right)=\mathbf{0 . 1 2 1}$
$N_{E d} /\left(\chi_{z} \times N_{R k} / \gamma M_{1}\right)+k_{z y} \times M_{y, E d} /\left(\chi L T \times M_{y, R k} / \gamma M 1\right)=0.301$
PASS - Combined bending and compression checks are satisfied

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no.JP1524	
	Calcs for Portal Frame				Start page no./Revision 40	
	Calcs by AM	$\begin{aligned} & \text { Calcs date } \\ & 10 / 01 / 2020 \end{aligned}$	Checked by JP	$\begin{aligned} & \hline \text { Checked date } \\ & 10 / 01 / 2020 \end{aligned}$	Approved by JP	$\begin{aligned} & \hline \text { Approved date } \\ & 10 / 01 / 2020 \end{aligned}$

Consider Combination 2-1.0G + 1.0Q + 1.0RQ (Service)

Check design at end of span

Check y-y axis deflection - Section 7.2.1

Maximum deflection
Allowable deflection
$\delta_{y}=0.2 \mathrm{~mm}$

$\delta \mathrm{y} / \delta \mathrm{y}$,Allowable $=\mathbf{0 . 0 1 4}$
PASS - Allowable deflection exceeds design deflection

Column 2 design

Section details

Section type UB 152x89x16 (BS4-1)
Steel grade - EN 10025-2:2004
Nominal thickness of element
Nominal yield strength S275

Nominal ultimate tensile strength
$\mathrm{t}_{\mathrm{n}} \mathrm{m}=\mathrm{max}\left(\mathrm{tf}, \mathrm{t}_{\mathrm{w}}\right)=7.7 \mathrm{~mm}$

Modulus of elasticity
$\mathrm{f}_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{u}}=410 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}=\mathbf{2 1 0 0 0 0 \mathrm { N } / \mathrm { mm } ^ { 2 }}$

UB 152x89x16 (BS4-1)
Section depth, h, 152.4 mm
Section breadth, b, 88.7 mm
Mass of section, Mass, $16 \mathrm{~kg} / \mathrm{m}$
Flange thickness, $\mathrm{t}_{\mathrm{f}}, 7.7 \mathrm{~mm}$
Web thickness, $t_{w}, 4.5 \mathrm{~mm}$
Root radius, r, 7.6 mm
Area of section, A, $2032 \mathrm{~mm}^{2}$
Radius of gyration about y-axis, $i_{\mathrm{y}}, 64.074 \mathrm{~mm}$
Radius of gyration about z -axis, $\mathrm{i}_{\mathrm{z}}, 21.016 \mathrm{~mm}$
Elastic section modulus about y-axis, $W_{\text {ely, }} 109483 \mathrm{~mm}^{3}$
Elastic section modulus about z-axis, $\mathrm{W}_{\text {el.z. }}^{\text {el. }}, 20237 \mathrm{~mm}^{3}$
Plastic section modulus about y-axis, $\mathrm{W}_{\text {pl.y' }} 123256 \mathrm{~mm}^{3}$
Plastic section modulus about z-axis, $\mathrm{W}_{\text {pl.z. }}, 31180 \mathrm{~mm}^{3}$
Second moment of area about y-axis, $I_{y}, 8342621 \mathrm{~mm}^{4}$
Second moment of area about Z-axis, $I_{z}, 897506 \mathrm{~mm}^{4}$

Lateral restraint

Both flanges have lateral restraint at supports only
Consider Combination $1-1.35 G+1.5 Q+1.5 R Q$ (Strength)
Classification of cross sections - Section 5.5

$$
\varepsilon=\sqrt{ }\left[235 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{f}_{\mathrm{y}}\right]=\mathbf{0 . 9 2}
$$

Internal compression parts subject to bending and compression - Table 5.2 (sheet 1 of 3)
Width of section

$$
\begin{aligned}
& c=d=121.8 \mathrm{~mm} \\
& \alpha=\min \left(\left[\mathrm{h} / 2+\mathrm{NEd}_{\mathrm{d}} /\left(2 \times \mathrm{t}_{\mathrm{w}} \times \mathrm{f}_{\mathrm{y}}\right)-\left(\mathrm{t}_{\mathrm{f}}+\mathrm{r}\right)\right] / \mathrm{c}, 1\right)=\mathbf{0 . 5 2 2} \\
& \mathrm{c} / \mathrm{t}_{\mathrm{w}}=27.1=29.3 \times \varepsilon<=396 \times \varepsilon /(13 \times \alpha-1) \quad \text { Class } 1
\end{aligned}
$$

Outstand flanges - Table 5.2 (sheet 2 of 3)
Width of section

$$
\begin{aligned}
& c=\left(b-t_{w}-2 \times r\right) / 2=34.5 \mathrm{~mm} \\
& c / t_{f}=4.5=4.8 \times \varepsilon<=9 \times \varepsilon \quad \text { Class } 1
\end{aligned}
$$

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no.JP1524	
	Calcs for Portal Frame				Start page no./Revision 41	
	Calcs by AM	$\begin{aligned} & \hline \text { Calcs date } \\ & 10 / 01 / 2020 \end{aligned}$	Checked by JP	$\begin{aligned} & \hline \text { Checked date } \\ & 10 / 01 / 2020 \end{aligned}$	Approved by JP	$\begin{array}{\|c\|} \hline \text { Approved date } \\ 10 / 01 / 2020 \end{array}$

