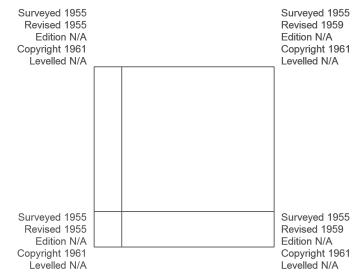


LAND WEST OF 41, FORT ROAD, HALSTEAD, SEVENOAKS, TN14 7BS

Client Ref: C-10730-C_Fort_Halstead_PO_P028025

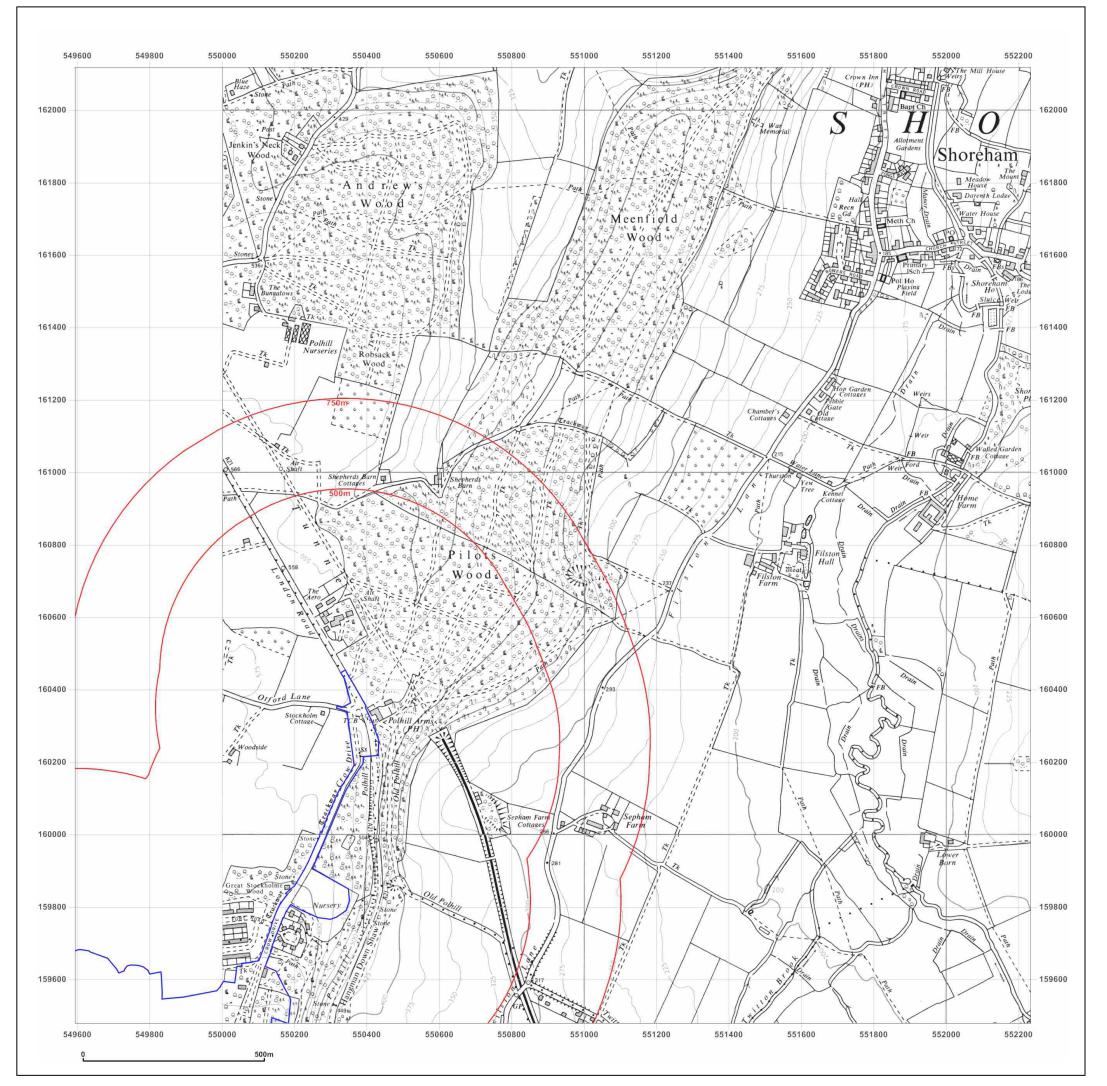

Report Ref: GS-5746913_SS_2_2 **Grid Ref:** 550913, 160798

Map Name: Provisional

Map date: 1961

Scale: 1:10,560

Printed at: 1:10,560



Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 14 January 2019

Map legend available at:

Client Ref: C-10730-C_Fort_Halstead_PO_P028025 Report Ref: GS-5746913_SS_2_2 Grid Ref: 550913, 160798

Site Details:

LAND WEST OF 41, FORT ROAD, HALSTEAD,

SEVENOAKS, TN14 7BS

Printed at: 1:10,560

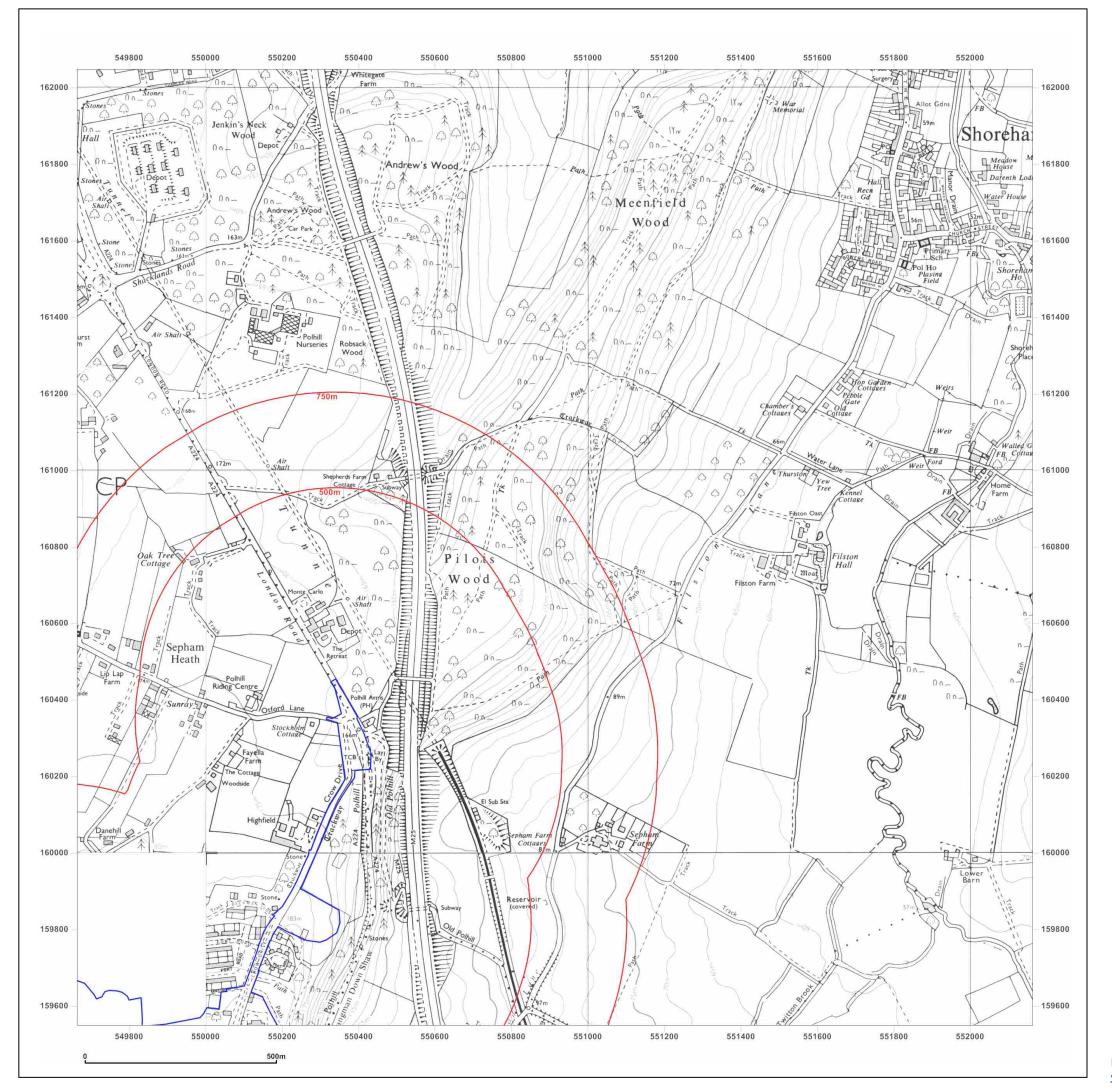
Map Name: Provisional

Map date: 1967-1968

Scale: 1:10,560

Surveyed 1967
Revised 1967
Edition N/A
Copyright N/A
Levelled N/A

Surveyed 1968
Revised 1968
Revised 1968
Edition N/A
Copyright N/A
Levelled N/A



Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

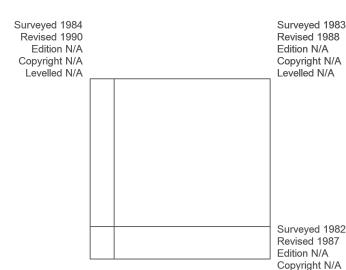
© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 14 January 2019

Map legend available at:

LAND WEST OF 41, FORT ROAD, HALSTEAD, SEVENOAKS, TN14 7BS

Client Ref: C-10730-C_Fort_Halstead_PO_P028025

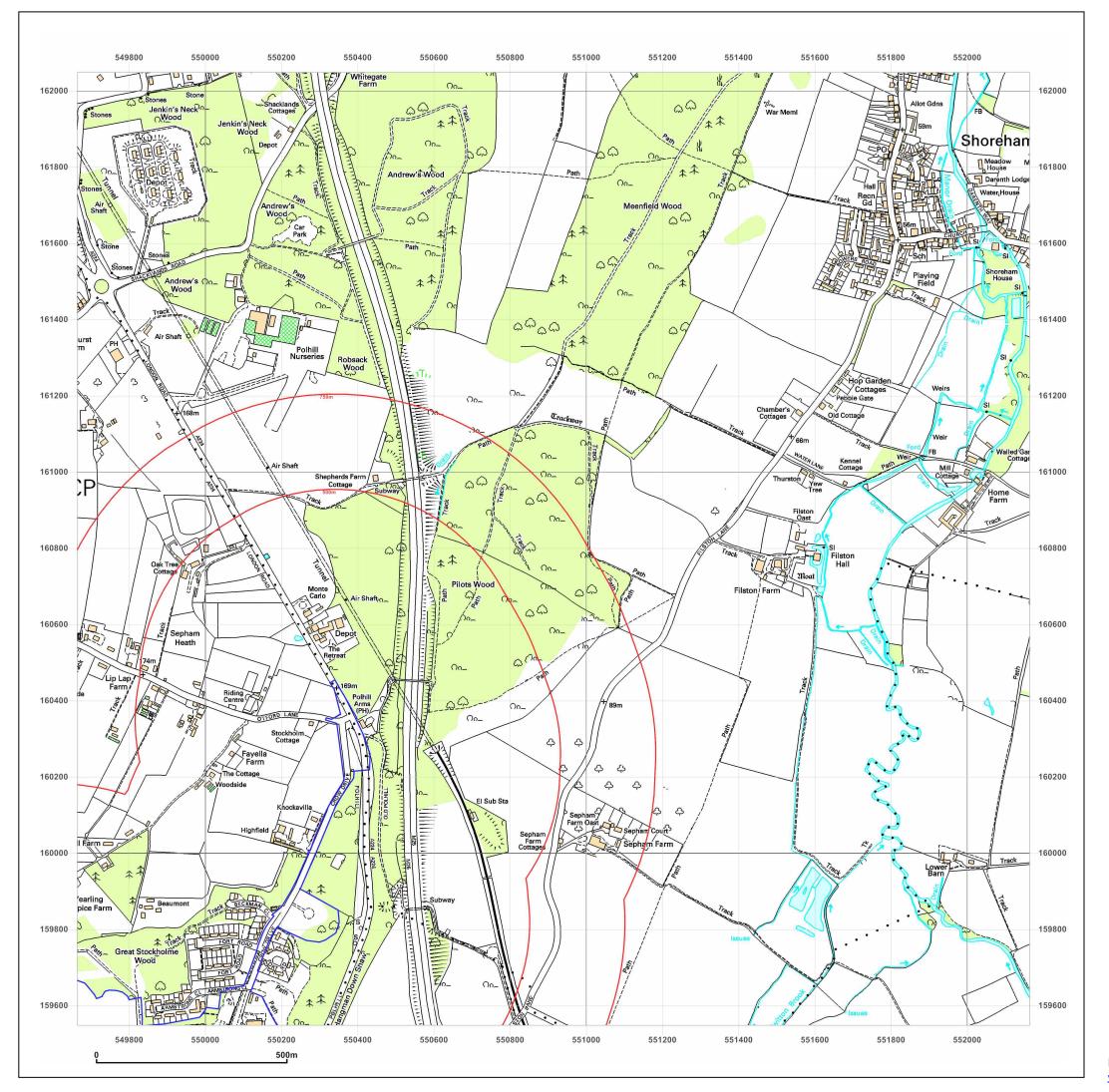

Report Ref: GS-5746913_SS_2_2 **Grid Ref:** 550913, 160798

Map Name: National Grid

Map date: 1987-1990

Scale: 1:10,000

Printed at: 1:10,000


Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

Levelled N/A

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 14 January 2019

Map legend available at:

LAND WEST OF 41, FORT ROAD, HALSTEAD, SEVENOAKS, TN14 7BS

Client Ref: C-10730-C_Fort_Halstead_PO_P028025

Report Ref: GS-5746913_SS_2_2 **Grid Ref:** 550913, 160798

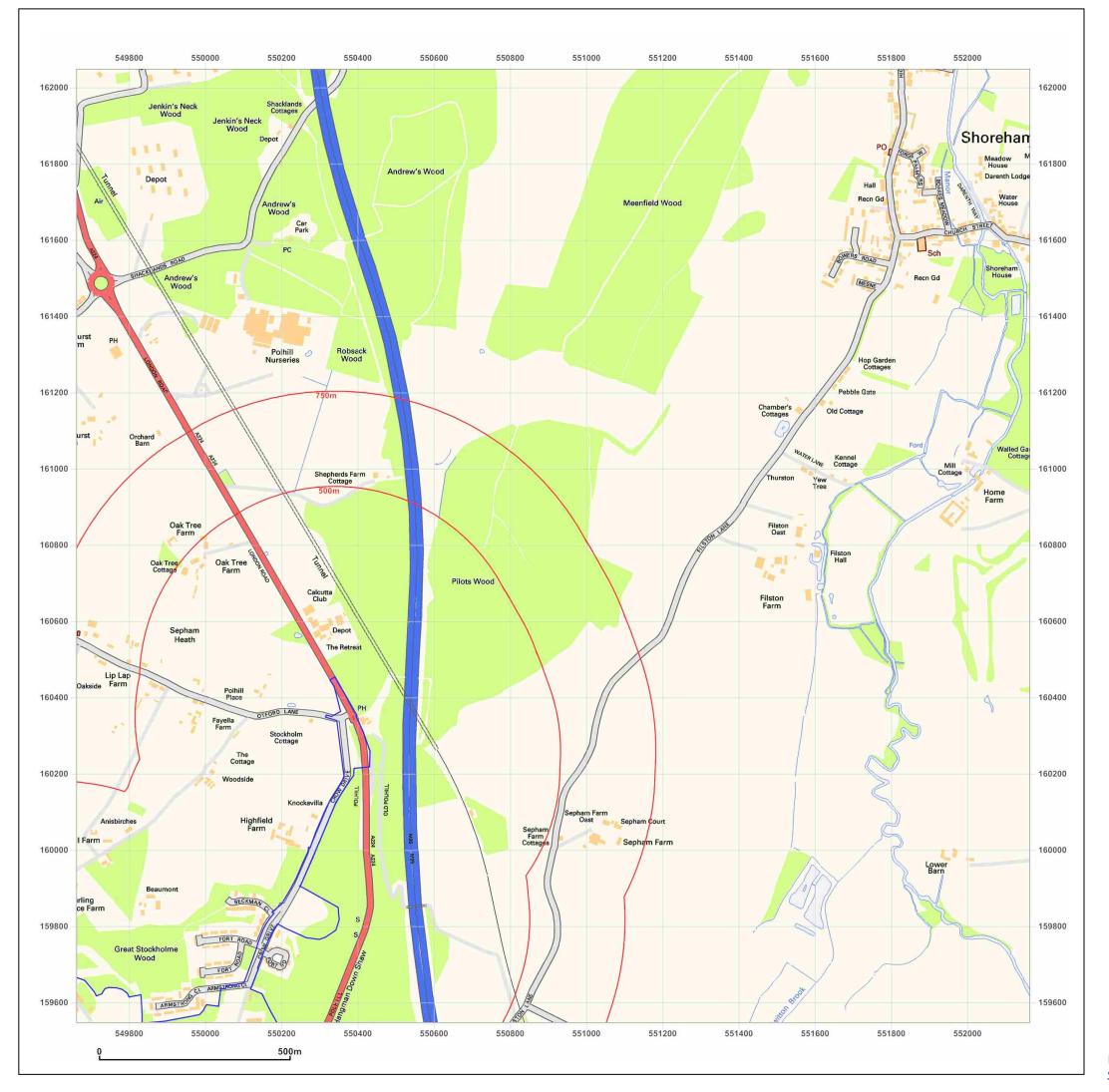
Map Name: 1:10,000 Raster

Map date: 2002

Scale: 1:10,000

Printed at: 1:10,000

2002



Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

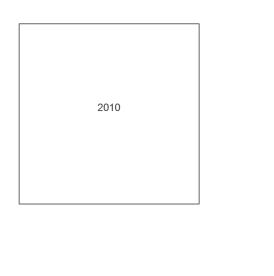
© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 14 January 2019

Map legend available at:

LAND WEST OF 41, FORT ROAD, HALSTEAD, SEVENOAKS, TN14 7BS

Client Ref: C-10730-C_Fort_Halstead_PO_P028025

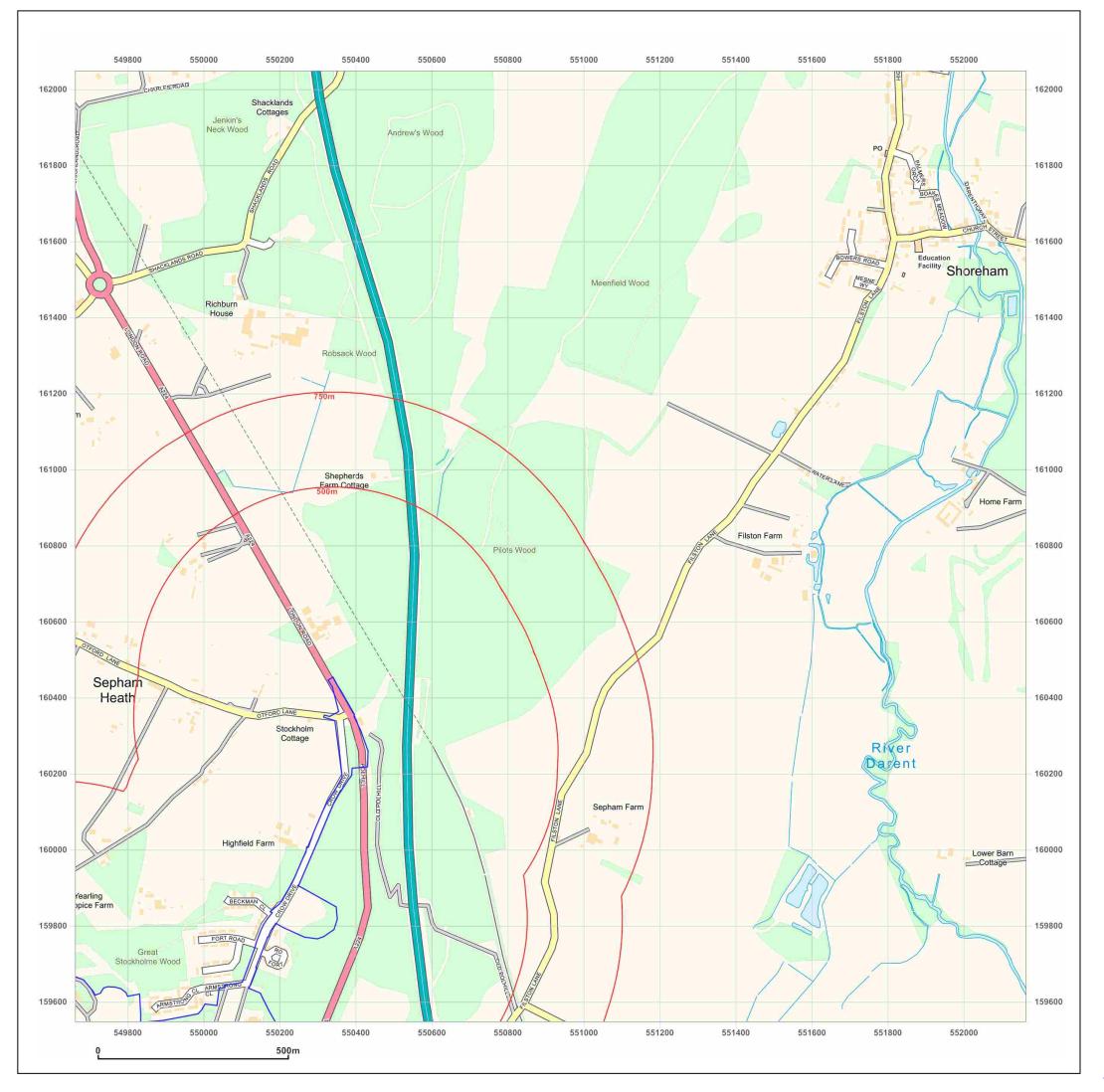

Report Ref: GS-5746913_SS_2_2 **Grid Ref:** 550913, 160798

Map Name: National Grid

Map date: 2010

Scale: 1:10,000

Printed at: 1:10,000



Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 14 January 2019

Map legend available at:

LAND WEST OF 41, FORT ROAD, HALSTEAD, SEVENOAKS, TN14 7BS

Client Ref: C-10730-C_Fort_Halstead_PO_P028025

Report Ref: GS-5746913_SS_2_2 **Grid Ref:** 550913, 160798

Map Name: National Grid

Map date: 2014

Scale: 1:10,000

Printed at: 1:10,000

2014

Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 14 January 2019

Map legend available at:

Appendix D

Desk Study Research Information

LOCATION INTELLIGENCE

Hydrock Consultants Ltd

Groundsure

GS-5746911

HYDROCK CONSULTANTS LTD, OVER COURT

ALMONDSBURY, BS32 4DF

Reference:

BARNS, OVER LANE,

Your Reference: C-10730-

C_Fort_Halstead_PO_P028025

Report Date

14 Jan 2019

Report Delivery Email - pdf

Method:

Enviro Insight

Address: LAND WEST OF 41, FORT ROAD, HALSTEAD, SEVENOAKS, TN14 7BS

Dear Sir/ Madam,

Thank you for placing your order with Groundsure. Please find enclosed the **Groundsure Enviro Insight** as requested.

If you need any further assistance, please do not hesitate to contact our helpline on 08444 159000 quoting the above Groundsure reference number.

Yours faithfully,

Managing Director **Groundsure Limited**

Enc.

Groundsure Enviroinsight

Groundsure Enviro Insight

Address: LAND WEST OF 41, FORT ROAD, HALSTEAD, SEVENOAKS, TN14 7BS

Date: 14 Jan 2019

Reference: GS-5746911

Client: Hydrock Consultants Ltd

NW ΝE

Aerial Photograph Capture date: 09-Aug-2015

Grid Reference: 549845,159348

Site Size: 62.86ha

Report Reference: GS-5746911

Contents Page

Contents Page	3
Overview of Findings	6
Using this report	10
1. Historical Land Use	11
1. Historical Industrial Sites	12
1.1 Potentially Contaminative Uses identified from 1:10,000 scale Mapping	
1.2 Additional Information – Historical Tank Database	
1.3 Additional Information – Historical Energy Features Database	
1.4 Additional Information – Historical Petrol and Fuel Site Database	
1.5 Additional Information – Historical Garage and Motor Vehicle Repair Database	17
1.6 Historical military sites	
1.7 Potentially Infilled Land	17
2. Environmental Permits, Incidents and Registers Map	22
2. Environmental Permits, Incidents and Registers	23
2.1 Industrial Sites Holding Licences and/or Authorisations	23
2.1.1 Records of historic IPC Authorisations within 500m of the study site:	23
2.1.2 Records of Part A(1) and IPPC Authorised Activities within 500m of the study site:	
2.1.3 Records of Red List Discharge Consents (potentially harmful discharges to controlled waters) within 500m	
study site:	
2.1.4 Records of List 1 Dangerous Substances Inventory Sites within 500m of the study site:	
2.1.6 Records of Part A(2) and Part B Activities and Enforcements within 500m of the study site:	
2.1.7 Records of Category 3 or 4 Radioactive Substances Authorisations:	
2.1.8 Records of Licensed Discharge Consents within 500m of the study site:	
2.1.9 Records of Water Industry Referrals (potentially harmful discharges to the public sewer) within 500m	of the
study site:	
2.1.10 Records of Planning Hazardous Substance Consents and Enforcements within 500m of the study site:	
2.2 Dangerous or Hazardous Sites	
2.3 Environment Agency/Natural Resources Wales Recorded Pollution Incidents	
2.3.2 Records of National Incidents Recording System, List 2 within 500m of the study site:	
2.4 Sites Determined as Contaminated Land under Part 2A EPA 1990	
3. Landfill and Other Waste Sites Map	29
3. Landfill and Other Waste Sites	30
3.1 Landfill Sites	
3.1.1 Records from Environment Agency/Natural Resources Wales landfill data within 1000m of the study site: .	
3.1.2 Records of Environment Agency/Natural Resources Wales historic landfill sites within 1500m of the stud	
3.1.3 Records of BGS/DoE non-operational landfill sites within 1500m of the study site:	
3.1.4 Records of Landfills from Local Authority and Historical Mapping Records within 1500m of the study site:	
3.2 Other Waste Sites	
3.2.1 Records of waste treatment, transfer or disposal sites within 500m of the study site:	
3.2.2 Records of Environment Agency/Natural Resources Wales licensed waste sites within 1500m of the stud	,
4. Current Land Use Map	33
4. Current Land Uses	34
4.1 Current Industrial Data	
4.2 Petrol and Fuel Sites	
4.3 National Grid High Voltage Underground Electricity Transmission Cables	
4.4 National Grid High Pressure Gas Transmission Pipelines	

Report Reference: GS-5746911

5. Geology	36
5.1 Artificial Ground and Made Ground	36
5.2 Superficial Ground and Drift Geology	36
5.3 Bedrock and Solid Geology	36
6 Hydrogeology and Hydrology	37
6a. Aquifer Within Superficial Geology	37
6b. Aquifer Within Bedrock Geology and Abstraction Licences	38
6c. Hydrogeology – Source Protection Zones and Potable Water Abstraction Licences	39
6d. Hydrogeology – Source Protection Zones within confined aquifer	40
6e. Hydrology – Watercourse Network and River Quality	41
6.Hydrogeology and Hydrology	42
6.1 Aguifer within Superficial Deposits	42
6.2 Aguifer within Bedrock Deposits	
6.3 Groundwater Abstraction Licences	
6.4 Surface Water Abstraction Licences	43
6.5 Potable Water Abstraction Licences	44
6.6 Source Protection Zones	44
6.7 Source Protection Zones within Confined Aquifer	
6.8 Groundwater Vulnerability and Soil Leaching Potential	
6.9 River Quality	
6.9.1 Biological Quality:	
6.9.2 Chemical Quality:	
6.10 Ordnance Survey MasterMap Water Network	
7a. Environment Agency/Natural Resources Wales Flood Map for Planning (from rivers a	nd the sea). 47
7b. Environment Agency/Natural Resources Wales Risk of Flooding from Rivers and the Se	• •
7b. Environment Agency/Natural Resources Wales Risk of Flooding from Rivers and the Se	a (RoFRaS)
Map	ea (RoFRaS) 48
Map 7 Flooding	ea (RoFRaS) 48 49
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 49 49
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 49 49
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 49 49 49
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 49 49 49
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 49 49 49 49
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 49 49 49 49
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 49 49 49 49 49
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 49 49 49 49 49
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 494949494950
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 49494949505050
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 494949495050 51 52
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 49494950505050
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 494949505050505252
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 4949495050525252
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 49494949505050525252
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 494949505050505252525253
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 4949495050525252525252
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 494949505052525252525252
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 49
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 49494950505052525252525255
Map 7 Flooding 7.1 River and Coastal Zone 2 Flooding	ea (RoFRaS) 48 49494950505252525252525555

9. Natural Hazards Findings 10. Mining 10.3 Brine Affected Areas63 Contact Details 64 Standard Terms and Conditions 66

Overview of Findings

For further details on each dataset, please refer to each individual section in the main report as listed. Where the database has been searched a numerical result will be recorded. Where the database has not been searched '-' will be recorded.

Section 1: Historical Industrial Sites	On-site	0-50	51-250	251-500
1.1 Potentially Contaminative Uses identified from 1:10,000 scale mapping	8	1	84	62
1,2 Additional Information – Historical Tank Database	1	2	2	5
1.3 Additional Information – Historical Energy Features Database	2	4	4	1
1.4 Additional Information – Historical Petrol and Fuel Site Database	0	0	0	0
1.5 Additional Information – Historical Garage and Motor Vehicle Repair Database	0	0	3	0
1.6 Historical military sites	1	0	0	0
1.7 Potentially Infilled Land	5	5	79	55
Section 2: Environmental Permits, Incidents and Registers	On-site	0-50m	51-250	251-500
2.1 Industrial Sites Holding Environmental Permits and/or Authorisations				
2.1.1 Records of historic IPC Authorisations	0	0	0	0
2.1.2 Records of Part A(1) and IPPC Authorised Activities	0	0	0	0
2.1.3 Records of Red List Discharge Consents	0	0	0	0
2.1.4 Records of List 1 Dangerous Substances Inventory sites	0	0	0	0
2.1.5 Records of List 2 Dangerous Substances Inventory sites	0	0	0	0
2.1.6 Records of Part A(2) and Part B Activities and Enforcements	0	0	0	3
2.1.7 Records of Category 3 or 4 Radioactive Substances Authorisations	5	0	0	0
2.1.8 Records of Licensed Discharge Consents	1	1	3	4
2.1.9 Records of Water Industry Referrals	0	0	0	0
2.1.10 Records of Planning Hazardous Substance Consents and Enforcements within 500m of the study site	0	0	0	0
2.2 Records of COMAH and NIHHS sites	0	0	0	0
2.3 Environment Agency/Natural Resources Wales Recorded Pollution Incidents				
2.3.1 National Incidents Recording System, List 2	0	1	5	3
2.3.2 National Incidents Recording System, List 1	0	0	0	0
2.4 Sites Determined as Contaminated Land under Part 2A EPA 1990	0	0	0	0

Report Reference: GS-5746911

				LOCATION INTELLIGENCE		
Section 3: Landfill and Other Waste Sites	On-site	0-50m	51-250	251-500	501-1000	1000- 1500
3.1 Landfill Sites						
3.1.1 Environment Agency/Natural Resources Wales Registered Landfill Sites	0	0	0	0	0	Not searched
3.1.2 Environment Agency/Natural Resources Wales Historic Landfill Sites	0	0	0	0	0	1
3.1.3 BGS/DoE Landfill Site Survey	0	0	0	0	0	0
3.1.4 Records of Landfills in Local Authority and Historical Mapping Records	0	0	0	0	0	0
3.2 Landfill and Other Waste Sites Findings						
3.2.1 Operational and Non-Operational Waste Treatment, Transfer and Disposal Sites	0	0	0	0	Not searched	Not searched
3.2.2 Environment Agency/Natural Resources Wales Licensed Waste Sites	0	0	0	6	0	0
Section 4: Current Land Use	On-site	е	0-50m	51-25	0 2	51-500
4.1 Current Industrial Sites Data	6		2	7	No	t searched
4.2 Records of Petrol and Fuel Sites	0		0	0		0
4.3 National Grid Underground Electricity Cables	0		0	0		0
4.4 National Grid Gas Transmission Pipelines	0		0	1	+	1
Section 5: Geology 5.1 Records of Artificial Ground and Made Ground present beneath						
5.1 Records of Artificial Ground and Made Ground present beneath the study site				dentified		
5.1 Records of Artificial Ground and Made Ground present beneath				dentified		
5.1 Records of Artificial Ground and Made Ground present beneath the study site 5.2 Records of Superficial Ground and Drift Geology present						
5.1 Records of Artificial Ground and Made Ground present beneath the study site 5.2 Records of Superficial Ground and Drift Geology present beneath the study site 5.3 For records of Bedrock and Solid Geology beneath the study			lden			
5.1 Records of Artificial Ground and Made Ground present beneath the study site 5.2 Records of Superficial Ground and Drift Geology present beneath the study site 5.3 For records of Bedrock and Solid Geology beneath the study site see the detailed findings section.			Iden 0-5	tified		
5.1 Records of Artificial Ground and Made Ground present beneath the study site 5.2 Records of Superficial Ground and Drift Geology present beneath the study site 5.3 For records of Bedrock and Solid Geology beneath the study site see the detailed findings section. Section 6: Hydrogeology and Hydrology 6.1 Records of Strata Classification in the Superficial Geology			O-5	tified		
5.1 Records of Artificial Ground and Made Ground present beneath the study site 5.2 Records of Superficial Ground and Drift Geology present beneath the study site 5.3 For records of Bedrock and Solid Geology beneath the study site see the detailed findings section. Section 6: Hydrogeology and Hydrology 6.1 Records of Strata Classification in the Superficial Geology within 500m of the study site 6.2 Records of Strata Classification in the Bedrock Geology within	On-site	0-50m	O-5	tified 00m tified	501-1000	1000- 2000
5.1 Records of Artificial Ground and Made Ground present beneath the study site 5.2 Records of Superficial Ground and Drift Geology present beneath the study site 5.3 For records of Bedrock and Solid Geology beneath the study site see the detailed findings section. Section 6: Hydrogeology and Hydrology 6.1 Records of Strata Classification in the Superficial Geology within 500m of the study site 6.2 Records of Strata Classification in the Bedrock Geology within	On-site 0	0-50m 0	O-5 Iden	tified 00m tified	501-1000	
5.1 Records of Artificial Ground and Made Ground present beneath the study site 5.2 Records of Superficial Ground and Drift Geology present beneath the study site 5.3 For records of Bedrock and Solid Geology beneath the study site see the detailed findings section. Section 6: Hydrogeology and Hydrology 6.1 Records of Strata Classification in the Superficial Geology within 500m of the study site 6.2 Records of Strata Classification in the Bedrock Geology within 500m of the study site			O-5-Iden	tified 00m tified tified 251-500		2000
5.1 Records of Artificial Ground and Made Ground present beneath the study site 5.2 Records of Superficial Ground and Drift Geology present beneath the study site 5.3 For records of Bedrock and Solid Geology beneath the study site see the detailed findings section. Section 6: Hydrogeology and Hydrology 6.1 Records of Strata Classification in the Superficial Geology within 500m of the study site 6.2 Records of Strata Classification in the Bedrock Geology within 500m of the study site 6.3 Groundwater Abstraction Licences (within 2000m of the study site) 6.4 Surface Water Abstraction Licences (within 2000m of the study	0	0	0-5- Iden Iden 51-250	tified 00m tified tified 251-500	0	2000
5.1 Records of Artificial Ground and Made Ground present beneath the study site 5.2 Records of Superficial Ground and Drift Geology present beneath the study site 5.3 For records of Bedrock and Solid Geology beneath the study site see the detailed findings section. Section 6: Hydrogeology and Hydrology 6.1 Records of Strata Classification in the Superficial Geology within 500m of the study site 6.2 Records of Strata Classification in the Bedrock Geology within 500m of the study site 6.3 Groundwater Abstraction Licences (within 2000m of the study site) 6.4 Surface Water Abstraction Licences (within 2000m of the study site) 6.5 Potable Water Abstraction Licences (within 2000m of the study	0	0	0-5/ Iden Iden 51-250 0	tified 00m tified 251-500 0	0	2000 2 2 1
5.1 Records of Artificial Ground and Made Ground present beneath the study site 5.2 Records of Superficial Ground and Drift Geology present beneath the study site 5.3 For records of Bedrock and Solid Geology beneath the study site see the detailed findings section. Section 6: Hydrogeology and Hydrology 6.1 Records of Strata Classification in the Superficial Geology within 500m of the study site 6.2 Records of Strata Classification in the Bedrock Geology within 500m of the study site 6.3 Groundwater Abstraction Licences (within 2000m of the study site) 6.4 Surface Water Abstraction Licences (within 2000m of the study site) 6.5 Potable Water Abstraction Licences (within 2000m of the study site)	0 0	0 0	0-5-1 Iden Iden 51-250 0 0	tified 00m tified tified 251-500 0 0	0 0	2000 2 2 1 Not searche

Section 6: Hydrogeology and Hydrology	0-500m					
	On-site	0-50m	51-250	251-500	501-1000	1000- 1500
6.9 Environment Agency/Natural Resources Wales information on river quality within 1500m of the study site	No	No	No	No	No	No
6.10 Ordnance Survey MasterMap Water Network entries within 500m of the site	0	0	0	4	Not searched	Not searched
6.11 Surface water features within 250m of the study site	No	No	No	Not searched	Not searched	Not searched
Section 7: Flooding						
7.1 Enviroment Agency Zone 2 floodplains within 250m of the study site			None io	dentified		
7.2 Environment Agency/Natural Resources Wales Zone 3 floodplains within 250m of the study site			None ic	dentified		
7.3 Risk of flooding from Rivers and the Sea (RoFRaS) rating for the study site			Very	/ Low		
7.4 Flood Defences within 250m of the study site			None ic	dentified		
7.5 Areas benefiting from Flood Defences within 250m of the study site			None ic	dentified		
7.6 Areas used for Flood Storage within 250m of the study site			None ic	dentified		
7.7 Maximum BGS Groundwater Flooding susceptibility within 50m of the study site			Limited	potential		
7.8 BGS confidence rating for the Groundwater Flooding susceptibility areas			Н	igh		
Section 8: Designated Environmentally Sensitive Sites	On-site	0-50m	51-250	251-500	501-1000	1000-
8.1 Records of Sites of Special Scientific Interest (SSSI)	0	0	0	0	0	0
8.2 Records of National Nature Reserves (NNR)	0	0	0	0	0	0
8.3 Records of Special Areas of Conservation (SAC)	0	0	0	0	0	0
8.4 Records of Special Protection Areas (SPA)	0	0	0	0	0	0
8.5 Records of Ramsar sites	0	0	0	0	0	0
8.6 Records of Ancient Woodlands	18	3	10	2	11	29
8.7 Records of Local Nature Reserves (LNR)	0	0	0	0	0	0
8.8 Records of World Heritage Sites	0	0	0	0	0	0
8.9 Records of Environmentally Sensitive Areas	0	0	0	0	0	0

Section 8: Designated Environmentally Sensitive Sites	On-site	0-50m	51-250	251-500	501-1000	1000- 2000
8.10 Records of Areas of Outstanding Natural Beauty (AONB)	3	0	1	0	1	0
8.11 Records of National Parks	0	0	0	0	0	0
8.12 Records of Nitrate Sensitive Areas	0	0	0	0	0	0
8.13 Records of Nitrate Vulnerable Zones	0	0	0	0	0	0
8.14 Records of Green Belt land	3	0	1	0	0	0

Section 9: Natural Hazards

9.1 Maximum risk of natural ground subsidence	Moderate
9.1.1 Maximum Shrink-Swell hazard rating identified on the study site	Low
9.1.2 Maximum Landslides hazard rating identified on the study site	Moderate
9.1.3 Maximum Soluble Rocks hazard rating identified on the study site	Moderate
9.1.4 Maximum Compressible Ground hazard rating identified on the study site	Negligible
9.1.5 Maximum Collapsible Rocks hazard rating identified on the study site	Very Low
9.1.6 Maximum Running Sand hazard rating identified on the study site	Negligible
00.0	

9.2 Radon

9.2.1 Is the property in a Radon Affected Area as defined by the Health Protection Agency (HPA) and if so what percentage of homes are above the Action Level?

9.2.2 Is the property in an area where Radon Protection are required for new properties or extensions to existing ones as described in publication BR211 by the Building Research Establishment?

The site is not in a Radon Affected Area, as less than 1% of properties are above the Action Level.

No radon protective measures are necessary.

Section 10: Mining

10.1 Coal mining areas within 75m of the study site	None identified
10.2 Non-Coal Mining areas within 50m of the study site boundary	Identified
10.3 Brine affected areas within 75m of the study site	None identified

Report Reference: GS-5746911

Using this report

The following report is designed by Environmental Consultants for Environmental Professionals bringing together the most up-to-date market leading environmental data. This report is provided under and subject to the Terms & Conditions agreed between Groundsure and the Client. The document contains the following sections:

1. Historical Industrial Sites

Provides information on past land uses that may pose a risk to the study site in terms of potential contamination from activities or processes. Potentially Infilled Land features are also included. This search is conducted using radii of up to 500m.

2. Environmental Permits, Incidents and Registers

Provides information on Regulated Industrial Activities and Pollution Incidents as recorded by Regulatory Authorities, and sites determined as Contaminated Land. This search is conducted using radii up to 500m.

3. Landfills and Other Waste Sites

Provides information on landfills and other waste sites that may pose a risk to the study site. This search is conducted using radii up to 1500m.

4. Current Land Uses

Provides information on current land uses that may pose a risk to the study site in terms of potential contamination from activities or processes. These searches are conducted using radii of up to 500m. This includes information on potentially contaminative industrial sites, petrol stations and fuel sites as well as high pressure gas pipelines and underground electricity transmission lines.

5. Geology

Provides information on artificial and superficial deposits and bedrock beneath the study site.

6. Hydrogeology and Hydrology

Provides information on productive strata within the bedrock and superficial geological layers, abstraction licences, Source Protection Zones (SPZs) and river quality. These searches are conducted using radii of up to 2000m.

7. Flooding

Provides information on river and coastal flooding, flood defences, flood storage areas and groundwater flood areas. This search is conducted using radii of up to 250m.

8. Designated Environmentally Sensitive Sites

Provides information on the Sites of Special Scientific Interest (SSSI), National Nature Reserves (NNR), Special Areas of Conservation (SAC), Special Protection Areas (SPA), Ramsar sites, Local Nature Reserves (LNR), Areas of Outstanding Natural Beauty (AONB), National Parks (NP), Environmentally Sensitive Areas, Nitrate Sensitive Areas, Nitrate Vulnerable Zones and World Heritage Sites and Scheduled Ancient Woodland. These searches are conducted using radii of up to 2000m.

9. Natural Hazards

Provides information on a range of natural hazards that may pose a risk to the study site. These factors include natural ground subsidence and radon..

10. Mining

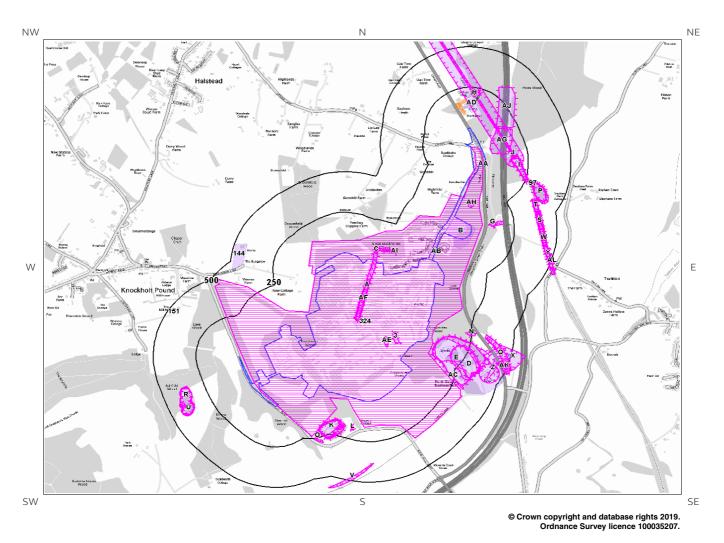
Provides information on areas of coal and non-coal mining and brine affected areas.

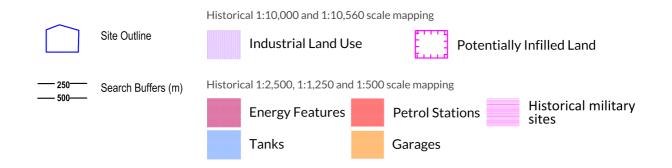
11. Contacts

This section of the report provides contact points for statutory bodies and data providers that may be able to provide further information on issues raised within this report. Alternatively, Groundsure provide a free Technical Helpline (08444 159000) for further information and guidance.

Note: Maps

Only certain features are placed on the maps within the report. All features represented on maps found within this search are given an identification number. This number identifies the feature on the mapping and correlates it to the additional information provided below. This identification number precedes all other information and takes the following format -Id: 1, Id: 2, etc. Where numerous features on the same map are in such close proximity that the numbers would obscure each other a letter identifier is used instead to represent the features. (e.g. Three features which overlap may be given the identifier "A" on the map and would be identified separately as features 1A, 3A, 10A on the data tables provided).


Where a feature is reported in the data tables to a distance greater than the map area, it is noted in the data table as "Not Shown".


All distances given in this report are in Metres (m). Directions are given as compass headings such as N: North, E: East, NE: North East from the nearest point of the study site boundary.

Report Reference: GS-5746911

1. Historical Land Use

Report Reference: GS-5746911

1. Historical Industrial Sites

1.1 Potentially Contaminative Uses identified from 1:10,000 scale Mapping

The systematic analysis of data extracted from standard 1:10,560 and 1:10,000 scale historical maps provides the following information:

Records of sites with a potentially contaminative past land use within 500m of the search boundary: 155

ID	Distance [m]	Direction	Use	Date
1B	0	On Site	Nursery	1973
2AE	0	On Site	Unspecified Heap	1981
3	0	On Site	Unspecified Heap	1981
4AF	0	On Site	Unspecified Heap	1981
5A	0	On Site	Unspecified Heap	1907
6A	0	On Site	Unspecified Heap	1961
7B	0	On Site	Nursery	1968
8AA	0	On Site	Unspecified Tank	1907
9AG	47	Е	Cuttings	1988
10C	52	N	Unspecified Heap	1907
11C	52	N	Unspecified Heap	1932
12C	52	N	Unspecified Heap	1940
13C	52	N	Unspecified Heap	1895
14E	54	SE	Unspecified Works	1961
15D	56	SE	Unspecified Works	1968
16D	56	SE	Unspecified Works	1973
17E	56	SE	Unspecified Quarry	1973
18E	56	SE	Unspecified Quarry	1968
19E	62	SE	Unspecified Works	1983
20E	62	SE	Unspecified Works	1987
21E	62	SE	Unspecified Quarry	1983
22E	62	SE	Unspecified Quarry	1987
23C	66	N	Unspecified Heap	1940
24C	66	N	Unspecified Heap	1932
25C	66	N	Unspecified Heap	1907
26E	68	SE	Unspecified Quarry	1961
27F	72	NE	Tunnel	1961
28F	72	NE	Tunnel	1967
29F	72	NE	Tunnel	1988
30E	74	SE	Lime Works	1936
31AI	81	NE	Unspecified Heap	1907
32AD	94	N	Unspecified Depot	1988
33E	107	SE	Lime Works	1907
34G	108	E	Unspecified Pit	1973

Report Reference: GS-5746911

			LOCA	TION INTELLIGENCE
35G	108	E	Unspecified Pit	1983
36G	108	Е	Unspecified Pit	1987
37G	108	Е	Unspecified Pit	1968
38G	108	Е	Unspecified Pit	1961
39G	111	Е	Unspecified Pit	1938
40G	111	Е	Unspecified Pit	1938
41G	112	E	Unspecified Pit	1907
42G	112	E	Old Chalk Pit	1895
43G	112	E	Unspecified Quarry	1869
44G	112	E	Unspecified Pit	1932
45G	112	E	Unspecified Pit	1940
46H	126	NE	Tunnel	1938
47H	127	NE	Tunnel	1907
48H	127	NE	Tunnel	1932
49H	127	NE	Tunnel	1895
50H	127	NE	Tunnel	1940
51H	127	NE	Tunnel	1869
52E	128	SE	Railway Sidings	1961
53AJ	138	NE	Cuttings	1988
54E	141	SE	Railway Sidings	1936
55G	146	E	Cuttings	1987
561	147	E	Cuttings	1988
571	147	E	Cuttings	1961
581	147	E	Cuttings	1967
591	148	E	Cuttings	1938
60K	148	S	Unspecified Old Quarry	1895
611	149	Е	Cuttings	1895
621	149	Е	Cuttings	1907
631	149	Е	Cuttings	1936
64J	152	E	Tunnel	1938
65J	152	E	Tunnel	1907
66J	152	E	Tunnel	1936
671	153	Е	Cuttings	1868
68K	154	S	Unspecified Pit	1961
69K	154	S	Unspecified Pit	1981
70K	156	S	Unspecified Old Quarry	1907
71K	158	S	Unspecified Pit	1936
72K	159	S	Unspecified Quarry	1869
73E	163	SE	Railway Sidings	1936
74D	164	SE	Lime Works	1895
75D	164	SE	Unspecified Quarry	1895
76D	166	SE	Unspecified Quarry	1869
77L	167	S	Unspecified Ground Workings	1907
78L	168	S	Unspecified Ground Workings	1869

			LOC	ATION INTELLIGENCE
79E	175	SE	Kilns	1907
80M	192	N	Unspecified Heap	1932
81M	193	N	Unspecified Heap	1907
82M	193	N	Unspecified Heap	1938
83M	193	N	Unspecified Heap	1938
84M	194	N	Unspecified Pit	1869
85M	194	N	Unspecified Heap	1940
86M	194	N	Unspecified Ground Workings	1961
87M	195	N	Unspecified Heaps	1895
88K	210	SE	Unspecified Tank	1981
89E	215	SE	Lime Kilns	1869
90N	225	E	Unspecified Heap	1983
91N	225	E	Unspecified Heap	1987
92N	225	E	Unspecified Heap	1973
930	237	S	Unspecified Pit	1895
940	253	S	Unspecified Pit	1869
95P	274	E	Unspecified Heap	1868
96P	283	SE	Railway Building	1936
97	284	E	Electricity Substation	1988
98P	302	E	Unspecified Heap	1961
99P	302	E	Unspecified Heap	1988
100P	302	E	Unspecified Heap	1967
101P	306	E	Unspecified Heap	1907
102P	306	E	Unspecified Heap	1895
103P	306	E	Unspecified Heap	1936
104P	307	E	Unspecified Heap	1938
105P	307	E	Unspecified Heap	1938
106Q	328	E	Cuttings	1936
107Q	328	E	Cuttings	1895
108Q	328	E	Cuttings	1869
109Q	333	E	Cuttings	1907
110R	335	W	Unspecified Pit	1961
111R	335	W	Unspecified Pit	1981
112R	336	W	Unspecified Ground Workings	1936
113R	336	W	Unspecified Ground Workings	1869
114R	336	W	Unspecified Ground Workings	1895
115R	337	W	Unspecified Ground Workings	1907
116Q	341	Е	Cuttings	1961
117S	342	SE	Cuttings	1895
1185	342	SE	Cuttings	1936
1195	342	SE	Cuttings	1907
120S	346	SE	Cuttings	1938
			-	

			LC	OCATION INTELLIGENCE
121Q	349	E	Cuttings	1983
122Q	349	Е	Cuttings	1973
123Q	349	E	Cuttings	1987
124T	351	SE	Cuttings	1973
125T	351	SE	Cuttings	1961
126T	351	SE	Cuttings	1987
127T	351	SE	Cuttings	1968
128T	351	SE	Cuttings	1983
129U	352	SW	Unspecified Heap	1981
130U	352	SW	Unspecified Heap	1961
131T	353	SE	Cuttings	1868
132V	380	S	Unspecified Ground Workings	1961
133V	380	S	Unspecified Ground Workings	1981
134W	382	E	Cuttings	1961
135W	387	E	Cuttings	1868
136S	390	E	Cuttings	1973
137S	390	Е	Cuttings	1987
138S	390	Е	Cuttings	1983
1395	390	Е	Cuttings	1968
140Q	407	Е	Cuttings	1968
141Z	416	Е	Unspecified Ground Workings	1968
142X	417	Е	Burial Ground	1973
143X	417	Е	Burial Ground	1968
144	423	W	Unspecified Works	1981
145Y	435	Е	Cuttings	1895
146Y	436	Е	Cuttings	1907
147Y	436	Е	Cuttings	1938
148Y	436	Е	Cuttings	1948
149Z	449	SE	Unspecified Tank	1973
150AK	454	E	Unspecified Quarry	1968
151	458	NW	Corn Windmill	1869
152X	475	E	Unspecified Tank	1987
153X	475	E	Unspecified Tank	1983
154X	475	E	Unspecified Tank	1973
155AL	499	E	Brick Kiln	1868

1.2 Additional Information - Historical Tank Database

The systematic analysis of data extracted from High Detailed 1:1,250 and 1:2,500 scale historical maps provides the following information.

