SPILMAN ASSOCIATES

Geotechnical and Environmental Engineers

Spilman Associates Limited 38 South Avenue Stourbridge West Midlands DY8 3XY

Tel: 01384 820578 Email: harry@spilmanassociates.co.uk

Ling Developments Limited

VILLAGE ROAD, CHILDS ERCALL

Report on Phase 1 Desk Study & Phase 2 Ground Investigation

March 2021

Report No P21004/01

Issued By:

Date Issued:

15th March 2021

CONTENTS

1.0 INTRODUCTION

2.0 SITE LOCATION AND DESCRIPTION

- 2.1 Site Location
- 2.2 Site Description
- 3.0 SITE HISTORY
- 4.0 GEOLOGY
- 5.0 MINING

6.0 HYDROLOGY & HYDROGEOLOGY

- 6.1 Hydrology
- 6.2 Hydrogeology

7.0 ENVIRONMENTAL DATABASE SEARCH

8.0 REVIEW OF 2004 CONTAMINATION ASSESSMENT

- 8.1 General
- 8.2 Investigation and Ground Conditions
- 8.3 Visual or Olfactory Evidence of Contamination
- 8.4 Contamination Assessment

9.0 CONCEPTUAL SITE MODEL

- 9.1 Legislative Background
- 9.2 Preliminary Conceptual Site Model
- 9.3 Potential Sources of Contamination
- 9.4 Receptors
- 9.5 Potential Pathways
- 9.6 Preliminary Risk Assessment

10.0 PRELIMINARY ENABLING WORKS

11.0 GROUND INVESTIGATION

- 11.1 Initial Site Investigation Works
- 11.2 Supplementary Site Works
- 11.3 Insitu Penetration Tests
 - 11.3.1 Standard Penetration Tests
 - 11.3.2 PID Screening
- 11.4 Instrumentation
- 11.5 Laboratory Testing
 - 11.5.1 Soil Contamination Testing
 - 11.5.2 Groundwater Contamination Testing
 - 11.5.3 Geotechnical Testing

12.0 GROUND CONDITIONS

- 12.1 Made Ground
- 12.2 Topsoil/Subsoil
- 12.3 Glacial Deposits
- 12.4 Bridgnorth Sandstone Formation
- 12.5 Groundwater

13.0 CONTAMINATION ASSESSMENT

- 13.1 Visual and Olfactory Evidence
- 13.2 PID Screening
- 13.3 Soil Contamination
 - 13.3.1 Metals
 - 13.3.2 Cyanide and Phenols
 - 13.3.3 Polycyclic Aromatic Hydrocarbons (PAH)
 - 13.3.4 Total Petroleum Hydrocarbons (TPH)
 - 13.3.5 Asbestos
- 13.4 Groundwater Contamination
- 13.5 Revised Conceptual Site Model
- 13.6 Human Health Contamination Remediation Proposals
- 13.7 Controlled Waters Contamination Remediation Proposals
- 13.8 Unexpected Contamination

14.0 GROUND GASES

15.0 ENGINEERING CONSIDERATIONS

- 15.1 Foundations
- 15.2 Building Near Trees
- 15.3 Excavations
- 15.4 Groundwater
- 15.5 Buried Concrete
- 15.6 Water Supply Pipework
- 15.7 Soakaways

TABLES

Table No	Table Title
1	Summary of Soil Contamination Results (Trial Pits)
2	Summary of TPH Soil Contamination Results (Boreholes)
3	Summary of TPH Soil Contamination Results (Rotary Borehole)
4	Summary of TPH Soil Contamination Results (Tank Base)
5	Summary of TPH Contamination in Groundwater

FIGURES

Figure No	Figure Title
1	Site Location Plan
2	Site Layout Plan
3	Historic Pumps & Wells
4	BGS Recorded Boreholes & Wells
5	Key Features (2004 Contamination Assessment)
6	Preliminary Conceptual Site Model
7	Location of Exploratory Works
8	Revised Conceptual Model
9	SPT N Values vs Depth (BH1 & BH7)
10	SPT N Values vs Depth (BH2 & BH3)

APPENDICES

<u>Appendix No</u>	Appendix Title		
А	Development Layout		
В	Contamination Assessment (2004		
С	Topographic Survey		
D	Walkover Photographs		
E	Historic OS Plans		
F	Below Ground Tank Photographs		
G	Mini Rig Borehole Records		
Н	Trial Pit Records		
T	Rotary Borehole Record		
J	Summary of SPT N Values		
К	PID Readings		
L	Standpipe Installation Details		
Μ	Vapour, Gas & Groundwater Monitoring		
Ν	Soil Contamination Results (Full Suite: TP1 to TP5)		
0	Soil Contamination Results (TPH: BH1 & BH2)		
Р	Soil Contamination Results (TPH: BH101)		
Q	Soil Contamination Results (Tank Base)		
R	Groundwater Contamination Results (10/02/21)		
S	Groundwater Contamination Results (16/02/21)		
Т	Groundwater Contamination Results (02/03/21)		
U	Geotechnical Test Results		

For Environmental Database Search see Report No P21004/02

1.0 INTRODUCTION

Spilman Associates Limited have been appointed by Ling Developments Limited to carry out a combined Phase 1 Desk Study and Phase 2 Ground Investigation for a proposed residential development at Village Road, Childs Ercall, Market Drayton, Shropshire, TF9 2BZ.

The proposed development layout is shown on the drawing reproduced at Appendix A. The development comprises three detached residential properties with associated site access, driveways, garages and gardens.

This report presents the findings of desk study research, an intrusive investigation and associated monitoring and laboratory testing.

The report is intended to satisfy the Local Authority in respect of contamination and ground gas investigations and recommend appropriate remedial works to mitigate any potentially adverse impacts identified.

In addition the report provides recommendations on geotechnical and foundation issues to satisfy the requirements of the Building Regulations.

The site has been subject to a previous "Contamination Assessment" dated October 2004 carried out by Egniol Limited. A copy of this report is reproduced at Appendix B.

2.0 SITE LOCATION AND DESCRIPTION

2.1 <u>Site Location</u>

The site is located at National Grid Reference 366470E 325090N on the west side of Childs Ercall (Figure 1) and approximately 9km south of Market Drayton.

2.2 <u>Site Description</u>

The site is broadly rectangular in shape with approximate maximum dimensions of 72m by 35m (Figure 2). A topographic survey has been provided for the site and is reproduced at Appendix C.

A site walkover survey was carried out on 22nd January 2021 and record photographs are reproduced at Appendix D.

At the time of the walkover survey the site comprised unused open ground.

Access to the site is from Village Road which forms the southern site boundary. Tarmac surfacing leads from the road in the southeast part of the site towards the centre of the site where there is a mix of tarmac and hardcore surfacing with occasional sections of concrete. In the northern part of the site is a concrete slab on which a portal frame building previously sat.

Scrub vegetation was present in the northeast and southwest parts of the site. A manhole cover is present in the southern part of the site.

The site falls gently from the north to the south with an overall drop in height of around 2.7m (see topographic survey at Appendix C). The elevation at the centre of the site is around 81m AOD.

The site is bounded by hedges to the west and east beyond which are residential properties. A stone wall is present along the northern boundary beyond which is a grass field. Village Road forms the site's southern boundary. Further residential properties are present on the south side of Village Road.

Overhead electricity cables are present along the southern site boundary supported on poles just to the west and east of the site boundary respectively.

2

The site lies in a semi-rural village setting.

3.0 SITE HISTORY

The site history has been assessed by reference to readily available historic Ordnance Survey (OS) Plans copies of which are reproduced at Appendix E.

The 1st Edition 1881 OS Plan shows the site to be occupied by a small building in the southwest corner presumed to be a house. A small outbuilding is present to the rear of the house adjacent to the western site boundary. A school is recorded to the east of the site with the church beyond. To the west are several houses and a "Smithy". The land to the north is a field. A farmhouse and farm buildings are located to the southwest of the site with a field immediately to the south of Village Road. Pumps (and wells) are recorded on the many nearby properties.

The site is unchanged on the 1902 OS Plan.

The 1954 OS Plan shows a rectangular building in the central part of the site which is understood to have been a garage operated by Butters Coaches which set up in Childs Ercall around 1927 and operated here until around 2006. The previously marked small buildings in the southwest part of the site remains.

The 1970 OS Plan shows the building in the centre of the site with a small extension on its east side. The building/site is marked as a "Garage".

The site is unchanged on the 1994 OS Plan. New houses have been constructed to the west and east of the site by this time.

By 2000 the garage building in the central part of the site has been demolished and replaced by a new building in the northern part of the site.

Butter Coaches are understood to have ceased operations at the site around 2006. Sometime between 2006 and the 2018 topographic survey all buildings within the site were demolished.

4.0 GEOLOGY

The site geology has been assessed by reference to the 1:50,000 scale Geological Map Sheet 138 (Wem) published by the British Geological Survey.

No made ground is recorded on or in the vicinity of the site.

The site is shown to be underlain by glacial till deposits, although the nature or thickness of these deposits is not defined.

The glacial deposits are underlain by solid strata of the Bridgnorth Sandstone Formation (formerly referred to as the Lower Mottled Sandstone) of the Triassic Period. The Bridgnorth Sandstone Formation typically comprises brick red with some buff mottling medium grained cross bedded aeolian sandstones.

There are no geological faults on or close to the site. The closest fault is NE-SW trending and located around 250m to the southeast of the site. A similarly trending fault is marked around 450m to the northwest of the site.

5.0 MINING

The site does not lie within a mining area accordingly there are no requirements for further consideration of mining issues in relation to the proposed development.

6.0 HYDROLOGY & HYDROGEOLOGY

6.1 <u>Hydrology</u>

There are no significant watercourses within 500m of the site. The closest water feature is a small pond shown 180m to the south of the site. The closest watercourse is the south flowing Allford Brook located between 800m and 1km to the east of the site.

The site does not lie within an area prone to fluvial flooding as defined by the Environment Agency.

There are no recorded surface water abstractions within 500m of the site.

6.2 <u>Hydrogeology</u>

The solid strata underlying the site are classified as a Principal Aquifer by the Environment Agency. The glacial deposits are classified as a Secondary Undifferentiated Aquifer.

There are no recorded groundwater abstractions within 500m of the site. There is one recorded groundwater abstraction with 1km of the site located 697m to the northwest of the site. This is for general farming and domestic uses.

The site does not lie within a Groundwater Source Protection Zone as defined by the Environment Agency. The closest Groundwater Source Protection Zone to the site is located approximately 1.7km to the southeast and is defined as Total Catchment (Zone 3).

Numerous pumps and one well are recorded on Historic OS Plans and the positions of these within 250m of the site boundary are shown on Figure 3. None of these are recorded on the 1970s OS Plan and they are assumed to be disused by this time.

The British Geological Survey (BGS) have records of boreholes associated with water wells/or groundwater monitoring at 6 locations within 1km of the site these are shown on Figure 4. Details held by BGS are summarised below:

Reference	BGS	Distance	Direction	Details
on Figure 4	Reference	(m)		
A	SJ62NE77	240	SE	No information available.
				Reference states "War Office"
В	SJ62NE80	250	NW	42m deep borehole drilled for BGS in 2002 as
				part of research project. No water level
				information but water sample take at 7m.
				Borehole now decommissioned
С	SJ62NE16B	300	E	3 boreholes to 42m depth drilled in 1941 and
	SJ62NE47			1943 for RN Air Station, Hinstock. Water depths
	SJ62NE52			7.6m to 9.1m. Boreholes subsequently taken
				over by Severn Trent Water. Boreholes disused
				by 1980
D	SJ62NE81	400	Ν	27m deep borehole drilled in 1941. Water depth
				8.1m. Current status unknown
E	SJ62NE67	800	NE	10m deep brick lined well (previously supplied 2
				cottages). Water levels in 1970s 1.65m to
				4.96m. Reported disused by 1980
F	SJ62NE23	1000	E	37.8m deep borehole. Drilled and pump tested
				in 1978. Water struck at 5.5m depth rising to
				1.4m. Current status unknown.

7.0 ENVIRONMENTAL DATABASE SEARCH

An Environmental Database Search has been obtained for the site and is reproduced in full in Report No P21004/02. Key findings of the search are summarised below:

- there are no recorded landfill sites within 250m of the site
- there are no Integrated Pollution Control (IPC) regulated processes within 250m of the site

- there are no Integrated Pollution Prevention and Control (IPPC) regulated processes within 250m
- there are no Local Authority Contaminated Land Register Entries or Notices within 250m of the site
- there are no Substantiated Pollution Incidents within 250m of the site
- there are no Pollution Incidents to Controlled Waters within 250m of the site
- there are two recorded prosecutions relating to authorised processes. These relate to spreading excessive amounts of effluent treatment dairy sludge 186m NW of the site and 191m east of the site. Both incidents were prosecuted in 2007
- the site lies in an area where no radon gas protective measures are required in new buildings
- The British Geological Survey (BGS) have assessed the following ground stability hazard potentials for the site:

Collapsible Ground	Very Low
Compressible Ground	No Hazard
Ground Dissolution	No Hazard
Landslide	Very Low
Running Sand	Very Low
Shrinking and Swelling Clay	Very Low

8.0 REVIEW OF 2004 CONTAMINATION ASSESSMENT

8.1 <u>General</u>

A copy of the 2004 Contamination Assessment carried out by Engiol Limited is reproduced at Appendix B. The investigation was undertaken when the site was still operational as a coach depot and garage. A plan is included within the report which shows site features and trial pit positions. However, this plan is not to scale and is schematic only. The approximate positions of key features have been interpolated from the existing plan and other information and are shown on Figure 5 and include:

- main coach garage building in the northwest part of the site
- vehicle inspection pit in northeast
- above ground diesel tank between the garage and vehicle inspection pit
- buried oil/water trap or tank in the southwest (assumed to be an oil interceptor
- buried diesel tank adjacent to the southern site boundary to the west of the site entrance

8.2 Investigation and Ground Conditions

The contamination investigation comprised the excavation of 5 no machine dug trial pits extending to depths in the range 0.85m to 3.90m. The trial pits encountered a thin covering of made ground over predominantly sand, although clay was identified in TP2 from 1.90m to 2.90m and in TP3 from 2.50m to 3.20m.

No groundwater was encountered in any of the trial pits.

8.3 <u>Visual or Olfactory Evidence of Contamination</u>

Visual or olfactory evidence of potential contamination was identified as follows:

Trial Pit	Depth (m)	Description	
TP1	0.55 – 0.90	Slight darkened stain and	
		petrochemical odour	
TP2	1.40 – 1.90	Strong petrochemical odour	
		detected with black sheen present	
	1.90 – 2.90	Petrochemical stain and strong	
		petrochemical odour present	
TP3	1.40 – 2.50	Slight petrochemical odour	
	2.50 – 3.10	Strong petrochemical odour	

The trial pit log for TP4 does not record any evidence of contamination. However, within the text of the report it states that:

"A strong petrochemical odour was almost immediately detected on excavation of Trial Pit 4. This became very strong as the trial pit progressed with a sheen evident within the sands below the Made Ground in particular."

8.4 <u>Contamination Assessment</u>

Seven samples were tested for a range of metals. These were all below current screening values with the exception of lead in TP3 at 0.30m with a concentration of 243.4mg/kg compared to the current screening value of 200mg/kg.

Concentrations of PAH, phenols and cyanide are all at relatively low concentrations and below current guidance.

Testing for hydrocarbons was limited to determining concentration of mineral oil and GRO (gasoline range organics) neither of which would be used in a current assessment of potential hydrocarbon contamination. Nonetheless concentrations of both mineral oils and GROs are relatively low when compared to the visual and olfactory evidence of hydrocarbon contamination reported. Mineral oil concentrations exceeded 1000mg/kg in one sample only (TP4 0.20m to 0.30m: 1204mg/kg). GRO concentrations were less than 15mg/kg in all samples except TP2 at 1.60m in which a concentration of 93.2mg/kg was detected.

The Engiol report concluded that existing fuel tanks and associated hydrocarbon impacted soils should be removed from site. The extent of such removal works was not defined.