Check compression - Section 6.2.4

Design compression force
Design resistance of section - eq 6.10
$N_{\mathrm{Ed}}=6 \mathrm{kN}$
$\mathrm{N}_{\mathrm{c}, \mathrm{Rd}}=\mathrm{N}_{\mathrm{p}, \mathrm{Rd}}=\mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{m}}=\mathbf{5 5 8 . 8} \mathrm{kN}$
$N_{\mathrm{Ed}} / \mathrm{N}_{\mathrm{c}, \mathrm{Rd}}=\mathbf{0 . 0 1 1}$
PASS - Design compression resistance exceeds design compression
Slenderness ratio for y-y axis flexural buckling - Section 6.3.1.3
Critical buckling length
$L_{c r, y}=L_{m 3}{ }^{\prime}$ s1 $=\mathbf{2 8 0 0} \mathbf{m m}$
Critical buckling force
$N_{\text {cr, }, ~}=\pi^{2} \times \mathrm{E} \times \mathrm{l}_{\mathrm{y}} / \mathrm{L}_{\mathrm{cr}, \mathrm{y}^{2}}=2205.5 \mathrm{kN}$
Slenderness ratio for buckling - eq 6.50
$\bar{\lambda}_{y}=\sqrt{ }\left(\mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \mathrm{Ncr}_{\mathrm{cr}, \mathrm{y}}\right)=\mathbf{0 . 5 0 3}$
Check y-y axis flexural buckling resistance - Section 6.3.1.1
Buckling curve - Table 6.2
a
Imperfection factor - Table 6.1
$\alpha_{y}=0.21$
Buckling reduction determination factor
$\phi_{y}=0.5 \times\left(1+\alpha_{y} \times\left(\bar{\lambda}_{y}-0.2\right)+\bar{\lambda}_{y}{ }^{2}\right)=0.659$
Buckling reduction factor - eq 6.49
$\chi y=\min \left(1 /\left(\phi y+\sqrt{ }\left(\phi y^{2}-\bar{\lambda} y^{2}\right)\right), 1\right)=0.923$
Design buckling resistance - eq 6.47
$\mathrm{N}_{\mathrm{b}, \mathrm{y}, \mathrm{Rd}}=\chi_{\mathrm{y}} \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{M} 1}=\mathbf{5 1 5 . 9} \mathrm{kN}$
$\mathrm{NEd}_{\mathrm{Ed}} / \mathrm{N}_{\mathrm{b}, \mathrm{y}, \mathrm{Rd}}=\mathbf{0 . 0 1 2}$
PASS - Design buckling resistance exceeds design compression
Slenderness ratio for $\mathbf{z - z}$ axis flexural buckling - Section 6.3.1.3

Critical buckling length
Critical buckling force
Slenderness ratio for buckling - eq 6.50
$L_{c r, z}=L_{m 3}{ }^{\text {s }} 1$ _seg1 $=\mathbf{2 8 0 0} \mathbf{m m}$
$\mathrm{N}_{\mathrm{cr}, \mathrm{z}}=\pi^{2} \times \mathrm{E} \times \mathrm{I}_{\mathrm{z}} / \mathrm{L}_{\mathrm{cr}, \mathrm{z}^{2}}=\mathbf{2 3 7 . 3} \mathrm{kN}$
$\bar{\lambda}_{z}=\sqrt{ }\left(A \times f_{y} / N_{c r, z}\right)=1.535$

Check z-z axis flexural buckling resistance - Section 6.3.1.1

Buckling curve - Table 6.2
Imperfection factor - Table 6.1
Buckling reduction determination factor
Buckling reduction factor - eq 6.49
Design buckling resistance - eq 6.47
b
$\alpha_{z}=0.34$
$\phi z=0.5 \times\left(1+\alpha z \times\left(\bar{\lambda}_{z}-0.2\right)+\bar{\lambda}_{z}{ }^{2}\right)=1.904$
$\chi_{z}=\min \left(1 /\left(\phi_{z}+\sqrt{ }\left(\phi_{z}{ }^{2}-\bar{\lambda}_{z}{ }^{2}\right)\right), 1\right)=0.33$
$\mathrm{N}_{\mathrm{b}, \mathrm{z}, \mathrm{Rd}}=\chi_{\mathrm{z}} \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{m} 1}=184.3 \mathrm{kN}$
$\mathrm{NEd}_{\mathrm{Ed}} / \mathrm{N}_{\mathrm{b}, \mathrm{z}, \mathrm{Rd}}=0.033$
PASS - Design buckling resistance exceeds design compression

Check torsional and torsional-flexural buckling - Section 6.3.1.4

Torsional buckling length
Distance from shear centre to centroid in y axis
Distance from shear centre to centroid in z axis
Radius of gyration
Elastic critical torsional buckling force
Torsion factor
Elastic critical torsional-flexural buckling force

$$
N_{c r, T F}=N_{c r, y} /(2 \times \beta T) \times\left[1+N_{c r, T} / N_{c r, y}-\sqrt{ }\left[\left(1-N_{c r, T} / N_{c r, y}\right)^{2}+4 \times\left(y_{0} / i_{0}\right)^{2} \times N_{c r, T} / N_{c r, y}\right]\right]=905.6 \mathrm{kN}
$$

Elastic critical buckling force
Slenderness ratio for torsional buckling - eq 6.52
$L_{c r, T}=L_{m 3}$ _s1_seg1_R $=2800 \mathrm{~mm}$
$\mathrm{y}_{0}=\mathbf{0 . 0} \mathrm{mm}$
$z_{0}=\mathbf{0 . 0} \mathrm{mm}$
$\mathrm{i}_{0}=\sqrt{ }\left(\mathrm{iy}^{2}+\mathrm{i}_{z}{ }^{2}\right)=\mathbf{6 7 . 4} \mathrm{mm}$
$\mathrm{N}_{\mathrm{cr}, \mathrm{T}}=1 / \mathrm{i}^{2} \times\left(\mathrm{G} \times \mathrm{It}_{\mathrm{t}}+\pi^{2} \times \mathrm{E} \times \mathrm{Iw}_{\mathrm{w}} /{\mathrm{Lcr}, \mathrm{T}^{2}}^{2}\right)=905.6 \mathrm{kN}$
$\beta \tau=1-(\mathrm{yo} / \mathrm{io})^{2}=1$

Design resistance for torsional and torsional-flexural buckling - Section 6.3.1.1

Buckling curve - Table 6.2
Imperfection factor - Table 6.1
Buckling reduction determination factor
b
$\alpha T=0.34$
$\phi T=0.5 \times\left(1+\alpha T \times\left(\bar{\lambda}_{T}-0.2\right)+\bar{\lambda}^{2}{ }^{2}\right)=0.908$

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no. JP1524	
	Calcs for Portal Frame				Start page no./Revision 42	
	Calcs by AM	$\begin{aligned} & \text { Calcs date } \\ & \text { 10/01/2020 } \end{aligned}$	Checked by JP	$\begin{array}{\|l\|} \hline \text { Checked date } \\ \text { 10/01/2020 } \end{array}$	Approved by JP	$\begin{aligned} & \hline \text { Approved date } \\ & 10 / 01 / 2020 \end{aligned}$

Buckling reduction factor - eq 6.49
Design buckling resistance - eq 6.47
$\chi^{\top}=\min \left(1 /\left(\phi T+\sqrt{ }\left(\phi T^{2}-\bar{\lambda} T^{2}\right)\right), 1\right)=0.733$
$\mathrm{N}_{\mathrm{b}, \mathrm{T}, \mathrm{Rd}}=\chi \mathrm{T} \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{M} 1}=409.8 \mathrm{kN}$
$\mathrm{NEd}_{\mathrm{Ed}} / \mathrm{N}_{\mathrm{b}, \mathrm{T}, \mathrm{Rd}}=0.015$
PASS - Design buckling resistance exceeds design compression

Check design at start of span

Check shear - Section 6.2.6
Height of web

Design shear force
Shear area - cl 6.2.6(3)
Design shear resistance - cl 6.2.6(2)