Report Reference: GS-5746911

Records of historical tanks within 500m of the search boundary:

ID	Distance (m)	Direction	Use	Date
156AA	0	On Site	Unspecified Tank	1909
157AB	3	E	Unspecified Tank	1961
158AB	3	E	Unspecified Tank	1981
159L	171	S Tank or Trough		1869
1600	248	S Tank or Trough		1869
161Z	456	SE Unspecified Tank		1968
162X	484	E	Unspecified Tank	1988
163X	484	E Unspecified Tank		1989
164X	487	E Unspecified Tank 1		1997
165X	488	E Unspecified Tank 1981		1981

1.3 Additional Information - Historical Energy Features Database

The systematic analysis of data extracted from High Detailed 1:1,250 and 1:2,500 scale historical maps provides the following information.

Records of historical energy features within 500m of the search boundary:

11

ID	Distance (m)	Direction	Use	Date
166AA	0	On Site	Electricity Substation	1984
167AA	0	On Site	Electricity Substation	1997
168AB	11	W	Electricity Substation	1981
169AB	12	W	Electricity Substation	1997
170AB	13	W	Electricity Substation	1988
171AB	13	W	Electricity Substation	1989
172AC	238	E	Electricity Substation	1988
173AC	238	E	Electricity Substation	1989
174AC	239	E	Electricity Substation	1968
175AC	240	E Electricity Substation		1992
176P	286	SE	Electricity Substation	1997

1.4 Additional Information - Historical Petrol and Fuel Site Database

The systematic analysis of data extracted from High Detailed 1:1,250 and 1:2,500 scale historical maps provides the following information.

Records of historical petrol stations and fuel sites within 500m of the search boundary:

0

Database searched and no data found.

Report Reference: GS-5746911

1.5 Additional Information - Historical Garage and Motor Vehicle Repair Database

The systematic analysis of data extracted from High Detailed 1:1,250 and 1:2,500 scale historical maps provides the following information.

Records of historical garage and motor vehicle repair sites within 500m of the search boundary:

3

ID	Distance (m)	Direction	Use	Date
177AD	86	N	Garage	1961
178AD	138	NW	Garage	1997
179AD	146	NW	Garage	1984

1.6 Historical military sites

Certain military installations were not noted on historic mapping for security reasons. Whilst not all military land is necessarily of concern, Groundsure has researched and digitised a number of Ordnance Factories and other military industrial features (e.g. Ordnance Depots, Munitions Testing Grounds) which may be of contaminative concern. This research was drawn from a number of different sources, and should not be regarded as a definitive or exhaustive database of potentially contaminative military installations. The boundaries of sites within this database have been estimated from the best evidence available to Groundsure at the time of compilation.

Records of historical military sites within 500m of the search boundary:

1

ID	Distance (m)	Direction	Site Name	Date of operation	Activities
32 4	0	On Site	Fort Halstead - Defence Science and Technology Laboratory	1915 – present day	Atomic bomb trigger mechanism developments between 1940s and 1950s, nuclear weapons development - -

1.7 Potentially Infilled Land

Records of Potentially Infilled Features from 1:10,000 scale mapping within 500m of the study site: 144

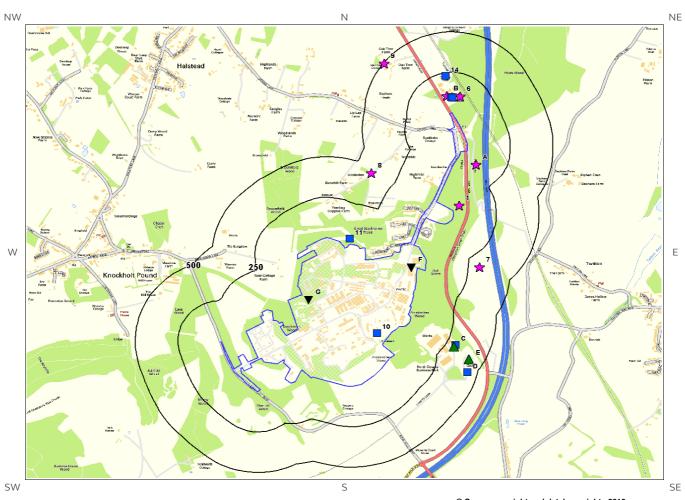
The following Historical Potentially Infilled Features derived from the Historical Mapping information is provided by Groundsure:

ID	Distance(m)	Direction	Use	Date
180AE	0	On Site	Unspecified Heap	1981
181AE	181AE 0 On Site		Unspecified Heap	1981
182AF	0	On Site	Unspecified Heap	1981
183A	0	On Site	Unspecified Heap	1907
184A	0	On Site	Unspecified Heap	1961
185AG	47	E	Cuttings	1988
186AH	47	SE	Pond	1968
187AH	47	SE	Pond	1983

Report Reference: GS-5746911

			LC	OCATION INTELLIGENCE
188AH	47	SE	Pond	1973
189AH	47	SE	Pond	1987
190C	52	N	Unspecified Heap	1932
191C	52	N	Unspecified Heap 1907	
192C	52	N	Unspecified Heap	1940
193AI	52	N	Unspecified Heap	1895
194E	56	SE	Unspecified Quarry	1973
195E	56	SE	Unspecified Quarry	1968
196E	62	SE	Unspecified Quarry	1983
197E	62	SE	Unspecified Quarry	1987
198AI	66	N	Unspecified Heap	1932
199AI	66	N	Unspecified Heap	1940
200AI	66	N	Unspecified Heap	1907
201E	68	SE	Unspecified Quarry	1961
202F	72	NE	Tunnel	1988
203F	72	NE	Tunnel	1961
204F	72	NE	Tunnel	1967
205AI	81	NE	Unspecified Heap	1907
206G	108	E	Unspecified Pit	1987
	108	E	Unspecified Pit	1968
208G	108	E	Unspecified Pit	1973
209G	108	E	Unspecified Pit	1983
210G	108	E	Unspecified Pit	1961
211G	111	E	Unspecified Pit	1938
212G	111	E	Unspecified Pit	1938
213G	112	E	Unspecified Pit	1907
214G	112	E	Unspecified Pit	1932
215G	112	E	Unspecified Quarry	1869
216G	112	E	Unspecified Pit	1940
217G	112	E	Old Chalk Pit	1895
218H	126	NE	Tunnel	1938
219H	127	NE	Tunnel	1932
220H	127	NE	Tunnel	1907
221H	127	NE	Tunnel	1895
222H	127	NE	Tunnel	1940
223H	127	NE	Tunnel	1869
	138	NE	Cuttings	1988
225G	146	E	Cuttings	1987
2261	147	Е	Cuttings	1988
2271	147	E	Cuttings	1961
2281	147	E	Cuttings	1967
2291	148	E	Cuttings	1938
230K	148	S	Unspecified Old Quarry	1895
2311	149	E	Cuttings	1907
2321	149	E	Cuttings	1936
2331	149	E	Cuttings	1895

			LOCA	ATION INTELLIGENCE
234J	152	Е	Tunnel	1938
235J	152	E	Tunnel	1907
236J	152	E	Tunnel	1936
2371	153	Е	Cuttings	1868
238K	154	S	Unspecified Pit	1981
239K	154	S	Unspecified Pit	1961
240K	156	S	Unspecified Old Quarry	1907
241K	158	S	Unspecified Pit	1936
242K	159	S	Unspecified Quarry	1869
243E	164	SE	Unspecified Quarry	1895
244E	166	SE	Unspecified Quarry	1869
245L	167	S	Unspecified Ground Workings	1907
246L	168	S	Unspecified Ground Workings	1869
247K	175	S	Pond	1961
248M	192	N	Unspecified Heap	1932
249M	193	N	Unspecified Heap	1907
250M	193	N	Unspecified Heap	1938
251M	193	N	Unspecified Heap	1938
252M	194	N	Unspecified Pit	1869
253M	194	N	Unspecified Heap	1940
254M	194	N	Unspecified Ground Workings	1961
255M	195	N	Unspecified Heaps	1895
256M	203	N	Air Shaft	1988
257M	203	N	Air Shaft	1967
258M	205	N	Air Shaft	1869
259M	206	N	Air Shaft	1938
260M	206	N	Air Shaft	1940
261M	206	N	Air Shaft	1907
262M	206	N	Air Shaft	1932
263M	206	N	Air Shaft	1895
264M	207	N	Air Shaft	1961
265N	225	E	Unspecified Heap	1973
266N	225	E	Unspecified Heap	1987
267N	225	Е	Unspecified Heap	1983
2680	237	S	Unspecified Pit	1895
2690	253	S	Unspecified Pit	1869
270P	274	Е	Unspecified Heap	1868
271P	302	E	Unspecified Heap	1967
272P	302	E	Unspecified Heap	1961
273P	302	Е	Unspecified Heap	1988
274P	306	Е	Unspecified Heap	1895
275P	306	Е	Unspecified Heap	1936
276P	306	Е	Unspecified Heap	1907
277P	307	E	Unspecified Heap	1938


			LOC	ATION INTELLIGENCE
278P	307	E	Unspecified Heap	1938
279Q	328	Е	Cuttings	1869
280Q	328	E	Cuttings	1895
281Q	328	E	Cuttings	1936
282Q	333	E	Cuttings	1907
283R	335	W	Unspecified Pit	1961
284R	335	W	Unspecified Pit	1981
285R	336	W	Unspecified Ground Workings	1936
286R	336	W	Unspecified Ground Workings	1895
287R	336	W	Unspecified Ground Workings	1869
288R	337	W	Unspecified Ground Workings	1907
289Q	341	E	Cuttings	1961
290S	342	SE	Cuttings	1936
291S	342	SE	Cuttings	1907
292S	342	SE	Cuttings	1895
293S	346	SE	Cuttings	1938
294Q	349	Е	Cuttings	1973
295Q	349	E	Cuttings	1987
296Q	349	E	Cuttings	1983
297T	351	SE	Cuttings	1968
298T	351	SE	Cuttings	1973
299T	351	SE	Cuttings	1983
300T	351	SE	Cuttings	1987
301T	351	SE	Cuttings	1961
302U	352	SW	Unspecified Heap	1961
303U	352	SW	Unspecified Heap	1981
304T	353	SE	Cuttings	1868
305Z	368	SE	Reservoir	1907
306V	380	S	Unspecified Ground Workings	1981
307V	380	S	Unspecified Ground Workings	1961
308W	382	E	Cuttings	1961
309W	387	E	Cuttings	1868
310S	390	Е	Cuttings	1973
311S	390	Е	Cuttings	1968
312S	390	Е	Cuttings	1987
313S	390	E	Cuttings	1983
314X	407	E	Cuttings	1968
315Z	416	Е	Unspecified Ground Workings	1968
316X	417	Е	Burial Ground	1973
317X	417	Е	Burial Ground	1968
318Y	435	E	Cuttings	1895

319Y	436	Е	Cuttings	1907
320Y	436	Е	Cuttings	1938
321Y	436	E	Cuttings	1948
322AK	454	E	Unspecified Quarry	1968
323AL	499	E	Brick Kiln	1868

2. Environmental Permits, Incidents and Registers Map

© Crown copyright and database rights 2019. Ordnance Survey licence 100035207.

Report Reference: GS-5746911

2. Environmental Permits, **Incidents and Registers**

2.1 Industrial Sites Holding Licences and/or Authorisations

Searches of information provided by the Environment Agency/Natural Resources Wales ar Authorities reveal the following information:	nd Local
2.1.1 Records of historic IPC Authorisations within 500m of the study site:	
	C
Database searched and no data found.	
2.1.2 Records of Part A(1) and IPPC Authorised Activities within 500m of the study site:	
	C
Database searched and no data found.	
2.1.3 Records of Red List Discharge Consents (potentially harmful discharges to controlled waters 500m of the study site:	s) within
	C
Database searched and no data found.	
2.1.4 Records of List 1 Dangerous Substances Inventory Sites within 500m of the study site:	
	(
Database searched and no data found.	
2.1.5. December of Lint 2. December of Colorton and Instrument on Citizen within 500m of the about within	
2.1.5 Records of List 2 Dangerous Substance Inventory Sites within 500m of the study site:	(
Database searched and no data found.	

Report Reference: GS-5746911

2.1.6 Records of Part A(2) and Part B Activities and Enforcements within 500m of the study site:

3

The following Part A(2) and Part B Activities are represented as points on the Environmental Permits, Incidents and Registers Map:

ID	Distance (m)	Direction	NGR	De	tails
19C	303	SE	550352 159004	Address: Lancaster Plc, Lime Pit Lane, Dunton Green, Sevenoaks, Kent, TN13 2TL Process: Respraying of Road Vehicles Status: Historical Permit Permit Type: Part B	Enforcement: No Enforcement Notified Date of Enforcement: No Enforcement Notified Comment: No Enforcement Notified
20E	419	SE	550439 158925	Address: Hanson Concrete Batching, Lower Quarry, Limepit Lane, Dunton Green, Sevenoaks, Kent, TN13 2TL Process: Use of Bulk Cement Status: Historical Permit Permit Type: Part B	Enforcement: No Enforcement Notified Date of Enforcement: No Enforcement Notified Comment: No Enforcement Notified
21E	419	SE	550439 158925	Address: Hanson Readymix Concrete, Pilgrims Way, Sevenoaks, TN13 2TL Process: Use of Bulk Cement Status: Current Permit Permit Type: Part B	Enforcement: No Enforcement Notified Date of Enforcement: No Enforcement Notified Comment: No Enforcement Notified

2.1.7 Records of Category 3 or 4 Radioactive Substances Authorisations:

5

The following RAS Licence (3 or 4) records are represented as points on the Environmental Permits, Incidents and Registers Map:

ID	Distance (m)	Directio n	NGR	Address	Operator	Туре	Permission Number	Dates	Status
27F	0	On Site	550100 159500	Ministry Of Defence, Defence Research Agency, Fort Halstead, Sevenoaks, Kent, TN14 7BP	Ministry Of Defence	Disposal Of Radioactive Waste (was Rsa60 Section 6).	BB3786	Date of Approval:25/6 /1998 Effective from:25/6/19 98 Last date of update:2015- 01-01	Supersede d By Variation
28F	0	On Site	550100 159500	Ministry Of Defence, Defence Research Agency, Fort Halstead, Sevenoaks, Kent, TN14 7BP	Ministry Of Defence	Disposal Of Radioactive Waste (was Rsa60 Section 6).	AY5701	Date of Approval:6/8/ 1997 Effective from:6/8/199 7 Last date of update:2015- 01-01	Supersede d By Variation

Report Reference: GS-5746911

ID	Distance (m)	Directio n	NGR	Address	Operator	Туре	Permission Number	Dates	Status
29F	0	On Site	550100 159500	Ministry Of Defence, Defence Research Agency, Fort Halstead, Sevenoaks, Kent, TN14 7BP	Ministry Of Defence	Disposal Of Radioactive Waste (was Rsa60 Section 6).	AM5785	Date of Approval:13/5 /1994 Effective from:10/6/19 94 Last date of update:2015- 01-01	Supersede d By Variation
30F	0	On Site	550100 159500	Ministry Of Defence, Dra Fort Halstead (rarde),fort Halstead, Sevenoaks, Kent, TN14 7BP	Ministry Of Defence	Keeping And Use Of Radioactive Materials (was Rsa60 Section 1).	AY1480	Date of Approval:21/5 /1997 Effective from:21/5/19 97 Last date of update:2015- 01-01	Effective
31G	0	On Site	549500 159300	Qinetiq Ltd, Dstl Fort Halstead, Sevenoaks, Kent, TN14 7BP	Qinetiq Ltd	Disposal Of Radioactive Waste (was Rsa60 Section 6).	CA0417	Date of Approval:13/2 /2006 Effective from:13/2/20 06 Last date of update:2015- 01-01	Effective

2.1.8 Records of Licensed Discharge Consents within 500m of the study site:

9

The following Licensed Discharge Consents records are represented as points on the Environmental Permits, Incidents and Registers Map:

ID	Distance (m)	Direction	NGR	Details			
10	0	On Site	549899 159092	Address: DSTL FORT HALSTEAD, SEVENOAKS, KENT, TN14 7BP Effluent Type: SEWAGE DISCHARGES - FINAL/TREATED EFFLUENT - NOT WATER COMPANY Permit Number: NPSWQD006490 Permit Version: 1	Receiving Water: GROUND WATERS VIA SOAKAWAY Status: NEW CONSENT (WRA 91, S88 & SCHED 10 AS AMENDED BY ENV ACT 1995) Issue date: 10/02/2009 Effective Date: 10-Feb-2009 Revocation Date: -		
11	35	N	549739 159675	Address: DEFENCE SCIENCE AND TECHNOLOGY, DEFENCE SCIENCE AND TECHNOLOGY, FORT HALSTEAD, SEVEN OAKS, KENT, TN14 7BP Effluent Type: SEWAGE DISCHARGES - FINAL/TREATED EFFLUENT - NOT WATER COMPANY Permit Number: NPSWQD006491 Permit Version: 1	Receiving Water: GROUNDWATERS VIA SOAKAWAY Status: NEW CONSENT (WRA 91, S88 & SCHED 10 AS AMENDED BY ENV ACT 1995) Issue date: 02/02/2009 Effective Date: 02-Feb-2009 Revocation Date: -		
12B	94	N	550341 160549	Address: 7 HOTEL DINER, LONDON ROAD, POLHILL, SEVENOAKS, KENT, TN14 7AA Effluent Type: SEWAGE DISCHARGES - FINAL/TREATED EFFLUENT - NOT WATER COMPANY Permit Number: EPRBP3520XW Permit Version: 1	Receiving Water: LAND VIA BOREHOLES Status: NEW ISSUED UNDER EPR 2010 Issue date: 12/05/2010 Effective Date: 11-May-2010 Revocation Date: -		

Report Reference: GS-5746911

ID	Distance (m)	Direction	NGR	Details				
13B	96	N	550333 160551	Address: 7 HOTEL DINER, LONDON ROAD, POLHILL, SEVENOAKS, KENT, TN14 7AA Effluent Type: SEWAGE DISCHARGES - FINAL/TREATED EFFLUENT - NOT WATER COMPANY Permit Number: EPRBP3520XW Permit Version: 1	Receiving Water: LAND VIA BOREHOLES Status: NEW ISSUED UNDER EPR 2010 Issue date: 12/05/2010 Effective Date: 11-May-2010 Revocation Date: -			
14	230	N	550302 160682	Address: CALCUTTA CLUB, LONDON ROAD, POLHILL, SEVENOAKS, KENT, TN14 7AA Effluent Type: SEWAGE DISCHARGES - FINAL/TREATED EFFLUENT - NOT WATER COMPANY Permit Number: EPRHP3022XW Permit Version: 1	Receiving Water: GROUNDWATER Status: REVOKED - UNSPECIFIED Issue date: 08/03/2011 Effective Date: 08-Mar-2011 Revocation Date: 30/12/2014			
15C	302	SE	550360 159020	Address: JESSUPS LIME LOWER QUARRY, JESSUPS LIME LOWER QUARRY, PILGRIMS WAY, DUNTON GREEN, SEVENOAKS KENT, TN13 2TL Effluent Type: SEWAGE DISCHARGES - FINAL/TREATED EFFLUENT - NOT WATER COMPANY Permit Number: P10011 Permit Version: 2	Receiving Water: INTO LAND Status: VARIED UNDER EPR 2010 Issue date: 21/12/2012 Effective Date: 21-Dec-2012 Revocation Date: -			
16C	302	SE	550360 159020	Address: JESSUPS LIME LOWER QUARRY, JESSUPS LIME LOWER QUARRY, PILGRIMS WAY, DUNTON GREEN, SEVENOAKS KENT, TN13 2TL Effluent Type: SEWAGE DISCHARGES - UNSPECIFIED - NOT WATER COMPANY Permit Number: P10011 Permit Version: 1	Receiving Water: INTO LAND Status: POST NRA LEGISLATION WHERE ISSUE DATE > 31-AUG-89 (HISTORIC ONLY) Issue date: 15/01/1990 Effective Date: 15-Jan-1990 Revocation Date: 20/12/2012			
17D	441	E	550430 158850	Address: PREMIX PLANT, PILGRIMS WAY, PREMIX PLANT, PILGRIMS WAY, DUNTON GREEN, SEVENOAKS, KENT Effluent Type: TRADE DISCHARGES - SITE DRAINAGE Permit Number: P04594 Permit Version: 1	Receiving Water: INTO LAND Status: POST NRA LEGISLATION WHERE ISSUE DATE > 31-AUG-89 (HISTORIC ONLY) Issue date: 31/03/1993 Effective Date: 31-Mar-1993 Revocation Date: 20/12/2012			
18D	441	Е	550430 158850	Address: PREMIX PLANT, PILGRIMS WAY, PREMIX PLANT, PILGRIMS WAY, DUNTON GREEN, SEVENOAKS, KENT Effluent Type: TRADE DISCHARGES - SITE DRAINAGE Permit Number: P04594 Permit Version: 2	Receiving Water: INTO LAND Status: VARIED UNDER EPR 2010 Issue date: 21/12/2012 Effective Date: 21-Dec-2012 Revocation Date: -			

2.1.9 Records of Water Industry Referrals (potentially harmful discharges to the public sewer) within 500m of the study site:

0

Database searched and no data found.

Report Reference: GS-5746911

2.1.10 Records of Planning Hazardous Substance Consents and Enforcements within 500m of the study site:

0

Database searched and no data found.

2.2 Dangerous or Hazardous Sites

Records of COMAH & NIHHS sites within 500m of the study site:

0

Database searched and no data found.

2.3 Environment Agency/Natural Resources Wales Recorded Pollution Incidents

2.3.1 Records of National Incidents Recording System, List 2 within 500m of the study site:

9

The following NIRS List 2 records are represented as points on the Environmental Permits, Incidents and Registers Map:

ID	ID Distance (m) Direction		NGR	Det	ails
1	43	NE	550380 159880	Incident Date: 16-Jul-2003 Incident Identification: 174202 Pollutant: Specific Waste Materials Pollutant Description: Tyres	Water Impact: Category 4 (No Impact) Land Impact: Category 3 (Minor) Air Impact: Category 4 (No Impact)
2A	99	SE	550480 160134	Incident Date: 15-Apr-2002 Incident Identification: 71881 Pollutant: General Biodegradable Materials and Wastes Pollutant Description: Other General Biodegradable Material or Waste	Water Impact: Category 3 (Minor) Land Impact: Category 3 (Minor) Air Impact: Category 3 (Minor)
3A	99	SE	550480 160134	Incident Date: 15-Apr-2002 Incident Identification: 71881 Pollutant: General Biodegradable Materials and Wastes Pollutant Description: Other General Biodegradable Material or Waste	Water Impact: Category 3 (Minor) Land Impact: Category 3 (Minor) Air Impact: Category 3 (Minor)
4B	109	N	550308 160559	Incident Date: 16-Mar-2003 Incident Identification: 143411 Pollutant: Specific Waste Materials Pollutant Description: Tyres	Water Impact: Category 4 (No Impact) Land Impact: Category 3 (Minor) Air Impact: Category 4 (No Impact)
5B	109	N	550308 160559	Incident Date: 16-Mar-2003 Incident Identification: 143411 Pollutant: Specific Waste Materials Pollutant Description: Tyres	Water Impact: Category 4 (No Impact) Land Impact: Category 3 (Minor) Air Impact: Category 4 (No Impact)
6	111	NE	550386 160556	Incident Date: 13-Dec-2002 Incident Identification: 126007 Pollutant: Specific Waste Materials Pollutant Description: Tyres	Water Impact: Category 4 (No Impact) Land Impact: Category 3 (Minor) Air Impact: Category 4 (No Impact)
7	314	E	550500 159500	Incident Date: 21-Mar-2003 Incident Identification: 144957 Pollutant: Inert Materials and Wastes Pollutant Description: Construction and	Water Impact: Category 4 (No Impact) Land Impact: Category 3 (Minor) Air Impact: Category 4 (No Impact)

Report Reference: GS-5746911

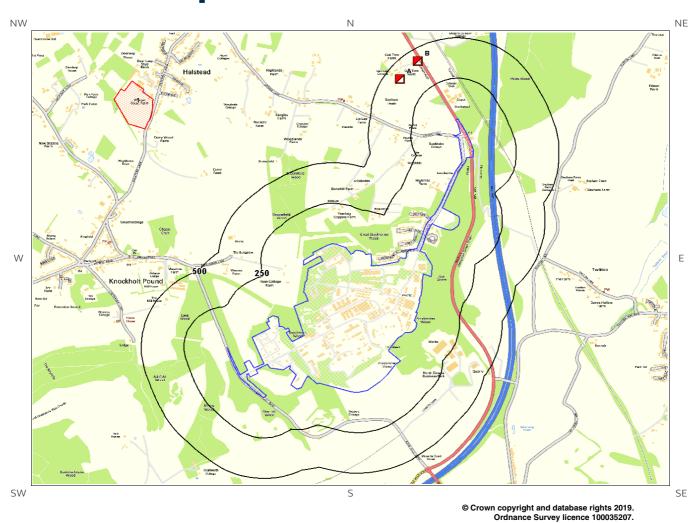
ID	Distance (m) Direction		NGR	Details		
				Demolition Materials and Wastes		
8	394	NW	549864 160082	Incident Date: 04-Oct-2001 Incident Identification: 34592 Pollutant: Specific Waste Materials Pollutant Description: Asbestos	Water Impact: Category 4 (No Impact) Land Impact: Category 3 (Minor) Air Impact: Category 4 (No Impact)	
9	496	NW	549941 160759	Incident Date: 24-Jul-2003 Incident Identification: 177589 Pollutant: Specific Waste Materials Pollutant Description: Tyres	Water Impact: Category 4 (No Impact) Land Impact: Category 3 (Minor) Air Impact: Category 4 (No Impact)	

2.3.2 Records of National Incidents Recording System, List 1 within 500m of the study site:

0

Database searched and no data found.

2.4 Sites Determined as Contaminated Land under Part 2A EPA 1990


Records of sites determined as contaminated land under Section 78R of the Environmental Protection Act 1990 are there within 500m of the study site 0

Database searched and no data found.

Report Reference: GS-5746911

3. Landfill and Other Waste Sites Map

Report Reference: GS-5746911

3. Landfill and Other Waste Sites

~				100	 	
⊣ ∶	11	2	n	111	Sit	tes

3.1.1	Records from Environme	nt Agency/Natura	l Resources	Wales landfill	data within	1000m of	the study
site.							

0

Database searched and no data found.

3.1.2 Records of Environment Agency/Natural Resources Wales historic landfill sites within 1500m of the study site:

1

The following landfill records are represented as either points or polygons on the Landfill and Other Waste Sites map:

ID	Distance (m)	Direction	NGR	Details	s
1	1232	NW		Site Address: Warren Court Farm, Knockholt Road, Halstead, Sevenoaks, Kent Waste Licence: Yes Site Reference: SE27, P/09/05, 2200/7333 Waste Type: Inert Environmental Permitting Regulations (Waste) Reference: -	Licence Issue: 01-Jan-1976 Licence Surrendered: Licence Holder Address: - Operator: - Licence Holder: J Butler First Recorded: 31-Dec-1978 Last Recorded: -

3.1.3 Records of BGS/DoE non-operational landfill sites within 1500m of the study site:

0

Database searched and no data found.

3.1.4 Records of Landfills from Local Authority and Historical Mapping Records within 1500m of the study site:

0

Database searched and no data found.

Report Reference: GS-5746911

3.2 Other Waste Sites

3.2.1 Records of waste treatment, transfer or disposal sites within 500m of the study site:

0

Database searched and no data found.

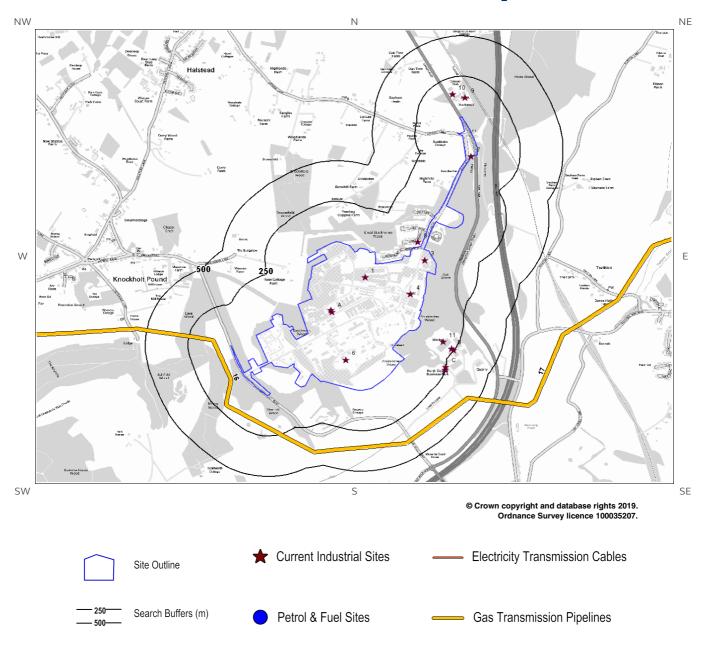
3.2.2 Records of Environment Agency/Natural Resources Wales licensed waste sites within 1500m of the study site:

6

The following waste treatment, transfer or disposal sites records are represented as points on the Landfill and Other Waste Sites map:

ID	Distance (m)	Direction	NGR	Det	tails
2A	413	NW	550000 160700	Site Address: Oak Tree Farm Yard, London Road, Polhill, Halstead, Kent, TN14 7AB Type: Household, Commercial & Industrial Waste T Stn Size: >= 25000 tonnes < 75000 tonnes Environmental Permitting Regulations (Waste) Licence Number: JBT004 EPR reference: EA/EPR/ZP3998EU/A001 Operator: J B Trading (U K) Ltd Waste Management licence No: 100421 Annual Tonnage: 74999.0	Issue Date: 28/07/2008 Effective Date: - Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Issued Site Name: J B Waste Management & B k Skips Correspondence Address: -
3A	413	NW	550000 160700	Site Address: Oak Tree Farm Yard, London Road, Polhill, Halstead, Kent, TN14 7AB Type: Household, Commercial & Industrial Waste T Stn Size: < 25000 tonnes Environmental Permitting Regulations (Waste) Licence Number: JBT004 EPR reference: - Operator: J B Trading (U K) Ltd Waste Management licence No: 100421 Annual Tonnage: 0.0	Issue Date: 7/28/2008 Effective Date: - Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Issued Site Name: J B Waste Management & B k Skips Correspondence Address: Oak Tree Farm Yard, London Road, Polhill, Halstead, Ken
4B	426	NW	550105 160811	Site Address: Oak Tree Farm, London Road, Polhill, Halstead, Kent, TN14 7AB Type: Household, Commercial & Industrial Waste T Stn Size: >= 25000 tonnes < 75000 tonnes Environmental Permitting Regulations (Waste) Licence Number: JBW001 EPR reference: EA/EPR/MB3839RR/V002 Operator: J B Waste Management, B K Skips, Recycled Crushed Materials, R C M (Halstead) L Waste Management licence No: 100421 Annual Tonnage: 75000.0	Issue Date: 28/07/2008 Effective Date: 26/02/2013 Modified: 09/10/2014 Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Modified Site Name: Polhill Waste Transfer Station Correspondence Address: -
5B	426	NW	550105 160811	Site Address: Oak Tree Farm, London Road, Polhill, Halstead, Kent, TN14 7AB Type: Household, Commercial & Industrial Waste T Stn Size: >= 25000 tonnes < 75000 tonnes Environmental Permitting Regulations (Waste) Licence Number: JBW001	Issue Date: 28/07/2008 Effective Date: 27/07/2017 Modified: 09/10/2014 Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Transferred

Report Reference: GS-5746911



ID	Distance (m)	Direction	NGR	Det	tails
				EPR reference: EA/EPR/FB3206XY/T001 Operator: B S P (Knockholt) Limited Waste Management licence No: 100421 Annual Tonnage: 75000.0	Site Name: Oak Tree Farm Correspondence Address: -
6B	426	NW	550105 160811	Site Address: Oak Tree Farm, London Road, Polhill, Halstead, Kent, TN14 7AB Type: Household, Commercial & Industrial Waste T Stn Size: >= 25000 tonnes < 75000 tonnes Environmental Permitting Regulations (Waste) Licence Number: JBW001 EPR reference: EA/EPR/FB3206XY/T001 Operator: B S P (knockholt) Limited Waste Management licence No: 100421 Annual Tonnage: 75000.0	Issue Date: 28/07/2008 Effective Date: 27/07/2017 Modified: 09/10/2014 Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Transferred Site Name: Oak Tree Farm Correspondence Address: -
7В	426	NW	550105 160811	Site Address: Oak Tree Farm, London Road, Polhill, Halstead, Kent, TN14 7AB Type: Household, Commercial & Industrial Waste T Stn Size: >= 25000 tonnes < 75000 tonnes Environmental Permitting Regulations (Waste) Licence Number: JBW001 EPR reference: EA/EPR/FB3206XY/T001 Operator: J B Waste Management, B K Skips, R C M (Halstead) Ltd, B S P (Knockholt) Ltd Waste Management licence No: 100421 Annual Tonnage: 75000.0	Issue Date: 28/07/2008 Effective Date: 27/07/2017 Modified: 09/10/2014 Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Transferred Site Name: Polhill Waste Transfer Station Correspondence Address: -

Report Reference: GS-5746911 Client Reference: C-10730-C_Fort_Halstead_PO_P028025

4. Current Land Use Map

4. Current Land Uses

4.1 Current Industrial Data

Records of potentially contaminative industrial sites within 250m of the study site:

15

The following records are represented as points on the Current Land Uses map.

ID	Distance (m)	Directio n	Company	NGR	Address	Activity	Category
1	0	On Site	Works	549773 159463	Kent, TN14	Unspecified Works Or Factories	Industrial Features
2A	0	On Site	Chimney	549578 159249	Kent, TN14	Chimneys	Industrial Features
3	0	On Site	Tank	550120 159570	Kent, TN14	Tanks (Generic)	Industrial Features
4	0	On Site	Works	550037 159359	Kent, TN13	Unspecified Works Or Factories	Industrial Features
5A	0	On Site	Chimney	549572 159260	Kent, TN14	Chimneys	Industrial Features
6	0	On Site	Works	549659 158953	Kent, TN14	Unspecified Works Or Factories	Industrial Features
7	1	Е	Electricity Sub Station	550391 160211	Kent, TN14	Electrical Features	Infrastructure and Facilities
8	27	W	Electricity Sub Station	550082 159681	Kent, TN14	Electrical Features	Infrastructure and Facilities
9	122	N	Depot	550358 160576	Kent, TN14	Container and Storage	Transport, Storage and Delivery
10	150	N	P J's Rent a Car	550284 160594	Polhill, Halstead, Sevenoaks, Kent, TN14 7AA	Vehicle Hire and Rental	Hire Services
11	167	SE	Works	550229 159065	Kent, TN13	Unspecified Works Or Factories	Industrial Features
12B	232	SE	Hanson UK	550278 159021	North Downs Business Park, Limepit Lane, Dunton Green, Sevenoaks, Kent, TN13 2TL	Concrete Products	Industrial Products
13C	245	Е	Electricity Sub Station	550242 158910	Kent, TN13	Electrical Features	Infrastructure and Facilities
14B	245	SE	Farnborough Blinds	550289 159014	Unit 7 North Downs Business Park, Limepit Lane, Dunton Green, Sevenoaks, Kent, TN13 2TL	Curtains and Blinds	Consumer Products
15C	247	Е	North Downs Business Park		Kent, TN13	Business Parks and Industrial Estates	Industrial Features

Report Reference: GS-5746911

4.2 Petrol and Fuel Sites

Records of petrol or fuel sites within 500m of the study site:

0

0

Database searched and no data found.

4.3 National Grid High Voltage Underground Electricity Transmission Cables

This dataset identifies the high voltage electricity transmission lines running between generating power plants and electricity substations. The dataset does not include the electricity distribution network (smaller, lower voltage cables distributing power from substations to the local user network). This information has been extracted from databases held by National Grid and is provided for information only with no guarantee as to its completeness or accuracy. National Grid do not offer any warranty as to the accuracy of the available data and are excluded from any liability for any such inaccuracies or errors.

Records of National Grid high voltage underground electricity transmission cables within 500m of the study site:

Database searched and no data found.

4.4 National Grid High Pressure Gas Transmission Pipelines

This dataset identifies high-pressure, large diameter pipelines which carry gas between gas terminals, power stations, compressors and storage facilities. The dataset does not include the Local Transmission System (LTS) which supplies gas directly into homes and businesses. This information has been extracted from databases held by National Grid and is provided for information only with no guarantee as to its completeness or accuracy. National Grid do not offer any warranty as to the accuracy of the available data and are excluded from any liability for any such inaccuracies or errors.

Records of National Grid high pressure gas transmission pipelines within 500m of the study site:

2

The following National Grid high pressure gas transmission pipelines records are represented as linear features on the Current Land Use map:

ID	Distanc e (m)	Direction	Deta	ils
16	76	SW	Pipe Name: FM05 - Star Hill Rd I/J to Tatsfield Pipe Number: Feeder 5 Pipeline Safety Regulations Number: - Ownership: National Grid	Maximum Operating Pressure (Bar): - Pipeline Diameter (mm): 750mm Wall Thickness (mm): -mm Year of commission: - Abandonment Status: Not Abandoned
17	388	SE	Pipe Name: FM05 - Farningham to Star Hill Rd I/J Pipe Number: Feeder 5 Pipeline Safety Regulations Number: - Ownership: National Grid	Maximum Operating Pressure (Bar): - Pipeline Diameter (mm): 750mm Wall Thickness (mm): -mm Year of commission: - Abandonment Status: Not Abandoned

Report Reference: GS-5746911

Client Reference: C-10730-C_Fort_Halstead_PO_P028025

35

5. Geology

5.1 Artificial Ground and Made Ground

Database searched and no data found.

The database has been searched on site, including a 50m buffer.

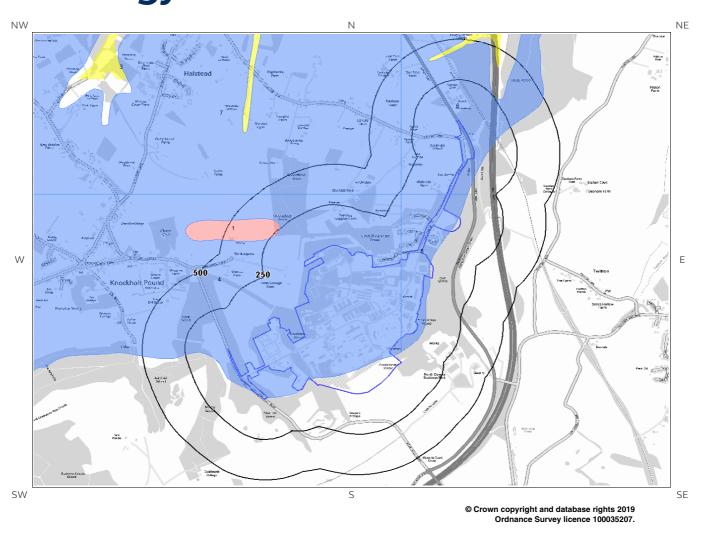
5.2 Superficial Ground and Drift Geology

The database has been searched on site, including a 50m buffer.

Lex Code	Description	Rock Type
CWF-XCZSV	CLAY-WITH-FLINTS FORMATION	CLAY, SILT, SAND AND GRAVEL

5.3 Bedrock and Solid Geology

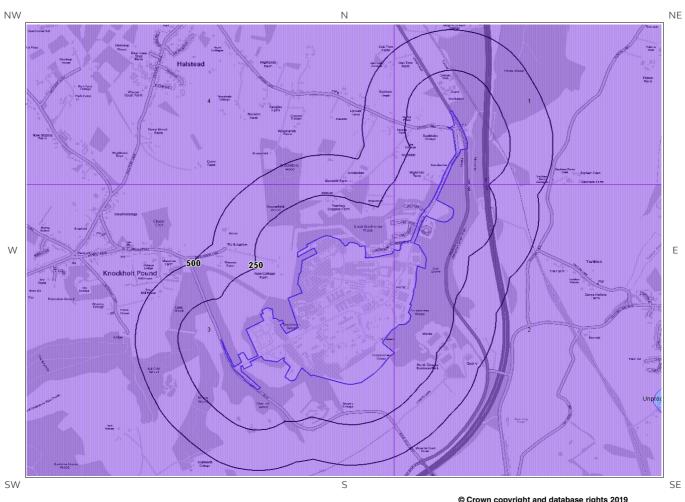
The database has been searched on site, including a 50m buffer.

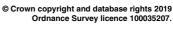

Lex Code	Description	Rock Type
LECH-CHLK	LEWES NODULAR CHALK FORMATION	CHALK
LSNCK-CHLK	LEWES NODULAR CHALK FORMATION, SEAFORD CHALK FORMATION AND NEWHAVEN CHALK FORMATION (UNDIFFERENTIATED)	CHALK
HNCK-CHLK	HOLYWELL NODULAR CHALK FORMATION AND NEW PIT CHALK FORMATION (UNDIFFERENTIATED)	CHALK

(Derived from the BGS 1:50,000 Digital Geological Map of Great Britain)

Report Reference: GS-5746911

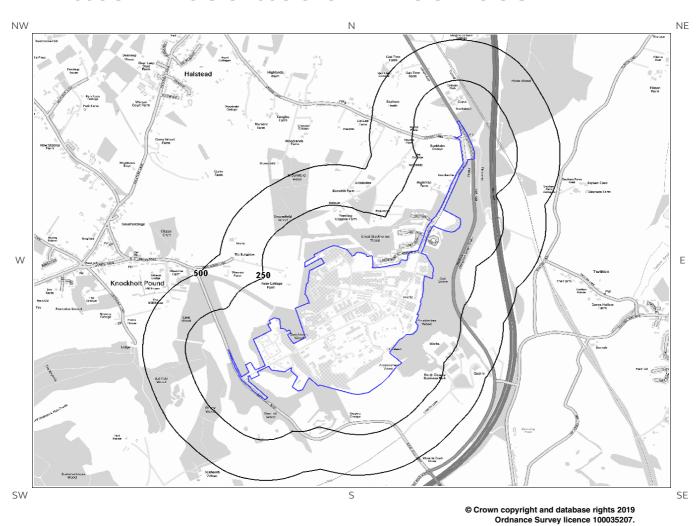
6 Hydrogeology and Hydrology 6a. Aquifer Within Superficial Geology

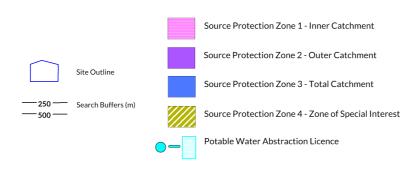




Report Reference: GS-5746911

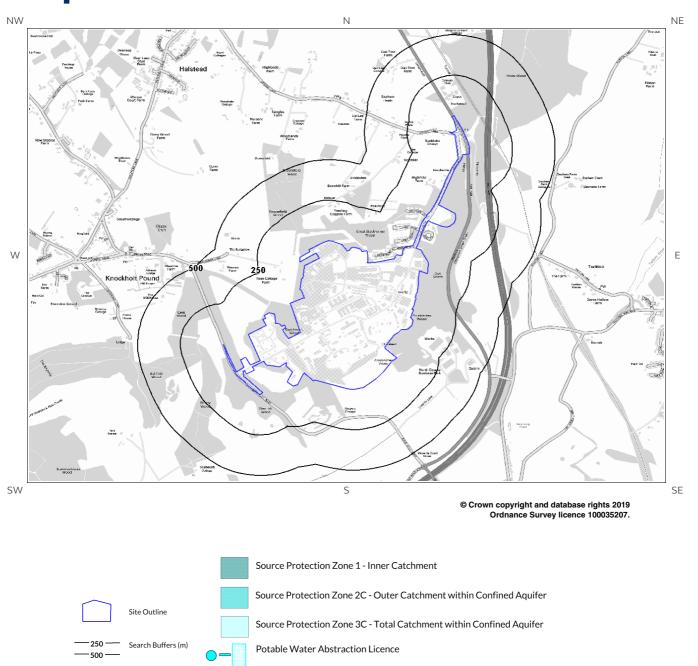
6b. Aquifer Within Bedrock Geology and Abstraction Licences



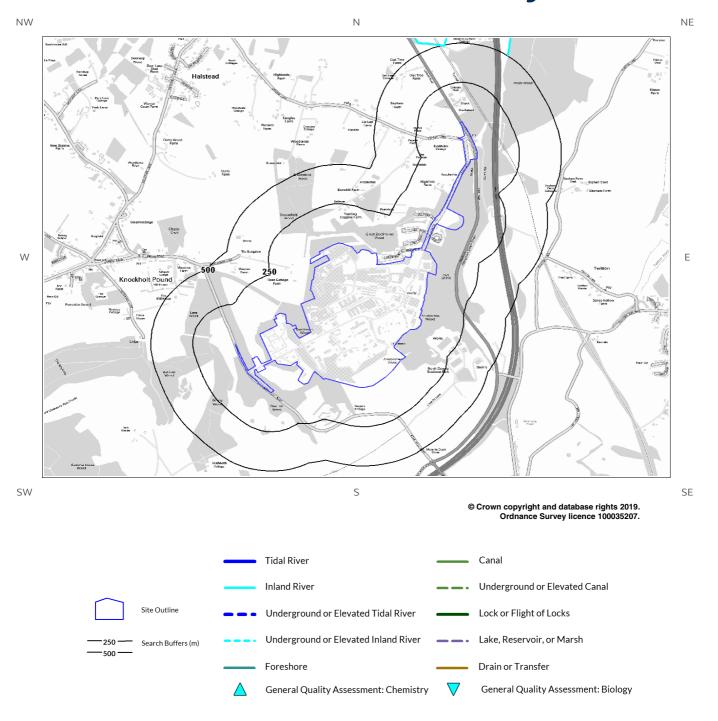


Report Reference: GS-5746911

6c. Hydrogeology – Source Protection Zones and Potable Water Abstraction Licences



Report Reference: GS-5746911


6d. Hydrogeology – Source Protection Zones within confined aquifer

Report Reference: GS-5746911

6e. Hydrology – Watercourse Network and River Quality

Report Reference: GS-5746911

6. Hydrogeology and Hydrology

6.1 Aquifer within Superficial Deposits

Records of strata classification within the superficial geology at or in proximity to the property

Yes

From 1 April 2010, the Environment Agency/Natural Resources Wales's Groundwater Protection Policy has been using aquifer designations consistent with the Water Framework Directive. For further details on the designation and interpretation of this information, please refer to the Groundsure Enviro Insight User Guide.

The following aquifer records are shown on the Aquifer within Superficial Geology Map (6a):

ID	Distanc e (m)	Direction	Designation	Description
4	0	On Site	Unproductive	These are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow
5	0	On Site	Unproductive	These are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow
6	0	On Site	Unproductive	These are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow
1	238	NW	Secondary A	Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers
7	238	NW	Unproductive	These are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow
2	397	N	Secondary (undifferentiated)	Assigned where it is not possible to attribute either category A or B to a rock type. In general these layers have previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type

6.2 Aquifer within Bedrock Deposits

Records of strata classification within the bedrock geology at or in proximity to the property

Yes

From 1 April 2010, the Environment Agency/Natural Resources Wales's Groundwater Protection Policy has been using aquifer designations consistent with the Water Framework Directive. For further details on the designation and interpretation of this information, please refer to the Groundsure Enviro Insight User Guide.

The following aquifer records are shown on the Aquifer within Bedrock Geology Map (6b):

ID	Distanc e (m)	Direction	Designation	Description
1	0	On Site	Principal	Geology of high intergranular and/or fracture permeability, usually providing a high level of water storage and may support water supply/river base flow on a strategic scale. Generally principal aquifers were previously major aquifers
2	0	On Site	Principal	Geology of high intergranular and/or fracture permeability, usually providing a high level of water storage and may support water supply/river base flow on a strategic scale. Generally principal aquifers were previously major aquifers
3	0	On Site	Principal	Geology of high intergranular and/or fracture permeability, usually providing a high level of water storage and may support water supply/river base flow on a strategic scale. Generally principal aquifers were previously major aquifers
4	238	NW	Principal	Geology of high intergranular and/or fracture permeability, usually providing a high

Report Reference: GS-5746911

ID	Distanc e (m)	Direction	Designation	Description
				level of water storage and may support water supply/river base flow on a strategic scale. Generally principal aquifers were previously major aquifers

6.3 Groundwater Abstraction Licences

Groundwater Abstraction Licences within 2000m of the study site

Identified

The following Abstraction Licences records are represented as points, lines and regions on the Aquifer within Bedrock Geology Map (6b):

ID	Distance (m)	Direction	NGR	Details	
Not show n	1103	SW	548680 157760	Status: Active Licence No: 9/40/01/0170/G Details: General Farming & Domestic Direct Source: Southern Region Groundwater Point: TWO CATCHPITS AT CHEVENING ESTATE, SEVENOAKS Data Type: Point Name: Trustees of the Chevening Estate	Annual Volume (m³): 11819.8 Max Daily Volume (m³): 152.8 Original Application No: - Original Start Date: 02/05/1967 Expiry Date: - Issue No: 100 Version Start Date: 27/02/2017 Version End Date:
Not show n	1103	SW	548680 157760	Status: Active Licence No: 9/40/01/0170/G Details: Drinking, Cooking, Sanitary, Washing, (Small Garden) - Household Direct Source: Southern Region Groundwater Point: TWO CATCHPITS AT CHEVENING ESTATE, SEVENOAKS Data Type: Point Name: Trustees of the Chevening Estate	Annual Volume (m³): 11819.8 Max Daily Volume (m³): 152.8 Original Application No: - Original Start Date: 02/05/1967 Expiry Date: - Issue No: 100 Version Start Date: 27/02/2017 Version End Date:

6.4 Surface Water Abstraction Licences

Surface Water Abstraction Licences within 2000m of the study site

Identified

The following Surface Water Abstraction Licences records are represented as points, lines and regions on the Aquifer within Bedrock Geology Map (6b):

ID	Distance (m)	Direction	NGR	Details	
Not shown	1393	E	551800 160520	Status: Historical Licence No: 9/40/01/0052/SR Details: Spray Irrigation - Direct Direct Source: Southern Region Surface Waters Point: RIVER DARENT AT PARK FARM, OTFORD Data Type: Line Name: Lhermette	Annual Volume (m³): 15911 Max Daily Volume (m³): 309.1 Application No: - Original Start Date: 21/02/1967 Expiry Date: - Issue No: 101 Version Start Date: 27/02/2017 Version End Date:
Not shown	1409	E	551820 160500	Status: Active Licence No: 9/40/01/0213 Details: Spray Irrigation - Storage Direct Source: Southern Region Surface Waters Point: RIVER DARENT AT SHOREHAM, KENT Data Type: Point Name: The Darenth Valley Golf Course Ltd	Annual Volume (m³): 2273 Max Daily Volume (m³): 164 Application No: - Original Start Date: 12/10/1980 Expiry Date: - Issue No: 100 Version Start Date: 27/02/2017 Version End Date:

Report Reference: GS-5746911

6.5 Potable Water Abstraction Licences

Potable Water Abstraction Licences within 2000m of the study site

Identified

The following Potable Water Abstraction Licences records are represented as points, lines and regions on the SPZ and Potable Water Abstraction Licences Map (6c):

ID	Distanc e (m)	Direction	NGR	Details	
Not shown	1103	SW	548680 157760	Status: Active Licence No: 9/40/01/0170/G Details: Drinking, Cooking, Sanitary, Washing, (Small Garden) - Household Direct Source: Southern Region Groundwater Point: TWO CATCHPITS AT CHEVENING ESTATE, SEVENOAKS Data Type: Point Name: Trustees of the Chevening Estate	Annual Volume (m³): 11819.8 Max Daily Volume (m³): 152.8 Original Application No: - Original Start Date: 02/05/1967 Expiry Date: - Issue No: 100 Version Start Date: Version End Date:

6.6 Source Protection Zones

Source Protection Zones within 500m of the study site

None identified

Database searched and no data found.

6.7 Source Protection Zones within Confined Aquifer

Source Protection Zones within the Confined Aquifer within 500m of the study site

None identified

Historically, Source Protection Zone maps have been focused on regulation of activities which occur at or near the ground surface, such as prevention of point source pollution and bacterial contamination of water supplies. Sources in confined aquifers were often considered to be protected from these surface pressures due to the presence of a low permeability confining layer (e.g. glacial till, clay). The increased interest in subsurface activities such as onshore oil and gas exploration, ground source heating and cooling requires protection zones for confined sources to be marked on SPZ maps where this has not already been done.

Database searched and no data found.

