
Appendix C Street Lighting Layout and Design

. THIS IS AN AUTOCAD DRAWING AND SHOULD NOT

. THE EXISTING LOCATIONS ARE APPROXIMATE AND

THEIR ACCURACY CANNOT BE GUARANTEED.

3. ALL DIMENSIONS IN METRES UNLESS OTHERWISE

4. THIS DRAWING MUST NOT BE SCALED.

5. DRAWING TO BE READ IN CONJUNCTION WITH OTHER CONTRACT DOCUMENTS.

6. COLUMN LOCATIONS TO BE CHECKED AGAINST

COMPETENT ENGINEER. 7. CONTRACTOR SHOULD SATISFY THEMSELVES THAT ANY UTILITY DRAWINGS AFFECTING THE SCHEME

8. ALL LIGHTING INSTALLATIONS AND EQUIPMENT TO BE TO KENT COUNTY COUNCIL ADOPTABLE STANDARDS. REFERENCE SHOULD BE MADE TO KENT COUNTY COUNCIL "STREET LIGHTING LIST OF

APPROVED APPARATUS". 9. COLUMNS ARE TO BE POSITIONED AT THE BACK OF THE VERGE/FOOTWAY UNLESS SPECIFIED ON THE DRAWING. NO CLOSER THAN 800MM FROM THE

KERB LINE TO THE FACE OF THE COLUMN. 10. NO COLUMNS IN SHARED SPACES.

11. COLUMN NUMBERING SHOWN IS FOR REFERENCE PURPOSES ONLY, FINAL NUMBERING SHOULD BE AGREED WITH KENT COUNTY COUNCIL BEFORE

12. CONTROL: ALL LANTERNS TO BE FITTED WITH 7 PIN NEMA SOCKET AND BE CONTROLLED BY CMS

[TELEMATICS WIRELESS] 13. SECONDARY ISOLATOR: CHARLES ENDIRECT

DESCRIPTION

PROPOSED 8.0M GALVANISED STEEL ROAD LIGHTING COLUMN TO KCC COASTAL SPECIFICATION AND POST TOP MOUNTED CU PHOSCO P863 LANTERN WITH 32 LED [CLO], 4000K, F0600mA DRIVER, 60W, OPTIC C2, 7.70KLM OUTPUT. LANTERN TO BE INSTALLED AT 5 DEGREES AND CONTROLLED BY CMS (SEE NOTE 12)

TO BE INSTALLED AS PART OF ADJACENT S278 SCHEME.

25 IDNO-N EXISTING IDNO SUPPLY - GTC

1 DCU PROPOSED DATA COLLECTION UNIT TO BE INSTALLED ON LIGHTING COLUMN

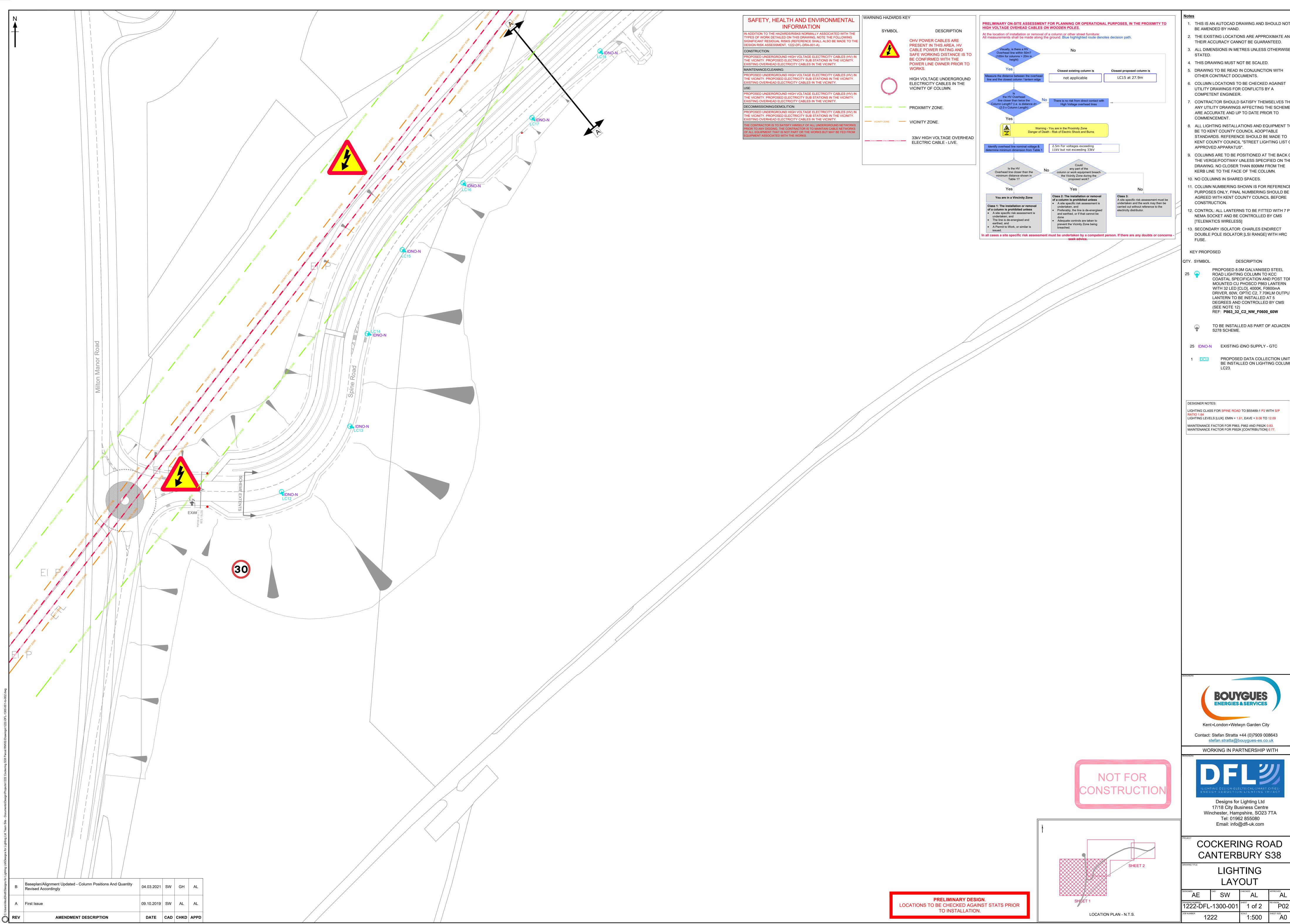
LIGHTING CLASS FOR SPINE ROAD TO BS5489-1 P2 WITH S/P LIGHTING LEVELS [LUX]: EMIN = 1.61, EAVE = 8.06 TO 12.09

ENERGIES & SERVICES

Kent •London •Welwyn Garden City

Contact: Stefan Stratta +44 (0)7909 008643 stefan.stratta@bouygues-es.co.uk

WORKING IN PARTNERSHIP WITH


Designs for Lighting Ltd 17/18 City Business Centre Winchester, Hampshire, SO23 7TA

COCKERING ROAD

CANTERBURY S38 LIGHTING

LAYOUT

SW 1222-DFL-1300-001 1 of 2 A0 1:500

. THIS IS AN AUTOCAD DRAWING AND SHOULD NOT

. THE EXISTING LOCATIONS ARE APPROXIMATE AND

THEIR ACCURACY CANNOT BE GUARANTEED.

3. ALL DIMENSIONS IN METRES UNLESS OTHERWISE

4. THIS DRAWING MUST NOT BE SCALED.

5. DRAWING TO BE READ IN CONJUNCTION WITH OTHER CONTRACT DOCUMENTS.

6. COLUMN LOCATIONS TO BE CHECKED AGAINST

COMPETENT ENGINEER. 7. CONTRACTOR SHOULD SATISFY THEMSELVES THAT ANY UTILITY DRAWINGS AFFECTING THE SCHEME

8. ALL LIGHTING INSTALLATIONS AND EQUIPMENT TO BE TO KENT COUNTY COUNCIL ADOPTABLE STANDARDS. REFERENCE SHOULD BE MADE TO KENT COUNTY COUNCIL "STREET LIGHTING LIST OF

APPROVED APPARATUS". 9. COLUMNS ARE TO BE POSITIONED AT THE BACK OF THE VERGE/FOOTWAY UNLESS SPECIFIED ON THE DRAWING. NO CLOSER THAN 800MM FROM THE

KERB LINE TO THE FACE OF THE COLUMN. 10. NO COLUMNS IN SHARED SPACES.

11. COLUMN NUMBERING SHOWN IS FOR REFERENCE PURPOSES ONLY, FINAL NUMBERING SHOULD BE AGREED WITH KENT COUNTY COUNCIL BEFORE

12. CONTROL: ALL LANTERNS TO BE FITTED WITH 7 PIN NEMA SOCKET AND BE CONTROLLED BY CMS

[TELEMATICS WIRELESS] 13. SECONDARY ISOLATOR: CHARLES ENDIRECT

DESCRIPTION

PROPOSED 8.0M GALVANISED STEEL ROAD LIGHTING COLUMN TO KCC COASTAL SPECIFICATION AND POST TOP MOUNTED CU PHOSCO P863 LANTERN WITH 32 LED [CLO], 4000K, F0600mA DRIVER, 60W, OPTIC C2, 7.70KLM OUTPUT. LANTERN TO BE INSTALLED AT 5 DEGREES AND CONTROLLED BY CMS (SEE NOTE 12)

TO BE INSTALLED AS PART OF ADJACENT S278 SCHEME.

25 IDNO-N EXISTING IDNO SUPPLY - GTC

1 DCU PROPOSED DATA COLLECTION UNIT TO BE INSTALLED ON LIGHTING COLUMN

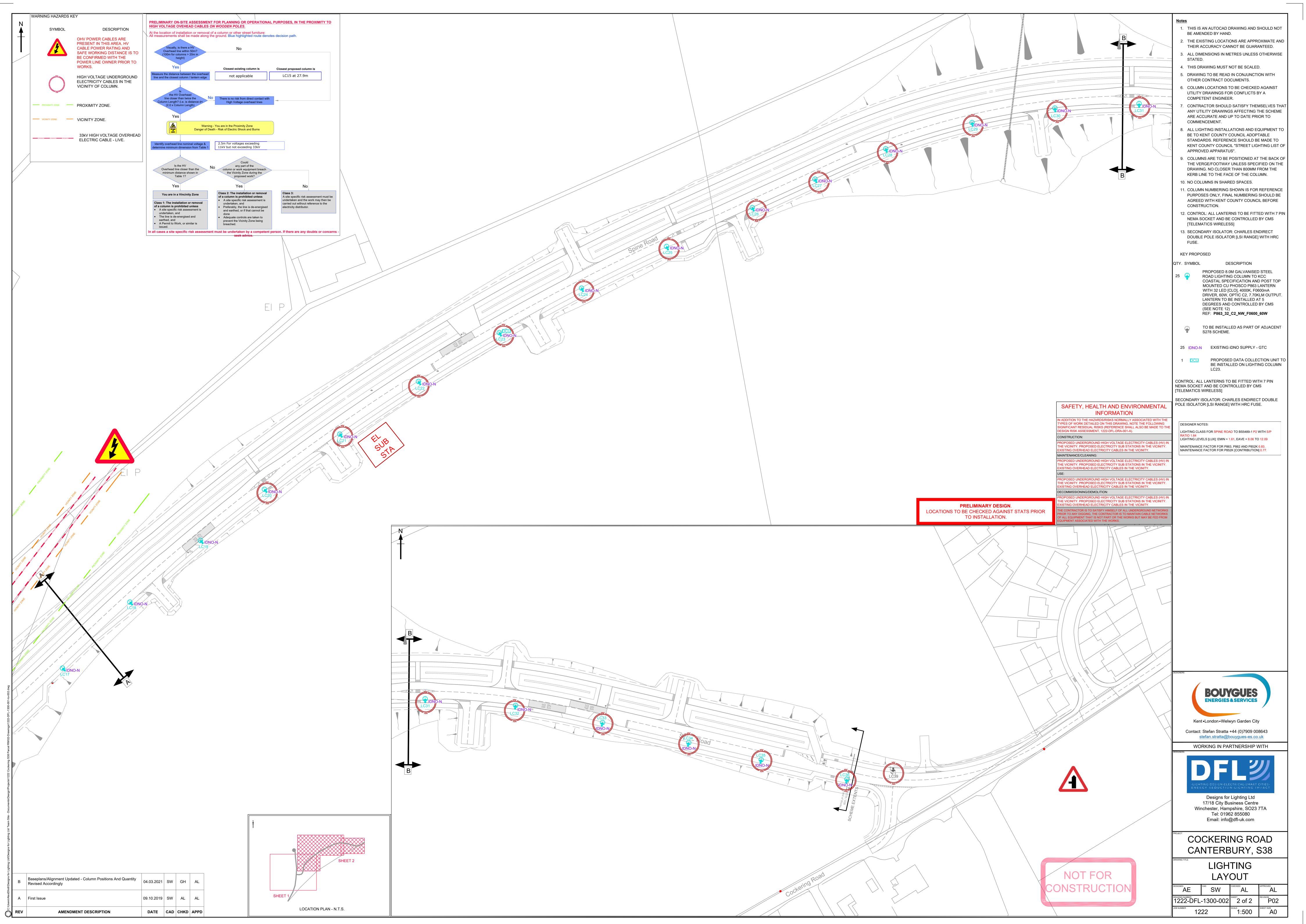
LIGHTING CLASS FOR SPINE ROAD TO BS5489-1 P2 WITH S/P LIGHTING LEVELS [LUX]: EMIN = 1.61, EAVE = 8.06 TO 12.09

ENERGIES & SERVICES

Kent •London •Welwyn Garden City

Contact: Stefan Stratta +44 (0)7909 008643 stefan.stratta@bouygues-es.co.uk

WORKING IN PARTNERSHIP WITH


Designs for Lighting Ltd 17/18 City Business Centre Winchester, Hampshire, SO23 7TA

COCKERING ROAD

CANTERBURY S38 LIGHTING

LAYOUT

SW 1222-DFL-1300-001 1 of 2 A0 1:500

DATE: 2 March 2021

DESIGNER: F Wolcz **PROJECT No:** 1222

PROJECT NAME: Cockering Road S38

Location: Cockering Road, Thanington, Kent Environmental Zone: E2

Design Class [Spine Road]:P2 with S/P ratio 1.64 [Required Illuminance levels]

(lux)

Eav min Èav max Emin 8.06 12.09 1.61

1222-DFL-LC-001 B

PREPARED BY: Designs for Lighting Ltd

17 City Business Centre

Hyde Street Winchester SO23 7TA

E-mail: alex@dfl-uk.com

Website: www.Designsforlighting.co.uk

Twitter: @Designs4Light

DATE: 2 March 2021

DESIGNER:

F Wolcz

PROJECT No: 1222 PROJECT NAME: Cockering Road S38

Layout Report

General Data

Dimensions in Metres Angles in Degrees

Calculation Grids

ID	Grid Name	Х	Υ	X' Length	Y' Length	X' Spacing	Y' Spacing
1	Grid 1 - Class P2	612188.00	155737.00	325.00	375.00	1.50	1.50
2	Grid 2 - Class P2	612513.00	156023.00	325.00	250.00	1.50	1.50
3	Grid 3 - Class P2	612838.00	156132.19	374.00	210.00	1.50	1.50

Luminaires

Luminaire B Data

Supplier	C U Phosco						
Туре	P863-32-C2-NW-F0600-60W						
Lamp(s)	740P NW						
Lamp Flux (klm)	7.70						
File Name	P863-32-C2-NW-F0600-60W.ies						
Maintenance Factor	0.83						
Lum. Int. Class	G5						
Lamp S/P Ratio	1.64						
No. in Project	25						

Luminaire M Data

Supplier	C U Phosco						
Туре	P863-32-R3-NW-F0400-41W						
Lamp(s)	740P NW						
Lamp Flux (klm)	5.19						
File Name	P863-32-R3-NW-F0400-41W.ies						
Maintenance Factor	0.83						
Lum. Int. Class	G3						
Lamp S/P Ratio	1.64						
No. in Project	1						

Luminaire N Data

Supplier	C U Phosco						
Туре	P863-32-C2-NW-F0600-60W						
Lamp(s)	740P NW						
Lamp Flux (klm)	7.70						
File Name	P863-32-C2-NW-F0600-60W.ies						
Maintenance Factor	0.83						
Lum. Int. Class	G5						
Lamp S/P Ratio	1.64						
No. in Project	1						

Layout

ID	Туре	Х	Y	Height	Angle	Tilt	Cant	Out-	Target	Target	Target
								reach	Χ	Y	Z
7	В	612274.88	155803.79	8.00	113.00	5.00	0.00	0.45			
8	В	612306.48	155834.14	8.00	158.00	5.00	0.00	0.45			
9	В	612314.37	155875.99	8.00	163.00	5.00	0.00	0.45			
10	В	612329.95	155913.42	8.00	150.00	5.00	0.00	0.45			
11	В	612357.09	155943.31	8.00	134.00	5.00	0.00	0.45			
12	В	612388.16	155972.68	8.00	136.00	5.00	0.00	0.45			
13	В	612418.75	156002.69	8.00	137.00	5.00	0.00	0.45			
14	В	612450.86	156030.68	8.00	130.00	5.00	0.00	0.45			

DATE: 2 March 2021

DESIGNER:

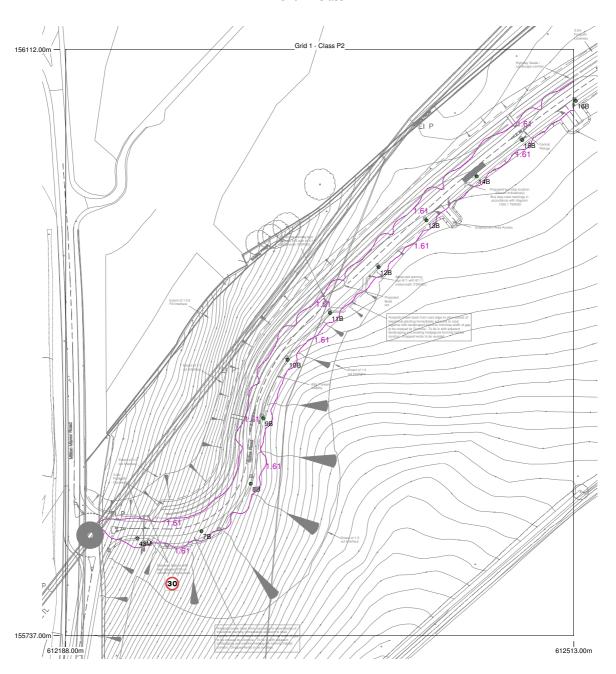
F Wolcz

PROJECT No: 1222 PROJECT

PROJECT NAME: Cockering Road S38

Layout Continued

ID	Туре	х	Y	Height	Angle	Tilt	Cant	Out-	Target	Target	Target
								reach	X	Y	Z
15	В	612479.91	156053.93	8.00	128.00	5.00	0.00	0.45			
16	В	612514.18	156079.08	8.00	124.00	5.00	0.00	0.45			
17	В	612549.90	156102.93	8.00	122.00	5.00	0.00	0.45			
18	В	612586.65	156125.13	8.00	124.00	5.00	0.00	0.45			
19	В	612623.97	156145.33	8.00	116.00	5.00	0.00	0.45			
20	N	613090.12	156199.01	8.00	264.00	5.00	0.00	0.45			
21	В	612662.68	156164.30	8.00	116.00	5.00	0.00	0.45			
22	В	612701.69	156181.95	8.00	115.00	5.00	0.00	0.45			
23	В	612730.21	156194.94	8.00	115.00	5.00	0.00	0.45			
24	В	612762.27	156208.70	8.00	109.00	5.00	0.00	0.45			
25	В	612801.38	156220.56	8.00	102.00	5.00	0.00	0.45			
27	В	612838.98	156227.14	8.00	98.00	5.00	0.00	0.45			
28	В	612877.13	156229.16	8.00	91.00	5.00	0.00	0.45			
29	В	612918.04	156226.20	8.00	81.00	5.00	0.00	0.45			
30	В	612996.72	156209.27	8.00	77.00	5.00	0.00	0.45			
31	В	612957.50	156218.44	8.00	77.00	5.00	0.00	0.45			
32	В	613029.74	156201.50	8.00	79.00	5.00	0.00	0.45			
33	В	613068.74	156192.59	8.00	77.00	5.00	0.00	0.45			
43	М	612233.92	155799.32	10.00	85.00	0.00	0.00	0.45			


DESIGNER: F Wolcz

PROJECT NAME: Cockering Road S38

Horizontal Illuminance (lux)

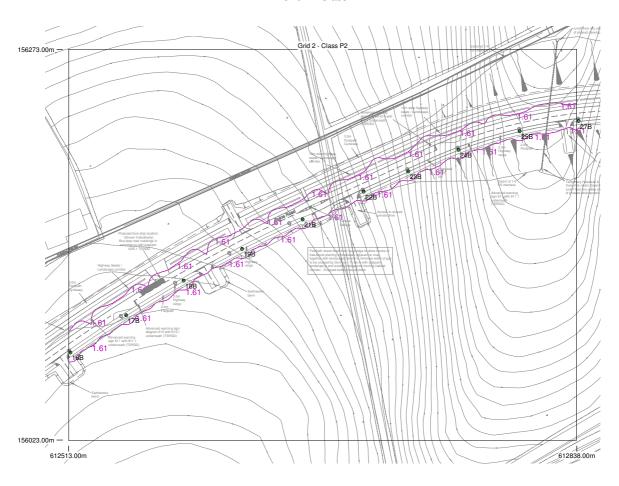
Grid 1 - Class P2

Results

Eav	11.34
Emin	1.61
Emax	35.16
Emin/Emax	0.05
Emin/Eav	0.14

DATE: 2 March 2021

DESIGNER:


: F Wolcz

PROJECT No: 1222 PROJECT NAME: Cockering Road S38

Horizontal Illuminance (lux)

Grid 2 - Class P2

Results

Eav	11.66
Emin	1.61
Emax	35.19
Emin/Emax	0.05
Emin/Eav	0.14

DESIGNER: F Wolcz

PROJECT NAME: Cockering Road S38

Horizontal Illuminance (lux)

Grid 3 - Class P2

Results

Eav	11.96
Emin	1.91
Emax	36.58
Emin/Emax	0.05
Emin/Eav	0.16

Applies to: Design, Installation, maintenance and de-commissioning of Lighting Units.

Lighting Units Design Risk Assessment.

DFL Designers have, in accordance with CDM regulations, identified site-specific hazards/risks that are not normally associated with these types of works, endeavoured to eliminate or reduce these hazards/risks for construction, maintenance, and decommissioning of the Lighting Units, as far as reasonably practicable. All works should be carried out by qualified and competent persons in accordance with, but not limited to, G39 Working in the Vicinity of DNO Equipment, Working at height regulations, electricity at work regulations, safe digging practices hsg47 Avoiding danger from underground services and Code of Practice for Electrical Safety in Highway Electrical Operations.

Page 1 of 4

DRA01

				Assessed By	A ELLIOTT	Date	08.10.2019			
Client	BOUYGUES E&S	SCHEME	1222 - Cockering Road (S38) - Rev A	Checked By	A LONGMAN	Date	10.10.2019			
				Approved By	A LONGMAN	Date	10.10.2019			
Legend - Majo	r Site specific, Safety, H	ealth and Envi		Risk Rating (RR) Matrix - Indicate L, M, H, or VH in box.						
Will any of the	e following hazards affect Maii	n Contractor/Sub C	ontractor, client's staff, general public or affect th	ne environment?	environment? L = Likelihood, Multiply by S = Severity, for Risk Rating (RR).					
	Use "Risk Rating	"(RR) matrix to asses		1 Unlikely to be affected. 1 Minor First Aid Injury Only. 2 May be affected. 2 Hospital Treatment & Off Work.						
	L = 1-4, M = 5 – 10	, H = 15 - 30 or '	VH = 50, in space next to each hazard.		3 Occasionally affected. 5 Likely to be affected.	5 Some D	ome Disability - Long absence. Permanent Disability/Death.			

Hazards/Risk, Identified.	`At Risk risk before or reduce these Hazards/Risks for Construction, Maintenar				Actions taken at the Design Stage, to identify site-specific Hazards/Risks, eliminate or reduce these Hazards/Risks for Construction, Maintenance, and Decommissioning of the Lighting Units, as far as reasonably practicable.	ı	essmer isk afte design.	r	Addendum sheet required?			
(Safety, Health & Environmental).			L	S	R R	NO	YES (See addendum sheet).					
Overhead High Voltage Electricity Cables (O/H HV) in the vicinity.	√			3	10	н	Lighting Units have been designed away from Overhead HV Cables, Vicinity and Proximity Zones, where reasonably practicable. It is not reasonably practicable to design Lighting Units LC15 and LC16 away from Overhead HV Cables, Vicinity and Proximity Zones and therefore remain close to the Overhead HV Cables, Vicinity and Proximity Zones. Relevant Overhead HV Cables, Vicinity and Proximity Zones, have been indicated on this Scheme's drawing. Lighting Units located in compliance with G39, CDM and ILP guidelines. Distribution Overhead HV Network Owner has been consulted.	1	10	M		Consultation essential with the asset protection team. See HV network corresponden ce email.

Page 2 of 4

						•			<u> </u>																																																		Assessed By	A ELLIOTT		Date		0	8.10.2019
Client	BOUYGUES E&S SCHEME 1222 - Cockering Road (S38) - Checked By A LONGM					The contract of the contract o		Date			10.10.2019																																																						
								Approved By	A LONGMAN	Date			10.10.2019																																																				
Hazards/Risk, Identified.		`At Risl	k	ri	essmei sk befo Design	re	or reduce these Hazards/Risks for Constr	lentify site-specific Hazards/Risks, eliminate truction, Maintenance, and Decommissioning far as reasonably practicable.			Assessment of risk after design.			Addendum sheet required?																																																			
(Safety, Health & Environmental).	Main Contr actor / Sub C	Users	Environ /ment.	L	S	R R						R R	NO	YES (See addendum sheet).																																																			
							Lighting Units have been designed away from Electrical Sub Stations, where reasonably practicable.																																																										
Electrical Sub Stations in the vicinity.	Stations in ✓ ✓ 3 10 H			н	It is not reasonably practicable to design Lighting Units LC21 away from Electrical Sub Stations and therefore remains close to the Electrical Sub Stations.				10	M		(See HV/LV network maps).																																																					
							Relevant Electrical Sub Stations have drawing.	been indicated or	n this scheme's																																																								
Underground High Voltage Electricity Cables (HV)	✓			3	10	Н	Lighting Units have been designed away from the proposed Underground HV Cables, where reasonably practicable. It is not reasonably practicable to design Lighting Units LC20 to LC36 INCLUSIVE away from Underground HV Cables and therefore remain close to the vicinity of Underground HV Cables.				10	M		(See HV network maps Appendix A).																																																			
in the vicinity.							Relevant Lighting Units in the vicinity indicated on this scheme's drawing.	of Underground H	IV Cables have been					7.ppondix 7.ji																																																			
Basel O.							Passive Safety Flowchart Technical Report 30 (TR30) has been used within the design stage.																																																										
Passive Safe Equipment.		✓		3	10	Н	However due to the road characterist TR30, Passive Safe Equipment would of buildings and industrial units that	be non-beneficial		1	10	M	✓																																																				

Page 3 of 4

							1992 Cookering Bood (\$29)	Assessed By A ELLIOTT		Date			08.10.2019	
Client	BOU	YGUE	S E&S	S SCHEME			1222 - Cockering Road (S38) - Rev A	Checked By	A LONGMAN		Date		1	0.10.2019
								Approved By	By A LONGMAN		Date		10.10.2019	
Hazards/Risk, Identified.	Assessment of risk before Design.					re	Actions taken at the Design Stage, to identify site-specific Hazards/Risks, eliminate or reduce these Hazards/Risks for Construction, Maintenance, and Decommissioning of the Lighting Units, as far as reasonably practicable.			Assessment of risk after design.		Addendum sheet required?		
(Safety, Health & Environmental).	Main Contr actor / Sub C	Users	Environ /ment.	L	S	R R				L	Ø	R R	NO	YES (See addendum sheet).
Visual impact / light pollution / intrusion.		✓	✓	1	2	L	Wherever reasonably practicable Lighting Units have been designed to be in keeping with the road characteristics, reduce light pollution, glare and light intrusion.							