The Engiol report contains no assessment of ground gas or vapour risk to the proposed residential development; although the potential for volatilisation of hydrocarbons is acknowledged within the report.

9.0 CONCEPTUAL SITE MODEL

9.1 Legislative Background

The legislative framework for managing the liabilities imposed by contaminated land in the UK is detailed within Part IIA of the Environmental Protection Act 1990. Under the Act contaminated land is defined as any land in, on or under which there are substances that cause significant harm or have the potential to cause significant harm to health or the environment or where pollution of controlled waters is being or likely to be caused.

The environmental impact of the site has been considered using a riskbased approach incorporating the accepted Source-Pathway-Receptor model ("pollutant linkage"). The source is identified as a function of the nature of any contaminants which may be present. The receptor is the point in the environment at which damage may occur if the contaminant is present at a level sufficient to cause harm. The pathway is the route in the environment by which the contaminant may be transferred from the source to the receptor. For there to be a significant risk there must be a link between an identified pollutant source and a receptor.

9.2 Preliminary Conceptual Site Model

In order to understand the potential risks associated with the site a preliminary conceptual site model has been developed to include the potential contamination sources, the geological and hydrogeological setting, potential pathways and receptors and an initial risk assessment.

The preliminary conceptual site model is shown diagrammatically on Figure 6.

9.3 Potential Sources of Contamination

Early OS Plans show the site to be occupied by a residential property in the southwest corner with the remainder of the site comprising garden or field. This use is likely to have been non-contaminative. A Smithy was previously located to the west of the site and could be a potential source of contamination if any waste materials (predominantly ash and clinker) had been deposited on the site.

However, the most significant potentially contaminative use of the site is its long use as a coach garage and depot by Butters Coaches. This use is understood to have commenced around 1927 and continued until 2006.

The use comprised an initial garage in the central part of the site which was subsequently replaced by a new garage building in the northern part of the site believed to have been constructed in the 1990s.

Investigations carried out in 2004 identified significant potential point sources of contamination in the form of a below ground diesel tank adjacent

to the southern site boundary. This tank is understood to have initially been used for petrol and was registered with the Petroleum Officer until 1979 when its use was changed to diesel. In addition an above ground diesel tank was present in the northern part of the site. This is presumed to have been constructed at a similar time to the 1990s coach garage.

Principal sources of contamination are likely to be petroleum hydrocarbons associated with fuel storage and use. Potential spillages could have occurred during tank filling, vehicle filling or from direct leakage from damaged tanks or fuel lines. The 2004 contamination assessment identified significant visual and olfactory evidence of contamination by petroleum hydrocarbons albeit that laboratory determined concentrations of mineral oils and GRO were lower than might have been anticipated. Other sources of contamination would be the oil interceptor in the western part of the site together with more widespread impacts from small scale leakages of fuel or lubricants from vehicle maintenance and servicing areas.

9.4 <u>Receptors</u>

The following receptors have been identified for the site:

- Humans including end-users of the site, construction workers, occupiers of adjacent properties and the general public
- Controlled waters (surface water and groundwater)
- Buildings and services.

9.5 Potential Pathways

The following potential pathways have been considered in relation to the receptors identified at 9.4 above:

<u>Receptor</u>	<u>Pathway</u>
Human Health	 Ingestion Inhalation Dermal contact Adsorption Explosion
Controlled Waters	 Asphyxiation Direct and indirect discharge to surface water Direct and indirect discharge to groundwater
Buildings & Services	 Direct contact with contaminated materials Migration/accumulation of ground gases Corrosive attack

9.6 Preliminary Risk Assessment

The preliminary risk assessment indicates a high risk of the site being impacted by residual hydrocarbon soil and groundwater contamination which may have the potential to impact human health through direct contact or exposure to hydrocarbon.

Wider impacts on the environment are likely to relate to controlled waters and more particularly groundwaters. The site is considered to be of moderate environmental sensitivity due to its location above a principal aquifer, although the site does not lie within a Groundwater Source Protection Zone as defined by the Environment Agency.

Historically groundwater was used for domestic consumption and early OS Plans show many pumps and wells within the confines of many domestic properties close to the site (see Figure 3) the majority of these are likely to have become disused with the arrival of mains water.

Larger users would have been the former RN Air Station (see Section 6.2 above and Figure 4). Again the majority of these uses now appear to have ceased. There is only one remaining licensed groundwater abstraction within 1km of the site and this is located 697m to the northwest of the site. The water abstracted is for general farming and domestic use.

The potential for impacts on surface waters are considered to be very low as there are no significant surface watercourses within 250m of the site.

This preliminary risk assessment is further reviewed and revised to take account of the findings of the current ground investigation works at Section 13.0 below.

10.0 PRELIMINARY ENABLING WORKS

Preliminary enabling works were carried out by Ling Developments Limited to facilitate the ground investigation works.

These works comprised the location and removal of the below ground fuel tanks located in the southern part of the site adjacent to Village Road.

Two approximately 500 gallon capacity tanks were identified below a concrete slab at the position shown on Figure 7. The tanks were found to be fluid filled containing a mixture of water and diesel. The contents of the tanks were pumped out into IBCs for subsequent off-site disposal by specialist contractor.

The fuel tanks were then dug out. There was no evidence of a concrete surround around the tanks. The tanks were in direct contact with the surrounding soil which was noted to be visually and olfactorily impacted by hydrocarbons.

The excavated tanks were temporarily stored on a concrete hardstanding (see Photographs as Appendix E) prior to off-site disposal.

The hydrocarbon impacted soils comprised sands and clayey sands which had become heavily saturated with water due to ingress from a surface water drain adjacent to the tank excavation area. This drain was subsequently blocked off to prevent further water ingress.

Some of the obviously impacted soil from around the tank was temporarily excavated and stockpiled on a hardstanding area. The remainder was left in place in the area of the tank and immediately to the west for subsequent off-site disposal.

11.0 GROUND INVESTIGATION

11.1 Initial Site Investigation Works

The initial site works were carried out 4th February 2021 and comprised the following:

- the drilling of 3 no mini-rig boreholes (BH1 to BH3) to refusal at depths in the range 3.15m to 4.15m. All boreholes were logged by a Geotechnical Engineer and detailed records are reproduced at Appendix G
- excavation of 5 no machine dug trial pits to depths in the range 1.00m to 1.70m (TP1 to TP5). All trial pits were logged by a Geotechnical Engineer and detailed records are reproduced at Appendix H

• excavations in the vicinity of the former below ground fuel tanks to sample undisturbed natural soils below the tanks

The location of the exploratory works are shown on Figure 7.

The objectives of the initial site works was to provide a broad characterisation of the near surface soils by the use of trial pits. The minirig boreholes BH1 and BH2 were located close to the former above ground fuel tank and below ground fuel tanks respectively to determine potential hydrocarbon impacts at these locations.

11.2 Supplementary Site Works

Supplementary site works were carried out between 26th February and 1st March 2021 and comprised the following:

- the drilling of an additional 4 no mini-rig boreholes (BH4 to BH7) to refusal at depths in the range 2.80m to 3.85m. Borehole records are reproduced at Appendix G
- the drilling of 1 no rotary cored bored to a depth of 18.50m (BH101).
 The borehole was logged by a Geotechnical Engineer and detailed records are reproduced at Appendix I.

The objectives of the supplementary site works were to provide a further assessment of shallow groundwater across the entire site (BH4 to BH7). The deeper rotary borehole was intended to allow an assessment of potential hydrocarbon impacts on the Bridgnorth Sandstone, to determine groundwater levels in the aquifer and to allow the testing of sandstone and groundwater samples for hydrocarbons.

11.3 Insitu Testing

11.3.1 Standard Penetration Tests

Standard Penetration Tests (SPTs) were carried out in BH1, BH2 BH3 and BH7. The test results are shown on the borehole records at Appendix G and summarised at Appendix J.

11.3.2 PID Screening

Selected samples from boreholes, trial pits and excavation sample points below the underground base were subjected to screening with a portable Photoionisation Device (PID) to determine the presence of volatile organic compounds (VOCs).

The PID test procedure entailed putting a nominal 0.5kg sample in a heavy duty bag which was then sealed. The soil within the bag was broken into small particles and the bag was shaken for 30 seconds to allow any vapours within the soil to be released into the headspace. A headspace analysis was then carried out by pushing the sample pipe of the PID through the side of the plastic bag and ensuring a seal between the bag and pipe.

The PID readings are detailed at Appendix K.

11.4 Instrumentation

Combined gas and groundwater monitoring standpipes were installed in BH1, BH2, BH4, BH5, BH6, BH7 and BH101. Installation details are shown on the borehole records at Appendix G and I and are summarised at Appendix L.

Vapour, gas and groundwater level monitoring was carried out on six occasions in BH1 and BH2 and two occasions in BH4, BH5, BH6, BH7 and BH101.

Vapour monitoring was carried out with a portable Photoionisation Device (PID) and gas monitoring was carried out with a portable infrared gas analyser (Gas Data GFM 436). Groundwater depths were determined with a combined electronic dip and oil/water interface meter.

Vapour, gas and groundwater level monitoring results are reproduced at Appendix M.

11.5 <u>Laboratory Testing</u>

11.5.1 Soil Contamination Testing

Five near surface soil samples from trial pits TP1 to TP5 were tested for the following determinands:

- Former ICRCL Suite
- Speciated Polycyclic Aromatic Hydrocarbons (PAH)
- Total Petroleum Hydrocarbons (TPH) with an Aromatic/Aliphatic Split
- Asbestos Screen

The test results are reproduced in full at Appendix N and are summarised on Table 1.

An additional 7 soil samples from mini-rig boreholes BH1 and BH2 were tested for TPH and BTEX compounds only and the test results are reproduced at Appendix O and summarised on Table 2.

Six rock samples from rotary cored borehole BH101 were tested for TPH and BTEX compounds and test results are reproduced at Appendix P and summarised on Table 3.

Following removal of the underground fuel tanks in the southern part of the underlying natural soil was exposed (see Photographs at Appendix F) and three samples were tested for TPH and BTEX compounds. The test results are reproduced at Appendix Q and summarised on Table 4.

11.5.2 Groundwater Contamination Testing

Groundwater samples were obtained using disposable bailers from BH1 and BH2 on 10/02/21 and 16/02/21 and were analysed for TPH and BTEX compounds. The test results are reproduced at Appendix R and S respectively.

Groundwater samples were obtained from BH2, BH4, BH5, BH6, BH7 and BH101 on 02/03/21 using disposable bailers. No sample was obtained from BH1 as it was dry. An additional discrete groundwater sample was taken from 10.50m in BH101 using a Hydrasleeve sampler. All samples were analysed for TPH and BTEX compounds and the results are reproduced at Appendix T.

For ease of reference all groundwater contamination results are summarised on Table 5.

11.5.3 Geotechnical Testing

Selected soil samples were tested for the following parameters:

- Moisture Content
- ◆ Liquid Limit
- Plastic Limit
- Soluble Sulphate
- ♦ pH
- Particle Size Distribution

The test results are reproduced at Appendix U.

12.0 GROUND CONDITIONS

12.1 Made Ground

Made ground was encountered in all exploratory holes and ranged in thickness from 0.20m (TP3) to 1.10m (TP5).

The made ground comprised predominantly reworked topsoil and subsoil materials with occasional inclusions of brick, ash and clinker. At some locations there was a surface layer roadstone or concrete.

In TP5 a buried slab approximately 100mm in thickness was encountered from 0.30m to 0.40m which may represent the floor slab from the earliest coach garage building.

12.2 Topsoil/Subsoil

Undisturbed topsoil/subsoil was encountered in TP3 from 0.20m to 0.50m and in BH5 from 0.30m to 0.90m. This material comprised sandy silt.

12.3 Glacial Deposits

The made ground and topsoil/subsoil where present was underlain by glacial deposits. The base of the glacial deposits was not proved in the trial pits but was identified in all mini-rig boreholes as follows:

Borehole	Depth to Base of	
	Glacial Deposits (m)	
BH1	3.80	
BH2	1.70	
BH3	3.70	
BH4	3.00	
BH5	2.70	
BH6	2.60	
BH7	3.80	

The glacial deposits comprise predominantly very loose to medium dense slightly gravelly clayey sand. However, significant bands of soft to stiff (but generally firm) gravelly very sandy clay were identified in BH1, BH3 and BH5 with thinner bands of clay or very clayey sand in BH2, BH4 and BH5. The incidence of clay bands is summarised below:

Borehole	Depth of Clay (m)
BH1	2.50 – 3.50
BH2	1.50 – 1.70
BH3	2.40 - 3.70
BH4	2.05 – 2.15
BH5	2.60 – 2.70
BH6	1.10 – 1.90

12.4 Bridgnorth Sandstone Formation

Solid strata of the Bridgnorth Sandstone Formation was encountered in all mini-rig boreholes and was proved to a maximum depth of 18.50m by rotary coring in BH101.

The Bridgnorth Sandstone Formation generally comprised very weak red brown fine grained sandstone.

12.5 <u>Groundwater</u>

Groundwater was encountered during drilling all mini-rig boreholes except BH1, BH2 and BH5 at depths below around 2m. Subsequent monitoring identified the following range of groundwater depths:

Borehole	Depth to Base of	
	Glacial Deposits (m)	
BH1	3.12 - >3.50	
BH2	1.96 – 2.28	
BH4	1.07 – 1.22	
BH5	1.45 – 1.54	
BH6	0.55 – 0.60	
BH7	1.52 – 1.55	
BH101	3.28 – 3.29	

13.0 CONTAMINATION ASSESSMENT

13.1 Visual and Olfactory Evidence of Potential Contamination

No visual or olfactory evidence of soil contamination was identified in any of the soil samples from boreholes or trial pits except BH2 (located immediately adjacent to the former underground fuel tanks) and soil samples taken from the natural soils immediately below the underground fuel tanks. In BH2 there was no visual evidence of hydrocarbon contamination although olfactory evidence was noted as follows:

Depth (m)	Description
1.00 – 1.70	Strong hydrocarbon odour
1.70 – 2.50	Moderate hydrocarbon odour
2.50 - 3.15	Strong hydrocarbon odour

Samples of the natural soils below the buried tanks again showed no visual signs of contamination but exhibited a "strong hydrocarbon/petrochemical odour".

It is noteworthy that samples from the current investigation appear to show significantly less hydrocarbon contamination than those reported on in the 2004 Contamination Investigation undertaken when the site was still operational as a coach garage and depot. This may be attributable to the removal of potential hydrocarbon sources following the closure of the site in 2006 and some natural degradation of hydrocarbons between 2006 and the present day.

13.2 PID Screening

Soil samples from boreholes, trial pits and excavations below the buried tanks were all screened for VOCs using a PID. Readings were below 1ppm in all samples except those from BH2 and the tank base excavations.

PID readings exceeding 1ppm are summarised below:

Exploratory Hole	Depth (m)	PID Reading (ppm)
BH2	1.00 – 1.50	21.8
BH2	1.70 – 2.00	1.3
BH2	2.00 – 2.50	5.7
BH2	2.50 - 3.00	17.0
Tank Base T1	2.00	35.9
Tank Base T2	2.00	11.9
Tank Base T3	2.00	9.6

13.3 Soil Contamination

13.3.1 Metals

The soil test results have been assessed against the published CLEA Soil Guideline Values (SGVs). Where no SGVs are available the results have been assessed against the LQM/CIEH S4ULs. Lead has been assessed against the potential Category 4 Screening Level (C4SL) of 200mg/kg in the absence of any updated CLEA SGVs. All results are based on a residential end-use. The test results are summarised below:

		Screening				
Determinand	TP1	TP2	TP3	TP4	TP5	Value
	0.30m	0.20m	0.40m	0.15m	0.60m	(mg/kg)
Arsenic	9.2	18.4	6.0	9.7	4.3	32
Boron	< 0.5	1.5	0.5	1.4	< 0.5	291
Cadmium	2.4	2.6	< 0.5	3.8	< 0.5	10
Chromium	16.7	27.4	14.1	27.0	11.7	910
Chromium VI	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	6
Copper	60.3	155	47.9	233	37.7	2330
Lead	176	275	45.6	647	69.1	200
Mercury	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	40
Nickel	30.4	59.8	14.0	27.2	9.5	130
Selenium	10.4	< 1.0	< 1.0	< 1.0	< 1.0	350
Zinc	539	943	158	714	91.9	3750

Concentrations of all determinands were below appropriate screening values with the exception of lead.