Report Reference: GS-5746911

6.8 Groundwater Vulnerability and Soil Leaching Potential

Environment Agency/Natural Resources Wales information on groundwater vulnerability and soil leaching potential within 500m of the study site

Identified

Distance (m)	Direction	Classification	Soil Vulnerability Category	Description
0	On Site	Major Aquifer/Intermediate Leaching Potential	I1	Soils which can possibly transmit a wide range of pollutants.
0	On Site	Major Aquifer/High Leaching Potential	H1	Soils which readily transmit liquid discharges because they are shallow or susceptible to rapid flow directly to rock, gravel or groundwater.
0	On Site	Major Aquifer/Intermediate Leaching Potential	I1	Soils which can possibly transmit a wide range of pollutants.
0	On Site	Major Aquifer/High Leaching Potential	H1	Soils which readily transmit liquid discharges because they are shallow or susceptible to rapid flow directly to rock, gravel or groundwater.
0	On Site	Major Aquifer/Intermediate Leaching Potential	I1	Soils which can possibly transmit a wide range of pollutants.
204	SE	Major Aquifer/High Leaching Potential	H1	Soils which readily transmit liquid discharges because they are shallow or susceptible to rapid flow directly to rock, gravel or groundwater.
230	SE	Major Aquifer/Intermediate Leaching Potential	I1	Soils which can possibly transmit a wide range of pollutants.
233	SE	Major Aquifer/Intermediate Leaching Potential	I1	Soils which can possibly transmit a wide range of pollutants.
238	NW	Major Aquifer/Intermediate Leaching Potential	I1	Soils which can possibly transmit a wide range of pollutants.
496	SE	Major Aquifer/Intermediate Leaching Potential	I1	Soils which can possibly transmit a wide range of pollutants.

6.9 River Quality

Environment Agency/Natural Resources	Wales information on rive	r quality within 1500m o	of the study
site			None identified

6.9.1 Biological Quality:

Database searched and no data found.

6.9.2 Chemical Quality:

Database searched and no data found.

Report Reference: GS-5746911

6.10 Ordnance Survey MasterMap Water Network

Ordnance Survey MasterMap Water Network entries within 500m of the study site

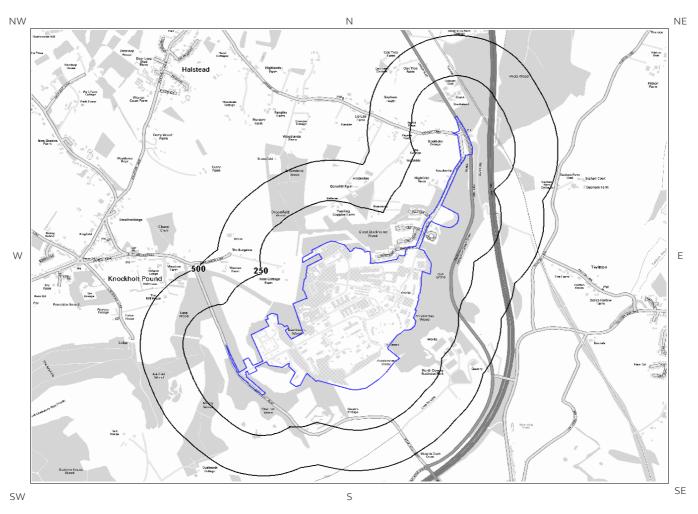
This watercourse information is provided by Ordnance Survey MasterMap Water Network. The data provides a detailed centre line following the curve of the waterway precisely, so all distances provided in the report should be understood as measurements to the centreline rather than a measurement to the nearest point of the watercourse. Underground watercourses are inferred from entry and exit points so caution is advised in using these to indicate precise locations of underground watercourses when planning site investigation and development.

The following Ordnance Survey MasterMap Water Network records are represented on the Hydrology Map (6e):

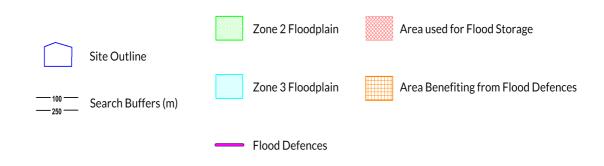
ID	Distance/ Direction	Name	Type of Watercourse	Additional Details
1	495 N	Not Specified	Inland river not influenced by normal tidal action.	Catchment Area: Thames Relationship to Ground Level: On ground surface Permanence: Watercourse contains water year round (in normal conditions) Average Width in Watercourse Section (m): Not Provided
Not shown	495 N	Not Specified	Inland river not influenced by normal tidal action.	Catchment Area: Thames Relationship to Ground Level: On ground surface Permanence: Watercourse contains water year round (in normal conditions) Average Width in Watercourse Section (m): Not Provided
2	497 NE	Not Specified	Inland river not influenced by normal tidal action.	Catchment Area: Thames Relationship to Ground Level: On ground surface Permanence: Watercourse contains water year round (in normal conditions) Average Width in Watercourse Section (m): Not Provided
Not shown	497 NE	Not Specified	Inland river not influenced by normal tidal action.	Catchment Area: Thames Relationship to Ground Level: On ground surface Permanence: Watercourse contains water year round (in normal conditions) Average Width in Watercourse Section (m): Not Provided

6.11 Surface Water Features

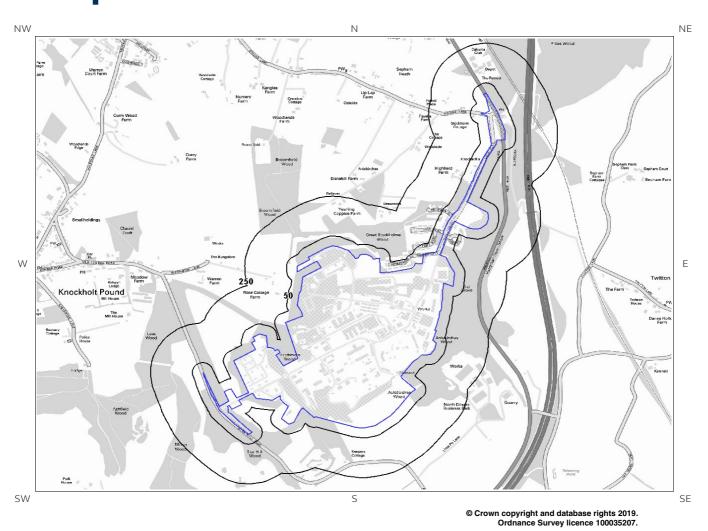
Surface water features within 250m of the study site

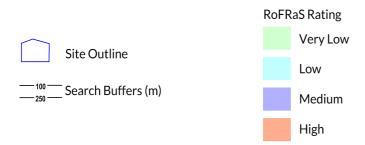

None identified

Database searched and no data found.


Report Reference: GS-5746911

7a. Environment Agency/Natural Resources Wales Flood Map for Planning (from rivers and the sea)


© Crown copyright and database rights 2019. Ordnance Survey licence 100035207.



Report Reference: GS-5746911

7b. Environment Agency/Natural Resources Wales Risk of Flooding from Rivers and the Sea (RoFRaS) Map

Report Reference: GS-5746911 Client Reference: C-10730-C_Fort_Halstead_PO_P028025

7 Flooding

7.1 River and Coastal Zone 2 Flooding

Environment Agency/Natural Resources Wales Zone 2 floodplain within 250m

None identified

Environment Agency/Natural Resources Wales Zone 2 floodplains estimate the annual probability of flooding as between 1 in 1000 (0.1%) and 1 in 100 (1%) from rivers and between 1 in 1000 (0.1%) and 1 in 200 (0.5%) from the sea. Any relevant data is represented on Map 7a – Flood Map for Planning:

Database searched and no data found.

7.2 River and Coastal Zone 3 Flooding

Environment Agency/Natural Resources Wales Zone 3 floodplain within 250m

None identified

Zone 3 shows the extent of a river flood with a 1 in 100 (1%) or greater chance of occurring in any year or a sea flood with a 1 in 200 (0.5%) or greater chance of occurring in any year. Any relevant data is represented on Map 7a – Flood Map for Planning.

Database searched and no data found.

7.3 Risk of Flooding from Rivers and the Sea (RoFRaS) Flood Rating

Highest risk of flooding onsite

Very Low

The Environment Agency/Natural Resources Wales RoFRaS database provides an indication of river and coastal flood risk at a national level on a 50m grid with the flood rating at the centre of the grid calculated and given above. The data considers the probability that the flood defences will overtop or breach by considering their location, type, condition and standard of protection.

RoFRaS data for the study site indicates the property is in an area with a Very Low (less than 1 in 1000) chance of flooding in any given year.

7.4 Flood Defences

Flood Defences within 250m of the study site

None identified

Database searched and no data found.

7.5 Areas benefiting from Flood Defences

Areas benefiting from Flood Defences within 250m of the study site

None identified

Report Reference: GS-5746911

7.6 Areas benefiting from Flood Storage

Areas used for Flood Storage within 250m of the study site

None identified

7.7 Groundwater Flooding Susceptibility Areas

7.7.1 British Geological Survey groundwater flooding susceptibility areas within 50m of the boundary of the study site

Clearwater Flooding or Superficial Deposits Flooding

Clearwater Flooding

Notes: Groundwater flooding may either be associated with shallow unconsolidated sedimentary aquifers which overlie unproductive aquifers (Superficial Deposits Flooding), or with unconfined aquifers (Clearwater Flooding).

7.7.2 Highest susceptibility to groundwater flooding in the search area based on the underlying geological conditions

Limited potential

Where limited potential for groundwater flooding to occur is indicated, this means that although given the geological conditions there may be a groundwater flooding hazard, unless other relevant information, e.g. records of previous flooding, suggests groundwater flooding has occurred before in this area, you need take no further action in relation to groundwater flooding hazard.

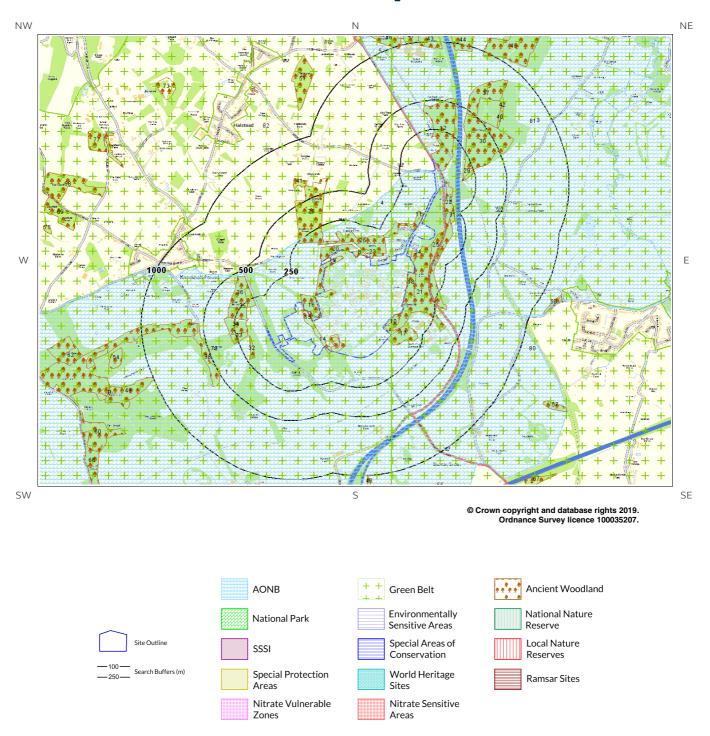
7.8 Groundwater Flooding Confidence Areas

British Geological Survey confidence rating in this result

High

Notes: Groundwater flooding is defined as the emergence of groundwater at the ground surface or the rising of groundwater into man-made ground under conditions where the normal range of groundwater levels is exceeded.

The confidence rating is on a threefold scale - Low, Moderate and High. This provides a relative indication of the BGS confidence in the accuracy of the susceptibility result for groundwater flooding. This is based on the amount and precision of the information used in the assessment. In areas with a relatively lower level of confidence the susceptibility result should be treated with more caution. In other areas with higher levels of confidence the susceptibility result can be used with more confidence.


Report Reference: GS-5746911

Client Reference: C-10730-C_Fort_Halstead_PO_P028025

50

8. Designated Environmentally Sensitive Sites Map

Report Reference: GS-5746911

8. Designated Environmentally Sensitive Sites

Designated Environmentally Sensitive Sites within 2000m of the study site	dentified
8.1 Records of Sites of Special Scientific Interest (SSSI) within 2000m of the studesite:	dy
	0
Database searched and no data found.	
8.2 Records of National Nature Reserves (NNR) within 2000m of the study site:	
	0
Database searched and no data found.	
8.3 Records of Special Areas of Conservation (SAC) within 2000m of the study si	ite:
	0
Database searched and no data found.	
8.4 Records of Special Protection Areas (SPA) within 2000m of the study site:	
	0
Database searched and no data found.	
8.5 Records of Ramsar sites within 2000m of the study site:	
	0
Database searched and no data found.	

Report Reference: GS-5746911

8.6 Records of Ancient Woodland within 2000m of the study site:

73

The following records of Designated Ancient Woodland provided by Natural England/Natural Resources Wales are represented as polygons on the Designated Environmentally Sensitive Sites Map:

Report Reference: GS-5746911

				LOCATION INTELLIGENCE
ID	Distance (m)	Direction	Ancient Woodland Name	Data Source
6	0	On Site	UNKNOWN	Ancient and Semi-Natural Woodland
7	0	On Site	UNKNOWN	Ancient and Semi-Natural Woodland
8	0	On Site	UNKNOWN	Ancient and Semi-Natural Woodland
9	0	On Site	UNKNOWN	Ancient and Semi-Natural Woodland
10	0	On Site	UNKNOWN	Ancient and Semi-Natural Woodland
11	0	On Site	UNKNOWN	Ancient and Semi-Natural Woodland
12	0	On Site	UNKNOWN	Ancient and Semi-Natural Woodland
13	0	On Site	UNKNOWN	Ancient and Semi-Natural Woodland
14	0	On Site	UNKNOWN	Ancient and Semi-Natural Woodland
15	0	On Site	UNKNOWN	Ancient and Semi-Natural Woodland
16	0	On Site	UNKNOWN	Ancient and Semi-Natural Woodland
17	0	On Site	GOLDEN GROVE/BROADHAMS/RUSSETS/BROADHAM FIR PLANTATION/ANIS	Ancient Replanted Woodland
18	0	On Site	GOLDEN GROVE/BROADHAMS/RUSSETS/BROADHAM FIR PLANTATION/ANIS	Ancient Replanted Woodland
19	0	On Site	UNKNOWN	Ancient Replanted Woodland
20	0	On Site	UNKNOWN	Ancient Replanted Woodland
21	0	On Site	GOLDEN GROVE/BROADHAMS/RUSSETS/BROADHAM FIR PLANTATION/ANIS	Ancient and Semi-Natural Woodland
22	0	Е	UNKNOWN	Ancient and Semi-Natural Woodland
23	0	Е	UNKNOWN	Ancient and Semi-Natural Woodland
24	1	NE	UNKNOWN	Ancient and Semi-Natural Woodland
25	14	SE	GOLDEN GROVE/BROADHAMS/RUSSETS/BROADHAM FIR PLANTATION/ANIS	Ancient and Semi-Natural Woodland
26	46	N	UNKNOWN	Ancient Replanted Woodland
27	77	Е	UNKNOWN	Ancient and Semi-Natural Woodland
28	125	NW	UNKNOWN	Ancient and Semi-Natural Woodland
29	138	Е	UNKNOWN	Ancient and Semi-Natural Woodland
30	139	Е	UNKNOWN	Ancient and Semi-Natural Woodland
31	143	Е	UNKNOWN	Ancient and Semi-Natural Woodland
32	146	W	UNKNOWN	Ancient and Semi-Natural Woodland
33	147	W	UNKNOWN	Ancient and Semi-Natural Woodland

Report Reference: GS-5746911 Client Reference: C-10730-C_Fort_Halstead_PO_P028025

				LOCATION INTELLIGENCE
ID	Distance (m)	Direction	Ancient Woodland Name	Data Source
34	147	W	UNKNOWN	Ancient Replanted Woodland
35	149	W	UNKNOWN	Ancient and Semi-Natural Woodland
36	217	NW	LEES/ASHFIELD/MINNY WOOD	Ancient Replanted Woodland
37	473	NE	UNKNOWN	Ancient Replanted Woodland
38	490	SW	UNKNOWN	Ancient and Semi-Natural Woodland
39A	548	W	ASH PLATT/SUNDRIDGE HILL WOODS	Ancient and Semi-Natural Woodland
40	575	NE	UNKNOWN	Ancient and Semi-Natural Woodland
41	611	NW	UNKNOWN	Ancient and Semi-Natural Woodland
42	679	NE	UNKNOWN	Ancient Replanted Woodland
43	939	N	UNKNOWN	Ancient Replanted Woodland
44	942	N	ANDREWS WOOD	Ancient Replanted Woodland
45	966	NE	MEENFIELD WOOD	Ancient Replanted Woodland
46	976	N	UNKNOWN	Ancient and Semi-Natural Woodland
47	990	N	UNKNOWN	Ancient and Semi-Natural Woodland
48	991	S	UNKNOWN	Ancient and Semi-Natural Woodland
49	996	W	UNKNOWN	Ancient and Semi-Natural Woodland
50	1088	SE	UNKNOWN	Ancient and Semi-Natural Woodland
51	1142	NW	CHALKHURST WOOD	Ancient and Semi-Natural Woodland
Not shown	1167	N	UNKNOWN	Ancient and Semi-Natural Woodland
Not shown	1167	N	UNKNOWN	Ancient Replanted Woodland
54	1174	W	ASH PLATT/SUNDRIDGE HILL WOODS	Ancient and Semi-Natural Woodland
55	1212	SE	UNKNOWN	Ancient and Semi-Natural Woodland
56A	1277	W	ASH PLATT/SUNDRIDGE HILL WOODS	Ancient Replanted Woodland
57	1351	SE	DARNETS SPRING	Ancient and Semi-Natural Woodland
58B	1353	W	UNKNOWN	Ancient Replanted Woodland
59B	1366	W	ASH PLATT/SUNDRIDGE HILL WOODS	Ancient Replanted Woodland
60	1408	SW	ASH PLATT/SUNDRIDGE HILL WOODS	Ancient and Semi-Natural Woodland
Not shown	1453	S	UNKNOWN	Ancient and Semi-Natural Woodland
62	1494	W	ASH PLATT/SUNDRIDGE HILL WOODS	Ancient Replanted Woodland
Not shown	1513	S	CHEVENING WOOD	Ancient and Semi-Natural Woodland
Not shown	1531	S	UNKNOWN	Ancient and Semi-Natural Woodland

Report Reference: GS-5746911 Client Reference: C-10730-C_Fort_Halstead_PO_P028025

ID	Distance (m)	Direction	Ancient Woodland Name	Data Source
Not shown	1587	S	RAKEFIELD WOOD	Ancient and Semi-Natural Woodland
66	1619	SW	ASH PLATT/SUNDRIDGE HILL WOODS	Ancient Replanted Woodland
67	1620	SE	UNKNOWN	Ancient and Semi-Natural Woodland
68	1711	NW	LATTICE COPPICE	Ancient and Semi-Natural Woodland
69	1743	NW	LATTICE COPPICE	Ancient and Semi-Natural Woodland
70	1764	NW	CLOSE HEATH WOOD	Ancient and Semi-Natural Woodland
Not shown	1818	S	UNKNOWN	Ancient and Semi-Natural Woodland
Not shown	1841	N	UNKNOWN	Ancient Replanted Woodland
73	1852	NW	DEEERLEAP WOOD-NORTH	Ancient and Semi-Natural Woodland
Not shown	1859	N	UNKNOWN	Ancient and Semi-Natural Woodland
75	1892	NW	UNKNOWN	Ancient and Semi-Natural Woodland
Not shown	1920	NE	UNKNOWN	Ancient and Semi-Natural Woodland
77	1952	NW	UNKNOWN	Ancient and Semi-Natural Woodland
Not shown	1998	N	CONEYEARTH/PASCALLS/HOLLOWS WOODS	Ancient and Semi-Natural Woodland

8.7 Records of Local Nature Reserves (LNR) within 2000m of the study site:

0

Database searched and no data found.

8.8 Records of World Heritage Sites within 2000m of the study site:

0

Database searched and no data found.

8.9 Records of Environmentally Sensitive Areas within 2000m of the study site:

0

Database searched and no data found.

Report Reference: GS-5746911

8.10 Records of Areas of Outstanding Natural Beauty (AONB) within 2000m of the study site:

5

The following Area of Outstanding Natural Beauty (AONB) records provided by Natural England/Natural Resources Wales are represented as polygons on the Designated Environmentally Sensitive Sites Map:

ID	Distance (m)	Directio n	AONB/NSA Name	Data Source
1	0	On Site	Kent Downs	Natural England
2	0	On Site	Kent Downs	Natural England
3	0	On Site	Kent Downs	Natural England
4	238	NW	Kent Downs	Natural England
5	674	NW	Kent Downs	Natural England

8.11 Records of National Parks (NP) within 2000m of the study site:

0

Database searched and no data found.

8.12 Records of Nitrate Sensitive Areas within 2000m of the study site:

0

Database searched and no data found.

8.13 Records of Nitrate Vulnerable Zones within 2000m of the study site:

0

Database searched and no data found.

8.14 Records of Green Belt land within 2000m of the study site:

4

Green Belt data contains Ordnance Survey data © Crown copyright and database right [2015].

ID	Distance	Direction	Green Belt Name	Local Authority Name
79	0	On Site	London Area Greenbelt	Sevenoaks
80	0	On Site	London Area Greenbelt	Sevenoaks
81	0	On Site	London Area Greenbelt	Sevenoaks
82	238	NW	London Area Greenbelt	Sevenoaks

Report Reference: GS-5746911

Report Reference: GS-5746911 Client Reference: C-10730-C_Fort_Halstead_PO_P028025

9. Natural Hazards Findings

9.1 Detailed BGS GeoSure Data

BGS GeoSure Data has been searched to 50m. The data is included in tabular format. If you require further information on geology and ground stability, please obtain a **Groundsure Geo Insight**, available from **our website**. The following information has been found:

9.1.1 Shrink Swell

Maximum Shrink-Swell** hazard rating identified on the study site

Low

The following natural subsidence information provided by the British Geological Survey is not represented on mapping:

Hazard

Ground conditions predominantly medium plasticity. Do not plant trees with high soil moisture demands near to buildings. For new build, consideration should be given to advice published by the National House Building Council (NHBC) and the Building Research Establishment (BRE). There is a possible increase in construction cost to reduce potential shrink-swell problems. For existing property, there is a possible increase in insurance risk, especially during droughts or where vegetation with high moisture demands is present.

9.1.2 Landslides

Maximum Landslide* hazard rating identified on the study site

Moderate

The following natural subsidence information provided by the British Geological Survey is not represented on mapping:

Hazard

Significant potential for slope instability with relatively small changes in ground conditions. Avoid large amounts of water entering the ground through pipe leakage or soak-aways. Do not undercut or place large amounts of material on slopes without technical advice. For new build consider the potential and consequences of ground movement during excavations, or consequence of changes to loading or drainage. For existing property probable increase in insurance risk is likely due to potential natural slope instability after changes to ground conditions such as a very long, excessively wet winter.

9.1.3 Soluble Rocks

Maximum Soluble Rocks* hazard rating identified on the study site

Moderate

The following natural subsidence information provided by the British Geological Survey is not represented on mapping:

Hazard

Very significant soluble rocks are present, with a moderate possibility of local natural subsidence due to high surface or subsurface water flow. Do not load the land or undertake building work before obtaining specialist advice. Do not dispose of drainage to the ground. Some possibility groundwater pollution. Maintain drainage infrastructure. For new build specialist site investigation and stability assessment may

Report Reference: GS-5746911

^{*} This indicates an automatically generated 50m buffer and site.

Hazard

be necessary before construction. Construction work may cause subsidence. Increased construction costs are likely. For existing property probable increase in insurance risk due to soluble rocks.

9.1.4 Compressible Ground

Maximum Compressible Ground* hazard rating identified on the study site

Negligible

The following natural subsidence information provided by the British Geological Survey is not represented on mapping:

Hazard

No indicators for compressible deposits identified. No special actions required to avoid problems due to compressible deposits. No special ground investigation required, and increased construction costs or increased financial risks are unlikely due to potential problems with compressible deposits.

9.1.5 Collapsible Rocks

Maximum Collapsible Rocks* hazard rating identified on the study site

Very Low

The following natural subsidence information provided by the British Geological Survey is not represented on mapping:

Hazard

Deposits with potential to collapse when loaded and saturated are unlikely to be present. No special ground investigation required or increased construction costs or increased financial risk due to potential problems with collapsible deposits.

9.1.6 Running Sand

Maximum Running Sand** hazard rating identified on the study site

Negligible

The following natural subsidence information provided by the British Geological Survey is not represented on mapping:

Hazard

No indicators for running sand identified. No special actions required to avoid problems due to running sand. No special ground investigation required, and increased construction costs or increased financial risks are unlikely due to potential problems with running sand.

Report Reference: GS-5746911

^{*} This indicates an automatically generated 50m buffer and site.

9.2 Radon

9.2.1 Radon Affected Areas

Is the property in a Radon Affected Area as defined by the Health Protection Agency (HPA) and if so what percentage of homes are above the Action Level? The site is not in a Radon Affected Area, as less than 1% of properties are above the Action Level.

The radon data in this report is supplied by the BGS/Public Health England and is the definitive map of Radon Affected Areas in Great Britain and Northern Ireland. The dataset was created using long-term radon measurements in over 479,000 homes across Great Britain and 23,000 homes across Northern Ireland, combined with geological data. The dataset is considered accurate to 50m to allow for the margin of error in geological lines, and the findings of this report supercede any answer given in the less accurate Indicative Atlas of Radon in Great Britain, which simplifies the data to give the highest risk within any given 1km grid square. As such, the radon atlas is considered indicative, whereas the data given in this report is considered definitive.

9.2.2 Radon Protection

Is the property in an area where Radon Protection are required for new properties or extensions to existing

ones as described in publication BR211 by the Building Research Establishment?

No radon protective measures are necessary.

Report Reference: GS-5746911

10. Mining

10.1 Coal Mining

Coal mining areas within 75m of the study site

None identified

Database searched and no data found.

10.2 Non-Coal Mining

Non-Coal Mining areas within 50m of the study site boundary

Identified

The following non-coal mining information is provided by the BGS:

Distance (m)	Direction	Name	Commodity	Assessment of likelihood
0.0	On Site	Not available	Chalk	Sporadic underground mining of restricted extent may have occurred. Potential for difficult ground conditions are unlikely and localised and are at a level where they need not be considered
0.0	On Site	Not available	Chalk	Sporadic underground mining of restricted extent may have occurred. Potential for difficult ground conditions are unlikely and localised and are at a level where they need not be considered
0.0	On Site	Not available	Chalk	Sporadic underground mining of restricted extent may have occurred. Potential for difficult ground conditions are unlikely and localised and are at a level where they need not be considered

Past underground mine workings are uncommon, localised and of limited area. The rock types present in this area are such that minor mineral veins may be present within them on which it is possible that there have been attempts to work these by underground methods and/or it is possible that small scale underground extraction of other materials may have occurred. All such occurrences are likely to be restricted in size and infrequent. It should be noted, however, that there is always the possibility of the existence of other sub-surface excavations, such as wells, cess pits, follies, air raid shelters/bunkers and other military structures etc. that could affect surface ground stability but which are outside the scope of this dataset. However, if in a coalfield area you should still consider a Coal Authority mining search for the area of interest.

Report Reference: GS-5746911

10.3 Brine Affected Areas

Brine affected areas within 75m of the study site Guidance: No Guidance Required.

None identified

Report Reference: GS-5746911

Contact Details

Groundsure Helpline

Telephone: 08444 159 000 info@groundsure.com

LOCATION INTELLIGENCE

Geological Survey

NATURAL ENVIRONMENT RESEARCH COUNCIL

British Geological Survey Enquiries

Kingsley Dunham Centre Keyworth, Nottingham NG12 5GG Tel: 0115 936 3143. Fax: 0115 936 3276. Email:

Web:www.bgs.ac.uk

BGS Geological Hazards Reports and general geological enquiries:

enquiries@bgs.ac.uk

Environment Agency

National Customer Contact Centre, PO Box 544 Rotherham, S60 1BY Tel: 03708 506 506

Web: www.environment-agency.gov.uk Email: enquiries@environment-agency.gov.uk

Public Health England

Public information access office Public Health England, Wellington House 133-155 Waterloo Road, London, SE1 8UG www.gov.uk/phe

Email:enquiries@phe.gov.uk
Main switchboard: 020 7654 8000

British

Public Health England

The Coal Authority

200 Lichfield Lane Mansfield Notts NG18 4RG Tel: 0345 7626 848 DX 716176 Mansfield 5

www.coal.gov.uk

Ordnance Survey

Adanac Drive, Southampton SO16 0AS Tel: 08456 050505

Local Authority

Authority: Sevenoaks District Council Phone: 01732 227 000 Web: http://www.sevenoaks.gov.uk/ Address: Council Offices, Argyle Road, Sevenoaks, Kent, TN13 1HG

Gemapping PLC

Virginia Villas, High Street, Hartley Witney, Hampshire RG27 8NW Tel: 01252 845444

Report Reference: GS-5746911

Acknowledgements: Site of Special Scientific Interest, National Nature Reserve, Ramsar Site, Special Protection Area, Special Area of Conservation data is provided by, and used with the permission of, Natural England/Natural Resources Wales who retain the Copyright and Intellectual Property Rights for the data.

PointX © Database Right/Copyright, Thomson Directories Limited © Copyright Link Interchange Network Limited © Database Right/Copyright and Ordnance Survey © Crown Copyright and/or Database Right. All Rights Reserved. Licence Number [03421028]. This report has been prepared in accordance with the Groundsure Ltd standard Terms and Conditions of business for work of this nature.

Report Reference: GS-5746911

Standard Terms and Conditions

Groundsure's Terms and Conditions can be viewed online at this link:

https://www.groundsure.com/terms-and-conditions-may25-2018

Report Reference: GS-5746911

Hydrock Consultants Ltd

Groundsure Reference:

GS-5746912

HYDROCK CONSULTANTS LTD, OVER COURT

BARNS, OVER LANE, ALMONDSBURY, BS32 4DF Your Reference: C-10730-

C_Fort_Halstead_PO_P028025

Report Date

14 Jan 2019

Report Delivery Email - pdf

Method:

Geo Insight

Address: LAND WEST OF 41, FORT ROAD, HALSTEAD, SEVENOAKS, TN14 7BS

Dear Sir/ Madam,

Thank you for placing your order with Groundsure. Please find enclosed the Groundsure Geo Insight as requested.

If you need any further assistance, please do not hesitate to contact our helpline on 08444 159000 quoting the above Groundsure reference number.

Yours faithfully,

Managing Director **Groundsure Limited**

Groundsure Geo Insight

Geo Insight

Address: LAND WEST OF 41, FORT ROAD, HALSTEAD, SEVENOAKS, TN14

7BS

Date: 14 Jan 2019

Reference: GS-5746912

Client: Hydrock Consultants Ltd

NW NE

SW

SE

Aerial Photograph Capture date: 09-Aug-2015 Grid Reference: 549845,159348

Site Size:

62.86ha

Contents Page

Contents Page	
Overview of Findings	5
1:10,000 Scale Availability	8
Availability of 1:10,000 Scale Geology Mapping	9
1 Geology (1:10,000 scale)	10
1.1 Artificial Ground map (1:10,000 scale)	10
1. Geology 1:10,000 scale	11
1.1 Artificial Ground	11
1.2 Superficial Deposits and Landslips map (1:10,000 scale)	12
1.2 Superficial Deposits and Landslips	13
1.2.1 Superficial Deposits/ Drift Geology	
1.2.2 Landslip	
1.3 Bedrock and linear features map (1:10,000 scale)	
1.3.1 Bedrock/ Solid Geology	
1.3.2 Linear features	
2 Geology 1:50,000 Scale	16
2.1 Artificial Ground map	16
2. Geology 1:50,000 scale	17
2.1 Artificial Ground	17
2.1.1 Artificial/ Made Ground	17
2.1.2 Permeability of Artificial Ground	
2.2 Superficial Deposits and Landslips map (1:50,000 scale)	
2.2 Superficial Deposits and Landslips 2.2.1 Superficial Deposits/ Drift Geology	
2.2.2 Permeability of Superficial Ground	
2.2.3 Landslip	19
2.2.4 Landslip Permeability	
2.3 Bedrock and linear features map (1:50,000 scale)	
2.3 Bedrock, Solid Geology & linear features	
2.3.2 Permeability of Bedrock Ground	
2.3.3 Linear features	
3 Radon Data	24
3.1 Radon Affected Areas	24
3.2 Radon Protection	
4 Ground Workings map	25
4 Ground Workings	26
4.1 Historical Surface Ground Working Features derived from Historical Mapping	
4.2 Historical Underground Working Features derived from Historical Mapping	
4.3 Current Ground Workings	30
5 Mining, Extraction & Natural Cavities	32
5.1 Historical Mining	32
5.2 Coal Mining	
5.3 Johnson Poole and Bloomer	
5.4 Non-Coal Mining	
5.5 Non-Coal Mining Cavities	
5.6 Natural Cavities	
5.7 Brine Extraction	
5.8 Gypsum Extraction	
5.9 Tin Mining 5.10 Clay Mining	
6 Natural Ground Subsidence	
6.1 Shrink-Swell Clay map	
6.2 Landslides map	
6.3 Ground Dissolution of Soluble Rocks map	
6.4 Compressible Deposits map	
6.5 Collapsible Deposits map	
6.6 Running Sand map	
- · · · · · · · · · · · · · · · · · · ·	

6 Natural Ground Subsidence	42
6.1 Shrink-Swell Clays	42
6.2 Landslides	43
6.3 Ground Dissolution of Soluble Rocks	46
6.4 Compressible Deposits	48
6.5 Collapsible Deposits	48
6.5 Collapsible Deposits	48
7 Borehole Records	51
8 Estimated Background Soil Chemistry	54
9 Railways and Tunnels map	
9 Railways and Tunnels	56
9.1 Tunnels	
9.2 Historical Railway and Tunnel Features	56
9.3 Historical Railways	58
9.4 Active Railways	
9.5 Pailway Projects	58

Overview of Findings

The Groundsure Geo Insight provides high quality geo-environmental information that allows geo-environmental professionals and their clients to make informed decisions and be forewarned of potential ground instability problems that may affect the ground investigation, foundation design and possibly remediation options that could lead to possible additional costs.

The report is based on the BGS 1:50,000 and 1:10,000 Digital Geological Map of Great Britain, BGS Geosure data; BRITPITS database; Non-coal mining data and Borehole Records, Coal Authority data including brine extraction areas, PBA non-coal mining and natural cavities database, Johnson Poole and Bloomer mining data and Groundsure's unique database including historical surface ground and underground workings.

For further details on each dataset, please refer to each individual section in the report as listed. Where the database has been searched a numerical result will be recorded. Where the database has not been searched '-' will be recorded.

Section 1: Geology 1:10,000 Scale							
1.1 Artificial Ground	1.1 Is there any Artificial Ground/ Made Ground present beneath the study site at 1:10,000 scale?	No					
1.2 Superficial Geology and Landslips	1.2.1 Is there any Superficial Ground/Drift Geology present beneath the study site at 1:10,000 scale?*	Yes					
	1.2.2 Are there any records of landslip within 500m of the study site boundary at 1:10,000 scale?	No					
1.3 Bedrock, Solid Geology and linear	1.3.1 For records of Bedrock and Solid Geology beneath the study site* see the detailed findings section.						
features	1.3.2 Are there any records of linear features within 500m of the study site boundary at 1:10,000 scale?	No					
Section 2: Geolo	gy 1:50,000 Scale						
2.1 Artificial Ground	2.1.1 Is there any Artificial Ground/ Made Ground present beneath the study site?	No					
	2.1.2 Are there any records relating to permeability of artificial ground within the study site*boundary?	No					
2.2 Superficial Geology and	2.2.1 Is there any Superficial Ground/Drift Geology present beneath the study site?*	Yes					
Landslips	2.2.2 Are there any records of permeability of superficial ground within 500m of the study site?	Yes					
	2.2.3 Are there any records of landslip within 500m of the study site boundary?	No					
	2.2.4 Are there any records relating to permeability of landslips within the study site* boundary?	No					

C .:	2 0 1	4 EO OOO C I
Saction	7. (-00100V	1:50.000 Scale

2.3 Bedrock, Solid Geology and linear features

2.3.1 For records of Bedrock and Solid Geology beneath the study site* see the detailed findings section.

2.3.2 Are there any records relating to permeability of bedrock ground within the study site boundary?

Yes

2.3.3 Are there any records of linear features within 500m of the study site boundary?

No

Section 3: Radon

3. Radon

3.1Is the property in a Radon Affected Area as defined by the Health The property is not in a Radon Affected Protection Agency (HPA) and if so what percentage of homes are above the Action Level?

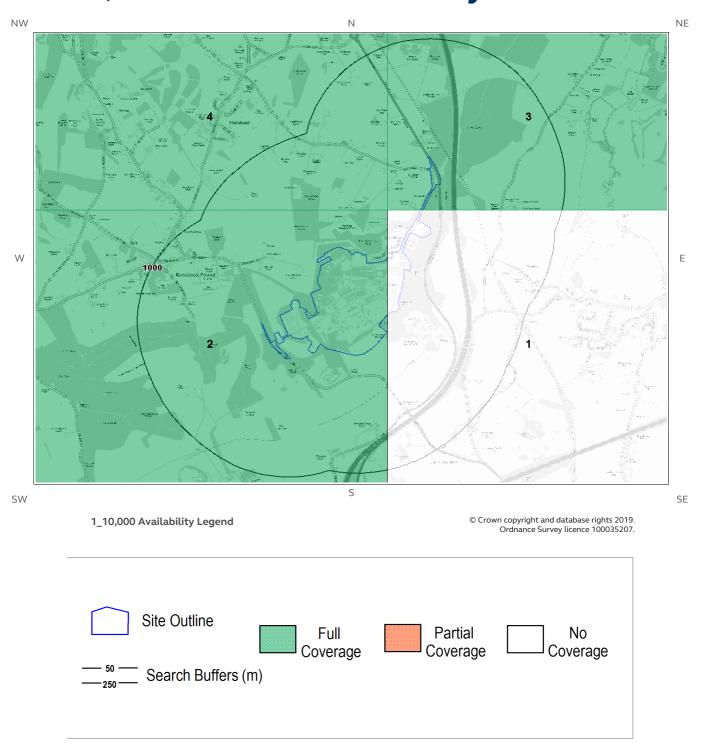
Area, as less than 1% of properties are above the Action Level.

3.2Radon Protection

No radon protective measures are necessary.

Section 4: Ground Workings	On-site	0-50m	51-250	251-500	501-1000
4.1 Historical Surface Ground Working Features from Small Scale Mapping	5	5	58	Not Searched	Not Searched
4.2 Historical Underground Workings from Small Scale Mapping	0	0	15	0	18
4.3 Current Ground Workings	0	0	2	2	1
Section 5: Mining, Extraction & Natural Cavities	On-site	0-50m	51-250	251-500	501-1000
5.1 Historical Mining	0	0	8	0	15
5.2 Coal Mining	0	0	0	0	0
5.3 Johnson Poole and Bloomer Mining Area	0	0	0	0	0
5.4 Non-Coal Mining*	3	0	1	0	3
5.4 Non-Coal Mining* 5.5 Non-Coal Mining Cavities	0	0	0	0	0

Report Reference: GS-5746912



				LOCATION IN	ITELLIGENCE
Section 5: Mining, Extraction & Natural Cavities	On-site	0-50m	51-250	251-500	501-1000
5.6 Brine Extraction	0	0	0	0	0
5.7 Gypsum Extraction	0	0	0	0	0
5.8 Tin Mining	0	0	0	0	0
5.9 Clay Mining	0	0	0	0	0
Section 6: Natural Ground Subsidence	On-sit	te			
6.1 Shrink-Swell Clay	Low				
6.2 Landslides					
6.3 Ground Dissolution of Soluble Rocks Moderate					
6.4 Compressible Deposits	Negligik	ole			
6.5 Collapsible Deposits	Very Low				
6.5 Running Sand	Negligik	ole			
Section 7: Borehole Records	On-si	te	0-50m	5	1-250
7 BGS Recorded Boreholes	3		1		32
Section 8: Estimated Background Soil Chemistry	On-si	te	0-50m	5	1-250
8 Records of Background Soil Chemistry	24		9		0
Section 9: Railways and Tunnels	On-site	0-50m	51-250	250-500	
9.1 Tunnels	0	0	1	Not Searched	
9.2 Historical Railway and Tunnel Features	0	0	27	Not Searched	
9.3 Historical Railways	0	0	0	Not Searched	
9.4 Active Railways	0	0	10	Not Searched	
9.5 Railway Projects	0	0	0	0	

Report Reference: GS-5746912 Client Reference: C-10730-C_Fort_Halstead_PO_P028025

1:10,000 Scale Availability

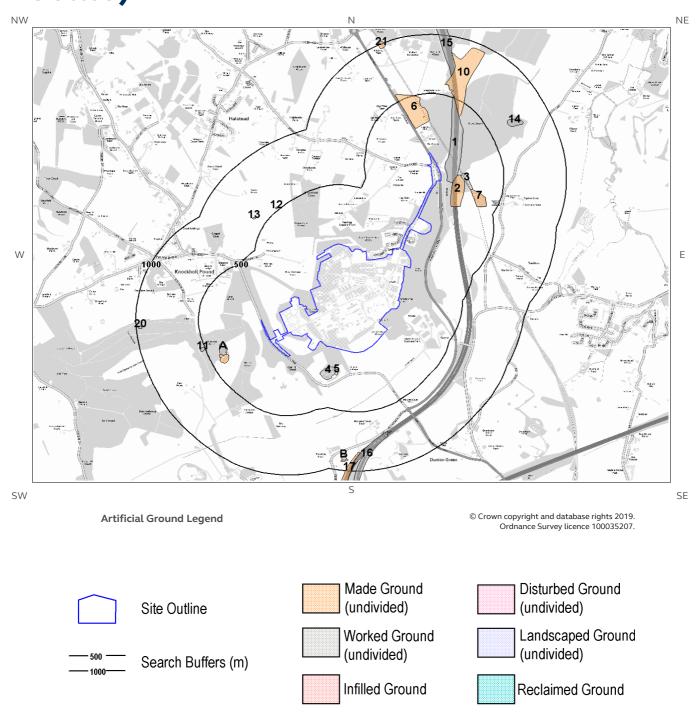
Availability of 1:10,000 Scale Geology Mapping

The following information represents the availability of the key components of the 1:10,000 scale geological data.

ID	Distance	Artificial Coverage	Superficial Coverage	Bedrock Coverage	Mass Movement Coverage
1	0.0	No deposits are mapped	No coverage	No coverage	No coverage
2	0.0	Some deposits are mapped	Full	Full	No coverage
3	0.0	Some deposits are mapped	Full	Full	No coverage
4	238.0	Some deposits are mapped	Full	Full	No coverage

Guidance: The 1:10,000 scale geological interpretation is the most detailed generally available from BGS and is the scale at which most geological surveying is carried out in the field. The database is presented as four types of geology (artificial, mass movement, superficial and bedrock), although not all themes are mapped or available on every map sheet. Therefore a coverage layer showing the availability of the four themes is presented above.

The definitions of coverage are as follows:


Geology	Full Coverage	Partial Coverage	No Coverage	
Bedrock The whole tile has been mapped		Some but not all the tile has been mapped	No coverage	
Superficial	The whole tile has been mapped	Some but not all of the tile has been mapped	No coverage	
Artificial Some deposits are mapped on this tile		-	No deposits are mapped	
Mass Movement	Some deposits are mapped on this tile	-	No coverage	

Report Reference: GS-5746912

1 Geology (1:10,000 scale).

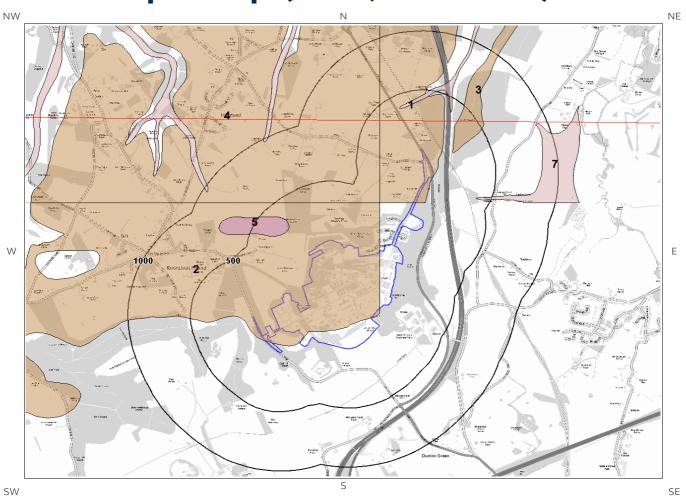
1.1 Artificial Ground map (1:10,000 scale)

Report Reference: GS-5746912

1. Geology 1:10,000 scale

1.1 Artificial Ground

The following geological information represented on the mapping is derived from 1:10,000 scale BGS Geological mapping.


Are there any records of Artificial/ Made Ground within 500m of the study site boundary at 1:10,000 scale? Yes

ID	Distance	Direction	LEX Code	Description	Rock Description
1	42.0	Е	WGR-VOID	Worked Ground (Undivided)	Void
2	92.0	Е	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit
3	156.0	Е	WGR-VOID	Worked Ground (Undivided)	Void
4	158.0	S	WGR-VOID	Worked Ground (Undivided)	Void
5	174.0	S	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit
6	235.0	NW	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit
7	248.0	E	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit
8A	333.0	W	WGR-VOID	Worked Ground (Undivided)	Void
9A	352.0	SW	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit
10	383.0	NE	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit

Report Reference: GS-5746912

1.2 Superficial Deposits and Landslips map (1:10,000 scale)

Artificial Ground Legend

© Crown copyright and database rights 2019. Ordnance Survey licence 100035207.

Site Outline

_____500 ____ ____1000 Search Buffers (m)

1.2 Superficial Deposits and Landslips

The following geological information represented on the mapping is derived from 1:10,000 scale BGS Geological mapping

1.2.1 Superficial Deposits/ Drift Geology

Are there any records of Superficial Deposits/ Drift Geology within 500m of the study site boundary at 1:10,000 scale?

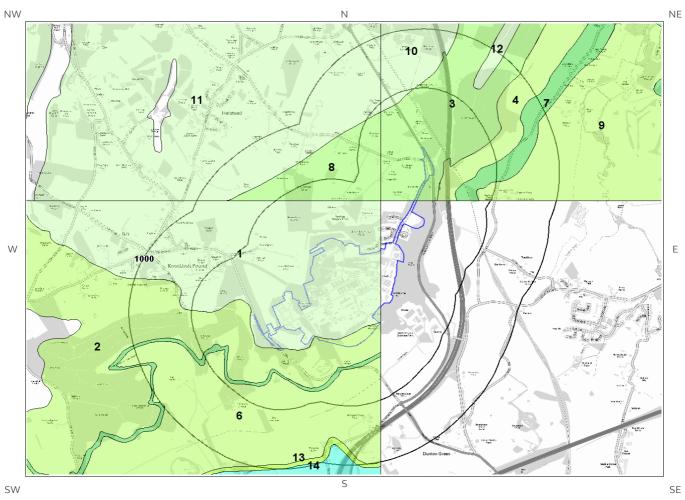
ID	Distance (m)	Direction	LEX Code	Description	Rock Description
1	0.0	On Site	CWF-C	Clay-with-flints Formation - Clay	Clay
2	0.0	On Site	CWF-DMTN	Clay-with-flints Formation - Diamicton	Diamicton
3	201.0	Е	CWF-C	Clay-with-flints Formation - Clay	Clay
4	238.0	NW	CWF-C	Clay-with-flints Formation - Clay	Clay
5	253.0	NW	DBLB-XSV	Disturbed Blackheath Beds - Sand And Gravel	Sand And Gravel
6	378.0	N	HEAD-DMTN	Head - Diamicton	Diamicton
7	387.0	SE	HEAD-DMTN	Head - Diamicton	Diamicton

1.2.2 Landslip

Are there any records of Landslip within 500m of the study site boundary at 1:10,000 scale?

No

Database searched and no data found.


The geology map for the site and surrounding area are extracted from the BGS Digital Geological Map of Great Britain at 1:10,000 scale

This Geology shows the main components as discrete layers, these are: Artificial / Made Ground, Superficial / Drift Geology and Landslips. These are all displayed with the BGS Lexicon code for the rock unit and BGS sheet number. Not all of the main geological components have nationwide coverage.

Report Reference: GS-5746912

1.3 Bedrock and linear features map (1:10,000 scale)

Bedrock and linear features Legend

© Crown copyright and database rights 2019. Ordnance Survey licence 100035207.

Report Reference: GS-5746912

1.3 Bedrock and linear features

The following geological information represented on the mapping is derived from 1:10,000 scale BGS Geological mapping.

1.3.1 Bedrock/ Solid Geology

Records of Bedrock/Solid Geology within 500m of the study site boundary at 1:10,000 scale.

ID	Distance (m)	Direction	LEX Code	Description	Rock Age
1	0.0	On Site	LSNCK- CHLK	Lewes Nodular Chalk Formation, Seaford Chalk Formation And Newhaven Chalk Formation (undifferentiated) - Chalk	Campanian Age - Turonian Age
2	0.0	On Site	HNCK-CHLK	Holywell Nodular Chalk Formation And New Pit Chalk Formation (undifferentiated) - Chalk	Turonian Age - Cenomanian Age
3	0.0	On Site	LECH-CHLK	Lewes Nodular Chalk Formation - Chalk	Coniacian Age - Turonian Age
4	65.0	Е	NPCH-CHLK	New Pit Chalk Formation - Chalk	Turonian Age
5	141.0	SE	MR-CHLK	Melbourn Rock Member - Chalk	Turonian Age - Cenomanian Age
6	173.0	SE	WZCK- CHLK	West Melbury Marly Chalk Formation And Zig Zag Chalk Formation (undifferentiated) - Chalk	Cenomanian Age
7	219.0	SE	HCK-CHLK	Holywell Nodular Chalk Formation - Chalk	Turonian Age - Cenomanian Age
8	238.0	NW	LECH-CHLK	Lewes Nodular Chalk Formation - Chalk	Coniacian Age - Turonian Age
9	366.0	Е	WZCK- CHLK	West Melbury Marly Chalk Formation And Zig Zag Chalk Formation (undifferentiated) - Chalk	Cenomanian Age
10	424.0	NW	SECK-CHLK	Seaford Chalk Formation - Chalk	Santonian Age - Coniacian Age
11	447.0	NW	SECK-CHLK	Seaford Chalk Formation - Chalk	Santonian Age - Coniacian Age

1.3.2 Linear features

Are there any records of linear features within 500m of the study site boundary at 1:10,000 scale?

No

Database searched and no data found at this scale.

The geology map for the site and surrounding area are extracted from the BGS Digital Geological Map of great Britain at 1:10,000 scale.

This Geology shows the main components as discrete layers, these are: Bedrock/ Solid Geology and linear features such as faults. These are all displayed with the BGS Lexicon code for the rock unit and BGS sheet number. Not all of the main geological components have nationwide coverage.

Report Reference: GS-5746912

2 Geology 1:50,000 Scale2.1 Artificial Ground map

© Crown copyright and database rights 2019. Ordnance Survey licence 100035207.

Report Reference: GS-5746912

2. Geology 1:50,000 scale

2.1 Artificial Ground

The following geological information represented on the mapping is derived from 1:50,000 scale BGS Geological mapping, Sheet No: 287

2.1.1 Artificial/ Made Ground

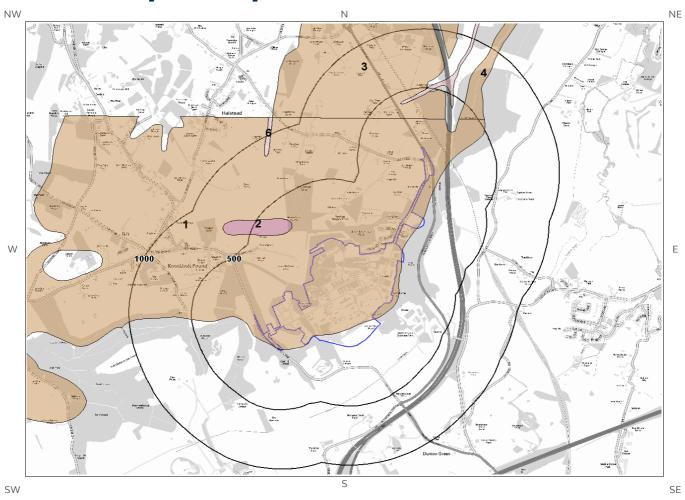
Are there any records of Artificial/ Made Ground within 500m of the study site boundary?