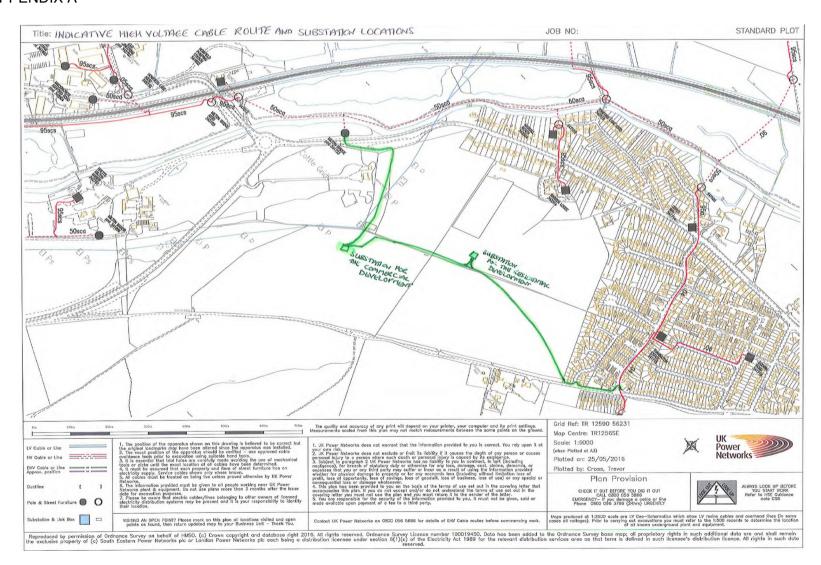
Prepared by: PAS	Uncontrolled if printed. Document Ov	wner: Paul Southcombe.	Rev: 05			
Approved by: A Longman	Approval Date: 11th January 2016.	Issue Date: 11th January 2016.	Review Date: 1st Jan 2	2020		
Legend - Major Site specific, Safe	ty, Health and Environmental Hazards -	-	Risk Rating (RR) Matr	rix - Indicate L, M, H, or VH in		
Will any of the following hazards affor	ect Main Contractor/Sub Contractor, client's staff,	ganaral public or affect the anvironment?	box.			
	Rating"(RR) matrix to assess each hazard and indicate		L = Likelihood, Multiply by S = Severity, for Risk Rating (RR).			
	5 – 10, <mark>H = 15 - 30</mark> or VH = 50, in space ne	·	1 Unlikely to be affected. 2 May be affected. 3 Occasionally affected. 5 Likely to be affected.	1 Minor First Aid Injury Only. 2 Hospital Treatment & Off Work. 5 Some Disability - Long absence. 10 Permanent Disability/Death.		

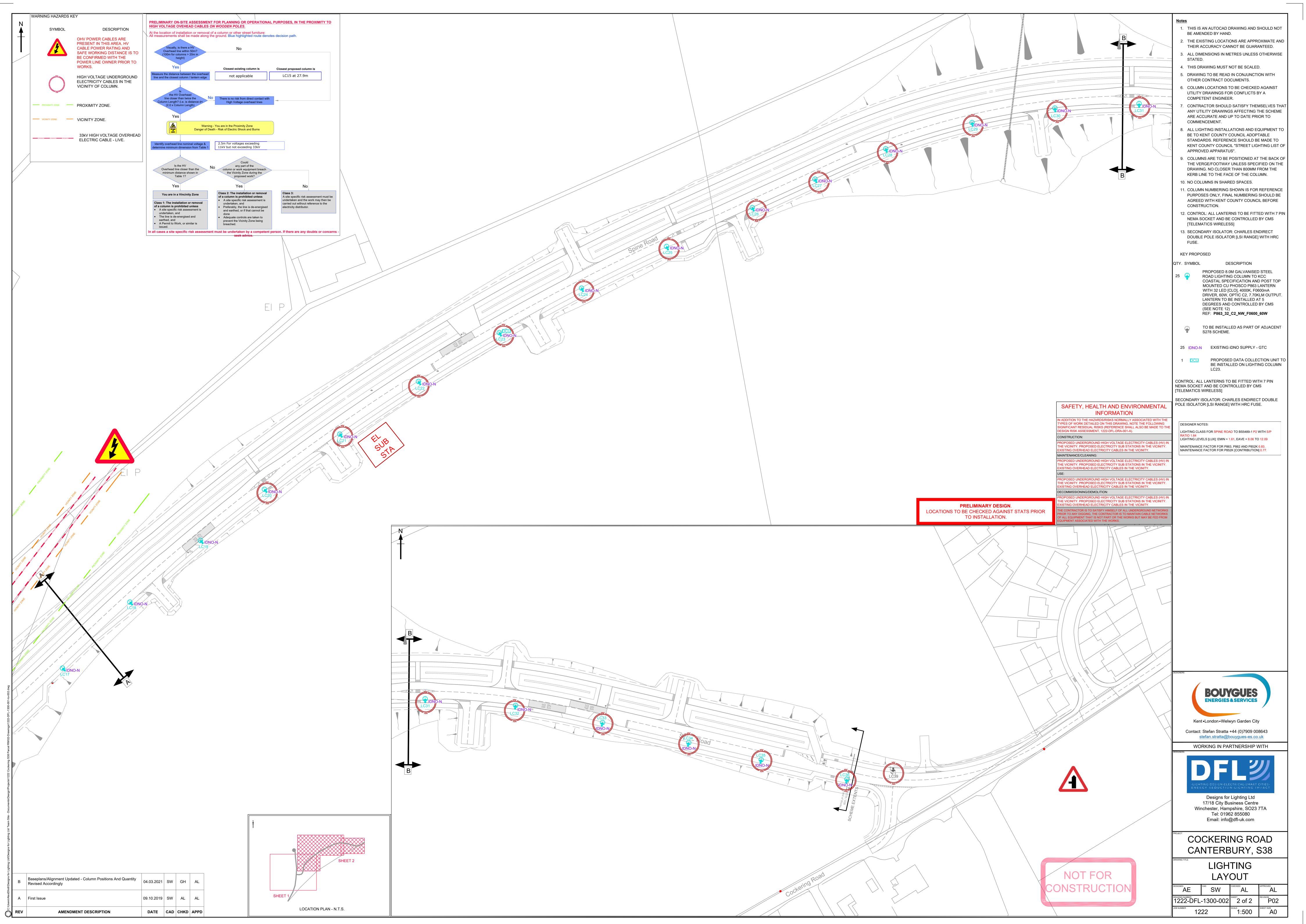
<u>Declaration:</u> I the undersigned have read and understood the hazards / risks identified in this Scheme's Design Risk Assessment.

Construction Manager (sign): (Print): Date: / /

Page 4 of 4

Client


BOUYGUES E&S


SCHEME

1222 - Cockering Road (S38) - Rev A

Assessed By	A ELLIOTT	Date	08.10.2019
Checked By	A LONGMAN	Date	10.10.2019
Approved By	A LONGMAN	Date	10.10.2019

APPENDIX A

DATE: 2 March 2021

DESIGNER: F Wolcz **PROJECT No:** 1222

PROJECT NAME: Cockering Road S38

Location: Cockering Road, Thanington, Kent Environmental Zone: E2

Design Class [Spine Road]:P2 with S/P ratio 1.64 [Required Illuminance levels]

(lux)

Eav min Èav max Emin 8.06 12.09 1.61

1222-DFL-LC-001 B

PREPARED BY: Designs for Lighting Ltd

17 City Business Centre

Hyde Street Winchester SO23 7TA

E-mail: alex@dfl-uk.com

Website: www.Designsforlighting.co.uk

Twitter: @Designs4Light

DESIGNER:

F Wolcz

PROJECT NAME: Cockering Road S38

Layout Report

General Data

Dimensions in Metres Angles in Degrees

Calculation Grids

II	О	Grid Name	Х	Υ	X' Length	Y' Length	X' Spacing	Y' Spacing
	1	Grid 1 - Class P2	612188.00	155737.00	325.00	375.00	1.50	1.50
	2	Grid 2 - Class P2	612513.00	156023.00	325.00	250.00	1.50	1.50
	3	Grid 3 - Class P2	612838.00	156132.19	374.00	210.00	1.50	1.50

Luminaires

Luminaire B Data

Supplier	C U Phosco
Туре	P863-32-C2-NW-F0600-60W
Lamp(s)	740P NW
Lamp Flux (klm)	7.70
File Name	P863-32-C2-NW-F0600-60W.ies
Maintenance Factor	0.83
Lum. Int. Class	G5
Lamp S/P Ratio	1.64
No. in Project	25

Luminaire M Data

C U Phosco			
P863-32-R3-NW-F0400-41W			
740P NW			
5.19			
P863-32-R3-NW-F0400-41W.ies			
0.83			
G3			
1.64			
1			

Luminaire N Data

Supplier	C U Phosco
Туре	P863-32-C2-NW-F0600-60W
Lamp(s)	740P NW
Lamp Flux (klm)	7.70
File Name	P863-32-C2-NW-F0600-60W.ies
Maintenance Factor	0.83
Lum. Int. Class	G5
Lamp S/P Ratio	1.64
No. in Project	1

<u>Layout</u>

ID	Туре	Х	Y	Height	Angle	Tilt	Cant	Out-	Target	Target	Target
								reach	Х	Y	Z
7	В	612274.88	155803.79	8.00	113.00	5.00	0.00	0.45			
8	В	612306.48	155834.14	8.00	158.00	5.00	0.00	0.45			
9	В	612314.37	155875.99	8.00	163.00	5.00	0.00	0.45			
10	В	612329.95	155913.42	8.00	150.00	5.00	0.00	0.45			
11	В	612357.09	155943.31	8.00	134.00	5.00	0.00	0.45			
12	В	612388.16	155972.68	8.00	136.00	5.00	0.00	0.45			
13	В	612418.75	156002.69	8.00	137.00	5.00	0.00	0.45			
14	В	612450.86	156030.68	8.00	130.00	5.00	0.00	0.45			

DATE: 2 March 2021

DESIGNER:

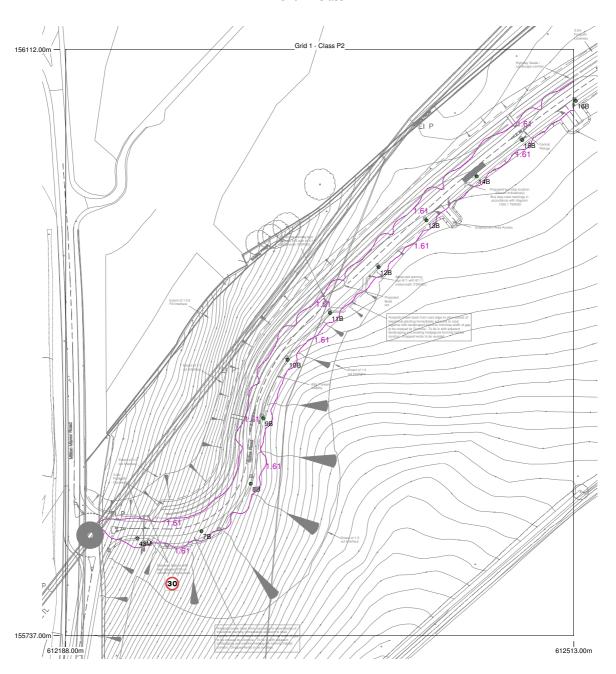
F Wolcz

PROJECT No: 1222 PROJECT

PROJECT NAME: Cockering Road S38

Layout Continued

ID	Туре	х	Y	Height	Angle	Tilt	Cant	Out-	Target	Target	Target
								reach	x	Y	Z
15	В	612479.91	156053.93	8.00	128.00	5.00	0.00	0.45			
16	В	612514.18	156079.08	8.00	124.00	5.00	0.00	0.45			
17	В	612549.90	156102.93	8.00	122.00	5.00	0.00	0.45			
18	В	612586.65	156125.13	8.00	124.00	5.00	0.00	0.45			
19	В	612623.97	156145.33	8.00	116.00	5.00	0.00	0.45			
20	N	613090.12	156199.01	8.00	264.00	5.00	0.00	0.45			
21	В	612662.68	156164.30	8.00	116.00	5.00	0.00	0.45			
22	В	612701.69	156181.95	8.00	115.00	5.00	0.00	0.45			
23	В	612730.21	156194.94	8.00	115.00	5.00	0.00	0.45			
24	В	612762.27	156208.70	8.00	109.00	5.00	0.00	0.45			
25	В	612801.38	156220.56	8.00	102.00	5.00	0.00	0.45			
27	В	612838.98	156227.14	8.00	98.00	5.00	0.00	0.45			
28	В	612877.13	156229.16	8.00	91.00	5.00	0.00	0.45			
29	В	612918.04	156226.20	8.00	81.00	5.00	0.00	0.45			
30	В	612996.72	156209.27	8.00	77.00	5.00	0.00	0.45			
31	В	612957.50	156218.44	8.00	77.00	5.00	0.00	0.45			
32	В	613029.74	156201.50	8.00	79.00	5.00	0.00	0.45			
33	В	613068.74	156192.59	8.00	77.00	5.00	0.00	0.45			
43	М	612233.92	155799.32	10.00	85.00	0.00	0.00	0.45			


DESIGNER: F Wolcz

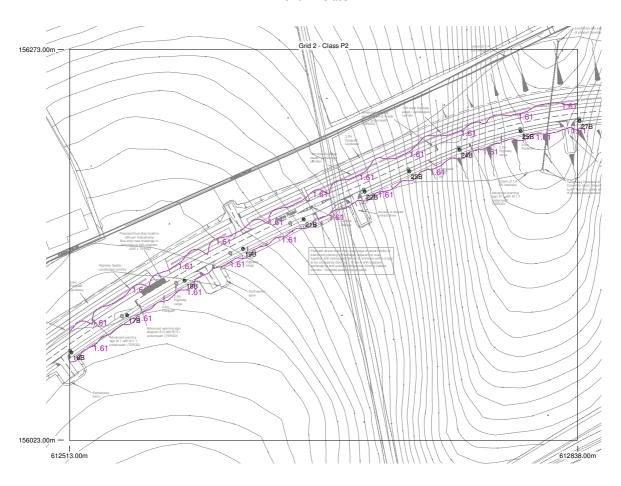
PROJECT NAME: Cockering Road S38

Horizontal Illuminance (lux)

Grid 1 - Class P2

Results

Eav	11.34
Emin	1.61
Emax	35.16
Emin/Emax	0.05
Emin/Eav	0.14


DESIGNER: F Wolcz

PROJECT NAME: Cockering Road S38

Horizontal Illuminance (lux)

Grid 2 - Class P2

Results

Eav	11.66
Emin	1.61
Emax	35.19
Emin/Emax	0.05
Emin/Eav	0.14

DESIGNER: F Wolcz

PROJECT NAME: Cockering Road S38

Horizontal Illuminance (lux)

Grid 3 - Class P2

Results

Eav	11.96
Emin	1.91
Emax	36.58
Emin/Emax	0.05
Emin/Eav	0.16

Applies to: Design, Installation, maintenance and de-commissioning of Lighting Units.

Lighting Units Design Risk Assessment.

DFL Designers have, in accordance with CDM regulations, identified site-specific hazards/risks that are not normally associated with these types of works, endeavoured to eliminate or reduce these hazards/risks for construction, maintenance, and decommissioning of the Lighting Units, as far as reasonably practicable. All works should be carried out by qualified and competent persons in accordance with, but not limited to, G39 Working in the Vicinity of DNO Equipment, Working at height regulations, electricity at work regulations, safe digging practices hsg47 Avoiding danger from underground services and Code of Practice for Electrical Safety in Highway Electrical Operations.

Page 1 of 4

DRA01

				Assessed By	A ELLIOTT	Date	08.10.2019	
Client	BOUYGUES E&S	SCHEME	HEME 1222 - Cockering Road (S38) - Checked By A LONGMAN		A LONGMAN	Date	10.10.2019	
				Approved By	A LONGMAN	Date	10.10.2019	
Legend - Majo	r Site specific, Safety, H	ealth and Envi		Risk Rating (RR) Matrix - Indicate L, M, H, or VH in box.				
Will any of the	e following hazards affect Maii	n Contractor/Sub C	ontractor, client's staff, general public or affect th	ne environment?	L = Likelihood, Multiply	by S = Severi	ity, for Risk Rating (RR).	
Use "Risk Rating"(RR) matrix to assess each hazard and indicate level of risk i.e.; 1 Unlikely to be affected. 1 Minor First Aid In								
	L = 1-4, M = 5 – 10	, H = 15 - 30 or '	VH = 50, in space next to each hazard.		2 May be affected. 3 Occasionally affected. 5 Likely to be affected. 2 Hospital Treatment & Off Work. 5 Some Disability - Long absence. 10 Permanent Disability/Death.			

Hazards/Risk, Identified.		`At Risl	ς.	ri	sessme sk befo Design	re	Actions taken at the Design Stage, to identify site-specific Hazards/Risks, eliminate or reduce these Hazards/Risks for Construction, Maintenance, and Decommissioning of the Lighting Units, as far as reasonably practicable.		Assessment of risk after design.			Addendum sheet required?		
(Safety, Health & Environmental).	Main Contr actor / Sub C	Users	Environ /ment.	L	s	R R		L	S	R R	NO	YES (See addendum sheet).		
Overhead High Voltage Electricity Cables (O/H HV) in the vicinity.	√			3	10	н	Lighting Units have been designed away from Overhead HV Cables, Vicinity and Proximity Zones, where reasonably practicable. It is not reasonably practicable to design Lighting Units LC15 and LC16 away from Overhead HV Cables, Vicinity and Proximity Zones and therefore remain close to the Overhead HV Cables, Vicinity and Proximity Zones. Relevant Overhead HV Cables, Vicinity and Proximity Zones, have been indicated on this Scheme's drawing. Lighting Units located in compliance with G39, CDM and ILP guidelines. Distribution Overhead HV Network Owner has been consulted.	1	10	M		Consultation essential with the asset protection team. See HV network corresponden ce email.		

Page 2 of 4

		l						Assessed By	A ELLIOTT		Date		0	8.10.2019
Client	BOU	JYGUE	S E&S	S	CHEM	1E	1222 - Cockering Road (S38) - Rev A	Checked By	A LONGMAN		Date		1	0.10.2019
							Approved By A LONGMAN				Date		1	0.10.2019
Hazards/Risk, Identified.		`At Risl	k	Assessment of risk before Design.			Actions taken at the Design Stage, to identify site-specific Hazards/Risks, eliminate or reduce these Hazards/Risks for Construction, Maintenance, and Decommissioning of the Lighting Units, as far as reasonably practicable.				Assessment of risk after design.			dendum sheet required?
(Safety, Health & Environmental).	Main Contr actor / Sub C	Users	Environ /ment.	L	s	R R					s	R R	NO	YES (See addendum sheet).
							Lighting Units have been designed away from Electrical Sub Stations, where reasonably practicable.							
Electrical Sub Stations in the vicinity.	✓		✓	3	10	н	It is not reasonably practicable to design Lighting Units LC21 away from Electrical Sub Stations and therefore remains close to the Electrical Sub Stations.			1	10	M		(See HV/LV network maps).
							Relevant Electrical Sub Stations have drawing.	Relevant Electrical Sub Stations have been indicated on this scheme's drawing.						
Underground High Voltage Electricity Cables (HV)	✓			3	10	н	HV Cables, where reasonably practical it is not reasonably practicable to des	Lighting Units have been designed away from the proposed Underground HV Cables, where reasonably practicable. It is not reasonably practicable to design Lighting Units LC20 to LC36 INCLUSIVE away from Underground HV Cables and therefore remain close		1	10	M		(See HV network maps
in the vicinity.							Relevant Lighting Units in the vicinity indicated on this scheme's drawing.		HV Cables have been					Appendix A).
Passive Safe							Passive Safety Flowchart Technical Report 30 (TR30) has been used within the design stage. However due to the road characteristics and following the guidance from TR30, Passive Safe Equipment would be non-beneficial due to *the presence of buildings and industrial units that will be built.*							
Equipment.		V		3	10	Н			1	10	M	✓		

Page 3 of 4

							1992 Cookering Bood (\$29)	Assessed By	A ELLIOTT		Date		0	8.10.2019
Client	BOU	BOUYGUES E&S		BOUYGUES E&S SCHEM		SCHEME		1222 - Cockering Road (S38) - Rev A	Checked By A LONGMAN		Date		10.10.2019	
								Approved By	A LONGMAN		Date		1	0.10.2019
Hazards/Risk, Identified.		`At Risl	(ri	essme sk befo Design	re	Actions taken at the Design Stage, to ide or reduce these Hazards/Risks for Constr of the Lighting Units, as fa	uction, Maintenance	, and Decommissioning	ı	essmer isk afte design.	r	Ad	dendum sheet required?
(Safety, Health & Environmental).	Main Contr actor / Sub C	Users	Environ /ment.	L	S	R R				L	Ø	R R	NO	YES (See addendum sheet).
Visual impact / light pollution / intrusion.		✓	✓	1	2	L	Wherever reasonably practicable Light keeping with the road characteristics intrusion.			1	1	L	✓	

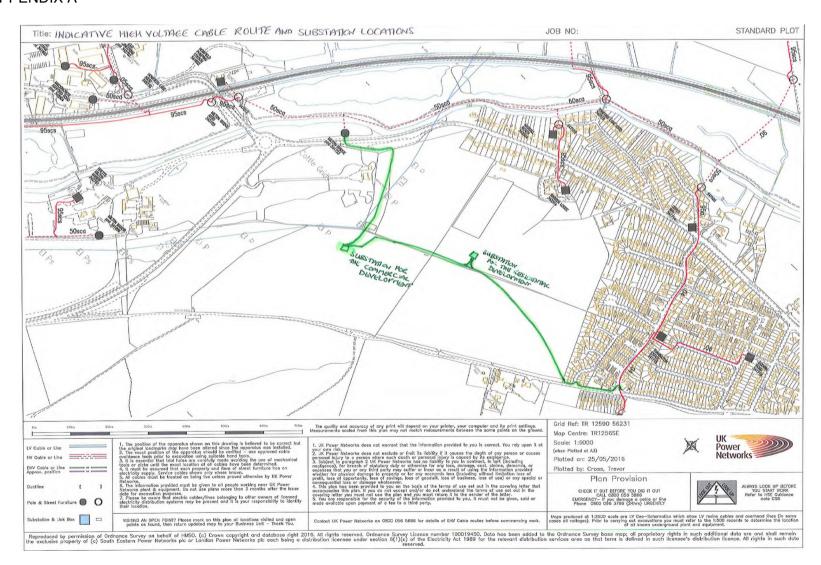
Prepared by: PAS	Uncontrolled if printed. Document Ov	wner: Paul Southcombe.	Rev: 05	
Approved by: A Longman	Approval Date: 11th January 2016.	Issue Date: 11th January 2016.	Review Date: 1st Jan 2	2020
Legend - Major Site specific, Safe	ty, Health and Environmental Hazards -	-	Risk Rating (RR) Matr	rix - Indicate L, M, H, or VH in
Will any of the following hazards affor	ect Main Contractor/Sub Contractor, client's staff,	ganaral public or affect the anvironment?	box.	
	Rating"(RR) matrix to assess each hazard and indicate		L = Likelihood, Multiply by	y S = Severity, for Risk Rating (RR).
	5 – 10, <mark>H = 15 - 30</mark> or VH = 50, in space ne	·	1 Unlikely to be affected. 2 May be affected. 3 Occasionally affected. 5 Likely to be affected.	1 Minor First Aid Injury Only. 2 Hospital Treatment & Off Work. 5 Some Disability - Long absence. 10 Permanent Disability/Death.

<u>Declaration:</u> I the undersigned have read and understood the hazards / risks identified in this Scheme's Design Risk Assessment.

Construction Manager (sign): (Print): Date: / /

Page 4 of 4

Client


BOUYGUES E&S

SCHEME

1222 - Cockering Road (S38) - Rev A

Assessed By	A ELLIOTT	Date	08.10.2019
Checked By	A LONGMAN	Date	10.10.2019
Approved By	A LONGMAN	Date	10.10.2019

APPENDIX A

Appendix D Hydraulic Calculations

C & A Consulting Engineers Ltd		Page 1
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

<u>Time Area Diagram for 18-058 SW Strategy Rev A - RM1-2 and Spine Rd.sws</u>

Time	Area	Time	Area	Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)	(mins)	(ha)	(mins)	(ha)
0-4	1.155	4-8	4.331	8-12	1.591	12-16	0.001

Total Area Contributing (ha) = 7.078

Total Pipe Volume $(m^3) = 945.772$

C & A Consulting Engineers Ltd		Page 2
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

Network Design Table for 18-058 SW Strategy Rev A - RM1-2 and Spine Rd.sws

			_										
PN	Length		-	I.Area		Ва		k	n	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)		SECT	(mm)		Design
1.000	31.990	1.500	21.3	0.050	5.00		0.0	0.600		0	225	Pipe/Conduit	A
1.001	42.330	2.150	19.7	0.030	0.00		0.0	0.600		0	225	Pipe/Conduit	<u>, , , , , , , , , , , , , , , , , , , </u>
1.002	36.164	0.152	237.9	0.073	0.00		0.0	0.600		0	300	Pipe/Conduit	_ ~
1.003	8.806	0.037	238.0	0.000	0.00		0.0	0.600		0	300	Pipe/Conduit	7
1.004	18.188	0.060	303.1	0.074	0.00		0.0	0.600		0	375	Pipe/Conduit	<u>~</u>
1.005	36.031	0.529	68.1	0.029	0.00		0.0	0.600		0	375	Pipe/Conduit	7
													1
2.000	20.330	0.120	169.4	0.046	5.00		0.0	0.600		0	225	Pipe/Conduit	ð
1.006	32.059	0.972	33.0	0.085	0.00		0.0	0.600		0	450	Pipe/Conduit	₫*
1.007	30.726	0.100	307.3	0.076	0.00		0.0	0.600		0	450	Pipe/Conduit	ď
1.008	33.089	0.109	303.6	0.026	0.00		0.0	0.600		0	525	Pipe/Conduit	₽
1.009	6.309	0.023	274.3	0.020	0.00		0.0	0.600		0	525	Pipe/Conduit	ď
3.000	50.749	0.784	64.7	0.136	5.00		0.0		0.045	4 \=/	600	1:4 Swale	6
3.001	16.398	0.682	24.0	0.000	0.00		0.0	0.600		0	150	Pipe/Conduit	ď
3.002	22.160	0.092	240.9	0.175	0.00		0.0	0.600		0	300	Pipe/Conduit	ā
3.003	11.164	0.047	237.5	0.000	0.00		0.0	0.600		0	300	Pipe/Conduit	ď
					Networ	k Re	<u>sults</u>	Tabl	<u>e</u>				
	PN 1	Rain	T.C.	US/IL	Σ I.Are	a Σ	Base	Fou	ıl Add	Flow	Vel	Cap Flow	

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
1.000	50.00	5.19	43.325	0.050	0.0	0.0	0.0	2.85	113.2	6.8	
1.001	50.00	5.43	41.825	0.080	0.0	0.0	0.0	2.96	117.8	10.8	
1.002	50.00	6.02	39.600	0.153	0.0	0.0	0.0	1.01	71.7	20.7	
1.003	50.00	6.16	39.448	0.153	0.0	0.0	0.0	1.01	71.7	20.7	
1.004	50.00	6.46	39.336	0.227	0.0	0.0	0.0	1.04	114.4	30.7	
1.005	50.00	6.73	39.276	0.256	0.0	0.0	0.0	2.20	242.8	34.7	
2.000	50.00	5.34	39.017	0.046	0.0	0.0	0.0	1.00	39.8	6.2	
1.006	50.00	6.88	38.672	0.387	0.0	0.0	0.0	3.55	564.6	52.4	
1.007	50.00	7.32	37.700	0.463	0.0	0.0	0.0	1.15	183.6	62.7	
1.008	50.00	7.75	37.525	0.489	0.0	0.0	0.0	1.28	277.1	66.2	
1.009	50.00	7.83	37.416	0.509	0.0	0.0	0.0	1.35	291.7	68.9	
3.000	50.00	6.44	45.582	0.136	0.0	0.0	0.0	0.59	105.7	18.4	
3.001	50.00	6.57	43.898	0.136	0.0	0.0	0.0	2.06	36.4	18.4	
3.002	50.00	6.94	41.716	0.311	0.0	0.0	0.0	1.01	71.3	42.1	
3.003	50.00	7.12	41.624	0.311	0.0	0.0	0.0	1.02	71.8	42.1	

C & A Consulting Engineers Ltd		Page 3
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