Lead was elevated in two samples with concentrations of 275mg/kg (TP2: 0.20m) and 647mg/kg (TP4: 0.15m).

13.3.2 Cyanide and Phenols

Concentrations of free cyanide and phenols were below the screening values in all samples.

13.3.3 Polycyclic Aromatic Hydrocarbons (PAH)

Total PAH concentrations ranged from <0.4mg/kg to 34.6mg/kg. All individual PAH compounds were below the appropriate screening values except in TP2 at 0.20m in which exceedances occurred for benzo(b)fluoranthene, benzo(a)pyrene and dibenzo(ah)anthracene and in TP4 at 0.15m in which exceedances occurred for benzo(a)pyrene and dibenzo(ah)anthracene.

13.3.4 Total Petroleum Hydrocarbons (TPH)

TPH concentrations for both aromatic and aliphatic compounds over all carbon ranges were below the appropriate screening value in all samples except TP4 at 0.15m and BH2 at 2.50m to 3.00m

In TP4 at 0.15m TPH C21 – C35 Aromatic were recorded at 2100mg/kg compared to the screening value of 1100mg/kg.

In BH2 at 2.50m to 3.00m the following exceedances were noted:

	Measured Value	Screening Value
	(mg/kg)	(mg/kg)
TPH (C8 – C10 Aliphatic)	51.4	27
TPH (C8 – C10 Aromatic)	39.1	34
TPH (C12 – C16 Aromatic)	219	140

BTEX compounds were at concentrations below the appropriate screening value in all samples.

13.3.5 Asbestos

Five soil samples were screened for asbestos fibres and none were detected.

13.4 Groundwater Contamination

Groundwater contamination test results are presented in full at Appendix R, S and T and are summarised on Table 5.

Samples from BH4, BH6 and BH7 and BH101 showed no evidence of hydrocarbon contamination.

Samples from BH1, BH2 and BH5 showed evidence of being impacted by hydrocarbons.

In BH1 (located below the position of the more recent above ground diesel tank) TPH concentrations were initially 1130ug/l falling to 22.1ug/l on the second monitoring visit. In BH2 (adjacent to the underground fuel tanks) concentrations were 710ug/l, 542ug/l and 25.9ug/l over the three successive sampling visits. The sample from BH5 had a TPH concentration of 565ug/l. The split of aromatic/aliphatic compounds and the carbon ranges identified are indicative of diesel and degraded diesel contamination.

Samples of groundwater from within the Bridgnorth Sandstone Formation aquifer showed no evidence of hydrocarbon impacts.

13.5 Revised Conceptual Model

A qualitative risk assessment has been carried out based on the accepted source-pathway-receptor pollutant linkages methodology. The assessment considers a site specific revised conceptual site model designed from the preliminary conceptual site model and information obtained from the current investigation. The revised conceptual model shown on Figure 8.

13.6 Human Health Soil Contamination Remediation Proposals

Concentrations of all determinands were below recognised human health soil screening values with the exception of lead, some PAH compounds and TPH. These elevated concentrations pose a potential hazard with respect to human health without appropriate remedial measures.

Appropriate remedial measures should be designed to server the identified pollutant linkage. This could be achieved by the provision of a clean cover layer or the removal of impacted soils. The provision of a clean cover layer would be most cost-effective and is accordingly recommended.

The cover layer should comprise a minimum 600mm of clean topsoil and/or subsoil which will effectively isolate any residual contaminants from the site end-users thus breaking the identified pollutant linkage. The cover layer should be provided to all garden and landscape areas. No special measures are considered necessary beneath buildings, parking areas and other areas of hardstanding.

Care should be taken to ensure that all imported clean cover materials are uncontaminated. Appropriate testing and validation of the remedial works should be carried out to the satisfaction of the Local Authority. The remedial works should be completed and validated before the development is first occupied.

13.7 Controlled Waters Contamination Remediation Proposals

Significant contamination of near surface soils has only been identified in the area of the former underground fuel tanks.

The contents of the tanks (a diesel water mix) and the tanks have already been removed thereby removing the primary contamination source.

Testing of the natural soils immediately below the base of the tank identified olfactory and PID evidence of hydrocarbon impacts although laboratory testing of three soil samples indicated TPH concentration in the range 50mg/kg to 283mg/kg. However, immediately adjacent to the underground tanks in BH2 the following profile of TPH concentrations was recorded:

Borehole	Depth (m)	TPH Concentration	
		(mg/kg)	
BH2	0.50 – 1.00	25.8	
	1.00 – 1.50	388	
	1.70 – 2.00	18.0	
	2.00 - 2.50	502	
	2.50 - 3.00	1960	

The samples from BH2 from 1.70m to 3.00m correspond with the upper part of the Bridgnorth Sandstone Formation while samples above this are within the glacial deposits and made ground.

Rotary cored samples from adjacent BH101 were tested for TPH at depths of 4.00m, 6.00m, 8.00m, 10.00m, 13.00m and 15.50m and showed no evidence of TPH within the sandstone.

The available evidence suggests the localised presence of hydrocarbon impacted soils in the vicinity of the former underground fuel tanks. Soils around the tanks was assessed on a visual and olfactory basis to be impacted by hydrocarbons. However, no evidence of free product was identified in any of the excavations. Whilst there is no evidence of any significant vertical migration of the hydrocarbons as a precautionary measure and to achieve some betterment it is proposed that hydrocarbon impacted soils around the former underground tank area to be excavated and removed from site for off-site treatment/disposal.

It is intended that the extent of excavation be based on visual and olfactory evidence of hydrocarbon impacted soils backed up by PID readings. However, once the excavation has been completed the base and sides will be sampled and tested to verify that TPH concentrations fall below a screening value of 500mg/kg.

29

The remedial works should also include exploratory excavations in the vicinity of the oil interceptors reported in the 2004 investigation by not yet identified on site.

The completed excavation will be backfilled with imported inert materials.

Whilst localised hydrocarbon impacts were noted in some samples of shallow groundwater these were not considered to warrant remediation and in BH1 and BH2 hydrocarbons showed reducing concentrations over time. Significant reductions in hydrocarbon concentrations were noted in shallow groundwater in BH2 since removal of the underground fuel tanks indicating that these were the source of the hydrocarbons. Given the above findings there is considered to be no requirement for any further assessment or remediation of shallow groundwater particularly given the there is no discernible impact on groundwater from BH101 sealed within the sandstone aquifer.

BH101 should be fully decommissioned once no longer required to ensure that it does not provide a potential future pathway to the aquifer. The works should be carried out in accordance with Environment Agency Guidance dated October 2012 "Good Practice for Decommissioning Redundant Boreholes and Wells".

Appropriate testing and validation of the remedial works should be carried out to the satisfaction of the Local Authority. The remedial works should be completed and validated before the development is first occupied.

13.8 Unexpected Contamination

In the event of unexpected contamination not identified by this report being identified during site works then further advice should be sought and the Local Authority should be informed.

30

14.0 GROUND GASES

Vapour, ground gas and water level monitoring was carried out in two boreholes (BH1 and BH2) on six occasions between 4th February and 9th March 2021. A further five boreholes from the supplementary investigation were monitored on two occasions. The results are reproduced in full at Appendix M.

The monitoring procedure for all monitoring wells was as follows:

- 1. Determine borehole gas flow rate
- 2. Determine PID reading
- 3. Determine concentrations of methane, carbon dioxide and oxygen
- 4. Dip groundwater level

Initial readings were taken for VOCs using a portable PID. Readings were less than 1ppm in all boreholes except BH1 and BH2. In BH1 PID readings ranged from 0.0ppm to 4.2ppm. More elevated readings were identified in BH2 ranging from 4.8ppm to 78.8ppm.

Methane was absent in all boreholes except BH2 on all monitoring visits. In BH2 a methane concentration of 2.4% was recorded on 10th February 2021 and corresponded with the peak PID reading of 78.8ppm. It is considered that this reading of "methane" was impacted by the presence of hydrocarbon vapours rather than the actual presence of methane.

Carbon dioxide concentrations were below 5% in all boreholes except BH2 on all monitoring visits. Concentrations of carbon dioxide exceeded 5% with values of 6.2% and 5.7% on 10th and 16th February 2021.

Borehole gas flow rates were less than 0.5 litres per hour in all boreholes on all monitoring visits. Atmospheric pressures during the monitoring ranged from 994 to 1020 millibars. Four of the six monitoring visits were carried out at atmospheric pressures at or below 1000 millibars.

Worst case Gas Screening Values (GSVs) for the site have been calculated as follows in accordance with CIRIA C665 (2007) Assessing Risks Posed by Hazardous Ground Gases to Buildings:

GSVcarbon dioxide	0.031l/hr

These results would classify the site as Characteristic Situation 1 (CS1), however, as the maximum carbon dioxide concentration exceeds 5% the classification should be advanced to a Characteristic Situation 2 (CS2).

The nature of the gas protection measures has been determined in accordance with BS8485:2015 + A1:2019 Code of Practice for the Design of Protective Measures for Methane and Carbon Dioxide Ground Gases for New Buildings.

A site classification of Characteristic Situation 2 (CS2) would require 3.5 points of protection in accordance with the British Standard which could be achieved as follows:

Item	Description	Points Score
(a)	Sub slab venting below beam and block floor	1.5
	to achieve good performance	
(b)	Proprietary gas resistant membrane to entire	2.0
	building footprint, sealed around services	
	penetrations and continuous across the cavity.	
	Installation to be fully verified and tested in	
	accordance with CIRIA C735 (2014)	
	Total Points Score	3.5

Due to the identified presence of hydrocarbons at the site the proprietary gas resistant membrane should be fully resistant to hydrocarbon vapours as well as methane and carbon dioxide.

The gas protection measures should be designed, detailed and installed by an appropriately experienced contractor.

The gas protection measures should be inspected, tested and validated in accordance with CIRIA C735 (2014) and an appropriate verification report should be submitted to the Local Authority

15.0 ENGINEERING CONSIDERATIONS

15.1 Foundations

In the northern half of the site the thickness of the glacial deposits was recorded as 3.80m (in BH1 and BH7). The deposits were predominantly loose to medium dense sand, although in BH1 a band of soft slightly gravelly very sandy clay was recorded from 2.50m to 3.50m.

SPT N values within the glacial deposits were very variable ranging from 0 in BH7 at 3.00m where the SPT rods sank under their own wight to a maximum value of 17 in BH1 at 1.00m.

SPT N values for BH1 and BH7 are shown graphically on Figure 9. The low and variable density of the glacial deposits is such that they would not be suitable for the use of conventional shallow strip footings which would be subject to potentially excessive total and differential settlements.

Given the presence of a competent sandstone strata at 3.80m the use of driven piles acting in end-bearing in the sandstone may be the most appropriate foundation solution. Advice should be sought from a specialist piling contractor on the most appropriate pile type and its load bearing characteristics. Pile design can be carried out from SPT N values within the very weak sandstone which recorded values of 53 for 75mm penetration (BH1:4.00m to 4.15m) and 51 for 200mm (BH1: 3.50m to 3.85m).

In the southern part of the site Bridgnorth Sandstone was encountered at 1.70m in BH2, initially comprising very dense sandy grading into very weak sandstone at 2.50m. BH4, which was drilled at an elevation around 1m higher than BH2, identified competent sandstone at 3.00m; although nearby BH3 recorded the sandstone at 3.70m.

SPT N values within the sandstone were as follows:

BH2	3.00 – 3.15	58 for 75mm
BH3	4.00 – 4.15	63 for 75mm

Again pile could be employed in the southern part of the site as proposed for the north. Although given that site levels are to be reduced in the area of the southern plot then it may be feasible to use deep trench fill foundations extending into the sandstone. Within the sandstone an allowable bearing pressure of 200kN/m² would be appropriate for foundation design. At this loading intensity settlements would be limited to acceptable levels.

All foundation excavations should be inspected and approved by the Building Inspector.

In the event of ground conditions differing from these identified by this investigation then further geotechnical advice should be sought.

15.2 Building Near Trees

There are several trees around the site perimeter. However, significant clay deposits have not been identified at the site with the majority of soil being granular in nature. Given this and the saturated nature of the near surface soils the potential for significant heave or shrinkage is assessed to be very low and does not warrant the inclusions of any specialist protection measures.

15.3 Excavations

Excavations are anticipated to be of variable short-term stability. In the granular deposits of the made ground and glacial deposits some instability should be anticipated.

Where man entry is required the excavation sides should be appropriately battered or shored in accordance with Health & Safety Executive Guidance.

15.4 <u>Groundwater</u>

Shallow perched groundwater has been identified at the site and consequently groundwater ingress should be anticipated within shallow excavation. Groundwater ingress may be associated with instability and "washing in" of silt and sand sized particles.

It should be noted that groundwater levels can be subject to seasonal fluctuations and longer-term groundwater monitoring has not been carried out.

15.5 Buried Concrete

Sulphate and pH test results indicate an appropriate design class for buried concrete of DS-1 in accordance with BRE Special Digest 1 (2005). The Aggressive Chemical Environment for Concrete (ACEC) class for the site would be AC-1 assuming mobile groundwater conditions for buried concrete.

15.6 <u>Water Supply Pipework</u>

Due to the presence of hydrocarbon contamination at the site is considered that conventional polyethylene water supply pipework would be unacceptable. Specialist protective pipework is recommended. The selection of pipework should be agreed with the water supply company.

15.7 Soakaways

The use of soakaways for the disposal of rainfall runoff is not recommended given the identified soil contamination at the site.