Yes

ID	Distance (m)	Direction	LEX Code	Description	Rock Description
1	246.0	N	MGR-ARTDP	MADE GROUND (UNDIVIDED)	ARTIFICIAL DEPOSIT
2	294.0	NE	WGR-VOID	WORKED GROUND (UNDIVIDED)	VOID
3	400.0	NE	MGR-ARTDP	MADE GROUND (UNDIVIDED)	ARTIFICIAL DEPOSIT

2.1.2 Permeability of Artificial Ground

Are there any records relating to permeability of artificial ground within the study site boundary?


No

Database searched and no data found.

Report Reference: GS-5746912

2.2 Superficial Deposits and Landslips map (1:50,000 scale)

© Crown copyright and database rights 2019. Ordnance Survey licence 100035207.

Report Reference: GS-5746912

2.2 Superficial Deposits and Landslips

2.2.1 Superficial Deposits/ Drift Geology

Are there any records of Superficial Deposits/ Drift Geology within 500m of the study site boundary? Yes

ID	Distance	Direction	LEX Code	Description	Rock Description
1	0.0	On Site	CWF-XCZSV	CLAY-WITH-FLINTS FORMATION	CLAY, SILT, SAND AND GRAVEL
2	238.0	NW	DBLB-XSV	DISTURBED BLACKHEATH BEDS	SAND AND GRAVEL
3	240.0	N	CWF-XCZSV	CLAY-WITH-FLINTS FORMATION	CLAY, SILT, SAND AND GRAVEL
4	369.0	NE	CWF-XCZSV	CLAY-WITH-FLINTS FORMATION	CLAY, SILT, SAND AND GRAVEL
5	397.0	N	HEAD-XCZSV	HEAD	CLAY, SILT, SAND AND GRAVEL

2.2.2 Permeability of Superficial Ground

Are there any records relating to permeability of superficial ground within the study site boundary? Yes

Distance (m)	Direction	Flow Type	Maximum Permeability	Minimum Permeability
0.0	On Site	Mixed	High	Very Low
0.0	On Site	Mixed	High	Very Low
0.0	On Site	Mixed	High	Very Low

2.2.3 Landslip

Are there any records of Landslip within 500m of the study site boundary?

No

Database searched and no data found.

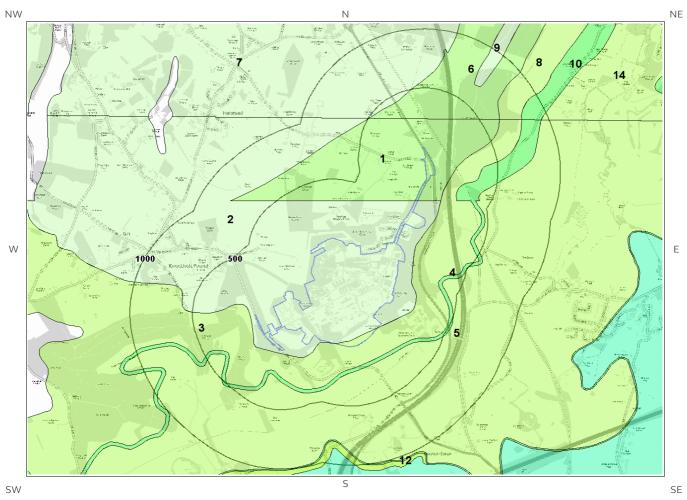
The geology map for the site and surrounding area are extracted from the BGS Digital Geological Map of Great Britain at 1:50,000 scale.

This Geology shows the main components as discrete layers, there are: Artificial/ Made Ground, Superficial/ Drift Geology and Landslips. These are all displayed with the BGS Lexicon code for the rock unit and BGS sheet number. Not all of the main geological components have nationwide coverage.

Report Reference: GS-5746912

2.2.4 Landslip Permeability

Are there any record	ds relating to	permeability	of landslip	s within the st	udy site boundar	У?
----------------------	----------------	--------------	-------------	-----------------	------------------	----


No

Database searched and no data found.

Report Reference: GS-5746912 Client Reference: C-10730-C_Fort_Halstead_PO_P028025

2.3 Bedrock and linear features map (1:50,000 scale)

© Crown copyright and database rights 2019. Ordnance Survey licence 100035207.

Report Reference: GS-5746912

2.3 Bedrock, Solid Geology & linear features

The following geological information represented on the mapping is derived from 1:50,000 scale BGS Geological mapping, Sheet No: 287

2.3.1 Bedrock/Solid Geology

Records of Bedrock/Solid Geology within 500m of the study site boundary:

ID	Distance	Direction	LEX Code	Rock Description	Rock Age
1	0.0	On Site	LECH-CHLK	LEWES NODULAR CHALK FORMATION - CHALK	TURONIAN
2	0.0	On Site	LSNCK-CHLK	LEWES NODULAR CHALK FORMATION, SEAFORD CHALK FORMATION AND NEWHAVEN CHALK FORMATION (UNDIFFERENTIATED) - CHALK	TURONIAN
3	0.0	On Site	HNCK-CHLK	HOLYWELL NODULAR CHALK FORMATION AND NEW PIT CHALK FORMATION (UNDIFFERENTIATED) - CHALK	CENOMANIAN
4	163.0	SE	MR-CHLK	MELBOURN ROCK MEMBER - CHALK	CENOMANIAN
5	192.0	SE	WZCK-CHLK	WEST MELBURY MARLY CHALK FORMATION AND ZIG ZAG CHALK FORMATION (UNDIFFERENTIATED) - CHALK	CENOMANIAN
6	240.0	N	LECH-CHLK	LEWES NODULAR CHALK FORMATION - CHALK	TURONIAN
7	442.0	NW	LSNCK-CHLK	LEWES NODULAR CHALK FORMATION, SEAFORD CHALK FORMATION AND NEWHAVEN CHALK FORMATION (UNDIFFERENTIATED) - CHALK	TURONIAN

2.3.2 Permeability of Bedrock Ground

Are there any records relating to permeability of bedrock ground within the study site boundary?

Yes

Distanc e	Direction	Flow Type	Maximum Permeability	Minimum Permeability
0.0	On Site	Fracture	Very High	Very High
0.0	On Site	Fracture	Very High	Very High
0.0	On Site	Fracture	Very High	Very High
0.0	On Site	Fracture	Very High	Very High
13.0	SE	Fracture	Very High	Very High

Report Reference: GS-5746912

2.3.3 Linear features

Are there any records of linear features within 500m of the study site boundary?

No

Database searched and no data found.

The geology map for the site and surrounding area are extracted from the BGS Digital Geological Map of Great Britain at 1:50,000 scale.

This Geology shows the main components as discrete layers, these are: Bedrock/Solid Geology and linear features such as faults. These are all displayed with the BGS Lexicon code for the rock unit and BGS sheet number. Not all of the main geological components have nation wide coverage.

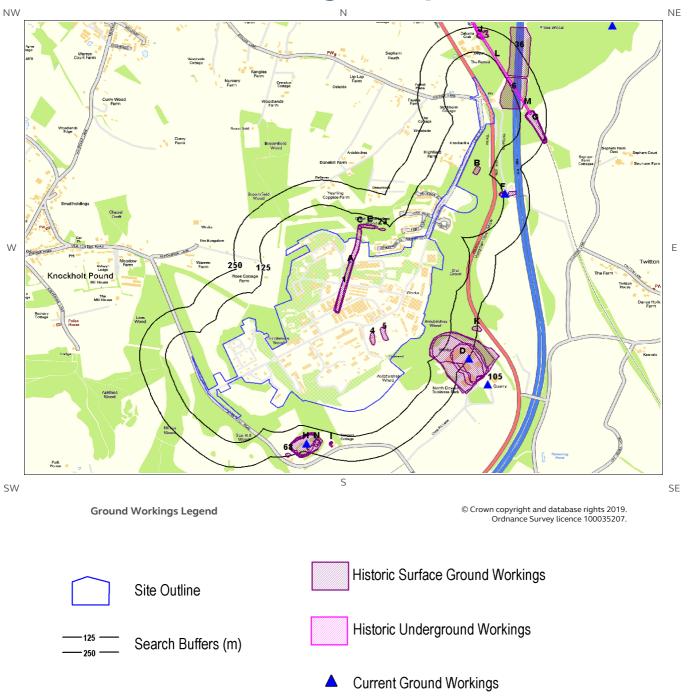
Report Reference: GS-5746912

3 Radon Data

3.1 Radon Affected Areas

Is the property in a Radon Affected Area as defined by the Health Protection Agency (HPA) and if so what percentage of homes are above the Action Level? The property is not in a Radon Affected Area, as less than 1% of properties are above the Action Level.

The radon data in this report is supplied by the BGS/Public Health England and is the definitive map of Radon Affected Areas in Great Britain and Northern Ireland. The dataset was created using long-term radon measurements in over 479,000 homes across Great Britain and 23,000 homes across Northern Ireland, combined with geological data. The dataset is considered accurate to 50m to allow for the margin of error in geological lines, and the findings of this report supercede any answer given in the less accurate Indicative Atlas of Radon in Great Britain, which simplifies the data to give the highest risk within any given 1km grid square. As such, the radon atlas is considered indicative, whereas the data given in this report is considered definitive.


3.2 Radon Protection

Is the property in an area where Radon Protection are required for new properties or extensions to existing ones as described in publication BR211 by the Building Research Establishment? No radon protective measures are necessary.

Report Reference: GS-5746912

4 Ground Workings map

4 Ground Workings

4.1 Historical Surface Ground Working Features derived from Historical Mapping

This dataset is based on Groundsure's unique Historical Land Use Database derived from 1:10,560 and 1:10,000 scale historical mapping

Are there any Historical Surface Ground Working Features within 250m of the study site boundary? Yes

ID	Distance (m)	Direction	NGR	Use	Date
1	0.0	On Site	549716 159393	Unspecified Heap	1981
2A	0.0	On Site	549736 159487	Unspecified Heap	1961
3A	0.0	On Site	549734 159473	Unspecified Heap	1907
4	0.0	On Site	549849 159131	Unspecified Heap	1981
5	0.0	On Site	549906 159157	Unspecified Heap	1981
6	47.0	Е	550525 160372	Cuttings	1988
7B	47.0	SE	550347 159981	Pond	1987
8B	47.0	SE	550347 159981	Pond	1968
9В	47.0	SE	550347 159981	Pond	1983
10B	47.0	SE	550347 159981	Pond	1973
11C	52.0	N	549790 159696	Unspecified Heap	1932
12C	52.0	Ν	549790 159696	Unspecified Heap	1940
13C	52.0	Ν	549790 159696	Unspecified Heap	1907
14C	52.0	Ν	549822 159698	Unspecified Heap	1895
15D	56.0	SE	550289 159012	Unspecified Quarry	1973
16D	56.0	SE	550289 159012	Unspecified Quarry	1968
17D	62.0	SE	550277 159009	Unspecified Quarry	1983
18D	62.0	SE	550277 159009	Unspecified Quarry	1987
19E	66.0	Ν	549838 159699	Unspecified Heap	1932
20E	66.0	Ν	549838 159699	Unspecified Heap	1940
21E	66.0	Ν	549838 159699	Unspecified Heap	1907

Report Reference: GS-5746912

					LOCATION INTELLIGENCE
ID	Distance (m)	Direction	NGR	Use	Date
22D	68.0	SE	550259 159023	Unspecified Quarry	1961
23	81.0	NE	549893 159684	Unspecified Heap	1907
24F	108.0	Е	550472 159863	Unspecified Pit	1983
25F	108.0	E	550472 159863	Unspecified Pit	1987
26F	108.0	E	550472 159863	Unspecified Pit	1973
27F	108.0	E	550472 159863	Unspecified Pit	1968
28F	108.0	E	550472 159863	Unspecified Pit	1961
29F	111.0	E	550475 159860	Unspecified Pit	1938
30F	111.0	E	550475 159860	Unspecified Pit	1938
31F	112.0	E	550475 159860	Unspecified Quarry	1869
32F	112.0	Е	550475 159860	Unspecified Pit	1907
33F	112.0	Е	550475 159860	Unspecified Pit	1940
34F	112.0	E	550475 159860	Unspecified Pit	1932
35F	112.0	E	550475 159860	Old Chalk Pit	1895
36	138.0	NE	550550 160580	Cuttings	1988
37F	146.0	E	550515 159864	Cuttings	1987
38G	147.0	Е	550629 160204	Cuttings	1961
39G	147.0	E	550629 160204	Cuttings	1988
40G	147.0	Е	550629 160204	Cuttings	1967
41G	148.0	E	550632 160201	Cuttings	1938
42H	148.0	S	549534 158601	Unspecified Old Quarry	1895
43G	149.0	Е	550631 160207	Cuttings	1936
44G	149.0	E	550631 160207	Cuttings	1907
45G	149.0	E	550631 160207	Cuttings	1895
46G	153.0	E	550634 160198	Cuttings	1868
47H	154.0	S	549518 158597	Unspecified Pit	1981
48H	154.0	S	549518 158597	Unspecified Pit	1961
49H	156.0	S	549527 158592	Unspecified Old Quarry	1907
50H	158.0	S	549520 158593	Unspecified Pit	1936

Report Reference: GS-5746912 Client Reference: C-10730-C_Fort_Halstead_PO_P028025

				LOCATION INTELLIGENCE
Distance (m)	Direction	NGR	Use	Date
159.0	S	549529 158588	Unspecified Quarry	1869
164.0	SE	550311 159012	Unspecified Quarry	1895
166.0	SE	550311 159004	Unspecified Quarry	1869
167.0	S	549651 158599	Unspecified Ground Workings	1907
168.0	S	549651 158599	Unspecified Ground Workings	1869
175.0	S	549583 158604	Pond	1961
192.0	Ν	550364 160658	Unspecified Heap	1932
193.0	Ν	550364 160659	Unspecified Heap	1907
193.0	N	550362 160660	Unspecified Heap	1938
193.0	N	550362 160660	Unspecified Heap	1938
194.0	Ν	550376 160671	Unspecified Pit	1869
194.0	N	550364 160660	Unspecified Heap	1940
194.0	Ν	550362 160661	Unspecified Ground Workings	1961
195.0	N	550371 160677	Unspecified Heaps	1895
225.0	E	550348 159182	Unspecified Heap	1987
225.0	E	550348 159182	Unspecified Heap	1973
225.0	E	550348 159182	Unspecified Heap	1983
237.0	S	549445 158543	Unspecified Pit	1895
	(m) 159.0 164.0 166.0 167.0 168.0 175.0 192.0 193.0 193.0 194.0 194.0 194.0 195.0 225.0 225.0	(m) Direction 159.0 S 164.0 SE 166.0 SE 167.0 S 168.0 S 175.0 S 192.0 N 193.0 N 193.0 N 194.0 N 194.0 N 194.0 N 195.0 N 225.0 E 225.0 E	(m) Direction NGR 159.0 S 549529 158588 164.0 SE 550311 159012 166.0 SE 550311 166.0 SE 550311 159004 159004 167.0 S 549651 158599 158599 175.0 S 549583 158604 192.0 N 192.0 N 550364 193.0 N 550364 160659 193.0 N 550362 193.0 N 550362 194.0 N 550376 194.0 N 550364 194.0 N 550362 194.0 N 550362 195.0 N 550371 160661 195.0 N 550348 159182 225.0 E 550348 159182 225.0 E 550348 159182 549445	(m) Direction NGR Use 159.0 S 549529 158588 Unspecified Quarry 164.0 SE 550311 159012 Unspecified Quarry 166.0 SE 550311 159004 Unspecified Quarry 167.0 S 549651 158599 Unspecified Ground Workings 168.0 S 549651 158599 Unspecified Ground Workings 175.0 S 549583 158604 Pond 192.0 N 550364 160658 Unspecified Heap 193.0 N 550364 160660 Unspecified Heap 193.0 N 550362 160660 Unspecified Heap 194.0 N 550362 160661 Unspecified Pit 194.0 N 550364 160660 Unspecified Ground Workings 195.0 N 550362 160661 Unspecified Heap 195.0 N 550348 159182 Unspecified Heap 225.0 E 550348 159182 Unspecified Heap 225.0 E 550348 159182 Unspecified Pit

4.2 Historical Underground Working Features derived from Historical Mapping

This data is derived from the Groundsure unique Historical Land Use Database. It contains data derived from 1:10,000 and 1:10,560 historical Ordnance Survey Mapping and includes some natural topographical features (Shake Holes for example) as well as manmade features that may have implications for ground stability. Underground and mining features have been identified from surface features such as shafts. The distance that these extend underground is not shown.

Are there any Historical Underground Working Features within 1000m of the study site boundary? Yes

The following Historical Underground Working Features are provided by Groundsure:

ID	Distance (m)	Direction	NGR	Use	Date
69L	127.0	NE	549976 161316	Tunnel	1932
70L	127.0	NE	549976 161316	Tunnel	1907

Report Reference: GS-5746912

					LOCATION INTELLIGENCE
ID	Distance (m)	Direction	NGR	Use	Date
71L	127.0	NE	549976 161316	Tunnel	1895
72L	127.0	NE	549976 161316	Tunnel	1938
73L	127.0	NE	549976 161316	Tunnel	1869
74M	152.0	E	550593 160296	Tunnel	1868
75M	152.0	E	550593 160296	Tunnel	1907
76J	203.0	N	550371 160661	Air Shaft	1988
	203.0	N	550371 160661	Air Shaft	1967
78J	205.0	N	550370 160662	Air Shaft	1869
79J	206.0	N	550368 160663	Air Shaft	1938
80J	206.0	N	550368 160663	Air Shaft	1895
81J	206.0	N	550368 160663	Air Shaft	1932
82J	206.0	N	550368 160663	Air Shaft	1907
83J	207.0	N	550365 160664	Air Shaft	1955
Not shown	578.0	Ν	550158 161007	Air Shaft	1938
Not shown	578.0	N	550158 161007	Air Shaft	1907
Not shown	578.0	N	550158 161007	Air Shaft	1932
Not shown	578.0	N	550158 161007	Air Shaft	1895
Not shown	578.0	N	550158 161007	Air Shaft	1869
Not shown	578.0	N	550161 161010	Air Shaft	1967
Not shown	578.0	N	550161 161010	Air Shaft	1988
Not shown	580.0	N	550155 161008	Air Shaft	1955
Not shown	888.0	NW	549686 161796	Tunnel	1975
Not shown	888.0	NW	549686 161796	Tunnel	1990
Not shown	888.0	NW	549686 161796	Tunnel	1955
Not shown	972.0	NW	549953 161352	Air Shaft	1869
Not shown	975.0	NW	549951 161353	Air Shaft	1938
Not shown	975.0	NW	549951 161353	Air Shaft	1907
Not shown	976.0	NW	549953 161356	Air Shaft	1975
Not shown	976.0	NW	549953 161356	Air Shaft	1990
	976.0	NW		Air Shaft	1990

Report Reference: GS-5746912 Client Reference: C-10730-C_Fort_Halstead_PO_P028025

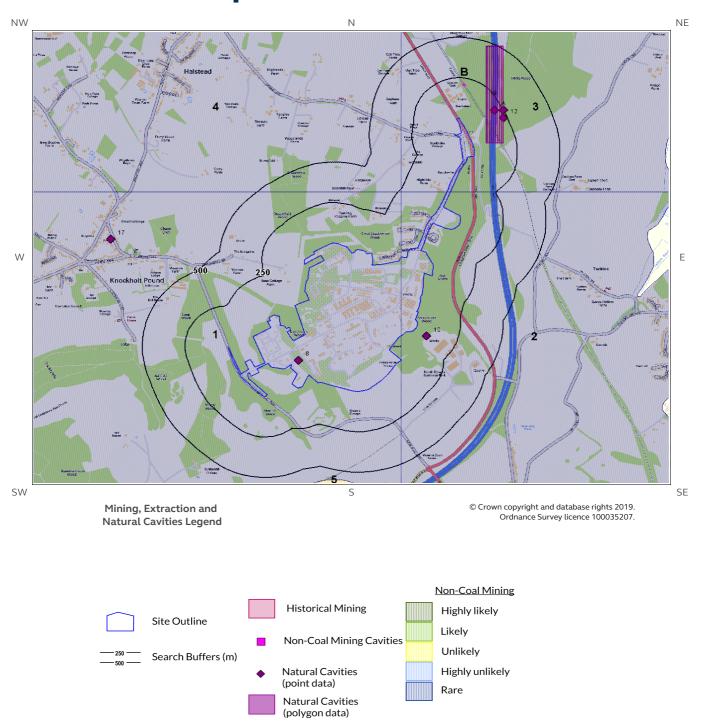
ID	Distance (m)	Direction	NGR	Use	Date
Not shown	977.0	NW	549951 161355	Air Shaft	1932
Not shown	979.0	NW	549952 161358	Air Shaft	1895

4.3 Current Ground Workings

This dataset is derived from the BGS BRITPITS database covering active; inactive mines; quarries; oil wells; gas wells and mineral wharves; and rail deposits throughout the British Isles.

Are there any BGS Current Ground Workings within 1000m of the study site boundary?

Yes


The following Current Ground Workings information is provided by British Geological Survey:

ID	Distanc e (m)	Direction	NGR	Commodity Produced	Pit Name	Type of working	Status
102F	136.0	E	550483 159864	Chalk	Hangman Down Shaw Chalk Pit	A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site	Ceased
103N	211.0	S	549533 158600	Chalk	The Beacon	A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site	Ceased
104D	252.0	SE	550309 159031	Chalk	Dunton Green Lime Works	A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site	Ceased
105	402.0	E	550400 158900	Chalk	Dunton Green	A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site	Ceased
106	696.0	NE	550994 160713	Chalk	Pilots Wood	A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site	Ceased

Report Reference: GS-5746912

5 Mining, Extraction & Natural Cavities map

Report Reference: GS-5746912

5 Mining, Extraction & Natural Cavities

5.1 Historical Mining

This dataset is derived from Groundsure unique Historical Land-use Database that are indicative of mining or extraction activities.

Are there any Historical Mining areas within 1000m of the study site boundary?

Yes

The following Historical Mining information is provided by Groundsure:

ID	Distance (m)	Direction	NGR	Details	Date
18B	203.0	N	550371 160661	Air Shaft	1988
19B	203.0	N	550371 160661	Air Shaft	1967
20B	205.0	N	550370 160662	Air Shaft	1869
21B	206.0	N	550368 160663	Air Shaft	1938
22B	206.0	N	550368 160663	Air Shaft	1932
23B	206.0	N	550368 160663	Air Shaft	1907
24B	206.0	N	550368 160663	Air Shaft	1895
25B	207.0	N	550365 160664	Air Shaft	1955
Not shown	578.0	N	550158 161007	Air Shaft	1932
Not shown	578.0	N	550158 161007	Air Shaft	1869
Not shown	578.0	N	550158 161007	Air Shaft	1938
Not shown	578.0	N	550158 161007	Air Shaft	1895
Not shown	578.0	N	550158 161007	Air Shaft	1907
Not shown	578.0	N	550161 161010	Air Shaft	1988
Not shown	578.0	N	550161 161010	Air Shaft	1967
Not shown	580.0	N	550155 161008	Air Shaft	1955
Not shown	972.0	NW	549953 161352	Air Shaft	1869
Not shown	975.0	NW	549951 161353	Air Shaft	1907
Not shown	975.0	NW	549951 161353	Air Shaft	1938
Not shown	976.0	NW	549953 161356	Air Shaft	1975

Report Reference: GS-5746912

ID	Distance (m)	Direction	NGR	Details	Date
Not shown	976.0	NW	549953 161356	Air Shaft	1990
Not shown	977.0	NW	549951 161355	Air Shaft	1932
Not shown	979.0	NW	549952 161358	Air Shaft	1895

5.2 Coal Mining

This dataset provides information as to whether the study site lies within a known coal mining affected area as defined by the coal authority.

Are there any Coal Mining areas within 1000m of the study site boundary?

No

Database searched and no data found.

5.3 Johnson Poole and Bloomer

This dataset provides information as to whether the study site lies within an area where JPB hold information relating to mining.

Are there any JPB Mining areas within 1000m of the study site boundary?

No

The following information provided by JPB is not represented on mapping: Database searched and no data found.

5.4 Non-Coal Mining

This dataset provides information as to whether the study site lies within an area which may have been subject to non-coal historic mining.

Are there any Non-Coal Mining areas within 1000m of the study site boundary?

Yes

The following non-coal mining information is provided by the BGS:

ID	Distance (m)	Direction	Name	Commodity	Assessment of likelihood
1	0.0	On Site	Not available	Chalk	Sporadic underground mining of restricted extent may have occurred. Potential for difficult ground conditions are unlikely and localised and are at a level where they need not be considered
2	0.0	On Site	Not available	Chalk	Sporadic underground mining of restricted extent may have occurred. Potential for difficult ground conditions are unlikely and localised and are at a level where they need not be considered
3	0.0	On Site	Not available	Chalk	Sporadic underground mining of restricted extent may have occurred. Potential for difficult ground conditions are unlikely and localised and are at a level where they need not be considered

Report Reference: GS-5746912

ID	Distance (m)	Direction	Name	Commodity	Assessment of likelihood
4	238.0	NW	Not available	Chalk	Sporadic underground mining of restricted extent may have occurred. Potential for difficult ground conditions are unlikely and localised and are at a level where they need not be considered
5	556.0	S	Not available	Sand\Chalk	Small scale underground mining may have occurred; mine adits, shafts and tunnels may be present. Potential for localised difficult ground conditions are at a level where they should be considered
Not shown	766.0	S	Not available	Sand\Chalk	Small scale underground mining may have occurred; mine adits, shafts and tunnels may be present. Potential for localised difficult ground conditions are at a level where they should be considered
Not shown	806.0	S	Not available	Sand	Small scale underground mining may have occurred; mine adits, shafts and tunnels may be present. Potential for localised difficult ground conditions are at a level where they should be considered

5.5 Non-Coal Mining Cavities

This dataset provides information from the Peter Brett Associates (PBA) mining cavities database (compiled for the national study entitled "Review of mining instability in Great Britain, 1990" PBA has also continued adding to this database) on mineral extraction by mining.

Are there any Non-Coal Mining cavities within 1000m of the study site boundary?

No

Database searched and no data found.

5.6 Natural Cavities

This dataset provides information based on the Peter Brett Associates natural cavities database. The dataset is made up of points and polygons. Where polygons are used these represent an area in which it is expected the cavities could be found. It does not indicate that cavities are present everywhere within the polygon, and caution should be used in the interpretation of this data.

Are there any Natural Cavities within 1000m of the study site boundary?

Yes

The following Natural Cavities information provided by Peter Brett Associates:

ID	Distance (m)	Direction	NGR	Superficial Deposits	Bedrock Deposits	Cavity Type and Number
8	0.0	On Site	549400 158950	Clay-with-Flints	Chalk Group	Solution Pipe x 3
9	78.0	Е	550550 160600	-	Chalk Group, Thanet Sand Formation	Solution Pipe x 4
10	83.0	SE	550150 159100	-	Chalk Group	Solution Pipe x 3
11A	205.0	NE	550550 160500	Clay-with-Flints	Chalk Group	Solution Pipe x 1
12	224.0	NE	550600 160450	Clay-with-Flints	Chalk Group	Solution Pipe x 1

Report Reference: GS-5746912

						EOCATION INTELLIGENCE
ID	Distance (m)	Direction	NGR	Superficial Deposits	Bedrock Deposits	Cavity Type and Number
13A	248.0	NE	550600 160500	Clay-with-Flints	Chalk Group	Solution Pipe x 1
Not shown	616.0	N	550500 161050	-	Chalk Group	Solution Pipe x 1
Not shown	665.0	N	550500 161100	-	Chalk Group	Solution Pipe x 1
Not shown	860.0	N	550450 161550	Clay-with-Flints	Chalk Group	Solution Pipe x 30
17	949.0	NW	548300 159700	-	Chalk Group	Vadose Cave x 1

5.7 Brine Extraction

This data provides information from the Cheshire Brine Subsidence Compensation Board.

Are there any Brine Extraction areas within 1000m of the study site boundary?

No

Database searched and no data found.

5.8 Gypsum Extraction

This dataset provides information on Gypsum extraction from British Gypsum records.

Are there any Gypsum Extraction areas within 1000m of the study site boundary?

No

Database searched and no data found.

5.9 Tin Mining

This dataset provides information on tin mining areas and is derived from tin mining records. This search is based upon postcode information to a sector level..

Are there any Tin Mining areas within 1000m of the study site boundary?

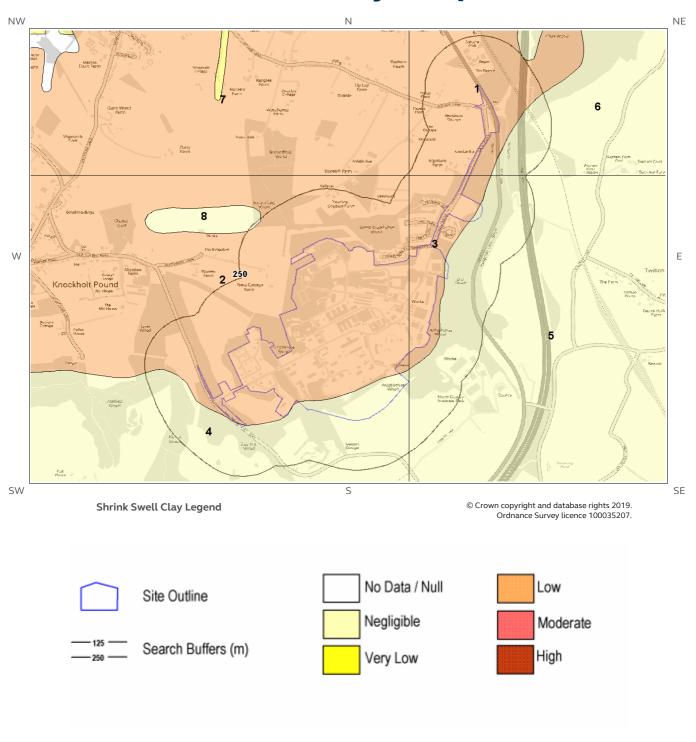
No

Database searched and no data found.

5.10 Clay Mining

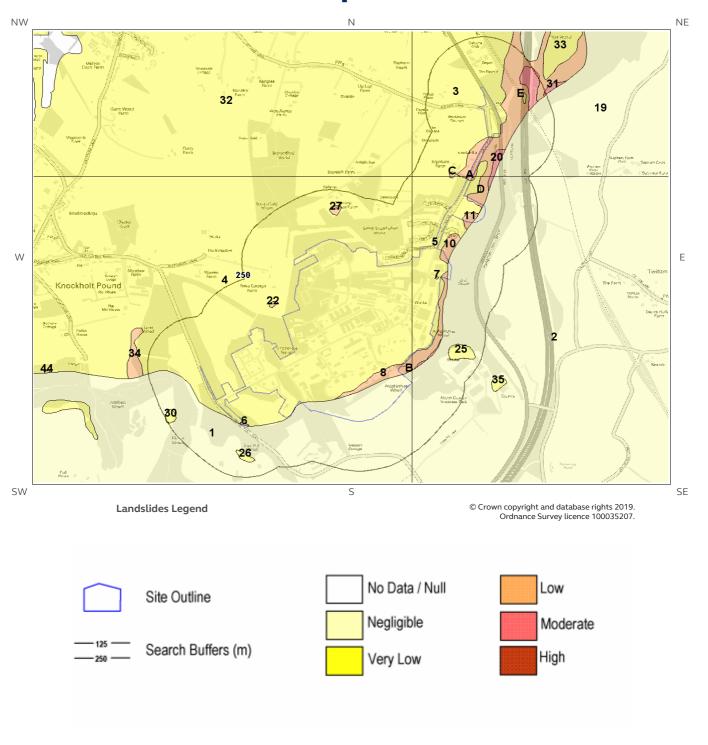
This dataset provides information on Kaolin and Ball Clay mining from relevant mining records.

Are there any Clay Mining areas within 1000m of the study site boundary?

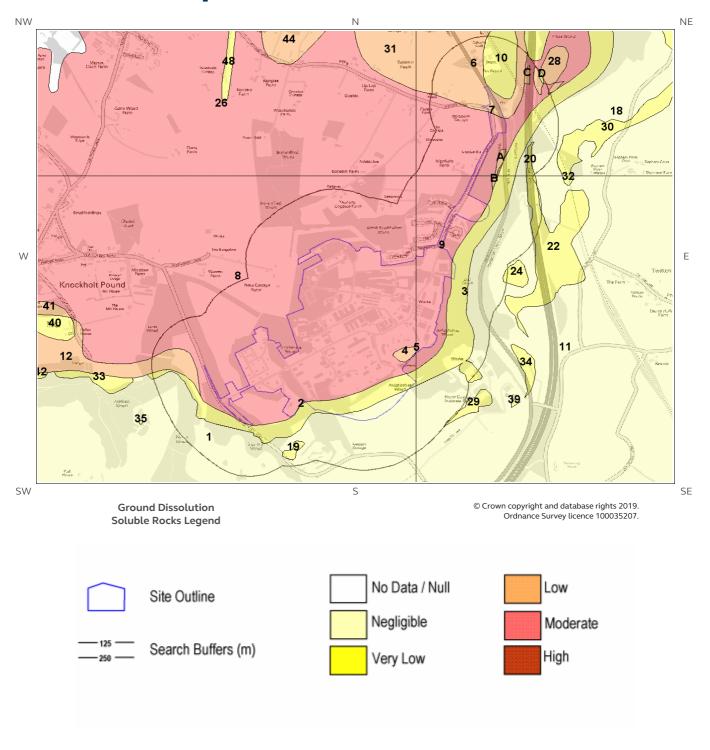

No

Database searched and no data found.

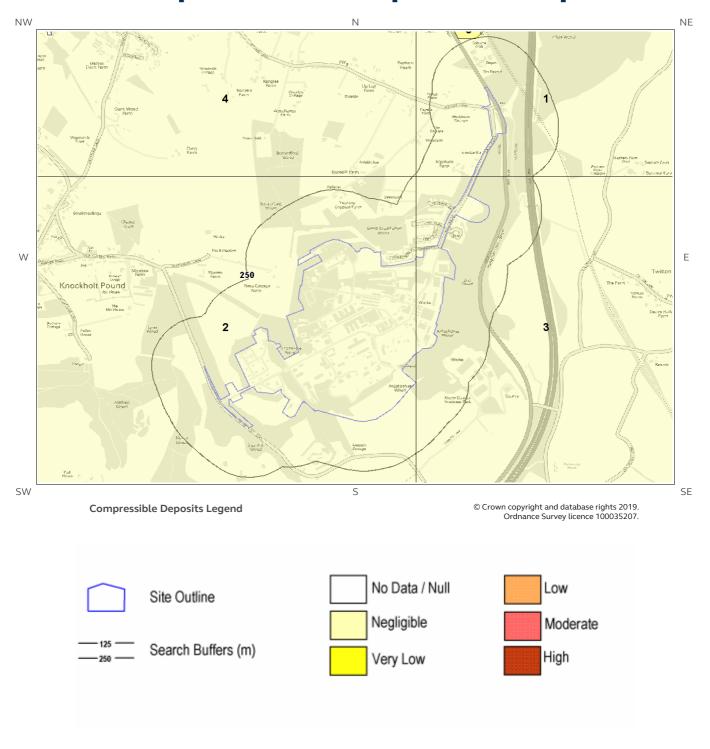
Report Reference: GS-5746912


6 Natural Ground Subsidence6.1 Shrink-Swell Clay map

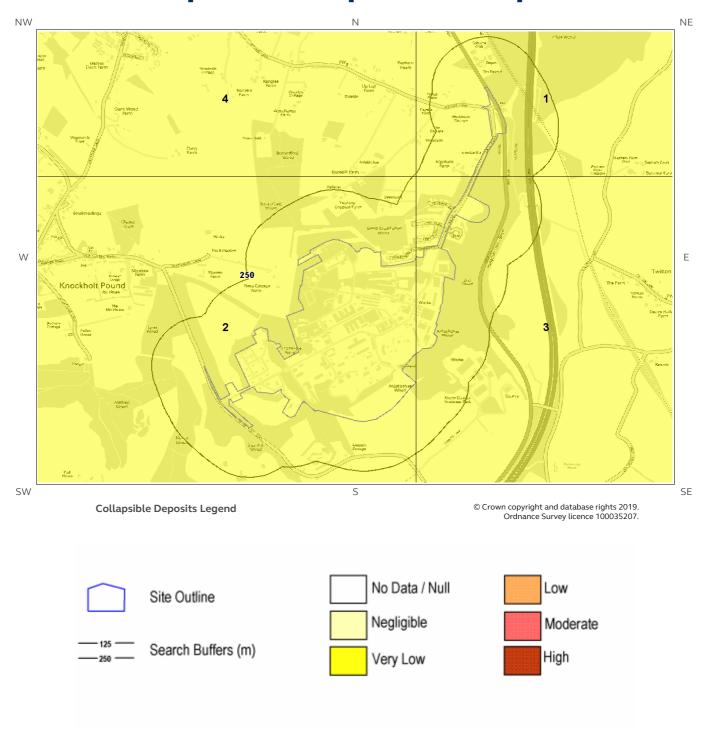
Report Reference: GS-5746912



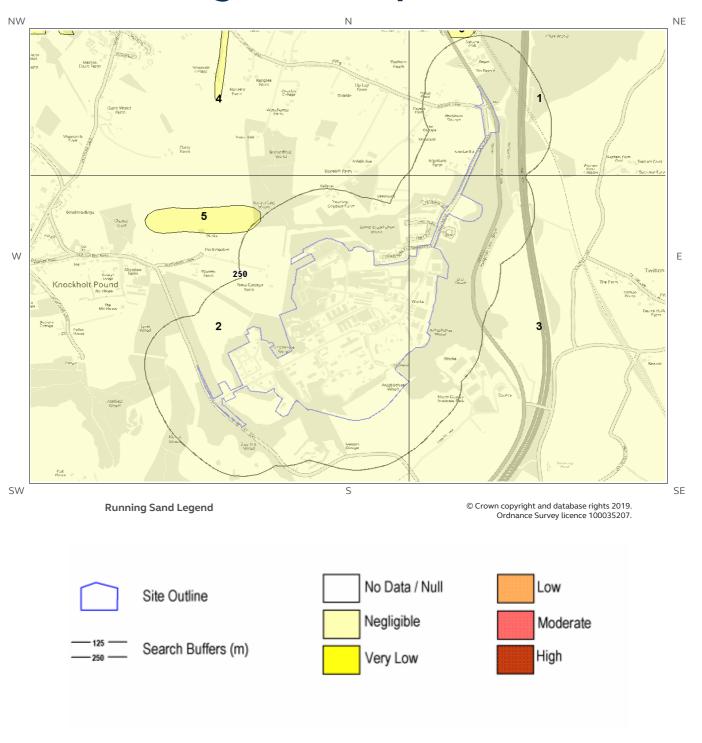
6.2 Landslides map


6.3 Ground Dissolution of Soluble Rocks map

Report Reference: GS-5746912



6.4 Compressible Deposits map



6.5 Collapsible Deposits map

6.6 Running Sand map

6 Natural Ground Subsidence

The National Ground Subsidence rating is obtained through the 6 natural ground stability hazard datasets, which are supplied by the British Geological Survey (BGS).

The following GeoSure data represented on the mapping is derived from the BGS Digital Geological map of Great Britain at 1:50,000 scale.

What is the maximum hazard rating of natural subsidence within the study site** boundary? Moderate

6.1 Shrink-Swell Clays

The following Shrink Swell information provided by the British Geological Survey:

ID	Distance (m)	Direction	Hazard Rating	Details
1	0.0	On Site	Low	Ground conditions predominantly medium plasticity. Do not plant trees with high soil moisture demands near to buildings. For new build, consideration should be given to advice published by the National House Building Council (NHBC) and the Building Research Establishment (BRE). There is a possible increase in construction cost to reduce potential shrink-swell problems. For existing property, there is a possible increase in insurance risk, especially during droughts or where vegetation with high moisture demands is present.
2	0.0	On Site	Low	Ground conditions predominantly medium plasticity. Do not plant trees with high soil moisture demands near to buildings. For new build, consideration should be given to advice published by the National House Building Council (NHBC) and the Building Research Establishment (BRE). There is a possible increase in construction cost to reduce potential shrink-swell problems. For existing property, there is a possible increase in insurance risk, especially during droughts or where vegetation with high moisture demands is present.
3	0.0	On Site	Low	Ground conditions predominantly medium plasticity. Do not plant trees with high soil moisture demands near to buildings. For new build, consideration should be given to advice published by the National House Building Council (NHBC) and the Building Research Establishment (BRE). There is a possible increase in construction cost to reduce potential shrink-swell problems. For existing property, there is a possible increase in insurance risk, especially during droughts or where vegetation with high moisture demands is present.

Report Reference: GS-5746912

^{*} This includes an automatically generated 50m buffer zone around the site

				EGCATION INTELLIGENCE
ID	Distance (m)	Direction	Hazard Rating	Details
4	0.0	On Site	Negligible	Ground conditions predominantly non-plastic. No special actions required to avoid problems due to shrink-swell clays. No special ground investigation required, and increased construction costs or increased financial risks are unlikely likely due to potential problems with shrink-swell clays.
5	0.0	On Site	Negligible	Ground conditions predominantly non-plastic. No special actions required to avoid problems due to shrink-swell clays. No special ground investigation required, and increased construction costs or increased financial risks are unlikely likely due to potential problems with shrink-swell clays.
6	48.0	SE	Negligible	Ground conditions predominantly non-plastic. No special actions required to avoid problems due to shrink-swell clays. No special ground investigation required, and increased construction costs or increased financial risks are unlikely likely due to potential problems with shrink-swell clays.

6.2 Landslides

The following Landslides information provided by the British Geological Survey:

ID	Distance (m)	Direction	Hazard Rating	Details
1	0.0	On Site	Negligible	No indicators for slope instability identified. No special actions required to avoid problems due to landslides. No special ground investigation required and increased construction costs or increased financial risks are unlikely due to potential problems with landslides.
2	0.0	On Site	Negligible	No indicators for slope instability identified. No special actions required to avoid problems due to landslides. No special ground investigation required and increased construction costs or increased financial risks are unlikely due to potential problems with landslides.
3	0.0	On Site	Very Low	Slope instability problems are unlikely to be present. No special actions required to avoid problems due to landslides. No special ground investigation required, and increased construction costs or increased financial risks are unlikely due to potential problems with landslides.
4	0.0	On Site	Very Low	Slope instability problems are unlikely to be present. No special actions required to avoid problems due to landslides. No special ground investigation required, and increased construction costs or increased financial risks are unlikely due to potential problems with landslides.

ID	(m)	Direction	Hazard Rating	Details
5	0.0	On Site	Very Low	Slope instability problems are unlikely to be present. No special actions required to avoid problems due to landslides. No special ground investigation required, and increased construction costs or increased financial risks are unlikely due to potential problems with landslides.
6	0.0	On Site	Low	Possibility of slope instability problems after major changes in ground conditions. Consideration should be given to stability if changes to drainage or excavations take place. Possible increase in construction cost to reduce potential slope stability problems. Existing property - no significant increase in insurance risk due to natural slope instability problems.
7	0.0	On Site	Low	Possibility of slope instability problems after major changes in ground conditions. Consideration should be given to stability if changes to drainage or excavations take place. Possible increase in construction cost to reduce potential slope stability problems. Existing property - no significant increase in insurance risk due to natural slope instability problems.
8	0.0	On Site	Low	Possibility of slope instability problems after major changes in ground conditions. Consideration should be given to stability if changes to drainage or excavations take place. Possible increase in construction cost to reduce potential slope stability problems. Existing property - no significant increase in insurance risk due to natural slope instability problems.
9	0.0	On Site	Low	Possibility of slope instability problems after major changes in ground conditions. Consideration should be given to stability if changes to drainage or excavations take place. Possible increase in construction cost to reduce potential slope stability problems. Existing property - no significant increase in insurance risk due to natural slope instability problems.
10	0.0	On Site	Low	Possibility of slope instability problems after major changes in ground conditions. Consideration should be given to stability if changes to drainage or excavations take place. Possible increase in construction cost to reduce potential slope stability problems. Existing property - no significant increase in insurance risk due to natural slope instability problems.
11	0.0	On Site	Low	Possibility of slope instability problems after major changes in ground conditions. Consideration should be given to stability if changes to drainage or excavations take place. Possible increase in construction cost to reduce potential slope stability problems. Existing property - no significant increase in insurance risk due to natural slope instability problems.
12E	0.0	On Site	Low	Possibility of slope instability problems after major changes in ground conditions. Consideration should be given to stability if changes to drainage or excavations take place. Possible increase in construction cost to reduce potential slope stability problems. Existing property - no significant increase in insurance risk due to natural slope instability problems.

LOCA				LOCATION INTELLIGENCE
ID	Distance (m)	Direction	Hazard Rating	Details
13D	0.0	On Site	Low	Possibility of slope instability problems after major changes in ground conditions. Consideration should be given to stability if changes to drainage or excavations take place. Possible increase in construction cost to reduce potential slope stability problems. Existing property - no significant increase in insurance risk due to natural slope instability problems.
14A	0.0	On Site	Low	Possibility of slope instability problems after major changes in ground conditions. Consideration should be given to stability if changes to drainage or excavations take place. Possible increase in construction cost to reduce potential slope stability problems. Existing property - no significant increase in insurance risk due to natural slope instability problems.
15A	3.0	SE	Very Low	Slope instability problems are unlikely to be present. No special actions required to avoid problems due to landslides. No special ground investigation required, and increased construction costs or increased financial risks are unlikely due to potential problems with landslides.
16B	14.0	NE	Moderate	Significant potential for slope instability with relatively small changes in ground conditions. Avoid large amounts of water entering the ground through pipe leakage or soak-aways. Do not undercut or place large amounts of material on slopes without technical advice. For new build - consider the potential and consequences of ground movement during excavations, or consequence of changes to loading or drainage. For existing property - probable increase in insurance risk is likely due to potential natural slope instability after changes to ground conditions such as a very long, excessively wet winter.
17	33.0	SE	Moderate	Significant potential for slope instability with relatively small changes in ground conditions. Avoid large amounts of water entering the ground through pipe leakage or soak-aways. Do not undercut or place large amounts of material on slopes without technical advice. For new build - consider the potential and consequences of ground movement during excavations, or consequence of changes to loading or drainage. For existing property - probable increase in insurance risk is likely due to potential natural slope instability after changes to ground conditions such as a very long, excessively wet winter.
18B	47.0	NE	Moderate	Significant potential for slope instability with relatively small changes in ground conditions. Avoid large amounts of water entering the ground through pipe leakage or soak-aways. Do not undercut or place large amounts of material on slopes without technical advice. For new build - consider the potential and consequences of ground movement during excavations, or consequence of changes to loading or drainage. For existing property - probable increase in insurance risk is likely due to potential natural slope instability after changes to ground conditions such as a very long, excessively wet winter.

ID	Distance (m)	Direction	Hazard Rating	Details
19	48.0	SE	Negligible	No indicators for slope instability identified. No special actions required to avoid problems due to landslides. No special ground investigation required and increased construction costs or increased financial risks are unlikely due to potential problems with landslides.
20	49.0	SE	Moderate	Significant potential for slope instability with relatively small changes in ground conditions. Avoid large amounts of water entering the ground through pipe leakage or soak-aways. Do not undercut or place large amounts of material on slopes without technical advice. For new build - consider the potential and consequences of ground movement during excavations, or consequence of changes to loading or drainage. For existing property - probable increase in insurance risk is likely due to potential natural slope instability after changes to ground conditions such as a very long, excessively wet winter.

6.3 Ground Dissolution of Soluble Rocks

The following Ground Dissolution information provided by the British Geological Survey:

ID	Distance (m)	Direction	Hazard Rating	Details
1	0.0	On Site	Negligible	Soluble rocks are present, but unlikely to cause problems except under exceptional conditions. No special actions required to avoid problems due to soluble rocks. No special ground investigation required, and increased construction costs or increased financial risks are unlikely due to potential problems with soluble rocks.
2	0.0	On Site	Very Low	Significant soluble rocks are present. Problems unlikely except with considerable surface or subsurface water flow. No special actions required to avoid problems due to soluble rocks. No special ground investigation required or increased construction costs are likely. An increase in financial risk due to potential problems with soluble rocks is unlikely.
3	0.0	On Site	Very Low	Significant soluble rocks are present. Problems unlikely except with considerable surface or subsurface water flow. No special actions required to avoid problems due to soluble rocks. No special ground investigation required or increased construction costs are likely. An increase in financial risk due to potential problems with soluble rocks is unlikely.
4	0.0	On Site	Low	Significant soluble rocks are present. Low possibility of subsidence occurring naturally, but may be possible in adverse conditions such as high surface or subsurface water flow. Consider implications for stability when changes to drainage or new construction are planned. For new build - site investigation should consider potential for dissolution problems on the site and its surroundings. Care should be taken with local drainage into the bedrock. Some possibility groundwater pollution. For existing property - possible increase in insurance risk due to soluble rocks.
5	0.0	On Site	Low	Significant soluble rocks are present. Low possibility of subsidence occurring naturally, but may be possible in adverse conditions such as high surface or subsurface water flow. Consider implications for stability when changes to drainage or new construction are planned. For new build - site investigation should consider potential for dissolution problems on the site and its surroundings. Care should be taken with local drainage into the bedrock. Some possibility groundwater pollution. For existing property - possible increase in insurance risk due to soluble rocks.

Report Reference: GS-5746912

				LOCATION INTELLIGENCE
ID	Distance (m)	Direction	Hazard Rating	Details
6	0.0	On Site	Low	Significant soluble rocks are present. Low possibility of subsidence occurring naturally, but may be possible in adverse conditions such as high surface or subsurface water flow. Consider implications for stability when changes to drainage or new construction are planned. For new build - site investigation should consider potential for dissolution problems on the site and its surroundings. Care should be taken with local drainage into the bedrock. Some possibility groundwater pollution. For existing property - possible increase in insurance risk due to soluble rocks.
7	0.0	On Site	Moderate	Very significant soluble rocks are present, with a moderate possibility of local natural subsidence due to high surface or subsurface water flow. Do not load the land or undertake building work before obtaining specialist advice. Do not dispose of drainage to the ground. Some possibility groundwater pollution. Maintain drainage infrastructure. For new build - specialist site investigation and stability assessment may be necessary before construction. Construction work may cause subsidence. Increased construction costs are likely. For existing property - probable increase in insurance risk due to soluble rocks.
8	0.0	On Site	Moderate	Very significant soluble rocks are present, with a moderate possibility of local natural subsidence due to high surface or subsurface water flow. Do not load the land or undertake building work before obtaining specialist advice. Do not dispose of drainage to the ground. Some possibility groundwater pollution. Maintain drainage infrastructure. For new build - specialist site investigation and stability assessment may be necessary before construction. Construction work may cause subsidence. Increased construction costs are likely. For existing property - probable increase in insurance risk due to soluble rocks.
9	0.0	On Site	Moderate	Very significant soluble rocks are present, with a moderate possibility of local natural subsidence due to high surface or subsurface water flow. Do not load the land or undertake building work before obtaining specialist advice. Do not dispose of drainage to the ground. Some possibility groundwater pollution. Maintain drainage infrastructure. For new build - specialist site investigation and stability assessment may be necessary before construction. Construction work may cause subsidence. Increased construction costs are likely. For existing property - probable increase in insurance risk due to soluble rocks.
10	4.0	NE	Very Low	Significant soluble rocks are present. Problems unlikely except with considerable surface or subsurface water flow. No special actions required to avoid problems due to soluble rocks. No special ground investigation required or increased construction costs are likely. An increase in financial risk due to potential problems with soluble rocks is unlikely.
11	13.0	SE	Negligible	Soluble rocks are present, but unlikely to cause problems except under exceptional conditions. No special actions required to avoid problems due to soluble rocks. No special ground investigation required, and increased construction costs or increased financial risks are unlikely due to potential problems with soluble rocks.
12	38.0	W	Low	Significant soluble rocks are present. Low possibility of subsidence occurring naturally, but may be possible in adverse conditions such as high surface or subsurface water flow. Consider implications for stability when changes to drainage or new construction are planned. For new build - site investigation should consider potential for dissolution problems on the site and its surroundings. Care should be taken with local drainage into the bedrock. Some possibility groundwater pollution. For existing property - possible increase in insurance risk due to soluble rocks.
13	48.0	SE	Very Low	Significant soluble rocks are present. Problems unlikely except with considerable surface or subsurface water flow. No special actions required to avoid problems due to soluble rocks. No special ground investigation required or increased construction costs are likely. An increase in financial risk due to potential problems with soluble rocks is unlikely.
14A	49.0	SE	Low	Significant soluble rocks are present. Low possibility of subsidence occurring naturally, but may be possible in adverse conditions such as high surface or subsurface water flow. Consider implications for stability when changes to drainage or new construction are planned. For new build - site investigation should consider potential for dissolution problems on the site and its surroundings. Care should be taken with local drainage into the bedrock. Some possibility groundwater pollution. For existing property - possible increase in insurance risk due to soluble rocks.