Check bending moment - Section 6.2.5

Design bending moment
Design bending resistance moment - eq 6.13

$$
\begin{aligned}
& M_{y, E d}=4.9 \mathrm{kNm} \\
& M_{c, y, R d}=M_{\text {pl, }, \mathrm{Rd}}=W_{\text {pl.y }} \times \mathrm{f}_{\mathrm{y}} / \gamma \mathrm{MO}=33.9 \mathrm{kNm} \\
& \mathrm{M}_{\mathrm{y}, \mathrm{Ed}} / \mathrm{M}_{\mathrm{c}, \mathrm{y}, \mathrm{Rd}}=\mathbf{0 . 1 4 3}
\end{aligned}
$$

PASS - Design bending resistance moment exceeds design bending moment

Slenderness ratio for lateral torsional buckling

Correction factor - For cantilever beams

Poissons ratio
Shear modulus
Unrestrained effective length
Elastic critical buckling moment

Slenderness ratio for lateral torsional buckling
Limiting slenderness ratio

Check buckling resistance - Section 6.3.2.1
Buckling curve - Table 6.5
Imperfection factor - Table 6.3
Correction factor for rolled sections
LTB reduction determination factor
LTB reduction factor - eq 6.57
Modification factor
Modified LTB reduction factor - eq 6.58
Design buckling resistance moment - eq 6.55
$\mathrm{k}_{\mathrm{c}}=1$
$C_{1}=1 / k_{c}{ }^{2}=1$
$v=0.3$
$G=E /[2 \times(1+v)]=80769 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{L}=1.0 \times$ Lm3_s1_seg1_B $=\mathbf{2 8 0 0} \mathbf{~ m m}$
$M_{c r}=C_{1} \times \pi^{2} \times E \times I_{z} / L^{2} \times \sqrt{ }\left(I_{w} / I_{z}+L^{2} \times G \times I_{t} /\left(\pi^{2} \times E \times I_{z}\right)\right)=\mathbf{3 1 . 3}$
kNm

$$
\begin{aligned}
& \bar{\lambda}_{L T}=\sqrt{ }\left(W_{\text {pl.y }} \times f_{y} / M_{c r}\right)=\mathbf{1 . 0 4 1} \\
& \bar{\lambda}_{L T, 0}=\mathbf{0 . 4}
\end{aligned}
$$

$\bar{\lambda}_{L T}>\bar{\lambda}_{L T, 0}$-Lateral torsional buckling cannot be ignored
b
$\alpha L T=0.34$
$\beta=0.75$
$\phi L T=0.5 \times\left[1+\alpha L T \times\left(\bar{\lambda}_{L T}-\bar{\lambda}_{L T, 0}\right)+\beta \times \bar{\lambda}_{L T^{2}}\right]=1.016$
$\chi L T=\min \left(1 /\left[\phi L T+\sqrt{ }\left(\phi L T^{2}-\beta \times \bar{\lambda}_{L T^{2}}\right)\right], 1,1 / \bar{\lambda} L T^{2}\right)=0.674$
$\mathrm{f}=\min \left(1-0.5 \times\left(1-\mathrm{k}_{c}\right) \times\left[1-2 \times\left(\bar{\lambda}_{\text {LT }}-0.8\right)^{2}\right], 1\right)=1.000$
$\chi L T, \bmod =\min \left(\chi L T / f, 1,1 / \bar{\lambda}_{L T} T^{2}\right)=0.674$
$M_{\mathrm{b}, \mathrm{y}, \mathrm{Rd}}=\chi L T, \bmod \times \mathrm{W}_{\mathrm{pl} . \mathrm{y}} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{M} 1}=22.9 \mathrm{kNm}$
$M_{y, E d} / M_{b, y, R d}=0.212$

PASS - Design buckling resistance moment exceeds design bending moment
Check bending and axial force - Section 6.2.9
Bending and axial force check-eq.6.33 \& eq.6.34 $N_{y, l i m}=\min \left(0.25 \times N_{p l, R d}, 0.5 \times h_{w} \times \mathrm{t}_{\mathrm{w}} \times \mathrm{f}_{\mathrm{y}} / \gamma \mathrm{m} 0\right)=84.8 \mathrm{kN}$ $N_{\mathrm{Ed}} / \mathrm{N}_{\mathrm{y}, \mathrm{lim}}=\mathbf{0 . 0 7 1}$

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no.JP1524	
	Calcs for Portal Frame				Start page no./Revision 43	
	Calcs by AM	$\begin{aligned} & \hline \text { Calcs date } \\ & 10 / 01 / 2020 \end{aligned}$	Checked by JP	$\begin{aligned} & \text { Checked date } \\ & 10 / 01 / 2020 \end{aligned}$	Approved by JP	$\begin{array}{\|c\|} \hline \text { Approved date } \\ 10 / 01 / 2020 \end{array}$

Allowance need not be made for the effect of the axial force on the plastic resistance moment about the $y-y$ axis
Check combined bending and compression - Section 6.3.3
Equivalent uniform moment factors - Table B. 3
$\psi_{y}=0 \mathrm{kNm} /-4.856 \mathrm{kNm}=\mathbf{0 . 0 0 0}$
$\alpha_{y}=-2.428 \mathrm{kNm} /-4.856 \mathrm{kNm}=\mathbf{0 . 5 0 0}$
$\mathrm{C}_{\text {my }}=\max (0.6+0.4 \times \psi y)=\mathbf{0 . 6 0 0}$
$\psi\llcorner\tau=0 \mathrm{kNm} /-4.856 \mathrm{kNm}=\mathbf{0 . 0 0 0}$
α Lt $=-2.428 \mathrm{kNm} /-4.856 \mathrm{kNm}=\mathbf{0 . 5 0 0}$
$\mathrm{C}_{\text {mLT }}=\max (0.6+0.4 \times \psi \angle T)=\mathbf{0 . 6 0 0}$
Interaction factors $\mathbf{k}_{\mathbf{i j}}$ for members susceptible to torsional deformations - Table B. 2

Characteristic moment resistance
$M_{y, R k}=W_{\text {pl.y }} \times f_{y}=33.9 \mathrm{kNm}$
Characteristic moment resistance
Characteristic resistance to normal force
Interaction factors