Network Design Table for 18-058 SW Strategy Rev A - RM1-2 and Spine Rd.sws

(m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 4.000 19.769 0.083 238.2 0.066 5.00 0.0 0.600 0 300 Pipe/Conduit 1 3.004 32.824 0.820 40.0 0.043 0.00 0.0 0.600 0 300 Pipe/Conduit 1 3.005 39.748 1.339 29.7 0.041 0.00 0.0 0.600 0 300 Pipe/Conduit 1 1.010 61.037 1.218 50.1 0.111 0.00 0.0600 0 525 Pipe/Conduit 1 5.000 27.942 0.500 55.9 0.051 5.00 0.0 0.600 0 225 Pipe/Conduit 1 5.001 23.082 1.850 12.5 0.000 0.00 0.600 0 525 Pipe/Conduit 1 6.002 22.135 0.132	PN	Length (m)	Fall	Slope (1:X)	I.Area (ha)	T.E.		se	k (mm)	n	HYD SECT	DIA (mm)	Section Type	Auto Design
3.004 32.824 0.820 40.0 0.043 0.00 0.0 0.600 0 300 Pipe/Conduit 3.005 39.748 1.339 29.7 0.041 0.00 0.0 0.600 0 300 Pipe/Conduit 3.005 39.748 1.339 29.7 0.041 0.00 0.0 0.600 0 525 Pipe/Conduit 3.000 0.00 0.00 0.00 0.00 0.00 0.00 0.		(111)	(111)	(I:A)	(IIa)	(mins)	FIOW	(1/5)	(111111)		SECI	(111111)		Design
3.004 32.824 0.820 40.0 0.043 0.00 0.0 0.600 0 300 Pipe/Conduit 3.005 39.748 1.339 29.7 0.041 0.00 0.0 0.600 0 300 Pipe/Conduit 3.005 39.748 1.339 29.7 0.041 0.00 0.0 0.600 0 525 Pipe/Conduit 3.000 0.00 0.00 0.00 0.00 0.00 0.00 0.														
3.004 32.824 0.820 40.0 0.043 0.00 0.0 0.600 o 300 Pipe/Conduit 3.005 39.748 1.339 29.7 0.041 0.00 0.0 0.600 o 300 Pipe/Conduit 3.005 39.748 1.339 29.7 0.041 0.00 0.0 0.600 o 300 Pipe/Conduit 3.010 61.037 1.218 50.1 0.111 0.00 0.0 0.600 o 525 Pipe/Conduit 3.000 27.942 0.500 55.9 0.051 5.00 0.0 0.600 o 225 Pipe/Conduit 3.001 23.082 1.850 12.5 0.000 0.00 0.00 0.00 0.00 0.00 o 225 Pipe/Conduit 3.011 83.985 3.900 21.5 0.075 0.00 0.0 0.600 o 525 Pipe/Conduit 3.011 83.985 3.900 21.5 0.075 0.00 0.0 0.600 o 525 Pipe/Conduit 3.011 83.985 0.132 167.7 0.028 5.00 0.0 0.600 o 225 Pipe/Conduit 3.012 167.7 0.028 5.00 0.0 0.600 o 225 Pipe/Conduit 3.012 167.7 0.028 5.00 0.0 0.600 o 225 Pipe/Conduit 3.012 167.7 0.028 5.00 0.0 0.0 0.600 o 225 Pipe/Conduit 3.012 167.7 0.028 5.00 0.0 0.0 0.600 o 225 Pipe/Conduit 3.012 167.7 0.028 5.00 0.0 0.0 0.600 o 225 Pipe/Conduit 3.012 167.7 0.000 24.145 0.092 262.4 0.109 5.00 0.0 0.0 0.600 o 225 Pipe/Conduit 3.012 167.7 0.000 24.145 0.092 262.4 0.109 5.00 0.0 0.0 0.600 o 375 Pipe/Conduit 3.012 167.0 0.000 0.000 0.0 0.0 0.000 o 375 Pipe/Conduit 3.012 167.0 0.000 0.	4.000	19.769	0.083	238.2	0.066	5.00		0.0	0.600		0	300	Pipe/Conduit	ð
3.005 39.748 1.339 29.7 0.041 0.00 0.0 0.600 o 300 Pipe/Conduit 1.010 61.037 1.218 50.1 0.111 0.00 0.0 0.600 o 525 Pipe/Conduit 5.000 27.942 0.500 55.9 0.051 5.00 0.0 0.600 o 225 Pipe/Conduit 5.001 23.082 1.850 12.5 0.000 0.00 0.00 0.0 0.600 o 225 Pipe/Conduit 1.011 83.985 3.900 21.5 0.075 0.00 0.0 0.600 o 525 Pipe/Conduit 6.000 22.135 0.132 167.7 0.028 5.00 0.0 0.600 o 525 Pipe/Conduit 6.001 28.190 0.267 105.6 0.000 0.00 0.00 0.0 0.600 o 225 Pipe/Conduit 6.002 45.324 1.589 28.5 0.065 0.00 0.0 0.600 o 225 Pipe/Conduit 7.000 24.145 0.092 262.4 0.109 5.00 0.0 0.600 o 375 Pipe/Conduit														_
1.010 61.037 1.218 50.1 0.111 0.00 0.0 0.600 0 525 Pipe/Conduit 5.000 27.942 0.500 55.9 0.051 5.00 0.0 0.600 0 225 Pipe/Conduit 5.001 23.082 1.850 12.5 0.000 0.00 0.0 0.600 0 225 Pipe/Conduit 1.011 83.985 3.900 21.5 0.075 0.00 0.0 0.600 0 525 Pipe/Conduit 6.000 22.135 0.132 167.7 0.028 5.00 0.0 0.600 0 225 Pipe/Conduit 6.001 28.190 0.267 105.6 0.000 0.00 0.00 0.0 0.600 0 225 Pipe/Conduit 6.002 45.324 1.589 28.5 0.065 0.00 0.0 0.600 0 225 Pipe/Conduit 7.000 24.145 0.092 262.4 0.109 5.00 0.0 0.600 0 375 Pipe/Conduit				40.0	0.043	0.00		0.0	0.600		0	300	Pipe/Conduit	₩
5.000 27.942 0.500 55.9 0.051 5.00 0.0 0.600 o 225 Pipe/Conduit 5.001 23.082 1.850 12.5 0.000 0.00 0.0 0.600 o 225 Pipe/Conduit 1.011 83.985 3.900 21.5 0.075 0.00 0.0 0.600 o 525 Pipe/Conduit 1.011 83.985 0.132 167.7 0.028 5.00 0.0 0.600 o 225 Pipe/Conduit 1.011 83.985 0.132 167.7 0.028 5.00 0.0 0.600 o 225 Pipe/Conduit 1.011 83.985 0.132 167.7 0.028 5.00 0.0 0.600 o 225 Pipe/Conduit 1.011 83.985 0.267 105.6 0.000 0.00 0.00 0.000 o 225 Pipe/Conduit 1.011 83.985 0.267 105.6 0.000 0.00 0.000 o 0.0000 o 0.00000 o 0.0000 o 0.0000 o 0.00000 o 0.00000 o 0.00000 o 0.00000 o 0.00000 o 0.00000 o 0.000000 o 0.000000 o 0.000000 o 0.000000 o 0.000000 o 0.0000000 o 0.00000000	3.005	39.748	1.339	29.7	0.041	0.00		0.0	0.600		0	300	Pipe/Conduit	●
5.000 27.942 0.500 55.9 0.051 5.00 0.0 0.600 o 225 Pipe/Conduit 5.001 23.082 1.850 12.5 0.000 0.00 0.0 0.600 o 225 Pipe/Conduit 1.011 83.985 3.900 21.5 0.075 0.00 0.0 0.600 o 525 Pipe/Conduit 1.011 83.985 0.132 167.7 0.028 5.00 0.0 0.600 o 225 Pipe/Conduit 1.011 83.985 0.132 167.7 0.028 5.00 0.0 0.600 o 225 Pipe/Conduit 1.011 83.985 0.132 167.7 0.028 5.00 0.0 0.600 o 225 Pipe/Conduit 1.011 83.985 0.267 105.6 0.000 0.00 0.00 0.000 o 225 Pipe/Conduit 1.011 83.985 0.267 105.6 0.000 0.00 0.000 o 0.0000 o 0.00000 o 0.0000 o 0.0000 o 0.00000 o 0.00000 o 0.00000 o 0.00000 o 0.00000 o 0.00000 o 0.000000 o 0.000000 o 0.000000 o 0.000000 o 0.000000 o 0.0000000 o 0.00000000														_
5.001 23.082 1.850 12.5 0.000 0.00 0.0 0.600 o 225 Pipe/Conduit 101.011 83.985 3.900 21.5 0.075 0.00 0.0 0.600 o 525 Pipe/Conduit 101.011 83.985 0.132 167.7 0.028 5.00 0.0 0.600 o 225 Pipe/Conduit 101.011 28.190 0.267 105.6 0.000 0.00 0.00 0.00 0.00 0.225 Pipe/Conduit 101.012 45.324 1.589 28.5 0.065 0.00 0.0 0.600 o 225 Pipe/Conduit 101.012 45.324 1.589 28.5 0.065 0.00 0.0 0.00 0.00 0.00 0.00 0.	1.010	61.037	1.218	50.1	0.111	0.00		0.0	0.600		0	525	Pipe/Conduit	€
5.001 23.082 1.850 12.5 0.000 0.00 0.0 0.600 o 225 Pipe/Conduit 101.011 83.985 3.900 21.5 0.075 0.00 0.0 0.600 o 525 Pipe/Conduit 101.011 83.985 0.132 167.7 0.028 5.00 0.0 0.600 o 225 Pipe/Conduit 101.011 28.190 0.267 105.6 0.000 0.00 0.00 0.00 0.00 0.225 Pipe/Conduit 101.012 45.324 1.589 28.5 0.065 0.00 0.0 0.600 o 225 Pipe/Conduit 101.012 45.324 1.589 28.5 0.065 0.00 0.0 0.00 0.00 0.00 0.00 0.	F 000	07 040	0 500	FF 0	0 051	г оо		0 0	0 600		_	225	Di/0	
1.011 83.985 3.900 21.5 0.075 0.00 0.0 0.600 o 525 Pipe/Conduit 6.000 22.135 0.132 167.7 0.028 5.00 0.0 0.600 o 225 Pipe/Conduit 6.001 28.190 0.267 105.6 0.000 0.00 0.0 0.600 o 225 Pipe/Conduit 6.002 45.324 1.589 28.5 0.065 0.00 0.0 0.600 o 225 Pipe/Conduit 7.000 24.145 0.092 262.4 0.109 5.00 0.0 0.600 o 375 Pipe/Conduit													-	ğ
6.000 22.135 0.132 167.7 0.028 5.00 0.0 0.600 o 225 Pipe/Conduit 6.001 28.190 0.267 105.6 0.000 0.00 0.00 0.00 0.225 Pipe/Conduit 6.002 45.324 1.589 28.5 0.065 0.00 0.0 0.600 o 225 Pipe/Conduit 7.000 24.145 0.092 262.4 0.109 5.00 0.0 0.600 o 375 Pipe/Conduit 6.002 45.324 0.109 5.00 0.0 0.600 o 375 Pipe/Conduit	5.001	23.082	1.850	12.5	0.000	0.00		0.0	0.600		0	225	Pipe/Conduit	●"
6.000 22.135 0.132 167.7 0.028 5.00 0.0 0.600 o 225 Pipe/Conduit 6.001 28.190 0.267 105.6 0.000 0.00 0.00 0.00 o 225 Pipe/Conduit 6.002 45.324 1.589 28.5 0.065 0.00 0.0 0.600 o 225 Pipe/Conduit 7.000 24.145 0.092 262.4 0.109 5.00 0.0 0.600 o 375 Pipe/Conduit 6.002 45.324 0.109 5.00 0.0 0.600 o 375 Pipe/Conduit 6.002 45.324 0.109 5.00 0.0 0.600 o 375 Pipe/Conduit	1 011	03 005	3 000	21 5	0 075	0 00		0 0	0 600		0	525	Pino/Conduit	۵
6.001 28.190 0.267 105.6 0.000 0.00 0.0 0.600 o 225 Pipe/Conduit 6.002 45.324 1.589 28.5 0.065 0.00 0.0 0.600 o 225 Pipe/Conduit 7.000 24.145 0.092 262.4 0.109 5.00 0.0 0.600 o 375 Pipe/Conduit	1.011	03.903	3.900	21.5	0.075	0.00		0.0	0.000		O	323	ripe/conduit	•
6.001 28.190 0.267 105.6 0.000 0.00 0.0 0.600 o 225 Pipe/Conduit 6.002 45.324 1.589 28.5 0.065 0.00 0.0 0.600 o 225 Pipe/Conduit 7.000 24.145 0.092 262.4 0.109 5.00 0.0 0.600 o 375 Pipe/Conduit	6.000	22.135	0.132	167.7	0.028	5.00		0.0	0.600		0	225	Pipe/Conduit	2
6.002 45.324 1.589 28.5 0.065 0.00 0.0 0.600 o 225 Pipe/Conduit 7.000 24.145 0.092 262.4 0.109 5.00 0.0 0.600 o 375 Pipe/Conduit					0.000	0.00					0		-	Ä
7.000 24.145 0.092 262.4 0.109 5.00 0.0 0.600 o 375 Pipe/Conduit													-	
<u>.</u>	0.002	10.021	1.505	20.5	0.005	0.00		0.0	0.000		O	225	ripe/conduit	U
· · · · · · · · · · · · · · · · · · ·	7.000	24.145	0.092	262.4	0.109	5.00		0.0	0.600		0	375	Pipe/Conduit	a
• • • • • • • • • • • • • • • • • • •	7.001	19.599	0.115	170.4	0.061	0.00		0.0	0.600		0		-	Ä
		_,,,,,		_ , 0 • 1	0.001	0.00		J • O			J	100	,	•
6.003 28.610 0.119 240.4 0.000 0.00 0.0 0.600 o 450 Pipe/Conduit	6.003	28.610	0.119	240.4	0.000	0.00		0.0	0.600		0	450	Pipe/Conduit	₩.

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
4.000	50.00	5.32	41.660	0.066	0.0	0.0	0.0	1.01	71.7	8.9	
3.004	50.00	7.34	41.577	0.420	0.0	0.0	0.0	2.49	176.2	56.9	
3.005	50.00	7.57	40.757	0.461	0.0	0.0	0.0	2.90	204.7	62.4	
1.010	50.00	8.15	37.393	1.081	0.0	0.0	0.0	3.17	686.2	146.4	
5.000	50.00	5 27	40.075	0.051	0.0	0.0	0.0	1.75	69.7	6.9	
5.001	50.00		38.325	0.051	0.0	0.0	0.0	3.72	148.1	6.9	
3.001	30.00	3.37	30.323	0.031	0.0	0.0	0.0	3.72	140.1	0.5	
1.011	50.00	8.44	31.825	1.207	0.0	0.0	0.0	4.84	1048.2	163.4	
6.000	50.00	5.37	41.262	0.028	0.0	0.0	0.0	1.01	40.0	3.8	
6.001	50.00	5.74	41.130	0.028	0.0	0.0	0.0	1.27	50.6	3.8	
6.002	50.00	6.04	40.863	0.093	0.0	0.0	0.0	2.46	97.8	12.6	
7.000	50.00	5.36	39.331	0.109	0.0	0.0	0.0	1.11	123.0	14.8	
7.001	50.00	5.57	39.164	0.170	0.0	0.0	0.0	1.55	247.2	23.0	
6.003	50.00	6.41	39.049	0.263	0.0	0.0	0.0	1.31	207.8	35.6	
				@1.000	2010 Tn						
				©1982-	2019 Innov	/yze					

C & A Consulting Engineers Ltd		Page 4
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

Network Design Table for 18-058 SW Strategy Rev A - RM1-2 and Spine Rd.sws

PN	Length	Fall	-	I.Area	T.E.		ase	k	n		DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)		SECT	(mm)		Design
8.000	23.309	0.550	42.4	0.052	5.00		0.0	0.600		0	225	Pipe/Conduit	3
8.001	16.503	0.500	33.0	0.107	0.00		0.0	0.600		0	300	Pipe/Conduit	ě
8.002	13.819	0.210	65.8	0.000	0.00		0.0	0.600		0	300	Pipe/Conduit	9
8.003	35.478	0.840	42.2	0.078	0.00		0.0	0.600		0	300	Pipe/Conduit	•
													•
6.004	28.715	0.411	69.9	0.109	0.00		0.0	0.600		0	450	Pipe/Conduit	€
6.005	22.850	0.441	51.8	0.103	0.00		0.0	0.600		0	450	Pipe/Conduit	ř
6.006	40.973	0.479	85.5	0.124	0.00		0.0	0.600		0	450	Pipe/Conduit	ř
6.007	23.391	0.700	33.4	0.075	0.00		0.0	0.600		0	450	Pipe/Conduit	ř
6.008	12.186#	0.375	32.5	0.014	0.00		0.0	0.600		0	450	Pipe/Conduit	A
													_
9.000	16.605	0.099	167.7	0.026	5.00		0.0	0.600		0	225	Pipe/Conduit	a
9.001	22.013	0.092	239.3	0.091	0.00		0.0	0.600		0	300	Pipe/Conduit	ĕ
9.002	17.408	0.073	238.5	0.046	0.00		0.0	0.600		0	300	Pipe/Conduit	Ğ
10.000	8.894	0.451	19.7	0.028	5.00		0.0	0.600		0	225	Pipe/Conduit	ð
10.001	24.975	1.262	19.8	0.000	0.00		0.0	0.600		0	225	Pipe/Conduit	Ğ
													_
9.003	26.400	0.943	28.0	0.073	0.00		0.0	0.600		0	300	Pipe/Conduit	₩
6.007 6.008 9.000 9.001 9.002 10.000 10.001	23.391 12.186# 16.605 22.013 17.408 8.894 24.975	0.700 0.375 0.099 0.092 0.073 0.451 1.262	33.4 32.5 167.7 239.3 238.5 19.7 19.8	0.075 0.014 0.026 0.091 0.046 0.028 0.000	0.00 0.00 5.00 0.00 0.00 5.00 0.00		0.0 0.0 0.0 0.0 0.0	0.600 0.600 0.600 0.600 0.600		0 0 0 0 0 0 0	450 450 225 300 300 225 225	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Network Results Table

Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
(mm/nr)	(mins)	(m)	(na)	Flow (1/s)	(I/S)	(1/s)	(m/s)	(I/S)	(I/S)	
50.00	5.19	41.255	0.052	0.0	0.0	0.0	2.02	80.1	7.0	
50.00	5.29	40.630	0.159	0.0	0.0	0.0	2.75	194.1	21.5	
50.00	5.41	40.130	0.159	0.0	0.0	0.0	1.94	137.2	21.5	
50.00	5.66	39.920	0.237	0.0	0.0	0.0	2.43	171.5	32.1	
50.00	6.60	38.930	0.609	0.0	0.0	0.0	2.43	387.3	82.5	
50.00	6.74	38.519	0.712	0.0	0.0	0.0	2.83	450.0	96.4	
50.00	7.05	38.078	0.836	0.0	0.0	0.0	2.20	349.8	113.2	
50.00	7.16	36.275	0.911	0.0	0.0	0.0	3.53	560.9	123.4	
50.00	7.22	35.575	0.925	0.0	0.0	0.0	3.58	568.8	125.3	
50.00	5.27	38.484	0.026	0.0	0.0	0.0	1.01	40.0	3.5	
50.00	5.64	38.310	0.117	0.0	0.0	0.0	1.01	71.5	15.8	
50.00	5.92	38.218	0.163	0.0	0.0	0.0	1.01	71.7	22.1	
50.00	5.05	40.718	0.028	0.0	0.0	0.0	2.96	117.7	3.8	
50.00	5.19	40.267	0.028	0.0	0.0	0.0	2.95	117.5	3.8	
50.00	6.07	38.145	0.264	0.0	0.0	0.0	2.98	210.9	35.7	
	(mm/hr) 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	(mm/hr) (mins) 50.00 5.19 50.00 5.29 50.00 5.41 50.00 5.66 50.00 6.74 50.00 7.05 50.00 7.16 50.00 7.22 50.00 5.64 50.00 5.92 50.00 5.05 50.00 5.19	(mm/hr) (mins) (m) 50.00 5.19 41.255 50.00 5.29 40.630 50.00 5.41 40.130 50.00 5.66 39.920 50.00 6.60 38.930 50.00 6.74 38.519 50.00 7.05 38.078 50.00 7.16 36.275 50.00 5.27 38.484 50.00 5.64 38.310 50.00 5.92 38.218 50.00 5.05 40.718 50.00 5.19 40.267	(mm/hr) (mins) (m) (ha) 50.00 5.19 41.255 0.052 50.00 5.29 40.630 0.159 50.00 5.41 40.130 0.159 50.00 5.66 39.920 0.237 50.00 6.60 38.930 0.609 50.00 6.74 38.519 0.712 50.00 7.05 38.078 0.836 50.00 7.16 36.275 0.911 50.00 5.27 38.484 0.026 50.00 5.64 38.310 0.117 50.00 5.92 38.218 0.163 50.00 5.05 40.718 0.028 50.00 5.19 40.267 0.028	(mm/hr) (mins) (m) (ha) Flow (l/s) 50.00 5.19 41.255 0.052 0.0 50.00 5.29 40.630 0.159 0.0 50.00 5.41 40.130 0.159 0.0 50.00 6.60 39.920 0.237 0.0 50.00 6.74 38.519 0.712 0.0 50.00 7.05 38.078 0.836 0.0 50.00 7.16 36.275 0.911 0.0 50.00 7.22 35.575 0.925 0.0 50.00 5.64 38.310 0.117 0.0 50.00 5.92 38.218 0.163 0.0 50.00 5.05 40.718 0.028 0.0 50.00 5.19 40.267 0.028 0.0	(mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) 50.00 5.19 41.255 0.052 0.0 0.0 50.00 5.29 40.630 0.159 0.0 0.0 50.00 5.41 40.130 0.159 0.0 0.0 50.00 5.66 39.920 0.237 0.0 0.0 50.00 6.60 38.930 0.609 0.0 0.0 50.00 6.74 38.519 0.712 0.0 0.0 50.00 7.05 38.078 0.836 0.0 0.0 50.00 7.16 36.275 0.911 0.0 0.0 50.00 7.22 35.575 0.925 0.0 0.0 50.00 5.64 38.310 0.117 0.0 0.0 50.00 5.92 38.218 0.163 0.0 0.0 50.00 5.05 40.718 0.028 0.0 0.0 50.00 <td>(mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) 50.00 5.19 41.255 0.052 0.0 0.0 0.0 50.00 5.29 40.630 0.159 0.0 0.0 0.0 50.00 5.41 40.130 0.159 0.0 0.0 0.0 50.00 6.60 39.920 0.237 0.0 0.0 0.0 50.00 6.74 38.519 0.712 0.0 0.0 0.0 50.00 7.05 38.078 0.836 0.0 0.0 0.0 50.00 7.16 36.275 0.911 0.0 0.0 0.0 50.00 7.22 35.575 0.925 0.0 0.0 0.0 50.00 5.64 38.310 0.117 0.0 0.0 0.0 50.00 5.92 38.218 0.163 0.0 0.0 0.0 50.00 5.05 40.718 0.028</td> <td>(mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) 50.00 5.19 41.255 0.052 0.0 0.0 0.0 2.02 50.00 5.29 40.630 0.159 0.0 0.0 0.0 2.75 50.00 5.41 40.130 0.159 0.0 0.0 0.0 1.94 50.00 5.66 39.920 0.237 0.0 0.0 0.0 1.94 50.00 6.60 38.930 0.609 0.0 0.0 0.0 2.43 50.00 6.74 38.519 0.712 0.0 0.0 0.0 2.83 50.00 7.05 38.078 0.836 0.0 0.0 0.0 2.20 50.00 7.16 36.275 0.911 0.0 0.0 0.0 3.53 50.00 5.27 38.484 0.026 0.0 0.0 0.0 1.01 50.00 5.64 38.310</td> <td>(mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (m/s) (1/s) 50.00 5.19 41.255 0.052 0.0 0.0 0.0 2.02 80.1 50.00 5.29 40.630 0.159 0.0 0.0 0.0 2.75 194.1 50.00 5.41 40.130 0.159 0.0 0.0 0.0 1.94 137.2 50.00 5.66 39.920 0.237 0.0 0.0 0.0 2.43 387.3 50.00 6.60 38.930 0.609 0.0 0.0 0.0 2.43 387.3 50.00 6.74 38.519 0.712 0.0 0.0 0.0 2.23 450.0 50.00 7.05 38.078 0.836 0.0 0.0 0.0 2.20 349.8 50.00 7.16 36.275 0.911 0.0 0.0 0.0 3.53 560.9 50.00 5.64 38</td> <td>(mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (m/s) (1/s) (1/s) 50.00 5.19 41.255 0.052 0.0 0.0 0.0 2.02 80.1 7.0 50.00 5.29 40.630 0.159 0.0 0.0 0.0 2.75 194.1 21.5 50.00 5.41 40.130 0.159 0.0 0.0 0.0 1.94 137.2 21.5 50.00 5.66 39.920 0.237 0.0 0.0 0.0 1.94 137.2 21.5 50.00 6.60 38.930 0.609 0.0 0.0 0.0 2.43 387.3 82.5 50.00 6.74 38.519 0.712 0.0 0.0 0.0 2.83 450.0 96.4 50.00 7.05 38.078 0.836 0.0 0.0 0.0 2.20 349.8 113.2 50.00 7.16 36.275 0.911 <</td>	(mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) 50.00 5.19 41.255 0.052 0.0 0.0 0.0 50.00 5.29 40.630 0.159 0.0 0.0 0.0 50.00 5.41 40.130 0.159 0.0 0.0 0.0 50.00 6.60 39.920 0.237 0.0 0.0 0.0 50.00 6.74 38.519 0.712 0.0 0.0 0.0 50.00 7.05 38.078 0.836 0.0 0.0 0.0 50.00 7.16 36.275 0.911 0.0 0.0 0.0 50.00 7.22 35.575 0.925 0.0 0.0 0.0 50.00 5.64 38.310 0.117 0.0 0.0 0.0 50.00 5.92 38.218 0.163 0.0 0.0 0.0 50.00 5.05 40.718 0.028	(mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) 50.00 5.19 41.255 0.052 0.0 0.0 0.0 2.02 50.00 5.29 40.630 0.159 0.0 0.0 0.0 2.75 50.00 5.41 40.130 0.159 0.0 0.0 0.0 1.94 50.00 5.66 39.920 0.237 0.0 0.0 0.0 1.94 50.00 6.60 38.930 0.609 0.0 0.0 0.0 2.43 50.00 6.74 38.519 0.712 0.0 0.0 0.0 2.83 50.00 7.05 38.078 0.836 0.0 0.0 0.0 2.20 50.00 7.16 36.275 0.911 0.0 0.0 0.0 3.53 50.00 5.27 38.484 0.026 0.0 0.0 0.0 1.01 50.00 5.64 38.310	(mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (m/s) (1/s) 50.00 5.19 41.255 0.052 0.0 0.0 0.0 2.02 80.1 50.00 5.29 40.630 0.159 0.0 0.0 0.0 2.75 194.1 50.00 5.41 40.130 0.159 0.0 0.0 0.0 1.94 137.2 50.00 5.66 39.920 0.237 0.0 0.0 0.0 2.43 387.3 50.00 6.60 38.930 0.609 0.0 0.0 0.0 2.43 387.3 50.00 6.74 38.519 0.712 0.0 0.0 0.0 2.23 450.0 50.00 7.05 38.078 0.836 0.0 0.0 0.0 2.20 349.8 50.00 7.16 36.275 0.911 0.0 0.0 0.0 3.53 560.9 50.00 5.64 38	(mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (m/s) (1/s) (1/s) 50.00 5.19 41.255 0.052 0.0 0.0 0.0 2.02 80.1 7.0 50.00 5.29 40.630 0.159 0.0 0.0 0.0 2.75 194.1 21.5 50.00 5.41 40.130 0.159 0.0 0.0 0.0 1.94 137.2 21.5 50.00 5.66 39.920 0.237 0.0 0.0 0.0 1.94 137.2 21.5 50.00 6.60 38.930 0.609 0.0 0.0 0.0 2.43 387.3 82.5 50.00 6.74 38.519 0.712 0.0 0.0 0.0 2.83 450.0 96.4 50.00 7.05 38.078 0.836 0.0 0.0 0.0 2.20 349.8 113.2 50.00 7.16 36.275 0.911 <

C & A Consulting Engineers Ltd		Page 5
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

Network Design Table for 18-058 SW Strategy Rev A - RM1-2 and Spine Rd.sws

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Bas Flow		k (mm)	n	HYD SECT	DIA (mm)	Section Type	Auto Design
11.000	19.821	0.749	26.5	0.145	5.00		0.0	0.600		0	225	Pipe/Conduit	ð
11.001	29.271	0.462	63.4	0.086	0.00		0.0	0.600		0	300	Pipe/Conduit	ď
12.000	17.354	0.103	168.5	0.099	5.00		0.0	0.600		0	300	Pipe/Conduit	3
11.002	20.801	0.087	239.1	0.033	0.00		0.0	0.600		0	450	Pipe/Conduit	♂
9.004	23.539	0.098	240.2	0.000	0.00		0.0	0.600		0	450	Pipe/Conduit	€
9.005	27.386	0.854	32.1	0.093	0.00		0.0	0.600		0	450	Pipe/Conduit	ď
9.006	26.730#	0.900	29.7	0.078	0.00		0.0	0.600		0	450	Pipe/Conduit	•
13.000	10.744	0.107	100.4	0.083	5.00		0.0	0.600		0	225	Pipe/Conduit	ð
13.001	20.480	0.205	99.9	0.026	0.00		0.0	0.600		0	225	Pipe/Conduit	ď
13.002	64.351	2.876	22.4	0.018	0.00		0.0	0.600		0	225	Pipe/Conduit	8
13.003	18.152#	1.000	18.2	0.079	0.00			0.600		0		Pipe/Conduit	•
14.000	35.234	0.352	100.1	0.096	5.00		0.0	0.600		0	225	Pipe/Conduit	6
14.001	37.306	0.373	100.0	0.064	0.00		0.0	0.600		0	225	Pipe/Conduit	-
14.002	18.222#	1.195	15.2	0.048	0.00		0.0	0.600		0	225	Pipe/Conduit	•
6.009	38.168	0.094	406.0	0.000	0.00		0.0	0.600		0	600	Pipe/Conduit	a

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
11.000	50.00	5.13	38.575	0.145	0.0	0.0	0.0	2.55	101.5	19.6	
11.001	50.00	5.38	37.751	0.231	0.0	0.0	0.0	1.98	139.9	31.3	
12.000	50.00	5.24	37.392	0.099	0.0	0.0	0.0	1.21	85.4	13.4	
11.002	50.00	5.64	37.139	0.363	0.0	0.0	0.0	1.31	208.4	49.2	
9.004	50.00	6.37	37.052	0.627	0.0	0.0	0.0	1.31	207.9	84.9	
9.005	50.00	6.50	36.954	0.720	0.0	0.0	0.0	3.60	572.6	97.5	
9.006	50.00	6.62	36.100	0.798	0.0	0.0	0.0	3.74	595.1	108.1	
13.000	50.00	5.14	40.563	0.083	0.0	0.0	0.0	1.30	51.9	11.2	
13.001	50.00	5.40	40.456	0.109	0.0	0.0	0.0	1.31	52.0	14.8	
13.002	50.00	5.78	40.251	0.127	0.0	0.0	0.0	2.78	110.5	17.2	
13.003	50.00	5.88	36.200	0.206	0.0	0.0	0.0	3.09	122.7	27.9	
14.000	50.00	5.45	37.120	0.096	0.0	0.0	0.0	1.31	52.0	13.0	
14.001	50.00	5.92	36.768	0.160	0.0	0.0	0.0	1.31	52.0	21.7	
14.002	50.00	6.02	36.395	0.208	0.0	0.0	0.0	3.37	133.9	28.2	
6.009	50.00	7.75	35.000	2.137	0.0	0.0	0.0	1.20	339.9	289.4	
				©1982-2	019 Innov	yze					_