TABLES

TABLE 1: SUMMARY OF SOIL CONTAMINATION RESULTS (TRIAL PITS)

	Trial Pit	TP1	TP2	TP3	TP4	TP5	CLEA SGV or
De	epth (m)	0.30	0.20	0.40	0.15	0.60	LQM/CIEH S4UL
Arsenic	mg/kg	9.2	18.4	6.0	9.7	4.3	32
Boron	mg/kg	< 0.5	1.5	0.5	1.4	< 0.5	291
Cadmium	mg/kg	2.4	2.6	< 0.5	3.8	< 0.5	10
Chromium	mg/kg	16.7	27.4	14.1	27.0	11.7	910 ¹
Chromium VI	mg/kg	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	6
Copper	mg/kg	60.3	155	47.9	233	37.7	2330
Lead	mg/kg	176	275	45.6	647	69.1	200 2
Mercury	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	40 ³
Nickel	mg/kg	30.4	59.8	14.0	27.2	9.5	130
Selenium	mg/kg	10.4	< 1.0	< 1.0	< 1.0	< 1.0	350
Zinc	mg/kg	539	943	158	714	91.9	3750
Cyanide (free)	mg/kg	< 1.0	< 1.0	< 1.0	6.5	< 1.0	20 4
Phenols	mg/kg	< 5	< 5	< 5	< 5	< 5	780
Naphthalene	mg/kg	< 0.1	0.2	< 0.1	0.5	< 0.1	2.3
Acenaphthylene	mg/kg	< 0.1	0.2	< 0.1	0.3	< 0.1	170
Acenaphthene	mg/kg	< 0.1	0.4	< 0.1	0.3	< 0.1	210
Fluorene	mg/kg	< 0.1	0.2	< 0.1	< 0.1	< 0.1	170
Phenanthrene	mg/kg	< 0.1	1.9	< 0.1	0.8	< 0.1	95
Anthracene	mg/kg	< 0.1	1.1	< 0.1	0.6	< 0.1	2400
Fluoranthene	mg/kg	< 0.1	5.0	< 0.1	1.8	< 0.1	280
Pyrene	mg/kg	< 0.1	4.3	< 0.1	1.4	< 0.1	620
Benzo(a)Anthracene	mg/kg	< 0.1	3.0	< 0.1	1.2	< 0.1	7.2
Chrysene	mg/kg	< 0.1	2.7	< 0.1	1.0	< 0.1	15
Benzo(b)Fluoranthene	mg/kg	< 0.1	2.7	< 0.1	2.4	< 0.1	2.6
Benzo(k)Fluoranthene	mg/kg	< 0.1	3.0	< 0.1	2.4	< 0.1	77
Benzo(a)Pyrene	mg/kg	< 0.1	3.5	< 0.1	3.8	< 0.1	2.2
Indeno(123-cd)Pyrene	mg/kg	< 0.1	3.2	< 0.1	4.2	< 0.1	27
Dibenzo(ah)Anthracene	mg/kg	< 0.1	0.7	< 0.1	1.6	< 0.1	0.24
Benzo(ghi)Perylene	mg/kg	< 0.1	2.5	< 0.1	5.4	< 0.1	320
PAH (Total)	mg/kg	< 0.4	34.6	< 0.4	27.6	< 0.4	N/A
Asbestos	N/A	ND	ND	ND	ND	ND	ND
Benzene	ug/kg	<10	<10	<10	<10	<10	87
EthylBenzene	ug/kg	<10	<10	<10	<10	<10	47,000
Xylenes	ug/kg	<10	<10	<10	<10	<10	56,000 ⁵
Toluene	ug/kg	<10	<10	<10	<10	<10	130,000
TPH (C5 - C6 Aliphatic)	mg/kg	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	42
TPH (C6 - C8 Aliphatic)	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	100
TPH (C8 - C10 Aliphatic)	mg/kg	<1	<1	<1	1.1	<1	27
TPH (C10 - C12 Aliphatic)	mg/kg	<1	<1	<1	1.5	<1	130
TPH (C12 - C16 Aliphatic)	mg/kg	<1	<1	<1	5.7	1.3	1100
TPH (C16 - C21 Aliphatic)	mg/kg	<1	1.8	<1	21.7	<1	65,000 ⁶
TPH (C21 - C35 Aliphatic)	mg/kg	6.2	15.5	<1	504	12.4	65,000 ⁶
TPH (C35 - C40 Aliphatic)	mg/kg	<1	3.4	<1	102	2.6	65,000 ⁷
TPH (C40 - C44 Aliphatic)	mg/kg	<1	1.7	<1	74.3	3.4	65,000 ⁷
TPH (C6 - C7 Aromatic)	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	70
TPH (C7 - C8 Aromatic)	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	130
TPH (C8 - C10 Aromatic)	mg/kg	<1	<1	<1	2.8	<1	34
TPH (C10 - C12 Aromatic)	mg/kg	<1	<1	<1	2.7	2.1	74
TPH (C12 - C16 Aromatic)	mg/kg	<1	2.2	<1	19.4	1.6	140
TPH (C16 - C21 Aromatic)	mg/kg	4.4	15.6	<1	111	6.2	260
TPH (C21 - C35 Aromatic)	mg/kg	53.7	140	<1	2100	50.1	1100
TPH (C35 - C40 Aromatic)	mg/kg	19.2	37.8	<1	883	14.0	1100 ⁸
TPH (C40 - C44 Aromatic)	mg/kg	3.3	8.0	<1	259	7.6	1100 ⁸

¹ S4UL quoted is for Chromium III

² Results assessed against Category 4 Screening Level

³ Total Mercury concentration assessed against S4UL for inorganic mercury

⁴ Assessed against Dutch Intervention Value

 $^{\rm 5}\,$ S4UL taken as 56,000ug/kg based on p-xylene

 $^{\rm 6}\,$ S4UL of 65,000mg/kg for aliphatic C16 - C35 $\,$

⁷ S4UL of 65,000mg/kg for aliphatic C35-C44

⁸ S4UL of 1100mg/kg for aromatic C35-C44

TABLE 2: SUMMARY OF TPH SOIL CONTAMINATION RESULTS (BOREHOLES)

						-	-	-	
B	orehole	BH1	BH1	BH2	BH2	BH2	BH2	BH2	CLEA SGV or
De	epth (m)	0.50	1.50	0.50 - 1.00	1.00 - 1.50	1.70 - 2.00	2.00 - 2.50	2.50 - 3.00	LQM/CIEH S4UL
Benzene	ug/kg	<10	<10	<10	<10	<10	<10	<10	87
EthylBenzene	ug/kg	<10	<10	<10	<10	<10	<10	<10	47,000
Xylenes	ug/kg	<10	<10	<10	16.1	<10	<10	43.1	56,000 ¹
Toluene	ug/kg	<10	<10	<10	<10	<10	<10	<10	130,000
TPH (C5 - C6 Aliphatic)	mg/kg	< 0.01	< 0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01	42
TPH (C6 - C8 Aliphatic)	mg/kg	< 0.01	< 0.01	< 0.01	0.06	< 0.01	< 0.01	0.02	100
TPH (C8 - C10 Aliphatic)	mg/kg	<1	5.3	<1	7.4	<1	4.5	51.4	27
TPH (C10 - C12 Aliphatic)	mg/kg	<1	16.3	<1	24.1	<1	20.0	127	130
TPH (C12 - C16 Aliphatic)	mg/kg	<1	28.3	<1	76.0	2.1	109	497	1100
TPH (C16 - C21 Aliphatic)	mg/kg	<1	< 1.0	<1	71.5	3.2	133	536	65,000 ²
TPH (C21 - C35 Aliphatic)	mg/kg	7.7	3.2	1.5	17.9	1.6	45.9	197	65,000 ²
TPH (C35 - C40 Aliphatic)	mg/kg	1.1	<1	<1	<1	<1	1.4	6.1	65,000 ³
TPH (C40 - C44 Aliphatic)	mg/kg	2.0	2.1	1.2	1.7	<1	1.5	2.2	65,000 ³
TPH (C6 - C7 Aromatic)	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	70
TPH (C7 - C8 Aromatic)	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	130
TPH (C8 - C10 Aromatic)	mg/kg	<1	2.6	<1	5.3	<1	2.8	39.1	34
TPH (C10 - C12 Aromatic)	mg/kg	1.5	7.4	<1	20.6	<1	15.1	1.1	74
TPH (C12 - C16 Aromatic)	mg/kg	8.3	16.1	5.8	67.7	4.3	58.7	219	140
TPH (C16 - C21 Aromatic)	mg/kg	2.5	1.4	6.5	74.2	1.5	75.9	173	260
TPH (C21 - C35 Aromatic)	mg/kg	37.4	7.7	3.7	14.7	1.4	28.7	98.2	1100
TPH (C35 - C40 Aromatic)	mg/kg	10.2	3.8	1.3	2.4	<1	2.5	5.8	1100 ⁴
TPH (C40 - C44 Aromatic)	mg/kg	4.9	4.7	2.9	3.9	1.9	2.9	3.6	1100 ⁴

¹ S4UL taken as 56,000ug/kg based on p-xylene

² S4UL of 65,000mg/kg for aliphatic C16 - C35

³ S4UL of 65,000mg/kg for aliphatic C35-C44

⁴ S4UL of 1100mg/kg for aromatic C35-C44

TABLE 3: SUMMARY OF TPH SOIL CONTAMINATION RESULTS (ROTARY BOREHOLE)

В	orehole	BH101	BH101	BH101	BH101	BH101	BH101	CLEA SGV or
De	epth (m)	4.00	6.00	8.00	10.00	13.00	15.50	LQM/CIEH S4UL
Benzene	ug/kg	<1	<1	<1	<1	<1	<1	87
EthylBenzene	ug/kg	<1	<1	<1	<1	<1	<1	47,000
Xylenes	ug/kg	<1	<1	<1	<1	<1	<1	56,000 ¹
Toluene	ug/kg	<1	<1	<1	<1	<1	<1	130,000
TPH (C5 - C6 Aliphatic)	mg/kg	<1	<1	<1	<1	<1	<1	42
TPH (C6 - C8 Aliphatic)	mg/kg	<1	<1	<1	<1	<1	<1	100
TPH (C8 - C10 Aliphatic)	mg/kg	<1	<1	<1	<1	<1	<1	27
TPH (C10 - C12 Aliphatic)	mg/kg	<1	<1	<1	<1	<1	<1	130
TPH (C12 - C16 Aliphatic)	mg/kg	<1	<1	<1	<1	<1	<1	1100
TPH (C16 - C21 Aliphatic)	mg/kg	<1	<1	<1	<1	<1	<1	65,000 ²
TPH (C21 - C35 Aliphatic)	mg/kg	<1	<1	<1	<1	<1	<1	65,000 ²
TPH (C35 - C44 Aliphatic)	mg/kg	<1	<1	<1	<1	<1	<1	65,000
TPH (C6 - C7 Aromatic)	mg/kg	<1	<1	<1	<1	<1	<1	70
TPH (C7 - C8 Aromatic)	mg/kg	<1	<1	<1	<1	<1	<1	130
TPH (C8 - C10 Aromatic)	mg/kg	<1	<1	<1	<1	<1	<1	34
TPH (C10 - C12 Aromatic)	mg/kg	<1	<1	<1	<1	<1	<1	74
TPH (C12 - C16 Aromatic)	mg/kg	<1	<1	<1	<1	<1	<1	140
TPH (C16 - C21 Aromatic)	mg/kg	<1	<1	<1	<1	<1	<1	260
TPH (C21 - C35 Aromatic)	mg/kg	<1	<1	<1	<1	<1	<1	1100
TPH (C35 - C44 Aromatic)	mg/kg	<1	<1	<1	<1	<1	<1	1100

¹ S4UL taken as 56,000ug/kg based on p-xylene

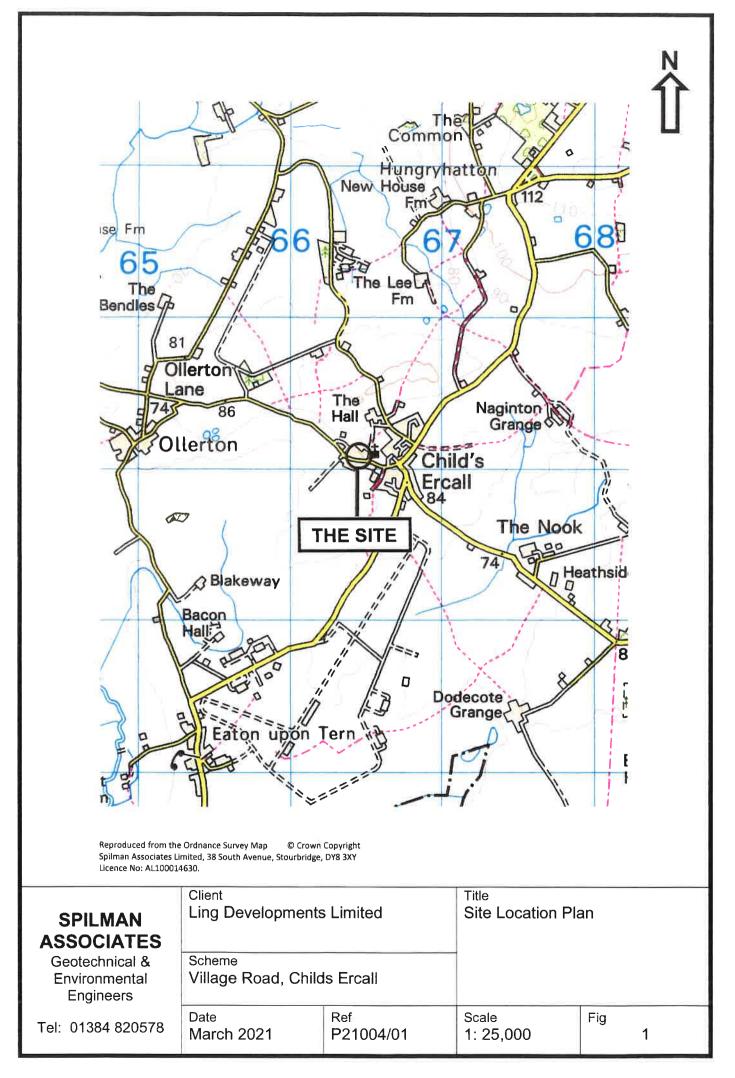
² S4UL of 65,000mg/kg for aliphatic C16 - C35

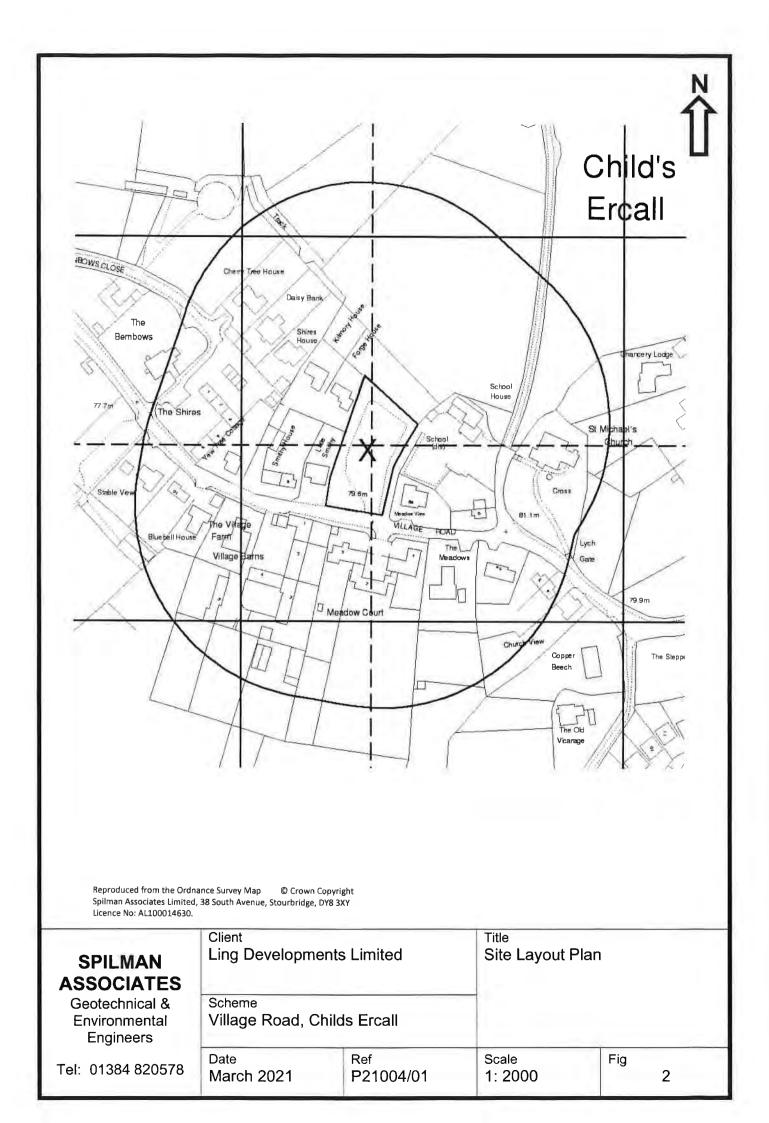
TABLE 4: SUMMARY OF TPH SOIL CONTAMINATION RESULTS (TANK BASE)