Interaction formulae - eq 6.61 \& eq 6.62
$\mathrm{M}_{\mathrm{z}, \mathrm{Rk}}=\mathrm{W}_{\mathrm{pl} . \mathrm{z}} \times \mathrm{f}_{\mathrm{y}}=\mathbf{8 . 6} \mathrm{kNm}$
$N_{R k}=A \times f_{y}=558.8 \mathrm{kN}$
$\mathrm{K}_{\mathrm{yy}}=\mathrm{C}_{\mathrm{my}} \times\left(1+\min \left(\bar{\lambda}_{y}-0.2,0.8\right) \times \mathrm{NEd} /\left(\chi_{y} \times \mathrm{N}_{\mathrm{Rk}} / \gamma_{\mathrm{M} 1}\right)\right)=\mathbf{0 . 6 0 2}$
$\mathrm{k}_{z y}=1-0.1 \times \min \left(1, \bar{\lambda}_{z}\right) \times \mathrm{N}_{\mathrm{Ed}} /\left(\left(\mathrm{C}_{\mathrm{mLT}}-0.25\right) \times \chi_{z} \times \mathrm{N}_{\mathrm{Rk}} / \gamma_{\mathrm{M} 1}\right)=\mathbf{0 . 9 9 1}$
$N_{E d} /\left(\chi_{y} \times N_{R k} / \gamma M 1\right)+k_{y y} \times M_{y, E d} /\left(\chi L T \times M_{y, R k} / \gamma M_{1}\right)=\mathbf{0 . 1 4}$
$N_{E d} /\left(\chi_{z} \times N_{R k} / \gamma M 1\right)+k_{z y} \times M_{y, E d} /\left(\chi L T \times M_{y, R k} / \gamma M 1\right)=0.243$
PASS - Combined bending and compression checks are satisfied

Consider Combination 2-1.0G + 1.0Q + 1.0RQ (Service)

Check design 583 mm along span

Check y-y axis deflection - Section 7.2.1

Maximum deflection
Allowable deflection

Rafter 2 design

Section details
Section type
Steel grade - EN 10025-2:2004
Nominal thickness of element
Nominal yield strength
Nominal ultimate tensile strength
Modulus of elasticity
$\delta_{y}=0.2 \mathrm{~mm}$
$\delta_{y, \text { Allowable }}=$ Lm3_s1 $/ 180=15.6 \mathrm{~mm}$
$\delta_{y} / \delta_{y, \text { Allowable }}=\mathbf{0 . 0 1}$
PASS - Allowable deflection exceeds design deflection

UB $152 \times 89 \times 16$ (BS4-1)
S275
$\mathrm{t}_{\text {nom }}=\max \left(\mathrm{t}_{\mathrm{f},} \mathrm{t}_{\mathrm{w}}\right)=7.7 \mathrm{~mm}$
$\mathrm{f}_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{u}}=410 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}=\mathbf{2 1 0 0 0 0} \mathrm{N} / \mathrm{mm}^{2}$

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no.JP1524	
	Calcs for Portal Frame				Start page no./Revision 44	
	Calcs by AM	$\begin{aligned} & \hline \text { Calcs date } \\ & 10 / 01 / 2020 \end{aligned}$	Checked by JP	$\begin{aligned} & \hline \text { Checked date } \\ & 10 / 01 / 2020 \end{aligned}$	Approved by JP	$\begin{array}{\|c\|} \hline \text { Approved date } \\ 10 / 01 / 2020 \end{array}$

Lateral restraint

Both flanges have lateral restraint at supports only
Consider Combination 1-1.35G+1.5Q +1.5RQ (Strength)
Classification of cross sections - Section 5.5

$$
\varepsilon=\sqrt{ }\left[235 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{fy}\right]=0.92
$$

Internal compression parts subject to bending and compression - Table 5.2 (sheet 1 of 3)
Width of section
$\mathrm{c}=\mathrm{d}=121.8 \mathrm{~mm}$
$\alpha=\min \left(\left[h / 2+N_{E d} /\left(2 \times t_{w} \times f_{y}\right)-\left(t_{f}+r\right)\right] / c, 1\right)=0.515$
$c / t_{w}=27.1=29.3 \times \varepsilon<=396 \times \varepsilon /(13 \times \alpha-1) \quad$ Class 1

Outstand flanges - Table 5.2 (sheet 2 of 3)

Width of section

$$
\mathrm{c}=\left(\mathrm{b}-\mathrm{t}_{\mathrm{w}}-2 \times \mathrm{r}\right) / 2=\mathbf{3 4 . 5} \mathrm{mm}
$$

c / $\mathrm{tf}_{\mathrm{f}}=4.5=4.8 \times \varepsilon<=9 \times \varepsilon$
Class 1
Section is class 1
Check compression - Section 6.2.4
Design compression force
$\mathrm{N}_{\mathrm{Ed}}=4.2 \mathrm{kN}$
Design resistance of section - eq 6.10
$\mathrm{N}_{\mathrm{c}, \mathrm{Rd}}=\mathrm{N}_{\mathrm{pl}, \mathrm{Rd}}=\mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma \mathrm{m} 0=558.8 \mathrm{kN}$
$N_{\mathrm{Ed}} / \mathrm{N}_{\mathrm{c}, \mathrm{Rd}}=0.008$
PASS - Design compression resistance exceeds design compression
Slenderness ratio for y - y axis flexural buckling - Section 6.3.1.3
Critical buckling length
$L_{c r, y}=L_{m 4}{ }^{s} 1=2766 \mathrm{~mm}$
Critical buckling force
Slenderness ratio for buckling - eq 6.50
$\mathrm{N}_{\mathrm{cr}, \mathrm{y}}=\pi^{2} \times \mathrm{E} \times \mathrm{I}_{\mathrm{y}} / \mathrm{L}_{\mathrm{cr}, \mathrm{y}^{2}}=\mathbf{2 2 6 0 . 1} \mathrm{kN}$
$\bar{\lambda}_{y}=\sqrt{ }\left(\mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \mathrm{Ncr}_{\mathrm{cr}, \mathrm{y}}\right)=\mathbf{0 . 4 9 7}$
Check y-y axis flexural buckling resistance - Section 6.3.1.1

Buckling curve - Table 6.2
Imperfection factor - Table 6.1
Buckling reduction determination factor
Buckling reduction factor - eq 6.49
Design buckling resistance - eq 6.47
a
$\alpha_{y}=0.21$
$\phi y=0.5 \times\left(1+\alpha_{y} \times\left(\bar{\lambda}_{y}-0.2\right)+\bar{\lambda}_{y}{ }^{2}\right)=\mathbf{0 . 6 5 5}$
$\chi_{y}=\min \left(1 /\left(\phi_{y}+\sqrt{ }\left(\phi y^{2}-\bar{\lambda}_{y}{ }^{2}\right)\right), 1\right)=0.925$
$N_{b, y, R d}=\chi_{y} \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{m} 1}=517 \mathrm{kN}$
$\mathrm{N}_{\mathrm{Ed}} / \mathrm{N}_{\mathrm{b}, \mathrm{y}, \mathrm{Rd}}=\mathbf{0 . 0 0 8}$