C & A Consulting Engineers Ltd		Page 6
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

Network Design Table for 18-058 SW Strategy Rev A - RM1-2 and Spine Rd.sws

PN	Length	Fall	Slope	I.Area	T.E.	Base	е	k	n	HYD	DIA	Section	Туре	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)		SECT	(mm)			Design
15 000	24 000	1 760	100	0 106	F 00		0 0		0 045	4 \ /	600	1 4	~ 1	
	34.893			0.106	5.00							1:4		⊕ ⊕ ⊕ €
	6.800			0.000	0.00							Pipe/Co		₫"
	47.142			0.127	0.00					4 \=/			Swale	@
15.003	12.815	0.076	168.6	0.000	0.00		0.0	0.600		0	225	Pipe/Co	nduit	0
15.004	53.640	3.292	16.3	0.000	0.00		0.0	0.600		0	225	Pipe/Co	nduit	<u>.</u>
16.000	9.805	0.041	239.1	0.140	5.00		0.0	0.600		0	300	Pipe/Co	nduit	ð
														Ĭ
15.005	49.647	0.621	79.9	0.000	0.00		0.0	0.600		0	375	Pipe/Co	nduit	₽
17.000	18.651	0.980	19.0	0.068	5.00		0.0		0.045	4 \=/	600	1:4	Swale	<u> </u>
17.001	13.629	0.820	16.6	0.000	0.00		0.0	0.600		0	150	Pipe/Co	nduit	
17.002	30.315	1.760	17.2	0.109	0.00		0.0		0.045	4 \=/	600	1:4	Swale	<u>~</u>
17.003	17.049	1.000	17.0	0.000	0.00		0.0	0.600		0	225	Pipe/Co	nduit	Ä
17.004	28.107	1.660	16.9	0.097	0.00		0.0		0.045	4 \=/	600	1:4	Swale	⊕ ¢} ⊕ ¢} ⊕ €
17.005	7.800	0.420	18.6	0.000	0.00		0.0	0.600		0	300	Pipe/Co	nduit	ă
17.006	30.458	1.180	25.8	0.084	0.00		0.0		0.045	4 \=/	600	1:4	Swale	<u>.</u>
17.007	29.952	0.074	404.8	0.000	0.00		0.0	0.600		0	450	Pipe/Co	nduit.	<u>.</u>
										· ·				•
18.000	11.854	0.119	99.6	0.108	5.00		0.0	0.600		0	225	Pipe/Co	ndııi t	a
120.000		0.110	33.0	0.100	0.00		0.0			Ü	220	110,00		U

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	ΣΕ	Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
15.000	50.00	5 55	45.160	0.106		0.0	0.0	0.0	1 06	190.9	14.4	
15.000	50.00		43.400	0.106		0.0	0.0	0.0		43.4	14.4	
15.002	50.00		43.000	0.233		0.0	0.0	0.0		208.3	31.6	
15.002	50.00		39.270	0.233		0.0	0.0	0.0	1.00	39.9	31.6	
15.004	50.00	6.76	39.194	0.233		0.0	0.0	0.0	3.26	129.5	31.6	
16.000	50.00	5.16	35.868	0.140		0.0	0.0	0.0	1.01	71.6	19.0	
15.005	50.00	7.17	35.752	0.373		0.0	0.0	0.0	2.03	224.0	50.5	
17.000	50.00	5.29	44.200	0.068		0.0	0.0	0.0	1.08	194.9	9.2	
17.001	50.00	5.38	43.220	0.068		0.0	0.0	0.0	2.48	43.9	9.2	
17.002	50.00	5.82	42.400	0.177		0.0	0.0	0.0	1.14	204.9	24.0	
17.003	50.00	5.91	40.640	0.177		0.0	0.0	0.0	3.18	126.6	24.0	
17.004	50.00	6.32	39.640	0.274		0.0	0.0	0.0	1.15	206.6	37.1	
17.005	50.00	6.36	37.980	0.274		0.0	0.0	0.0	3.67	259.1	37.1	
17.006	50.00	6.90	37.560	0.358		0.0	0.0	0.0	0.93	167.3	48.5	
17.007	50.00	7.40	35.129	0.358		0.0	0.0	0.0	1.00	159.7	48.5	
18.000	50.00	5.15	35.400	0.108		0.0	0.0	0.0	1.31	52.1	14.6	
				-1000	0.1.0							
				©1982-2	019	Innov	vze					

C & A Consulting Engineers Ltd		Page 7
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	'

Network Design Table for 18-058 SW Strategy Rev A - RM1-2 and Spine Rd.sws

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	n	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)		SECT	(mm)		Design
19.000	10.759	0.119	90.4	0.072	5.00	0.0	0.600		0	225	Pipe/Conduit	ð
6.010	35.938	2.995	12.0	0.000	0.00	0.0	0.600		0	150	Pipe/Conduit	•
1.012	22.761	0.285	79.9	0.000	0.00	0.0	0.600		0	600	Pipe/Conduit	0
1.013	6.608#	0.083	79.6	0.000	0.00	0.0	0.600		0	600	Pipe/Conduit	ĕ
1.014	4.923	0.179	27.5	0.000	0.00	0.0	0.600		0	225	Pipe/Conduit	~
1.015	63.196	2.538	24.9	0.000	0.00	0.0		0.045	4 \=/	600	1:4 Swale	ă
1.016	7.303#	0.073	100.0	2.823	0.00	0.0	0.600		0	675	Pipe/Conduit	ā
1.017	6.000	0.327	18.3	0.000	0.00	0.0	0.600		0	300	Pipe/Conduit	ă
1.018	22.169	0.862	25.7	0.000	0.00	0.0		0.045	4 \=/	600	1:4 Swale	ĕ
1.019	22.169	0.861	25.7	0.000	0.00	0.0		0.045	4 \=/	600	1:4 Swale	ĕ
1.020	24.350	0.778	31.3	0.000	0.00	0.0		0.045	4 \=/	600	1:4 Swale	ĕ
1.021	24.350	0.778	31.3	0.000	0.00	0.0		0.045	4 \=/	600	1:4 Swale	ă
1.022	24.350	0.779	31.3	0.000	0.00	0.0		0.045	4 \=/	600	1:4 Swale	6
1.023	11.444	0.786	14.6	0.000	0.00	0.0	0.600		0	225	Pipe/Conduit	ŏ

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
19.000	50.00	5.13	35.400	0.072	0.0	0.0	0.0	1.38	54.7	9.7
6.010	50.00	7.95	31.145	3.048	0.0	0.0	0.0	2.92	51.7«	412.7
1.012	50.00	8.58	26.985	4.255	0.0	0.0	0.0	2.73	771.0	576.2
1.013	50.00	8.62	26.700	4.255	0.0	0.0	0.0	2.73	772.2	576.2
1.014	50.00	8.66	26.617	4.255	0.0	0.0	0.0	2.50	99.6«	576.2
1.015	50.00	9.77	26.438	4.255	0.0	0.0	0.0	0.95	170.4«	576.2
1.016	50.00	9.81	23.900	7.078	0.0	0.0	0.0	2.62	937.8«	958.4
1.017	50.00	9.84	23.827	7.078	0.0	0.0	0.0	3.69	260.7«	958.4
1.018	50.00	10.24	23.500	7.078	0.0	0.0	0.0	0.93	167.6«	958.4
1.019	50.00	10.64	22.638	7.078	0.0	0.0	0.0	0.93	167.5«	958.4
1.020	50.00	11.12	21.777	7.078	0.0	0.0	0.0	0.84	152.0«	958.4
1.021	50.00	11.60	20.999	7.078	0.0	0.0	0.0	0.84	152.0«	958.4
1.022	50.00	12.08	20.221	7.078	0.0	0.0	0.0	0.84	152.1«	958.4
1.023	50.00	12.13	19.442	7.078	0.0	0.0	0.0	3.45	137.1«	958.4

C & A Consulting Engineers Ltd		Page 8
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

Online Controls for 18-058 SW Strategy Rev A - RM1-2 and Spine Rd.sws

Hydro-Brake® Optimum Manhole: S52-Control, DS/PN: 6.010, Volume (m3): 34.2

Unit Reference MD-SHE-0115-1220-5155-1220 Design Head (m) 5.155 Design Flow (1/s) 12.2 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 115 Invert Level (m) 31.145 Minimum Outlet Pipe Diameter (mm) 150 1200 Suggested Manhole Diameter (mm)

Control Points Head (m) Flow (1/s)

Design Point (Calculated) 5.155 12.2

Flush-Flo $^{\text{M}}$ 0.494 7.3

Kick-Flo $^{\text{M}}$ 1.030 5.7

Mean Flow over Head Range - 8.8

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flo	w (1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	4.0	1.200	6.1	3.000	9.4	7.000	14.1
0.200	6.4	1.400	6.6	3.500	10.1	7.500	14.6
0.300	7.0	1.600	7.0	4.000	10.8	8.000	15.0
0.400	7.2	1.800	7.4	4.500	11.4	8.500	15.5
0.500	7.3	2.000	7.8	5.000	12.0	9.000	15.9
0.600	7.2	2.200	8.1	5.500	12.6	9.500	16.3
0.800	6.9	2.400	8.5	6.000	13.1		
1.000	5.9	2.600	8.8	6.500	13.6		

Hydro-Brake® Optimum Manhole: S54-Control, DS/PN: 1.014, Volume (m³): 4.0

Unit Reference MD-SHE-0181-1700-1280-1700 Design Head (m) 1.280 Design Flow (1/s) 17.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 181 26.617 Invert Level (m) 225 Minimum Outlet Pipe Diameter (mm) Suggested Manhole Diameter (mm) 1500

C & A Consulting Engineers Ltd		Page 9
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

Hydro-Brake® Optimum Manhole: S54-Control, DS/PN: 1.014, Volume (m³): 4.0

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.280	17.0
	Flush-Flo™	0.392	17.0
	Kick-Flo®	0.860	14.1
Mean Flow ove	er Head Range	_	14.6

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Fl	ow (1/s)	Depth (m) Flo	w (1/s)	Depth (m)	Flow (1/s)
0.100	6.4	1.200	16.5	3.000	25.5	7.000	38.4
	0.4						
0.200	15.8	1.400	17.7	3.500	27.5	7.500	39.7
0.300	16.8	1.600	18.9	4.000	29.3	8.000	40.9
0.400	17.0	1.800	20.0	4.500	31.0	8.500	42.2
0.500	16.8	2.000	21.0	5.000	32.6	9.000	43.3
0.600	16.5	2.200	22.0	5.500	34.2	9.500	44.5
0.800	15.1	2.400	22.9	6.000	35.6		
1.000	15.1	2.600	23.8	6.500	37.0		

Hydro-Brake® Optimum Manhole: S55-Control, DS/PN: 1.017, Volume (m³): 6.2

Unit Reference MD-SHE-0226-2830-1373-2830 Design Head (m) 1.373 Design Flow (1/s) 28.3 $Flush-Flo^{\text{TM}}$ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes 226 Diameter (mm) Invert Level (m) 23.827 Minimum Outlet Pipe Diameter (mm) 300 1800 Suggested Manhole Diameter (mm)

Control Points Head (m) Flow (1/s)

Design	Point (Calcul	lated)	1.373	28.3
		Flush	n-Flo™	0.434	28.3
		Kic	k-Flo®	0.949	23.7
Mean Fl	ow over	Head	Range	-	24.2

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow							
0.100	7.6	0.300	27.6	0.500	28.2	0.800	26.5
0.200	22.5	0.400	28.3	0.600	27.8		24.3

C f A Conquiting Engineers Itd		Down 10
C & A Consulting Engineers Ltd		Page 10
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Drain lacks
Innovyze	Network 2019.1	

Hydro-Brake® Optimum Manhole: S55-Control, DS/PN: 1.017, Volume (m³): 6.2

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)
1.200 1.400 1.600 1.800 2.000	26.5 28.6 30.4 32.2 33.9	2.600 3.000 3.500	37.0 38.4 41.2 44.4 47.3	5.000 5.500 6.000 6.500 7.000	52.7 55.2 57.6 59.9 62.0	8.000 8.500 9.000 9.500	66.2 68.2 70.1 72.0
2.200	35.5	4.500	50.1	7.500	64.2		

Complex Manhole: Swale-3, DS/PN: 1.019, Volume (m³): 39.0

<u>Weir</u>

Discharge Coef 0.544 Width (m) 5.000 Invert Level (m) 22.638

<u>Pipe</u>

Diameter (m)	0.150	Roughness k (mm)	0.600
Section Type	Pipe/Conduit	Entry Loss Coefficient	0.500
Slope (1:X)	100.0	Coefficient of Contraction	0.600
Length (m)	1.000	Upstream Invert Level (m)	22.638

Complex Manhole: Swale-4, DS/PN: 1.020, Volume (m³): 39.0

<u>Weir</u>

Discharge Coef 0.544 Width (m) 5.000 Invert Level (m) 21.777

<u>Pipe</u>

Diameter (m)	0.150	Roughness k (mm)	0.600
Section Type	Pipe/Conduit	Entry Loss Coefficient	0.500
Slope (1:X)	100.0	Coefficient of Contraction	0.600
Length (m)	1.000	Upstream Invert Level (m)	21.777

Complex Manhole: Swale-5, DS/PN: 1.021, Volume (m³): 42.9

<u>Weir</u>

Discharge Coef 0.544 Width (m) 5.000 Invert Level (m) 20.999

<u>Pipe</u>

Diameter (m)	0.150	Length (m)	1.000
Section Type	Pipe/Conduit	Roughness k (mm)	0.600
Slope $(1:X)$	100.0	Entry Loss Coefficient	0.500

C & A Consulting Engineers Ltd		Page 11
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	1

<u>Pipe</u>

Coefficient of Contraction 0.600 Upstream Invert Level (m) 20.999

Complex Manhole: Swale-6, DS/PN: 1.022, Volume (m³): 42.9

Weir

Discharge Coef 0.544 Width (m) 5.000 Invert Level (m) 20.221

<u>Pipe</u>

Diameter (m)	0.150	Roughness k (mm)	0.600
Section Type	Pipe/Conduit	Entry Loss Coefficient	0.500
Slope (1:X)	100.0	Coefficient of Contraction	0.600
Length (m)	1.000	Upstream Invert Level (m)	20.221

Complex Manhole: Sw-Outlet, DS/PN: 1.023, Volume (m³): 42.9

Weir

Discharge Coef 0.544 Width (m) 5.000 Invert Level (m) 19.442

Pipe

Diameter (m)	0.150	Roughness k (mm)	0.600
Section Type	Pipe/Conduit	Entry Loss Coefficient	0.500
Slope (1:X)	100.0	Coefficient of Contraction	0.600
Length (m)	1.000	Upstream Invert Level (m)	19.442

C & A Consulting Engineers Ltd		Page 12
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

Storage Structures for 18-058 SW Strategy Rev A - RM1-2 and Spine Rd.sws

Tank or Pond Manhole: Basin-1, DS/PN: 6.009

Invert Level (m) 35.000

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 1154.7 1.600 2428.0

Swale Manhole: HSw-7, DS/PN: 16.000

Warning:- Volume should always be included unless the upstream pipe is being used for storage and/or as a carrier

Infiltration Coefficient Base (m/hr)	0.00000 Length (m)	59.4
Infiltration Coefficient Side (m/hr)	0.00000 Side Slope (1:X)	4.0
Safety Factor	2.0 Slope (1:X)	16.7
Porosity	1.00 Cap Volume Depth (m)	0.000
Invert Level (m)	36.860 Cap Infiltration Depth (m)	0.000
Base Width (m)	0.6 Include Swale Volume	Yes

Swale Manhole: HSw-16, DS/PN: 18.000

Warning:- Volume should always be included unless the upstream pipe is being used for storage and/or as a carrier

Infiltration Coefficient Base (m/	/hr)	0.00000	Length (m) 46.0
Infiltration Coefficient Side (m/	/hr)	0.00000	Side Slope (1:X) 4.0
Safety Fac	ctor	2.0	Slope (1:X) 58.0
Poros	sity	1.00	Cap Volume Depth (m) 0.000
Invert Level	(m)	36.000	Cap Infiltration Depth (m) 0.000
Base Width	(m)	0.6	Include Swale Volume Yes

Swale Manhole: HSw-17, DS/PN: 19.000

Warning:- Volume should always be included unless the upstream pipe is being used for storage and/or as a carrier

Infiltration Coefficient Base (m/hr)	0.00000 Length (m)	29.1
Infiltration Coefficient Side (m/hr)	0.00000 Side Slope (1:X)	4.0
Safety Factor	2.0 Slope (1:X)	77.0
Porosity	1.00 Cap Volume Depth (m)	0.000
Invert Level (m)	36.000 Cap Infiltration Depth (m)	0.000
Base Width (m)	0.6 Include Swale Volume	Yes

Tank or Pond Manhole: Basin-2, DS/PN: 1.013

Invert Level (m) 26.700

C & A Consulting Engineers Ltd		Page 13
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	1

Tank or Pond Manhole: Basin-2, DS/PN: 1.013

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 521.6 1.400 1147.2

Tank or Pond Manhole: Basin-3, DS/PN: 1.016

Invert Level (m) 23.900

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 1234.6 1.600 2163.9

C & A Consulting Engineers Ltd		Page 14
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	·

Volume Summary (Static)

Length Calculations based on True Length

				Storage	
Pipe	USMH	Manhole	Pipe	Structure	
Number	Name	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)
1.000	S1	1.612	1.224	0.000	2.836
1.001	S2	1.612	1.635	0.000	3.247
1.002	s3	1.696	2.471	0.000	4.168
1.003	S4	2.971	0.532	0.000	3.503
1.004	S5	4.258	1.860	0.000	6.118
1.005	S6	3.752	3.830	0.000	7.582
2.000	s7	1.612	0.758	0.000	2.369
1.006	S8	2.897	4.884	0.000	7.781
1.007	S9	2.362			7.022
1.008	S10				
1.009	S11	7.168			8.209
3.000	HSw-1	0.000		0.000	90.808
3.001	HSw-2	0.540			0.814
3.002	S12	3.393			4.874
3.003	S13	2.884			
4.000	S14				3.248
3.004	S15				4.839
3.005	S16	2.519			5.233
1.010	S17	7.576		0.000	20.464
5.000	S18	1.612		0.000	2.675
5.001	S19			0.000	3.889
1.011	S20			0.000	30.535
6.000	S24A				
6.001	S24A S24				3.659
6.002	S25	1.781		0.000	3.533
7.000	S26	2.254		0.000	4.772
7.000	S27	2.853		0.000	5.755
6.003	S28	2.784			7.120
	S21	1.763			2.642
8.000 8.001	S21				2.998
8.002	S22A				2.914
8.003	S23	1.856		0.000	4.274
6.004	S29	2.561			6.913
6.005	S30				
6.006	S31				6.139 9.313
6.007	S32				7.835
6.008	S33				4.176
9.000	S34A				2.224
9.001	S34	2.592	1.471	0.000	4.063
9.002	S35		1.146		3.788
10.000	S36	1.612	0.306	0.000	1.918
10.001	S37	1.612	0.945	0.000	2.557
9.003	S38	2.582	1.776	0.000	4.358
11.000	S39A	1.612	0.740	0.000	2.352
11.001	S39	1.943	1.979	0.000	3.922
12.000	S40	1.855	1.137	0.000	2.991
11.002	S41 S42	2.376 2.899	3.094 3.529	0.000	5.470 6.428
9.004					

C & A Consulting Engineers Ltd		Page 15
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

Volume Summary (Static)

			Storage			
Pipe	USMH	Manhole	Pipe	Structure	Total	
Number	Name	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	
0 005	~ 4.0	0.001		0.000	0.071	
9.005	S43	3.931	4.141	0.000	8.071	
9.006	S44	5.668	4.025	0.000	9.693	
13.000	S45	1.614	0.379	0.000	1.993	
13.001	S46	1.715	0.767	0.000	2.481	
13.002	S47	2.156	2.511	0.000	4.667	
13.003	S48	2.941	0.668	0.000	3.609	
14.000	S49	1.838	1.353	0.000	3.191	
14.001	S50	2.511	1.436	0.000	3.946	
14.002	S51	1.880	0.671	0.000	2.551	
6.009	Basin-1	2.827	10.325	2803.786	2816.939	
15.000	HSw-3	0.000	62.267	0.000	62.267	
15.001	HSw-4	0.216	0.110	0.000	0.326	
15.002	HSw-5	0.216	83.776	0.000	83.992	
15.003	HSw-6	0.539	0.474	0.000	1.013	
15.004	CP1	1.561	2.082	0.000	3.643	
16.000	HSw-7	0.895	0.619	6.613	8.128	
15.005	CP2	2.183	5.309	0.000	7.492	
17.000	HSw-8	0.000	33.572	0.000	33.572	
17.001	HSw-9	0.000	0.241	0.000	0.241	
17.002	HSw-10	0.000	54.027	0.000	54.027	
17.003	HSw-11	0.216	0.654	0.000	0.870	
17.004	HSw-12	0.216	50.053	0.000	50.269	
17.005	HSw-13	0.000	0.551	0.000	0.551	
17.006	HSw-14	0.000	53.474	0.000	53.474	
17.007	HSw-15	3.271	4.501	0.000	7.772	
18.000	HSw-16	0.547	0.422	22.968	23.937	
19.000	HSw-17	0.547	0.379	28.228	29.154	
6.010	S52-Control	13.245	0.606	0.000	13.851	
1.012	S53	4.091	6.011	0.000	10.102	
1.013	Basin-2	2.474	1.444	1139.763	1143.682	
1.014	S54-Control	2.532	0.166	0.000	2.698	
1.015	Swale-1	0.000	112.403	0.000	112.403	
1.016	Basin-3	2.827	2.023	2684.260	2689.111	
1.017	S55-Control	4.130	0.337	0.000	4.467	
1.018	Swale-2	0.273	38.689	0.000	38.963	
1.019	Swale-3	0.273	38.689	0.000	38.963	
1.020	Swale-4	0.273	42.615	0.000	42.888	
1.021	Swale-5	0.273	42.615	0.000	42.888	
1.022	Swale-6	0.273	42.615	0.000	42.888	
1.023	Sw-Outlet	0.273	0.418	0.000	0.691	
Total		202.767	924.062	6685.619	7812.448	

C & A Consulting Engineers Ltd		Page 16
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	'

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 6 Number of Online Controls 8 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.420 Region England and Wales Cv (Summer) 0.790 M5-60 (mm) 26.250 Cv (Winter) 0.830

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,

Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 20

													Water
	US/MH			Return	Climate	First	t (X)	First	(Y)	First	(Z)	Overflow	Level
PN	Name	5	Storm	Period	Change	Surch	harge	Floo	d	Overf	low	Act.	(m)
1.000	S1	15	Summer	1	+0%								43.370
1.001	S2	15	Summer	1	+0%								41.878
1.002	s3	15	Summer	1	+0%	30/15	Summer						39.731
1.003	S4	15	Summer	1	+0%	30/15	Summer						39.592
1.004	S5	15	Summer	1	+0%	30/15	Summer						39.498
1.005	S6	15	Summer	1	+0%								39.384
2.000	s7	15	Summer	1	+0%								39.092
1.006	S8	15	Summer	1	+0%								38.777
1.007	S9	15	Summer	1	+0%	30/15	Summer						37.913
1.008	S10	15	Winter	1	+0%	30/15	Summer						37.744
1.009	S11	15	Winter	1	+0%	30/15	Summer						37.663
3.000	HSw-1	15	Summer	1	+0%								45.653
3.001	HSw-2	15	Summer	1	+0%	30/15	Summer						43.998
3.002	S12	15	Summer	1	+0%	30/15	Summer						41.930
3.003	S13	15	Summer	1	+0%	30/15	Summer						41.850
4.000	S14	15	Summer	1	+0%	30/15	Summer						41.759
3.004	S15	15	Summer	1	+0%	30/15	Summer						41.717
3.005	S16	15	Summer	1	+0%	100/15	Summer						40.890
					01.00								
					©198	2-2019	Innov	yze					

C & A Consulting Engineers Ltd	Page 17	
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.000	S1	-0.180	0.000	0.09		9.5	OK	
1.001	S2	-0.172	0.000	0.13		14.3		
1.002	s3	-0.169	0.000	0.39		25.6	OK	
1.003	S4	-0.156	0.000	0.46		25.1	OK	
1.004	S5	-0.213	0.000	0.38		35.6	OK	
1.005	S6	-0.267	0.000	0.18		40.1	OK	
2.000	s7	-0.150	0.000	0.24		8.6	OK	
1.006	S8	-0.345	0.000	0.12		59.9	OK	
1.007	S9	-0.237	0.000	0.45		70.8	OK	
1.008	S10	-0.306	0.000	0.31		73.3	OK	
1.009	S11	-0.278	0.000	0.45		75.2	OK	
3.000	HSw-1	-0.529	0.000	0.01		25.9	OK	
3.001	HSw-2	-0.050	0.000	0.77		26.0	OK	
3.002	S12	-0.086	0.000	0.84		52.9	OK	
3.003	S13	-0.074	0.000	0.91		52.4	OK	
4.000	S14	-0.201	0.000	0.20		12.2	OK	
3.004	S15	-0.160	0.000	0.44		70.3	OK	
3.005	S16	-0.167	0.000	0.40		76.3	OK	

C & A Consulting Engineers Ltd	Page 18	
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

	US/MH				Climate	First (X)			First (Z)	
PN	Name	s	torm	Period	Change	Surch	narge	Flood	Overflow	Act.
1.010	S17	15	Winter	1	+0%					
5.000	S18	15	Summer	1	+0%					
5.001	S19	15	Summer	1	+0%					
1.011	S20	15	Winter	1	+0%					
6.000	S24A	15	Summer	1	+0%					
6.001	S24	15	Summer	1	+0%					
6.002	S25	15	Summer	1	+0%					
7.000	S26	15	Summer	1	+0%	100/15	Summer			
7.001	S27	15	Summer	1	+0%	100/15	Summer			
6.003	S28	15	Summer	1	+0%	100/15	Summer			
8.000	S21	15	Summer	1	+0%					
8.001	S22	15	Summer	1	+0%	100/15	Summer			
8.002	S22A	15	Summer	1	+0%	100/15	Summer			
8.003	S23	15	Summer	1	+0%	100/15	Summer			
6.004	S29	15	Summer	1	+0%	100/15	Summer			
6.005	S30	15	Winter	1	+0%	30/15	Summer			
6.006	S31	15	Summer	1	+0%	30/15	Summer			
6.007	S32	15	Summer	1	+0%	100/15	Summer			
6.008	S33	15	Summer	1	+0%	30/15	Summer			
9.000	S34A	15	Summer	1	+0%	100/15	Summer			
9.001	S34	15	Summer	1	+0%	30/15	Summer			
9.002	S35	15	Summer	1	+0%	30/15	Summer			
10.000	S36	15	Summer	1	+0%					
10.001	S37	15	Summer	1	+0%					
9.003	S38	15	Summer	1	+0%	100/15	Summer			
11.000	S39A	15	Summer	1	+0%	100/15	Summer			
11.001	S39	15	Summer	1	+0%	30/15	Summer			
12.000	S40	15	Summer	1	+0%	30/15	Summer			
11.002	S41	15	Summer	1	+0%		Summer			
9.004	S42	15	Summer	1	+0%	30/15	Summer			
9.005	S43	15	Summer	1	+0%					
9.006	S44	15	Summer	1	+0%	100/15	Summer			
13.000	S45	15	Summer	1	+0%	30/15	Summer			
13.001	S46	15	Summer	1	+0%	30/15	Summer			
13.002	S47	15	Summer	1	+0%					
13.003	S48	15	Summer	1	+0%	100/15	Summer			
14.000	S49	15	Summer	1	+0%	30/15	Summer			
14.001	S50		Summer	1	+0%	30/15	Summer			
14.002	S51	15	Summer	1	+0%	100/15	Summer			
6.009	Basin-1	360	Winter	1	+0%	30/60	Summer			
15.000	HSw-3	15	Summer	1	+0%					
15.001	HSw-4	15	Summer	1	+0%	30/15	Summer			
15.002	HSw-5	15	Summer	1	+0%					
15.003	HSw-6	15	Summer	1	+0%		Summer			
15.004	CP1	15	Summer	1	+0%	100/15				
16.000	HSw-7		Summer	1	+0%		Summer			
15.005	CP2	15	Summer	1	+0%	30/15	Summer			
17.000	HSw-8	15	Summer	1	+0%					
		_		©1	982-201	.9 Inno	vyze			

C & A Consulting Engineers Ltd	Page 19	
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