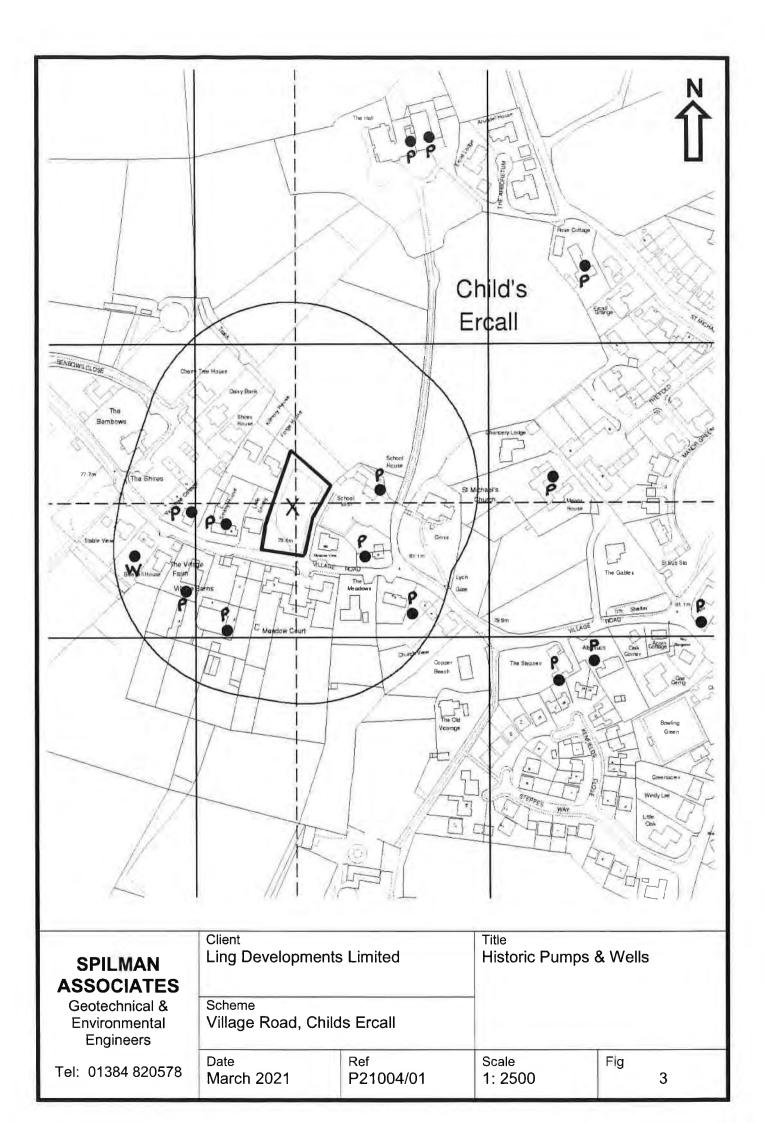
	Sample	T1	T2	Т3	CLEA SGV
De	epth (m)	2.00	2.00	2.00	LQM/CIEH S4UL
Benzene	ug/kg	<10	<10	<10	87
EthylBenzene	ug/kg	<10	<10	<10	47,000
Xylenes	ug/kg	<10	30.5	10.4	56,000 ¹
Toluene	ug/kg	<10	<10	<10	130,000
TPH (C5 - C6 Aliphatic)	mg/kg	< 0.01	< 0.01	< 0.01	42
TPH (C6 - C8 Aliphatic)	mg/kg	< 0.01	< 0.01	< 0.01	100
TPH (C8 - C10 Aliphatic)	mg/kg	< 1.0	1.5	3.6	27
TPH (C10 - C12 Aliphatic)	mg/kg	2.1	6.8	16.1	130
TPH (C12 - C16 Aliphatic)	mg/kg	9.3	26.4	59.6	1100
TPH (C16 - C21 Aliphatic)	mg/kg	9.6	28.1	64.0	65,000 ²
TPH (C21 - C35 Aliphatic)	mg/kg	2.9	8.9	13.5	65,000 ²
TPH (C35 - C40 Aliphatic)	mg/kg	<1	1.2	<1	65,000 ³
TPH (C40 - C44 Aliphatic)	mg/kg	<1	<1	<1	65,000 ³
TPH (C6 - C7 Aromatic)	mg/kg	< 0.01	< 0.01	< 0.01	70
TPH (C7 - C8 Aromatic)	mg/kg	< 0.01	< 0.01	< 0.01	130
TPH (C8 - C10 Aromatic)	mg/kg	<1	1.1	2.3	34
TPH (C10 - C12 Aromatic)	mg/kg	1.9	5.8	12.5	74
TPH (C12 - C16 Aromatic)	mg/kg	9.3	28.3	48.4	140
TPH (C16 - C21 Aromatic)	mg/kg	4.9	20.4	47.4	260
TPH (C21 - C35 Aromatic)	mg/kg	4.9	22.2	13.4	1100
TPH (C35 - C40 Aromatic)	mg/kg	<1	8.1	<1	1100 4
TPH (C40 - C44 Aromatic)	mg/kg	2.5	1.2	1.1	1100 4

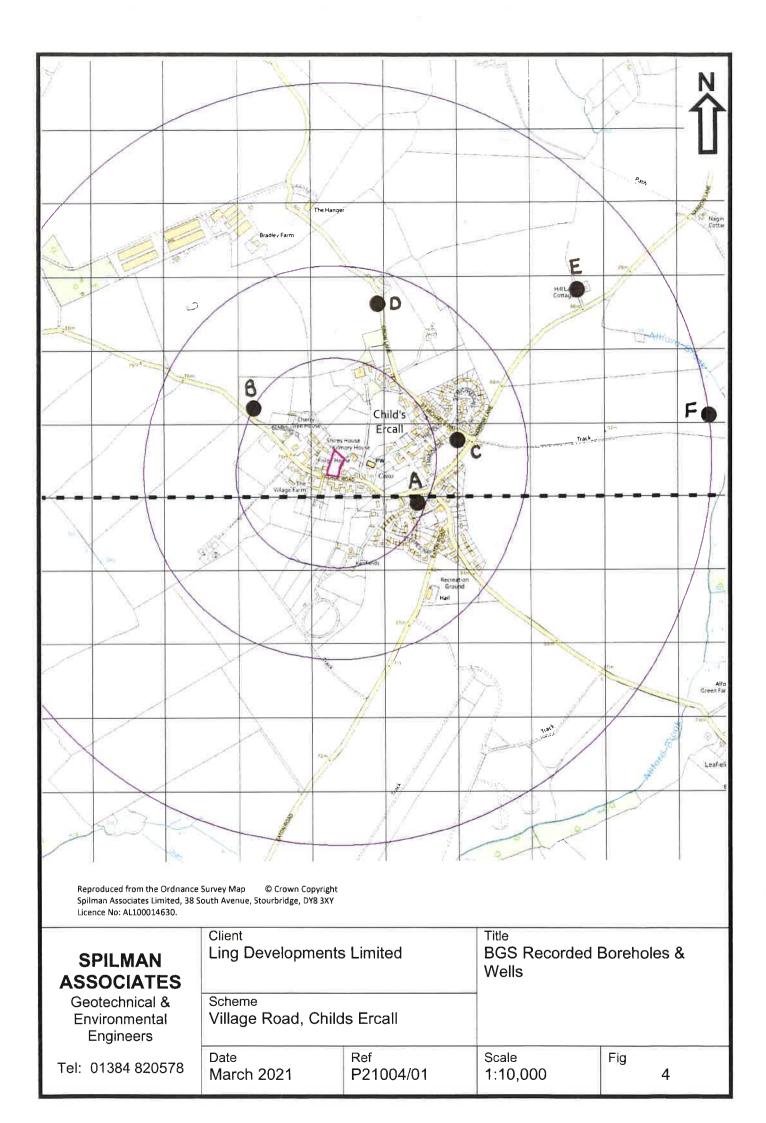
¹ S4UL taken as 56,000ug/kg based on p-xylene

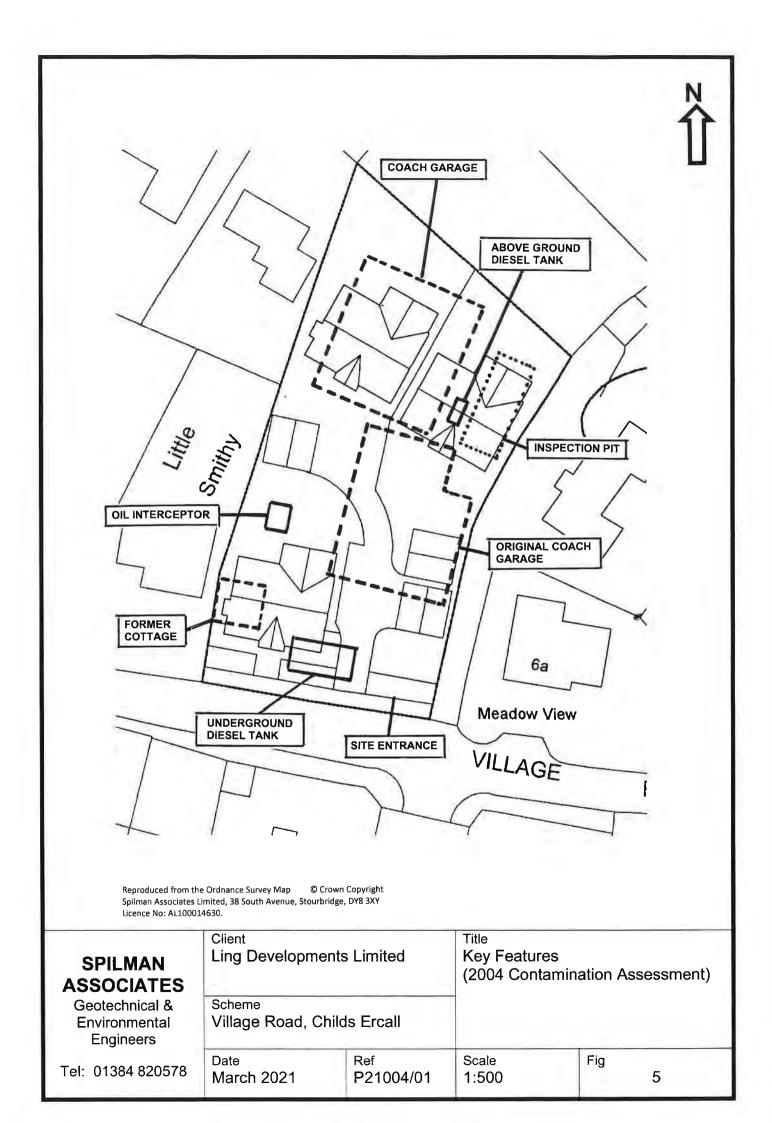
² S4UL of 65,000mg/kg for aliphatic C16 - C35