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no. JP1524	
	Calcs for Portal Frame				Start page no./Revision 45	
	Calcs by AM	$\begin{aligned} & \text { Calcs date } \\ & 10 / 01 / 2020 \end{aligned}$	Checked by JP	$\begin{aligned} & \text { Checked date } \\ & 10 / 01 / 2020 \end{aligned}$	Approved by JP	$\begin{aligned} & \hline \text { Approved date } \\ & 10 / 01 / 2020 \end{aligned}$

PASS - Design buckling resistance exceeds design compression
Slenderness ratio for $\mathbf{z - z}$ axis flexural buckling - Section 6.3.1.3

Critical buckling length	$L_{c r, z}=L_{m 4 _ \text {s1_seg1 }}=\mathbf{2 7 6 6} \mathbf{m m}$
Critical buckling force	$N_{c r, z}=\pi^{2} \times E \times I_{z} / L_{c r, z}^{2}=\mathbf{2 4 3 . 1} \mathrm{kN}$
Slenderness ratio for buckling - eq 6.50	$\bar{\lambda}_{z}=\sqrt{ }\left(A \times f_{y} / N_{c r, z}\right)=\mathbf{1 . 5 1 6}$

Check z-z axis flexural buckling resistance - Section 6.3.1.1

Buckling curve - Table 6.2
Imperfection factor - Table 6.1
Buckling reduction determination factor
Buckling reduction factor - eq 6.49
Design buckling resistance - eq 6.47
b
$\alpha_{z}=0.34$
$\phi_{z}=0.5 \times\left(1+\alpha_{z} \times\left(\bar{\lambda}_{z}-0.2\right)+\bar{\lambda}_{z}{ }^{2}\right)=1.873$
$\chi_{z}=\min \left(1 /\left(\phi z+\sqrt{ }\left(\phi_{z}{ }^{2}-\bar{\lambda}_{z}{ }^{2}\right)\right), 1\right)=\mathbf{0 . 3 3 6}$
$N_{\mathrm{b}, \mathrm{z}, \mathrm{Rd}}=\chi_{z} \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{m} 1}=188 \mathrm{kN}$
$\mathrm{N}_{\mathrm{Ed}} / \mathrm{N}_{\mathrm{b}, \mathrm{z}, \mathrm{Rd}}=0.022$
PASS - Design buckling resistance exceeds design compression
Check torsional and torsional-flexural buckling - Section 6.3.1.4

Torsional buckling length
Distance from shear centre to centroid in y axis
Distance from shear centre to centroid in z axis
Radius of gyration
Elastic critical torsional buckling force
Torsion factor
Elastic critical torsional-flexural buckling force
$L_{c r, T}=L_{m 4 _ \text {_s1_seg1_R }}=\mathbf{2 7 6 6} \mathbf{m m}$
$\mathrm{y}_{0}=\mathbf{0 . 0} \mathrm{mm}$
$\mathrm{z}_{0}=\mathbf{0 . 0} \mathrm{mm}$
$\mathrm{i}_{0}=\sqrt{ }\left(\mathrm{iy}^{2}+\mathrm{i}_{\mathrm{z}}{ }^{2}\right)=\mathbf{6 7 . 4} \mathrm{mm}$
$\mathrm{N}_{\mathrm{cr}, \mathrm{T}}=1 / \mathrm{i}^{2} \times\left(\mathrm{G} \times \mathrm{It}_{\mathrm{t}}+\pi^{2} \times \mathrm{E} \times \mathrm{I}_{\mathrm{w}} /{\mathrm{Lcr}, \mathrm{T}^{2}}^{2}\right)=\mathbf{9 1 2 . 3} \mathrm{kN}$
$\beta \tau=1-(\mathrm{yo} / \mathrm{io})^{2}=1$

$$
N_{c r, T F}=N_{c r, y} /(2 \times \beta T) \times\left[1+N_{c r, T} / N_{c r, y}-\sqrt{ }\left[\left(1-N_{c r, T} / N_{c r, y}\right)^{2}+4 \times\left(y_{0} / \text { io }\right)^{2} \times N_{c r, T} / N_{c r, y}\right]\right]=\mathbf{9 1 2 . 3} \mathrm{kN}
$$

Elastic critical buckling force $\quad \mathrm{N}_{\mathrm{cr}}=\min \left(\mathrm{N}_{\mathrm{cr}, \mathrm{T},}, \mathrm{N}_{\mathrm{cr}, \mathrm{TF}}\right)=912.3 \mathrm{kN}$
Slenderness ratio for torsional buckling - eq $6.52 \quad \bar{\lambda}_{T}=\sqrt{ }\left[\mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \mathrm{N}_{\text {cr }}\right]=\mathbf{0 . 7 8 3}$
Design resistance for torsional and torsional-flexural buckling-Section 6.3.1.1

Buckling curve - Table 6.2
Imperfection factor - Table 6.1
Buckling reduction determination factor
Buckling reduction factor - eq 6.49
Design buckling resistance - eq 6.47

Check design at start of span

Check shear - Section 6.2.6
Height of web

Design shear force
Shear area - cl 6.2.6(3)
Design shear resistance - cl 6.2.6(2)

Check bending moment - Section 6.2.5
Design bending moment
b
$\alpha \mathrm{T}=0.34$
$\phi T=0.5 \times\left(1+\alpha T \times\left(\bar{\lambda}_{T}-0.2\right)+\bar{\lambda}^{2}{ }^{2}\right)=0.905$
$\chi^{\top}=\min \left(1 /\left(\phi T+\sqrt{ }\left(\phi T^{2}-\bar{\lambda} T^{2}\right)\right), 1\right)=\mathbf{0 . 7 3 5}$
$\mathrm{N}_{\mathrm{b}, \mathrm{T}, \mathrm{Rd}}=\chi \mathrm{T} \times \mathrm{A} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{M} 1}=\mathbf{4 1 0 . 8} \mathrm{kN}$
$N_{E d} / N_{b, T, R d}=0.01$
PASS - Design buckling resistance exceeds design compression
$h_{w}=h-2 \times \mathrm{t}_{\mathrm{f}}=137 \mathrm{~mm} \quad \eta=1.000$
$h_{w} / t_{w}=30.4=32.9 \times \varepsilon / \eta<72 \times \varepsilon / \eta$
Shear buckling resistance can be ignored
$\mathrm{V}_{\mathrm{y}, \mathrm{Ed}}=3.9 \mathrm{kN}$
$A_{v}=\max \left(A-2 \times b \times t_{f}+\left(t_{w}+2 \times r\right) \times t_{f}, \eta \times h_{w} \times t_{w}\right)=818 \mathrm{~mm}^{2}$
$V_{c, y, R d}=V_{p l, y, R d}=A_{v} \times\left(f_{y} / \sqrt{ }(3)\right) / \gamma m 0=129.8 \mathrm{kN}$
$\mathrm{V}_{\mathrm{y}, \mathrm{Ed}} / \mathrm{V}_{\mathrm{c}, \mathrm{y}, \mathrm{Rd}}=0.03$
PASS - Design shear resistance exceeds design shear force
$\mathrm{M}_{\mathrm{y}, \mathrm{Ed}}=\mathbf{6 . 5} \mathrm{kNm}$