	/		Surcharged		-1 /		Pipe		- 1
PN	US/MH Name	Level (m)	Depth (m)	(m³)	Elow / Cap.	Overflow (1/s)	flow (1/s)	Status	Level Exceeded
					-	, , -,			
1.010		37.575	-0.343	0.000	0.26		162.3	OK	
5.000		40.133		0.000	0.15		9.6	OK	
5.001		38.365		0.000	0.07		9.6	OK	
1.011		31.977		0.000	0.18		180.0	OK	
6.000		41.319		0.000	0.14		5.2	OK	
6.001		41.180		0.000	0.11		5.3	OK	
6.002		40.925		0.000	0.16		15.4	OK	
7.000		39.444		0.000	0.19		20.4	OK	
7.001		39.284		0.000	0.16		30.1	OK	
6.003		39.203		0.000	0.25		44.9	OK	
8.000		41.310		0.000	0.13		9.9	OK	
8.001		40.711		0.000	0.16		27.0	OK	
8.002	S22A	40.230	-0.200	0.000	0.24		26.8	OK	
8.003	S23	40.022	-0.198	0.000	0.25		39.1	OK	
6.004	S29	39.099	-0.281	0.000	0.30		100.5	OK	
6.005	S30	38.691	-0.278	0.000	0.31		114.6	OK	
6.006	S31	38.285	-0.243	0.000	0.43		132.9	OK	
6.007	S32	36.448	-0.277	0.000	0.31		143.6	OK	
6.008	S33	35.781	-0.244	0.000	0.42		146.5	OK	
9.000	S34A	38.540	-0.169	0.000	0.14		4.9	OK	
9.001	S34	38.425	-0.185	0.000	0.31		19.2	OK	
9.002	S35	38.356	-0.162	0.000	0.43		26.4	OK	
10.000	S36	40.752	-0.191	0.000	0.06		5.3	OK	
10.001	S37	40.299	-0.193	0.000	0.05		5.3	OK	
9.003	S38	38.242	-0.203	0.000	0.23		42.9	OK	
11.000	S39A	38.659	-0.141	0.000	0.30		27.5	OK	
11.001	S39	37.869	-0.182	0.000	0.32		41.1	OK	
12.000	S40	37.495	-0.197	0.000	0.26		18.6	OK	
11.002	S41	37.354	-0.235	0.000	0.38		64.6	OK	
9.004	S42	37.308	-0.194	0.000	0.61		105.8	OK	
9.005	S43	37.106	-0.298	0.000	0.25		119.1	OK	
9.006	S44	36.257	-0.293	0.000	0.26		130.3	OK	
13.000		40.657	-0.131	0.000	0.36		15.7	OK	
13.001		40.559		0.000	0.42		19.8	OK	
13.002		40.322		0.000	0.21		22.8	OK	
13.003		36.288		0.000	0.32		35.1	OK	
14.000		37.215		0.000	0.37		18.0	OK	
14.001		36.891	-0.102	0.000	0.57		27.9	OK	
14.002		36.478	-0.142	0.000	0.29		35.2	OK	
	Basin-1		-0.206				10.8	OK	
15.000		45.206	-0.554	0.000	0.00		20.1	OK	
15.001		43.480	-0.070	0.000	0.54		20.0	OK	
15.002		43.064	-0.536	0.000	0.01		40.0	OK	
15.003		39.517	0.022	0.000	1.17			SURCHARGED	
15.004		39.282	-0.137	0.000	0.33		40.6	OK	
16.000		36.015	-0.153	0.000	0.48		26.5	OK	
15.005		35.898	-0.229	0.000	0.32		66.2	OK	
				982-201		vyze			

C & A Consulting Engineers Ltd	Page 20	
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

		Water	Surcharged	Flooded			Pipe			
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level	
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded	
17.000	HSw-8	44.236	-0.564	0.000	0.00		12.9	OK		

C & A Consulting Engineers Ltd		Page 21
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

PN	·			Climate Change		t (X) harge	 First (Z) Overflow	Overflow Act.	
17.001	HSw-9	1 5	Summer	1	1.00	100/15	C		
17.001	HSw-10			1	+0%	100/13	Summer		
17.002			Summer	1		100/15	C		
	HSw-11		Summer	1		100/15	Summer		
17.004	HSw-12		Summer		+0%		_		
17.005	HSw-13		Summer	1		100/15	Summer		
17.006	HSw-14		Summer	1	+0%				
17.007	HSw-15	15	Winter	1	+0%	1/15	Summer		
18.000	HSw-16	15	Winter	1	+0%	1/15	Summer		
19.000	HSw-17	15	Winter	1	+0%	1/15	Winter		
6.010	S52-Control	15	Winter	1	+0%	1/15	Summer		
1.012	S53	15	Winter	1	+0%	100/15	Summer		
1.013	Basin-2	240	Winter	1	+0%	30/60	Winter		
1.014	S54-Control	240	Winter	1	+0%	1/15	Summer		
1.015	Swale-1	240	Winter	1	+0%				
1.016	Basin-3	600	Winter	1	+0%	30/120	Summer		
	S55-Control	600	Winter	1	+0%	1/30	Winter		
1.018	Swale-2		Summer	1	+0%				
1.019	Swale-3		Summer	1	+0%				
1.020	Swale-4			1	+0%				
1.021	Swale-5			1	+0%				
1.021				1	+0%				
1.022	Swale-0			1	+0%				
1.023	5w-Outlet	1440	wincer	Τ.	TU6				

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
17.001		43.276	-0.094	0.000	0.29		12.8		
17.002	HSw-10	42.456	-0.544	0.000	0.01		30.2	OK	
17.003	HSw-11	40.720	-0.145	0.000	0.27		30.0	OK	
17.004	HSw-12	39.708	-0.532	0.000	0.01		45.3	OK	
17.005	HSw-13	38.089	-0.191	0.000	0.28		45.6	OK*	
17.006	HSw-14	37.646	-0.514	0.000	0.02		58.8	OK	
17.007	HSw-15	35.628	0.049	0.000	0.40		54.9	SURCHARGED	
18.000	HSw-16	35.638	0.013	0.000	0.45		20.1	SURCHARGED	
19.000	HSw-17	35.626	0.001	0.000	0.29		13.4	SURCHARGED	
6.010	S52-Control	35.607	4.312	0.000	0.23		11.4	SURCHARGED	
1.012	S53	27.233	-0.352	0.000	0.36		191.9	OK	
1.013	Basin-2	27.054	-0.246	0.000	0.05		18.2	OK	
1.014	S54-Control	27.051	0.209	0.000	0.28		17.0	SURCHARGED	
1.015	Swale-1	26.483	-0.555	0.000	0.00		17.0	OK	
1.016	Basin-3	24.286	-0.289	0.000	0.07		30.5	OK	
1.017	S55-Control	24.280	0.153	0.000	0.20		28.2	SURCHARGED	
1.018	Swale-2	23.560	-0.540	0.000	0.01		28.2	OK	
1.019	Swale-3	22.660	-0.578	0.000	0.01		28.2		
1.020	Swale-4	21.799	-0.578	0.000	0.01		28.2	OK	
1.021	Swale-5		-0.578	0.000	0.01		28.2		
			©198	2-2019	Innovy	 /ze			

C & A Consulting Engineers Ltd		Page 22
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

		Water	Surcharged				Pipe		
	US/MH	Level	Depth		- •	Overflow			Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.022	Swale-6	20.243	-0.578	0.000	0.01		28.2	OK	
1.023	Sw-Outlet	19.464	-0.203	0.000	0.24		28.2	OK	

C & A Consulting Engineers Ltd		Page 23
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 6 Number of Online Controls 8 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.420 Region England and Wales Cv (Summer) 0.790 M5-60 (mm) 26.250 Cv (Winter) 0.830

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OFF

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,

Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 20

													Water
	US/MH			Return	${\tt Climate}$	First	t (X)	First	(Y)	First	(Z)	Overflow	Level
PN	Name	\$	Storm	Period	Change	Surch	narge	Floo	od	Overí	low	Act.	(m)
1 000	0.1	1 -	0	2.0	. 00								42 206
1.000			Summer	30	+0%								43.396
1.001			Summer	30	+0%								41.916
1.002	S3	15	Summer	30	+0%	30/15	Summer						39.984
1.003	S4	15	Summer	30	+0%	30/15	Summer						39.795
1.004	S5	15	Winter	30	+0%	30/15	Summer						39.717
1.005	S6	15	Summer	30	+0%								39.469
2.000	s7	15	Summer	30	+0%								39.142
1.006	S8	15	Summer	30	+0%								38.857
1.007	S9	15	Summer	30	+0%	30/15	Summer						38.204
1.008	S10	15	Summer	30	+0%	30/15	Summer						38.054
1.009	S11	15	Summer	30	+0%	30/15	Summer						37.943
3.000	HSw-1	15	Summer	30	+0%								45.698
3.001	HSw-2	15	Summer	30	+0%	30/15	Summer						44.989
3.002	S12	15	Summer	30	+0%	30/15	Summer						42.696
3.003	S13	15	Summer	30	+0%	30/15	Summer						42.288
4.000	S14	15	Summer	30	+0%	30/15	Summer						42.114
3.004	S15	15	Summer	30	+0%	30/15	Summer						42.026
3.005	S16	15	Summer	30	+0%	100/15	Summer						41.027
					©198	2-2019	Innov	yze					

C & A Consulting Engineers Ltd		Page 24
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Pipe Flow (1/s)	Status	Level Exceeded
1.000	S1	-0.154	0.000	0.22		23.2	OK	
1.001	S2	-0.134	0.000	0.35		38.7	OK	
1.002	s3	0.084	0.000	1.08		71.6	SURCHARGED	
1.003	S4	0.047	0.000	1.30		71.0	SURCHARGED	
1.004	S5	0.006	0.000	1.01		95.1	SURCHARGED	
1.005	S6	-0.182	0.000	0.50		108.9	OK	
2.000	s7	-0.100	0.000	0.58		21.1	OK	
1.006	S8	-0.265	0.000	0.34		166.9	OK	
1.007	S9	0.054	0.000	1.27		201.8	SURCHARGED	
1.008	S10	0.004	0.000	0.82		192.7	SURCHARGED	
1.009	S11	0.002	0.000	1.18		197.0	SURCHARGED	
3.000	HSw-1	-0.484	0.000	0.03		62.3	OK	
3.001	HSw-2	0.941	0.000	1.54		52.3	SURCHARGED	
3.002	S12	0.680	0.000	2.11		132.8	SURCHARGED	
3.003	S13	0.364	0.000	2.28		130.9	SURCHARGED	
4.000	S14	0.154	0.000	0.46		28.6	SURCHARGED	
3.004	S15	0.149	0.000	1.08		173.8	SURCHARGED	
3.005	S16	-0.030	0.000	0.99		189.0	OK	

C & A Consulting Engineers Ltd		Page 25
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Drairiage
Innovyze	Network 2019.1	

	US/MH			Return	Climate	First	t (X)	First (Y)	First (Z)	Overflow
PN	Name	s	torm	Period	Change		narge	Flood	Overflow	Act.
1.010	s17	15	Summer	30	+0%					
5.000	S18	15	Summer	30	+0%					
5.001	S19	15	Summer	30	+0%					
1.011	S20	15	Summer	30	+0%					
6.000	S24A	15	Summer	30	+0%					
6.001	S24	15	Summer	30	+0%					
6.002	S25	15	Summer	30	+0%					
7.000	S26	15	Summer	30	+0%	100/15	Summer			
7.001	S27	15	Summer	30	+0%	100/15	Summer			
6.003	S28	15	Summer	30	+0%	100/15	Summer			
8.000	S21	15	Summer	30	+0%					
8.001	S22	15	Summer	30	+0%	100/15	Summer			
8.002	S22A	15	Summer	30	+0%	100/15	Summer			
8.003	S23	15	Summer	30	+0%	100/15	Summer			
6.004	S29	15	Summer	30	+0%	100/15	Summer			
6.005	S30	15	Summer	30	+0%	30/15	Summer			
6.006	S31	15	Summer	30	+0%	30/15	Summer			
6.007	S32	15	Summer	30	+0%	100/15	Summer			
6.008	S33	15	Summer	30	+0%	30/15	Summer			
9.000	S34A	15	Summer	30	+0%	100/15	Summer			
9.001	S34	15	Summer	30	+0%	30/15	Summer			
9.002	S35	15	Summer	30	+0%	30/15	Summer			
10.000	S36	15	Summer	30	+0%					
10.001	S37	15	Summer	30	+0%					
9.003	S38	15	Summer	30	+0%	100/15	Summer			
11.000	S39A	15	Summer	30	+0%	100/15	Summer			
11.001	S39	15	Summer	30	+0%	30/15	Summer			
12.000	S40	15	Summer	30	+0%	30/15	Summer			
11.002	S41	15	Summer	30	+0%	30/15	Summer			
9.004	S42		Summer	30	+0%	30/15	Summer			
9.005	S43	15	Summer	30	+0%					
9.006	S44	15	Summer	30	+0%	100/15				
13.000	S45		Summer	30	+0%		Summer			
13.001	S46		Summer	30	+0%	30/15	Summer			
13.002	S47		Summer	30	+0%					
13.003	S48		Summer	30		100/15				
14.000	S49		Summer	30	+0%		Summer			
14.001	S50		Summer	30	+0%		Summer			
14.002	S51		Summer	30		100/15				
	Basin-1			30	+0%		Summer			
15.000			Summer	30	+0%		_			
15.001	HSw-4		Summer	30	+0%	30/15	Summer			
15.002	HSw-5		Summer	30	+0%	1 /1 =				
15.003	HSw-6		Summer	30	+0%		Summer			
15.004	CP1		Summer	30		100/15				
16.000	HSw-7		Summer	30	+0%		Summer			
15.005	CP2		Summer	30	+0%	30/15	Summer			
17.000	HSw-8	15	Summer	30	+0%					
				©1	982-201	.9 Inno	vyze			

C & A Consulting Engineers Ltd		Page 26
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

	US/MH	Water Level	Surcharged Depth		Elou /	Overflow	Pipe		Level
PN	Name	(m)	m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1 010	217	27.700	0.000	0 000	0.66		410 4	0.77	
1.010		37.709	-0.209	0.000	0.66		412.4	OK	
5.000		40.169		0.000	0.36		23.5	OK	
5.001		38.388	-0.162	0.000	0.17		23.4	OK	
1.011		32.078	-0.272	0.000	0.47		453.9	OK	
6.000		41.355	-0.132	0.000	0.35		12.8	OK	
6.001		41.210	-0.145	0.000	0.27		12.9	OK	
6.002		40.975	-0.113	0.000	0.49		45.3	OK	
7.000		39.515	-0.191	0.000	0.47		49.8	OK	
7.001		39.394	-0.220	0.000	0.41		77.6	OK	
6.003		39.355	-0.144	0.000	0.67		119.6	OK	
8.000		41.344	-0.136	0.000	0.33		24.2	OK	
8.001		40.778	-0.152	0.000	0.48		79.7	OK	
8.002		40.317	-0.113	0.000	0.70		79.6	OK	
8.003		40.118	-0.102	0.000	0.76		120.1	OK	
6.004		39.290	-0.090	0.000	0.84		279.0	OK	
6.005		39.016	0.047	0.000	0.85			SURCHARGED	
6.006		38.700	0.172	0.000	1.17			SURCHARGED	
6.007		36.656	-0.069	0.000	0.84		390.3	OK	
6.008		36.136	0.111	0.000	1.15			SURCHARGED	
9.000		38.659	-0.050	0.000	0.34		12.0	OK	
9.001		38.637	0.027	0.000	0.86			SURCHARGED	
9.002		38.554	0.036	0.000	1.24			SURCHARGED	
10.000		40.773	-0.170	0.000	0.14		13.0	OK	
10.001		40.319	-0.173	0.000	0.12		12.9	OK	
9.003		38.326	-0.119	0.000	0.65		122.5	OK	
11.000		38.720	-0.080	0.000	0.73		67.3	OK	
11.001		38.099		0.000	0.84			SURCHARGED	
12.000		37.852	0.160	0.000	0.60			SURCHARGED	
11.002		37.751	0.162	0.000	0.97			SURCHARGED	
9.004		37.648	0.146	0.000	1.64			SURCHARGED	
9.005		37.224	-0.180	0.000	0.66		321.2	OK	
9.006		36.383	-0.167	0.000	0.70		352.7	OK	
13.000		40.802	0.014	0.000	0.86			SURCHARGED	
13.001		40.696	0.015	0.000	1.05			SURCHARGED	
13.002		40.370		0.000	0.54		57.7	OK	
13.003		36.366		0.000	0.88		97.1	OK	
14.000		37.565	0.220	0.000	0.85			SURCHARGED	
14.001		37.312	0.319	0.000	1.34			SURCHARGED	
14.002		36.538	-0.082	0.000	0.71		85.8	OK	
	Basin-1				0.04			SURCHARGED	
15.000		45.233	-0.527	0.000	0.01		49.2	OK	
15.001		43.712	0.162	0.000	1.19			FLOOD RISK	
15.002		43.106	-0.494	0.000	0.02		106.2	OK	
15.003		40.150	0.655	0.000	3.07			SURCHARGED	
15.004		39.355	-0.064	0.000	0.85		106.0	OK	
16.000		36.257	0.089	0.000	1.16			SURCHARGED	
15.005	CP2	36.215	0.088	0.000	0.81		168.3	SURCHARGED	
	·		©1	982-201	9 Inno	vyze	_		

C & A Consulting Engineers Ltd		Page 27
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
17.000	HSw-8	44.259	-0.541	0.000	0.01		31.6	OK	

C & A Consulting Engineers Ltd	Page 28	
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

PN	US/MH Name Storm			Climate Change	• •		First (Y) Flood	First (Z) Overflow	Overflow Act.	
17.001	HSw-9	15	Summer	30	+0%	100/15	Summer			
17.002	HSw-10	15	Summer	30	+0%					
17.003	HSw-11	15	Summer	30	+0%	100/15	Summer			
17.004	HSw-12	15	Summer	30	+0%					
17.005	HSw-13	15	Summer	30	+0%	100/15	Summer			
17.006	HSw-14	15	Summer	30	+0%					
17.007	HSw-15	15	Summer	30	+0%	1/15	Summer			
18.000	HSw-16	15	Summer	30	+0%	1/15	Summer			
19.000	HSw-17	15	Summer	30	+0%	1/15	Winter			
6.010	S52-Control	600	Winter	30	+0%	1/15	Summer			
1.012	S53	600	Winter	30	+0%	100/15	Summer			
1.013	Basin-2	600	Winter	30	+0%	30/60	Winter			
1.014	S54-Control	600	Winter	30	+0%	1/15	Summer			
1.015	Swale-1	120	Winter	30	+0%					
1.016	Basin-3	720	Winter	30	+0%	30/120	Summer			
1.017	S55-Control	600	Winter	30	+0%	1/30	Winter			
1.018	Swale-2	180	Summer	30	+0%					
1.019	Swale-3	180	Winter	30	+0%					
1.020	Swale-4	240	Winter	30	+0%					
1.021	Swale-5	30	Winter	30	+0%					
1.022	Swale-6	60	Winter	30	+0%					
1.023	Sw-Outlet	240	Summer	30	+0%					

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
17.001	H Sw = 9	43.315	-0.055	0.000	0.71		31.3	OK*	
17.002		42.496	-0.504	0.000	0.02		87.9		
17.002		40.791	-0.074	0.000	0.78		87.6	OK	
17.003		39.763	-0.477	0.000	0.03		137.7		
17.004		38.193	-0.087	0.000	0.84		136.2		
17.005		37.714	-0.446	0.000	0.05		178.3		
17.000	HSw-15		0.366	0.000	1.29			SURCHARGED	
18.000		36.055	0.430	0.000	1.27			SURCHARGED	
19.000		36.028	0.403	0.000	0.84			SURCHARGED	
	S52-Control		4.583	0.000	0.23			SURCHARGED	
1.012		27.518	-0.067	0.000	0.11		58.5	OK	
1.013	Basin-2		0.200	0.000	0.05			SURCHARGED	
	S54-Control	27.518	0.676	0.000	0.28		17.0	SURCHARGED	
1.015	Swale-1	26.483	-0.555	0.000	0.00		17.0	OK	
1.016	Basin-3	24.745	0.170	0.000	0.07		34.7	SURCHARGED	
1.017	S55-Control	24.753	0.626	0.000	0.20		28.2	SURCHARGED	
1.018	Swale-2	23.560	-0.540	0.000	0.01		28.2	OK	
1.019	Swale-3	22.660	-0.578	0.000	0.01		28.2	OK	
1.020	Swale-4	21.799	-0.578	0.000	0.01		28.2	OK	
1.021	Swale-5	21.021	-0.578	0.000	0.01		28.2	OK	
			©198	2-2019	Innovy	ze			

C & A Consulting Engineers Ltd	Page 29	
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.022	Swale-6	20 243	-0.578	0.000	0.01		28.2	OK	
			0.070	0.000					
1.023	Sw-Outlet	19.464	-0.203	0.000	0.24		28.2	OK	

C & A Consulting Engineers Ltd	Page 30	
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 6 Number of Online Controls 8 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.420 Region England and Wales Cv (Summer) 0.790 M5-60 (mm) 26.250 Cv (Winter) 0.830

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OFF

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,

Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 20

PN	US/MH Name	S	Storm		Climate Change		t (X) harge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
1.000			Summer	100	+20%						43.416
1.001			Summer	100	+20%						41.944
1.002			Summer	100	+20%		Summer				40.503
1.003		15	Summer	100	+20%		Summer				40.028
1.004	S5	15	Summer	100	+20%	30/15	Summer				39.825
1.005	S6	15	Summer	100	+20%						39.542
2.000	s7	15	Summer	100	+20%						39.189
1.006	S8	15	Summer	100	+20%						38.973
1.007	S9	15	Summer	100	+20%	30/15	Summer				38.683
1.008	S10	15	Summer	100	+20%	30/15	Summer				38.292
1.009	S11	15	Summer	100	+20%	30/15	Summer				38.081
3.000	HSw-1	15	Summer	100	+20%						45.726
3.001	HSw-2	15	Summer	100	+20%	30/15	Summer				45.248
3.002	S12	15	Summer	100	+20%	30/15	Summer				44.194
3.003	S13	15	Summer	100	+20%	30/15	Summer				43.645
4.000	S14	15	Summer	100	+20%	30/15	Summer				43.357
3.004			Summer	100	+20%		Summer				43.281
3.005	S16	15	Summer	100	+20%	100/15					41.827
					©198	2-2019	Innov	yze			

C & A Consulting Engineers Ltd	Page 31	
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.000	S1	-0.134	0.000	0.34		36.6	OK	
1.000	S2	-0.106	0.000	0.54		60.8	OK	
1.002	S3	0.603	0.000	1.70			SURCHARGED	
1.003	S4	0.280	0.000	2.06		112.7	SURCHARGED	
1.004	S5	0.114	0.000	1.73		163.7	SURCHARGED	
1.005	S6	-0.109	0.000	0.84		182.7	OK	
2.000	s7	-0.053	0.000	0.92		33.2	OK	
1.006	S8	-0.149	0.000	0.55		269.3	OK	
1.007	S9	0.533	0.000	1.94		307.2	SURCHARGED	
1.008	S10	0.242	0.000	1.36		319.2	SURCHARGED	
1.009	S11	0.140	0.000	1.96		327.6	SURCHARGED	
3.000	HSw-1	-0.456	0.000	0.04		97.5	OK	
3.001	HSw-2	1.200	0.000	1.66		56.1	FLOOD RISK	
3.002	S12	2.178	0.000	2.61		164.0	SURCHARGED	
3.003	S13	1.721	0.000	2.74		156.9	SURCHARGED	
4.000	S14	1.397	0.000	0.66		40.9	FLOOD RISK	
3.004	S15	1.404	0.000	1.33		214.3	SURCHARGED	
3.005	S16	0.770	0.000	1.24		236.0	SURCHARGED	

C & A Consulting Engineers Ltd	Page 32	
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

73.7	US/MH	•			Climate	First			First (Z)	
PN	Name	S	torm	Period	Change	Surch	arge	Flood	Overflow	Act.
1.010	S17	15	Summer	100	+20%					
5.000	S18	15	Summer	100	+20%					
5.001	S19	15	Summer	100	+20%					
1.011	S20	15	Summer	100	+20%					
6.000	S24A	15	Summer	100	+20%					
6.001	S24	15	Summer	100	+20%					
6.002	S25	15	Summer	100	+20%					
7.000	S26	15	Summer	100	+20%	100/15	Summer			
7.001	S27	15	Summer	100	+20%	100/15	Summer			
6.003	S28	15	Summer	100	+20%	100/15	Summer			
8.000	S21	15	Summer	100	+20%					
8.001	S22	15	Summer	100	+20%	100/15	Summer			
8.002	S22A	15	Summer	100	+20%	100/15	Summer			
8.003	S23	15	Summer	100	+20%	100/15	Summer			
6.004	S29	15	Summer	100	+20%	100/15	Summer			
6.005	S30	15	Summer	100	+20%	30/15	Summer			
6.006	S31	15	Summer	100	+20%	30/15	Summer			
6.007	S32	15	Summer	100	+20%	100/15	Summer			
6.008	S33	15	Summer	100	+20%		Summer			
9.000	S34A	15	Summer	100	+20%	100/15	Summer			
9.001	S34	15	Summer	100	+20%		Summer			
9.002	S35		Summer	100	+20%	30/15	Summer			
10.000	S36	15	Summer	100	+20%					
10.001	S37		Summer	100	+20%					
9.003	S38		Summer	100		100/15				
11.000	S39A		Summer	100		100/15				
11.001	S39		Summer	100	+20%		Summer			
12.000	S40		Summer	100	+20%		Summer			
11.002	S41		Summer	100	+20%		Summer			
9.004	S42		Summer	100	+20%	30/15	Summer			
9.005	S43		Summer	100	+20%	100/15	~			
9.006	S44		Summer	100		100/15				
13.000	S45		Summer	100	+20%		Summer			
13.001	S46		Summer	100	+20%	30/15	Summer			
13.002	S47		Summer	100	+20%	100/15	Q			
13.003	S48		Summer	100		100/15				
14.000	S49		Summer	100	+20%		Summer			
14.001	S50		Summer	100	+20%		Summer			
14.002	S51 Basin-1		Summer	100		100/15				
	HSw-3			100 100	+20% +20%	30/00	Summer			
15.001	HSw-4		Summer	100	+20%	30/15	Summer			
15.001	HSw-5		Summer	100	+20%	20/13	Summer			
15.002	HSw-6		Summer	100	+20%	1 /1 5	Summer			
15.003	CP1		Summer	100		100/15				
16.000	HSw-7		Summer	100	+20%		Summer			
15.005	CP2		Summer	100	+20%		Summer			
17.000	HSw-8		Summer	100	+20%	20/13	Duninel			
			3 41111101		982-201	9 Inno	WW70			
				<u> </u>	JUZ ZUI		- v y 2 C			

C & A Consulting Engineers Ltd		Page 33
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

	770 /2077		Surcharged		71 /	061	Pipe		T 1
PN	US/MH Name	Level (m)	Depth (m)	(m³)	Cap.	Overflow (1/s)	flow (1/s)	Status	Level Exceeded
	ranc	()	(,	(2 /	oup.	(1/5)	(1,5,	5 64 645	Zaocedea
1.010		37.829	-0.089	0.000	0.99		615.1	OK	
5.000	S18	40.198	-0.102	0.000	0.57		37.0	OK	
5.001	S19	38.405	-0.145	0.000	0.27		36.8	OK	
1.011	S20	32.156	-0.194	0.000	0.70		685.8	OK	
6.000		41.383	-0.104	0.000	0.55		20.1	OK	
6.001		41.233		0.000	0.43		20.2	OK	
6.002		41.049	-0.039	0.000	0.76		70.7	OK	
7.000		40.580	0.874	0.000	0.65			SURCHARGED	
7.001	S27	40.503		0.000	0.53		100.8	SURCHARGED	
6.003		40.392		0.000	0.91		162.1	SURCHARGED	
8.000		41.386		0.000	0.52		38.0	OK	
8.001		41.294		0.000	0.72		118.5	SURCHARGED	
8.002	S22A	41.097	0.667	0.000	0.93		105.9	SURCHARGED	
8.003		40.944	0.724	0.000	0.97			SURCHARGED	
6.004		40.290		0.000	1.09			SURCHARGED	
6.005		39.808		0.000	1.11			SURCHARGED	
6.006	S31	39.241	0.713	0.000	1.55			SURCHARGED	
6.007	S32	37.494	0.769	0.000	1.13			SURCHARGED	
6.008		36.551	0.526	0.000	1.55			SURCHARGED	
9.000		39.247	0.538	0.000	0.65			SURCHARGED	
9.001	S34	39.221	0.611	0.000	1.25		79.0	SURCHARGED	
9.002	S35	39.069	0.551	0.000	1.79		109.9	SURCHARGED	
10.000	S36	40.789	-0.154	0.000	0.22		20.5	OK	
10.001		40.333	-0.159	0.000	0.19		20.3	OK	
9.003		38.834	0.389	0.000	0.96		181.0	SURCHARGED	
11.000		39.635		0.000	1.07		97.8	SURCHARGED	
11.001		38.803		0.000	1.17		148.9	SURCHARGED	
12.000		38.237	0.545	0.000	0.93		67.9	SURCHARGED	
11.002		38.140	0.551	0.000	1.40		235.9	SURCHARGED	
9.004		37.957		0.000	2.39		412.4	SURCHARGED	
9.005		37.365		0.000	0.96		466.6	OK	
9.006	S44	36.574		0.000	1.01		507.1	SURCHARGED	
13.000		41.234		0.000	1.36		59.4	SURCHARGED	
13.001	S46	41.039		0.000	1.65		77.6	SURCHARGED	
13.002		40.411	-0.065	0.000	0.84		90.0	OK	
13.003		37.188	0.763	0.000	1.32		145.0	SURCHARGED	
14.000		38.721	1.376	0.000	1.26			FLOOD RISK	
14.001		38.177	1.184	0.000	1.96			SURCHARGED	
14.002		36.686	0.066	0.000	1.02			SURCHARGED	
6.009	Basin-1		0.710	0.000				FLOOD RISK	
15.000		45.253	-0.507	0.000	0.02		77.4	OK	
15.001		43.964	0.414	0.000	1.43			FLOOD RISK	
15.002		43.128	-0.472	0.000	0.03		151.0	OK	
15.003		40.686	1.191	0.000	3.60			FLOOD RISK	
15.004		39.736	0.317	0.000	1.01			SURCHARGED	
16.000		36.768	0.600	0.000	1.77			SURCHARGED	
15.005	CP2	36.610	0.483	0.000	1.05		217.5	SURCHARGED	
			©1:	982-201	9 Inno	vyze			