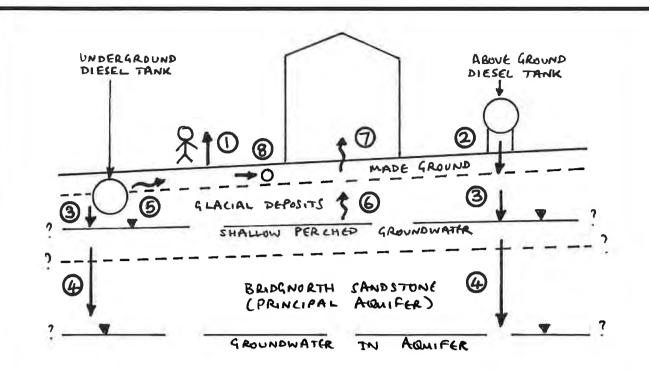

³ S4UL of 65,000mg/kg for aliphatic C35-C44


⁴ S4UL of 1100mg/kg for aromatic C35-C44

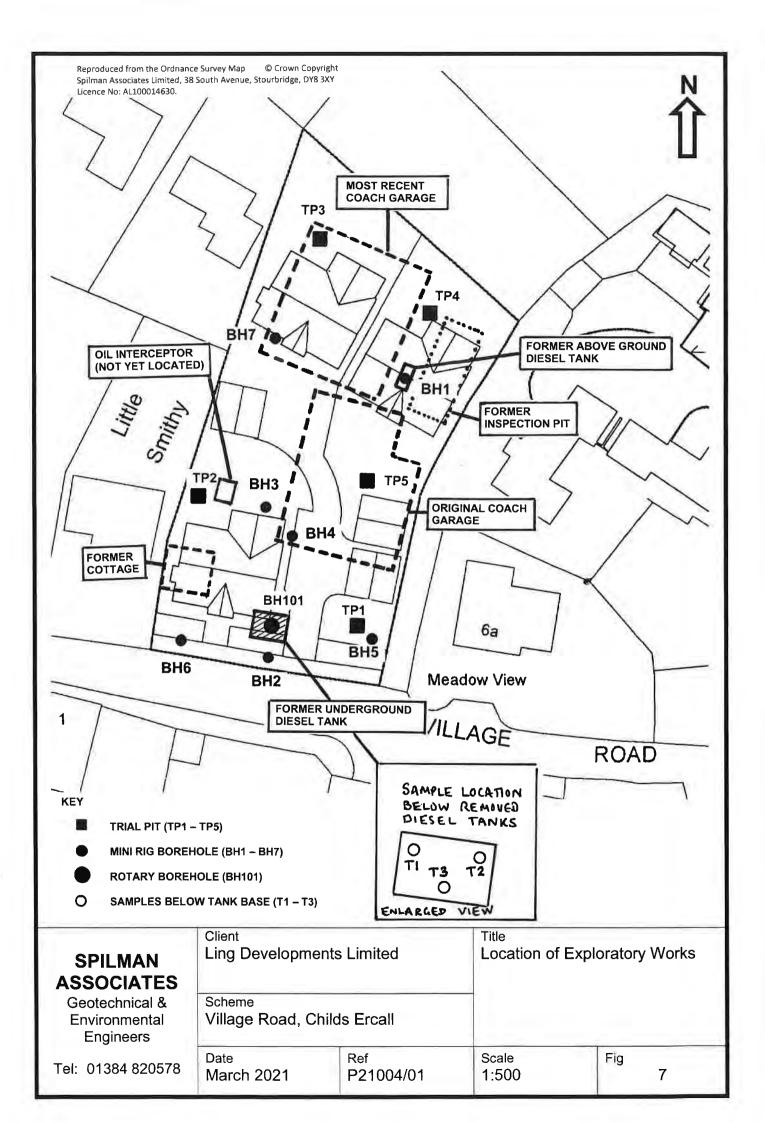

TABLE 5: SUMMARY OF TPH CONTAMINATION IN GROUNDWATER

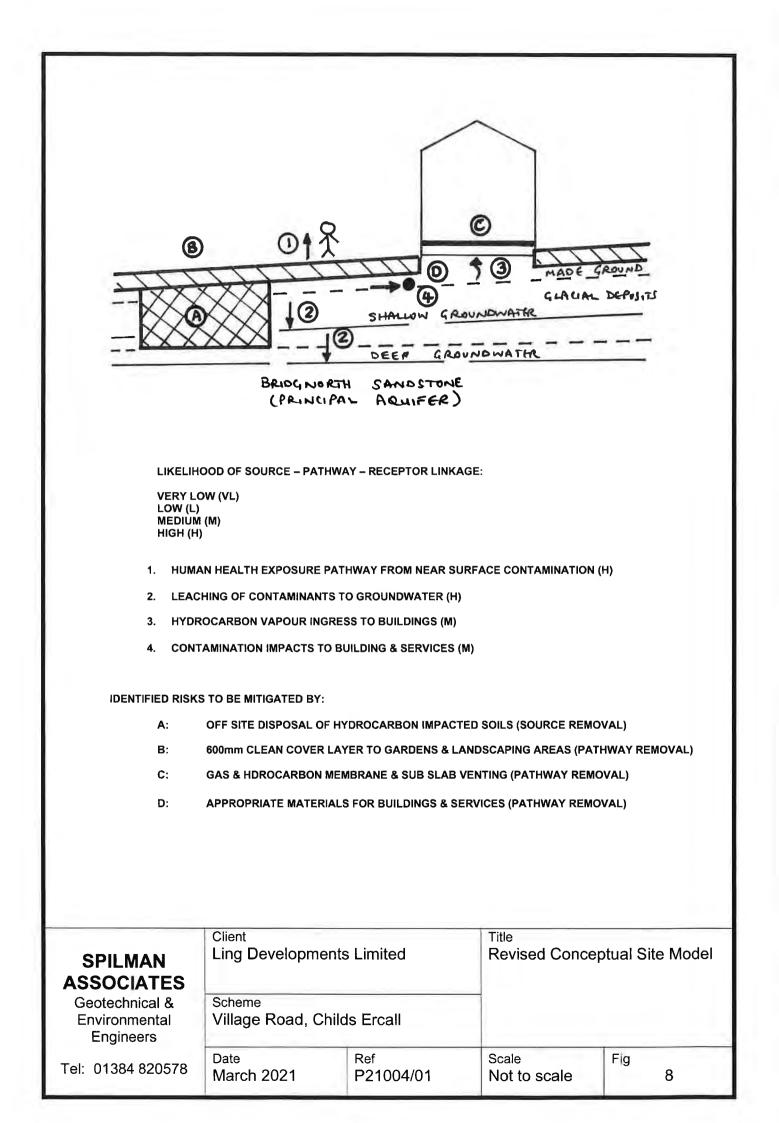

	Sample	BH1	BH1	BH2	BH2	BH2	BH4	BH5	BH6	BH7	BH101	BH101
D	epth (m)	3.22	3.12	2.06	2.00	1.99	1.07	1.45	0.55	1.52	3.29	10.50
	Date	10/02/21	16/02/21	10/02/21	16/02/21	02/03/21	02/03/21	02/03/21	02/03/21	02/03/21	02/03/21	02/03/21
Benzene	ug/l	< 1.00	< 1.00	13.0	11.0	1.77	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Toluene	ug/l	< 1.00	< 1.00	1.08	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
EthylBenzene	ug/l	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Xylenes	ug/l	< 1.00	< 1.00	2.76	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	1.24	< 1.00
MTBE	ug/l	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
TPH (C5 - C6 Aliphatic)	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C6 - C8 Aliphatic)	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C8 - C10 Aliphatic)	ug/l	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
TPH (C10 - C12 Aliphatic)	ug/l	8.7	< 5.0	14.5	16.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
TPH (C12 - C16 Aliphatic)	ug/l	15.1	6.3	78.3	51.0	< 5.0	< 5.0	159	< 5.0	< 5.0	< 5.0	< 5.0
TPH (C16 - C21 Aliphatic)	ug/l	8.7	< 5.0	87.2	53.5	< 5.0	< 5.0	150	< 5.0	< 5.0	< 5.0	< 5.0
TPH (C21 - C35 Aliphatic)	ug/l	573	15.8	30.2	14.6	< 5.0	< 5.0	34.8	< 5.0	< 5.0	< 5.0	< 5.0
TPH (C35 - C40 Aliphatic)	ug/l	88.4	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total (>C5 - C40 Aliphatic)	ug/l	694	22.1	210	135	< 5.0	< 5.0	344	< 5.0	< 5.0	< 5.0	< 5.0
TPH (C6 - C7 Aromatic)	ug/l	< 1.0	< 1.0	13.0	11.0	1.8	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C7 - C8 Aromatic)	ug/l	< 1.0	< 1.0	1.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C8 - C10 Aromatic)	ug/l	< 5.0	< 5.0	6.3	7.6	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
TPH (C10 - C12 Aromatic)	ug/l	< 5.0	< 5.0	121	160	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
TPH (C12 - C16 Aromatic)	ug/l	7.2	< 5.0	174	159	14.4	< 5.0	90.9	< 5.0	< 5.0	< 5.0	< 5.0
TPH (C16 - C21 Aromatic)	ug/l	11.5	< 5.0	125	69.6	9.7	< 5.0	104	< 5.0	< 5.0	< 5.0	< 5.0
TPH (C21 - C35 Aromatic)	ug/l	365	< 5.0	58.5	< 5.0	< 5.0	< 5.0	24.2	< 5.0	< 5.0	< 5.0	< 5.0
TPH (C35 - C40 Aromatic)	ug/l	48.9	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total (>C5 - C40 Aromatic)	ug/l	433	<5.0	499	407	25.9	< 5.0	219	< 5.0	< 5.0	< 5.0	< 5.0
Total (>C5 - C40 Ali/Aro)	ug/l	1130	22.1	710	542	25.9	< 5.0	563	< 5.0	< 5.0	< 5.0	< 5.0

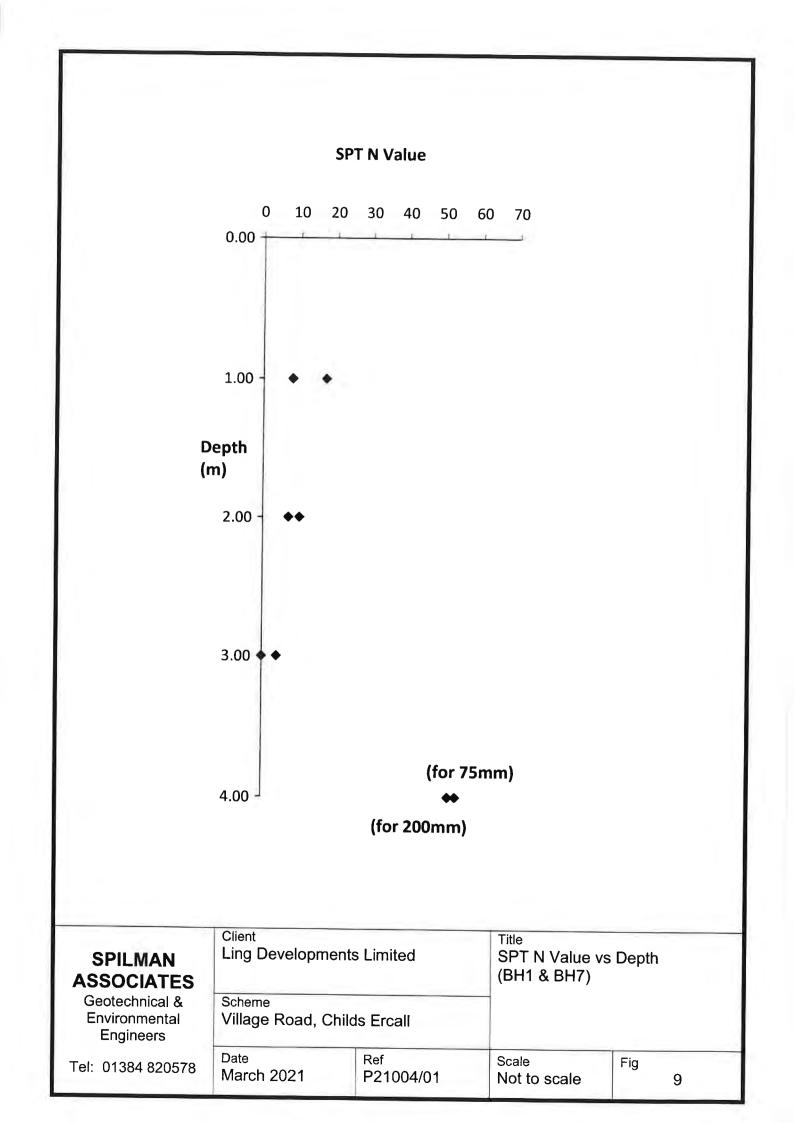

FIGURES

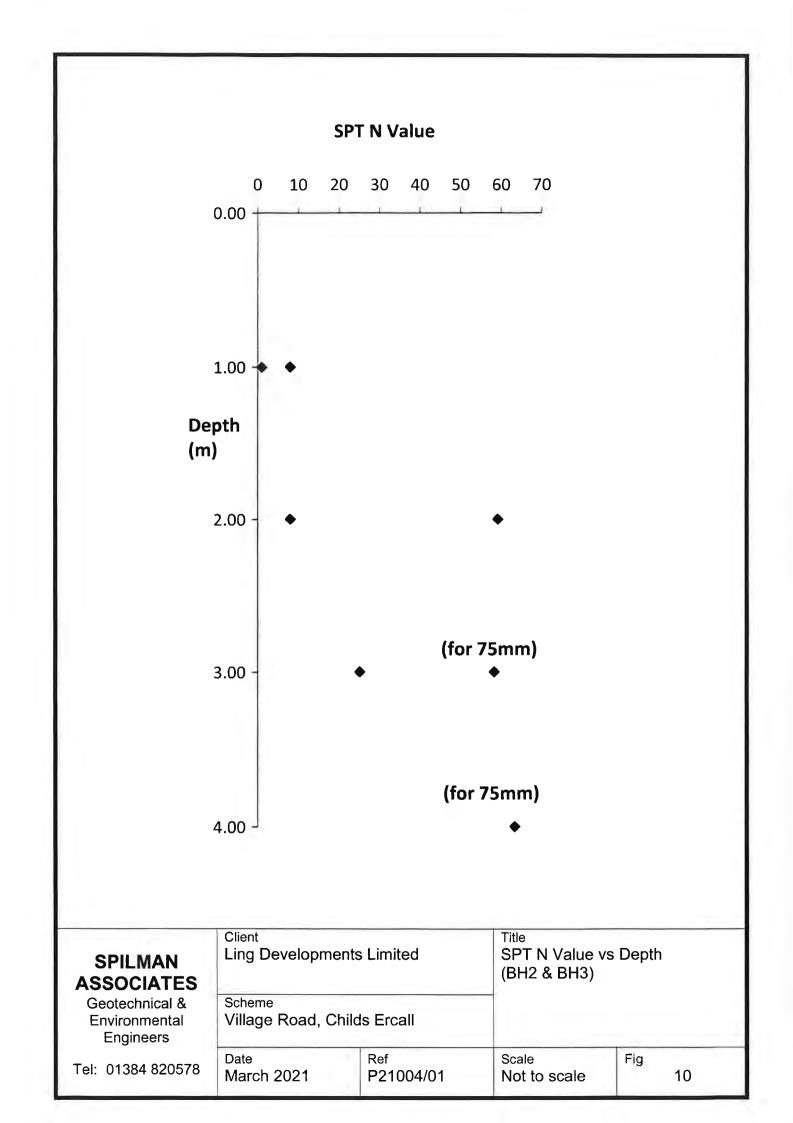


LIKELIHOOD OF EVENT:

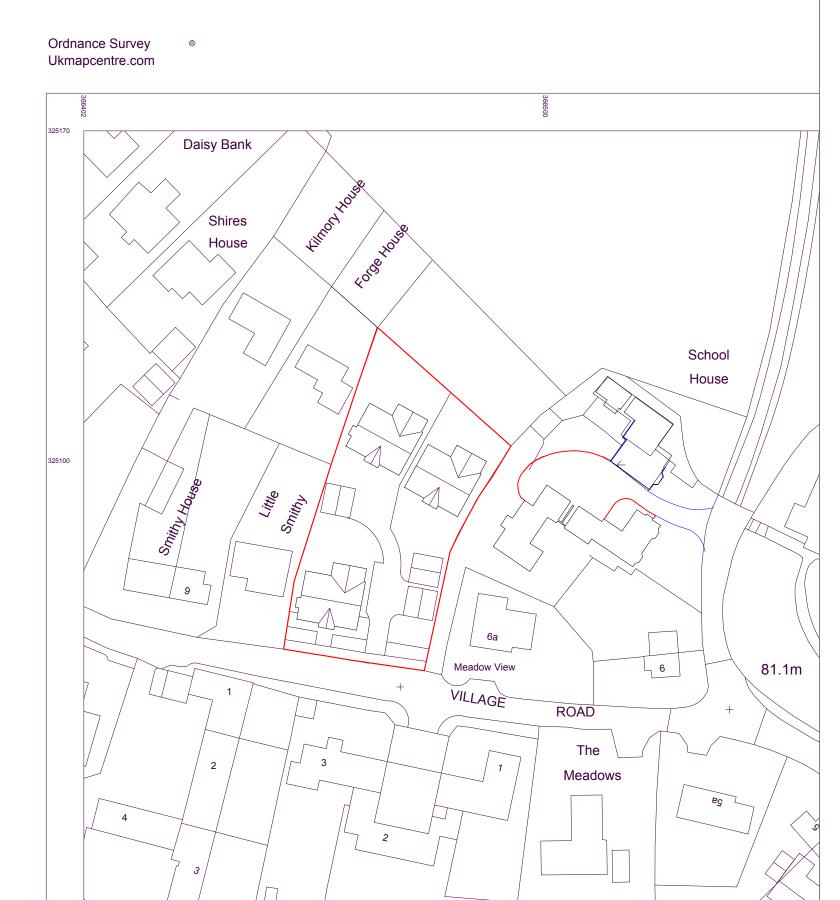

VERY LOW (VL) LOW (L) MEDIUM (M) HIGH (H)

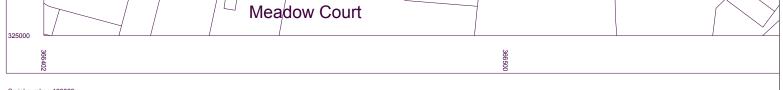

- 1. HUMAN HEALTH EXPOSURE PATHWAY FROM NEAR SURFACE CONTAMINATION (M)
- 2. LEAKS OR SPILLS FROM FORMER FUEL TANKS AND FUEL LINES (M)
- 3. LEACHING OF CONTAMINANTS TO SHALLOW GROUNDWATER (H)
- 4. LEACHING OF CONTAMINANTS TO DEEP GROUNDWATER (M)
- 5. HYDRCARBON VAPOURS FROM IMPACTED SOILS (M)
- 6. HYDROCARBON VAPOURS FROM IMPACTED GROUNDWATER (L)
- 7. HYDROCARBON VAPOUR INGRESS TO BUILDINGS (M)
- 8. CONTAMINATION IMPACTS TO BUILDINGS & SERVICES (L-M)

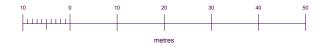

SIGNIFICANT SOURCE - PATHWAY - RECEPTOR POLLUTANT LINKAGES ARE PRESENT FOR


- A: HUMAN HEALTH EXPOSURE TO SOIL CONTAMINANTS
- B: HYDROCARBON VAPOUR INGRESS TO BUILDINGS
- C: LEACHING OF CONTAMINANTS TO GROUNDWATER
- D: IMPACTS TO BUILDINGS & SERVICES

SPILMAN ASSOCIATES	Client Ling Development	s Limited	Title Preliminary Co Model	nceptual Site
Geotechnical & Environmental Engineers	Scheme Village Road, Child	ds Ercall		
Tel: 01384 820578	Date March 2021	Ref P21004/01	Scale Not to scale	Fig 6






APPENDIX A

Serial number: 199539

©rown copyright and database right 2020 Ordnance Survey licence 100048957 Reproduction in whole or in part is prohibited without the prior permission of Ordnance Survey

APPENDIX B

Summary Of Results Egniol Limited - Butters Coaches

	and the second												
	BIL/ IP REF CEI	CE1 (0.30m)	CEI (0.85m)	CE2 (0.30m)	GE2 (1.60m)	CE2 (2.00m)	CE3 (0.30m)	CE3 (1.50m)	CE4 (0.20 - 0.30m)	CE4 (1.90m)	CE4 (3.50 - 3.60m)	CE5 (0.25m)	
	CLIENT TO				A				A				
AWAEYTES	UNITS	50436906	S0436907	S0435909	S0436909 S0436910 S043691	11 Territ	50436912	Sug 36013	1035002	SOATEOLE	10354012 S10356013 S10356013 S00356015 S00356015	CINZENNO	
Sulmhide	1000	-	1					PTOPPLAT	Liteorter	etter inc	NTERFLOC	1TEDC-DC	1
	EN / Kul	0.7>	<2.0	2.7	12.7	-#-	22.7	4	5.3	46	æ	<2.0	46
Sulptur (total)	fra/fau	267	171	338	161	.0	117	0	745	N	-1	348	+
611									20			DL.	
ud	N/A	1.3	7.4	7.2	6.8	71:	7.5	71:	6.9	710	ĝ	6.2	-0
Sulphate (water soluble)	9/1 504	0.084	0.061	0.044	0.052	*	0.068	75	0.175	,p	12	0.930	-
Mineral Dil	mg/kg	254.6	372.1	118.8	×0.1	<0.1	187 E	1 1/	0 0001	1 001	170 0	1 0	
e tota									0*407T	1-707	0.011	3.0	łt.
GRU C	mg/kg	<0,1	-<0.1	<0.1	93.2	Ha:	<0.1	<0.1	2.6	11.6	10.8	<0.1	-15

Hesults for soil samples expressed as dry weight. # : Analyte mo: requested

e'