6.4 Compressible Deposits

The following Compressible Deposits information provided by the British Geological Survey:

ID	Distance (m)	Direction	Hazard Rating	Details
1	0.0	On Site	Negligible	No indicators for compressible deposits identified. No special actions required to avoid problems due to compressible deposits. No special ground investigation required, and increased construction costs or increased financial risks are unlikely due to potential problems with compressible deposits.
2	0.0	On Site	Negligible	No indicators for compressible deposits identified. No special actions required to avoid problems due to compressible deposits. No special ground investigation required, and increased construction costs or increased financial risks are unlikely due to potential problems with compressible deposits.
3	0.0	On Site	Negligible	No indicators for compressible deposits identified. No special actions required to avoid problems due to compressible deposits. No special ground investigation required, and increased construction costs or increased financial risks are unlikely due to potential problems with compressible deposits.

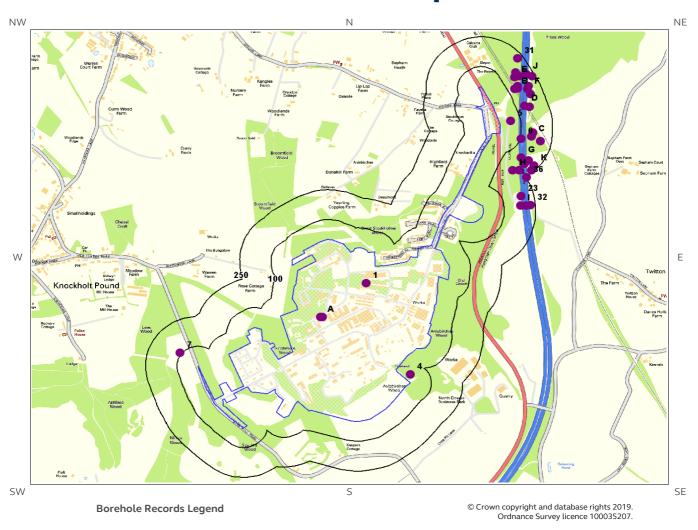
6.5 Collapsible Deposits

The following Collapsible Rocks information provided by the British Geological Survey:

ID	Distance (m)	Direction	Hazard Rating	Details
1	0.0	On Site	Very Low	Deposits with potential to collapse when loaded and saturated are unlikely to be present. No special ground investigation required or increased construction costs or increased financial risk due to potential problems with collapsible deposits.
2	0.0	On Site	Very Low	Deposits with potential to collapse when loaded and saturated are unlikely to be present. No special ground investigation required or increased construction costs or increased financial risk due to potential problems with collapsible deposits.
3	0.0	On Site	Very Low	Deposits with potential to collapse when loaded and saturated are unlikely to be present. No special ground investigation required or increased construction costs or increased financial risk due to potential problems with collapsible deposits.

6.6 Running Sands

The following Running Sands information provided by the British Geological Survey:


ID	Distance (m)	Direction	Hazard Rating	Details
1	0.0	On Site	Negligible	No indicators for running sand identified. No special actions required to avoid problems due to running sand. No special ground investigation required, and increased construction costs or increased financial risks are unlikely due to potential problems with running sand.
2	0.0	On Site	Negligible	No indicators for running sand identified. No special actions required to avoid problems due to running sand. No special ground investigation required, and increased construction costs or increased financial risks are unlikely due to potential problems with running sand.
3	0.0	On Site	Negligible	No indicators for running sand identified. No special actions required to avoid problems due to running sand. No special ground investigation required, and increased construction costs or increased financial risks are unlikely due to potential problems with running sand.

Report Reference: GS-5746912

7 Borehole Records map

7 Borehole Records

The systematic analysis of data extracted from the BGS Borehole Records database provides the following information.

Records of boreholes within 250m of the study site boundary:

36

ID	Distance (m)	Direction	NGR	BGS Reference	Drilled Length	Borehole Name
1	0.0	On Site	549790 159460	TQ45NW19	12.19	FORT HALSTEAD
2A	0.0	On Site	549570 159290	TQ45NE230	13.72	FORT HALSTEAD
3A	0.0	On Site	549580 159290	TQ45NW20	13.72	FORT HALSTEAD
4	30.0	NE	550000 159000	TQ55NW240	17.37	TWITTON, A
5	52.0	Е	550480 160280	TQ56SW97	10.45	BH 10280 M25 SAWLEY SEVENOAKS
6	104.0	Е	550530 160190	TQ56SW34	10.0	M25 SWANLEY TO SEVENOAKS BH9060/2
7	108.0	NW	548900 159110	TQ45NE166	-1.0	KNOCKHOLT 1
8B	132.0	NE	550500 160440	TQ56SW31	29.0	M25 SWANLEY TO SEVENOAKS BH8790/2
9D	140.0	Е	550546 160356	TQ56SW96	15.5	BH 10200 M25 SAWLEY SEVENOAKS
10B	144.0	NE	550512 160444	TQ56SW94	10.45	BH 10110 M25 SAWLEY SEVENOAKS
11B	149.0	NE	550512 160455	TQ56SW93	30.45	BH 10101 M25 SAWLEY SEVENOAKS
12C	151.0	Е	550580 160200	TQ56SW33	8.0	M25 SWANLEY TO SEVENOAKS BH9060/1
13C	155.0	Е	550586 160220	TQ56SW130	3.0	TP10330 M25 SWANLEY SEVENOAKS
14G	159.0	SE	550530 160095	TQ56SW122	4.0	TP 36 M25 SAWLEY SEVENOAKS
15D	160.0	Е	550570 160350	TQ56SW32	30.0	M25 SWANLEY TO SEVENOAKS BH8900
16E	161.0	NE	550500 160500	TQ56SW38	15.0	FORT HALSTEAD RARDE BHS1-15
17H	173.0	SE	550490 160030	TQ56SW37	12.0	M25 SWANLEY TO SEVENOAKS BH9200/3
18E	177.0	NE	550503 160525	TQ56SW89	23.0	BH 10020 M25 SAWLEY SEVENOAKS
191	179.0	E	550527 159853	TQ55NW113	25.0	M25 SWANLEY- SEVENOAKS BH10702
20E	183.0	NE	550521 160506	TQ56SW91	12.45	BH 10050 M25 SAWLEY SEVENOAKS
21F	184.0	NE	550560 160440	TQ56SW30	26.0	M25 SWANLEY TO SEVENOAKS BH8790/1
22F	188.0	Е	550575 160415	TQ56SW95	12.45	BH 10140 M25 SAWLEY SEVENOAKS

Report Reference: GS-5746912

					2007111011111221021102
Distance (m)	Direction	NGR	BGS Reference	Drilled Length	Borehole Name
189.0	Е	550530 159900	TQ55NW50	8.0	M25 SWANLEY TO SEVENOAKS BH9300
194.0	SE	550565 160080	TQ56SW98	8.0	BH 9300 M25 SAWLEY SEVENOAKS
194.0	SE	550547 160064	TQ56SW133	4.0	TP10510 M25 SWANLEY SEVENOAKS
196.0	NE	550566 160454	TQ56SW92	24.45	BH 10100 M25 SAWLEY SEVENOAKS
197.0	Е	550623 160178	TQ56SW131	3.0	TP10370 M25 SWANLEY SEVENOAKS
201.0	SE	550520 160030	TQ56SW36	10.0	M25 SWANLEY TO SEVENOAKS BH9200/2
204.0	E	550553 159853	TQ55NW112	25.27	M25 SWANLEY- SEVENOAKS BH10701
217.0	NE	550554 160517	TQ56SW90	12.95	BH 10040 M25 SAWLEY SEVENOAKS
222.0	NE	550512 160595	TQ56SW128	4.0	TP 9960 M25 SWANLEY SEVENOAKS
227.0	Е	550575 159855	TQ55NW111	20.2	M25 SWANLEY- SEVENOAKS BH10700
231.0	SE	550592 160054	TQ56SW134	3.0	TP1052 M25 SWANLEY SEVENOAKS
236.0	NE	550583 160506	TQ56SW123	2.0	TP 102 M25 SWANLEY SEVENOAKS
241.0	SE	550580 160030	TQ56SW35	10.0	M25 SWANLEY TO SEVENOAKS BH9200/1
247.0	SE	550555 159995	TQ55NW120	3.0	M25 SWANLEY- SEVENOAKS TP 37
	(m) 189.0 194.0 194.0 196.0 197.0 201.0 204.0 217.0 222.0 227.0 231.0 236.0 241.0	(m) Birection 189.0 E 194.0 SE 194.0 SE 196.0 NE 197.0 E 201.0 SE 204.0 E 217.0 NE 222.0 NE 227.0 E 231.0 SE 236.0 NE 241.0 SE	(m) Direction NGK 189.0 E 550530 159900 194.0 SE 550565 160080 194.0 SE 550547 160064 196.0 NE 550566 160454 197.0 E 550623 160178 201.0 SE 550520 160030 204.0 E 550553 159853 217.0 NE 550554 160517 222.0 NE 550512 160595 227.0 E 550575 159855 231.0 SE 550583 160056 241.0 SE 550555 50555	(m) Direction NGR BGS Reference 189.0 E 550530 159900 TQ55NW50 194.0 SE 550565 160080 TQ56SW98 194.0 SE 550547 160064 TQ56SW133 196.0 NE 550566 160454 TQ56SW92 197.0 E 550623 160178 TQ56SW131 201.0 SE 550520 160030 TQ56SW36 204.0 E 550553 159853 TQ55NW112 217.0 NE 550554 160517 TQ56SW90 222.0 NE 5505512 160595 TQ56SW128 227.0 E 550575 159855 TQ55NW111 231.0 SE 550580 160004 TQ56SW123 241.0 SE 550580 160030 TQ56SW35	(m) Direction NGR BGS Reference Dilital Length 189.0 E 550530 159900 TQ55NW50 8.0 194.0 SE 550565 160080 TQ56SW98 8.0 194.0 SE 550547 160064 TQ56SW93 4.0 196.0 NE 550566 160454 TQ56SW92 24.45 197.0 E 550623 160178 TQ56SW131 3.0 201.0 SE 550520 160030 TQ56SW36 10.0 204.0 E 550553 159853 TQ55NW112 25.27 217.0 NE 550554 160517 TQ56SW90 12.95 222.0 NE 550512 160595 TQ56SW128 4.0 227.0 E 550575 159855 TQ55NW111 20.2 231.0 SE 550580 160030 TQ56SW123 2.0 241.0 SE 550580 160030 TQ56SW35 10.0

The borehole records are available using the hyperlinks below: Please note that if the donor of the borehole record has requested the information be held as commercial-in-confidence, the additional data will be held separately by the BGS and a formal request must be made for its release.

#1: scans.bgs.ac.uk/sobi_scans/boreholes/621113 #2A: scans.bgs.ac.uk/sobi_scans/boreholes/757666 #3A: scans.bgs.ac.uk/sobi_scans/boreholes/621114 #4: scans.bgs.ac.uk/sobi scans/boreholes/2083412 #5: scans.bgs.ac.uk/sobi scans/boreholes/742404 #6: scans.bgs.ac.uk/sobi_scans/boreholes/742338 #8B: scans.bgs.ac.uk/sobi_scans/boreholes/742335 #9D: scans.bgs.ac.uk/sobi_scans/boreholes/742403 #10B: scans.bgs.ac.uk/sobi_scans/boreholes/742401 #11B: scans.bgs.ac.uk/sobi_scans/boreholes/742400 #12C: scans.bgs.ac.uk/sobi_scans/boreholes/742337 #13C: scans.bgs.ac.uk/sobi_scans/boreholes/742437 #14G: scans.bgs.ac.uk/sobi_scans/boreholes/742429 #15D: scans.bgs.ac.uk/sobi scans/boreholes/742336 #16E: scans.bgs.ac.uk/sobi_scans/boreholes/742342 #17H: scans.bgs.ac.uk/sobi_scans/boreholes/742341 #18E: scans.bgs.ac.uk/sobi_scans/boreholes/742396 #19I: scans.bgs.ac.uk/sobi_scans/boreholes/755393 #20E: scans.bgs.ac.uk/sobi_scans/boreholes/742398 #21F: scans.bgs.ac.uk/sobi_scans/boreholes/742334 #22F: scans.bgs.ac.uk/sobi_scans/boreholes/742402 #23: scans.bgs.ac.uk/sobi_scans/boreholes/755330 #24G: scans.bgs.ac.uk/sobi scans/boreholes/742405 #25H: scans.bgs.ac.uk/sobi scans/boreholes/742440 #26F: scans.bgs.ac.uk/sobi_scans/boreholes/742399 #27C: scans.bgs.ac.uk/sobi_scans/boreholes/742438 #28H: scans.bgs.ac.uk/sobi_scans/boreholes/742340 #291: scans.bgs.ac.uk/sobi_scans/boreholes/755392 #30J: scans.bgs.ac.uk/sobi_scans/boreholes/742397 #31: scans.bgs.ac.uk/sobi_scans/boreholes/742435 #32: scans.bgs.ac.uk/sobi_scans/boreholes/755391 #33K: scans.bgs.ac.uk/sobi_scans/boreholes/742441 #34J: scans.bgs.ac.uk/sobi scans/boreholes/742430 #35K: scans.bgs.ac.uk/sobi_scans/boreholes/742339 #36: scans.bgs.ac.uk/sobi_scans/boreholes/755400

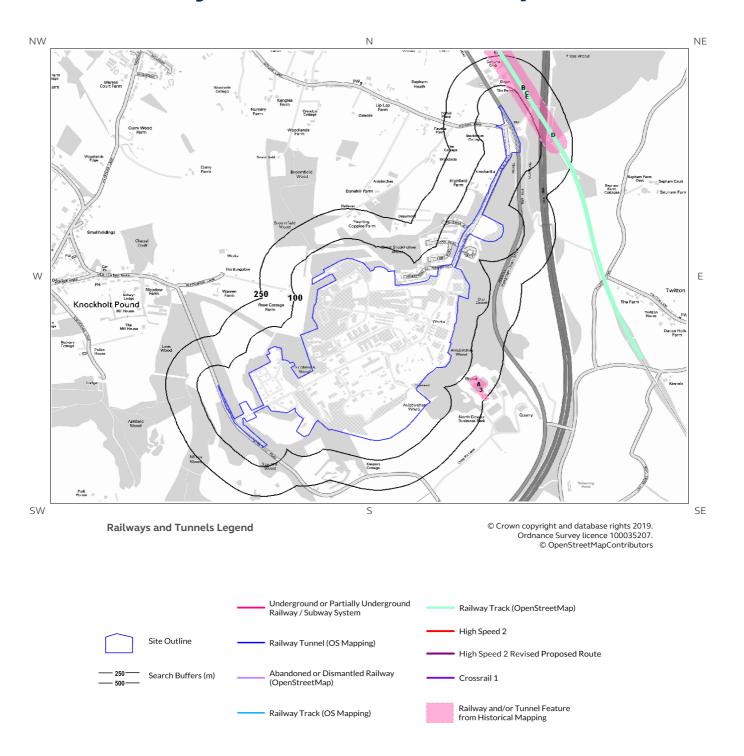
Report Reference: GS-5746912

8 Estimated Background Soil Chemistry

Records of background estimated soil chemistry within 250m of the study site boundary:

33

For further information on how this data is calculated and limitations upon its use, please see the Groundsure Geo Insight User Guide, available on request.


Distance (m)	Direction	Sample Type	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Nickel (Ni)	Lead (Pb)
0.0	On Site	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	<15 mg/kg	<1.8 mg/kg	40 - 60 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	<15 mg/kg	<1.8 mg/kg	40 - 60 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	<15 mg/kg	<1.8 mg/kg	40 - 60 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	<15 mg/kg	<1.8 mg/kg	40 - 60 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	<15 mg/kg	<1.8 mg/kg	40 - 60 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	<15 mg/kg	<1.8 mg/kg	40 - 60 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	<15 mg/kg	<1.8 mg/kg	40 - 60 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	<15 mg/kg	<1.8 mg/kg	40 - 60 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	100 - 200 mg/kg
0.0	On Site	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	On Site	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	<100 mg/kg
0.0	W	Sediment	<15 mg/kg	<1.8 mg/kg	40 - 60 mg/kg	15 - 30 mg/kg	<100 mg/kg
13.0	SE	Sediment	<15 mg/kg	<1.8 mg/kg	40 - 60 mg/kg	15 - 30 mg/kg	<100 mg/kg
13.0	SE	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	<100 mg/kg
24.0	S	Sediment	<15 mg/kg	<1.8 mg/kg	40 - 60 mg/kg	15 - 30 mg/kg	<100 mg/kg
30.0	NE	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	<100 mg/kg
38.0	W	Sediment	<15 mg/kg	<1.8 mg/kg	40 - 60 mg/kg	15 - 30 mg/kg	<100 mg/kg
39.0	SE	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	<100 mg/kg
42.0	W	Sediment	<15 mg/kg	<1.8 mg/kg	40 - 60 mg/kg	15 - 30 mg/kg	<100 mg/kg
45.0	N	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	100 - 200 mg/kg
48.0	SE	Sediment	15 - 25 mg/kg	<1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg	100 - 200 mg/kg

^{*}As this data is based upon underlying 1:50,000 scale geological information, a 50m buffer has been added to the search radius.

Report Reference: GS-5746912

9 Railways and Tunnels map

Report Reference: GS-5746912

9 Railways and Tunnels

9.1 Tunnels

This data is derived from OpenStreetMap and provides information on the possible locations of underground railway systems in the UK - the London Underground, the Tyne & Wear Metro and the Glasgow Subway.

Have any underground railway lines been identified within the study site boundary?

No

Have any underground railway lines been identified within 250m of the study site boundary?

No

Database searched and no data found.

Any records that have been identified are represented on the Railways and Tunnels map.

This data is derived from Ordnance Survey mapping and provides information on the possible locations of railway tunnels forming part of the UK overground railway network.

Have any other railway tunnels been identified within the site boundary?

Nο

Have any other railway tunnels been identified within 250m of the site boundary?

Yes

Distance (m)	Direction	Detail
132	NE	Railway Tunnel

Any records that have been identified are represented on the Railways and Tunnels map.

9.2 Historical Railway and Tunnel Features

This data is derived from Groundsure's unique Historical Land-use Database and contains features relating to tunnels, railway tracks or associated works that have been identified from historical Ordnance Survey mapping.

Have any historical railway or tunnel features been identified within the study site boundary?

No

Have any historical railway or tunnel features been identified within 250m of the study site boundary? Yes

ID	Distance (m)	Direction	NGR	Details	Date
16E	72	NE	550301 160768	Tunnel	1988
17E	72	NE	550301 160768	Tunnel	1961
18E	72	NE	550301 160768	Tunnel	1967
19F	126	NE	549975 161312	Tunnel	1938

Report Reference: GS-5746912

				LOCATION INTELLIGENCE	
ID	Distance (m)	Direction	NGR	Details	Date
20F	127	NE	549976 161316	Tunnel	1907
21F	127	NE	549976 161316	Tunnel	1932
22F	127	NE	549976 161316	Tunnel	1869
23F	127	NE	549976 161316	Tunnel	1940
24F	127	NE	549976 161316	Tunnel	1895
1A	128	SE	550229 159030	Railway Sidings	1961
4B	128	NE	550277 160806	Tunnel	1932
5B	128	NE	550277 160806	Tunnel	1896
6B	128	NE	550277 160806	Tunnel	1909
7B	128	NE	550277 160806	Tunnel	1939
8C	129	NE	550387 160631	Tunnel	1961
9C	130	NE	550388 160632	Tunnel	1997
10B	130	NE	550278 160807	Tunnel	1869
11C	131	NE	550388 160632	Tunnel	1984
2A	141	SE	550238 159061	Railway Sidings	1936
12D	152	Е	550590 160299	Tunnel	1909
13D	152	Е	550590 160299	Tunnel	1936
14D	152	E	550590 160299	Tunnel	1869
15D	152	Е	550590 160299	Tunnel	1896
25D	152	E	550592 160295	Tunnel	1938
26D	152	Е	550593 160296	Tunnel	1907
27D	152	Е	550593 160296	Tunnel	1936
3	163	SE	550241 159009	Railway Sidings	1936

Any records that have been identified are represented on the Railways and Tunnels map.

9.3 Historical Railways

This data is derived from OpenStreetMap and provides information on the possible alignments of abandoned or dismantled railway lines in proximity to the study site.

Have any historical railway lines been identified within the study site boundary?

No

Have any historical railway lines been identified within 250m of the study site boundary?

No

Database searched and no data found.

Multiple sections of the same track may be listed in the detail above Any records that have been identified are represented on the Railways and Tunnels map.

9.4 Active Railways

These datasets are derived from Ordnance Survey mapping and OpenStreetMap and provide information on the possible locations of active railway lines in proximity to the study site.

Have any active railway lines been identified within the study site boundary?

No

Have any active railway lines been identified within 250m of the study site boundary?

Yes

Distance (m)	Direction	Name	Туре
131	NE	South Eastern Main Line	Rail
131	NE	South Eastern Main Line	Rail
136	NE	South Eastern Main Line	Rail
136	NE	South Eastern Main Line	Rail
175	Е	Not given	Multi Track
175	Е	Not given	Multi Track
179	Е	South Eastern Main Line	Rail
179	Е	South Eastern Main Line	Rail
183	Е	South Eastern Main Line	Rail
183	E	South Eastern Main Line	Rail

Multiple sections of the same track may be listed in the detail above Any records that have been identified are represented on the Railways and Tunnels map.

9.5 Railway Projects

These datasets provide information on the location of large scale railway projects High Speed 2 and Crossrail 1.

Is the study site within 5km of the route of the High Speed 2 rail project?

No

Is the study site within 500m of the route of the Crossrail 1 rail project?

No

Further information on proximity to these routes, the project construction status and associated works can be obtained through the purchase of a Groundsure HS2 and Crossrail 1 Report.

Report Reference: GS-5746912

The route data has been digitised from publicly available maps by Groundsure. The route as provided relates to the Crossrail 1 project only, and does not include any details of the Crossrail 2 project, as final details of the route for Crossrail 2 are still under consultation.

Please note that this assessment takes account of both the original Phase 2b proposed route and the amended route proposed in 2016. As the Phase 2b route is still under consultation, Groundsure are providing information on both options until the final route is formally confirmed. Practitioners should take account of this uncertainty when advising clients.

Contact Details

Groundsure Helpline Telephone: 08444 159 000 info@groundsure.com

LOCATION INTELLIGENCE

Geological Survey

NATURAL ENVIRONMENT RESEARCH COUNCIL

British

British Geological Survey Enquiries

Kingsley Dunham Centre Keyworth, Nottingham NG12 5GG Tel: 0115 936 3143. Fax: 0115 936 3276.

Email:enquiries@bgs.ac.uk Web:www.bgs.ac.uk

BGS Geological Hazards Reports and general geological enquiries

British Gypsum Ltd East Leake Loughborough Leicestershire LE12 6HX

The Coal Authority

200 Lichfield Lane Mansfield Notts NG18 4RG Tel: 0345 7626 848 DX 716176 Mansfield 5 www.coal.gov.uk

Public Health England

Public information access office Public Health England, Wellington House 133-155 Waterloo Road, London, SE1 8UG

https://www.gov.uk/government/organisations/public-healthengland

Email: enquiries@phe.gov.uk Main switchboard: 020 7654 8000

Johnson Poole & Bloomer Limited

Harris and Pearson Building, Brettel Lane Brierley Hill, West Midlands DY5 3LH Tel: +44 (0) 1384 262 000

Email:**enquiries.gs@jpb.co.uk** Website: **www.jpb.co.uk**

Ordnance Survey

Adanac Drive, Southampton SO16 0AS

Tel: 08456 050505

Website: http://www.ordnancesurvey.co.uk/

Getmapping PLC

Virginia Villas, High Street, Hartley Witney, Hampshire RG27 8NW Tel: 01252 845444

Website:http://www1.getmapping.com/

Report Reference: GS-5746912

Peter Brett Associates

Caversham Bridge House
Waterman Place
Reading
Berkshire RG1 8DN
Tel: +44 (0)118 950 0761 E-mail:reading@pba.co.uk
Website:http://www.peterbrett.com/home

Acknowledgements: Ordnance Survey © Crown Copyright and/or Database Right. All Rights Reserved. Licence Number [03421028]. This report has been prepared in accordance with the Groundsure Ltd standard Terms and Conditions of business for work of this nature.

Standard Terms and Conditions

Groundsure's Terms and Conditions can be viewed online at this link: https://www.groundsure.com/terms-and-conditions-may25-2018

Appendix E

Geotechnical Test Results

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027

Date Sampled: Not Given
Date Received: 23/11/2018
Date Tested: 17/12/2018

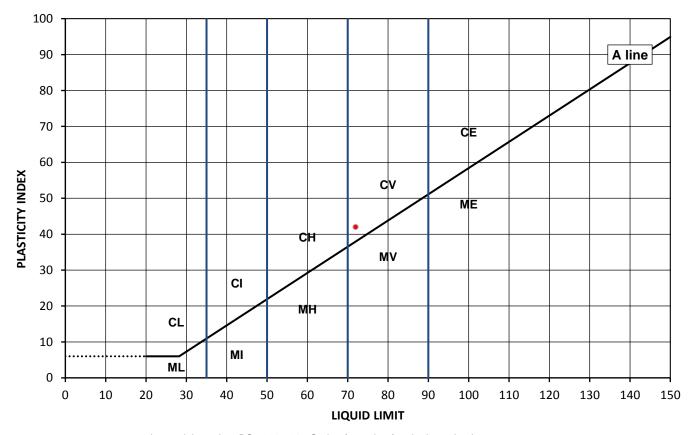
Sampled By: Not Given

Depth Top [m]: 1.40

Sample Type: D

Depth Base [m]: Not Given

Test Results


Laboratory Reference: 1112598 Hole No.: BH601

Sample Reference: Not Given

Soil Description: Yellowish brown slightly gravelly CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
25	72	30	42	90

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. huhw

Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis Site Name: Fort Halstead

Site Address: Not Given Client Reference: C-10730-C Job Number: 18-22027

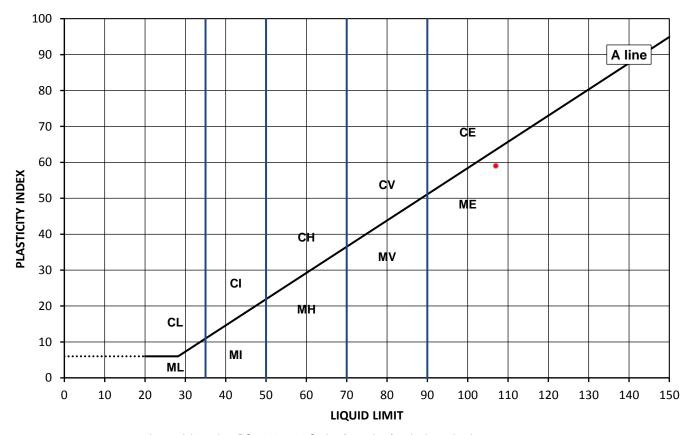
Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 17/12/2018

Sampled By: Not Given

Depth Top [m]: 2.40

Sample Type: D

Depth Base [m]: Not Given


Test Results

Laboratory Reference: 1112599 BH601 Hole No.: Sample Reference: Not Given

Soil Description: Brown slightly gravelly slightly organic CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
29	107	48	59	95

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М Ι Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Remarks:

Dariusz Piotrowski Approved:

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. buln Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis Site Name: Fort Halstead

Site Address: Not Given Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given

Date Received: 23/11/2018 Date Tested: 17/12/2018

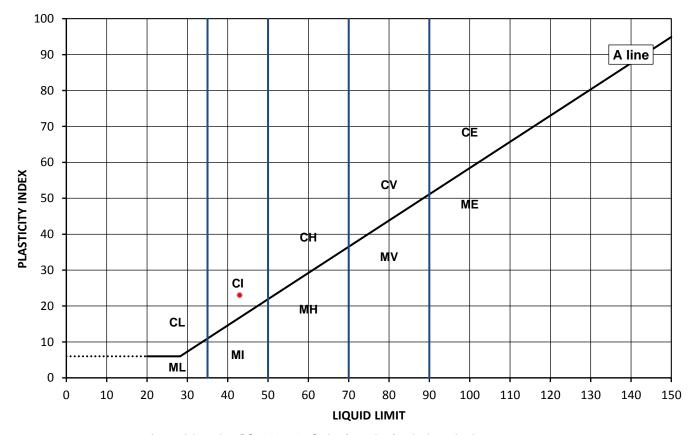
Sampled By: Not Given

Depth Top [m]: 1.10

Depth Base [m]: 1.40

Sample Type: B

Test Results


Laboratory Reference: 1112600 BH602 Hole No.: Sample Reference: Not Given

Soil Description:

Yellowish brown gravelly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
20	43	20	23	

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Remarks:

Dariusz Piotrowski Approved:

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. buln Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 17/12/2018

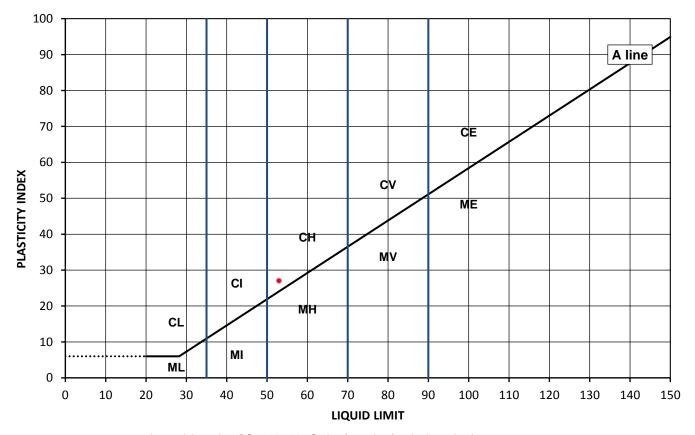
Client Reference: C-10730-C

Sampled By: Not Given

Depth Top [m]: 1.00

Depth Base [m]: 1.40

Sample Type: B


Test Results

Laboratory Reference: 1112601 Hole No.: BH603 Sample Reference: Not Given

Soil Description: Yellowish brown slightly gravelly slightly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
30	53	26	27	69

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. hulw

Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

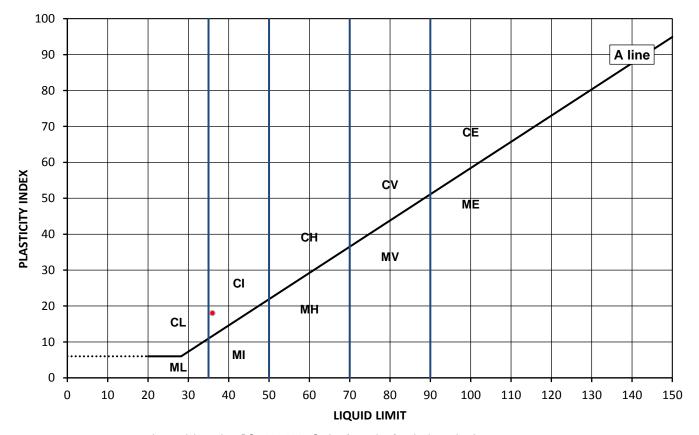
Client Reference: C-10730-C Job Number: 18-22027

Date Sampled: Not Given Date Received: 23/11/2018

Date Tested: 17/12/2018 Sampled By: Not Given

Test Results

Laboratory Reference: 1112602 Hole No.: BH603 Sample Reference: Not Given


Soil Description: Orangish brown sandy CLAY

Sample Preparation: Tested in natural condition

Donth Ton [m]: 1.50	
Depth Top [m]: 1.50	

Depth Base [m]: 2.00 Sample Type: B

As Received Moisture Content [%]	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
	[%]	[%]	[%]	BS Test Sieve
19	36	18	18	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М 1 Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. hulw

Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

35

NN6 8LD

Contact: Wayne Lewis Site Name: Fort Halstead

Site Address: Not Given Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018

Date Tested: 17/12/2018

Sampled By: Not Given

Depth Top [m]: 4.40

Sample Type: D

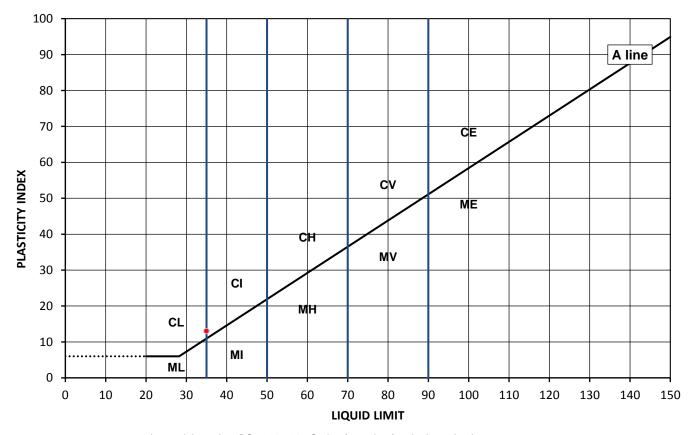
13

Depth Base [m]: Not Given

100

Test Results

13


Laboratory Reference: 1112604 BH603 Hole No.: Sample Reference: Not Given

Soil Description: Yellow sandy CLAY

Sample Preparation: Tested in natural condition

Sample i Teparation. Teste	d III Hatarai condition			
As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve

22

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М 1 Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Remarks:

Dariusz Piotrowski Approved:

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. buln Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis Site Name: Fort Halstead

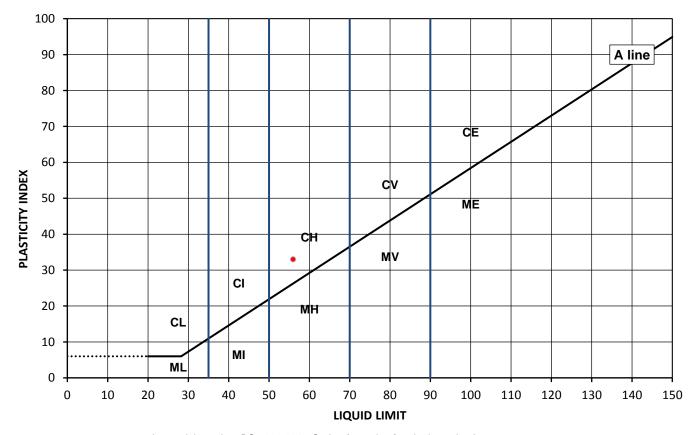
Site Address: Not Given Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018

Date Tested: 17/12/2018

Sampled By: Not Given

Test Results

Laboratory Reference: 1112606 BH604 Hole No.:


Sample Reference: Not Given Soil Description: Orangish brown slightly sandy CLAY

Tested in natural condition Sample Preparation:

Depth Top [m]: 2.90 Depth Base [m]: Not Given

Sample Type: D

eived Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
ontent [%]	[%]	[%]	[%]	BS Test Sieve
22	56	23	33	

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М 1 Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Remarks:

Dariusz Piotrowski Approved:

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. buln Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given

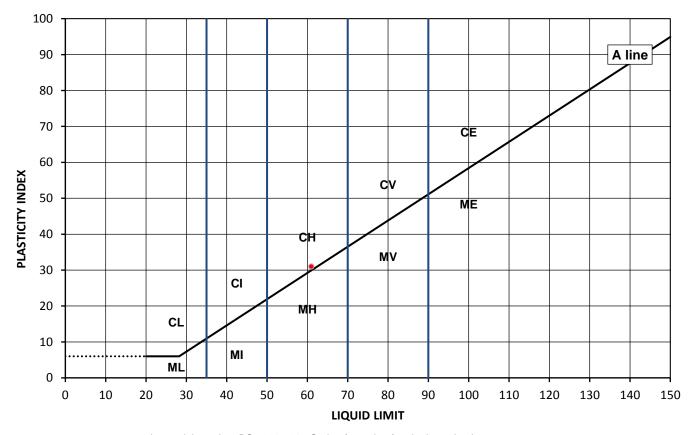
Date Received: 23/11/2018
Date Tested: 17/12/2018

Sampled By: Not Given

Depth Top [m]: 5.40

Sample Type: D

Depth Base [m]: Not Given


Test Results

Laboratory Reference: 1112607 Hole No.: BH604 Sample Reference: Not Given

Soil Description: Yellowish brown slightly gravelly CLAY

Sample Preparation: Tested after >425um removed by hand

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
28	61	30	31	96

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. hulw

Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Plastic Limit

[%]

26

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

Liquid Limit

[%]

60

NN6 8LD

Contact: Wayne Lewis Site Name: Fort Halstead

Site Address: Not Given Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018

Date Tested: 17/12/2018

Depth Top [m]: 6.90

Sample Type: D

34

Depth Base [m]: Not Given

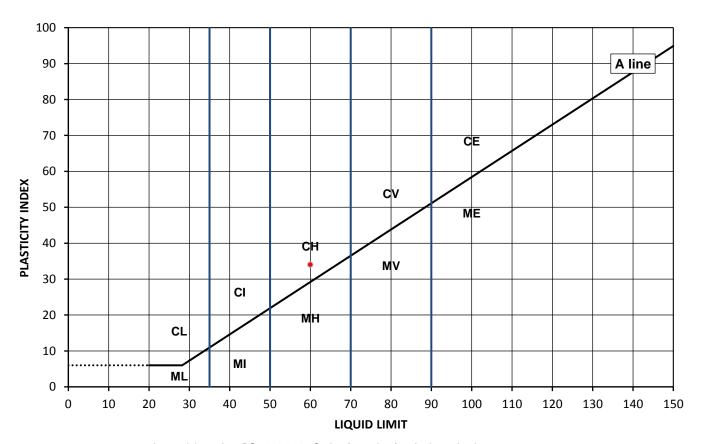
Sampled By: Not Given

Test Results

Laboratory Reference: 1112608 BH604 Hole No.: Sample Reference: Not Given

As Received Moisture

Content [%]


22

Soil Description: Light grey mottled brown CLAY

Tested in natural condition Sample Preparation:

Plasticity Index	% Passing 425µm
[%]	BS Test Sieve

100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Remarks:

Dariusz Piotrowski Approved:

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. buln Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

Tested after washing to remove >425um

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C

Job Number: 18-22027

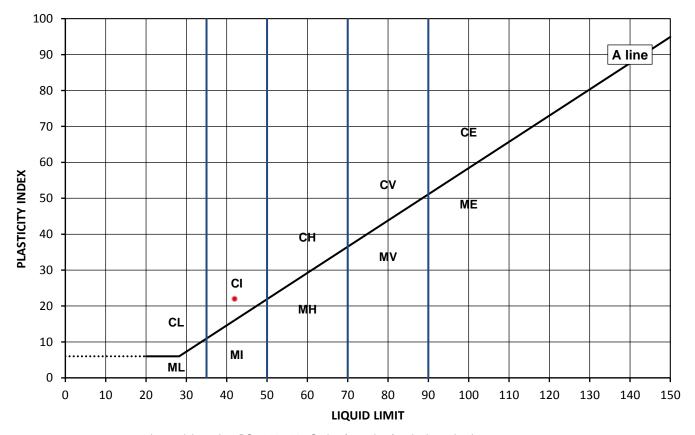
Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 17/12/2018

Sampled By: Not Given

Test Results

Sample Preparation:

Laboratory Reference: 1112611 Hole No.: BH605


Sample Reference: Not Given
Soil Description: Brown slightly gravelly sandy CLAY

Depth Top [m]: 1.50

Depth Base [m]: Not Given

Sample Type: D

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
20	42	20	22	88

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М 1 Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. hulw

Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis Site Name: Fort Halstead

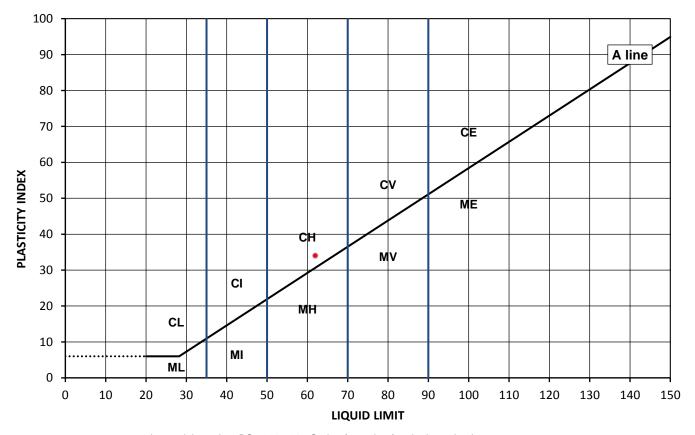
Site Address: Not Given Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018

> Date Tested: 17/12/2018 Sampled By: Not Given

Depth Top [m]: 3.40

Sample Type: D

Depth Base [m]: Not Given


Test Results

Laboratory Reference: 1112612 BH605 Hole No.: Sample Reference: Not Given

Soil Description: Orangish brown slightly gravelly CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
25	62	28	34	93

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Remarks:

Dariusz Piotrowski Approved:

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. buln Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

52

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given

Date Received: 23/11/2018
Date Tested: 17/12/2018

Sampled By: Not Given

Depth Top [m]: 5.90

Sample Type: D

Depth Base [m]: Not Given

BS Test Sieve

96

Test Results

Laboratory Reference: 1112613
Hole No.: BH605
Sample Reference: Not Given

As Received Moisture

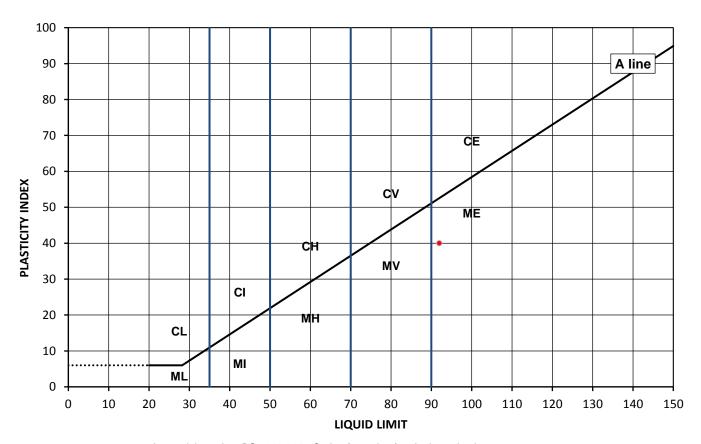
Content [%]

43

Soil Description: Orangish brown slightly gravelly slightly organic CLAY

Liquid Limit

[%]


92

Sample Preparation: Tested after washing to remove >425um

Plastic Limit	Plasticity Index	% Passing 425µm	7

[%]

40

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 М ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. Lulw

Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

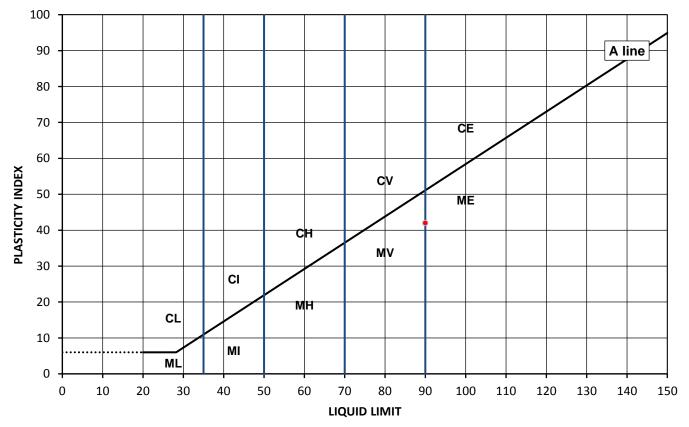
Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027

Date Sampled: Not Given
Date Received: 23/11/2018
Date Tested: 17/12/2018

Sampled By: Not Given

Test Results


0.107.100.100.1

Laboratory Reference:1112614Depth Top [m]: 1.50Hole No.:BH606Depth Base [m]: 2.00Sample Reference:Not GivenSample Type: B

Soil Description: Yellowish brown slightly gravelly slightly organic CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
45	90	48	42	96

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 M ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. huhw Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C

Job Number: 18-22027

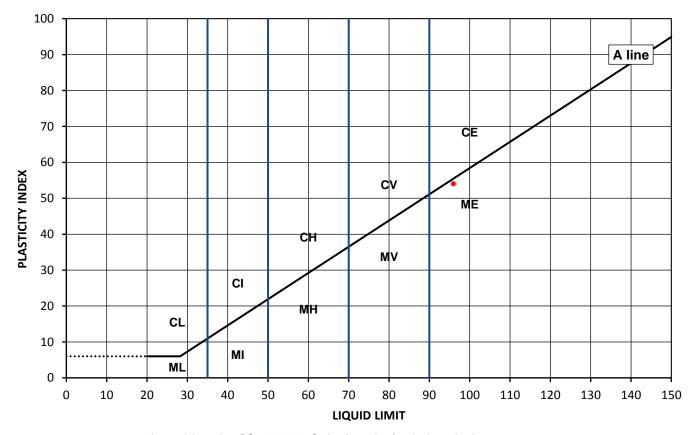
Date Sampled: Not Given

Test Results

Laboratory Reference: 1112616
Hole No.: BH606
Sample Reference: Not Given

Soil Description: Yellowish brown slightly gravelly slightly organic CLAY

Sample Preparation: Tested after washing to remove >425um


Not Given
23/11/2018
17/12/2018
Not Given

Depth Top [m]: 3.40

Sample Type: D

Depth Base [m]: Not Given

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
38	96	42	54	70

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit Clay С Low below 35 L Silt Medium 35 to 50 M 1 Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. huh

Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Plastic Limit

[%]

44

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given

Date Received: 23/11/2018
Date Tested: 17/12/2018

Sampled By: Not Given

Depth Top [m]: 5.90

Sample Type: D

Plasti

51

Depth Base [m]: Not Given

Test Results

Laboratory Reference: 1112617 Hole No.: BH606 Sample Reference: Not Given

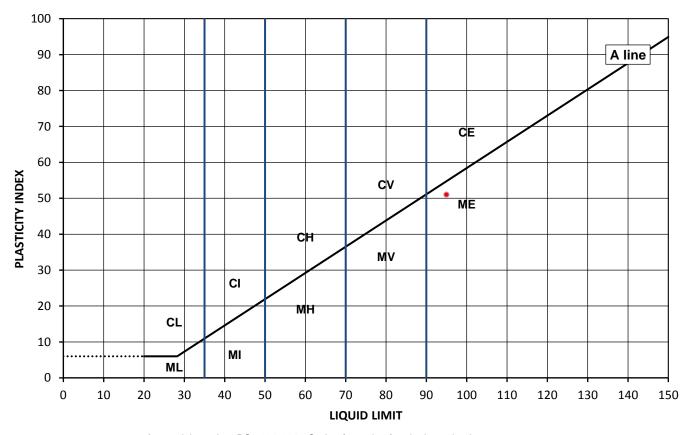
As Received Moisture

Content [%]

36

Soil Description: Brown slightly gravelly slightly organic CLAY

Liquid Limit


[%]

95

Sample Preparation: Tested after washing to remove >425um

icity Index	% Passing 425µm
[%]	BS Test Sieve

75

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 M ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. huhw Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

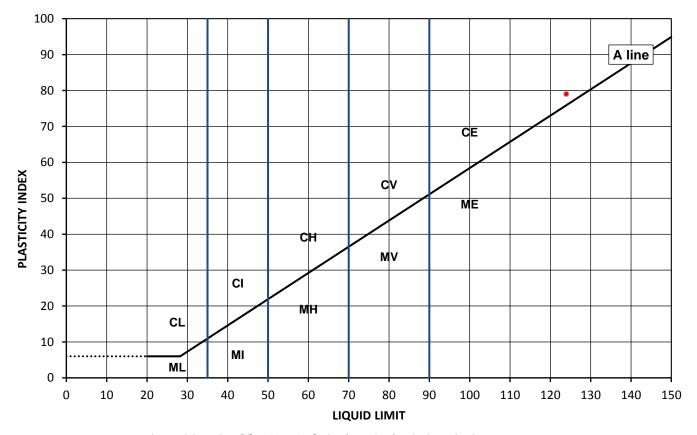
Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027

Date Sampled: Not Given
Date Received: 23/11/2018
Date Tested: 17/12/2018

Sampled By: Not Given

Test Results


Laboratory Reference: 1112626
Hole No.: TP607
Sample Reference: Not Given

Soil Description: Orangish brown slightly organic CLAY

Sample Preparation: Tested in natural condition

Depth Top [m]:	1.00
Depth Base [m]:	Not Given
Sample Type:	D

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
53	124	45	79	100

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 M 1 Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. huhw Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

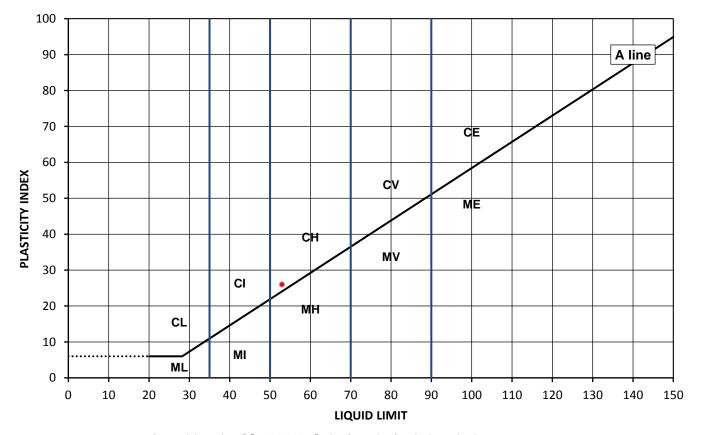
Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given

Date Received: 23/11/2018
Date Tested: 17/12/2018

Sampled By: Not Given

Test Results

Laboratory Reference: 1112628
Hole No.: TP608


Sample Reference: Not Given
Soil Description: Brown slightly gravelly slightly sandy CLAY with fragments of chalk

Sample Preparation: Tested after washing to remove >425um

Depth Top [m]: 1.50
Depth Base [m]: Not Given

Sample Type: D

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
24	53	27	26	89

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 M Ι Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. huh

Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis Site Name: Fort Halstead

Site Address: Not Given Client Reference: C-10730-C Job Number: 18-22027

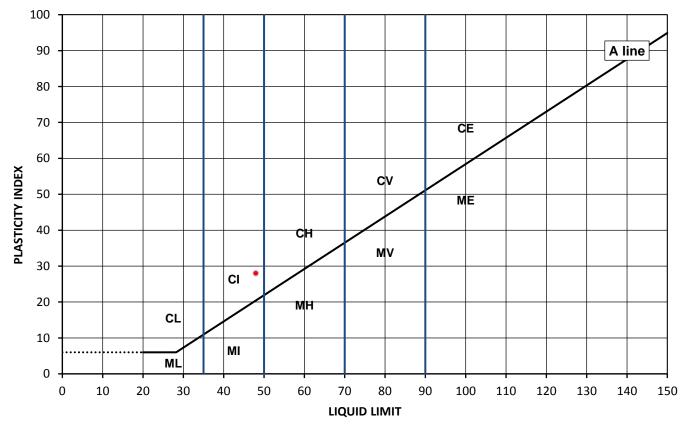
Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 17/12/2018

Sampled By: Not Given

Depth Top [m]: 2.20

Sample Type: D

Depth Base [m]: Not Given


Test Results

Laboratory Reference: 1112629 **TP608** Hole No.: Sample Reference: Not Given

Soil Description: Yellowish brown slightly gravelly slightly sandy CLAY

Tested after >425um removed by hand Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
22	48	20	28	99

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 M ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Remarks:

Dariusz Piotrowski Approved:

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. buln Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given

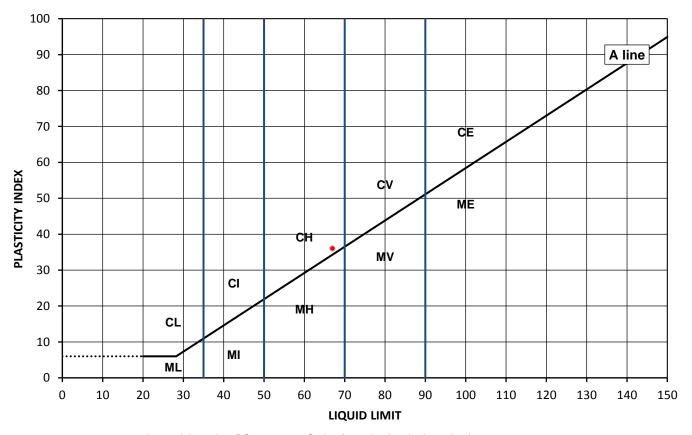
Date Received: 23/11/2018
Date Tested: 17/12/2018

Sampled By: Not Given

Test Results

Laboratory Reference: 1112637 Hole No.: TP614

Sample Reference: Not Given


Soil Description: Reddish brown slightly gravelly CLAY

Sample Preparation: Tested after washing to remove >425um

Depth Top [m]:	1.00
Depth Base [m]:	Not Giver

Sample Type: D

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
35	67	31	36	98

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 M 1 Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. huhw Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