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no. JP1524	
	Calcs for Portal Frame				Start page no./Revision 46	
	Calcs by AM	$\begin{aligned} & \text { Calcs date } \\ & 10 / 01 / 2020 \end{aligned}$	Checked by JP	$\begin{aligned} & \text { Checked date } \\ & 10 / 01 / 2020 \end{aligned}$	Approved by JP	$\begin{aligned} & \hline \text { Approved date } \\ & 10 / 01 / 2020 \end{aligned}$

Design bending resistance moment - eq 6.13
$M_{c, y, R d}=M_{p l, y, R d}=W_{\text {pl. } . y} \times f_{y} / \gamma \mathrm{Mm}_{0}=33.9 \mathrm{kNm}$
$M_{\mathrm{y}, \mathrm{Ed}} / M_{c, \mathrm{y}, \mathrm{Rd}}=\mathbf{0 . 1 9 2}$
PASS - Design bending resistance moment exceeds design bending moment
Slenderness ratio for lateral torsional buckling
Correction factor - For cantilever beams
$\mathrm{k}_{\mathrm{c}}=1$
$C_{1}=1 / k_{c}{ }^{2}=1$
Poissons ratio
$v=0.3$
Shear modulus
$G=E /[2 \times(1+v)]=80769 \mathrm{~N} / \mathrm{mm}^{2}$
Unrestrained effective length
$L=1.0 \times$ Lm4_s1_seg1_T $=2766 \mathrm{~mm}$
Elastic critical buckling moment
$M_{c r}=C_{1} \times \pi^{2} \times E \times I_{z} / L^{2} \times \sqrt{ }\left(I_{w} / I_{z}+L^{2} \times G \times I_{t} /\left(\pi^{2} \times E \times I_{z}\right)\right)=\mathbf{3 1 . 8}$
kNm
Slenderness ratio for lateral torsional buckling
Limiting slenderness ratio
$\bar{\lambda}_{L T}=\sqrt{ }\left(W_{\text {pl.y }} \times \mathrm{f}_{\mathrm{y}} / \mathrm{Mcr}_{\text {cr }}\right)=1.033$
$\bar{\lambda}_{L T}, 0=\mathbf{0 . 4}$
$\bar{\lambda}_{L T}>\bar{\lambda}_{L T, O}$-Lateral torsional buckling cannot be ignored

Check buckling resistance - Section 6.3.2.1

Buckling curve - Table 6.5
Imperfection factor - Table 6.3
b

Correction factor for rolled sections
$\alpha \mathrm{LT}=0.34$

LTB reduction determination factor
$\beta=0.75$

LTB reduction factor - eq 6.57
$\phi L T=0.5 \times\left[1+\alpha L T \times\left(\bar{\lambda}_{L T}-\bar{\lambda}_{L T, 0}\right)+\beta \times \bar{\lambda}_{L T^{2}}\right]=1.008$
$\chi L T=\min \left(1 /\left[\phi L T+\sqrt{ }\left(\phi L T^{2}-\beta \times \bar{\lambda} L T^{2}\right)\right], 1,1 / \bar{\lambda} L T^{2}\right)=\mathbf{0 . 6 7 9}$
Modification factor
$\mathrm{f}=\min \left(1-0.5 \times\left(1-\mathrm{k}_{\mathrm{c}}\right) \times\left[1-2 \times\left(\bar{\lambda}_{L \tau}-0.8\right)^{2}\right], 1\right)=1.000$
Modified LTB reduction factor - eq 6.58
$\chi L T, \bmod =\min \left(\chi L T / f, 1,1 / \bar{\lambda} L T^{2}\right)=0.679$
Design buckling resistance moment - eq 6.55
$M_{b, y, R d}=\chi L T, \bmod \times W_{\text {pl. }} \times f_{y} / \gamma \mathrm{M}_{1}=\mathbf{2 3} \mathrm{kNm}$
$M_{y, E d} / M_{b, y, R d}=0.283$
PASS - Design buckling resistance moment exceeds design bending moment
Check bending and axial force - Section 6.2.9
Bending and axial force check - eq. 6.33 \& eq.6.34 $N_{y, l i m}=\min \left(0.25 \times N_{p l, R d}, 0.5 \times h_{w} \times \mathrm{t}_{\mathrm{w}} \times \mathrm{f}_{\mathrm{y}} / \gamma \mathrm{m} 0\right)=84.8 \mathrm{kN}$ $N_{\text {Ed }} / N_{\text {y, lim }}=0.05$

Allowance need not be made for the effect of the axial force on the plastic resistance moment about the y - \boldsymbol{y} axis

Check combined bending and compression - Section 6.3.3

Equivalent uniform moment factors - Table B. 3
$\psi_{y}=-4.856 \mathrm{kNm} / 6.51 \mathrm{kNm}=\mathbf{- 0 . 7 4 6}$
$\alpha_{y}=1.002 \mathrm{kNm} / 6.51 \mathrm{kNm}=\mathbf{0 . 1 5 4}$
$\mathrm{C}_{\text {my }}=\max \left(0.2+0.8 \times \alpha_{y}, 0.4\right)=\mathbf{0 . 4 0 0}$
ψ Lт $=-4.856 \mathrm{kNm} / 6.51 \mathrm{kNm}=\mathbf{- 0 . 7 4 6}$
α Lт $=1.002 \mathrm{kNm} / 6.51 \mathrm{kNm}=\mathbf{0 . 1 5 4}$
$C_{\text {mLt }}=\max (0.2+0.8 \times \alpha L T, 0.4)=0.400$
Interaction factors $\mathbf{k}_{\mathbf{i j}}$ for members susceptible to torsional deformations - Table B. 2

Characteristic moment resistance
Characteristic moment resistance
Characteristic resistance to normal force
Interaction factors