C & A Consulting Engineers Ltd		Page 34
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
17.000	HSw-8	44.273	-0.527	0.000	0.01		49.7	OK	

C & A Consulting Engineers Ltd		Page 35
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed by TGL	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

	US/MH		Return	Climate	First	(X)	First (Y) First (Z)	Overflow
PN	Name	Storm	Period	Change	Surch	narge	Flood	Overflow	Act.
17.001	HSw-9	15 Summer	100	+20%	100/15	Summer			
17.002	HSw-10	15 Summer		+20%	100/10	o dilatio 1			
17.003	HSw-11	15 Summer	100	+20%	100/15	Summer			
17.004	HSw-12	15 Summer	100	+20%					
17.005	HSw-13	15 Summer	100	+20%	100/15	Summer			
17.006	HSw-14	15 Summer	100	+20%					
17.007	HSw-15	720 Winter	100	+20%	1/15	Summer			
18.000	HSw-16	720 Winter	100	+20%	1/15	Summer			
19.000	HSw-17	720 Winter	100	+20%	1/15	Winter			
6.010	S52-Control	720 Winter	100	+20%	1/15	Summer			
1.012	S53	480 Winter	100	+20%	100/15	Summer			
1.013	Basin-2	960 Winter	100	+20%	30/60	Winter			
1.014	S54-Control	960 Winter	100	+20%	1/15	Summer			
1.015	Swale-1	30 Winter	100	+20%					
1.016		960 Winter			30/120				
	S55-Control			+20%	1/30	Winter			
1.018	Swale-2			+20%					
1.019	Swale-3			+20%					
1.020	Swale-4			+20%					
1.021	Swale-5			+20%					
1.022	Swale-6			+20%					
1.023	Sw-Outlet	30 Winter	100	+20%					
		Water Sur	charged	Flooded			Pipe		
	US/MH		charged Depth		Flow /	Overflo	_		Level
PN	US/MH Name		_		Flow / Cap.	Overflo	_	Status	Level Exceeded
PN 17.001	Name	Level I	Depth	Volume			w Flow (1/s)	Status SURCHARGED*	
	Name HSw-9	Level I	Depth (m)	Volume (m³)	Cap.		w Flow (1/s)		
17.001	Name HSw-9 HSw-10	Level I (m) 43.448	Oepth (m) 0.078	Volume (m³)	Cap.		w Flow (1/s) 45.9	SURCHARGED*	
17.001 17.002	Name HSw-9 HSw-10 HSw-11	Level I (m) 43.448 42.522	0.078 -0.478	Volume (m³) 0.000 0.000	1.05 0.03		w Flow (1/s) 45.9 133.6	SURCHARGED*	
17.001 17.002 17.003	Name HSw-9 HSw-10 HSw-11 HSw-12	Level I (m) 43.448 42.522 41.022	0.078 -0.478 0.157	Volume (m³) 0.000 0.000 0.000	1.05 0.03 1.08		W Flow (1/s) 45.9 133.6 121.7 197.2	SURCHARGED* OK FLOOD RISK	
17.001 17.002 17.003 17.004	Name HSw-9 HSw-10 HSw-11 HSw-12 HSw-13	Level (m) 43.448 42.522 41.022 39.786	0.078 -0.478 -0.157 -0.454	Volume (m³) 0.000 0.000 0.000 0.000	1.05 0.03 1.08 0.05		W Flow (1/s) 45.9 133.6 121.7 197.2	SURCHARGED* OK FLOOD RISK OK	
17.001 17.002 17.003 17.004 17.005	Name HSw-9 HSw-10 HSw-11 HSw-12 HSw-13 HSw-14	Level (m) 43.448 42.522 41.022 39.786 38.414	0.078 -0.478 0.157 -0.454 0.134	Volume (m³) 0.000 0.000 0.000 0.000 0.000	1.05 0.03 1.08 0.05 1.16		w Flow (1/s) 45.9 133.6 121.7 197.2 188.3	SURCHARGED* OK FLOOD RISK OK FLOOD RISK*	
17.001 17.002 17.003 17.004 17.005 17.006	Name HSW-9 HSW-10 HSW-11 HSW-12 HSW-13 HSW-14 HSW-15	Level (m) 43.448 42.522 41.022 39.786 38.414 37.743	0.078 -0.478 -0.478 0.157 -0.454 0.134 -0.417	Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000	1.05 0.03 1.08 0.05 1.16 0.07		45.9 133.6 121.7 197.2 188.3 247.0	SURCHARGED* OK FLOOD RISK OK FLOOD RISK*	
17.001 17.002 17.003 17.004 17.005 17.006	Name HSW-9 HSW-10 HSW-11 HSW-12 HSW-13 HSW-14 HSW-15 HSW-16	Level (m) 43.448 42.522 41.022 39.786 38.414 37.743 36.329	0.078 -0.478 -0.478 0.157 -0.454 0.134 -0.417 0.750	Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.05 0.03 1.08 0.05 1.16 0.07 0.13		W Flow (1/s) 45.9 133.6 121.7 197.2 188.3 247.0 18.2	SURCHARGED* OK FLOOD RISK OK FLOOD RISK* OK SURCHARGED	
17.001 17.002 17.003 17.004 17.005 17.006 17.007 18.000 19.000	Name HSW-9 HSW-10 HSW-11 HSW-12 HSW-13 HSW-14 HSW-15 HSW-16	Level (m) 43.448 42.522 41.022 39.786 38.414 37.743 36.329 36.303 36.302	0.078 -0.478 0.157 -0.454 0.134 -0.417 0.750 0.678	Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.05 0.03 1.08 0.05 1.16 0.07 0.13 0.12		W Flow (1/s) 45.9 133.6 121.7 197.2 188.3 247.0 18.2 5.3	SURCHARGED* OK FLOOD RISK* OK FLOOD RISK* OK SURCHARGED FLOOD RISK	
17.001 17.002 17.003 17.004 17.005 17.006 17.007 18.000 19.000	Name HSW-9 HSW-10 HSW-11 HSW-12 HSW-13 HSW-14 HSW-15 HSW-15 HSW-17 S52-Control	Level (m) 43.448 42.522 41.022 39.786 38.414 37.743 36.329 36.303 36.302	0.078 -0.478 -0.478 0.157 -0.454 0.134 -0.417 0.750 0.678 0.677	Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.05 0.03 1.08 0.05 1.16 0.07 0.13 0.12 0.08		W Flow (1/s) 45.9 133.6 121.7 197.2 188.3 247.0 18.2 5.3 3.5	SURCHARGED* OK FLOOD RISK OK FLOOD RISK* OK SURCHARGED FLOOD RISK FLOOD RISK	
17.001 17.002 17.003 17.004 17.005 17.006 17.007 18.000 19.000 6.010	Name HSW-9 HSW-10 HSW-11 HSW-12 HSW-13 HSW-14 HSW-15 HSW-15 HSW-17 S52-Control	Level (m) 43.448 42.522 41.022 39.786 38.414 37.743 36.329 36.303 36.302 36.302 36.326 27.897	0.078 -0.478 0.157 -0.454 0.134 -0.417 0.750 0.678 0.677 5.031	Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.05 0.03 1.08 0.05 1.16 0.07 0.13 0.12 0.08 0.24		W Flow (1/s) 45.9 133.6 121.7 197.2 188.3 247.0 18.2 5.3 3.5 12.2	SURCHARGED* OK FLOOD RISK* OK SURCHARGED FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK SURCHARGED FLOOD RISK	
17.001 17.002 17.003 17.004 17.005 17.006 17.007 18.000 19.000 6.010 1.012 1.013	Name HSW-9 HSW-10 HSW-11 HSW-12 HSW-13 HSW-14 HSW-15 HSW-15 HSW-16 S52-Control	Level (m) 43.448 42.522 41.022 39.786 38.414 37.743 36.329 36.303 36.302 36.302 37.897 27.864	0.078 -0.478 0.157 -0.454 0.134 -0.417 0.750 0.678 0.677 5.031 0.312	Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.05 0.03 1.08 0.05 1.16 0.07 0.13 0.12 0.08 0.24 0.18		# Flow (1/s) 45.9 133.6 121.7 197.2 188.3 247.0 18.2 5.3 3.5 12.2 97.4	SURCHARGED* OK FLOOD RISK OK FLOOD RISK* OK SURCHARGED FLOOD RISK FLOOD RISK FLOOD RISK SURCHARGED	
17.001 17.002 17.003 17.004 17.005 17.006 17.007 18.000 19.000 6.010 1.012 1.013	Name HSW-9 HSW-10 HSW-11 HSW-12 HSW-13 HSW-14 HSW-15 HSW-16 HSW-17 S52-Control S53 Basin-2	Level (m) 43.448 42.522 41.022 39.786 38.414 37.743 36.329 36.303 36.302 36.302 36.326 27.897 27.864 27.878	0.078 -0.478 0.157 -0.454 0.134 -0.417 0.750 0.678 0.677 5.031 0.312 0.564	Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.05 0.03 1.08 0.05 1.16 0.07 0.13 0.12 0.08 0.24 0.18		# Flow (1/s) 45.9 133.6 121.7 197.2 188.3 247.0 18.2 5.3 3.5 12.2 97.4 21.0	SURCHARGED* OK FLOOD RISK* OK SURCHARGED FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK SURCHARGED FLOOD RISK	
17.001 17.002 17.003 17.004 17.005 17.006 17.007 18.000 19.000 6.010 1.012 1.013 1.014	Name HSW-9 HSW-10 HSW-11 HSW-12 HSW-13 HSW-14 HSW-15 HSW-16 HSW-17 S52-Control S53 Basin-2 S54-Control	Level (m) 43.448 42.522 41.022 39.786 38.414 37.743 36.329 36.303 36.302 36.326 27.897 27.864 27.878 26.483	0.078 -0.478 0.157 -0.454 0.134 -0.417 0.750 0.678 0.677 5.031 0.312 0.564 1.036	Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.05 0.03 1.08 0.05 1.16 0.07 0.13 0.12 0.08 0.24 0.18 0.06 0.28		# Flow (1/s) 45.9 133.6 121.7 197.2 188.3 247.0 18.2 5.3 3.5 12.2 97.4 21.0 17.0	SURCHARGED* OK FLOOD RISK OK FLOOD RISK* OK SURCHARGED FLOOD RISK SURCHARGED FLOOD RISK FLOOD RISK	
17.001 17.002 17.003 17.004 17.005 17.006 17.007 18.000 19.000 6.010 1.012 1.013 1.014 1.015 1.016	Name HSW-9 HSW-10 HSW-11 HSW-12 HSW-13 HSW-14 HSW-15 HSW-16 HSW-17 S52-Control S53 Basin-2 S54-Control Swale-1	Level (m) 43.448 42.522 41.022 39.786 38.414 37.743 36.329 36.302 36.302 36.302 37.897 27.864 27.878 26.483 25.172	0.078 -0.478 0.157 -0.454 0.134 -0.417 0.750 0.678 0.677 5.031 0.312 0.564 1.036 -0.555	Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.05 0.03 1.08 0.05 1.16 0.07 0.13 0.12 0.08 0.24 0.18 0.06 0.28		# Flow (1/s) 45.9 133.6 121.7 197.2 188.3 247.0 18.2 5.3 3.5 12.2 97.4 21.0 17.0	SURCHARGED* OK FLOOD RISK OK FLOOD RISK* OK SURCHARGED FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK SURCHARGED FLOOD RISK OK	
17.001 17.002 17.003 17.004 17.005 17.006 17.007 18.000 19.000 6.010 1.012 1.013 1.014 1.015 1.016	Name HSW-9 HSW-10 HSW-11 HSW-12 HSW-13 HSW-14 HSW-15 HSW-16 HSW-17 S52-Control S53 Basin-2 S54-Control Swale-1 Basin-3	Level (m) 43.448 42.522 41.022 39.786 38.414 37.743 36.329 36.302 36.302 36.326 27.897 27.864 27.878 26.483 25.172 25.238	0.078 -0.478 0.157 -0.454 0.134 -0.417 0.750 0.678 0.677 5.031 0.312 0.564 1.036 -0.555 0.597	Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.05 0.03 1.08 0.05 1.16 0.07 0.13 0.12 0.08 0.24 0.18 0.06 0.28 0.00		# Flow (1/s) 45.9 133.6 121.7 197.2 188.3 247.0 18.2 5.3 3.5 12.2 97.4 21.0 17.0 17.0 36.6	SURCHARGED* OK FLOOD RISK* OK SURCHARGED FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK SURCHARGED FLOOD RISK SURCHARGED FLOOD RISK SURCHARGED FLOOD RISK SURCHARGED	Exceeded
17.001 17.002 17.003 17.004 17.005 17.006 17.007 18.000 19.000 6.010 1.012 1.013 1.014 1.015 1.016 1.017	Name HSw-9 HSw-10 HSw-11 HSw-12 HSw-13 HSw-14 HSw-15 HSw-16 HSw-17 S52-Control S53 Basin-2 S54-Control Swale-1 Basin-3	Level (m) 43.448 42.522 41.022 39.786 38.414 37.743 36.329 36.302 36.302 36.326 27.897 27.864 27.878 26.483 25.172 25.238 23.560	0.078 -0.478 0.157 -0.454 0.134 -0.417 0.750 0.678 0.677 5.031 0.312 0.564 1.036 -0.555 0.597 1.111	Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.05 0.03 1.08 0.05 1.16 0.07 0.13 0.12 0.08 0.24 0.18 0.06 0.28 0.00 0.08		# Flow (1/s) 45.9 133.6 121.7 197.2 188.3 247.0 18.2 5.3 3.5 12.2 97.4 21.0 17.0 17.0 36.6 28.2	SURCHARGED* OK FLOOD RISK* OK SURCHARGED FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK SURCHARGED FLOOD RISK SURCHARGED FLOOD RISK OK SURCHARGED FLOOD RISK	Exceeded
17.001 17.002 17.003 17.004 17.005 17.006 17.007 18.000 19.000 6.010 1.012 1.013 1.014 1.015 1.016 1.017	Name HSw-9 HSw-10 HSw-11 HSw-12 HSw-13 HSw-14 HSw-15 HSw-16 S52-Control S53 Basin-2 S54-Control Swale-1 Basin-3 S55-Control	Level (m) 43.448 42.522 41.022 39.786 38.414 37.743 36.329 36.302 36.326 27.897 27.864 27.878 26.483 25.172 25.238 23.560 22.660	0.078 -0.478 0.157 -0.454 0.134 -0.417 0.750 0.678 0.677 5.031 0.312 0.564 1.036 -0.555 0.597 1.111 -0.540	Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.05 0.03 1.08 0.05 1.16 0.07 0.13 0.12 0.08 0.24 0.18 0.06 0.28 0.00 0.08		# Flow (1/s) 45.9 133.6 121.7 197.2 188.3 247.0 18.2 5.3 3.5 12.2 97.4 21.0 17.0 17.0 36.6 28.2 28.2	SURCHARGED* OK FLOOD RISK OK FLOOD RISK* OK SURCHARGED FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK SURCHARGED FLOOD RISK SURCHARGED FLOOD RISK OK SURCHARGED FLOOD RISK OK	Exceeded
17.001 17.002 17.003 17.004 17.005 17.006 17.007 18.000 19.000 6.010 1.012 1.013 1.014 1.015 1.016 1.017 1.018 1.019	Name HSw-9 HSw-10 HSw-11 HSw-12 HSw-13 HSw-14 HSw-15 HSw-16 HSw-17 S52-Control S53 Basin-2 S54-Control Swale-1 Basin-3 S55-Control Swale-2 Swale-3	Level (m) 43.448 42.522 41.022 39.786 38.414 37.743 36.329 36.302 36.326 27.897 27.864 27.878 26.483 25.172 25.238 23.560 22.660 21.799	0.078 -0.478 0.157 -0.454 0.134 -0.417 0.750 0.678 0.677 5.031 0.312 0.564 1.036 -0.555 0.597 1.111 -0.540 -0.578	Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.05 0.03 1.08 0.05 1.16 0.07 0.13 0.12 0.08 0.24 0.18 0.06 0.28 0.00 0.08 0.20		# Flow (1/s) 45.9 133.6 121.7 197.2 188.3 247.0 18.2 5.3 3.5 12.2 97.4 21.0 17.0 17.0 36.6 28.2 28.2 28.2	SURCHARGED* OK FLOOD RISK* OK SURCHARGED FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK SURCHARGED FLOOD RISK SURCHARGED FLOOD RISK OK SURCHARGED FLOOD RISK OK OK OK	Exceeded
17.001 17.002 17.003 17.004 17.005 17.006 17.007 18.000 19.000 6.010 1.012 1.013 1.014 1.015 1.016 1.017 1.018 1.019 1.020	Name HSw-9 HSw-10 HSw-11 HSw-12 HSw-13 HSw-14 HSw-15 HSw-16 HSw-17 S52-Control S53 Basin-2 S54-Control Swale-1 Basin-3 S55-Control Swale-2 Swale-3 Swale-4	Level (m) 43.448 42.522 41.022 39.786 38.414 37.743 36.329 36.302 36.326 27.897 27.864 27.878 26.483 25.172 25.238 23.560 22.660 21.799	0.078 -0.478 0.157 -0.454 0.134 -0.417 0.750 0.678 0.677 5.031 0.312 0.564 1.036 -0.555 0.597 1.111 -0.540 -0.578 -0.578	Volume (m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.05 0.03 1.08 0.05 1.16 0.07 0.13 0.12 0.08 0.24 0.18 0.06 0.28 0.00 0.08 0.20 0.01	(1/s)	# Flow (1/s) 45.9 133.6 121.7 197.2 188.3 247.0 18.2 5.3 3.5 12.2 97.4 21.0 17.0 17.0 36.6 28.2 28.2 28.2 28.2	SURCHARGED* OK FLOOD RISK* OK SURCHARGED FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK FLOOD RISK SURCHARGED FLOOD RISK SURCHARGED FLOOD RISK OK SURCHARGED FLOOD RISK OK OK OK	Exceeded

C & A Consulting Engineers Ltd		Page 36
Landmark House	Cockering Road, Thanington	
Station Road, Hook	Phases 1,2 & Spine Road	
Hampshire RG27 9HA	Storm Strategy - Rev A	Micro
Date 04/03/2021	Designed less more	Drainage
File 18-058 SW Strategy Rev	Checked by GAC	Dialilade
Innovyze	Network 2019.1	1

	US/MH	Water Level	Surcharged Depth		Flow /	Overflow	Pipe Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.022	Swale-6	20.243	-0.578	0.000	0.01		28.2	OK	
1.023	Sw-Outlet	19.464	-0.203	0.000	0.24		28.2	OK	

C & A Consulting Engineers Ltd		Page 1
Landmark House	Land north of Cockering Road	
Station Road, Hook	Spine Road, Employment, Ph.3	
Hampshire RG27 9HA	SW Strategy	Micro
Date 11/01/2021	Designed by TGL	Drainage
File NETWORK 4 - SW REQUISIT	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for 18-058 RM SW Strategy.sws

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and Wales

Return Period (years) 2 PIMP (%) 100

M5-60 (mm) 20.400 Add Flow / Climate Change (%) 0

Ratio R 0.420 Minimum Backdrop Height (m) 0.000

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 0.000

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 0.790 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Free Flowing Outfall Details for 18-058 RM SW Strategy.sws

Outfall Pipe Number	Outfall Name	C. Lev	-	Level		D,L rel (mm)	W (mm)
1.010	Ditch Outfall	45.9	000	43.975	43.9	75 0	0

C & A Consulting Engineers Ltd		Page 2
Landmark House	Land north of Cockering Road	
Station Road, Hook	Spine Road, Employment, Ph.3	
Hampshire RG27 9HA	SW Strategy	Micro
Date 11/01/2021	Designed by TGL	Drainage
File NETWORK 4 - SW REQUISIT	Checked by GAC	Diamade
Innovyze	Network 2019.1	

Online Controls for 18-058 RM SW Strategy.sws

Hydro-Brake® Optimum Manhole: S81-Control, DS/PN: 1.010, Volume (m³): 12.3

Unit Reference MD-SHE-0152-1370-2056-1370 Design Head (m) 2.056 Design Flow (1/s) 13.7 $Flush-Flo^{\text{\tiny TM}}$ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 152 Invert Level (m) 44.044 Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1500

Control Points Head (m) Flow (1/s) Design Point (Calculated) 2.056 13.7 Flush-Flo™ 0.606 13.7 Kick-Flo® 1.250 10.8 Mean Flow over Head Range 12.0

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) F	low (1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	5.5	1.200	11.4	3.000	16.4	7.000	24.6
0.200	11.3	1.400	11.4	3.500	17.6	7.500	25.4
0.300	12.6	1.600	12.2	4.000	18.8	8.000	26.2
0.400	13.3	1.800	12.9	4.500	19.9	8.500	27.0
0.500	13.6	2.000	13.5	5.000	20.9	9.000	27.7
0.600	13.7	2.200	14.1	5.500	21.9	9.500	28.5
0.800	13.5	2.400	14.7	6.000	22.8		
1.000	12.9	2.600	15.3	6.500	23.7		

C & A Consulting Engineers Ltd		Page 3
Landmark House	Land north of Cockering Road	
Station Road, Hook	Spine Road, Employment, Ph.3	
Hampshire RG27 9HA	SW Strategy	Micro
Date 11/01/2021	Designed by TGL	Drainage
File NETWORK 4 - SW REQUISIT	Checked by GAC	Drainage
Innovyze	Network 2019.1	

Storage Structures for 18-058 RM SW Strategy.sws

Porous Car Park Manhole: S62, DS/PN: 2.000

5.2	Width (m)	0.00000	Infiltration Coefficient Base (m/hr)
22.9	Length (m)	1000	Membrane Percolation (mm/hr)
80.0	Slope (1:X)	33.1	Max Percolation (1/s)
5	Depression Storage (mm)	2.0	Safety Factor
3	Evaporation (mm/day)	0.32	Porosity
0.350	Cap Volume Depth (m)	48.112	Invert Level (m)

Swale Manhole: HSw-26, DS/PN: 4.000

Warning:- Volume should always be included unless the upstream pipe is being used for storage and/or as a carrier

Infiltration Coefficient Base (m/hr)	0.00000 Length (m)	76.6
Infiltration Coefficient Side (m/hr)	0.00000 Side Slope (1:X)	4.0
Safety Factor	2.0 Slope (1:X)	100.0
Porosity	1.00 Cap Volume Depth (m)	0.000
Invert Level (m)	46.670 Cap Infiltration Depth (m)	0.000
Base Width (m)	0.6 Include Swale Volume	Yes

Porous Car Park Manhole: S74, DS/PN: 6.000

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	8.2
Membrane Percolation (mm/hr)	1000	Length (m)	45.5
Max Percolation $(1/s)$	103.6	Slope (1:X)	100.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.32	Evaporation (mm/day)	3
Invert Level (m)	45.446	Cap Volume Depth (m)	0.750

Porous Car Park Manhole: S75, DS/PN: 7.000

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	5.8
Membrane Percolation (mm/hr)	1000	Length (m)	40.1
Max Percolation (1/s)	64.6	Slope (1:X)	250.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.32	Evaporation (mm/day)	3
Invert Level (m)	45.054	Cap Volume Depth (m)	0.750

Swale Manhole: HSw-29, DS/PN: 8.000

Warning:- Volume should always be included unless the upstream pipe is being used for storage and/or as a carrier

Infiltration	Coefficient Base	(m/hr)	0.00000	Base Width (m)	0.6
Infiltration	Coefficient Side	(m/hr)	0.00000	Length (m)	41.0
	Safety	Factor	2.0	Side Slope (1:X)	4.0
	Po	rosity	1.00	Slope (1:X)	100.0
	Invert Lev	rel (m)	45.670	Cap Volume Depth (m)	0.000

C & A Consulting Engineers Ltd		Page 4
Landmark House	Land north of Cockering Road	
Station Road, Hook	Spine Road, Employment, Ph.3	
Hampshire RG27 9HA	SW Strategy	Micro
Date 11/01/2021	Designed by TGL	Drainage
File NETWORK 4 - SW REQUISIT	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

Swale Manhole: HSw-29, DS/PN: 8.000

Cap Infiltration Depth (m) 0.600 Include Swale Volume Yes

Tank or Pond Manhole: Basin-Pond 4, DS/PN: 1.009

Invert Level (m) 44.700

Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 1369.6 1.300 2957.2

Volume Summary (Static)

Length Calculations based on True Length

			Storage			
Pipe	uSMH Manhole Pipe		Pipe	Structure	Total	
Number	Name	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)	
1.000	S57	1.612	0.530	0.000	2.142	
1.001	S58	1.612	0.613	0.000	2.225	
1.002	S59	1.696	1.084	0.000	2.781	
1.003	S60	2.254	5.732	0.000	7.987	
1.004	S61	2.637	3.267	0.000	5.904	
2.000	S62	2.254	1.134	12.950	16.339	
2.001	S63	2.758	2.247	0.000	5.005	
2.002	S64	3.266	3.026	0.000	6.293	
1.005	S65	3.590	4.555	0.000	8.145	
1.006	S66	2.638	1.436	0.000	4.074	
1.007	S67	2.362	6.752	0.000	9.114	
3.000	Employment	2.916	5.560	0.000	8.475	
4.000	HSw-26	0.740	0.864	39.600	41.204	
3.001	S68	2.739	339.599	0.000	342.338	
3.002	Sw-13	0.095	147.101	0.000	147.196	
1.008	Pond 4a	0.228	17.153	0.000	17.381	
5.000	S69	2.601	0.602	0.000	3.203	
5.001	S70	2.981	3.945	0.000	6.926	
5.002	S71	2.152	2.308	0.000	4.461	
5.003	S72	1.696	0.880	0.000	2.577	
5.004	S73	1.696	1.442	0.000	3.138	
6.000	S74	1.612	0.538	81.669	83.819	
7.000	S75	2.681	2.304	55.819	60.804	
6.001	S76	3.050	5.878	0.000	8.928	
6.002	S77	5.233	6.066	0.000	11.299	
5.005	S78	7.546	11.737	0.000	19.283	
5.006	S79	5.819	4.197	0.000	10.016	
5.007	S80	5.183	8.796	0.000	13.979	
8.000	HSw-29	0.432	0.276	37.602	38.311	
9.000	CP3	1.130	0.652	0.000	1.782	
1.009	Basin-Pond 4	0.308	2.975	2747.033	2750.316	
1.010	S81-Control	9.301	0.226	0.000	9.527	
Total		86.819	593.477	2974.673	3654.969	

C & A Consulting Engineers Ltd		Page 5
Landmark House	Land north of Cockering Road	
Station Road, Hook	Spine Road, Employment, Ph.3	
Hampshire RG27 9HA	SW Strategy	Micro
Date 11/01/2021	Designed by TGL	Drainage
File NETWORK 4 - SW REQUISIT	Checked by GAC	Dialilage
Innovyze	Network 2019.1	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for } 18\text{--}058 \text{ RM SW Strategy.sws}}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.500 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 6 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.420 Region England and Wales Cv (Summer) 0.790 M5-60 (mm) 26.250 Cv (Winter) 0.830

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OFF

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 20

	US/MH			Return	Climate	First (X)) First (Y)	First (Z)	Overflow
PN	Name	S	torm	Period	Change	Surcharge	e Flood	Overflow	Act.
1.000	S57	15	Summer	1	+0%				
1.001	S58	15	Summer	1	+0%	100/15 Summ	mer		
1.002	S59	15	Summer	1	+0%	100/15 Summ	mer		
1.003	S60	15	Summer	1	+0%	30/15 Summ	mer		
1.004	S61	15	Summer	1	+0%	100/15 Summ	mer		
2.000	S62	15	Summer	1	+0%	30/15 Summ	mer		
2.001	S63	15	Summer	1	+0%	30/15 Summ	mer		
2.002	S64	15	Summer	1	+0%	30/15 Summ	mer		
1.005	S65	15	Summer	1	+0%	30/15 Summ	mer		
1.006	S66	15	Winter	1	+0%	30/15 Sumr	mer		
1.007	S67	15	Winter	1	+0%				
3.000	Employment	15	Summer	1	+0%	100/15 Summ	mer		
4.000	HSw-26	15	Summer	1	+0%	30/15 Summ	mer		
3.001	S68	15	Summer	1	+0%				
3.002	Sw-13	15	Summer	1	+0%				
1.008	Pond 4a	240	Winter	1	+0%				
5.000	S69	15	Summer	1	+0%	30/15 Sumr	mer		
5.001	S70	15	Summer	1	+0%	30/15 Summ	mer		
5.002	S71	15	Summer	1	+0%	30/15 Summ	mer		
				©19	82-2019) Innovyze	9		