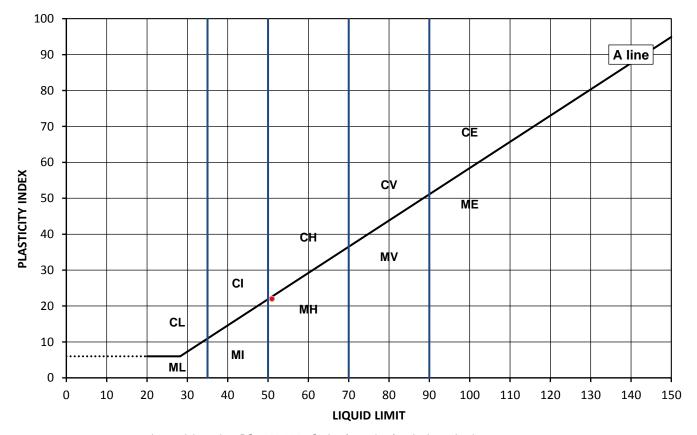
Client Reference: C-10730-C Job Number: 18-22027

Date Sampled: Not Given
Date Received: 23/11/2018
Date Tested: 17/12/2018

Sampled By: Not Given

Test Results

Laboratory Reference: 1112642 Hole No.: WS601 Sample Reference: Not Given


Soil Description: Dark brown very gravelly slightly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

Depth Top [m]: 0.30	
Depth Base [m]: 0.50	

Sample Type: B

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
10	51	29	22	39

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 M 1 Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. huhw Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

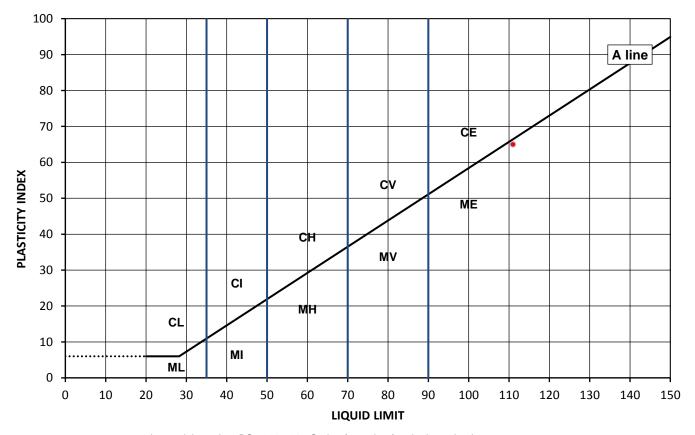
Client Reference: C-10730-C Job Number: 18-22027

Depth Top [m]: 0.80

Depth Base [m]: 1.00

Sample Type: B

Test Results


Laboratory Reference: 1112643 Hole No.: WS601

Sample Reference: Not Given
Soil Description: Orangish brown slightly gravelly slightly organic CLAY

Sample Preparation: Tested after washing to remove >425um

Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 17/12/2018 Sampled By: Not Given

As Received Moisture Liquid Limit Plastic Limit Plasticity Index % Passing 425µm [%] [%] [%] BS Test Sieve

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 M ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. hulw

Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

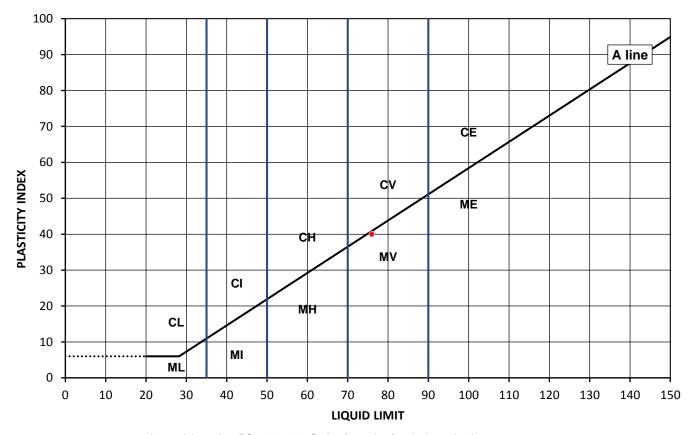
Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given

Date Received: 23/11/2018
Date Tested: 17/12/2018

Sampled By: Not Given


Test Results

Laboratory Reference:1112644Depth Top [m]: 0.50Hole No.:WS602Depth Base [m]: 0.60Sample Reference:Not GivenSample Type: B

Soil Description: Orangish brown slightly gravelly CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
23	76	36	40	65

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 M ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. hulw

Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

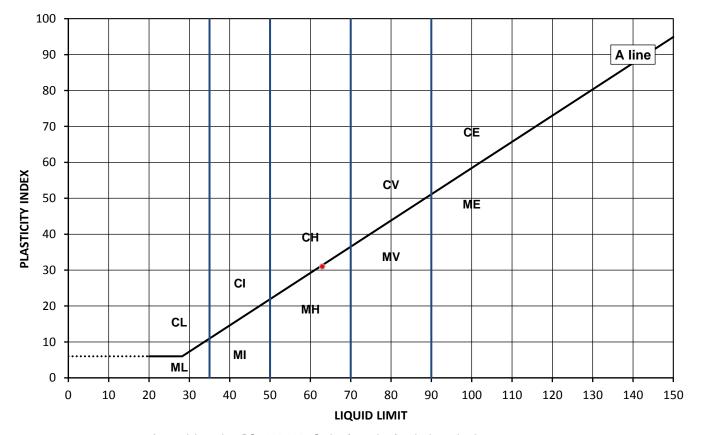
Client Reference: C-10730-C Job Number: 18-22027

Date Sampled: Not Given
Date Received: 23/11/2018
Date Tested: 17/12/2018

Sampled By: Not Given

Test Results

Laboratory Reference: 1112645 Hole No.: WS604 Sample Reference: Not Given


Soil Description: Orangish brown slightly gravelly CLAY with fragments of chalk

Sample Preparation: Tested after washing to remove >425um

Depth Top [m]: 1.50 Depth Base [m]: 2.00

Sample Type: B

As Received Moisture	Liquid Limit [%]	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]		[%]	[%]	BS Test Sieve
33	63	32	31	96

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 M ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. Lulw

Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Date Sampled: Not Given
Date Received: 23/11/2018
Date Tested: 17/12/2018

Client Reference: C-10730-C

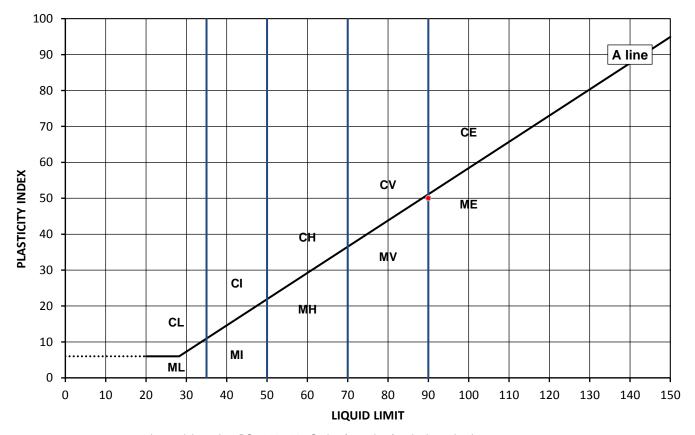
Job Number: 18-22027

Sampled By: Not Given

Site Address: Not Given

Test Results

Laboratory Reference: 1112646
Hole No.: WS605
Sample Reference: Not Given


Depth Top [m]: 0.70 Depth Base [m]: Not Given

Sample Type: B

Soil Description: Brown slightly gravelly CLAY with fragments of chalk

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
37	90	40	50	88

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 M ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. hulw

Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Plastic Limit

[%]

31

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027

Date Sampled: Not Given
Date Received: 23/11/2018
Date Tested: 17/12/2018

Sampled By: Not Given

Depth Top [m]: 1.00

Sample Type: B

47

Depth Base [m]: Not Given

Test Results

Laboratory Reference: 1112647 Hole No.: WS606 Sample Reference: Not Given

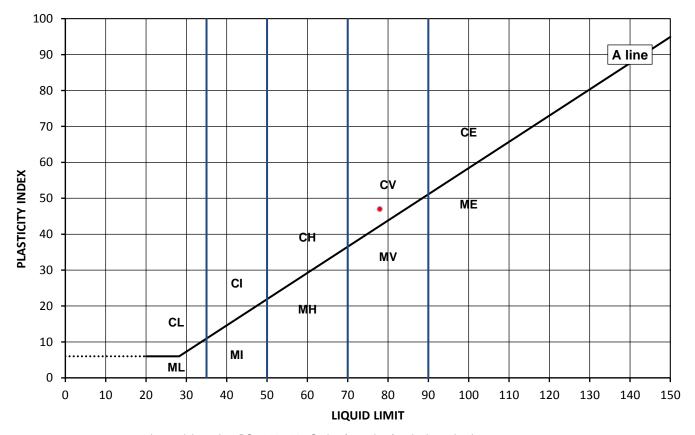
As Received Moisture

Content [%]

22

Soil Description: Yellowish brown slightly gravelly CLAY

Sample Preparation: Tested after washing to remove >425um


Liquid Limit

[%]

78

Plasticity Index	% Passing 425µm
[%]	BS Test Sieve

96

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 M ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. hulw

Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Plastic Limit

[%]

24

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

Liquid Limit

[%]

57

NN6 8LD

Contact: Wayne Lewis Site Name: Fort Halstead

Site Address: Not Given Client Reference: C-10730-C Job Number: 18-22027

Date Sampled: Not Given Date Received: 23/11/2018

Date Tested: 17/12/2018 Sampled By: Not Given

Test Results

Sample Reference:

Laboratory Reference: 1112649 WS607 Hole No.:

As Received Moisture

Content [%]

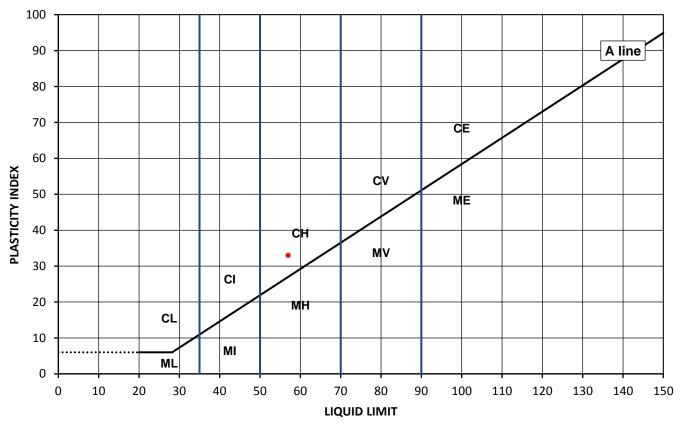
23

Not Given Soil Description: Yellowish brown slightly sandy CLAY

Tested in natural condition Sample Preparation:

Plasticity Index	% Passing 425μm	

33


BS Test Sieve

100

Depth Top [m]: 4.00

Depth Base [m]: 5.00

Sample Type: B

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 M ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Remarks:

Dariusz Piotrowski Approved:

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. buln Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

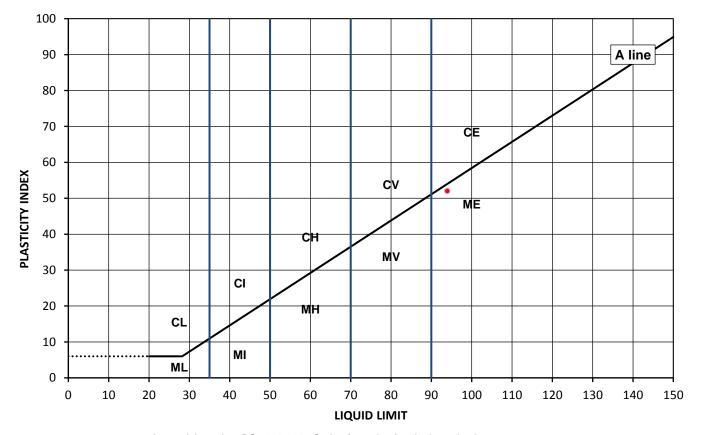
Site Address: Not Given

Client Reference: C-10730-C

Test Results

Laboratory Reference: 1112650 Hole No.: WS608

Sample Reference: Not Given
Soil Description: Orangish brown slightly gravelly slightly organic CLAY


Sample Preparation: Tested after washing to remove >425um

Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 17/12/2018 Sampled By: Not Given

Depth Base [m]: 2.00 Sample Type: B

Depth Top [m]: 1.50

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [%]	[%]	[%]	[%]	BS Test Sieve
38	94	42	52	84

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 M Ι Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. huh

Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027

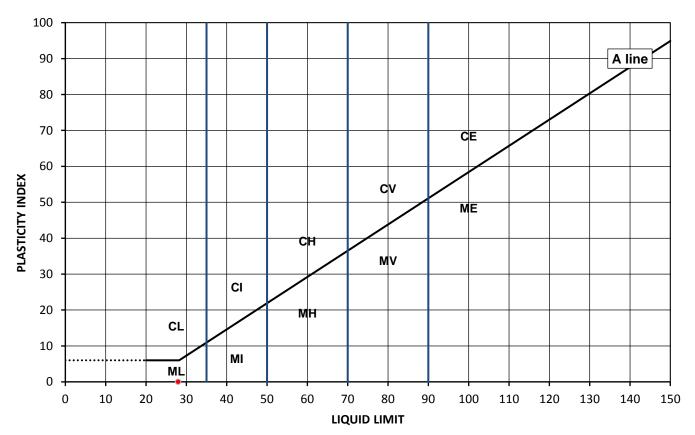
Date Sampled: Not Given
Date Received: 23/11/2018
Date Tested: 17/12/2018

Sampled By: Not Given

Depth Top [m]: 3.00

Depth Base [m]: 3.50

Sample Type: B


Test Results

Laboratory Reference: 1112651 Hole No.: WS608 Sample Reference: Not Given

Soil Description: Cream colour slightly gravelly CHALK

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
27	28	NP	NP	

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 M ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic O append to classification for organic material (eg CHO)

Remarks: NP – non plastic

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. hulw

Maria Chandler

Geotechnical Site Manager Northampton

Liquid and Plastic Limits

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis Site Name: Fort Halstead

Site Address: Not Given Client Reference: C-10730-C Job Number: 18-22027

Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 17/12/2018

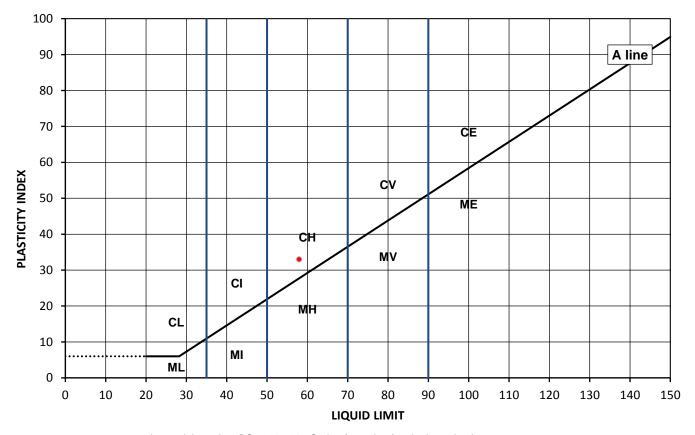
Sampled By: Not Given

Depth Top [m]: 0.90

Sample Type: B

Depth Base [m]: Not Given

Test Results


Laboratory Reference: 1112652 WS610 Hole No.:

Sample Reference: Not Given Soil Description:

Yellowish brown slightly gravelly slightly sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [%]	[%]	[%]	[%]	BS Test Sieve
24	58	25	33	79

Legend, based on BS 5930:2015 Code of practice for site investigations

Plasticity Liquid Limit С Clay Low below 35 L Silt Medium 35 to 50 M ı Н High 50 to 70 Very high 70 to 90 Ε Extremely high exceeding 90

Organic 0 append to classification for organic material (eg CHO)

Remarks:

Dariusz Piotrowski Approved:

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. buln Maria Chandler

Geotechnical Site Manager Northampton

Summary of Classification Test Results

7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

i2 Analytical Ltd

Environmental Science

Client:

Client Address:

Hydrock Consultants Ltd

MC by BS 1377-2: 1990: Clause 3.2; Atterberg by BS 1377-2: 1990: Clause

4.3, Clause 4.4 and 5; PD by BS 1377-2: 1990: Clause 8.2

Spratton, Northamptonshire,

2-4 Hawthorne Park, Holdenby Road,

NN6 8LD

Wayne Lewis Contact: Fort Halstead Site Name:

Site Address: Not Given Tested in Accordance with:

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given

> Date Received: 23/11/2018 Date Tested: 17/12/2018

Sampled By: Not Given

Test results

		Sample							Atter	berg#		Dei	nsity					
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	MC#	% Passing 425um	ш	PL	PI	bulk	PD	Total Porosity			
			m	m				%	%	%	%	%	Mg/m3	Mg/m3	%			
1112598	BH601	Not Given	1.40	Not Given	D	Yellowish brown slightly gravelly CLAY	Atterberg 1 Point	25	90	72	30	42						
1112599	BH601	Not Given	2.40	Not Given	D	Brown slightly gravelly slightly organic CLAY	Atterberg 1 Point	29	95	107	48	59						
1112600	BH602	Not Given	1.10	1.40	В	Yellowish brown gravelly sandy CLAY	Atterberg 1 Point	20	62	43	20	23						
1112601	BH603	Not Given	1.00	1.40	В	Yellowish brown slightly gravelly slightly sandy CLAY	Atterberg 1 Point	30	69	53	26	27						
1112602	BH603	Not Given	1.50	2.00	В	Orangish brown sandy CLAY	Atterberg 1 Point	19	100	36	18	18						
1112604	BH603	Not Given	4.40	Not Given	D	Yellow sandy CLAY	Atterberg 1 Point	13	100	35	22	13						
1112606	BH604	Not Given	2.90	Not Given	D	Orangish brown slightly sandy CLAY	Atterberg 1 Point	22	100	56	23	33						
1112607	BH604	Not Given	5.40	Not Given	D	Yellowish brown slightly gravelly CLAY	Atterberg 1 Point	28	96	61	30	31						_
1112608	BH604	Not Given	6.90	Not Given	D	Light grey mottled brown CLAY	Atterberg 1 Point	22	100	60	26	34					_	
1112611	BH605	Not Given	1.50	Not Given	D	Brown slightly gravelly sandy CLAY	Atterberg 1 Point	20	88	42	20	22						

Note: # UKAS accredited; NP - Non plastic

Comments:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019 Signed:

Maria Chandler

Geotechnical Site Manager Northampton

GF 234.5

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory.

for and on behalf of i2 Analytical Ltd

Summary of Classification Test Results

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client:

Client Address:

Hydrock Consultants Ltd

MC by BS 1377-2: 1990: Clause 3.2; Atterberg by BS 1377-2: 1990: Clause

2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Wayne Lewis Contact: Fort Halstead Site Name:

Site Address: Not Given Tested in Accordance with:

4.3, Clause 4.4 and 5; PD by BS 1377-2: 1990: Clause 8.2

Client Reference: C-10730-C

Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 17/12/2018

Sampled By: Not Given

Test results

		Sample								Atter	berg#		Dei	nsity	,			
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	MC#	% Passing 425um	ш	PL	PI	bulk	PD	Total Porosity			
			m	m				%	%	%	%	%	Mg/m3	Mg/m3	%		\longmapsto	
1112612	BH605	Not Given	3.40	Not Given	D	Orangish brown slightly gravelly CLAY	Atterberg 1 Point	25	93	62	28	34						
1112613	BH605	Not Given	5.90	Not Given	D	Orangish brown slightly gravelly slightly organic CLAY	Atterberg 1 Point	43	96	92	52	40						
1112614	BH606	Not Given	1.50	2.00	В	Yellowish brown slightly gravelly slightly organic CLAY	Atterberg 1 Point	45	96	90	48	42						
1112616	BH606	Not Given	3.40	Not Given	D	Yellowish brown slightly gravelly slightly organic CLAY	Atterberg 1 Point	38	70	96	42	54						
1112617	BH606	Not Given	5.90	Not Given	D	Brown slightly gravelly slightly organic CLAY	Atterberg 1 Point	36	75	95	44	51						
1112626	TP607	Not Given	1.00	Not Given	D	Orangish brown slightly organic CLAY	Atterberg 1 Point	53	100	124	45	79						
1112628	TP608	Not Given	1.50	Not Given	D	Brown slightly gravelly slightly sandy CLAY with fragments of chalk	Atterberg 1 Point	24	89	53	27	26						
1112629	TP608	Not Given	2.20	Not Given	D	Yellowish brown slightly gravelly slightly sandy CLAY	Atterberg 1 Point	22	99	48	20	28						
1112637	TP614	Not Given	1.00	Not Given	D	Reddish brown slightly gravelly CLAY	Atterberg 1 Point	35	98	67	31	36						
1112642	WS601	Not Given	0.30	0.50	В	Dark brown very gravelly slightly sandy CLAY	Atterberg 1 Point	10	39	51	29	22						

Note: # UKAS accredited; NP - Non plastic

Comments:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019 Signed:

Maria Chandler

Geotechnical Site Manager Northampton

GF 234.5

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis.

for and on behalf of i2 Analytical Ltd

Summary of Classification Test Results

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client:

Client Address:

Hydrock Consultants Ltd

2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Wayne Lewis Contact: Fort Halstead Site Name:

Site Address: Not Given Tested in Accordance with:

MC by BS 1377-2: 1990: Clause 3.2; Atterberg by BS 1377-2: 1990: Clause 4.3, Clause 4.4 and 5; PD by BS 1377-2: 1990: Clause 8.2

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given

Date Received: 23/11/2018 Date Tested: 17/12/2018

Sampled By: Not Given

Test results

			Sample							Atter	hora#		Do	nsity				
		Sumple			1					Atter	beig#		Бе	lisity	al sity			
Laboratory Reference	, Deptil Deptil - Description		Remarks	MC#	% Passing 425um	ш	PL	PI	bulk	PD	Total Porosity							
			m	m				%	%	%	%	%	Mg/m3	Mg/m3	%			
1112643	WS601	Not Given	0.80	1.00	В	Orangish brown slightly gravelly slightly organic CLAY	Atterberg 1 Point	46	86	111	46	65						
1112644	WS602	Not Given	0.50	0.60	В	Orangish brown slightly gravelly CLAY	Atterberg 1 Point	23	65	76	36	40						
1112645	WS604	Not Given	1.50	2.00	В	Orangish brown slightly gravelly CLAY with fragments of chalk	Atterberg 1 Point	33	96	63	32	31						
1112646	WS605	Not Given	0.70	Not Given	В	Brown slightly gravelly CLAY with fragments of chalk	Atterberg 1 Point	37	88	90	40	50						
1112647	WS606	Not Given	1.00	Not Given	В	Yellowish brown slightly gravelly CLAY	Atterberg 1 Point	22	96	78	31	47						
1112649	WS607	Not Given	4.00	5.00	В	Yellowish brown slightly sandy CLAY	Atterberg 1 Point	23	100	57	24	33						
1112650	WS608	Not Given	1.50	2.00	В	Orangish brown slightly gravelly slightly organic CLAY	Atterberg 1 Point	38	84	94	42	52						
1112651	WS608	Not Given	3.00	3.50	В	Cream colour slightly gravelly CHALK	Atterberg 1 Point	27	99	28	NP	NP				·		
1112652	WS610	Not Given	0.90	Not Given	В	Yellowish brown slightly gravelly slightly sandy CLAY	Atterberg 1 Point	24	79	58	25	33						

Note: # UKAS accredited; NP - Non plastic

Comments:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019 Signed:

Maria Chandler

Geotechnical Site Manager Northampton

GF 234.5

"Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report are representative of the samples submitted for analysis. The analysis was carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland."

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Site Name: Fort Halstead Site Address: Not Given

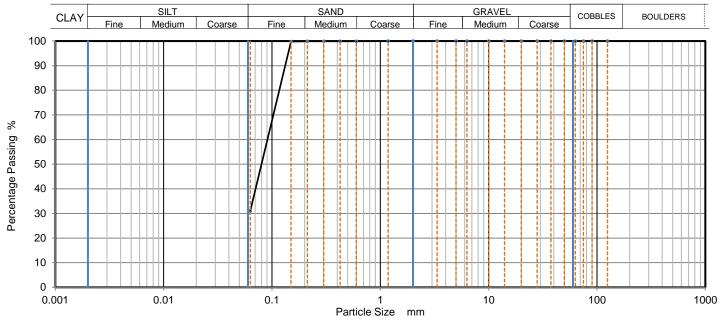
Wayne Lewis

Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 17/12/2018

Client Reference: C-10730-C

Test Results:

Laboratory Reference: 1112603 BH603 Hole No.: Sample Reference: Not Given


Yellowish brown very clayey SAND Sample Description:

Job Number: 18-22027 Sampled By: Not Given

Depth Top [m]: 3.50

Depth Base [m]: 4.00

Sample Type: B

Siev	ring	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		·
63	100		
50	100		
37.5	100		·
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100	7	
0.3	100		
0.212	100	1	
0.15	100	1	
0.063	32	1	

388 Dry Mass of sample [g]:

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	0.00
Sand	68.50
Fines < 0.063mm	31.50

Grading Analysis		
D100	mm	2
D60	mm	0.0905
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:

Maria Chandler

Geotechnical Site Manager Northampton

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

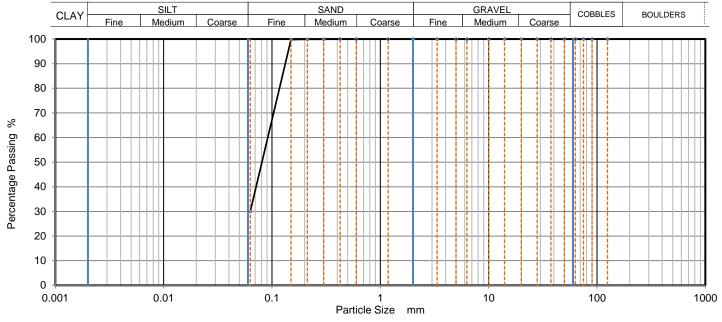
NN6 8LD

Contact: Wayne Lewis Site Name: Fort Halstead Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 17/12/2018

Test Results:

Laboratory Reference: 1112605 BH603 Hole No.: Sample Reference: Not Given


Yellowish brown very clayey SAND Sample Description:

Sampled By: Not Given

Depth Top [m]: 5.00

Sample Type: B

Depth Base [m]: Not Given

Siev	ring	Sedimentation					
Particle Size mm	% Passing	Particle Size mm	% Passing				
125	100						
90	100						
75	100						
63	100						
50	100						
37.5	100						
28	100						
20	100						
14	100						
10	100						
6.3	100						
5	100						
3.35	100						
2	100						
1.18	100						
0.6	100						
0.425	100						
0.3	100						
0.212	100						
0.15	100	1					
0.063	31	1					

Dry	iviass of	sample	.gj:		330

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	0.00
Sand	69.40
Fines <0.063mm	30.60

Grading Analysis		
D100	mm	1.18
D60	mm	0.0911
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:

Maria Chandler

Geotechnical Site Manager Northampton

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

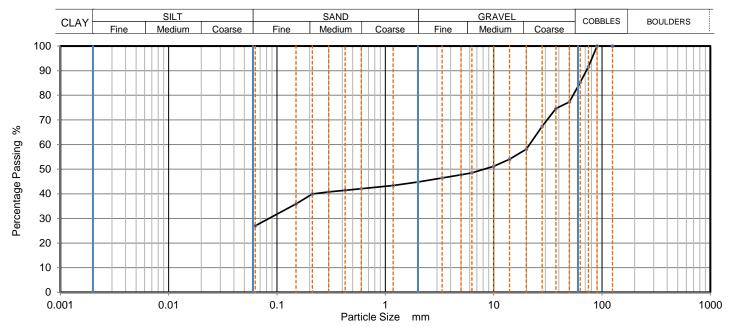
Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead


Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 17/12/2018 Sampled By: Not Given

Test Results:

Laboratory Reference:1112609Depth Top [m]: 8.10Hole No.:BH604Depth Base [m]: 8.60Sample Reference:Not GivenSample Type: B

Sample Description: Brown sandy very clayey GRAVEL with cobbles

Siev	ring	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	92		
63	85		
50	77		
37.5	75		
28	67		
20	58		
14	54		
10	51		
6.3	49		
5	48		
3.35	46		
2	45		
1.18	43		
0.6	42		
0.425	41	1	
0.3	41		
0.212	40	1	
0.15	36	1	
0.063	28	1	

Dry Mass of sample [g]:	9817
, 1 - 101	

Sample Proportions	% dry mass	
Very coarse	14.70	
Gravel 40.50		
Sand	17.30	
Fines <0.063mm	27.50	

Grading Analysis		
D100	mm	90
D60	mm	21.4
D30	mm	0.0814
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. huhw Maria Chandler

Geotechnical Site Manager Northampton

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client: Hydrock Consultants Ltd
Client Address: 2-4 Hawthorne Park, Hol

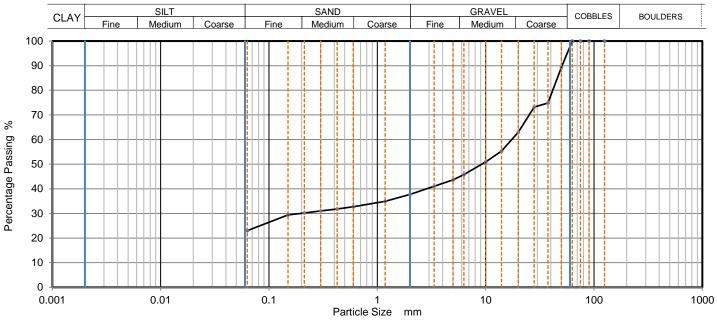
2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given


Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 17/12/2018 Sampled By: Not Given

Test Results:

Laboratory Reference: 1112610
Hole No.: BH604
Sample Reference: Not Given

Sample Description: Brown sandy very clayey GRAVEL

Depth Top [m]: 11.00 Depth Base [m]: Not Given Sample Type: B

Sieving		Sedime	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100			
90	100			
75	100			
63	100			
50	89			
37.5	75			
28	73	1		
20	63			
14	55			
10	51			
6.3	46			
5	44			
3.35	41			
2	38			
1.18	35			
0.6	33			
0.425	32	1		
0.3	31			
0.212	30	1		
0.15	29	1		
0.063	23	1		

Dry Mass of sample [g]:	10299
, 1 - 131	

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	62.30
Sand	14.50
Fines <0.063mm	23.20

Grading Analysis		
D100	mm	63
D60	mm	17.4
D30	mm	0.195
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. huhw Maria Chandler

Geotechnical Site Manager Northampton

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

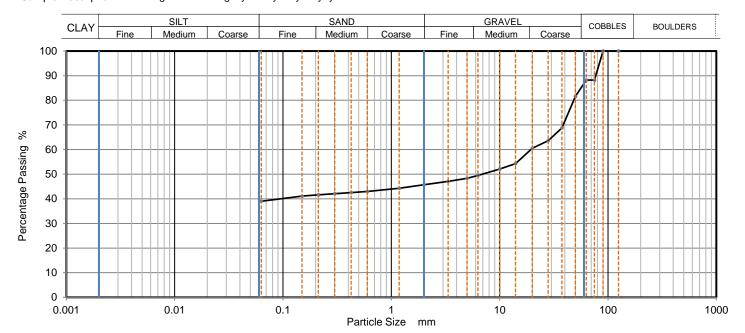
Client: Hydrock Consultants Ltd
Client Address: 2-4 Hawthorne Park, Hol

2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead
Site Address: Not Given


Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 17/12/2018

Sampled By: Not Given

Test Results:

Laboratory Reference:1112615Depth Top [m]: 2.50Hole No.:BH606Depth Base [m]: 3.00Sample Reference:Not GivenSample Type: B

Sample Description: Orangish brown slightly sandy very clayey GRAVEL with cobbles

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	88		
63	88		
50	82		
37.5	69		
28	64		
20	61		
14	54		
10	52		
6.3	50		
5	48		
3.35	47		
2	46		
1.18	44		
0.6	43		
0.425	43	1	
0.3	42		
0.212	42	7	
0.15	41	7	
0.063	39	7	

Dry Mass of sample [g]:	5872
, 101	

Sample Proportions % dry mass		
Very coarse	11.80	
Gravel	42.50	
Sand	6.50	
Fines <0.063mm	39.20	

Grading Analysis		
D100	mm	90
D60	mm	19.5
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

M. buh

Signed:

Maria Chandler

Geotechnical Site Manager Northampton

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

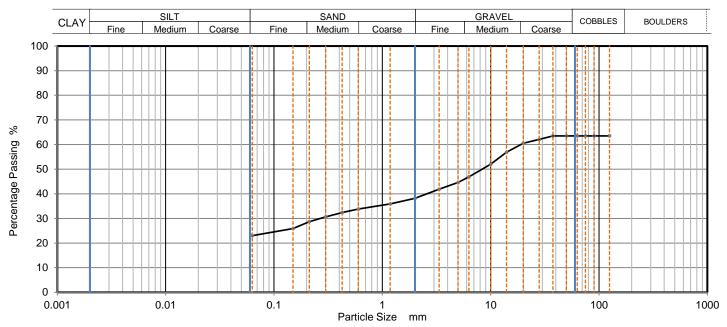
NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 17/12/2018 Sampled By: Not Given

Depth Top [m]: 1.30


Sample Type: B

Depth Base [m]: Not Given

Test Results:

Laboratory Reference: 1112622
Hole No.: TP603
Sample Reference: Not Given

Sample Description: Light grey mootled white CHALK with flintstone

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	64		
90	64		
75	64		
63	64		
50	64		
37.5	64		
28	62		
20	61		
14	57		
10	52		
6.3	47		
5	45		
3.35	42		
2	38		
1.18	36		
0.6	34		
0.425	32	1	
0.3	31		
0.212	29		
0.15	26		
0.063	24	1	

رry	wass of sample [g]:	6007

Sample Proportions	% dry mass
Very coarse	36.50
Gravel	25.30
Sand	14.70
Fines <0.063mm	23.50

Grading Analysis		
D100	mm	
D60	mm	19.1
D30	mm	0.27
D10	mm	
Uniformity Coefficient		
Curvature Coefficient	·	

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. huhw Maria Chandler

Geotechnical Site Manager Northampton

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client: Hydrock Consultants Ltd

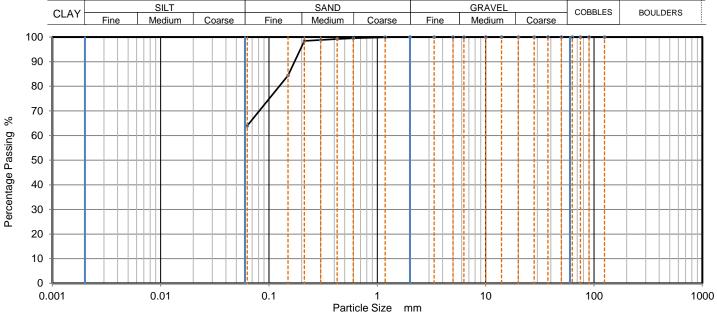
Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead
Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 17/12/2018 Sampled By: Not Given


Test Results:

Laboratory Reference: 1112623
Hole No.: TP605
Sample Reference: Not Given

Sample Description: Orangish brown very sandy CLAY

Depth Top [m]: 1.00
Depth Base [m]: Not Given

Sample Type: B

Siev	ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	99	1	
0.3	99		
0.212	98	1	
0.15	84	1	
0.063	65	1	

Dry Mass of sample [g]: 285

Sample Proportions	% dry mass	
Very coarse	0.00	
Gravel	0.00	
Sand	35.20	
Fines < 0.063mm	64.80	

Grading Analysis		
D100	mm	2
D60	mm	
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. hulw Maria Chandler

Geotechnical Site Manager Northampton

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C
Job Number: 18-22027
Date Sampled: Not Given
Date Received: 23/11/2018
Date Tested: 17/12/2018

Test Results:

Laboratory Reference: 1112633
Hole No.: TP611
Sample Reference: Not Given

Sample Description: Brown sandy very gravelly CLAY

Date Tested: 17/12/2018 Sampled By: Not Given

Depth Top [m]: 1.00

Sample Type: B

Depth Base [m]: Not Given

SILT SAND **GRAVEL** COBBLES **BOULDERS** CLAY Medium Medium Medium 100 90 80 70 % Percentage Passing 60 50 40 30 20 10 0 0.001 0.01 0.1 10 100 1000 Particle Size mm

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	91		
63	91		
50	89		
37.5	78		
28	75		
20	65		
14	62		
10	60		
6.3	59		
5	59		
3.35	59		
2	58		
1.18	57		
0.6	56		
0.425	55		
0.3	55		
0.212	54		
0.15	52		
0.063	46		

Dr. Mass of sample [a]:	5990
Dry Mass of sample [g]:	5990

Sample Proportions	% dry mass	
Very coarse	8.70	
Gravel	33.40	
Sand	12.00	
Fines <0.063mm	46.00	

Grading Analysis		
D100	mm	90
D60	mm	9.02
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. huhw Maria Chandler

Geotechnical Site Manager Northampton

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead
Site Address: Not Given

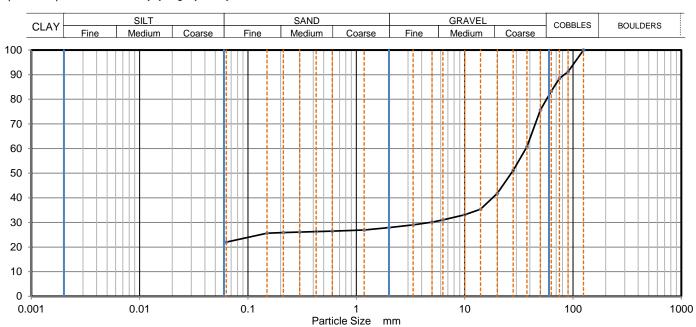
Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 17/12/2018 Sampled By: Not Given

Test Results:

%

Percentage Passing

Laboratory Reference: 1112638


Hole No.: TP615

Sample Reference: Not Given

Sample Description: Brown clayey slightly sandy GRAVEL with cobbles

Depth Top [m]: 1.50
Depth Base [m]: Not Given

Sample Type: B

Siev	ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	91		
75	89		
63	83		
50	76		
37.5	61		
28	51		
20	42		
14	35		
10	33		
6.3	31		
5	30		
3.35	29		
2	28		
1.18	27		
0.6	27		
0.425	26		
0.3	26		
0.212	26	1	
0.15	26	1	
0.063	23	7	

Dry Mass of sample [g]:	14950
Dry Mass of Sample [g].	14930

Sample Proportions	% dry mass
Very coarse	16.70
Gravel	55.40
Sand	5.20
Fines <0.063mm	22.70

Grading Analysis		
D100	mm	125
D60	mm	36.7
D30	mm	4.82
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. Lulw

Maria Chandler

Geotechnical Site Manager Northampton

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

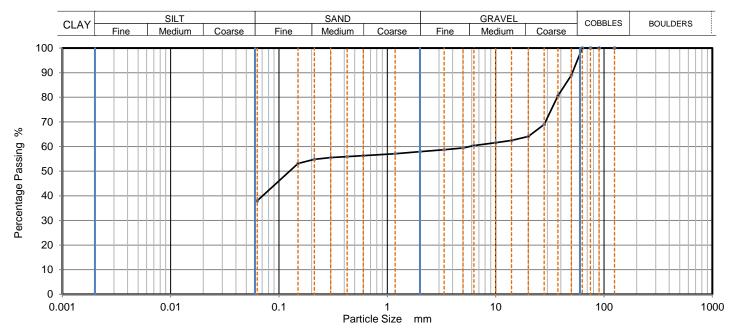
Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead


Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 17/12/2018 Sampled By: Not Given

Test Results:

Laboratory Reference:1112648Depth Top [m]: 1.50Hole No.:WS606Depth Base [m]: 2.00Sample Reference:Not GivenSample Type: B

Sample Description: Yellowish brown very clayey sandy GRAVEL with fragments of chalk

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100			
90	100			
75	100			
63	100			
50	89			
37.5	81			
28	69			
20	64			
14	63			
10	62			
6.3	60			
5	59			
3.35	59			
2	58			
1.18	57			
0.6	56			
0.425	56			
0.3	56	1		
0.212	55			
0.15	53			
0.063	39	1		

Dry Mass of sample [g]:	5348

Sample Proportions	% dry mass
Very coarse	0.00
Gravel	42.10
Sand	19.20
Fines <0.063mm	38.60

Grading Analysis		
D100	mm	63
D60	mm	5.74
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed: M. Www Maria Chandler

Geotechnical Site Manager Northampton

Determination of California Bearing Ratio

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

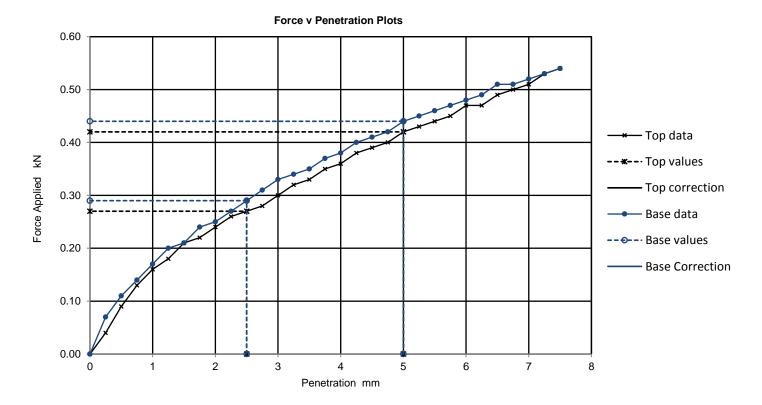
Spratton, Northamptonshire, NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 27/12/2018

Sampled By: Not Given


Test Results:

Laboratory Reference:1112618Depth Top [m]: 0.55Hole No.:TP601Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: B

Sample Description: Yellowish brown slightly gravelly CLAY

Specimen Preparation:

Condition Remoulded Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 4.5kg rammer Time to surface days Amount of swell recorded mm Material retained on 20mm sieve removed 11 % Dry density after soaking Mg/m3 Initial Specimen details Bulk density 1.89 Mg/m3 Surcharge applied kg Dry density 1.45 Mg/m3 4.8 kPa Moisture content 31

Results

TOP BASE

Curve	CBR Values, %			
correction applied	2.5mm	5mm	Highest	Average
No	2.0	2.1	2.1	22
No	2.2	2.2	2.2	2.2

Moisture Content % 31 29

Remarks: Test/ Specimen specific remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. Lulw

Maria Chandler

Geotechnical Site Manager Northampton

GF 108.10

Determination of California Bearing Ratio

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-4: 1990: Clause 7

30

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

Moisture content

NN6 8LD

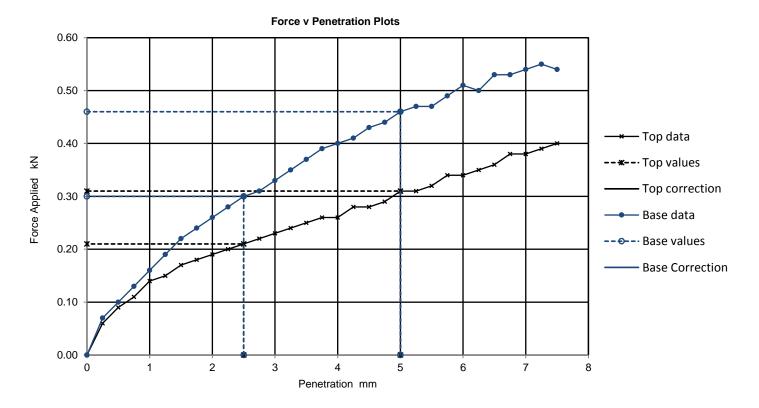
Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 27/12/2018 Sampled By: Not Given

Test Results:

Laboratory Reference: 1112619
Hole No.: TP601
Sample Reference: Not Given


Sample Description: Yellowish brown slightly gravelly CLAY

Depth Top [m]: 0.80
Depth Base [m]: Not Given

Sample Type: B

Specimen Preparation:

Condition Remoulded Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 4.5kg rammer Time to surface days Amount of swell recorded mm Material retained on 20mm sieve removed 3 % Dry density after soaking Mg/m3 Initial Specimen details Bulk density 1.97 Mg/m3 Surcharge applied 8 kg Dry density 1.52 Mg/m3 4.9 kPa

Results

TOP BASE

Curve	CBR Values, %			
correction applied	2.5mm	5mm	Highest	Average
No	1.6	1.6	1.6	
No	2.3	2.3	2.3	

Moisture Content % 24 27

Remarks: Test/ Specimen specific remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. Luhw

Maria Chandler

Geotechnical Site Manager Northampton

GF 108.10

Determination of California Bearing Ratio

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 27/12/2018

Sampled By: Not Given

Test Results:

Laboratory Reference: 1112620
Hole No.: TP602
Sample Reference: Not Given

Sample Description: Orangish brown gravelly CLAY

Depth Top [m]: 1.20
Depth Base [m]: Not Given

Sample Type: B

Specimen Preparation:

Initial Specimen details

Condition Remoulded Soaking details

Details Recompacted with specified standard effort using 4.5kg rammer Period of soaking details

Soaking details
Period of soaking
Comparison of soaking
Comparison of swell recorded
Comparison of swel

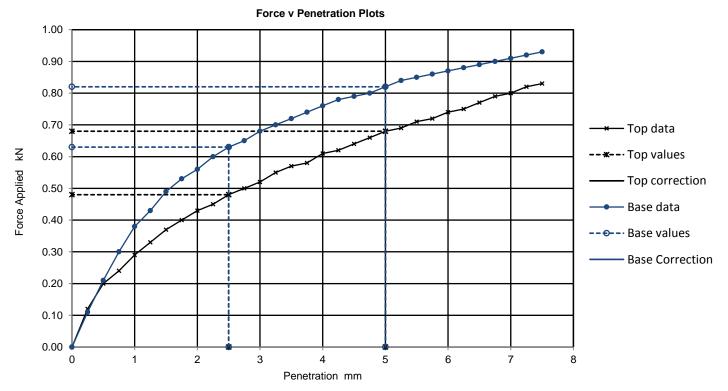
Material retained on 20mm sieve removed

36 %

Mg/m3

Mg/m3

1.76


Surcharge applied 8 kg

4.9

kPa

Dry density 1.22 Moisture content 44

Bulk density

Results

TOP BASE

Curve		CBR Va	lues, %	
correction applied	2.5mm	5mm	Highest	Average
No	3.6	3.4	3.6	
No	4.8	4.1	4.8	

Moisture Content % 43 43

Remarks: Approved: Test carried out with > 25 % retained on 20mm as per

clause 7.2.1.2

Dariusz Piotrowski PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. Lulw

Test/ Specimen

specific remarks:

Maria Chandler

Geotechnical Site Manager Northampton

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

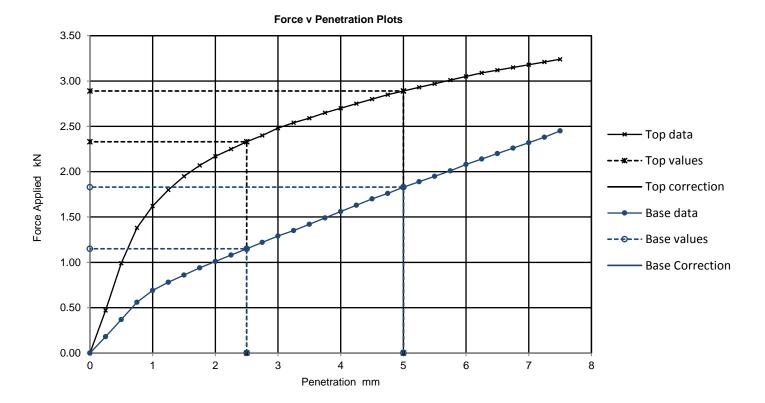
NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 27/12/2018

Sampled By: Not Given


Test Results:

Laboratory Reference: 1112621 Depth Top [m]: 2.30
Hole No.: TP602 Depth Base [m]: Not Given
Sample Reference: Not Given Sample Type: B

Sample Description: Orangish brown slightly sandy gravelly CLAY

Specimen Preparation:

Condition Remoulded Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 4.5kg rammer Time to surface days Amount of swell recorded mm Material retained on 20mm sieve removed 27 % Dry density after soaking Mg/m3 Initial Specimen details Bulk density 1.71 Mg/m3 Surcharge applied 8 kg Dry density 1.27 Mg/m3 4.9 kPa Moisture content 34

Results

TOP BASE

Curve		CBR Va	lues, %	
correction applied	2.5mm	5mm	Highest	Average
No	18.0	14.0	18.0	
No	8.7	9.2	9.2	

Moisture Content % 34 32

Remarks: Test carried out with > 25 % retained on 20mm as per clause 7.2.1.2

Test/ Specimen specific remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. Luhw

Maria Chandler

Geotechnical Site Manager Northampton

Determination of California Bearing Ratio

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd Clien

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire, NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 27/12/2018

Sampled By: Not Given

Test Results:

Laboratory Reference: 1112624
Hole No.: TP605
Sample Reference: Not Given

Sample Description: Yellowish brown slightly sandy CLAY

Depth Top [m]: 1.50
Depth Base [m]: Not Given

Sample Type: B

Specimen Preparation:

Initial Specimen details

Condition Remoulded

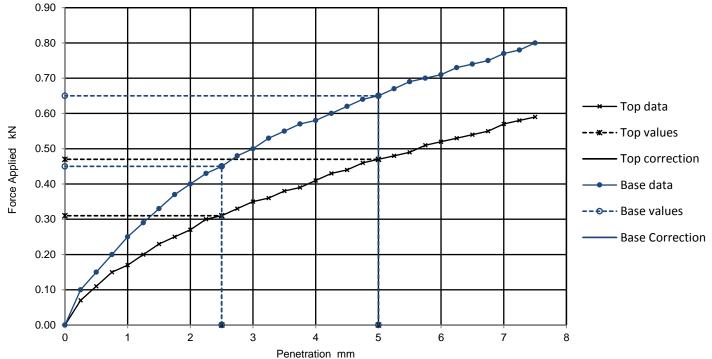
Details Processed with an effect using 4.5 language.

Recompacted with specified standard effort using 4.5kg rammer

0

Soaking details
Period of soaking
Time to surface
Amount of swell recorded
Dry density after soaking
Not soaked
days
days
Mmm
Mg/m3

Material retained on 20mm sieve removed


Bulk density 1.94 Mg/m3

Dry density 1.54 Mg/m3 Moisture content 26 %

Surcharge applied 8 kg 4.8 kPa

%

Results

TOP BASE

Curve		CBR Va	lues, %	
correction applied	2.5mm	5mm	Highest	Average
No	2.3	2.4	2.4	
No	3.4	3.3	3.4	

Moisture Content % 26 25

Remarks:

Test/ Specimen specific remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. Lulw

Maria Chandler

Geotechnical Site Manager Northampton

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

Moisture content

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

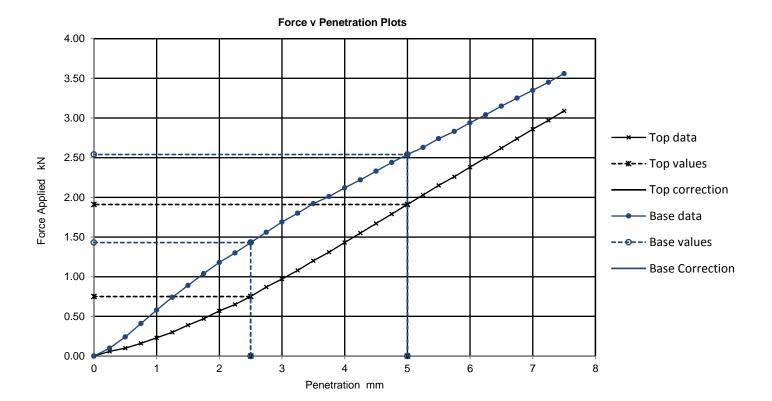
Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 27/12/2018 Sampled By: Not Given

Test Results:

Laboratory Reference: 1112625 Hole No.: TP606 Sample Reference: Not Given

Sample Description: White gravelly CHALK


Depth Top [m]: 1.00
Depth Base [m]: Not Given

Sample Type: B

Specimen Preparation:

Condition Remoulded Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 4.5kg rammer Time to surface days Amount of swell recorded mm Material retained on 20mm sieve removed 76 % Dry density after soaking Mg/m3 Initial Specimen details Bulk density 1.88 Mg/m3 Surcharge applied 8 kg Dry density 1.46 Mg/m3 4.8 kPa

28

Results

TOP BASE

Curve		CBR Va	lues, %	
correction applied	2.5mm	5mm	Highest	Average
No	5.7	9.6	9.6	
No	11.0	13.0	13.0	

Moisture Content % 26 28

Remarks:

Test carried out with > 25 % retained on 20mm as per

clause 7.2.1.2

Test/ Specimen specific remarks: Natural material is gravelly CHALK. The material has been fragmented.