Summary Of Results Egniol Limited - Butters Coaches

	BH/4P KLF	CE1 (0.30m)	CEI (0.85m)	CE2 (0.30m)	CE2 (1.60m)	CE2 (2.00m)	CE3 (0.30m)	CE3 (1.50m)	CE4 (0.20 - 0.30m)	CE4 (1.90m)	CE4 (3.50 - 3.60m)	CE5 (0.25m)	
	CLIENT ID				A				A				
AMALYTES	STUNU	50436906	50436907	\$0436909	50436910	S0436911	50436912	50436913	S0436914	50436915	50436916	50436917	
Arsenic	mg/kg	1.1	1.5	8.0	1.2	-#E	2.7	-12-	4.6	ŧ	ġ.	3.3	an
Cadmium	mg/kg	0.3	<0.2	2.2	<0.2	-12-	<0.2	Take	1.6	a t:	#:	1.2	-att
Chromium (hexavalent)	mg/kg	<1,0	<1.0	<1,0	<1.0	ţ	<1.0	H	<1.0	*	4:	<1.0	-tts:
Chromium (total)	mg/kg	13.4	19.1	13.4	1.91	τe	18.1	4	15.4	Ą	312	12.4	rtar
Lead	mg/kg	85.6	84.4	163.5	29.2	4:	243.4	·8:	160.2	71	Ŧ	122.5	*
Mercury	mg/kg	<1.0	<1.0	<1.0	<1.0	#	<1.0	-12+	<1.0	74	ŧ	<1.0	*
Setenium	ng/kg		<l, 0.1=""></l,>	<1.0	<1.0		<1.0	N	<1,0	*	#b	<1.0	-
Boron (water soluble)	ng/kg	0.8	6.0	1.4	9.0		9.0	Æ	1.4	-	чE	1.4	-12
Copper	mg/kg	34.2	32.6	67.2	15.3	ġ.	27.5	÷.	. 47.9	ŧ	泄	35.2	*
Nickel	mg/kg	17.1	20.1	37.2	17.0	Ŧ	18.2	-11-	33.9	*	ġ.	24.2	=
Zinc	mg/kg	278.0	334.9	679.2	70.2	at	218.6	7¥K	472.0	N	*	377.6	-26
PAH (total)	Ba/kg	1,7	3.0	9,4	<0.1	45	8.4	:st	4.3	÷.	#	<0.1	**
Phenols	mg/kg	<1.0	<1.0	<1.0	<1.0	ġ	<1.0		<1.0	44-	ai,	<1,0	ŧ
Cyanide (tree)	mg/kg	<2.0	<2.0	<2.0	<2,0	'n	<2.0	-11	<2.0	4	â	<2.0	*
Cyanide (complex)	mg/kg	<2.0	<2.0	<2.0	6.75	'Br	<2.0		2.0	94	.н.	<2.0	74;
Cyanide (total)	mg/kg	~2.0	<2.0	<2.0	<2.0	T.	<2.0	ų	<2.0	at	921	<2.0	*
Thiocyanate	mg/kg	<10	<10	< 10	~10	зе	<10	:140	<10	au.	9t:	<10	-6.
Sulphate (total)	mg/kg 504	609	332	683	293	71	1392	71	1379	-	э:	205	-

Results for soil samples expressed as dry weight. # : Analyte not requested

Report No. 204/3985

Page 4 of 5

SOIL

ANALYTE	METHOD OF DETECTION	LIMIT OF DETECTION
Arsenic Cadmium Chromium (hexavalent) Chromium (total) Lead Mercury Selenium Boron (water soluble) Copper Nickel Zinc PAH (total) Phenols Cyanide (free) Cyanide (free) Cyanide (total) Thiocyanate Sulphate (total) Sulphide Sulphur (total) pH Sulphate (water soluble) Mineral Oil GRO	ICP-OES ICP-OES ICP-OES ICP-OES ICP-OES ICP-OES ICP-OES ICP-OES ICP-OES ICP-OES GC-FID Colorimetry Colorimetry Colorimetry ICP-OES Colorimetry ICP-OES Colorimetry ICP-OES Colorimetry ICP-OES Colorimetry ICP-OES PH-meter HPLC-IC GC-FID GC-FID	1.0 mg/kg 0.2 mg/kg 1.0 mg/kg 0.2 mg/kg 0.5 mg/kg 1.0 mg/kg 1.0 mg/kg 0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 0.1 mg/kg 2.0 mg/kg 2.0 mg/kg 10 mg/kg 30 mg/kg SO4 2.0 mg/kg 10 mg/kg 0.1 mg/kg 0.1 mg/kg 0.1 mg/kg 0.1 mg/kg 0.1 mg/kg

What's so special about a UKAS report or certificate? - Accreditation of testing is granted by the

- United Kingdom Accreditation Service (UKAS).
- It's your assurance that the work has been carried out to the highest standards.
- The laboratory issuing the test report has been stringently assessed by independent experts.
- You are assured that the agreed or specified methods and procedures have been followed.
- Measurements are traceable to national and international standards.

Comments:

Sampling & tests marked \dagger in this report are not included in the UKAS Accreditation Schedule for the testing laboratory. Any opinions and interpretations expressed herein are outside the scope of the testing laboratory's UKAS Accreditation. The Coefficient of Variation CV_T (where CV_T = standard deviation/mean*100) is better than 15% All analysis carried out using ECoS standard methods unless otherwise agreed The test results in this report refer only to the actual samples on which testing has been performed. This test report shall not be reproduced, except in full, without written approval of ECoS Environmental. The laboratory cannot be held responsible for the condition or suitability

of samples submitted for testing by a third party or for the competency of personnel other than its own staff.

Date submitted for analysis : 21/09/04

Your Job/Order Number :

Analyst(s) : HP DF SS CM CO KLH PSW DS CLH

Report Approval

Approved signatories: J R Brown (Customer Services Manager) E Dewell (Production Manager) P Richardson (Quality Manager) J Stoddart (Technical Manager)

Signature

Report date : 5 October 2004

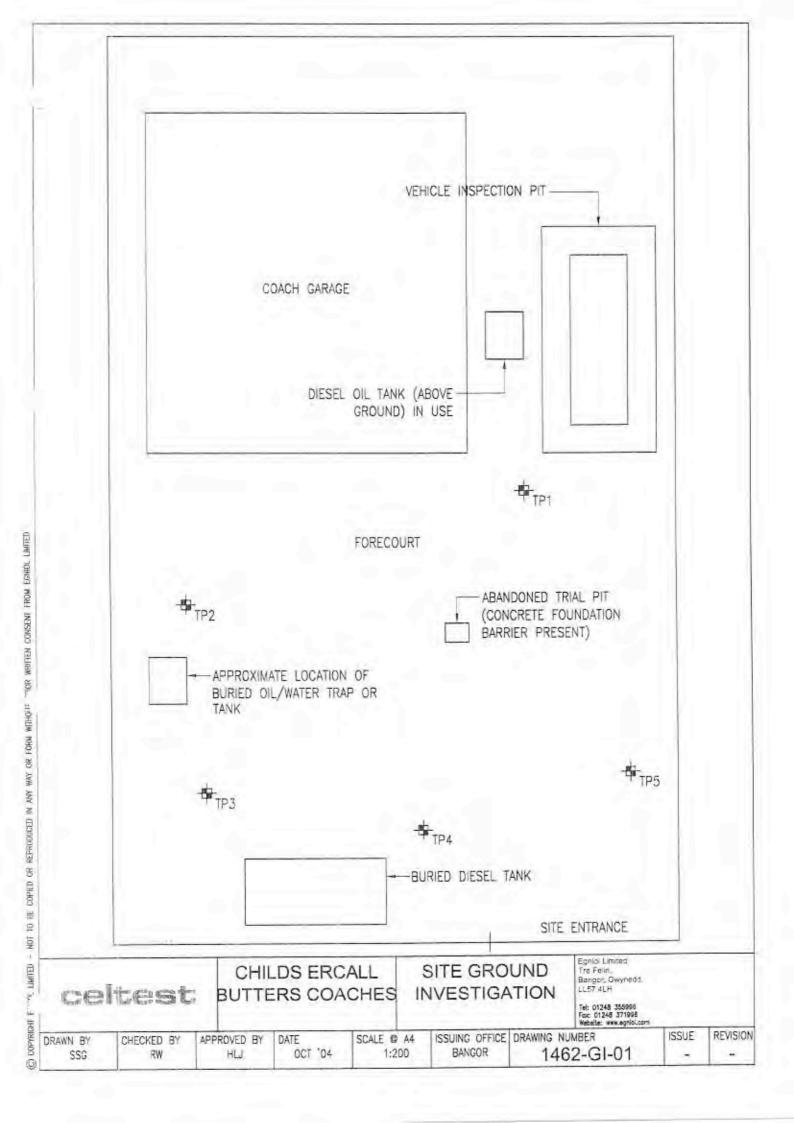
e	gmiol			B	gniol Ltd. (Ban re Felin angor Swynedd L57 4LH	gor)		Trialpit I 5 Sheet 1	
Project N			-		ect No.	Co-ords: -		Date	
Butters C			1.1	146	2/SI	Level: -		14/09/20	04
Location:	Childs Ercall					Dimensions:	2.10m	Scale	
					_	Depth E 2.60m		1:25	
Client:	Celtest					Logged By RVW			
	s & In Situ Testing ype Results	Depth (m)	Level (m AOD)	Legend		Stratum Des	scription		
		0.10		****	MADE GROUN	D: Gravel			
0.25	Ď	0,70			(TOPSOIL)	own organic topsoil nt brown/orange gravelly COBE rounded of sandstone.	BLES of sendstone Gra	avel is	
		1.90 2.60			Clayey SAND: (SANDS & GRA	Very clayey SAND with some g WELS) Trialpit Complete			-X-
									-3
amarks:	No apparent co	ontamina	ation						
									e
Groundwate	er: None							AU	2

9	gm	iol			E	Egniol Ltd. (Bang Tre Felin Bangor Bwynedd L57 4LH	or)		Trialpit No 4 Sheet 1 of 1
roject				-		ect No.	Co-ords: -		Date
Butters			-		146	2/SI	Level: -		14/09/2004
Locatio	n: C	Childs Ercall					Dimensions:	2.10m	Scale 1:25
Client:	c	Celtest					Depth 5.90m 5.90m	Logged By	
		Situ Testing	Depth (m)	Level (m AOD)	Legend				RVW
Depth (m)	Type	Results	(m)	(m AOD)		MADE GROUND	Stratum Des): Gravel	scoption	
0.20-0.30	D		0.20		****	(MADE GROUN	A Contraction of the second		
4.20-0.30	U					(SANDS & GRA	wn slightly gravelly SAND VELS)		
			0.80		and a sha	SAND: Light ore	v slightly gravelly SAND		
						(SANDS & GRA	y slightly gravelly SAND VELS)		
			1.50						
			1.00			SAND: Orange/t (SANDS & GRA'	rown slightly gravelly slightly /ELS)	silty SAND	
1.90	D								
			1.5	-					2
			2.20			SAND: Light bro (SANDS & GRA)	wn/orange siity SAND VELS)		
			3.00			SAND: Clavey S	AND with bands and lenses o	of sand and silt.	- 3
3.50-3.50	D		3.90			(SANDS & GRA	AND with bands and lenses o		
			3.90				Trialpit Complete	at 3.90 m	-4
		A discourse in the	الم الدين	al last.		1			Diama and
.emarks Groundw		Adjacent to bu None	ried dies	el tank					AGS
Groundw	vater.		-		÷				

e	gm	iol			E	Igniol Ltd. (Ban Tre Felin Jangor Gwynedd L57 4LH	gor)		Trialpit No 3 Sheet 1 of 1
roject					Proj	ect No.	Co-ords: -		Date
Butters					146	2/SI	Level: -		14/09/2004
Locatio)n: (Childs Ercall					Dimensions:	2.10m	Scale 1:25
Client:	(Celtest				Depth E 3.10m F	Logged By RVW		
Samp Depth (m)	les & Ir Type	Situ Testing Results	Depth (m)	Level (m AOD) L	egend		Stratum Des	contion	
- Sebur (uti	1900	Tyesuita	1.04	X	***	MADE GROUN	D: Placed angular GRAVEL.	in the second se	
0.30	D		0.20			SAND: dark bro (SANDS & GR/	own slightly gravelly SAND AVELS) brown SAND. Slight petrochen	nical odour.	
			2.00 2.50 3.10			(ALLUVIUM)	rey SAND. Slight petrochemicandy CLAY. Strong petrochemicand	al odour.	-3
									-4
emarks: Groundwa		Non							AGS

e	gmiol			Egniol Ltd. (Ban Tre Felin Bangor Gwynedd LL57 4LH	igor)		Trialpit N 2 Sheet 1 o	
'roject N			F	Project No.	Co-ords: -		Date	
Butters C			1	462/SI	Level: -		14/09/200)4
Location:	: Childs Ercall				Dimensions:	2.10m	Scale 1:25	
Client:	Celtest				2.90m C			By
	s & In Situ Testing	Depth (m)	Level (m AOD) Lege	and	Stratum Des	ontotion	RVW	Ē
	Type Results	0.30		MADE GROUN (MADE GROUN	ND: Brown angular placed grave ND) ND: Slightly gravelly dark brown	with some sand.	matter and	
		0.80		(MADE GROU	*. ND)			-
				SAND: Slightly (SANDS & GR	r gravelly dark brown humic SAN AVELS)	D,		-1
1.60	D	1.40	「「「「「「」」	SAND: Light b odour detecter (SANDS & GR	rown grey moist silghtly gravely d with black sheen present AVELS)	SAND. Strong petrocher	nica	
2.00	D	1.90	파운 주관 파운 파운 바운 바운 바운 19 10년 11년 11년 11년 11년 11년 11년 11년 11년 11년	CLAY: Orange lenses. Petroc (CLAY)	to brown slightly sandy gravelly hemical stain and strong petroch	CLAY with occassional emical oclour present	silt	
		2,90			Trialpit Complete a	rt 2.90 m		in the second se
emarks: Groundwal	ter: Non						AG	S

E)gmia	D			E	Egniol Ltd. (Bang Tre Felin Sangor Gwynedd L57 4LH	por)		Trialpit No 1 Sheet 1 of	
	Name					ect No.	Co-ords: -		Date	
and the second second	Coache	ids Ercall			146	2/SI	Level: -		14/09/2004	
Locatio	n. on	ius Ercali					Dimensions:	2.10m	Scale 1.25	
Client:	Cel	test					Depth E		1:25 Logged By RVW	
Samp Depth (m)	les & In Sit	u Testing Results	Depth (m)	Level (m AOD)	Legend	1	Stratum De	scription	1.010	
Sebut (iii)	Type	ine suits	0.10	(111100)	****	MADE GROUN	D: Brown coarse angular GRA			
0.30	D		0.30			MADE GROUN MADE GROUN some root mate (MADE GROUN	D: Brown angular cobbles of b rial.	rick and weathered sand	distone with	
			0.00				wn gravelly SAND, Gravel is r VELS)	ounded.		
			0.55				wels) wn/orange moist gravelly SA dour. Concrete base obstructi VELS)	and the second se	in and	
0.85	D		0.90		100041		Trialpit Complete			
						-				
emarks:	A	djacent to pres	sent abo	ve grour	nd diese	l/oil tank			Manual	
Groundwa	ater: N	on							AGS	



Contamination Assessment Butters Coaches Depot - Childs Ercall

Egniol Ref: B1462 October 2004

gmiol

ĸ.