Interaction formulae - eq 6.61 \& eq 6.62
$M_{y, R k}=W_{\text {pl. }} \times f_{y}=33.9 \mathrm{kNm}$
$M_{z, R k}=W_{\text {pl.z }} \times \mathrm{f}_{\mathrm{y}}=8.6 \mathrm{kNm}$
$N_{R k}=A \times f_{y}=558.8 \mathrm{kN}$
$\mathrm{k}_{\mathrm{yy}}=\mathrm{C}_{m y} \times\left(1+\min \left(\bar{\lambda}_{y}-0.2,0.8\right) \times \mathrm{N}_{\mathrm{Ed}} /\left(\chi_{y} \times \mathrm{N}_{\mathrm{Rk}} / \gamma_{\mathrm{m} 1}\right)\right)=\mathbf{0 . 4 0 1}$
$\mathrm{k}_{\mathrm{zy}}=1-0.1 \times \min \left(1, \lambda_{z}\right) \times \mathrm{Ned} /\left(\left(\mathrm{C}_{\text {mLt }}-0.25\right) \times \chi_{z} \times \mathrm{N}_{\mathrm{Rk}} / \gamma \mathrm{m}_{1}\right)=0.985$
$N_{E d} /\left(\chi_{y} \times N_{R k} / \gamma M_{1}\right)+k_{y y} \times M_{y, E d} /\left(\chi_{L T} \times M_{y, R k} / \gamma_{M 1}\right)=\mathbf{0 . 1 2 1}$
$N_{E d} /\left(\chi_{z} \times N_{R k} / \gamma M_{1}\right)+k_{z y} \times M_{y, E d} /\left(\chi L T \times M_{y, R k} / \gamma M 1\right)=0.301$

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no. JP1524 Start page no./Revision 47	
	Calcs for Portal Frame					
	Calcs by AM	$\begin{aligned} & \text { Calcs date } \\ & 10 / 01 / 2020 \end{aligned}$	Checked by JP	$\begin{array}{\|l\|} \hline \text { Checked date } \\ 10 / 01 / 2020 \end{array}$	Approved by JP	$\begin{aligned} & \text { Approved date } \\ & 10 / 01 / 2020 \end{aligned}$

PASS - Combined bending and compression checks are satisfied

Check design at end of span

Check shear - Section 6.2.6
Height of web

$$
\begin{aligned}
& h_{w}=h-2 \times t_{f}=137 \mathrm{~mm} \quad \eta=1.000 \\
& h_{w} / t_{w}=30.4=32.9 \times \varepsilon / \eta<72 \times \varepsilon / \eta
\end{aligned}
$$

Shear buckling resistance can be ignored
Design shear force
$V_{y, E d}=4.4 \mathrm{kN}$
Shear area - cl 6.2.6(3)
Design shear resistance - cl 6.2.6(2)
$A_{v}=\max \left(A-2 \times b \times t_{f}+\left(t_{w}+2 \times r\right) \times t f, \eta \times h_{w} \times t_{w}\right)=818 \mathrm{~mm}^{2}$
$V_{c, y, R d}=V_{p l, y, R d}=A_{v} \times\left(f_{y} / \sqrt{ }(3)\right) / \gamma \mathrm{mo}=129.8 \mathrm{kN}$
$\mathrm{V}_{\mathrm{y}, \mathrm{Ed}} / \mathrm{V}_{\mathrm{c}, \mathrm{y}, \mathrm{Rd}}=0.034$
PASS - Design shear resistance exceeds design shear force
Check bending moment - Section 6.2.5
Design bending moment
Design bending resistance moment - eq 6.13
$M_{y, E d}=4.9 \mathrm{kNm}$
$M_{c, y, R d}=M_{p l, y, R d}=W_{\text {pl. }} \times \mathrm{f}_{\mathrm{y}} / \gamma \mathrm{mo}=33.9 \mathrm{kNm}$
$M_{y, E d} / M_{c, y, R d}=0.143$
PASS - Design bending resistance moment exceeds design bending moment
Slenderness ratio for lateral torsional buckling
Correction factor - For cantilever beams
$\mathrm{k}_{\mathrm{c}}=1$
$C_{1}=1 / k c^{2}=1$
Poissons ratio
$v=0.3$
Shear modulus
$\mathrm{G}=\mathrm{E} /[2 \times(1+v)]=80769 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{L}=1.0 \times$ Lm4_s1_seg1_B $=\mathbf{2 7 6 6} \mathbf{~ m m}$
$M_{c r}=C_{1} \times \pi^{2} \times E \times I_{z} / L^{2} \times \sqrt{ }\left(I_{w} / I_{z}+L^{2} \times G \times I_{t} /\left(\pi^{2} \times E \times I_{z}\right)\right)=\mathbf{3 1 . 8}$
kNm
Slenderness ratio for lateral torsional buckling
Limiting slenderness ratio
$\bar{\lambda}_{L T}=\sqrt{ }\left(W_{\text {pl.y }} \times \mathrm{f}_{\mathrm{y}} / \mathrm{Mcr}_{\mathrm{cr}}\right)=1.033$
$\bar{\lambda}_{\llcorner T, 0}=\mathbf{0 . 4}$
$\bar{\lambda}_{L T}>\bar{\lambda}_{L T, O}$-Lateral torsional buckling cannot be ignored

Check buckling resistance - Section 6.3.2.1

Buckling curve - Table 6.5
Imperfection factor - Table 6.3
Correction factor for rolled sections
LTB reduction determination factor
LTB reduction factor - eq 6.57
Modification factor
Modified LTB reduction factor - eq 6.58
Design buckling resistance moment - eq 6.55
b
$\alpha L T=0.34$
$\beta=0.75$
$\phi L T=0.5 \times\left[1+\alpha L T \times\left(\bar{\lambda}_{L T}-\bar{\lambda} L T, 0\right)+\beta \times \bar{\lambda} L T^{2}\right]=1.008$
$\chi L T=\min \left(1 /\left[\phi L T+\sqrt{ }\left(\phi L T^{2}-\beta \times \bar{\lambda}_{L T^{2}}\right)\right], 1,1 / \bar{\lambda} L T^{2}\right)=0.679$
$\mathrm{f}=\min \left(1-0.5 \times\left(1-\mathrm{k}_{\mathrm{c}}\right) \times\left[1-2 \times\left(\bar{\lambda}_{\text {LT }}-0.8\right)^{2}\right], 1\right)=\mathbf{1 . 0 0 0}$
$\chi L T, \bmod =\min \left(\chi L T / f, 1,1 / \bar{\lambda} L T^{2}\right)=0.679$
$M_{b, y, R d}=\chi L T, \bmod \times W_{\text {pl. }} \times \mathrm{f}_{\mathrm{y}} / \gamma_{\mathrm{M} 1}=\mathbf{2 3} \mathrm{kNm}$
$M_{y, E d} / M_{b, y, R d}=0.211$