Approved:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. huhw

Maria Chandler

Geotechnical Site Manager Northampton

Determination of California Bearing Ratio

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd Client I

Client Address: 2-4 Hawthorne Park, Holdenby Road,

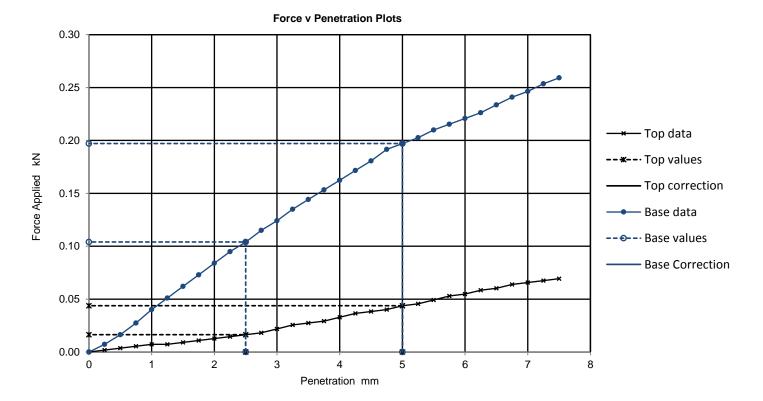
Spratton, Northamptonshire, NN6 8LD

Contact: Wayne Lewis Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 27/12/2018

Sampled By: Not Given


Test Results:

Laboratory Reference:1112627Depth Top [m]: 1.50Hole No.:TP607Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: B

Sample Description: Cream color clayey gravelly CHALK

Specimen Preparation:

Condition Remoulded Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 4.5kg rammer Time to surface days Amount of swell recorded mm Material retained on 20mm sieve removed 49 % Dry density after soaking Mg/m3 Initial Specimen details Bulk density 1.90 Mg/m3 Surcharge applied 8 kg Dry density 1.45 Mg/m3 4.9 kPa Moisture content 31

Results

TOP BASE

Curve		CBR Va	lues, %	
correction applied	2.5mm	5mm	Highest	Average
No	0.1	0.2	0.2	
No	0.8	1.0	1.0	

Moisture Content % 30 31

Remarks: Test carried out with > 25 % retained on 20mm as per clause 7.2.1.2

Test/ Specimen specific remarks:

Signed:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

M. but

Maria Chandler

Geotechnical Site Manager Northampton

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

Moisture content

NN6 8LD

Contact: Wayne Lewis Site Name: Fort Halstead

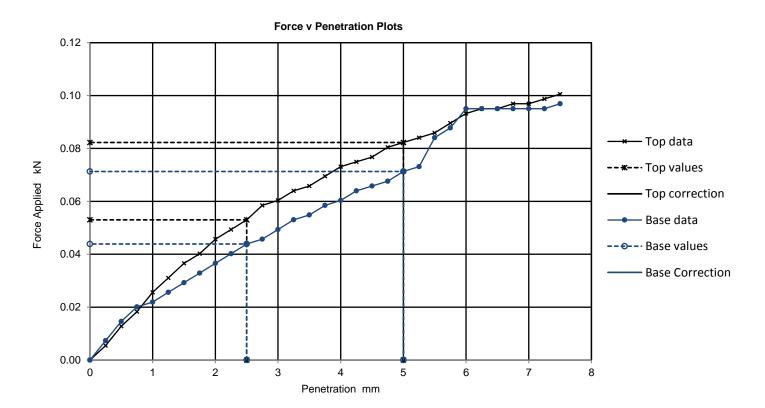
Site Address: Not Given Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 27/12/2018

Sampled By: Not Given

Test Results:

Laboratory Reference: 1112630 **TP609** Hole No.: Sample Reference: Not Given

Brown gravelly CLAY Sample Description:


Depth Top [m]: 0.60 Depth Base [m]: Not Given

Sample Type: B

Specimen Preparation:

Condition Remoulded Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 4.5kg rammer Time to surface days Amount of swell recorded mm Material retained on 20mm sieve removed 45 % Dry density after soaking Mg/m3 Initial Specimen details Bulk density 1.89 Mg/m3 Surcharge applied kg Dry density 1.49 Mg/m3 4.9 kPa

27

Results

TOP **BASE**

Curve		CBR Va	lues, %	
correction applied	2.5mm	5mm	Highest	Average
No	0.4	0.4	0.4	0.4
No	0.3	0.4	0.4	0.4

Moisture Content % 27 28

Remarks:

Test carried out with > 25 % retained on 20mm as per

clause 7.2.1.2

Test/ Specimen specific remarks:

Insufficient amount of material to test initial MC; Initial MC assumed to be equal to Top MC

Approved:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:

Maria Chandler

Geotechnical Site Manager Northampton

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

Moisture content

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

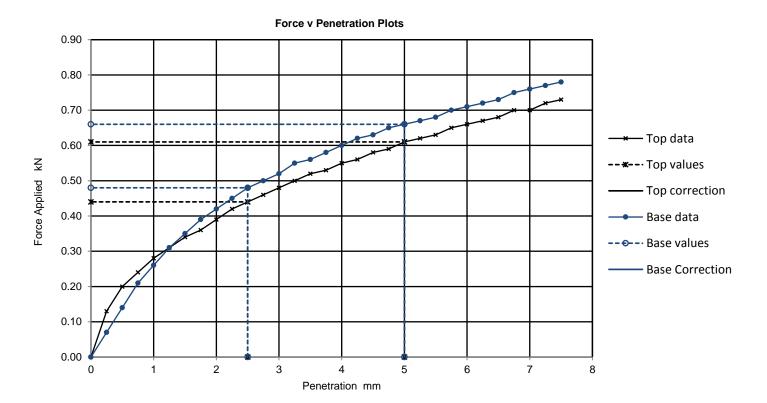
Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 27/12/2018

Sampled By: Not Given

Test Results:

Laboratory Reference: 1112631 Hole No.: TP610 Sample Reference: Not Given

Sample Description: Yellowish brown slightly gravelly CLAY


Depth Top [m]: 0.90 Depth Base [m]: Not Given

Sample Type: B

Specimen Preparation:

Condition Remoulded Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 4.5kg rammer Time to surface days Amount of swell recorded mm Material retained on 20mm sieve removed % Dry density after soaking Mg/m3 Initial Specimen details Bulk density 2.01 Mg/m3 Surcharge applied kg Dry density 1.62 Mg/m3 4.9 kPa

24

Results

TOP BASE

Curve		CBR Va	lues, %	
correction applied	2.5mm	5mm	Highest	Average
No	3.3	3.1	3.3	3.5
No	3.6	3.3	3.6	5.5

Moisture Content % 23 23

Remarks: Test/ Specimen specific remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. Lulw

Maria Chandler

Geotechnical Site Manager Northampton

Determination of California Bearing Ratio

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd Client Reference:

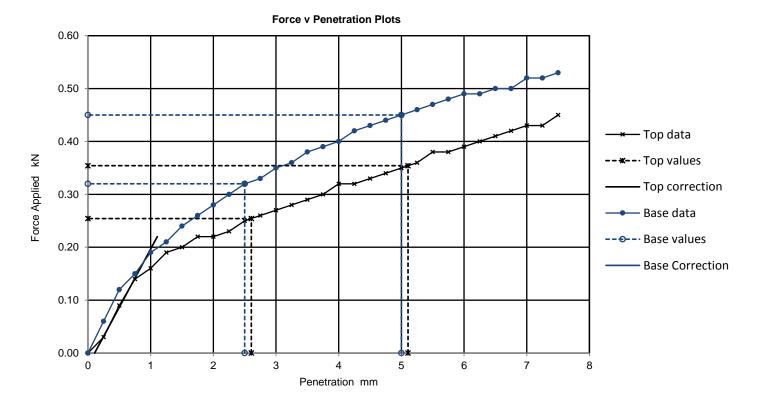
Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire, NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 27/12/2018 Sampled By: Not Given


Test Results:

Laboratory Reference:1112632Depth Top [m]: 2.30Hole No.:TP610Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: B

Sample Description: Orangish brown slightly gravelly CLAY

Specimen Preparation:

Condition Remoulded Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 4.5kg rammer Time to surface days Amount of swell recorded mm Material retained on 20mm sieve removed 32 % Dry density after soaking Mg/m3 Initial Specimen details Bulk density 1.71 Mg/m3 Surcharge applied kg Dry density 1.15 Mg/m3 4.9 kPa Moisture content 49

Results

TOP BASE

Curve		CBR Va	lues, %	
correction applied	2.5mm	5mm	Highest	Average
Yes	1.9	1.8	1.9	
No	2.4	2.3	2.4	

Moisture
Content
%
48
49

Remarks: Test carried out with > 25 % retained on 20mm as per clause 7.2.1.2

Test/ Specimen specific remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. Luhw

Maria Chandler

Geotechnical Site Manager Northampton

Determination of California Bearing Ratio

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 27/12/2018

Sampled By: Not Given

Test Results:

Laboratory Reference: 1112634 Hole No.: TP612 Sample Reference: Not Given

Sample Description: Orange slightly gravelly CLAY

Depth Top [m]: 1.40
Depth Base [m]: Not Given

Sample Type: B

Specimen Preparation:

Initial Specimen details

Condition Remoulded

Details Remoulded

Recompacted with specified standard effort using 4.5kg rammer

1

Soaking details
Period of soaking
Time to surface
Amount of swell recorded
Dry density after soaking
Not soaked
days
days
Mmm
Mg/m3

Material retained on 20mm sieve removed

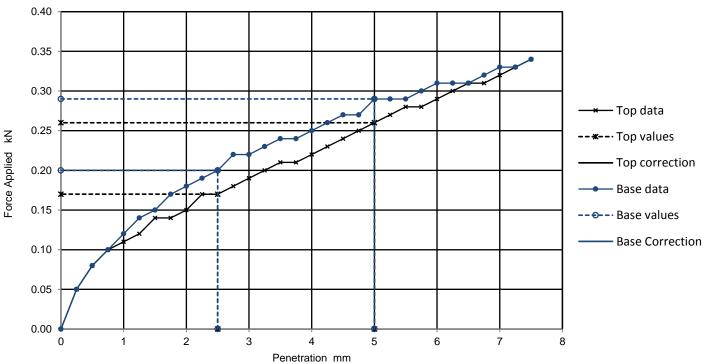
.

Surcharge applied

8 kg 4.9 kPa

Dry density

Bulk density


Moisture content

1.85 Mg/m31.36 Mg/m3

%

36 %

Force v Penetration Plots

Results

TOP BASE

Curve		CBR Va	lues, %	
correction applied	2.5mm	5mm	Highest	Average
No	1.3	1.3	1.3	1.4
No	1.5	1.5	1.5	1.4

Moisture Content % 35 37

Remarks: Approved:

Dariusz Piotrowski

PL Geotech

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. huhr

Test/ Specimen

specific remarks:

Maria Chandler

Geotechnical Site Manager Northampton

Determination of California Bearing Ratio

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Mg/m3

kPa

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis Site Name: Fort Halstead

Site Address: Not Given Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 27/12/2018

Sampled By: Not Given

Test Results:

Laboratory Reference: 1112635 **TP613** Hole No.: Sample Reference: Not Given

Yellowish brown slightly gravelly CLAY Sample Description:

Depth Top [m]: 0.80 Depth Base [m]: Not Given

Sample Type: B

Specimen Preparation:

Initial Specimen details

Condition Remoulded Details

Recompacted with specified standard effort using 4.5kg rammer

Soaking details Not soaked Period of soaking days Time to surface days Amount of swell recorded mm

Dry density after soaking

Material retained on 20mm sieve removed 13

%

Surcharge applied kg

Bulk density 2.00 Mg/m3 Dry density 1.62 Mg/m3 Moisture content 23

Force v Penetration Plots 0.40 0.35 0.30 Top data 0.25 Force Applied kN · -· Top values Top correction 0.20 Base data 0.15 -- •- Base values **Base Correction** 0.10 0.05 0.00 7 3 6

5

Results

TOP **BASE**

Curve		CBR Va	ılues, %	
correction applied	2.5mm	5mm	Highest	Average
No	1.3	1.5	1.5	

Penetration mm

Moisture Content % 23

Remarks: Approved:

Insufficient amount of material to fill CBR Mould. Top only

tested. Unable to attach surcharge discs

PL Geotechnical Laboratory Manager

Signed:

Test/ Specimen

specific remarks:

Maria Chandler

Geotechnical Site Manager Northampton

GF 108.10

Dariusz Piotrowski

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd

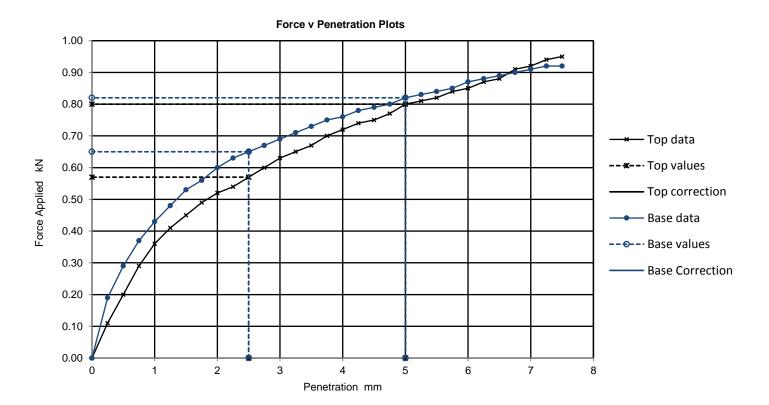
Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead
Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 27/12/2018 Sampled By: Not Given


Test Results:

Laboratory Reference: 1112636 Depth Top [m]: 3.50
Hole No.: TP613 Depth Base [m]: Not Given
Sample Reference: Not Given Sample Type: B

Sample Description: Orange slightly gravelly sandy CLAY

Specimen Preparation:

Condition Remoulded Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 4.5kg rammer Time to surface days Amount of swell recorded mm Material retained on 20mm sieve removed 20 % Dry density after soaking Mg/m3 Initial Specimen details Bulk density 1.83 Mg/m3 Surcharge applied 8 kg Dry density 1.33 Mg/m3 4.8 kPa Moisture content 38

Results

TOP BASE

Curve		CBR Va	lues, %	
correction applied	2.5mm	5mm	Highest	Average
No	4.3	4.0	4.3	4.6
No	4.9	4.1	4.9	4.0

Moisture Content % 34 34

Remarks: Test/ Specimen specific remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. Lulw

Maria Chandler

Geotechnical Site Manager Northampton

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis Site Name: Fort Halstead

Site Address: Not Given Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 27/12/2018 Sampled By: Not Given

Test Results:

Laboratory Reference: 1112639 **TP615** Hole No.: Sample Reference: Not Given

Orangish brown slightly gravelly CLAY Sample Description:

Depth Top [m]: 2.00 Depth Base [m]: Not Given

Sample Type: B

Specimen Preparation:

Initial Specimen details

Condition Remoulded Details

Recompacted with specified standard effort using 4.5kg rammer

Soaking details Not soaked Period of soaking days Time to surface days Amount of swell recorded mm Dry density after soaking Mg/m3

Material retained on 20mm sieve removed

3

1.85

1.41

Surcharge applied

8 kg

4.9

kPa

Dry density

Bulk density

Mg/m3 Mg/m3

%

Moisture content 31

Force v Penetration Plots 2.00 1.80 1.60 1.40 - Top data Force Applied kN -- Top values 1.20 Top correction 1.00 Base data 0.80 -- •- Base values 0.60 **Base Correction** 0.40 0.20 0.00 2 6 3

Results

TOP **BASE**

Curve		CBR Va	ılues, %	
correction applied	2.5mm	5mm	Highest	Average
No	10.0	8.0	10.0	11.0
Yes	11.0	8.6	11.0	11.0

Penetration mm

Moisture Content % 30 29

Remarks:

Test/ Specimen specific remarks:

Approved:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:

Maria Chandler

Geotechnical Site Manager Northampton

Determination of California Bearing Ratio

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Hydrock Consultants Ltd Client:

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

NN6 8LD

Contact: Wayne Lewis Site Name: Fort Halstead

Site Address: Not Given Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 27/12/2018 Sampled By: Not Given

Test Results:

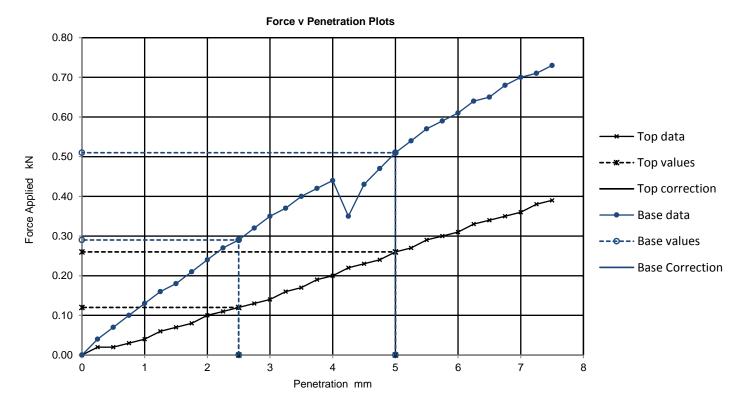
Laboratory Reference: 1112640 **TP616** Hole No.: Sample Reference: Not Given

Brown slightly gravelly CLAY Sample Description:

Depth Top [m]: 0.50 Depth Base [m]: Not Given

Sample Type: B

4.9


kPa

Specimen Preparation:

Condition Remoulded Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 4.5kg rammer Time to surface days Amount of swell recorded mm Material retained on 20mm sieve removed 3 % Dry density after soaking Mg/m3 Initial Specimen details Bulk density 2.28 Mg/m3 Surcharge applied 8 kg

2.05

Dry density Mg/m3 Moisture content 11

Results

TOP **BASE**

Curve		CBR Va	lues, %	
correction applied	2.5mm	5mm	Highest	Average
No	0.9	1.3	1.3	
No	2.2	2.6	2.6	

Moisture Content % 12 11

Remarks:

Test/ Specimen specific remarks:

Approved: Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:

Maria Chandler

Geotechnical Site Manager Northampton

i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Watford Herts WD18 8YS

Tested in Accordance with: BS 1377-4: 1990: Clause 7

Client: Hydrock Consultants Ltd

Client Address: 2-4 Hawthorne Park, Holdenby Road,

Spratton, Northamptonshire,

Moisture content

NN6 8LD

Contact: Wayne Lewis
Site Name: Fort Halstead

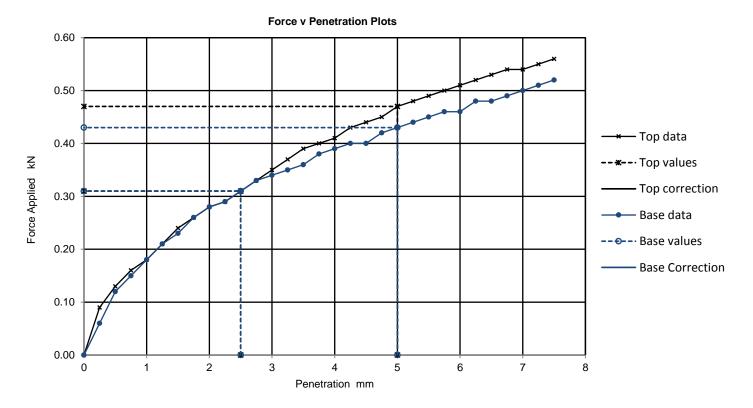
Site Address: Not Given

Client Reference: C-10730-C Job Number: 18-22027 Date Sampled: Not Given Date Received: 23/11/2018 Date Tested: 27/12/2018 Sampled By: Not Given

Test Results:

Laboratory Reference: 1112641 Hole No.: TP616 Sample Reference: Not Given

Sample Description: Yellowish brown slightly gravelly CLAY


Depth Top [m]: 2.00
Depth Base [m]: Not Given

Sample Type: B

Specimen Preparation:

Condition Remoulded Soaking details Not soaked Details Period of soaking days Recompacted with specified standard effort using 4.5kg rammer Time to surface days Amount of swell recorded mm Material retained on 20mm sieve removed 18 % Dry density after soaking Mg/m3 Initial Specimen details Bulk density 1.90 Mg/m3 Surcharge applied kg Dry density 1.49 Mg/m3 4.8 kPa

28

Results

Approved:

TOP BASE

Curve		CBR Va	lues, %	
correction applied	2.5mm	5mm	Highest	Average
No	2.3	2.4	2.4	2.3
No	2.3	2.2	2.3	2.3

Moisture Content % 29 29

Remarks:

Dariusz Piotrowski

PL Geotechnical Laboratory Manager

Date Reported: 07/01/2019

Signed:
M. Luhw

Test/ Specimen

specific remarks:

Maria Chandler

Geotechnical Site Manager Northampton

Wayne Lewis

Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888 **f:** 01604842666

e: waynelewis@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 18-22020

Project / Site name: Fort Halstead Samples received on: 23/11/2018

Your job number: C-10730-C **Samples instructed on:** 11/12/2018

Your order number: POP026005 **Analysis completed by:** 28/12/2018

Report Issue Number: 1 Report issued on: 28/12/2018

Samples Analysed: 18 soil samples

Signed

Jordan Hill Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Magnesium (water soluble)

Magnesium (leachate equivalent)

Lab Sample Number		•		1112541	1112542	1112543	1112544	1112545
Sample Reference				BH602	BH602	BH602	BH602	BH602
Sample Number		,		None Supplied				
Depth (m)				1.10	1.50	4.40	7.40	11.90
Date Sampled				Deviating	Deviating	Deviating	Deviating	Deviating
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	7.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	14	14	19	18	16
Total mass of sample received	kg	0.001	NONE	2.0	2.0	1.6	1.6	1.5
General Inorganics pH - Automated	pH Units	N/A	MCERTS	8.0	8.1	8.5	8.6	8.7
Total Sulphate as SO ₄	mg/kg	50	MCERTS	280	200	8.5 490	520	750
Total Sulphate as SO ₄	//////////////////////////////////////	0.005	MCERTS	0.028	0.020	0.049	0.052	0.075
Water Soluble SO4 16hr extraction (2:1 Leachate	,,,	0.005	TICERTS	0.020	0.020	0.015	0.032	0.075
Equivalent)	g/l	0.00125	MCERTS	0.016	0.021	0.027	0.034	0.069
Water Soluble SO4 16hr extraction (2:1 Leachate	3,1				****	****		
Equivalent)	mg/l	1.25	MCERTS	15.9	20.7	26.8	33.7	69.4
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	3.4	2.8	3.3	3.5	4.6
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	1.7	1.4	1.6	1.8	2.3
Total Sulphur	mg/kg	50	MCERTS	98	71	210	210	270
Total Sulphur	%	0.005	MCERTS	0.010	0.007	0.021	0.021	0.027
Ammonium as NH₄	mg/kg	0.5	MCERTS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Ammonium as NH ₄ (leachate equivalent)	mg/l	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Heavy Metals / Metalloids								

NONE

6.1

mg/kg

Magnesium (leachate equivalent)

Lab Sample Number				1112546	1112547	1112548	1112549	1112550
Sample Reference				BH603	BH603	BH603	BH603	BH603
Sample Number				None Supplied				
Depth (m)				0.40	1.50	3.40	7.00	9.40
Date Sampled				Deviating	Deviating	Deviating	Deviating	Deviating
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	31	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	14	17	13	14	20
Total mass of sample received	kg	0.001	NONE	1.9	1.6	1.8	1.9	1.9
pH - Automated Total Sulphate as SO₄	pH Units mg/kg	N/A 50	MCERTS MCERTS	6.8 310	7.8 170	7.6 150	8.4 620	8.5 560
Total Sulphate as SO₄	mg/kg	50	MCERTS	310	170	150	620	560
Total Sulphate as SO ₄	%	0.005	MCERTS	0.031	0.017	0.015	0.062	0.056
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.019	0.040	0.016	0.014	0.033
Equivalent)	mg/l	1.25	MCERTS	19.3	40.4	15.7	13.8	32.9
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	11	95	33	89	38
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	5.6	48	16	45	19
Total Sulphur	mg/kg	50	MCERTS	120	67	70	210	210
Total Sulphur	%	0.005	MCERTS	0.012	0.007	0.007	0.021	0.021
Ammonium as NH ₄	mg/kg	0.5	MCERTS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Ammonium as NH ₄ (leachate equivalent)	mg/l	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	2	NONE	2.4	< 2.0	< 2.0	< 2.0	< 2.0
Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Heavy Metals / Metalloids								
Magnesium (water soluble)	mg/kg	5	NONE	< 5.0	7.0	6.5	8.8	11

Magnesium (water soluble)

Magnesium (leachate equivalent)

Lab Sample Number				1112551	1112552	1112553	1112554	1112555
Sample Reference				BH603	BH603	BH606	BH606	BH606
Sample Number				None Supplied				
Depth (m)				12.40	14.40	0.25	1.50	4.40
Date Sampled				Deviating	Deviating	Deviating	Deviating	Deviating
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	11	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	22	17	16	19	30
Total mass of sample received	kg	0.001	NONE	2.0	2.0	1.8	1.9	1.8
General Inorganics pH - Automated	pH Units	N/A	MCERTS	8.5	9.4	7.9	7.9	7.2
Total Sulphate as SO₄	mg/kg	50	MCERTS	530	510	560	150	280
Total Sulphate as SO ₄	g/.tg	0.005	MCERTS	0.053	0.051	0.056	0.015	0.028
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.048	0.042	0.013	0.023	0.0085
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	47.7	41.8	12.8	22.5	8.5
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	55	58	2.9	2.6	4.4
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	28	29	1.5	1.3	2.2
Total Sulphur	mg/kg	50	MCERTS	240	180	310	74	100
Total Sulphur	%	0.005	MCERTS	0.024	0.018	0.031	0.007	0.010
Ammonium as NH ₄	mg/kg	0.5	MCERTS	1.1	0.6	< 0.5	0.6	< 0.5
Ammonium as NH ₄ (leachate equivalent)	mg/l	0.05	MCERTS	0.11	0.06	< 0.05	0.06	< 0.05
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	2	NONE	< 2.0	< 2.0	4.4	< 2.0	5.9
Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Heavy Metals / Metalloids								

NONE

9.0

mg/kg

Magnesium (water soluble)

Magnesium (leachate equivalent)

Lab Sample Number				1112556	1112557	1112558	
Sample Reference				BH606	BH606	BH606	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				8.40	11.40	14.40	
Date Sampled				Deviating	Deviating	Deviating	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	21	22	22	
Total mass of sample received	kg	0.001	NONE	2.0	2.0	2.0	
General Inorganics pH - Automated	pH Units	N/A	MCERTS	8.5	8.5	8.5	
Total Sulphate as SO ₄	mg/kg	50	MCERTS	480	630	520	
Total Sulphate as SO₄	%	0.005	MCERTS	0.048	0.063	0.052	
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.014	0.013	0.014	
Equivalent)	mg/l	1.25	MCERTS	14.4	13.3	14.1	
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	3.4	2.0	2.5	
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	1.7	1.0	1.3	
Total Sulphur	mg/kg	50	MCERTS	160	220	220	
Total Sulphur	//////////////////////////////////////	0.005	MCERTS	0.016	0.022	0.022	
Ammonium as NH ₄	mg/kg	0.5	MCERTS	< 0.5	< 0.5	0.5	
Ammonium as NH ₄ (leachate equivalent)	mg/l	0.05	MCERTS	< 0.05	< 0.05	0.05	
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	2	NONE	5.4	2.7	< 2.0	
Water Soluble Nitrate (2:1) as NO ₃ (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0	< 5.0	

NONE

Iss No 18-22020-1 Fort Halstead C-10730-C

mg/kg

Analytical Report Number : 18-22020 Project / Site name: Fort Halstead

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1112541	BH602	None Supplied	1.10	Light brown clay and sand with gravel and stones.
1112542	BH602	None Supplied	1.50	Brown clay and sand with gravel.
1112543	BH602	None Supplied	4.40	White chalk. **
1112544	BH602	None Supplied	7.40	White chalk. **
1112545	BH602	None Supplied	11.90	White chalk. **
1112546	BH603	None Supplied	0.40	Brown loam and clay with stones and vegetation.
1112547	BH603	None Supplied	1.50	Light brown sandy clay.
1112548	BH603	None Supplied	3.40	Light brown sandy clay.
1112549	BH603	None Supplied	7.00	Beige chalk. **
1112550	BH603	None Supplied	9.40	White chalk. **
1112551	BH603	None Supplied	12.40	White chalk. **
1112552	BH603	None Supplied	14.40	White chalk. **
1112553	BH606	None Supplied	0.25	Brown loam and clay with gravel and stones.
1112554	BH606	None Supplied	1.50	Light brown clay.
1112555	BH606	None Supplied	4.40	Brown clay and sand.
1112556	BH606	None Supplied	8.40	White chalk. **
1112557	BH606	None Supplied	11.40	White chalk. **
1112558	BH606	None Supplied	14.40	White chalk. **

^{**} Non MCERTS matrix.

Analytical Report Number : 18-22020 Project / Site name: Fort Halstead

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests. 2:1 extraction.	L082-PL	D	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L038	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other ID	Sample Type	Job	Sample Number	Sample Deviation Code	test name	test ref	Test Deviation code
BH602	_	S	18-22020	1112541	a	_		
BH602		S	18-22020	1112542	а			
BH602		S	18-22020	1112543	а			
BH602		S	18-22020	1112544	a			
BH602		S	18-22020	1112545	а			
BH603		S	18-22020	1112546	a			
BH603		S	18-22020	1112547	a			
BH603		S	18-22020	1112548	а			
BH603		S	18-22020	1112549	a			
BH603		S	18-22020	1112550	а			
BH603		S	18-22020	1112551	а			
BH603		S	18-22020	1112552	a			
BH606		S	18-22020	1112553	а			
BH606		S	18-22020	1112554	а			
BH606		S	18-22020	1112555	a			
BH606		S	18-22020	1112556	a			
BH606		S	18-22020	1112557	a			
BH606		S	18-22020	1112558	a			

Client			
Merseyside Pension Fund		Location or materia	I to which this assessment applies
Project	_	Made Ground	
ort Halstead			
lob number			
C-10730			
Concrete in	aggressive	ground	After BRE Special Digest 1, 2005
Soil data			
<u></u>			
	(Adjusted) water	Total natantial	Water soluble
	(Adjusted) water soluble sulfate	Total potential sulfate	
		sulfate (%)	magnesium (mg/l)
Number of tests	(mg/l)		(mg/l) 10
No. tests in 20% data set	12 2	12	10 2
	۷	2 1	۷
No. tests with suspected pyrite	1027 05	•	12
Maximum value	1927.85	3.6	13 10
Mean of highest two values	1823	2	10
Mean of highest 20%	1800	2	10
Characteristic Value	1800	2.1	9.5
			Mg not required
	[no pyrite]	[pyrite suspected]	_
DS Class	DS-3	DS-4	_
			_
If pyrite suspected, D	S Class limited to	DS-4	=
	h	Adv. (c. d. D0. Ol	
Is pyrite assumed to	be present?	Adopted DS Class	= DS-3
Water data			
Water data			
	(Adjusted) soluble	Soluble	
	sulfate	magnesium	
	(mg/l)	(mg/l)	
Characteristic Value	0	0	
(Maximum Level)			
		Mg not required	
DS Class		Mg not required	
		Mg not required	
DS Class pH data	Soil	Mg not required Water	
pH data		Water	
pH data Number of tests	12	Water 2	
pH data Number of tests No. tests in 20% data set	12 2	Water 2 0	
pH data Number of tests No. tests in 20% data set Lowest pH	12 2 6.8	Water 2	
PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20%	12 2 6.8 7.1	Water 2 0 12.0	
pH data Number of tests No. tests in 20% data set Lowest pH	12 2 6.8	Water 2 0	
pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20%	12 2 6.8 7.1	Water 2 0 12.0	
PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	12 2 6.8 7.1 7.1	Water 2 0 12.0	
PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	12 2 6.8 7.1 7.1	Water 2 0 12.0	ACEC Class design value
PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value Number of soil pH results less than 5.5	12 2 6.8 7.1 7.1 7.1	Water 2 0 12.0	ACEC Class design value Brownfield Static groundwater AC-2s

lient			
erseyside Pension Fund		Location or materia	I to which this assessment applies
roject		Clay with Flints	
ort Halstead			
ob number			
-10730			
Concrete in	aggressive	ground	After BRE Special Digest 1, 2005
Soil data			
			Water
	(Adjusted) water	Total potential	soluble
	soluble sulfate	sulfate	magnesium
	(mg/l)	(%)	(mg/l)
Number of tests	37	37	0
No. tests in 20% data set	7	7	
No. tests with suspected pyrite		0	
Maximum value	1880	0.1	
Mean of highest two values	1121	0	
Mean of highest 20%	400	0	
Characteristic Value	400	0.1	
	[no pyrite]	[pyrite suspected]	
DS Class	DS-1	DS-1	_
			=
If pyrite suspected, D	S Class limited to	DS-1	_
If pyrite suspected, D		DS-1 Adopted DS Class	= DS-1
			= DS-1
			= DS-1
Is pyrite assumed to	be present? No	Adopted DS Class	= DS-1
Is pyrite assumed to	be present? No	Adopted DS Class Soluble	= DS-1
Is pyrite assumed to	be present? No (Adjusted) soluble sulfate	Soluble magnesium	= DS-1
Is pyrite assumed to	be present? No	Adopted DS Class Soluble	= DS-1
Is pyrite assumed to	be present? No (Adjusted) soluble sulfate	Soluble magnesium	= DS-1
Water data Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-1
Water data Characteristic Value	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-1
Water data Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-1
Characteristic Value (Maximum Level) DS Class pH data	(Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l) 0	= DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests	(Adjusted) soluble sulfate (mg/l) 0 Soil 37	Soluble magnesium (mg/l) 0 Water 2	= DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set	(Adjusted) soluble sulfate (mg/l) 0 Soil 37 7	Soluble magnesium (mg/l) 0 Water 2 0	= DS-1
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH	(Adjusted) soluble sulfate (mg/l) Soil 37 7 4.7	Soluble magnesium (mg/l) 0 Water 2	= DS-1
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20%	(Adjusted) soluble sulfate (mg/l) Soil 37 7 4.7 5.4	Soluble magnesium (mg/l) 0 Water 2 0 12.0	= DS-1
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH	(Adjusted) soluble sulfate (mg/l) Soil 37 7 4.7	Soluble magnesium (mg/l) 0 Water 2 0	= DS-1
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20%	(Adjusted) soluble sulfate (mg/l) Soil 37 7 4.7 5.4	Soluble magnesium (mg/l) 0 Water 2 0 12.0	= DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	Soil 37 7 4.7 5.4 5.4	Soluble magnesium (mg/l) 0 Water 2 0 12.0	= DS-1
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	Soil 37 7 4.7 5.4 5.4	Soluble magnesium (mg/l) 0 Water 2 0 12.0	ACEC Class design value
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value Number of soil pH results less than 5.5	(Adjusted) soluble sulfate (mg/l) Soil 37 7 4.7 5.4 5.4 5.4 4 n value	Soluble magnesium (mg/l) 0 Water 2 0 12.0	

Client			
lerseyside Pension Fund		I ocation or materia	I to which this assessment applies
roject		Chalk Formation	. to milen the accessment applies
ort Halstead			
ob number		1	
-10730			
Concrete in	aggressive	around	After BRE Special Digest 1, 2005
	499.000.10	9.00	The Bit Openia Digest 1, 2000
Soil data			
			Water
	(Adjusted) water	Total potential	soluble
	soluble sulfate	sulfate	magnesium
N. 1. 61. 1	(mg/l)	(%)	(mg/l)
Number of tests	11	11	0
No. tests in 20% data set	-	2	
No. tests with suspected pyrite		0	
Maximum value	98	0.1	
Mean of highest two values	84	0	
Mean of highest 20%	84	0	
Characteristic Value	84	0.1	
	[no pyrite]	[pyrite suspected]	<u>_</u>
DS Class	DS-1	DS-1	_
			_
If pyrite suspected, D	S Class limited to	DS-1	_
			=
If pyrite suspected, Description Is pyrite assumed to		DS-1 Adopted DS Class	= DS-1
			= DS-1
			= DS-1
Is pyrite assumed to			= DS-1
Is pyrite assumed to	be present? No		= DS-1
Is pyrite assumed to	be present? No	Adopted DS Class Soluble	= DS-1
Is pyrite assumed to	be present? No	Soluble magnesium	= DS-1
Is pyrite assumed to	be present? No	Adopted DS Class Soluble	= DS-1
Is pyrite assumed to	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium	= DS-1
Is pyrite assumed to Water data Characteristic Value	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-1
S pyrite assumed to Water data Characteristic Value (Maximum Level) DS Class	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-1
S pyrite assumed to Water data Characteristic Value (Maximum Level)	be present? No (Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l)	= DS-1
Spyrite assumed to Water data Characteristic Value (Maximum Level) DS Class pH data	be present? No (Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l) 0	= DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests	be present? No (Adjusted) soluble sulfate (mg/l) 0 Soil 11	Soluble magnesium (mg/l)	= DS-1
Spyrite assumed to Water data Characteristic Value (Maximum Level) DS Class pH data	be present? No (Adjusted) soluble sulfate (mg/l) 0 Soil 11	Soluble magnesium (mg/l) 0	= DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests	be present? No (Adjusted) soluble sulfate (mg/l) 0 Soil 11	Soluble magnesium (mg/l) 0 Water 2	= DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set	(Adjusted) soluble sulfate (mg/l) 0 Soil 11 2 8.2	Soluble magnesium (mg/l) 0 Water 2 0	= DS-1
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH	(Adjusted) soluble sulfate (mg/l) 0 Soil 11 2	Soluble magnesium (mg/l) 0 Water 2 0	= DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	Soil 11 2 8.2 8.4 8.4	Soluble magnesium (mg/l) 0 Water 2 0 12.0	= DS-1
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20%	Soil 11 2 8.2 8.4 8.4	Soluble magnesium (mg/l) 0 Water 2 0 12.0	= DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	Soil 11 2 8.2 8.4 8.4	Soluble magnesium (mg/l) 0 Water 2 0 12.0	= DS-1
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	Soil 11 2 8.2 8.4 8.4	Soluble magnesium (mg/l) 0 Water 2 0 12.0	ACEC Class design value
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value Number of soil pH results less than 5.5 DS Class design	(Adjusted) soluble sulfate (mg/l) Soil 11 2 8.2 8.4 8.4 8.4 0 jn value	Soluble magnesium (mg/l) 0 Water 2 0 12.0 12.0	ACEC Class design value Natural ground
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	(Adjusted) soluble sulfate (mg/l) Soil 11 2 8.2 8.4 8.4 8.4 0 jn value	Soluble magnesium (mg/l) 0 Water 2 0 12.0 12.0	ACEC Class design value

Appendix F

Site Monitoring Data

Job n		Fort Halst C-10730	ead				Notes on site conditions:															
300 11		Merseysic	le PF																			
		analyser:																				
Equ		check OK:																				
	Servi	ce in date:	Υ																			
Cali	bration	check OK:	Υ																			
Name of p	erson m	onitoring:	Enit	ial																		
							Notes:	LEL = lo	ower ex	plosive l	limit = 5	%v/v. *	where t	he flow	is less t	han the	limit of	detecti	on of th	e instrume	nt, the de	etection limit is reported. GSVs are rounded to 3 places
Monitoring	g round		Bore	ehole d	letails	i	Pi	ressure	and flo	ow				Gas co	oncentra	ations				GS	SV .	Local conditions
Date	Tin	Bore	Single or du	Depth to water or dry	D denotes	Volume of headspace in BH (well pipie & filter pack) (m³)	Atmospheric pressure (hPa)	Atm pressure falling / rising / steady	Relative BH pressure (hPa)	Gas flow [*] (l/hr)	VOC (as ppm using PID)	CI (%v	H ₄ r/v)		H ₄ .EL)		O ₂ //v)		O₂ v/v)	Gas Screening Value (CH ₄) (I/hr)	Gas Screening Value (CO ₂) (I/hr)	Notes on condition of borehole and surrounding ground
te	me of headspace in BH (well pipie & filter pack) (m³) D denotes dry hole n to water or depth of hole if dry (m) Single or dual gas tap Borehole Time		pace in BH (well r pack) (m³)	ressure (hPa)	g/rising/steady	essure (hPa)	<i>i</i> * (I/hr)	nusing PID)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	alue (CH ₄) (I/hr)	alue (CO ₂) (I/hr)	9 6			
							Max. ir	ndividua	l values:				0.0		0.0		4.8		20.8	0	0.0015	
						Min. i		al values:				0.0		0.0		0.2		10.2	0	0	Summary statistics for this monitoring period.	
ļ			1	1			Worst-case GSVs based on max. individual flow and max. individual conc. over the duration of this table: 0 0															
17/12/18		BH503A		5.1	D	0.02900	997		-1.1	0.0	0	0.0	0.0	0	0	1.9	1.9	19.8	19.8	0	0	
17/12/18		BH507		2.9		0.01451	996		-1.8	0.0	0	0.1	0.0	2	0	2.5	2.0	19.8	19.8	0	0	
17/12/18		BH509		3.5	-	0.01892	995		0.0	0.0	0.4	0.0	0.0	0	0	3.0	2.9	18.9	18.9	0	0	
17/12/18 17/12/18		BH513		3.0 5.1	D D	0.02907 0.02907	995 995		-0.7 0.3	0.0	0	0.0	0.0	0	0	0.9	0.9	20.0	20.0	0	0	
17/12/18		BH521		5.0	D	0.02907	995		-0.3	0.0	0	0.0	0.0	0	0	0.8	0.8	20.6	20.6	0	0	
17/12/18		BH523		0.9	-	0.02893	995		-0.3	0.0	0.4	0.0	0.0	0	0	0.8	0.8	20.8	20.8	0	0	
17/12/18		BH524		4.1	D	0.02232	996		-0.7	0.0	0.1	0.0	0.0	0	0	1.9	1.9	20.0	20.0	0	0	
17/12/18		BH526		2.0	D	0.00871	996		-2.0	0.0	0	0.0	0.0	0	0	1.0	1.0	20.4	20.4	0	0	
17/12/18		BH528		5.0	D	0.02893	995		-1.2	0.0	0	0.0	0.0	0	0	2.0	2.0	19.3	19.3	0	0	
17/12/18		BH530		3.0	D	0.01552	996		-0.7	0.0	0	0.0	0.0	0	0	2.9	2.9	17.0	17.0	0	0	
17/12/18	13:44	BH531		5.1	D	0.02900	997		-31.6	0.0	0	0.1	0.0	2	0	4.8	4.8	10.2	10.2	0	0	
17/12/18	12:25	BH536		5.0	D	0.02887	995		-2.3	0.0	0.2	0.0	0.0	0	0	1.0	1.0	20.1	20.1	0	0	_
17/12/18	14:50	BH544		0.9		0.00167	995		0.1	0.0	0	0.0	0.0	0	0	1.2	1.2	19.9	19.9	0	0	
18/12/18		BH549		4.1	D	0.02239	988		0.1	0.0	0	0.0	0.0	0	0	1.8	1.8	19.4	19.4	0	0	
18/12/18	14:54	BH551		4.1	D	0.02246	983		0.1	0.0	0	0.1	0.0	2	0	2.2	2.2	18.9	18.9	0	0	
18/12/18		BH553		5.0	D	0.02887	982		-0.1	0.0	0.1	0.1	0.0	2	0	0.8	8.0	20.1	20.1	0	0	
18/12/18		BH601		14.7	D	0.09362	986		0.0	0.0	0	0.1	0.0	2	0	3.3	3.0	19.6	19.7	0	0	
17/12/18		BH602		15.0	D	0.09529	995		0.0	0.0	0	0.0	0.0	0	0	1.3	1.3	18.6	18.6	0	0	
17/12/18		BH603		14.6	D	0.09289	994 0.1 0.0		0.5	0.0	0.0	0	0	3.6	3.6	14.3	14.3	0	0			
18/12/18		BH604		15.4	1	0.09790	986 0.3 0.0		0.6	0.0	0.0	0	0	0.3	0.3	19.5	19.5	0	0			
17/12/18	12:57	BH605		15.0	D	0.09556	996	986 0.3 0.0 996 0.1 0.0				0.0	0.0	0	0	1.4	1.4	18.3	18.3	0	0	

Monitorin	g round		Bore	hole d	etails	i	Pr	essure	and flo	ow				Gas co	oncentra	ations				GS	V	Local conditions
Dat	Time	Borehole	Single or du	Depth to water or dry (D denotes	Volume of headspa pipie & filter p	Atmospheric pre	Atm pressure falling	Relative BH pr	Gas flow*	VOC (as ppm	CI (%v	-	CI (%I	H₄ .EL)	(%v	O₂ //v)	(%\) ₂ //v)	Gas Screening Va	Gas Screening Va	Notes on condition of borehole and surrounding ground
ite	ie	nole	or dual gas tap	r depth of hole if (m)	dry hole	oace in BH (well pack) (m³)	ressure (hPa)	g/rising/steady	essure (hPa)	* (I/hr)	using PID)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	Value (CH ₄) (I/hr)	Value (CO ₂) (I/hr)	
17/12/18	00:00	BH606																				No access permitted during visit.
18/12/18	10:17	WS601		5.0	D	0.02860	989		0.1	0.0	0.1	0.0	0.0	0	0	2.2	2.2	18.7	18.7	0	0	
18/12/18	10:11	WS602		5.0	D	0.02873	988		0.1	0.1	0.1	0.0	0.0	0	0	1.5	1.5	19.1	19.1	0	0.0015	
17/12/18	11:07	WS603		5.0	D	0.02867	994		0	0.0	0.1	0.0	0.0	0	0	8.0	0.8	20.3	20.3	0	0	
17/12/18	11:41	WS604		5.0	D	0.02880	995		0	0.0	1.8	0.0	0.0	0	0	3.4	3.4	17.8	17.8	0	0	
17/12/18	10:39	WS605		1.2		0.00323	994		1	0.0	0.8	0.0	0.0	0	0	0.6	0.6	19.3	19.3	0	0	
17/12/18	10:22	WS606		3.5		0.01845	994		0	0.0	0.5	0.0	0.0	0	0	2.8	2.8	15.0	15.0	0	0	
17/12/18	11:22	WS607		5.0	D	0.02887	995		0	0.0	0	0.0	0.0	0	0	4.0	2.4	18.7	19.5	0	0	
17/12/18	15:03	WS608		5.1	D	0.02920	995		0	0.0	0	0.0	0.0	0	0	0.3	0.3	20.2	20.2	0	0	
18/12/18	15:23	WS609		2.0		0.00837	986		0	0.0	0.1	0.1	0.0	2	0	0.6	0.6	20.1	20.1	0	0	

		Fort Halst	ead				Notes o	n site	conditions	;:												
Job n		C-10730																				
		Merseysic																				
Γα.		analyser:		5312																		
Equ	•	check OK: ce in date:	_																			
Call		check OK:					-															
Name of p				ial																		
ivallie of p	erson m	omtoring.	LIIIC	ıaı			Notes: L	EL =	lower ex	plosive l	imit = 59	%v/v. *	where t	he flow	is less t	han the	limit of	detecti	on of th	e instrume	ent. the de	etection limit is reported. GSVs are rounded to 3 places
Monitorin	round		Bore	ehole o	details	;			re and flo			, , , , , ,			oncentra			ucteut.	0 0	G		Local conditions
	Volume of headspace in BH (well pipie & filter pack) (m³) D denotes dry hole Depth to water or depth of hole if dry (m) Single or dual gas tap Borehole Time			Atm pressure falling / rising / steady		Ga	VOC (as ppm using PID)		H ₄ //v)	С	H ₄ LEL)	C	0 ₂ //v)		O ₂ v/v)	Gas Screening Value (CH _a) (l/hr)	Gas Screening Value (CO2) (I/hr)	Notes on condition of borehole and surrounding ground				
te	ne	hole	ual gas tap	r depth of hole if (m)	dry hole	pace in BH (well r pack) (m³)	ressure (hPa)	ıg/rising/steady	Gas flow (I/hr) Relative BH pressure (hPa) ual values:		n using PID)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	alue (CH ₄) (I/hr)	alue (CO ₂) (I/hr)	66
								dividu	al values:				0.0		0.0		4.5		20.8	0	0.0135	
							Min. in	Min. individual values: 0.0 0.0 0.2 10.8 0 0 Summary statistics for this monitoring period. Worst-case GSVs based on max. individual flow and max. individual conc. over the duration of this table: 0 0												Summary statistics for this monitoring period.		
								W	orst-case	GSVs base	d on max	. individu	al flow ar	d max. ir	ndividual	conc. ove	r the dura	ation of th		0	0	
03/01/19		BH503A		5.1	D	0.02900	1019		0.1	0.0	0	0.0	0.0	0	0	3.0	3.0	18.1	18.1	0	0	
02/01/19	14:54	BH507		3.3		0.01745	1019		-0.2	0.0	0	0.0	0.0	0	0	1.2	1.0	20.6	20.7	0	0	
02/01/19		BH509		3.6	-	0.01919	1018		0.0	0.0	0.1	0.0	0.0	0	0	3.1	3.1	18.1	18.1	0	0	
03/01/19	10:48 10:06	BH513		3.0	D	0.02072 0.02072	1018 1018		0.1	0.0	0	0.0	0.0	0	0	0.8 1.6	0.8	20.2	20.2	0	0	
03/01/19		BH517 BH521		5.0	D	0.02072	1018		0.0	0.0	0	0.0	0.0	0	0	0.7	1.6 0.7	18.1	18.1	0	0	
03/01/19	11:21	BH523		4.0	D	0.02219	1019		-0.1	0.0	0	0.0	0.0	0	0	0.7	0.7	20.7	20.4	0	0	
03/01/19	09:05	BH524		4.1	D	0.02232	1018		3.0	0.0	0	0.0	0.0	0	0	1.9	1.9	19.7	19.7	0	0.0019	
03/01/19	09:31	BH526		2.0	D	0.00871	1018		0.2	0.0	0	0.0	0.0	0	0	0.9	0.9	20.6	20.6	0	0.0013	
03/01/19	10:37	BH528		5.0	D	0.02893	1018		-0.2	0.0	0.1	0.0	0.0	0	0	2.0	2.0	19.2	19.2	0	0	
03/01/19	10:11	BH530		3.0	D	0.01552	1019		0.3	0.0	0	0.0	0.0	0	0	1.9	1.9	18.5	18.5	0	0	
02/01/19	14:28	BH531		5.1	D	0.02900	1020		-32.2	0.3	0	0.0	0.0	0	0	4.5	4.5	10.8	10.8	0	0.0135	
03/01/19	11:10	BH536		5.0	D	0.02887	1018		-0.1	0.0	0	0.0	0.0	0	0	1.4	1.4	18.7	18.7	0	0	
03/01/19	09:36	BH544		3.8		0.02072	1018		0.0	0.0	0	0.0	0.0	0	0	1.7	1.6	19.7	19.7	0	0	
02/01/19	11:58	BH549		4.1	D	0.02239	1017		0.0	0.0	0	0.0	0.0	0	0	1.1	1.1	20.2	20.2	0	0	
02/01/19	12:37	BH551		4.1	D	0.02246	1018		-0.1	0.0	0.1	0.0	0.0	0	0	1.9	1.9	19.6	19.6	0	0	
02/01/19	12:26	BH553		5.0	D	0.02887	1018		0.2	0.0	0.1	0.0	0.0	0	0	8.0	8.0	20.4	20.4	0	0	-
02/01/19	14:03	BH601		14.7	D	0.09362	1017		-0.1	0.0	0.1	0.0	0.0	0	0	3.1	3.1	18.3	18.3	0	0	
03/01/19	10:27	BH602		14.9	1	0.09462	1018		-0.1	0.0	0	0.0	0.0	0	0	1.2	1.2	18.9	18.9	0	0	
02/01/19	11:09	BH603		14.6	D	0.09289	1017		-1.6	0.0	0.2	0.0	0.0	0	0	3.6	3.6	17.0	17.0	0	0	
02/01/19	13:30	BH604		15.5	D	0.09856	1018		-0.2	0.0	0.1	0.0	0.0	0	0	0.2	0.2	20.3	20.3	0	0	
02/01/19	14:38	BH605		15.0	D	0.09556	1020		0.0	0.0	2.2	0.0	0.0	0	0	2.6	2.6	17.9	17.9	0	0	