C & A Consulting Engineers Ltd		Page 6
Landmark House	Land north of Cockering Road	
Station Road, Hook	Spine Road, Employment, Ph.3	
Hampshire RG27 9HA	SW Strategy	Micro
Date 11/01/2021	Designed by TGL	Drainage
File NETWORK 4 - SW REQUISIT	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for } 18\text{-}058 \text{ RM SW Strategy.sws}}$

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.000	S57	50.017	-0.157	0.000	0.19		8.1	OK	
1.001	S58	49.894	-0.157	0.000	0.19		17.7	OK	
1.002	S59	49.194	-0.218	0.000	0.17		30.8	OK	
1.003	S60	48.555	-0.217	0.000	0.36		42.8	OK	
1.004	S61	48.273	-0.277	0.000	0.15		57.7	OK	
2.000	S62	47.169	-0.303	0.000	0.07		7.8	OK	
2.001	S63	47.140	-0.264	0.000	0.16		17.2	OK	
2.002	S64	47.092	-0.222	0.000	0.17		19.8	OK	
1.005	S65	47.072	-0.122	0.000	0.77		90.6	OK	
1.006	S66	46.859	-0.158	0.000	0.75		102.2	OK	
1.007	S67	46.688	-0.291	0.000	0.27		125.1	OK	
3.000	Employment	46.395	-0.245	0.000	0.42		131.1	OK	
4.000	HSw-26	46.123	-0.132	0.000	0.59		34.6	OK	
3.001	S68	45.967	-1.333	0.000	0.01		167.8	OK	
3.002	Sw-13	45.739	-0.486	0.000	0.04		164.0	OK	
1.008	Pond 4a	45.009	-1.127	0.000	0.01		73.6	OK	
5.000	S69	48.544	-0.181	0.000	0.28		17.0	OK	
5.001	S70	48.521	-0.147	0.000	0.50		40.1	OK	
5.002	S71	48.194	-0.139	0.000	0.55		48.3	OK	

C & A Consulting Engineers Ltd		Page 7
Landmark House	Land north of Cockering Road	
Station Road, Hook	Spine Road, Employment, Ph.3	
Hampshire RG27 9HA	SW Strategy	Micro
Date 11/01/2021	Designed by TGL	Drainage
File NETWORK 4 - SW REQUISIT	Checked by GAC	niali lade
Innovyze	Network 2019.1	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for } 18\text{-}058 \text{ RM SW Strategy.sws}}$

PN	US/MH Name				Climate Change	_	t (X) harge	First (Y) Flood	First (Z) Overflow	Overflow Act.
5.003	S72	15	Summer	1	+0%	30/15	Summer			
5.004	S73	15	Summer	1	+0%					
6.000	S74	15	Summer	1	+0%	30/15	Summer			
7.000	S75	15	Summer	1	+0%	1/15	Summer			
6.001	S76	240	Winter	1	+0%	1/15	Summer			
6.002	S77	240	Winter	1	+0%	1/15	Summer			
5.005	S78	240	Winter	1	+0%	1/15	Summer			
5.006	S79	240	Winter	1	+0%	1/15	Summer			
5.007	S80	240	Winter	1	+0%	1/15	Summer			
8.000	HSw-29	15	Summer	1	+0%	30/15	Summer			
9.000	CP3	240	Winter	1	+0%	30/15	Summer			
1.009	Basin-Pond 4	240	Winter	1	+0%	1/15	Summer			
1.010	S81-Control	30	Summer	1	+0%	1/15	Summer			

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
5.003	s72	47.921	-0.162	0.000	0.43		54.3	OK	
5.004	S73	47.624	-0.199	0.000	0.24		64.7	OK	
6.000	S74	45.080	-0.126	0.000	0.40		20.3	OK	
7.000	S75	45.025	0.003	0.000	0.13		18.3	SURCHARGED	
6.001	S76	45.014	0.022	0.000	0.05		9.0	SURCHARGED	
6.002	S77	45.014	0.092	0.000	0.06		12.0	SURCHARGED	
5.005	S78	45.014	0.164	0.000	0.15		33.0	SURCHARGED	
5.006	S79	45.012	0.298	0.000	0.20		37.8	SURCHARGED	
5.007	S80	45.011	0.348	0.000	0.24		44.2	SURCHARGED	
8.000	HSw-29	45.172	-0.048	0.000	0.79		19.7	OK	
9.000	CP3	45.009	-0.017	0.000	0.02		0.8	OK	
1.009	Basin-Pond 4	45.009	0.423	0.000	0.10		25.1	SURCHARGED	
1.010	S81-Control	45.117	0.848	0.000	0.37		13.7	SURCHARGED	

C & A Consulting Engineers Ltd		Page 8
Landmark House	Land north of Cockering Road	
Station Road, Hook	Spine Road, Employment, Ph.3	
Hampshire RG27 9HA	SW Strategy	Mirro
Date 11/01/2021	Designed by TGL	Drainage
File NETWORK 4 - SW REQUISIT	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 18-058 RM SW Strategy.sws

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.500 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 6 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.420
Region England and Wales Cv (Summer) 0.790
M5-60 (mm) 26.250 Cv (Winter) 0.830

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OFF

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 20

US/MH				Return	Climate	First	: (X)	First (Y) First (Z)	Overflow
PN	Name	s	torm	Period	Change	Surch	narge	Flood	Overflow	Act.
1.000	S57	15	Summer	30	+0%					
1.001	S58		Summer	30		100/15	Summar			
1.001	S59		Summer	30		100/15				
1.003	S60		Summer	30		30/15				
1.004	S61		Summer	30		100/15				
2.000	S62	15	Summer	30	+0%	30/15	Summer			
2.001	S63	15	Summer	30	+0%	30/15	Summer			
2.002	S64	15	Summer	30	+0%	30/15	Summer			
1.005	S65	15	Summer	30	+0%	30/15	Summer			
1.006	S66	15	Summer	30	+0%	30/15	Summer			
1.007	S67	15	Summer	30	+0%					
3.000	Employment	15	Summer	30	+0%	100/15	Summer			
4.000	HSw-26	15	Summer	30	+0%	30/15	Summer			
3.001	S68	15	Summer	30	+0%					
3.002	Sw-13	15	Summer	30	+0%					
1.008	Pond 4a	480	Winter	30	+0%					
5.000	S69	15	Summer	30	+0%	30/15	Summer			
5.001	s70	15	Summer	30	+0%	30/15	Summer			
5.002	s71	15	Summer	30	+0%		Summer			
				©19	82-2019	Innov	/yze			

C & A Consulting Engineers Ltd		Page 9
Landmark House	Land north of Cockering Road	
Station Road, Hook	Spine Road, Employment, Ph.3	
Hampshire RG27 9HA	SW Strategy	Micro
Date 11/01/2021	Designed by TGL	Drainage
File NETWORK 4 - SW REQUISIT	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

 $\frac{\text{30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for } 18\text{-}058 \text{ RM SW Strategy.sws}}$

Name		US/MH	Water Level	Surcharged Depth			Overflow	Pipe Flow		Level
1.001 S58 49.947 -0.104 0.000 0.56 51.0 OK 1.002 S59 49.263 -0.149 0.000 0.50 93.7 OK 1.003 S60 48.820 0.048 0.000 1.08 129.5 SURCHARGED 1.004 S61 48.359 -0.191 0.000 0.47 174.5 OK 2.000 S62 48.160 0.688 0.000 0.22 23.4 SURCHARGED 2.001 S63 48.159 0.755 0.000 0.39 42.8 SURCHARGED 2.002 S64 48.090 0.776 0.000 0.45 51.5 SURCHARGED 1.005 S65 47.994 0.800 0.000 2.05 240.9 SURCHARGED 1.006 S66 47.203 0.186 0.000 1.95 267.0 SURCHARGED 1.007 S67 46.821 -0.158 0.000 0.71 334.9 OK 3.000 Employment 46.617 -0.023 0.000 1.00 312.8 OK 4.000 HSw-26 46.304 0.049 0.000 1.46 85.3 SURCHARGED 3.001 S68 46.089 -1.211 0.000 0.03 396.2 OK 3.002 Sw-13 45.811 -0.414 0.000 0.10 391.5 OK 1.008 Pond 4a 45.431 -0.705 0.000 0.01 88.8 OK 5.000 S69 49.192 0.467 0.000 0.66 40.5 SURCHARGED 5.001 S70 49.118 0.450 0.000 1.28 103.5 SURCHARGED	PN	•		-					Status	
1.002 S59 49.263 -0.149 0.000 0.50 93.7 OK 1.003 S60 48.820 0.048 0.000 1.08 129.5 SURCHARGED 1.004 S61 48.359 -0.191 0.000 0.47 174.5 OK 2.000 S62 48.160 0.688 0.000 0.22 23.4 SURCHARGED 2.001 S63 48.159 0.755 0.000 0.39 42.8 SURCHARGED 2.002 S64 48.090 0.776 0.000 0.45 51.5 SURCHARGED 1.005 S65 47.994 0.800 0.000 2.05 240.9 SURCHARGED 1.006 S66 47.203 0.186 0.000 1.95 267.0 SURCHARGED 1.007 S67 46.821 -0.158 0.000 0.71 334.9 0K 3.000 Employment 46.617 -0.023 0.000 1.00 312.8 0K 4.000 HSw-26 46.304 0.049 0.000 1.46 85.3	1.000	s57	50.059	-0.115	0.000	0.48		19.9	OK	
1.003 S60 48.820 0.048 0.000 1.08 129.5 SURCHARGED 1.004 S61 48.359 -0.191 0.000 0.47 174.5 OK 2.000 S62 48.160 0.688 0.000 0.22 23.4 SURCHARGED 2.001 S63 48.159 0.755 0.000 0.39 42.8 SURCHARGED 2.002 S64 48.090 0.776 0.000 0.45 51.5 SURCHARGED 1.005 S65 47.994 0.800 0.000 2.05 240.9 SURCHARGED 1.006 S66 47.203 0.186 0.000 1.95 267.0 SURCHARGED 1.007 S67 46.821 -0.158 0.000 0.71 334.9 0K 3.000 Employment 46.617 -0.023 0.000 1.00 312.8 0K 4.000 HSw-26 46.304 0.049 0.000 1.46 85.3 SURCHARGED 3.001 S68 46.089 -1.211 0.000 0.03 396.2 0K 3.002 Sw-13 45.811 -0.414 0.000 0.10	1.001	S58	49.947	-0.104	0.000	0.56		51.0	OK	
1.004 S61 48.359 -0.191 0.000 0.47 174.5 OK 2.000 S62 48.160 0.688 0.000 0.22 23.4 SURCHARGED 2.001 S63 48.159 0.755 0.000 0.39 42.8 SURCHARGED 2.002 S64 48.090 0.776 0.000 0.45 51.5 SURCHARGED 1.005 S65 47.994 0.800 0.000 2.05 240.9 SURCHARGED 1.006 S66 47.203 0.186 0.000 1.95 267.0 SURCHARGED 1.007 S67 46.821 -0.158 0.000 0.71 334.9 0K 3.000 Employment 46.617 -0.023 0.000 1.00 312.8 0K 4.000 HSw-26 46.304 0.049 0.000 1.46 85.3 SURCHARGED 3.001 S68 46.089 -1.211 0.000 0.03 396.2 0K 3.002 Sw-13 45.811 -0.414 0.000 0.10 391.5 0K 1.008 Pond 4a 45.431 -0.705 0.000 0.66 40.	1.002	S59	49.263	-0.149	0.000	0.50		93.7	OK	
2.000 S62 48.160 0.688 0.000 0.22 23.4 SURCHARGED 2.001 S63 48.159 0.755 0.000 0.39 42.8 SURCHARGED 2.002 S64 48.090 0.776 0.000 0.45 51.5 SURCHARGED 1.005 S65 47.994 0.800 0.000 2.05 240.9 SURCHARGED 1.006 S66 47.203 0.186 0.000 1.95 267.0 SURCHARGED 1.007 S67 46.821 -0.158 0.000 0.71 334.9 0K 3.000 Employment 46.617 -0.023 0.000 1.00 312.8 0K 4.000 HSw-26 46.304 0.049 0.000 1.46 85.3 SURCHARGED 3.001 S68 46.089 -1.211 0.000 0.03 396.2 0K 3.002 Sw-13 45.811 -0.414 0.000 0.10 391.5 0K 1.008 Pond 4a 45.431 -0.705 0.000 0.01 88.8 0K 5.000 S69 49.192 0.467 0.000 0.66 40.5 SURCHARGED 5.001 S70 49.118 0.450 0.000 1.28 103.5 SURCHARGED	1.003	S60	48.820	0.048	0.000	1.08		129.5	SURCHARGED	
2.001 S63 48.159 0.755 0.000 0.39 42.8 SURCHARGED 2.002 S64 48.090 0.776 0.000 0.45 51.5 SURCHARGED 1.005 S65 47.994 0.800 0.000 2.05 240.9 SURCHARGED 1.006 S66 47.203 0.186 0.000 1.95 267.0 SURCHARGED 1.007 S67 46.821 -0.158 0.000 0.71 334.9 0K 3.000 Employment 46.617 -0.023 0.000 1.00 312.8 0K 4.000 HSw-26 46.304 0.049 0.000 1.46 85.3 SURCHARGED 3.001 S68 46.089 -1.211 0.000 0.03 396.2 0K 3.002 Sw-13 45.811 -0.414 0.000 0.10 391.5 0K 1.008 Pond 4a 45.431 -0.705 0.000 0.01 88.8 0K 5.000 S69 49.192 0.467 0.000 0.66 40.5 SURCHARGED 5.001 S70 49.118 0.450 0.000 1.28 103.5 SURCHARGED	1.004	S61	48.359	-0.191	0.000	0.47		174.5	OK	
2.002 S64 48.090 0.776 0.000 0.45 51.5 SURCHARGED 1.005 S65 47.994 0.800 0.000 2.05 240.9 SURCHARGED 1.006 S66 47.203 0.186 0.000 1.95 267.0 SURCHARGED 1.007 S67 46.821 -0.158 0.000 0.71 334.9 OK 3.000 Employment 46.617 -0.023 0.000 1.00 312.8 OK 4.000 HSw-26 46.304 0.049 0.000 1.46 85.3 SURCHARGED 3.001 S68 46.089 -1.211 0.000 0.03 396.2 OK 3.002 Sw-13 45.811 -0.414 0.000 0.10 391.5 OK 1.008 Pond 4a 45.431 -0.705 0.000 0.01 88.8 OK 5.000 S69 49.192 0.467 0.000 0.66 40.5 SURCHARGED 5.001 S70 49.118 0.450 0.000 1.28 103.5 SURCHARGED	2.000	S62	48.160	0.688	0.000	0.22		23.4	SURCHARGED	
1.005 S65 47.994 0.800 0.000 2.05 240.9 SURCHARGED 1.006 S66 47.203 0.186 0.000 1.95 267.0 SURCHARGED 1.007 S67 46.821 -0.158 0.000 0.71 334.9 OK 3.000 Employment 46.617 -0.023 0.000 1.00 312.8 OK 4.000 HSw-26 46.304 0.049 0.000 1.46 85.3 SURCHARGED 3.001 S68 46.089 -1.211 0.000 0.03 396.2 OK 3.002 Sw-13 45.811 -0.414 0.000 0.10 391.5 OK 1.008 Pond 4a 45.431 -0.705 0.000 0.01 88.8 OK 5.000 S69 49.192 0.467 0.000 0.66 40.5 SURCHARGED 5.001 S70 49.118 0.450 0.000 1.28 103.5 SURCHARGED	2.001	S63	48.159	0.755	0.000	0.39		42.8	SURCHARGED	
1.006 S66 47.203 0.186 0.000 1.95 267.0 SURCHARGED 1.007 S67 46.821 -0.158 0.000 0.71 334.9 0K 3.000 Employment 46.617 -0.023 0.000 1.00 312.8 0K 4.000 HSw-26 46.304 0.049 0.000 1.46 85.3 SURCHARGED 3.001 S68 46.089 -1.211 0.000 0.03 396.2 0K 3.002 Sw-13 45.811 -0.414 0.000 0.10 391.5 0K 1.008 Pond 4a 45.431 -0.705 0.000 0.01 88.8 0K 5.000 S69 49.192 0.467 0.000 0.66 40.5 SURCHARGED 5.001 S70 49.118 0.450 0.000 1.28 103.5 SURCHARGED	2.002	S64	48.090	0.776	0.000	0.45		51.5	SURCHARGED	
1.007 S67 46.821 -0.158 0.000 0.71 334.9 OK 3.000 Employment 46.617 -0.023 0.000 1.00 312.8 OK 4.000 HSw-26 46.304 0.049 0.000 1.46 85.3 SURCHARGED 3.001 S68 46.089 -1.211 0.000 0.03 396.2 OK 3.002 Sw-13 45.811 -0.414 0.000 0.10 391.5 OK 1.008 Pond 4a 45.431 -0.705 0.000 0.01 88.8 OK 5.000 S69 49.192 0.467 0.000 0.66 40.5 SURCHARGED 5.001 S70 49.118 0.450 0.000 1.28 103.5 SURCHARGED	1.005	S65	47.994	0.800	0.000	2.05		240.9	SURCHARGED	
3.000 Employment 46.617 -0.023 0.000 1.00 312.8 OK 4.000 HSw-26 46.304 0.049 0.000 1.46 85.3 SURCHARGED 3.001 S68 46.089 -1.211 0.000 0.03 396.2 OK 3.002 Sw-13 45.811 -0.414 0.000 0.10 391.5 OK 1.008 Pond 4a 45.431 -0.705 0.000 0.01 88.8 OK 5.000 S69 49.192 0.467 0.000 0.66 40.5 SURCHARGED 5.001 S70 49.118 0.450 0.000 1.28 103.5 SURCHARGED	1.006	S66	47.203	0.186	0.000	1.95		267.0	SURCHARGED	
4.000 HSw-26 46.304 0.049 0.000 1.46 85.3 SURCHARGED 3.001 S68 46.089 -1.211 0.000 0.03 396.2 0K 3.002 Sw-13 45.811 -0.414 0.000 0.10 391.5 0K 1.008 Pond 4a 45.431 -0.705 0.000 0.01 88.8 0K 5.000 S69 49.192 0.467 0.000 0.66 40.5 SURCHARGED 5.001 S70 49.118 0.450 0.000 1.28 103.5 SURCHARGED	1.007	S67	46.821	-0.158	0.000	0.71		334.9	OK	
3.001 S68 46.089 -1.211 0.000 0.03 396.2 OK 3.002 Sw-13 45.811 -0.414 0.000 0.10 391.5 OK 1.008 Pond 4a 45.431 -0.705 0.000 0.01 88.8 OK 5.000 S69 49.192 0.467 0.000 0.66 40.5 SURCHARGED 5.001 S70 49.118 0.450 0.000 1.28 103.5 SURCHARGED	3.000	Employment	46.617	-0.023	0.000	1.00		312.8	OK	
3.002 Sw-13 45.811 -0.414 0.000 0.10 391.5 OK 1.008 Pond 4a 45.431 -0.705 0.000 0.01 88.8 OK 5.000 S69 49.192 0.467 0.000 0.66 40.5 SURCHARGED 5.001 S70 49.118 0.450 0.000 1.28 103.5 SURCHARGED	4.000	HSw-26	46.304	0.049	0.000	1.46		85.3	SURCHARGED	
1.008 Pond 4a 45.431 -0.705 0.000 0.01 88.8 OK 5.000 S69 49.192 0.467 0.000 0.66 40.5 SURCHARGED 5.001 S70 49.118 0.450 0.000 1.28 103.5 SURCHARGED	3.001	S68	46.089	-1.211	0.000	0.03		396.2	OK	
5.000 S69 49.192 0.467 0.000 0.66 40.5 SURCHARGED 5.001 S70 49.118 0.450 0.000 1.28 103.5 SURCHARGED	3.002	Sw-13	45.811	-0.414	0.000	0.10		391.5	OK	
5.001 S70 49.118 0.450 0.000 1.28 103.5 SURCHARGED	1.008	Pond 4a	45.431	-0.705	0.000	0.01		88.8	OK	
	5.000	S69	49.192	0.467	0.000	0.66		40.5	SURCHARGED	
5.002 S71 48.583 0.250 0.000 1.39 121.6 SURCHARGED	5.001	S70	49.118	0.450	0.000	1.28		103.5	SURCHARGED	
	5.002	S71	48.583	0.250	0.000	1.39		121.6	SURCHARGED	

	Page 10
Land north of Cockering Road	
Spine Road, Employment, Ph.3	
SW Strategy	Micro
Designed by TGL	Drainage
Checked by GAC	Dialilade
Network 2019.1	
	Spine Road, Employment, Ph.3 SW Strategy Designed by TGL Checked by GAC

$\frac{\text{30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for } 18\text{-}058 \text{ RM SW Strategy.sws}}$

PN	·			Climate Change	_	t (X) harge	First (Y) Flood	First (Z) Overflow	Overflow Act.	
5.003	S72	15	Summer	30	+0%	30/15	Summer			
5.004	S73	15	Summer	30	+0%					
6.000	S74	30	Summer	30	+0%	30/15	Summer			
7.000	S75	30	Summer	30	+0%	1/15	Summer			
6.001	S76	30	Summer	30	+0%	1/15	Summer			
6.002	S77	30	Summer	30	+0%	1/15	Summer			
5.005	S78	15	Summer	30	+0%	1/15	Summer			
5.006	S79	480	Winter	30	+0%	1/15	Summer			
5.007	S80	480	Winter	30	+0%	1/15	Summer			
8.000	HSw-29	15	Summer	30	+0%	30/15	Summer			
9.000	CP3	480	Winter	30	+0%	30/15	Summer			
1.009	Basin-Pond 4	480	Winter	30	+0%	1/15	Summer			
1.010	S81-Control	120	Summer	30	+0%	1/15	Summer			

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
5.003	S72	48.087	0.004	0.000	1.01		128.0	SURCHARGED	
5.004	S73	47.691	-0.132	0.000	0.59		158.5	OK	
6.000	S74	45.546	0.340	0.000	0.75		38.3	SURCHARGED	
7.000	S75	45.486	0.464	0.000	0.25		35.6	SURCHARGED	
6.001	S76	45.479	0.487	0.000	0.32		62.8	SURCHARGED	
6.002	S77	45.469	0.547	0.000	0.37		73.2	SURCHARGED	
5.005	S78	45.460	0.610	0.000	1.07		229.9	SURCHARGED	
5.006	S79	45.434	0.720	0.000	0.24		45.4	SURCHARGED	
5.007	S80	45.433	0.770	0.000	0.30		53.8	SURCHARGED	
8.000	HSw-29	45.792	0.572	0.000	1.59		39.7	SURCHARGED	
9.000	CP3	45.431	0.405	0.000	0.03		0.9	SURCHARGED	
1.009	Basin-Pond 4	45.431	0.845	0.000	0.10		24.2	SURCHARGED	
1.010	S81-Control	45.533	1.264	0.000	0.37		13.7	SURCHARGED	

C & A Consulting Engineers Ltd		Page 11
Landmark House	Land north of Cockering Road	
Station Road, Hook	Spine Road, Employment, Ph.3	
Hampshire RG27 9HA	SW Strategy	Micro
Date 11/01/2021	Designed by TGL	Drainage
File NETWORK 4 - SW REQUISIT	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 18-058 RM SW Strategy.sws

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 MADD Factor * 100^3 /ha Storage 2.500 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 6 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.420 Region England and Wales Cv (Summer) 0.790 M5-60 (mm) 26.250 Cv (Winter) 0.830

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OFF

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 20

	US/MH			Return	${\tt Climate}$	First	(X)	First (Y)	First (Z)	Overflow
PN	Name	s	torm	Period	Change	Surch	narge	Flood	Overflow	Act.
1.000	S57	15	Summer	100	+20%					
1.001	S58	15	Summer	100	+20%	100/15	Summer			
1.002	S59	15	Summer	100	+20%	100/15	Summer			
1.003	S60	15	Summer	100	+20%	30/15	Summer			
1.004	S61	15	Summer	100	+20%	100/15	Summer			
2.000	S62	15	Winter	100	+20%	30/15	Summer			
2.001	S63	15	Winter	100	+20%	30/15	Summer			
2.002	S64	15	Summer	100	+20%	30/15	Summer			
1.005	S65	15	Summer	100	+20%	30/15	Summer			
1.006	S66	15	Summer	100	+20%	30/15	Summer			
1.007	S67	15	Summer	100	+20%					
3.000	Employment	15	Summer	100	+20%	100/15	Summer			
4.000	HSw-26	15	Summer	100	+20%	30/15	Summer			
3.001	S68	15	Summer	100	+20%					
3.002	Sw-13	15	Summer	100	+20%					
1.008	Pond 4a	960	Winter	100	+20%					
5.000	S69	15	Summer	100	+20%	30/15	Summer			
5.001	S70	15	Summer	100	+20%	30/15	Summer			
5.002	S71	15	Summer	100	+20%	30/15	Summer			
	·			©19	82-2019) Innot	yze		·	·

C & A Consulting Engineers Ltd		Page 12
Landmark House	Land north of Cockering Road	
Station Road, Hook	Spine Road, Employment, Ph.3	
Hampshire RG27 9HA	SW Strategy	Micro
Date 11/01/2021	Designed by TGL	Drainage
File NETWORK 4 - SW REQUISIT	Checked by GAC	Dialilage
Innovyze	Network 2019.1	

			Surcharged				Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.000	S57	50.172	-0.002	0.000	0.75		31.3	OK	
1.001	S58	50.113	0.062	0.000	0.86		77.9	SURCHARGED	
1.002	S59	49.837	0.425	0.000	0.73		135.6	SURCHARGED	
1.003	S60	49.581	0.809	0.000	1.48		177.6	SURCHARGED	
1.004	S61	49.140	0.590	0.000	0.62		232.3	SURCHARGED	
2.000	S62	48.592	1.120	0.000	0.67		72.1	FLOOD RISK	
2.001	s63	48.587	1.183	0.000	0.77		83.6	SURCHARGED	
2.002	S64	48.578	1.264	0.000	0.78		88.8	SURCHARGED	
1.005	S65	48.591	1.397	0.000	2.56		301.0	SURCHARGED	
1.006	S66	47.377	0.360	0.000	2.52		345.8	SURCHARGED	
1.007	S67	46.943	-0.036	0.000	1.00		468.5	OK	
3.000	Employment	47.278	0.638	0.000	1.57		491.1	SURCHARGED	
4.000	HSw-26	46.482	0.227	0.000	2.27		132.7	SURCHARGED	
3.001	S68	46.168	-1.132	0.000	0.05		613.1	OK	
3.002	Sw-13	45.861	-0.364	0.000	0.16		600.8	OK	
1.008	Pond 4a	45.782	-0.354	0.000	0.01		74.3	OK	
5.000	S69	50.714	1.989	0.000	1.03		63.2	FLOOD RISK	
5.001	s70	50.645	1.977	0.000	1.77		143.0	SURCHARGED	
5.002	S71	49.510	1.177	0.000	2.00		175.4	SURCHARGED	

	Page 13
Land north of Cockering Road	
Spine Road, Employment, Ph.3	
SW Strategy	Micro
Designed by TGL	Drainage
Checked by GAC	Diamade
Network 2019.1	
	Spine Road, Employment, Ph.3 SW Strategy Designed by TGL Checked by GAC

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.
5.003	S72	15 Summer	100	+20%	30/15 Summer			
5.004	S73	15 Summer	100	+20%				
6.000	S74	30 Winter	100	+20%	30/15 Summer			
7.000	S75	30 Summer	100	+20%	1/15 Summer			
6.001	S76	30 Summer	100	+20%	1/15 Summer			
6.002	S77	30 Summer	100	+20%	1/15 Summer			
5.005	S78	15 Winter	100	+20%	1/15 Summer			
5.006	S79	960 Winter	100	+20%	1/15 Summer			
5.007	S80	960 Winter	100	+20%	1/15 Summer			
8.000	HSw-29	15 Winter	100	+20%	30/15 Summer			
9.000	CP3	960 Winter	100	+20%	30/15 Summer			
1.009	Basin-Pond 4	960 Winter	100	+20%	1/15 Summer			
1.010	S81-Control	120 Winter	100	+20%	1/15 Summer			

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
5.003	s72	48.471	0.388	0.000	1.55		196.2	SURCHARGED	
5.004	s73	47.751	-0.072	0.000	0.91		243.5	OK	
6.000) S74	45.890	0.684	0.000	0.87		44.0	SURCHARGED	
7.000) S75	45.927	0.905	0.000	0.34		48.9	FLOOD RISK	
6.001	S76	45.917	0.925	0.000	0.44		87.7	FLOOD RISK	
6.002	S77	45.921	0.999	0.000	0.48		95.6	SURCHARGED	
5.005	5 S78	45.943	1.093	0.000	1.32		283.7	SURCHARGED	
5.006	S S 79	45.784	1.070	0.000	0.20		37.9	SURCHARGED	
5.007	7 S80	45.783	1.120	0.000	0.25		45.2	SURCHARGED	
8.000) HSw-29	45.981	0.761	0.000	1.67		41.9	FLOOD RISK	
9.000	CP3	45.781	0.755	0.000	0.02		0.8	FLOOD RISK	
1.009	Basin-Pond 4	45.781	1.195	0.000	0.09		23.5	FLOOD RISK	
1.010	S81-Control	45.908	1.639	0.000	0.37		13.7	FLOOD RISK	