PASS - Design buckling resistance moment exceeds design bending moment
Check combined bending and compression - Section 6.3.3
Equivalent uniform moment factors - Table B. 3
$\psi_{y}=-4.856 \mathrm{kNm} / 6.51 \mathrm{kNm}=\mathbf{- 0 . 7 4 6}$
$\alpha_{y}=1.002 \mathrm{kNm} / 6.51 \mathrm{kNm}=\mathbf{0 . 1 5 4}$
$C_{\text {my }}=\max \left(0.2+0.8 \times \alpha_{y}, 0.4\right)=\mathbf{0 . 4 0 0}$
$\psi\llcorner\tau=-4.856 \mathrm{kNm} / 6.51 \mathrm{kNm}=\mathbf{- 0 . 7 4 6}$

Structural Calculation Ltd Mobbs Wood Farm Ansty CV7 9JN	Project Brook House				Job no. JP1524	
	Calcs for Portal Frame				Start page no./Revision 48	
	Calcs by AM	Calcs date 10/01/2020	Checked by JP	Checked date 10/01/2020	Approved by JP	Approved date 10/01/2020

$\alpha L T=1.002 \mathrm{kNm} / 6.51 \mathrm{kNm}=\mathbf{0 . 1 5 4}$
$C_{m L T}=\max (0.2+0.8 \times \alpha L T, 0.4)=0.400$
Interaction factors $k_{i j}$ for members susceptible to torsional deformations - Table B. 2

Characteristic moment resistance
Characteristic moment resistance
Characteristic resistance to normal force
Interaction factors

Interaction formulae - eq 6.61 \& eq 6.62
$M_{y, R k}=W_{\text {pl.y }} \times f_{y}=33.9 \mathrm{kNm}$
$M_{z, R k}=W_{\text {pl.z }} \times \mathrm{f}_{\mathrm{y}}=8.6 \mathrm{kNm}$
$N_{R k}=A \times f_{y}=558.8 \mathrm{kN}$
$\mathrm{k}_{\mathrm{yy}}=\mathrm{C}_{\mathrm{my}} \times\left(1+\min \left(\bar{\lambda}_{y}-0.2,0.8\right) \times \mathrm{N}_{\mathrm{Ed}} /\left(\chi_{y} \times \mathrm{N}_{\mathrm{Rk}} / \gamma_{\mathrm{M} 1}\right)\right)=\mathbf{0 . 4 0 1}$
$\mathrm{k}_{z y}=1-0.1 \times \min \left(1, \bar{\lambda}_{z}\right) \times \mathrm{N}_{\mathrm{Ed}} /\left(\left(\mathrm{C}_{\mathrm{mLT}}-0.25\right) \times \chi_{z} \times \mathrm{N}_{\mathrm{Rk}} / \gamma_{\mathrm{M} 1}\right)=0.984$
$\mathrm{NEd}_{\mathrm{E}} /\left(\chi \mathrm{y} \times \mathrm{N}_{\mathrm{Rk}} / \gamma \mathrm{M} 1\right)+\mathrm{k}_{\mathrm{yy}} \times \mathrm{M}_{\mathrm{y}, \mathrm{Ed} /\left(\chi L \mathrm{~T} \times \mathrm{M}_{\mathrm{y}, \mathrm{Rk}} / \gamma \mathrm{M} 1\right)=0.093 .}$
$\mathrm{NEd}_{\mathrm{Ed}} /\left(\chi z \times \mathrm{N}_{\mathrm{Rk}} / \gamma \mathrm{M}_{1}\right)+\mathrm{k}_{\mathrm{z}} \times \mathrm{M}_{\mathrm{y}, \mathrm{Ed}} /\left(\chi L T \times \mathrm{M}_{\mathrm{y}, \mathrm{Rk}} / \gamma \mathrm{M} 1\right)=0.231$
PASS - Combined bending and compression checks are satisfied

Consider Combination 2-1.0G + 1.0Q + 1.0RQ (Service)
Check design at start of span
Check y-y axis deflection - Section 7.2.1
Maximum deflection
Allowable deflection
$\delta_{y}=0.2 \mathrm{~mm}$
$\delta_{y, A l l o w a b l e}=$ Lm4_s1 $/ 180=15.4 \mathrm{~mm}$
$\delta_{y} / \delta_{y, \text { Allowable }}=\mathbf{0 . 0 1 4}$
PASS - Allowable deflection exceeds design deflection

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section Seam				Sheet no./rev49	
	Calcs by AM	date 10/01/2020	Chk'd by JP	date 10/01/2020	App'd by JP	$\begin{aligned} & \text { date } \\ & 10 / 01 / 2020 \end{aligned}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section			Bearing Beam B16	Sheet no./rev	
	Calcs by AM	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { date } \\ 10 / 01 / 2020 \end{array}$	Chk'd by JP	$\begin{array}{\|l} \mid \text { date } \\ 10 / 01 / 2020 \end{array}$	App'd by JP	$\begin{array}{\|l} \text { date } \\ \text { 10/01/2020 } \end{array}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section				Sheet no./rev51	
	Calcs by AM	$\begin{aligned} & \hline \text { date } \\ & 10 / 01 / 2020 \end{aligned}$	Chk'd by JP	date 10/01/2020	App'd by JP	date 10/01/2020

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook Hous				Job no. JP1524	
	Section Bearing Beam B17				Sheet no./rev52	
	Calcs by AM	$\begin{aligned} & \text { date } \\ & \text { 10/01/2020 } \end{aligned}$	Chk'd by JP	date 10/01/2020	App'd by JP	$\begin{array}{\|l} \text { date } \\ 10 / 01 / 2020 \end{array}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section				Sheet no./rev	
	Calcs by AM	$\begin{array}{\|l\|} \hline \text { date } \\ 10 / 01 / 2020 \end{array}$	Chk'd by JP	$\begin{aligned} \hline \text { date } \\ 10 / 01 / 2020 \end{aligned}$	App'd by JP	$\begin{aligned} & \hline \text { date } \\ & \quad 10 / 01 / 2020 \end{aligned}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section			Bearing Beam B18	Sheet no./rev 54	
	Calcs by AM	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { date } \\ 10 / 01 / 2020 \end{array}$	Chk'd by JP	$\begin{array}{\|l} \mid \text { date } \\ 10 / 01 / 2020 \end{array}$	App'd by JP	$\begin{array}{\|l} \text { date } \\ \text { 10/01/2020 } \end{array}$

Structural Calculation Ltd Mobbs Wood Farm, Coventry, CV7 9JN	Project Brook House				Job no. JP1524	
	Section				Sheet 58	
	Calcs by AM	$\begin{aligned} & \text { date } \\ & 10 / 01 / 2020 \end{aligned}$	Chk'd by JP	date 10/01/2020	App'd by JP	date 10/01/2020