Monitorin	g round		Bore	hole d	etails	i	Pre	essure	and flo	w				Gas co	oncentra	ations				GS	v	Local conditions
Dai	Time	Borehole	Single or du	Depth to water or dry (D denotes	Volume of headspa pipie & filter p:	Atmospheric p	Atm pressure falling	Relative BH pr	Gas flow*	VOC (as ppm	CI (%v	H₄ r/v)	CI (%L	H₄ .EL)	C(%)	O ₂ r/v)	(%v) ₂ //v)	Gas Screening Va	Gas Screening Va	Notes on condition of borehole and surrounding ground
ite	16	nole	or dual gas tap	r depth of hole if (m)	dry hole	pace in BH (well pack) (m³)	pressure (hPa)	g / rising / steady	essure (hPa)	r* (I/hr)	using PID)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	Value (CH ₄) (I/hr)	Value (CO ₂) (I/hr)	
02/01/19	10:31	BH606		14.9	D	0.09442	1020		0.0	0.0	0.5	0.0	0.0	0	0	2.1	2.1	19.0	19.0	0	0	
02/01/19	12:08	WS601		5.0	D	0.02860	1017		0.0	0.0	0.3	0.0	0.0	0	0	1.8	1.8	19.6	19.6	0	0	
02/01/19	11:49	WS602		5.0	D	0.02873	1017		0.0	0.0	0	0.0	0.0	0	0	1.8	1.8	19.2	19.2	0	0	
03/01/19	11:36	WS603		5.0	D	0.02867	1017		0	0.0	0.2	0.0	0.0	0	0	0.6	0.6	20.2	20.2	0	0	
03/01/19	11:00	WS604		5.0	D	0.02880	1017		0	0.0	0	0.1	0.0	2	0	4.0	4.0	17.4	17.4	0	0	
03/01/19	11:40	WS605																				No access permitted to M area.
02/01/19	11:19	WS606		3.9	D	0.02099	1017		0	0.0	0	0.0	0.0	0	0	3.2	3.2	15.5	15.5	0	0	
02/01/19	13:13	WS607		5.0	D	0.02887	1017		0	0.0	0	0.0	0.0	0	0	5.0	4.2	17.9	18.1	0	0	
03/01/19	09:57	WS608		3.8		0.02072	1018		0	0.0	0	0.0	0.0	0	0	0.3	0.3	20.6	20.6	0	0	
03/01/19	12:03	WS609		3.6		0.01912	1021		0	0.0	0	0.1	0.0	2	0	0.7	0.7	19.6	19.7	0	0	

Site: Fort Halstead Notes on site conditions: Job number: C-10730 **Client:** Merseyside PF Gas analyser: G505312 Equipment check OK: Y Service in date: Y Calibration check OK: Y Name of person monitoring: Enitial Notes: LEL = lower explosive limit = 5%v/v. * where the flow is less than the limit of detection of the instrument, the detection limit is reported. GSVs are rounded to 3 places Pressure and flow Gas concentrations Local conditions Monitoring round **Borehole details** Gas Screening Value (CH₄) (I/hr) Gas Screening Value (CO₂) (I/hr) Atmospheric pressure (hPa) pressure falling / rising / stea Relative BH pressure (hPa) CH₄ CH₄ CO2 02 VOC (as ppm to water or depth of hole if dry (m) (%LEL) (%v/v) (%v/v) (%v/v) Gas flow* denotes dry hole & filter pack) (m³) Notes on condition of borehole and surrounding ground using PID) (F/Hz) Steady Steady Initial Initial Initial 모 Max. individual values: 4.4 0.002 0.0 0.0 21.0 Min. individual values: 0.0 0.1 11.6 Summary statistics for this monitoring period. 0.0 0 0 Worst-case GSVs based on max. individual flow and max. individual conc. over the duration of this table 14/01/19 14:26 BH503A 0.02900 5.1 D 998 0.09 0.0 0.0 1.6 1.6 19.7 19.7 0 0 0.0005 14/01/19 13:01 3.8 0.02059 999 0.5 BH507 -0.190.1 0.0 0.0 0.0 0.0 0.0 0.7 20.5 20.5 0 14/01/19 13:12 4.0 998 2.9 2.9 BH509 D 0.02199 -0.290.0 0.0 0.0 0.0 0.0 0.0 18.9 18.9 0 0 15/01/19 11:15 BH513 3.0 D 0.02907 997 0.12 0.0 0.1 0.0 0.0 0.0 0.0 0.9 0.9 19.9 19.9 0 0 15/01/19 10:25 BH517 5.1 D 0.02907 997 0.02 0.0 0.0 0.0 0.0 0.0 2.1 2.1 17.7 17.7 0 0.0 Ω 15/01/19 09:44 5.0 D 0.02893 997 -0.41 0.0 0.0 0.0 0.7 0.7 20.8 0 BH521 0.0 0.0 0.0 20.8 0 14/01/19 4.0 997 0.1 12:14 BH523 0.02166 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.1 20.9 20.9 0 0 15/01/19 09:15 BH524 4.1 D 0.02232 997 -0.190.0 0.0 0.0 0.0 0.0 0.0 1.5 1.5 20.4 20.5 0 0 997 0.0 0.0 0.8 15/01/19 09:25 BH526 2.0 D 0.00871 -0.190.0 0.0 0.0 0.0 0.8 20.5 20.6 0 0 5.0 997 -0.22 0.0 1.6 15/01/19 11:04 BH528 D 0.02893 0.0 0.0 0.0 0.0 0.0 1.6 19.5 19.5 0 0 2.7 15/01/19 10:39 BH530 3.0 D 0.01552 998 -0.190.0 0.0 0.0 0.0 0.0 2.7 17.3 17.3 0 0 14/01/19 12:37 BH531 5.1 D 0.02900 1000 0.67 0.0 0.0 0.0 0.0 0.0 0.0 4.2 4.2 11.6 11.6 0 0 14/01/19 12:03 BH536_ 5.0 D 0.02887 997 0.28 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 21.0 21.0 0 0 3.8 0.02086 997 -0.22 1.7 1.7 15/01/19 10:00 BH544 0.1 0.0 0.0 0.0 0.0 0.0 19.3 19.3 0 0.0017 14/01/19 11:04 4.1 0.02239 996 -0.21 0.1 0.0 0.0 0.0 0.0 2.1 2.0 19.1 19.2 BH549 D 0.0 0 0.002 14/01/19 11:26 4.0 D 0.02166 997 0.0 20.4 20.4 BH550 -2.260.0 0.0 0.0 0.0 0.0 1.2 1.2 0 0 14/01/19 11:43 4.1 D 0.02246 997 -0.16 0.0 0.0 1.8 1.8 20.0 BH551 0.0 0.0 0.0 0.0 20.1 0 0 14/01/19 11:37 BH553 5.0 D 0.02887 997 -0.050.0 0.0 0.0 0.0 0.0 0.0 0.6 0.6 20.9 20.9 0 0 14/01/19 10:28 BH601 14.7 D 0.09362 996 -0.10 0.0 0.0 0.0 0.0 0.0 0.0 2.6 2.6 19.7 19.7 0 0 15/01/19 10:53 BH602 14.9 0.09476 997 0.72 0.0 0.0 0.0 0.0 0.0 0.0 1.3 1.2 18.9 18.9 0 0 14/01/19 09:58 BH603 14.6 D 0.09289 996 -0.21 0.0 0.2 0.0 0.0 0.0 0.0 4.3 4.3 16.3 16.3 0 0 14/01/19 13:23 BH604 15.4 0.09796 998 -0.260.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 20.7 20.8 0 0

Monitorin	g round		Bore	hole d	etails	3	Pre	essur	e and flo	w				Gas co	ncentra	tions				GS	SV .	Local conditions
Da	Time	Borehole	Single or d	Depth to water or dry (D denotes	Volume of headsp pipie & filter	Atmospheric p	Atm pressure falling	Relative BH p	Gas flow*	VOC (as ppm	CI (%v	H₄ //v)	CH (%L	-	C((%v	-	O: (%v,		Gas Screening V	Gas Screening Va	Notes on condition of borehole and surrounding ground
te	ne	hole	or dual gas tap	r depth of hole if (m)	s dry hole	eadspace in BH (well filter pack) (m³)	pressure (hPa)	ng / rising / steady	ressure (hPa)	v* (I/hr)	n using PID)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	Value (CH ₄) (I/hr)	alue (CO ₂) (I/hr)	Notes on condition of borehole and surrounding ground
14/01/19	12:48	BH605		15.0	D	0.09556	999		-0.14	0.0	0.5	0.0	0.0	0.0	0.0	0.8	0.8	19.9	19.9	0	0	
14/01/19	14:17	BH606		14.9	D	0.09442	999		-0.29	0.0	0.2	0.0	0.0	0.0	0.0	2.0	2.0	19.3	19.3	0	0	
14/01/19	11:11	WS601		5.0	D	0.02860	996		-0.07	0.0	0.4	0.0	0.0	0.0	0.0	1.7	1.7	19.9	20.0	0	0	
14/01/19	10:59	WS602		5.0	D	0.02873	996		-0.14	0.1	0.0	0.0	0.0	0.0	0.0	1.9	1.9	19.2	19.3	0	0.0019	
14/01/19	13:45	WS603		5.0		0.02867	997		-0.24	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.5	20.4	20.4	0	0	
14/01/19	11:53	WS604		5.0	D	0.02880	997		-0.12	0.0	0.8	0.0	0.0	0.0	0.0	3.7	3.7	18.2	18.2	0	0	
14/01/19	09:48	WS605		1.5		0.00497	995		0.02	0.0	0.1	0.0		0.0	0.0	1.9	1.5	16.6	17.5	0	0	
14/01/19	10:08	WS606		3.9	D	0.02099	996		-0.19	0.0	0.0	0.0		0.0	0.0	3.6	3.6	13.9	13.9	0	0	
14/01/19	13:38	WS607		5.0		0.02887	997		-0.17	0.0	0.0	0.0	0.0	0.0	0.0	4.8	4.4	17.2	17.3	0	0	
15/01/19	10:17	WS608		5.1	D	0.02920	997		-0.24	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.3	20.7	20.7	0	0	
14/01/19	14:35	WS609		4.3		0.02366	1001		-0.17	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.7	19.4	19.8	0	0	

Appendix G

Contamination Test Results and Statistical Analyses

Wayne Lewis

Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888 **f:** 01604842666

e: waynelewis@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 18-20594

Replaces Analytical Report Number: 18-20594, issue no. 1

Project / Site name: Fort Halstead Samples received on: 23/11/2018

Your job number: C-10730-C **Samples instructed on:** 30/11/2018

Your order number: Analysis completed by: 14/12/2018

Report Issue Number: 2 **Report issued on:** 14/12/2018

Samples Analysed: 7 soil samples

Signed

Jordan Hill Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Analytical Report Number: 18-20594 Project / Site name: Fort Halstead

Lab Sample Number				1104260	1104261	1104262	1104263	1104264
Sample Reference				BH601	BH603	BH604	WS603	WS605
Sample Number				None Supplied				
Depth (m)				0.70	0.70	0.55	0.80	0.70
Date Sampled				19/11/2018	21/11/2018	22/11/2018	22/11/2018	22/11/2018
Time Taken	1	1		None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	26	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	6.4	15	20	15	20
Total mass of sample received	kg	0.001	NONE	0.49	0.47	0.86	0.50	0.47
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	_	_	Chrysotile	-
·		· ·		Nick detected	Not detected	Nick debended	,	Not detected
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	0.004	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	0.004	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.7	6.0	8.5	9.0	7.7
Free Cvanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	<u> </u>	CLICIO	` .	` ` `	`.	` .	` .
Equivalent)	g/l	0.00125	MCERTS	0.028	0.026	0.19	1.8	0.037
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.0021	0.0035	< 0.0010	0.0075	0.0031
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cussisted PAUs								
Speciated PAHs Naphthalene		0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.40	1.1	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.44	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.78	4.4	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.76	4.4	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.42	2.7	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.39	1.9	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.62	3.2	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.20	1.2	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.47	2.6	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.25	1.5	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.35	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.37	1.8	< 0.05
Total PAH		0.0	MOEDEO	. 0.00	. 0.00	4.66) of f	. 0.00
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	4.66	25.5	< 0.80
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	4.9	11	4.6	8.0	18
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.44	0.72	0.20	0.89	11
Boron (water soluble)	mg/kg	0.00	MCERTS	< 0.2	0.72	1.3	2.6	1.8
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	0.3	0.8	0.5
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	15	24	6.8	24	53
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	15	25	6.9	24	53
Copper (aqua regia extractable)	mg/kg	1	MCERTS	13	18	11	45	38
Lead (aqua regia extractable)	mg/kg	1	MCERTS	16	19	93	100	30
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	17	19	4.9	22	60
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	1.4	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	18	46	11	40	98
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	26	74	37	100	110

Analytical Report Number: 18-20594 Project / Site name: Fort Halstead

Lab Sample Number				1104260	1104261	1104262	1104263	1104264
Sample Reference				BH601	BH603	BH604	WS603	WS605
Sample Number				None Supplied				
Depth (m)				0.70	0.70	0.55	0.80	0.70
Date Sampled				19/11/2018	21/11/2018	22/11/2018	22/11/2018	22/11/2018
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	ug/kg µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg μα/ka	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	37	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	20	< 8.4
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	44	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	120	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	16	< 8.4

Analytical Report Number: 18-20594 Project / Site name: Fort Halstead

Lab Sample Number				1104265	1104266			
Sample Reference				WS606	WS607			
Sample Number				None Supplied	None Supplied			
Depth (m)				0.30	0.30			
Date Sampled				22/11/2018	22/11/2018			
Time Taken				None Supplied	None Supplied			
			Accreditation Status					
Analytical Parameter	⊆	Limit of detection	Sta					
(Soil Analysis)	Units	ČĖ E	dita					
		3 5	s tio					
Stone Content	%	0.1	NONE	< 0.1	< 0.1			
Moisture Content Total mass of sample received	%	N/A 0.001	NONE	12 0.51	22 1.1			1
Total mass of sample received	kg	0.001	NONE	0.51	1.1			<u>I</u>
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-			
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected			
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-			
Asbestos Quantification Total	%	0.001	ISO 17025	-	-			
								<u></u>
General Inorganics	1				•	•		
pH - Automated	pH Units	N/A	MCERTS	6.2	7.2			
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1			_
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/I	0.00125	MCERTS	0.027	0.019			
Fraction Organic Carbon (FOC)	g/I N/A	0.00125	NONE	0.027	0.019		 	
rraction organic carbon (1 oc)	N/A	0.001	INOINL	0.013	0.0071			
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0			
, , ,			•			-		
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			_
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			-
Fluoranthene	mg/kg	0.05 0.05	MCERTS	0.43	< 0.05			1
Pyrene Benzo(a)anthracene	mg/kg mg/kg	0.05	MCERTS MCERTS	0.43 0.23	< 0.05 < 0.05			1
Chrysene	mg/kg	0.05	MCERTS	0.19	< 0.05			
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.38	< 0.05			
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.11	< 0.05			
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.22	< 0.05			
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			<u> </u>
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		<u> </u>	<u> </u>
Total PAH		0.0		1.00	. 0.00			1
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	1.99	< 0.80		L	<u> </u>
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	16			I
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.1	1.6			1
Boron (water soluble)	mg/kg	0.2	MCERTS	0.5	1.5			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2			
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2			
Chromium (III)	mg/kg	1	NONE	23	52			
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	23	53			
Copper (aqua regia extractable)	mg/kg	1	MCERTS	23	35			<u> </u>
Lead (aqua regia extractable)	mg/kg	1	MCERTS	80	26			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3			_
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	19	28			1
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0			1
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	38	91		1	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	71	71		<u> </u>	

Analytical Report Number: 18-20594 Project / Site name: Fort Halstead

Lab Sample Number		1104265	1104266				
Sample Reference				WS606	WS607		
Sample Number				None Supplied	None Supplied		
Depth (m)		0.30	0.30				
Date Sampled		22/11/2018	22/11/2018				
Time Taken		None Supplied	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics				_			
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0		
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0		
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0		
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0		
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0		

Petroleum Hydrocarbons						
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	

Analytical Report Number: 18-20594
Project / Site name: Fort Halstead

Your Order No:

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1104263	WS603	0.80	116	Loose Fibres	Chrysotile	0.004	0.004

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Analytical Report Number : 18-20594 Project / Site name: Fort Halstead

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1104260	BH601	None Supplied	0.70	Brown clay with gravel and stones.
1104261	BH603	None Supplied	0.70	Brown clay with gravel.
1104262	BH604	None Supplied	0.55	Beige clay and sand with gravel and chalk.
1104263	WS603	None Supplied	0.80	Brown clay and sand with gravel.
1104264	WS605	None Supplied	0.70	Brown clay with gravel.
1104265	WS606	None Supplied	0.30	Brown loam and clay with gravel and vegetation.
1104266	WS607	None Supplied	0.30	Brown clay with gravel.

Analytical Report Number : 18-20594 Project / Site name: Fort Halstead

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

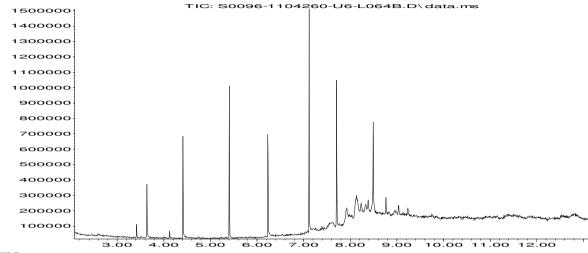
1			1	
Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
		L009-PL	D	NONE
Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	MCERTS
Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP-OES.	L038-PL	D	MCERTS
TPH Chromatogram in Soil.	In-house method	L064-PL	D	NONE
Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding	L076-PL	D	NONE
	Analytical Method Description Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. Asbestos quantification by gravimetric method - in house method based on references. Determination of water soluble boron in soil by hot water extract followed by ICP-OES. Determination of BTEX in soil by headspace GC-MS. In-house method by calculation from total Cr and Cr VI. Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate. Determination of free cyanide by distillation followed by colorimetry. Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Moisture content, determined gravimetrically. Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry. Determination of PAH compounds in soil by extraction with sodium hydroxide followed by distillation followed by GC-MS with the use of surrogate and internal standards. Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight. Determination of water soluble sulphate by ICP-OES. Teach of the program of polarity described in the program of polarity determination of stone > 10 mm as % dry weight. Determination of water soluble sulphate by ICP-OES. The program of polarity of the program of polarity of the program of polarity of the program of the program of the program of the program of the	Analytical Method Description Analytical Method Reference Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. Asbestos quantification by gravimetric method - in house method based on HSG 248, HSG 264 & SCA Blue Book (draft). Determination of water soluble boron in soil by hot water extract followed by ICP-OES. Determination of BTEX in soil by headspace GC-MS. In-house method based on Second Site Properties version 3 In-house method based on USEPA8260 Determination of fraction of organic carbon in soil by voidising with potassium dichromate followed by tration with iron (II) sulphate. Determination of fraction of organic carbon in soil by voidising with potassium dichromate followed by tration with iron (II) sulphate. Determination of free cyanide by distillation followed by colorimetry. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Moisture content, determined gravimetrically. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Moisture content, determined gravimetrically. Determination of phenois in soil by aqua-regia digestion followed by ICP-OES. Moisture content, determined gravimetrically. Determination of PAH compounds in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry. Determination of PAH compounds in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry. Determination of PAH compounds in soil by extraction with soil unity distillation followed by GC-MS with the use of surrogate and internal standards. Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards. Standard preparation for all samples unless otherwise detailed. Gravimetric determination of Metals in Sin-house method based on British Standard Standards. Standard preparation for all samples unless otherwise detailed. Gravimetric determ	Analytical Method Description Analytical Method Reference Method number Abbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. Abbestos quantification by gravimetric method - in house method based on HSG 248, HSG house method based on references. Abbestos quantification by gravimetric method - in house method based on second Site Properties version 3 Determination of water soluble boron in soil by hot water extract followed by ICP-OES. Determination of BTEX in soil by headspace GC-MS. In-house method based on USEPA8260 In-house method by aclaulation of Gravina in the properties version at the properties version of Gravina in the properties with properties in the properties with properties of Gravina in the properties with properties in the properties of Gravina in the G	Analystical infection with the use of polarised light microscopy in conjunction with disperion staining techniques. Abbestos quantification by gravimetric method - in HSE Report No: 83/1996, HSG 248,

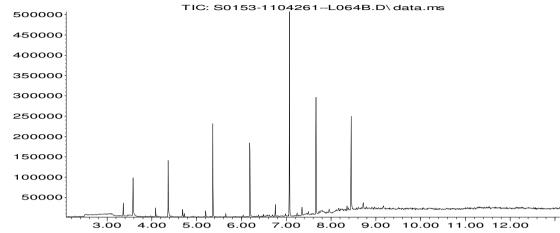
Analytical Report Number : 18-20594 Project / Site name: Fort Halstead

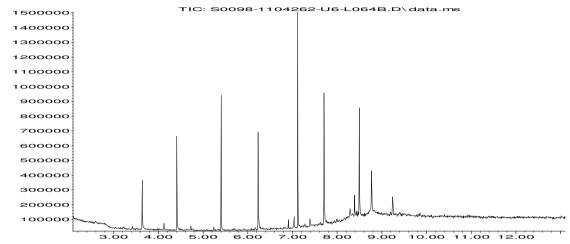
Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

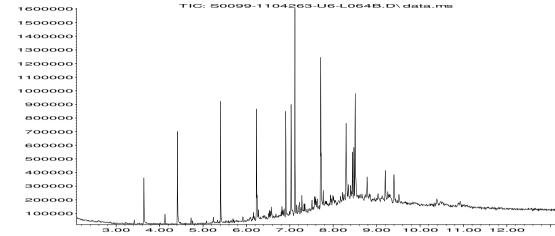
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS

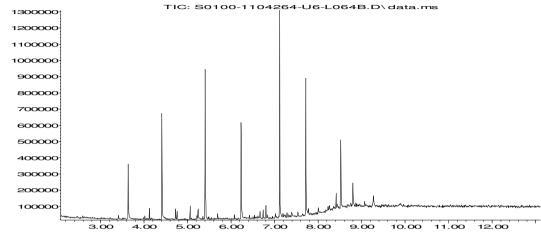
For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

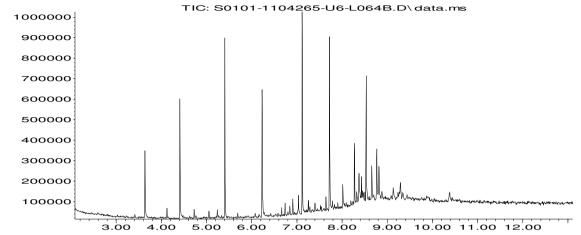

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

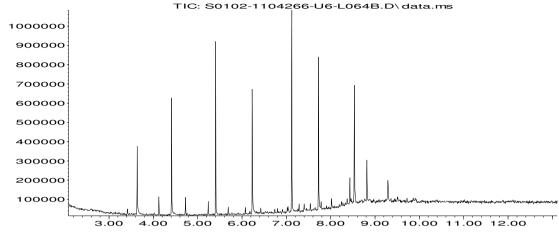

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.


Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
BH601		S	18-20594	1104260	С	Free cyanide in soil	L080-PL	С
BH603		S	18-20594	1104261	С	Free cyanide in soil	L080-PL	С
BH604		S	18-20594	1104262	bc	Free cyanide in soil	L080-PL	С
BH604		S	18-20594	1104262	bc	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	Ь
BH604		S	18-20594	1104262	bc	TPHCWG (Soil)	L088/76-PL	b
WS603		S	18-20594	1104263	С	Free cyanide in soil	L080-PL	С
WS605		S	18-20594	1104264	С	Free cyanide in soil	L080-PL	С
WS606		S	18-20594	1104265	С	Free cyanide in soil	L080-PL	С
WS607		S	18-20594	1104266	С	Free cyanide in soil	L080-PL	С








Time-->

Time-->

Time-->

Wayne Lewis

Hydrock Consultants Ltd 2-4 Hawthorne Park Holdenby Road Spratton Northamptonshire NN6 8LD

t: 01604842888 **f:** 01604842666

e: waynelewis@hydrock.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 18-21351

Project / Site name: Fort Halstead Samples received on: 05/12/2018

Your job number: C-10730-C **Samples instructed on:** 05/12/2018

Your order number: POP025911 **Analysis completed by:** 12/12/2018

Report Issue Number: 1 Report issued on: 12/12/2018

Samples Analysed: 24 soil samples

Signed

Jordan Hill Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Lab Sample Number				1108824	1108825	1108826	1108827	1108828
Sample Reference				TP601	TP602	TP603	TP603	TP603
Sample Number				None Supplied				
Depth (m)				0.10	0.20	0.10	0.40	1.20
Date Sampled				26/11/2018	26/11/2018	26/11/2018	26/11/2018	26/11/2018
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	14	14	15	18	19
Total mass of sample received	kg	0.001	NONE	0.54	0.56	0.71	1.2	1.2
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.2	8.1	8.4	8.8	8.3
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.014	0.018	0.35	0.035	0.066
Fraction Organic Carbon (FOC)	N/A	0.00123	NONE	0.017	0.019	0.019	0.0017	0.0045
Total Phenols Total Phenols (monohydric) Speciated PAHs	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene		0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene Acenaphthene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	1.1	0.31	0.99	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	0.19	< 0.05	0.30	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	2.4	0.78	2.5	0.30	0.31
Pyrene	mg/kg	0.05	MCERTS	2.1	0.69	2.2	0.28	0.29
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.5	0.53	1.7	0.19	< 0.05
Chrysene	mg/kg	0.05	MCERTS	1.1	0.42	1.1	0.22	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	2.3	0.71	2.0	0.31	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.56	0.32	0.78	0.16	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.7	0.55	1.7	0.26	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.89	0.36	0.87	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.28	< 0.05	0.26	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.1	0.42	1.0	< 0.05	< 0.05
Total PAH Speciated Total EPA-16 PAHs	mg/l:c	0.8	MCERTS	15.2	5.09	15.5	1.72	< 0.80
Specialed Total EPA-10 PARS	mg/kg	۷.٥	MICERIS	13.2	5.09	13.5	1./2	< 0.80

Lab Sample Number				1108824	1108825	1108826	1108827	1108828
Sample Reference				TP601	TP602	TP603	TP603	TP603
Sample Number				None Supplied				
Depth (m)				0.10	0.20	0.10	0.40	1.20
Date Sampled				26/11/2018	26/11/2018	26/11/2018	26/11/2018	26/11/2018
Time Taken	Time Taken					None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	<u>-</u>		=					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	10	10	8.6	< 1.0	2.2
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.87	0.78	0.63	0.06	0.21
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	1.1	1.4	0.6	0.8
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.4	0.6	0.3	0.3	0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	30	24	22	4.5	6.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	29	24	22	4.2	6.6
Copper (aqua regia extractable)	mg/kg	1	MCERTS	48	33	35	7.7	14
Lead (aqua regia extractable)	mg/kg	1	MCERTS	110	100	140	15	28
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	21	20	17	2.9	5.0
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	43	45	33	5.5	10
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110	83	110	17	32
Monoaromatics								
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	3.0	< 1.0	1.6	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	12	< 2.0	7.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	9.9	< 8.0	16	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	28	< 8.0	70	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	25	< 8.4	31	< 8.4	< 8.4
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	1.9	4.4	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	5.1	6.5	11	2.3	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	14	12	49	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	40	22	180	19	22
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	59	15	100	< 8.4	< 8.4

Lab Sample Number				1108829	1108830	1108831	1108832	1108833
Sample Reference				TP606	TP606	TP607	TP607	TP608
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.10	0.60	0.20	0.80	0.30
Date Sampled				26/11/2018	26/11/2018	26/11/2018	26/11/2018	26/11/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	23	22	17	26	11
Total mass of sample received	kg	0.001	NONE	0.39	0.42	0.39	0.41	0.42
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics	•							
pH - Automated	pH Units	N/A	MCERTS	7.9	8.8	7.8	8.0	7.8
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate	- 0	0.00125	MCEDIC	0.075	0.0007	0.000	0.018	0.16
Equivalent) Fraction Organic Carbon (FOC)	g/l	0.00125	MCERTS	0.075 0.036	0.0097	0.089 0.024	0.018	0.16 0.013
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.030	0.0020	0.024	0.0049	0.013
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Friendis (mononyane)	HIG/KG		MCLKIS	V 1.0	\ 1.0	V 1.0	\ 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.40	< 0.05	2.2
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.45
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.94	< 0.05	4.9
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.82	< 0.05	4.4
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.55	< 0.05	2.5
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.49	< 0.05	2.5
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.71	< 0.05	3.7
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.31	< 0.05	1.5
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.56	< 0.05	3.2
Indeno(1,2,3-cd)pyrene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	0.27	< 0.05	1.7
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.47
Benzo(ghi)perylene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	0.40	< 0.05	1.9
Delizo(giii)pei yielie	mg/kg	0.03	PICEICIS	` 0.03	` 0.03	0.10	` 0.03	1.5
Total PAH								

TP606 TP606 TP607 TP607 TP608	Lab Sample Number				1108829	1108830	1108831	1108832	1108833
Section Color Co	Sample Reference				TP606	TP606	TP607	TP607	TP608
Second S	Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
None Supplied None Supplie	Depth (m)				0.10	0.60	0.20	0.80	0.30
March Marc	Date Sampled				26/11/2018	26/11/2018	26/11/2018	26/11/2018	26/11/2018
mg/kg 1 MCERTS 9.5 < 1.0	Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
mg/kg 0.06 MCERTS 2.9 0.09 1.7 14 0.72 mg/kg 0.2 MCERTS 4.1 0.7 2.0 2.5 1.7 mg/kg 0.2 MCERTS 1.1 < 0.2 0.5 0.5 0.3 mg/kg 1.2 MCERTS < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 mg/kg 1 NONE 30 4.5 32 73 19 mg/kg 1 MCERTS 31 4.2 33 73 19 mg/kg 1 MCERTS 22 3.5 140 47 45 mg/kg 1 MCERTS 31 1.9 180 25 130	Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
mg/kg 0.06 MCERTS 2.9 0.09 1.7 14 0.72 mg/kg 0.2 MCERTS 4.1 0.7 2.0 2.5 1.7 mg/kg 0.2 MCERTS 1.1 < 0.2	Heavy Metals / Metalloids								
mg/kg 0.2 MCERTS 4.1 0.7 2.0 2.5 1.7 mg/kg 0.2 MCERTS 1.1 < 0.2	Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.5	< 1.0	15	23	10
mg/kg 0.2 MCERTS 1.1 < 0.2 0.5 0.5 0.3 mg/kg 1.2 MCERTS < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2	Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	2.9	0.09	1.7	14	0.72
mg/kg 1.2 MCERTS < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2 < 1.2	Boron (water soluble)	mg/kg	0.2	MCERTS	4.1	0.7	2.0	2.5	1.7
mg/kg 1 NONE 30 4.5 32 73 19 mg/kg 1 MCERTS 31 4.2 33 73 19 mg/kg 1 MCERTS 22 3.5 140 47 45 mg/kg 1 MCERTS 31 1.9 180 25 130	Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	1.1	< 0.2	0.5	0.5	0.3
mg/kg 1 MCERTS 31 4.2 33 73 19 mg/kg 1 MCERTS 22 3.5 140 47 45 mg/kg 1 MCERTS 31 1.9 180 25 130	Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
mg/kg 1 MCERTS 22 3.5 140 47 45 mg/kg 1 MCERTS 31 1.9 180 25 130	Chromium (III)	mg/kg	1	NONE	30	4.5	32	73	19
mg/kg 1 MCERTS 31 1.9 180 25 130	Chromium (aqua regia extractable)	mg/kg	1	MCERTS	31	4.2	33	73	19
5/ 5	Copper (aqua regia extractable)	mg/kg	1	MCERTS	22	3.5	140	47	45
" 02 02 02 02 02	Lead (aqua regia extractable)	mg/kg	1	MCERTS	31	1.9	180	25	130
mg/kg 0.3 MCERTS < 0.3 < 0.3 < 0.3 < 0.3 < 0.3	Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
mg/kg 1 MCERTS 40 3.9 29 99 15	Nickel (aqua regia extractable)	mg/kg	1	MCERTS	40	3.9	29	99	15
mg/kg 1 MCERTS < 1.0 1.4 < 1.0 < 1.0 < 1.0	Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	1.4	< 1.0	< 1.0	< 1.0
mg/kg 1 MCERTS 49 2.9 49 110 35	Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	49	2.9	49	110	35
mg/kg 1 MCERTS 84 8.6 150 140 290	Zinc (aqua regia extractable)	mg/kg	1	MCERTS	84	8.6	150	140	290
mg/kg 1 MCERTS 40 3.9 29 mg/kg 1 MCERTS < 1.0	Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable) Selenium (aqua regia extractable) Vanadium (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 1 1 0.3 1 1 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	22 31 < 0.3 40 < 1.0 49	3.5 1.9 < 0.3 3.9 1.4 2.9	140 180 < 0.3 29 < 1.0 49		47 25 < 0.3 99 < 1.0 110
		//	- 1	MCEDIC	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1 MCDTC 410 410 410 410	Benzene Toluene		1						
ug/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 μg/kg 1 MCERTS < 1.0	Ethylbenzene	μg/kg μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

MTBE (Methyl Tertiary Butyl Ether)

p & m-xylene

o-xylene

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	38
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	23
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	29
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	18	< 10	13	< 10	88
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	74

< 1.0

< 1.0

< 1.0

< 1.0

MCERTS

MCERTS

< 1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 1.0

μg/kg

μg/kg

μg/kg

Lab Sample Number				1108834	1108835	1108836	1108837	1108838
Sample Reference				TP608	TP609	TP609	TP610	TP611
Sample Number				None Supplied				
Depth (m)				1.20	0.20	0.50	0.35	0.10
Date Sampled				26/11/2018	26/11/2018	26/11/2018	26/11/2018	26/11/2018
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	19	12	13	14	27
Total mass of sample received	kg	0.001	NONE	0.45	1.3	1.2	0.45	1.3
Asbestos in Soil General Inorganics	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
pH - Automated	pH Units	N/A	MCERTS	7.7	6.9	7.4	7.5	7.0
Free Cvanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.076	0.052	0.016	0.019	0.017
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.0038	0.022	0.0095	0.011	0.033
Total Phenols Total Phenols (monohydric) Speciated PAHs	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	0.29	< 0.05	0.62	2.2
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.15	0.61
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.81	< 0.05	2.2	4.3
Pyrene	mg/kg	0.05	MCERTS	< 0.05	0.71	< 0.05	2.0	3.8
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.48	< 0.05	1.3	2.2
Chrysene	mg/kg	0.05	MCERTS	< 0.05	0.44	< 0.05	1.2	2.0
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.71	< 0.05	1.8	2.8
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.26	< 0.05	0.73	0.95
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.54	< 0.05	1.3	2.2
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.33	< 0.05	0.72	1.0
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.22	0.30
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.41	< 0.05	0.88	1.2
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	4.98	< 0.80	13.0	23.7

Lab Sample Number				1108834	1108835	1108836	1108837	1108838
Sample Reference				TP608	TP609	TP609	TP610	TP611
Sample Number				None Supplied				
Depth (m)				1.20	0.20	0.50	0.35	0.10
Date Sampled				26/11/2018	26/11/2018	26/11/2018	26/11/2018	26/11/2018
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.5	8.7	6.9	8.9	12
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	2.3	2.8	1.0	1.0	0.75
Boron (water soluble)	mg/kg	0.2	MCERTS	1.2	1.8	2.1	1.9	2.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.5	1.0	0.5	< 0.2	2.1
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	37	25	27	35	41
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	37	26	27	35	41
Copper (aqua regia extractable)	mg/kg	1	MCERTS	26	22	20	41	55
Lead (aqua regia extractable)	mg/kg	1	MCERTS	18	31	41	48	76
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	39	38	22	25	20
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	1.7	< 1.0	< 1.0	2.5
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	60	50	46	54	46
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	67	80	54	190	120
Monoaromatics								
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Datus lavore Utudus as observa

MTBE (Methyl Tertiary Butyl Ether)

TPH-CWG - Aromatic >EC8 - EC10

TPH-CWG - Aromatic >EC10 - EC12

TPH-CWG - Aromatic >EC12 - EC16

TPH-CWG - Aromatic >EC16 - EC21

TPH-CWG - Aromatic >EC21 - EC35 TPH-CWG - Aromatic > EC35 - EC44

Ethylbenzene

p & m-xylene

o-xylene

Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	ma/ka	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	1.9	< 1.0	1.7
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	6.6	4.1	6.1
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	17	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	230	62
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	30	< 8.4
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	ma/ka	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

< 1.0

< 1.0

< 1.0

< 1.0

< 0.001

< 1.0

< 2.0

< 10

< 10 < 8.4 < 1.0

< 1.0

< 1.0

< 1.0

< 0.001

< 1.0

2.3

10

< 1.0

< 1.0

< 1.0

< 1.0

< 0.001

< 1.0

4.0

< 10

23 < 8.4 < 1.0

< 1.0

< 1.0

< 1.0

< 0.001

1.0

2.0

< 10

48 < 8.4 < 1.0

< 1.0

< 1.0

< 1.0

< 0.001

< 1.0

4.5

45

130 23

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS NONE

1

μg/kg

μg/kg

μg/kg

μg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg mg/kg 0.001

2

10

10 8.4

Lab Sample Number				1108839	1108840	1108841	1108842	1108843
Sample Reference				TP611	TP612	TP612	TP613	TP614
Sample Number				None Supplied				
Depth (m)				0.60	0.20	0.60	0.30	0.20
Date Sampled				26/11/2018	26/11/2018	26/11/2018	26/11/2018	26/11/2018
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	17	15	13	16	17
Total mass of sample received	kg	0.001	NONE	1.2	1.3	1.3	1.3	0.45
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.8	9.3	8.0	6.9	8.3
Free Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.029	0.32	0.057	0.040	0.089
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.013	0.013	0.0050	0.0040	0.011
Total Phenols Total Phenols (monohydric) Speciated PAHs	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.36	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	2.5	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.9	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.77	0.88	22	< 0.05	1.3
Anthracene	mg/kg	0.05	MCERTS	0.26	0.25	6.0	< 0.05	0.30
Fluoranthene	mg/kg	0.05	MCERTS	2.0	2.1	25	< 0.05	2.8
Pyrene	mg/kg	0.05	MCERTS	1.8	2.1	21	< 0.05	2.4
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.2	1.4	12	< 0.05	1.4
Chrysene	mg/kg	0.05	MCERTS	1.2	1.1	9.4	< 0.05	1.4
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.5	1.8	14	< 0.05	2.2
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.65	0.85	3.5	< 0.05	0.73
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.2	1.6	11	< 0.05	1.6
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.57	0.86	4.7	< 0.05	0.89
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.21	0.27	1.4	< 0.05	0.23
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.68	1.0	5.4	< 0.05	1.1
Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	12.1	14.2	141	< 0.80	16.3
pedated rotal ELA 10 LAID	mg/kg	0.0	PICENTO	14.1	11.4	111	` 0.00	10.3

Lab Sample Number				1108839	1108840	1108841	1108842	1108843
Sample Reference				TP611	TP612	TP612	TP613	TP614
Sample Number				None Supplied				
Depth (m)				0.60	0.20	0.60	0.30	0.20
Date Sampled				26/11/2018	26/11/2018	26/11/2018	26/11/2018	26/11/2018
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	14	11	9.2	9.2
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.4	1.1	0.50	0.41	0.78
Boron (water soluble)	mg/kg	0.2	MCERTS	1.8	3.7	2.3	0.5	2.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.3	< 0.2	< 0.2	< 0.2	0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	26	31	28	20	24
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	26	31	28	20	25
Copper (aqua regia extractable)	mg/kg	1	MCERTS	45	28	16	7.7	38
Lead (aqua regia extractable)	mg/kg	1	MCERTS	52	56	16	12	110
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	32	19	15	12	17
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	67	54	39	30	40
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	68	110	38	30	97
Monoaromatics	•	T .						
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

MTBE (Methyl Tertiary Butyl Ether)

TPH-CWG - Aromatic >EC8 - EC10

TPH-CWG - Aromatic >EC10 - EC12

TPH-CWG - Aromatic >EC12 - EC16

TPH-CWG - Aromatic >EC16 - EC21

TPH-CWG - Aromatic > EC21 - EC35 TPH-CWG - Aromatic > EC35 - EC44

Toluene

o-xylene

Ethylbenzene

p & m-xylene

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	2.6	< 2.0	7.3	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	12	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	36	52	30	< 8.0	46
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	13	25	< 8.4	< 8.4	12
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

< 1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 0.001

2.4

< 10

29 < 8.4 < 1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 0.001

3.2

6.9

26

82 35 < 1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 0.001

1.7

31

200

220 27 < 1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 0.001

< 1.0

< 2.0

< 10

< 10 < 8.4 < 1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 0.001

< 1.0

< 2.0

12

54 21

MCERTS

NONE

μg/kg

μg/kg

μg/kg

μg/kg

µg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg mg/kg 0.001

2

10

10 8.4

1

Lab Sample Number				1108844	1108845	1108846	1108847	
Sample Reference	-			TP615	TP615	TP616	TP616	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.20	0.90	0.20	0.40	
Date Sampled				26/11/2018	26/11/2018	26/11/2018	26/11/2018	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	15	15	31	17	
Total mass of sample received	kg	0.001	NONE	0.33	0.42	1.2	1.1	
Ashantas in Call	—	N1/A	700 470	Not detect.	Not detect	Not detect.	Note districted	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	
General Inorganics pH - Automated	pH Units	N/A	MCERTS	8.1	7.8	7.1	7.7	
Free Cvanide	mg/kg	1	MCERTS	< 1	7.8 < 1	< 1	< 1	
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/I	0.00125	MCERTS	0.025	0.018	0.022	0.011	
Fraction Organic Carbon (FOC)	N/A	0.001	NONE	0.0087	0.0080	0.049	< 0.0010	
Total Phenols Total Phenols (monohydric) Speciated PAHs	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthene	mg/kg	0.05	MCERTS	0.28	< 0.05	< 0.05	< 0.05	
Fluorene	mg/kg	0.05	MCERTS	0.27	< 0.05	< 0.05	< 0.05	
Phenanthrene	mg/kg	0.05	MCERTS	3.7	< 0.05	0.28	< 0.05	
Anthracene	mg/kg	0.05	MCERTS	0.87	< 0.05	< 0.05	< 0.05	
Fluoranthene	mg/kg	0.05	MCERTS	10	0.50	0.63	< 0.05	
Pyrene	mg/kg	0.05	MCERTS	8.8	0.46	0.56	< 0.05	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	4.0	0.19	0.36	< 0.05	
Chrysene	mg/kg	0.05	MCERTS	4.3	0.20	0.38	< 0.05	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	5.6	0.24	0.55	< 0.05	
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	2.0	0.18	0.23	< 0.05	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	4.9	0.27	0.39	< 0.05	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	2.9	< 0.05	0.23	< 0.05	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.63	< 0.05	< 0.05	< 0.05	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	3.4	< 0.05	0.27	< 0.05	
Total PAH							<u>-</u>	
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	52.1	2.04	3.88	< 0.80	

Lab Sample Number				1108844	1108845	1108846	1108847	
Sample Reference				TP615	TP615	TP616	TP616	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.20	0.90	0.20	0.40	
Date Sampled				26/11/2018	26/11/2018	26/11/2018	26/11/2018	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	2.8	15	5.9	
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.90	0.44	0.93	0.84	
Boron (water soluble)	mg/kg	0.2	MCERTS	1.5	1.2	1.5	0.7	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	0.7	< 0.2	
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	
Chromium (III)	mg/kg	1	NONE	33	14	59	40	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	33	14	59	40	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	24	12	81	12	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	45	42	120	11	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	22	10	21	6.7	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	59	24	45	60	
Zinc (agua regia extractable)	mg/kg	1	MCERTS	66	39	190	12	

Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	

Petroleum Hydrocarbons

TPH-CWG - Aromatic >EC16 - EC21
TPH-CWG - Aromatic >EC21 - EC35
TPH-CWG - Aromatic > EC35 - EC44

r caroleani riyarocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
FPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	6.7	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	9.6	< 2.0	4.9	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	14	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	50	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	20	< 8.4	< 8.4	< 8.4	
FPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
FPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
PH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
PH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	7.5	3.3	< 2.0	< 2.0	

62

< 10

< 10

< 10 < 8.4

< 10

10

mg/kg

mg/kg mg/kg

MCERTS

Analytical Report Number : 18-21351 Project / Site name: Fort Halstead

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *			
1108824	TP601	None Supplied	0.10	Brown loam and sand with gravel and vegetation.			
1108825	TP602	None Supplied	0.20	Brown loam and sand with gravel and vegetation.			
1108826	TP603	None Supplied	0.10	Brown loam and sand with gravel and vegetation.			
1108827	TP603	None Supplied	0.40	Beige clay with chalk and gravel.			
1108828	TP603	None Supplied	1.20	Beige clay with chalk and gravel.			
1108829	TP606	None Supplied	0.10	Brown loam and clay with gravel and vegetation.			
1108830	TP606	None Supplied	0.60	eige clay with chalk.			
1108831	TP607	None Supplied	0.20	Brown loam and sand with gravel and vegetation.			
1108832	TP607	None Supplied	0.80	Brown clay with gravel.			
1108833	TP608	None Supplied	0.30	rown loam and sand with gravel.			
1108834	TP608	None Supplied	1.20	Brown clay with gravel.			
1108835	TP609	None Supplied	0.20	Brown loam and sand with gravel and vegetation.			
1108836	TP609	None Supplied	0.50	Brown clay and loam with gravel and vegetation.			
1108837	TP610	None Supplied	0.35	Brown clay and loam with gravel and vegetation.			
1108838	TP611	None Supplied	0.10	Brown loam and clay with gravel and vegetation.			
1108839	TP611	None Supplied	0.60	Brown clay and sand with gravel.			
1108840	TP612	None Supplied	0.20	Brown clay and loam with gravel and vegetation.			
1108841	TP612	None Supplied	0.60	Brown clay and loam with gravel and vegetation.			
1108842	TP613	None Supplied	0.30	Brown clay and loam with gravel and vegetation.			
1108843	TP614	None Supplied	0.20	Brown sandy loam with gravel and vegetation.			
1108844	TP615	None Supplied	0.20	Brown clay and loam with gravel and vegetation.			
1108845	TP615	None Supplied	0.90	Brown clay and loam with gravel and vegetation.			
1108846	TP616	None Supplied	0.20	Black loam and sand with gravel and vegetation.			
1108847	TP616	None Supplied	0.40	Brown clay and sand.			

Analytical Report Number : 18-21351 Project / Site name: Fort Halstead

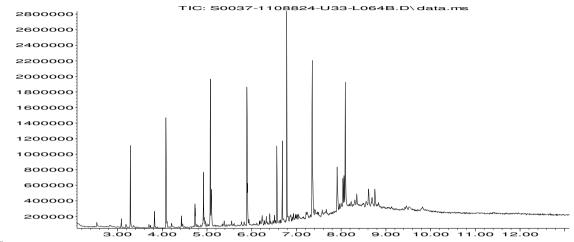
Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

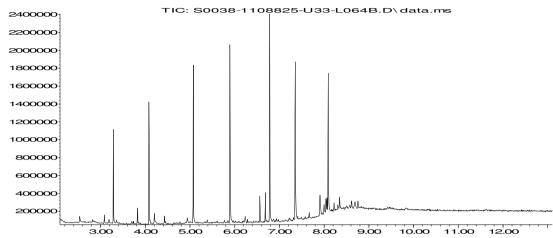
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number A001-PL	Wet / Dry Analysis	Accreditation Status ISO 17025
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248			
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
raction of Organic Carbon in soil Determination of fraction of organic carbon in s by oxidising with potassium dichromate followe titration with iron (II) sulphate.		In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L009-PL	D	NONE
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	ture Content Moisture content, determined gravimetrically.		L019-UK/PL	W	NONE
Monohydric phenols in soil	nohydric phenols in soil Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.		L080-PL	W	MCERTS
pH in soil (automated)	in soil (automated) Determination of pH in soil by addition of water followed by automated electrometric measurement.		L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		In-house method based on USEPA 8270	L064-PL	D	MCERTS

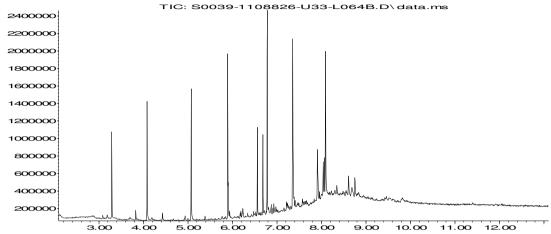
Analytical Report Number : 18-21351 Project / Site name: Fort Halstead

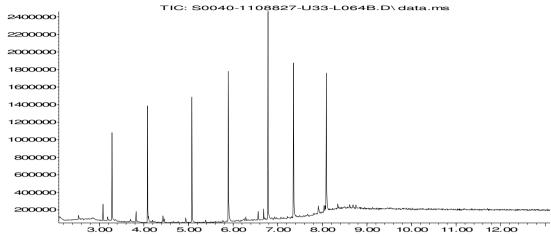
Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP-OES.	L038-PL	D	MCERTS
TPH Chromatogram in Soil	TPH Chromatogram in Soil.	In-house method	L064-PL	D	NONE
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS

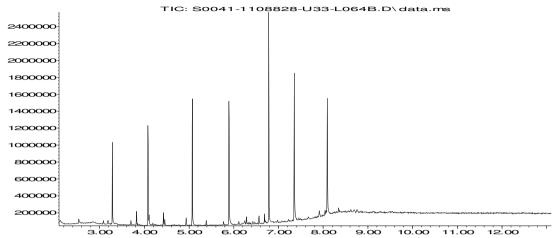

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

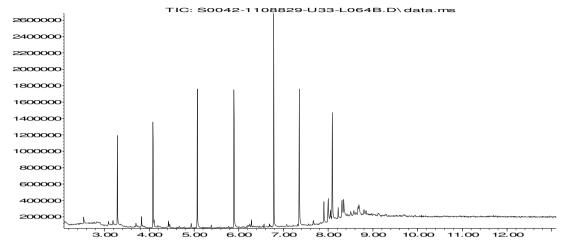

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

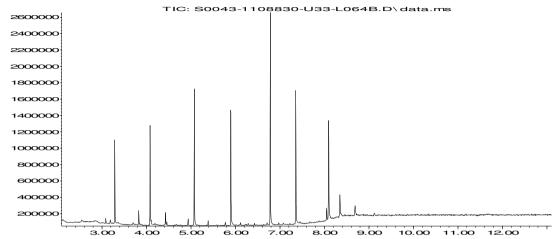

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

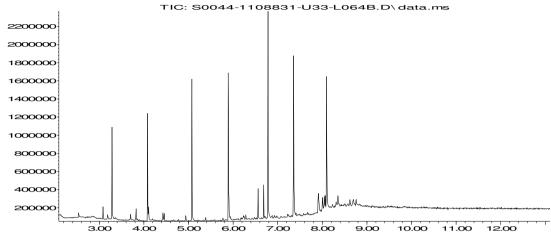


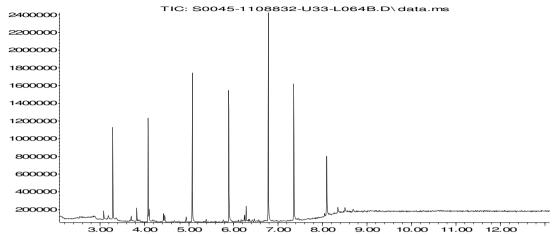
Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
TP601		S	18-21351	1108824	С	Free cyanide in soil	L080-PL	С
TP602		S	18-21351	1108825	С	Free cyanide in soil	L080-PL	С
TP603		S	18-21351	1108826	bc	Free cyanide in soil	L080-PL	С
TP603		S	18-21351	1108826	bc	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
TP603		S	18-21351	1108826	bc	Monohydric phenols in soil	L080-PL	b
TP603		S	18-21351	1108826	bc	Speciated EPA-16 PAHs in soil	L064-PL	b
TP603		S	18-21351	1108826	bc	TPH Chromatogram in Soil	L064-PL	b
TP603		S	18-21351	1108826	bc	TPH in (Soil)	L076-PL	b
TP603		S	18-21351	1108826	bc	TPHCWG (Soil)	L088/76-PL	b
TP603		S	18-21351	1108827	С	Free cyanide in soil	L080-PL	С
TP603		S	18-21351	1108828	С	Free cyanide in soil	L080-PL	С
TP606		S	18-21351	1108829	С	Free cyanide in soil	L080-PL	С
TP606		S	18-21351	1108830	С	Free cyanide in soil	L080-PL	С
TP607		S	18-21351	1108831		Free cyanide in soil	L080-PL	С
TP607		S	18-21351	1108832	С	Free cyanide in soil	L080-PL	С
TP608		S	18-21351	1108833	С	Free cyanide in soil	L080-PL	С
TP608		S	18-21351	1108834	С	Free cyanide in soil	L080-PL	С
TP609		S	18-21351	1108835	С	Free cyanide in soil	L080-PL	С
TP609		S	18-21351	1108836	С	Free cyanide in soil	L080-PL	С
TP610		S	18-21351	1108837	С	Free cyanide in soil	L080-PL	С
TP611		S	18-21351	1108838	С	Free cyanide in soil	L080-PL	С
TP611		S	18-21351	1108839	С	Free cyanide in soil	L080-PL	С
TP612		S	18-21351	1108840		Free cyanide in soil	L080-PL	С
TP612		S	18-21351	1108841		Free cyanide in soil	L080-PL	С
TP613		S	18-21351	1108842	С	Free cyanide in soil	L080-PL	С
TP614		S	18-21351	1108843	С	Free cyanide in soil	L080-PL	С
TP615		S	18-21351	1108844	С	Free cyanide in soil	L080-PL	С
TP615		S	18-21351	1108845	С	Free cyanide in soil	L080-PL	С
TP616		S	18-21351	1108846	С	Free cyanide in soil	L080-PL	С
TP616		S	18-21351	1108847	c	Free cyanide in soil	L080-PL	С










Time-->