C & A Consulting Engineers Ltd		Page 1
Landmark House	Land North Cockering Road	
Station Road, Hook	Highway Drainage	
Hampshire RG27 9HA	Milton Manor Road Outfall	Micro
Date 06/01/2021	Designed by TGL	Drainage
File 18-058 Spine Road - Mil	Checked by GAC	Dialilade
Innovyze	Network 2019.1	1

<u>Time Area Diagram for 18-058 Spine Road - Milton Manor Outfall.sws</u>

Time	Area	Time (mins)	Area	Time	Area
(mins)	(na)	(mins)	(na)	(mins)	(ha)
0-4	0.336	4-8	0.337	8-12	0.015

Total Area Contributing (ha) = 0.688

Total Pipe Volume $(m^3) = 243.922$

C & A Consulting Engineers Ltd		Page 2
Landmark House	Land North Cockering Road	
Station Road, Hook	Highway Drainage	
Hampshire RG27 9HA	Milton Manor Road Outfall	Micro
Date 06/01/2021	Designed by TGL	Drainage
File 18-058 Spine Road - Mil	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for 18-058 Spine Road - Milton Manor Outfall.sws

- Indicates pipe length does not match coordinates

PN	Length		-	I.Area		Base		k	n	HYD			on Type	
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)		SEC	r (mm)			Desig
1.000	43.504	0.770	56.5	0.100	5.00		0.0		0.045	4 \=	/ 600	1:	4 Swale	ð
1.001	43.503	2.250	19.3	0.111	0.00		0.0		0.045	4 \=	/ 600	1:	4 Swale	
1.002	26.744	1.570	17.0	0.057	0.00		0.0		0.045	4 \=	/ 600	1:	4 Swale	ă
1.003	9.955	0.550	18.1	0.023	0.00		0.0		0.045	4 \=	/ 600	1:	4 Swale	ð
1.004	10.269	0.103	99.7	0.000	0.00		0.0	0.600			0 300	Pipe/	'Conduit	ð
1.005	33.027	1.894	17.4	0.000	0.00		0.0	0.600			0 300	Pipe/	'Conduit	ď
2.000	9.717	0.097	100.2	0.067	5.00		0.0	0.600			0 150	Pipe/	'Conduit	ð
1.006	40.444	2.335	17.3	0.000	0.00		0.0	0.600			0 300	Pipe/	'Conduit	•
3.000	10.214	0.102	100.1	0.092	5.00		0.0	0.600			0 150	Pipe/	'Conduit	ð
1.007	26.663	1.568	17.0	0.000	0.00		0.0	0.600			o 300	Pipe/	'Conduit	•
1.000	10.892	0.108	100.9	0.078	5.00		0.0	0.600			0 150	Pipe/	'Conduit	ð
L.008	48.954#	2.612	18.7	0.000	0.00		0.0	0.600			0 300	Pipe/	'Conduit	•
	33.330#				0.00			0.600				-	'Conduit	ð
			T.C.		Σ I.Area				Add		Vel	Cap	Flow	
			T.C.	US/IL (m)	Σ I.Area (ha)	Σ B Flow				Flow /s)	Vel (m/s)	Cap (1/s)		
1	(mm	/hr) ((mins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1,	/s)	(m/s)	(1/s)	(1/s)	
	(mm		(mins) 6.15			Flow		(1/s)	(1,		(m/s)	-		
1	.000 5	(hr) ((mins) 6.15 6.83	(m) 46.670	(ha) 0.100	Flow	(1/s)	(1/s) 0.0	(1,)	/s)	(m/s) 0.63 1.07	(1/s) 113.1	(1/s) 13.5	
1 1	.000 5 .001 5 .002 5	0.00 0.00	(mins) 6.15 6.83 7.22	(m) 46.670 45.900	(ha) 0.100 0.211	Flow	0.0 0.0	(1/s) 0.0 0.0	(1,))	0.0 0.0	(m/s) 0.63 1.07 1.14	(1/s) 113.1 193.3	(1/s) 13.5 28.6	
1 1 1	.000 5 .001 5 .002 5 .003 5	0.00 0.00 0.00	6.15 6.83 7.22 7.37	(m) 46.670 45.900 43.650	(ha) 0.100 0.211 0.268	Flow	0.0 0.0 0.0	(1/s) 0.0 0.0 0.0	(1,	0.0 0.0 0.0	(m/s) 0.63 1.07 1.14 1.11	(1/s) 113.1 193.3 206.0	13.5 28.6 36.3	
1 1 1	.000 5 .001 5 .002 5 .003 5 .004 5	0.00 0.00 0.00 0.00 0.00	(mins) 6.15 6.83 7.22 7.37 7.48	(m) 46.670 45.900 43.650 42.080	(ha) 0.100 0.211 0.268 0.291	Flow	0.0 0.0 0.0 0.0	(1/s) 0.0 0.0 0.0 0.0 0.0	(1,	0.0 0.0 0.0 0.0	(m/s) 0.63 1.07 1.14 1.11 1.57	(1/s) 113.1 193.3 206.0 199.8	13.5 28.6 36.3 39.4	
1 1 1 1	.000 5 .001 5 .002 5 .003 5 .004 5	0.00 0.00 0.00 0.00 0.00	(mins) 6.15 6.83 7.22 7.37 7.48 7.62	(m) 46.670 45.900 43.650 42.080 40.780	(ha) 0.100 0.211 0.268 0.291 0.291	Flow	0.0 0.0 0.0 0.0	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(1,	0.0 0.0 0.0 0.0 0.0	(m/s) 0.63 1.07 1.14 1.11 1.57	(1/s) 113.1 193.3 206.0 199.8 111.3	13.5 28.6 36.3 39.4 39.4	
1 1 1 1 2	.000 5 .001 5 .002 5 .003 5 .004 5 .005 5	0.00 0.00 0.00 0.00 0.00 0.00 0.00	(mins) 6.15 6.83 7.22 7.37 7.48 7.62 5.16	(m) 46.670 45.900 43.650 42.080 40.780 40.677	(ha) 0.100 0.211 0.268 0.291 0.291	Flow	0.0 0.0 0.0 0.0 0.0	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1,	0.0 0.0 0.0 0.0 0.0	(m/s) 0.63 1.07 1.14 1.11 1.57 3.78	(1/s) 113.1 193.3 206.0 199.8 111.3 267.4	13.5 28.6 36.3 39.4 39.4 39.4	
1 1 1 1 1 2	.000 5 .001 5 .002 5 .003 5 .004 5 .005 5 .000 5	0.00 0.00 0.00 0.00 0.00 0.00 0.00	(mins) 6.15 6.83 7.22 7.37 7.48 7.62 5.16 7.80	(m) 46.670 45.900 43.650 42.080 40.780 40.677 39.030	(ha) 0.100 0.211 0.268 0.291 0.291 0.067	Flow	0.0 0.0 0.0 0.0 0.0 0.0	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1,	0.0 0.0 0.0 0.0 0.0 0.0	(m/s) 0.63 1.07 1.14 1.11 1.57 3.78	(1/s) 113.1 193.3 206.0 199.8 111.3 267.4	13.5 28.6 36.3 39.4 39.4 39.4	
1 1 1 1 1 2 1 3	.000 5 .001 5 .002 5 .003 5 .004 5 .005 5 .000 5	(h/hr) (0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(mins) 6.15 6.83 7.22 7.37 7.48 7.62 5.16 7.80 5.17	(m) 46.670 45.900 43.650 42.080 40.780 40.677 39.030 38.783	(ha) 0.100 0.211 0.268 0.291 0.291 0.291 0.067	Flow	0.0 0.0 0.0 0.0 0.0 0.0	(1/s) 0.(1 0.(1 0.(1 0.(1 0.(1 0.(1 0.(1 0.(1	(1,	0.0 0.0 0.0 0.0 0.0 0.0	(m/s) 0.63 1.07 1.14 1.11 1.57 3.78 1.00 3.80 1.00	(1/s) 113.1 193.3 206.0 199.8 111.3 267.4 17.7 268.3	(1/s) 13.5 28.6 36.3 39.4 39.4 39.4 48.5	
1 1 1 1 1 2 1 3	.000 5 .001 5 .002 5 .003 5 .004 5 .005 5 .000 5 .000 5	(h/hr) (0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(mins) 6.15 6.83 7.22 7.37 7.48 7.62 5.16 7.80 5.17 7.92	(m) 46.670 45.900 43.650 42.080 40.780 40.677 39.030 38.783 36.700	(ha) 0.100 0.211 0.268 0.291 0.291 0.067 0.358	Flow	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(1/s) 0.(1/s)		(s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(m/s) 0.63 1.07 1.14 1.11 1.57 3.78 1.00 3.80 1.00	(1/s) 113.1 193.3 206.0 199.8 111.3 267.4 17.7 268.3	(1/s) 13.5 28.6 36.3 39.4 39.4 39.4 48.5	
1 1 1 1 1 2 1 3 1	.000 5 .001 5 .002 5 .003 5 .004 5 .005 5 .000 5 .000 5 .000 5	(h/hr) (0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(mins) 6.15 6.83 7.22 7.37 7.48 7.62 5.16 7.80 5.17 7.92 5.18	(m) 46.670 45.900 43.650 42.080 40.780 40.677 39.030 38.783 36.700 35.730	(ha) 0.100 0.211 0.268 0.291 0.291 0.067 0.358 0.092	Flow	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s) 0.(1 0.(1 0.(1 0.(1 0.(1 0.(1 0.(1 0.(1		(s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m/s) 0.63 1.07 1.14 1.11 1.57 3.78 1.00 3.80 1.00 3.83	(1/s) 113.1 193.3 206.0 199.8 111.3 267.4 17.7 268.3 17.7 270.8	(1/s) 13.5 28.6 36.3 39.4 39.4 39.4 10.1 48.5 12.5 60.9	
1 1 1 1 1 2 1 3 1 4	.000 5 .001 5 .002 5 .003 5 .004 5 .005 5 .000 5 .000 5 .000 5 .000 5 .000 5	(hr) (0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(mins) 6.15 6.83 7.22 7.37 7.48 7.62 5.16 7.80 5.17 7.92 5.18 8.14	(m) 46.670 45.900 43.650 42.080 40.780 40.677 39.030 38.783 36.700 35.730 34.470	(ha) 0.100 0.211 0.268 0.291 0.291 0.067 0.358 0.092 0.450	Flow	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1/s) 0.(1/s)		(s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(m/s) 0.63 1.07 1.14 1.11 1.57 3.78 1.00 3.80 1.00 3.83 1.00 3.65	(1/s) 113.1 193.3 206.0 199.8 111.3 267.4 17.7 268.3 17.7 270.8	(1/s) 13.5 28.6 36.3 39.4 39.4 39.4 9.1 48.5 12.5 60.9 10.6	

C & A Consulting Engineers Ltd		Page 3
Landmark House	Land North Cockering Road	
Station Road, Hook	Highway Drainage	
Hampshire RG27 9HA	Milton Manor Road Outfall	Micro
Date 06/01/2021	Designed by TGL	Drainage
File 18-058 Spine Road - Mil	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for 18-058 Spine Road - Milton Manor Outfall.sws

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)		ise	k (mm)	n	HYD SECT	DIA (mm)	Section Type	Auto Design
	(111)	(111)	(T:X)	(IIA)	(mills)	FIOW	(1/8)	(11411)		SECI	(11411)		pesign
5.000 5.001	7.049 13.321			0.160	5.00			0.600				Pipe/Conduit Pipe/Conduit	
	30.279 13.542			0.000	0.00			0.600		0		Pipe/Conduit Pipe/Conduit	•

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow $(1/s)$	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
5.000	50.00	5.03	31.530	0.160	0.0	0.0	0.0	3.40	135.3	21.7	
5.001	50.00	5.26	30.883	0.160	0.0	0.0	0.0	1.01	159.9	21.7	
1.010	50.00	8.68	30.850	0.688	0.0	0.0	0.0	2.76	109.8	93.2	
1.011	50.00	8.74	29.512	0.688	0.0	0.0	0.0	3.36	133.5	93.2	

C & A Consulting Engineers Ltd		Page 4
Landmark House	Land North Cockering Road	
Station Road, Hook	Highway Drainage	
Hampshire RG27 9HA	Milton Manor Road Outfall	Micro
Date 06/01/2021	Designed by TGL	Drainage
File 18-058 Spine Road - Mil	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

Online Controls for 18-058 Spine Road - Milton Manor Outfall.sws

Hydro-Brake® Optimum Manhole: CP9-Ctrl, DS/PN: 1.010, Volume (m³): 9.6

Unit Reference MD-SHE-0077-2800-1200-2800 1.200 Design Head (m) Design Flow (1/s) 2.8 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 77 Invert Level (m) 30.850 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.200 2.8 Flush-Flo™ 0.336 2.7 Kick-Flo® 0.683 2.2 Mean Flow over Head Range 2.4

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	2.1	1.200	2.8	3.000	4.3	7.000	6.4
0.200	2.6	1.400	3.0	3.500	4.6	7.500	6.6
0.300	2.7	1.600	3.2	4.000	4.9	8.000	6.8
0.400	2.7	1.800	3.4	4.500	5.2	8.500	7.0
0.500	2.6	2.000	3.5	5.000	5.4	9.000	7.2
0.600	2.4	2.200	3.7	5.500	5.7	9.500	7.3
0.800	2.3	2.400	3.8	6.000	5.9		
1.000	2.6	2.600	4.0	6.500	6.1		

C & A Consulting Engineers Ltd		Page 5
Landmark House	Land North Cockering Road	
Station Road, Hook	Highway Drainage	
Hampshire RG27 9HA	Milton Manor Road Outfall	Micro
Date 06/01/2021	Designed by TGL	Drainage
File 18-058 Spine Road - Mil	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

Storage Structures for 18-058 Spine Road - Milton Manor Outfall.sws

Swale Manhole: HSw-22, DS/PN: 2.000

Warning:- Volume should always be included unless the upstream pipe is being used for storage and/or as a carrier

Infiltration Coe	efficient Base	(m/hr)	0.00000		Length (m)	31.2
Infiltration Coe	efficient Side	(m/hr)	0.00000		Side Slope (1:X)	4.0
	Safety	Factor	2.0		Slope (1:X)	16.7
	P	orosity	1.00		Cap Volume Depth (m)	0.000
	Invert Le	vel (m)	39.780	Cap	Infiltration Depth (m)	0.000
	Base Wi	dth (m)	0.6		Include Swale Volume	Yes

Swale Manhole: HSw-23, DS/PN: 3.000

Warning:- Volume should always be included unless the upstream pipe is being used for storage and/or as a carrier

Infiltration Coefficient Base (m/hr)	0.00000 Length (m)	41.6
Infiltration Coefficient Side (m/hr)	0.00000 Side Slope (1:X)	4.0
Safety Factor	2.0 Slope (1:X)	16.7
Porosity	1.00 Cap Volume Depth (m)	0.000
Invert Level (m)	37.450 Cap Infiltration Depth (m)	0.000
Base Width (m)	0.6 Include Swale Volume	Yes

Swale Manhole: HSw-24, DS/PN: 4.000

Warning:- Volume should always be included unless the upstream pipe is being used for storage and/or as a carrier

Infiltration Coefficient Base (m/hr)	0.00000 Length (m)	32.7
Infiltration Coefficient Side (m/hr)	0.00000 Side Slope (1:X)	4.0
Safety Factor	2.0 Slope (1:X)	16.7
Porosity	1.00 Cap Volume Depth (m) 0	.000
Invert Level (m)	35.220 Cap Infiltration Depth (m) 0	.000
Base Width (m)	0.6 Include Swale Volume	Yes

Tank or Pond Manhole: HW-Basin, DS/PN: 1.009

Invert Level (m) 31.050

Depth (m) Area (m²) Depth (m) Area (m²) 0.000 304.2 1.300 812.8

Swale Manhole: HSw-25, DS/PN: 5.000

Warning:- Volume should always be included unless the upstream pipe is being used for storage and/or as a carrier

Infiltration Coefficient Base (m/hr) 0.00000 Infiltration Coefficient Side (m/hr) 0.00000

C & A Consulting Engineers Ltd		Page 6
Landmark House	Land North Cockering Road	
Station Road, Hook	Highway Drainage	
Hampshire RG27 9HA	Milton Manor Road Outfall	Micro
Date 06/01/2021	Designed by TGL	Drainage
File 18-058 Spine Road - Mil	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

Swale Manhole: HSw-25, DS/PN: 5.000

Safety Factor 2.0 Side Slope (1:X) 4.0
Porosity 1.00 Slope (1:X) 16.7
Invert Level (m) 32.280 Cap Volume Depth (m) 0.000
Base Width (m) 0.6 Cap Infiltration Depth (m) 0.000
Length (m) 40.8 Include Swale Volume Yes

Volume Summary (Static)

Length Calculations based on True Length

				Storage	
Pipe	USMH	Manhole	Pipe	Structure	Total
Number	Name	Volume (m³)	Volume (m³)	Volume (m³)	Volume (m³)
1.000	HSw-26	0.216	77.227	0.000	77.443
1.001	HSw-18	0.216	77.225	0.000	77.441
1.002	HSw-19	0.216	47.059	0.000	47.275
1.003	HSw-20	0.216	16.704	0.000	16.920
1.004	HSw-21	0.759	0.657	0.000	1.416
1.005	CP4	1.622	2.250	0.000	3.872
2.000	HSw-22	0.486	0.156	6.613	7.255
1.006	CP5	1.788	2.774	0.000	4.562
3.000	HSw-23	0.486	0.165	6.613	7.264
1.007	CP6	3.370	1.800	0.000	5.170
4.000	HSw-24	0.486	0.177	6.613	7.276
1.008	CP7	2.747	3.370	0.000	6.117
1.009	HW-Basin	1.861	5.074	699.507	706.442
5.000	HSw-25	0.615	0.237	6.613	7.465
5.001	CP8	3.607	1.880	0.000	5.487
1.010	CP9-Ctrl	2.651	1.150	0.000	3.801
1.011	CP10	1.612	0.491	0.000	2.102
Total		22.954	238.396	725.959	987.309

C & A Consulting Engineers Ltd		Page 7
Landmark House	Land North Cockering Road	
Station Road, Hook	Highway Drainage	
Hampshire RG27 9HA	Milton Manor Road Outfall	Micro
Date 06/01/2021	Designed by TGL	Drainage
File 18-058 Spine Road - Mil	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 18-058 Spine Road - Milton Manor Outfall.sws

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 5 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.420 Region England and Wales Cv (Summer) 0.790 M5-60 (mm) 26.250 Cv (Winter) 0.830

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OFF

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 20

	US/MH			Return	${\tt Climate}$	First	t (X)	First (Y)	First (Z)	Overflow
PN	Name	s	torm	Period	Change	Surch	narge	Flood	Overflow	Act.
1.000	HSw-26	15	Summer	1	+0%					
1.001	HSw-18	15	Summer	1	+0%					
1.002	HSw-19	15	Summer	1	+0%					
1.003	HSw-20	15	Summer	1	+0%					
1.004	HSw-21	15	Summer	1	+0%	30/15	Summer			
1.005	CP4	15	Summer	1	+0%	100/15	Summer			
2.000	HSw-22	15	Summer	1	+0%	30/15	Summer			
1.006	CP5	15	Summer	1	+0%	100/15	Summer			
3.000	HSw-23	15	Summer	1	+0%	1/15	Summer			
1.007	CP6	15	Summer	1	+0%	100/15	Summer			
4.000	HSw-24	15	Summer	1	+0%	30/15	Summer			
1.008	CP7	15	Summer	1	+0%	30/15	Summer			
1.009	HW-Basin	360	Winter	1	+0%	30/30	Winter			
5.000	HSw-25	15	Summer	1	+0%	30/15	Summer			
5.001	CP8	360	Winter	1	+0%	1/240	Winter			
1.010	CP9-Ctrl	360	Winter	1	+0%	1/15	Summer			
1.011	CP10	480	Summer	1	+0%					

C & A Consulting Engineers Ltd					
Landmark House	Land North Cockering Road				
Station Road, Hook	Highway Drainage				
Hampshire RG27 9HA	Milton Manor Road Outfall	Micro			
Date 06/01/2021	Designed by TGL	Drainage			
File 18-058 Spine Road - Mil	Checked by GAC	Dialilade			
Innovyze	Network 2019.1				

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 18-058 Spine Road - Milton Manor Outfall.sws

	US/MH	Water Level	Surcharged			Overflow	Pipe Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.		(1/s)	Status	Exceeded
1.000	HSw-26	46.730	-0.540	0.000	0.01		18.7	OK	
1.001	HSw-18	45.963	-0.537	0.000	0.01		36.2	OK	
1.002	HSw-19	43.718	-0.532	0.000	0.01		45.1	OK	
1.003	HSw-20	42.152	-0.528	0.000	0.01		48.9	OK	
1.004	HSw-21	40.950	-0.130	0.000	0.61		49.0	OK	
1.005	CP4	40.768	-0.209	0.000	0.20		49.0	OK	
2.000	HSw-22	39.133	-0.047	0.000	0.81		12.7	OK	
1.006	CP5	38.884	-0.199	0.000	0.25		61.5	OK	
3.000	HSw-23	36.869	0.019	0.000	1.10		17.4	SURCHARGED	
1.007	CP6	35.847	-0.183	0.000	0.32		78.6	OK	
4.000	HSw-24	34.585	-0.035	0.000	0.93		14.8	OK	
1.008	CP7	34.290	-0.172	0.000	0.38		92.8	OK	
1.009	HW-Basin	31.352	-0.148	0.000	0.01		2.6	OK	
5.000	HSw-25	31.617	-0.138	0.000	0.31		30.4	OK	
5.001	CP8	31.351	0.018	0.000	0.04		4.4	SURCHARGED	
1.010	CP9-Ctrl	31.351	0.276	0.000	0.03		2.7	SURCHARGED	
1.011	CP10	29.535	-0.202	0.000	0.02		2.7	OK	

C & A Consulting Engineers Ltd					
Landmark House	Land North Cockering Road				
Station Road, Hook	Highway Drainage				
Hampshire RG27 9HA	Milton Manor Road Outfall	Micro			
Date 06/01/2021	Designed by TGL	Drainage			
File 18-058 Spine Road - Mil	Checked by GAC	Dialilade			
Innovyze	Network 2019.1				

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 18-058 Spine Road - Milton Manor Outfall.sws

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 5 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.420 Region England and Wales Cv (Summer) 0.790 M5-60 (mm) 26.250 Cv (Winter) 0.830

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OFF

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 20

PN	US/MH Name	St	torm		Climate Change		(X) narge	• •	First (Z) Overflow	Overflow Act.
1.000	HSw-26	15	Summer	30	+0%					
1.001	HSw-18	15	Summer	30	+0%					
1.002	HSw-19	15	Summer	30	+0%					
1.003	HSw-20	15	Summer	30	+0%					
1.004	HSw-21	15	Summer	30	+0%	30/15	Summer			
1.005	CP4	15	Summer	30	+0%	100/15	Summer			
2.000	HSw-22	15	Summer	30	+0%	30/15	Summer			
1.006	CP5	15	Summer	30	+0%	100/15	Summer			
3.000	HSw-23	15	Summer	30	+0%	1/15	Summer			
1.007	CP6	15	Summer	30	+0%	100/15	Summer			
4.000	HSw-24	15	Summer	30	+0%	30/15	Summer			
1.008	CP7	15	Summer	30	+0%	30/15	Summer			
1.009	HW-Basin	480	Winter	30	+0%	30/30	Winter			
5.000	HSw-25	15	Summer	30	+0%	30/15	Summer			
5.001	CP8	480	Winter	30	+0%	1/240	Winter			
1.010	CP9-Ctrl	480	Winter	30	+0%	1/15	Summer			
1.011	CP10	1440	Summer	30	+0%					

C & A Consulting Engineers Ltd					
Landmark House	Land North Cockering Road				
Station Road, Hook	Highway Drainage				
Hampshire RG27 9HA	Milton Manor Road Outfall	Micro			
Date 06/01/2021	Designed by TGL	Drainage			
File 18-058 Spine Road - Mil	Checked by GAC	Dialilade			
Innovyze	Network 2019.1				

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 18-058 Spine Road - Milton Manor Outfall.sws

	US/MH	Water Level	Surcharged Depth			Overflow	Pipe Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.000	HSw-26	46.764	-0.506	0.000	0.02		45.7	OK	
1.001	HSw-18	46.009	-0.491	0.000	0.02		101.2	OK	
1.002	HSw-19	43.771	-0.479	0.000	0.03		129.8	OK	
1.003	HSw-20	42.208	-0.472	0.000	0.04		140.4	OK	
1.004	HSw-21	41.294	0.214	0.000	1.75		140.3	SURCHARGED	
1.005	CP4	40.842	-0.135	0.000	0.58		141.7	OK	
2.000	HSw-22	39.459	0.279	0.000	1.96		30.8	SURCHARGED	
1.006	CP5	38.968	-0.115	0.000	0.69		173.1	OK	
3.000	HSw-23	37.441	0.591	0.000	2.61		41.3	SURCHARGED	
1.007	CP6	35.948	-0.082	0.000	0.88		214.0	OK	
4.000	HSw-24	35.056	0.436	0.000	2.23		35.5	SURCHARGED	
1.008	CP7	34.539	0.077	0.000	1.01		245.5	SURCHARGED	
1.009	HW-Basin	31.738	0.238	0.000	0.02		4.4	SURCHARGED	
5.000	HSw-25	31.823	0.068	0.000	0.75		73.0	SURCHARGED	
5.001	CP8	31.791	0.458	0.000	0.07		7.3	SURCHARGED	
1.010	CP9-Ctrl	31.790	0.715	0.000	0.03		2.7	SURCHARGED	
1.011	CP10	29.535	-0.202	0.000	0.02		2.7	OK	

C & A Consulting Engineers Ltd		Page 11
Landmark House	Land North Cockering Road	
Station Road, Hook	Highway Drainage	
Hampshire RG27 9HA	Milton Manor Road Outfall	Micro
Date 06/01/2021	Designed by TGL	Drainage
File 18-058 Spine Road - Mil	Checked by GAC	Dialilade
Innovyze	Network 2019.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 18-058 Spine Road - Milton Manor Outfall.sws

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 5 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.420 Region England and Wales Cv (Summer) 0.790 M5-60 (mm) 26.250 Cv (Winter) 0.830

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

OFF

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 1, 30, 100
Climate Change (%) 0, 0, 20

PN	US/MH Name	s	torm		Climate Change		(X) narge	First (Y) Flood	First (Z) Overflow	Overflow Act.
1.000	HSw-26	15	Summer	100	+20%					
1.001	HSw-18	15	Summer	100	+20%					
1.002	HSw-19	15	Summer	100	+20%					
1.003	HSw-20	15	Summer	100	+20%					
1.004	HSw-21	15	Summer	100	+20%	30/15	Summer			
1.005	CP4	15	Summer	100	+20%	100/15	Summer			
2.000	HSw-22	15	Summer	100	+20%	30/15	Summer			
1.006	CP5	15	Summer	100	+20%	100/15	Summer			
3.000	HSw-23	15	Summer	100	+20%	1/15	Summer			
1.007	CP6	15	Summer	100	+20%	100/15	Summer			
4.000	HSw-24	15	Summer	100	+20%	30/15	Summer			
1.008	CP7	15	Summer	100	+20%	30/15	Summer			
1.009	HW-Basin	960	Winter	100	+20%	30/30	Winter			
5.000	HSw-25	15	Summer	100	+20%	30/15	Summer			
5.001	CP8	60	Winter	100	+20%	1/240	Winter			
1.010	CP9-Ctrl	60	Winter	100	+20%	1/15	Summer			
1.011	CP10	960	Winter	100	+20%					

C & A Consulting Engineers Ltd					
Landmark House	Land North Cockering Road				
Station Road, Hook	Highway Drainage				
Hampshire RG27 9HA	Milton Manor Road Outfall	Micro			
Date 06/01/2021	Designed by TGL	Drainage			
File 18-058 Spine Road - Mil	Checked by GAC	Dialilade			
Innovyze	Network 2019.1				

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 18-058 Spine Road - Milton Manor Outfall.sws

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.000	HSw-26	16 701	-0.479	0.000	0.03		71.8	OK	
1.000	HSw-18		-0.463	0.000	0.03		159.4	OK	
1.002	HSw-19	43.800	-0.450	0.000	0.05		204.5	OK	
1.003	HSw-20	42.240	-0.440	0.000	0.06		221.3	OK	
1.004	HSw-21	41.751	0.671	0.000	2.74		220.5	SURCHARGED	
1.005	CP4	41.056	0.079	0.000	0.87		214.1	SURCHARGED	
2.000	HSw-22	40.085	0.905	0.000	2.79		43.9	FLOOD RISK	
1.006	CP5	39.642	0.559	0.000	0.96		240.2	SURCHARGED	
3.000	HSw-23	37.972	1.122	0.000	3.30		52.2	FLOOD RISK	
1.007	CP6	37.531	1.501	0.000	1.11		271.0	SURCHARGED	
4.000	HSw-24	35.773	1.153	0.000	3.20		50.8	FLOOD RISK	
1.008	CP7	35.580	1.118	0.000	1.20		290.4	SURCHARGED	
1.009	HW-Basin	32.054	0.554	0.000	0.02		4.5	FLOOD RISK	
5.000	HSw-25	32.304	0.549	0.000	1.18		114.1	SURCHARGED	
5.001	CP8	32.259	0.926	0.000	0.53		54.7	SURCHARGED	
1.010	CP9-Ctrl	32.224	1.149	0.000	0.03		2.7	FLOOD RISK	
1.011	CP10	29.536	-0.201	0.000	0.02		2.8	OK	