Client :	Butters Coaches	
Project Title :	Contamination Assessment Butters Coaches Depot – C	Phase 2 Site Investigation hilds Ercall
Document Title:	Contamination Assessmen Butters Coaches Depot - (
Project No.	B1462	
Project Manager:	Huw Littler-Jones	
	Egniol Ltd Tre Felin Bangor Gwynedd LL57 4LH	
Tel. Fax.	01248 355996 01248 371996	
Distribution:	Egniol Ltd Bangor	
Distribution,	Butters Coaches	Control Copy No 1 Control Copy No 2

Report Status	INTERNAL DRAFT	DRAFT CLIE		FINAL	
Originator	Signature :		Date :		
Checked	Signature :		Date :		
Approved	Signature :	Signature : Date :			
Control Copy No.		2			

Cegniol

Report Ref: B1462

Contents

			Page
Ľ	INT	RODUCTION	2
z	SITI	DESCRIPTION	3
	2.1	Site Location	3
	2.2	Site Characteristics	3
3	FIEI	DWORK	5
	3.1	Soil Sampling	5
	3,2	Gas Monitoring	5
4	LAB	ORATORY TESTING	6
5	GRO	UND AND GROUNDWATER	7
	5.1	General Ground Conditions	7
	5.2	Made Ground	7
	5.3	Glacial Till	7
	5.4	Groundwater Conditions	8
6	CON	TAMINATION ASSESSMENT	9
	6.1	Contamination	9
	6.2	Determination of Risk	9
	6.3	Soil Contamination Guidelines	9
	6.4	Chemical Test Results and Significance	12
	6.5	Discussion	13
	6,6	Suggested Remediation and Progression	13

APPENDICES

1.	Drawing 1462-GI-01

2.

Trial Pit Logs Chemical Analysis Results

Report Ref: B1462

1 INTRODUCTION

In September of 2004, Egniol Limited was instructed by Celtest Ltd to undertake a Site Investigation for their client Butters Coaches at the Butters Coaches Coach Garage site in Childs Ereall.

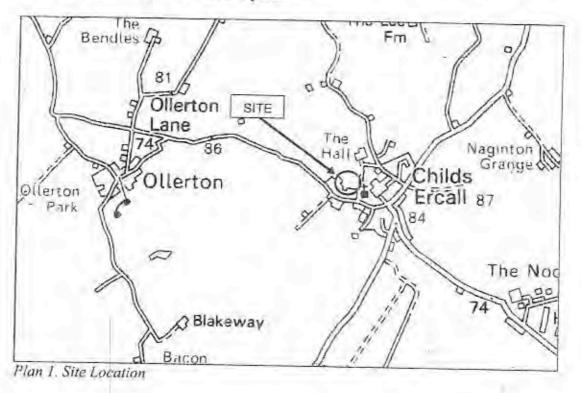
Egniol Ltd were informed that a land contamination report is required by the owner and potential developer of Butters Coaches Bus Depot to satisfy Planning Permission conditions, and to determine ground conditions and any potential contamination. We are also under the understanding that the intended development is to consist of four residential properties the position of which on site has been illustrated within a plan supplied by the developments surveyor. The overall objective of the study is to determine the presence, nature and extent of any ground contamination and particularly that which may be associated with the sites use as a bus depot and garage, and using this information to give advice on potential environmental and financial liabilities associated with the site and its development.

The investigation allowed an understanding of the ground and environmental conditions for works during the construction phases of the development to be made, together with an appraisal of potential contaminants present on site.

Chemical testing was undertaken on samples retrieved from the site. No geotechnical testing was carried out.

This report includes a summary of the current investigation carried out on the site and a site specific contamination assessment utilising available data.

Report Ref: B1462


2 SITE DESCRIPTION

2.1 Site Location

The site consists of the Butters Coaches depot within the village of Childs Ercall approximately 8 miles north of Telford and is indicated on the plan below. The site is predominantly hard-standing of gravel, tarmac and concrete the exception being the land between the site perimeter on the northern and north western sides and the main site building which are characterised by scrub vegetation. The site is bounded to the east and west by residential properties, to the north by grazing land and to the south by Village Road. Beyond this road and down-slope of the site lies a residential development site in the latter stages of development.

2.2 Site Characteristics

The site is presently actively operating as a coach depot, with coaches and cars being parked upon the forecourt area. One above ground service tank is located adjacent and to the east of the main building as indicated on the attached plan and the location of a water/oil sump and a buried diesel tank has also been identified on the western and southern sides of the site respectively. Materials stored on the western side of the main site building were metal railings, sheets of metal, traffic cones, old vehicle tyres, an oil drum and miscellaneous automotive parts.

The proposed development comprises of 4 residential houses with parking spaces upon the central portion of the site.

Access to the site is directly from Village Road. The position of buried site services were indicated by the site owner prior to the initiation of the excavation works and were shown to run in a north easterly to south westerly direction from the south eastern corner of the main coach building across the central area of the site. Boundary fencing hedges and walls restrict access from the northern eastern and western sides of the site, however public access is not restricted from the southern end during out of office hours

Report Ref: B1462

3 FIELDWORK

The fieldwork was carried out on Tuesday 14th September 2004 and comprised the excavation of 5 trial pits using a back hoe excavator. Planning of the site investigation was undertaken by an experienced Egniol Environmental Engineer who was present to oversee the site works on the day of the intrusive investigation. The intrusive part of this investigation is restricted to the forecourt area of the existing site and has concentrated upon the areas most likely to be affected by leakage or spillage from the petrochemical tanks and oil interceptor present at the site. (See Appendix1 for trial pit locations.)

3.1 Soil Sampling

All sample logging and soil description was carried out in accordance with BS 5930 (1999). Disturbed samples in particular from horizons indicating potential contamination were taken and placed in labelled sealed containers. Selected samples were then dispatched to Ecos laboratories for chemical testing following temperature controlled storage and controlled dispatch procedures including completion of chain of custody documentation.

Descriptions of the strata encountered within trial pits together with details of sample depths are given on the trial pit records presented in Appendix 2. On completion, the holes were backfilled with arising.

Trial Pits 1, 2, 3 and 4 were positioned at points upon the site thought to be most likely to be affected by potential contamination from the sites fuel tanks and interceptor. Trial Pit 5 was a point removed from the areas thought most at risk from petrochemical influence. An attempt was made to excavate a sixth trial pit at the central point upon the forecourt area, however this was abandoned due to a concrete obstruction thought to be the original site foundation base. It was not confirmed however it is thought highly likely that this base will be encountered if excavation works are undertaken for the northern half of the site.

3.2 Gas Monitoring

An attempt was made to penetrate the surface hard-standing with a Spike Bar in order to monitor the undisturbed ground for ground gases, however this did not prove possible due to the impenetrable materials present. The presence of ground gases were not measured during the sinking of the trial pits as post excavation monitoring was deemed to lead to likely inaccuracies. No olfactoral indication was present to indicate gas presence.

The radon status of the area is unknown, however it is advised that the land developer makes enquiries with the local authority to ascertain whether the site is potentially at risk from radon gas and what action if any should be taken.

Report Ref: B1462

4 Laboratory Testing

A programme of laboratory testing was scheduled by Egniol Ltd to provide data on the chemical characteristics of the soils encountered.

The following analytes were included within the testing schedule:

Arsenic, cadmium, chromium (hexavalent), chromium (total), lead, mercury, selenium, boron (water soluble), copper, nickel, zinc, PAH(total), phenols. cyanide (free, complex and total), thiocyanate, sulphate (total), sulphide, sulphur (total), pH, sulphate (water soluble), mineral oil and gasoline range organics (GRO).

GRO and mineral oil were specifically included in the testing schedule due to the sites present use and the olfactoral and visual evidence encountered indicating petrochemical presence within some the soils of the site.

Report Ref: B1462

5 GROUND AND GROUNDWATER

5.1 General Ground Conditions

With reference to BGS sheet 138 1:50 000 scale (solid and drift edition), the geology of the site area is recorded as being of Triassic Sandstones overlain by glacial till materials of predominantly boulder clay of Pleistocene to recent age. The sandstones of Childs Ercall are likely to vary between the soft red sandstone of Lower Mottled Sandstone to pebbly red sandstones and conglomerates of the Triassic Bunter Beds.

A layer of Made Ground was encountered in all trial pits excavated which was in turn underlain by glacial till material in 4 of the 5 excavations.

No groundwater was encountered in any of the exploratory holes undertaken in the course of this investigation.

5.2 Made Ground

Underlying the tarmac and fractured tarmac hard-standing, the Made Ground is variable, both in lateral and vertical extent, with the greatest proven thickness being encountered in Trial Pit 2, where it reaches a thickness of 0.80 m (including the surface hard-standing). This material is broadly characterised by brown sandy gravels with some cobbles of sandstone and brick. The upper layer was generally placed angular gravel seemingly acting as a foundation layer below the hard-standing tarmac. Below this the gravels also consisted of sub angular to sub rounded gravels and sands and was most likely to be reworked material (including possibly reworked glacial till) from the site, including cobbles of fragmented brick within Trial Pits 1 and 2.

5.3 Glacial Till

The boundary between the Made Ground and the underlying glacial till materials is not distinct and the upper obvious Made Ground layers grade into seemingly reworked material from the site, although the evidence that this material is Made Ground is not obvious.

Below the Made Ground layer the materials are predominantly gravely and slightly gravely sand with occasional silt lenses. Trial Pit 5 on the eastern side of the site showed a variation to the general trend having a 0.60m layer of topsoil below the surface cap which is further underlain by gravely cobbles of sandstone. Below the layers predominated by sand, clay becomes a primary constituent of the material, ranging from very sandy clay and gravely clay through to clayey sand. The clay constituent tends to

Report Ref: B1462

increase with depth in pits 2 to 5 and is not present in Trial Pit 1 where gravely sand was found to extend to the concrete base obstruction.

Petrochemical odours were apparent in Trial Pits 1, 2, 3 and 4. In Trial Pit I this was noticed at the base of the excavation as a mild odour which was accompanied by a dark staining of the solid trial pit base. In Trial Pits 2 and 3 a strong petrochemical odour similar to that of mineral oil was encountered at approximately 1.40m, although this may have been present to a lesser extent prior to this. Both Pits below 1.40m showed visual indication of chemical sheen which penetrated into the clays. A strong petrochemical odour was almost immediately detected on excavation of Trial Pit 4. This became very strong as the trial pit was progressed with a sheen evident within the sands below the Made Ground in particular.

5.4 Groundwater Conditions

Groundwater was not encountered in any of the trial pit locations. It is highly plausible that variations in permeability as a result of different clay proportions in the underlying Glacial Till will lead to perched water bodies during periods of heavy or extended rainfall leading in turn to varied levels of water ingress should fuel tank removal be considered. Infiltration of rainfall upon the site surface will however be limited due to the likely impermeable properties of the surface hard-standing materials. The general trend in groundwater flow direction is thought to be north to south across the site. Infiltration from the site surface is also further limited by the apparent presence of a concrete slab identified in Trial Pit I at 0.90m and within an abandoned trial pit at the centre of the site at approx 0.30m depth. It is perceived that shallow subsurface flow will be isolated from deeper flow at present within the northern half of the site due to this slab. The full extent of this slab is not known, however it was not present in the remaining trial pits.

It should also be noted that groundwater levels will vary in response to factors such as rainfall runoff, infiltration and leakages from any nearby sewers, pipes and sumps.

Report Ref: B1462

6 Contamination Assessment

6.1 Contamination

In line with current legislation, and with reference to the new regime for contaminated land set out in Part IIA of the Environmental Protection Act (1990), the ground should be assessed using a risk based approach. Under the Environmental Protection Act (1990), "contaminated land" is defined as "any land which appears to the Local Authority in whose area it is situated to be in such a condition, by reason of substances in, on, or under land, that :

significant harm is being caused or there is a significant possibility of harm being caused; or

pollution of controlled waters is being, or is likely to be caused ... "

"Significant harm" is defined in the guidance on risk based criteria and for this to occur these must be the result of "pollutant linkage", that is a link from which material from an identified contamination source can migrate via a pathway to a sensitive receptor.

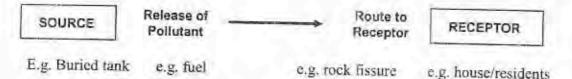
It is known that at this site, there are several potential contamination sources. These are the existing above and below ground fuel storage tanks and their associated pipe work , the oil interceptor located on the western side of the site and the potential contamination from parked vehicles.

The main potential receptors which may be relevant for this site are as follows :

site workers during redevelopment
 future site users

The main potential pathways for any contamination would be by dermal contact, inhalation and ingestion of soil particles.

6.2 Determination of Risk


In order for there to be any risk to exist, a "Source - Pathway - Receptor" linkage must be established. This linkage requires:

A source of contamination in, or under the ground which has the potential to cause harm or to cause pollution of controlled waters.

A pathway is one or more routes or means by, or through which a receptor is being exposed to or affected by a contaminant or, could be so exposed or affected by a contaminant.

Report Ref: B1462

A receptor could be a living organism, a group of living organisms, an ecological system or a piece of property.

The identification of each of these three elements is linked to the identification of the others. A pathway can only be identified if it is capable of exposing an identified receptor to an identified contaminant. That particular contaminant should likewise be capable of harming or, in the case of controlled waters, be capable of polluting that particular receptor.

If a pollutant source, pathway and receptor are found to be present then there is a risk to the identified receptor. If there is an absence of any part of the source, pathway or receptor process, there is no risk.

6.3 Soil Contamination Guidelines

Guidelines issued by the Department for Environment, Food and Rural Affairs (DEFRA, 2002) and by the Government's interdepartmental committee on the redevelopment of contaminated land (ICRCL, 1987) address the risks posed by soil contamination. DEFRA derive Soil Guideline Values (SGV) as generic assessment criteria for assessing the risks to human health from chronic exposure to soil contaminated with arsenic, sclenium, lead, cadmium, chromium, nickel and mercury. SGVs represent "intervention values" which act as indicators to an assessor that soil concentrations above this level might present an unacceptable risk to the health of site-users and that further investigation and/or remediation is required.

The DEFRA Soil Guideline Values have been developed using the CLEA risk-based computer model using many critical assumptions about possible exposure to soil contamination to develop conceptual exposure models for four different land uses. These are :

residential with gardens in which vegetables are grown residential with gardens but without vegetable uptake allotments commercial/industrial use where there are open areas which are not hard surfaced.

They do not perceive a hazard to end-users from a fully hard-surfaced development.

In the risk assessment to derive the SGV, DEFRA considers that all contaminants within the uppermost 1.00 m (based on final ground surface) are available. The current SGV are

Report Ref: B1462

very conservative as they do not allow for variations in soil-type or pH (apart from cadmium) or the bio-availability of the contaminants. Generally the SGV for a metal is based on the most toxic and bio-available compound. SGVs may be amended in the light of further research, but this report uses the current values.

DEFRA consider that in normal circumstances there should not be a pathway to the critical receptor (human end users) for contaminants located more that 1.00 m below final ground level, although the validity of this assumption should be considered for each particular case.

DEFRA use a figure equal to the 95 percentile of the results of chemical analysis for most metals and the geometric mean of the results of analysis for lead in the risk assessment. If one of these figures for a layer or soil within a metre of the surface exceeds an SGV there can potentially be a significant risk to human health. However, this does not necessarily imply that there is an actual risk to health, and assessment of site-specific circumstances may be necessary.

The ICRCL guidelines define "threshold trigger" and "action trigger" concentrations for a number of the common contaminants. At concentrations below the threshold trigger concentration, there is no significant risk that a hazard will occur. The action trigger concentration is the value above which a contaminant should generally be regarded as undesirable and possibly unacceptable and some form of remedial action may be necessary. Where the levels of contaminants are between the threshold and action trigger concentrations, consideration should be given to whether further investigation is justified and whether or not specific remedial action is required.

The ICRCL threshold trigger concentrations for metal ions have been superseded by the DEFRA values except for boron, copper and zinc which are considered to be phytotoxic (detrimental to plant growth) but not a hazard to human health at the levels likely to be encountered. The ICRCL threshold trigger concentrations for these metal ions are those for sandy acidic ground in which plants are to be grown and are only rough indicators of the degree of contamination, no action trigger concentrations are available. The remaining contaminants considered by the ICRCL are those commonly found in gasworks waste, for which trigger concentrations have been determined using a riskbased approach (Wilson and Stevens (1981), ERL (1988)). Similarly to the DEFRA values, the assigned ICRCL trigger concentrations vary depending upon the proposed use of the land, with the trigger concentrations for domestic gardens (which take into account child ingestion of soil and contaminated vegetables) being lower than for parks and landscaped areas, with industrial and commercial development areas having the highest trigger concentrations. The guidance on statistical treatment of chemical analysis data for the ICRCL is not clear, ICRCL (1987) appears to suggest that the highest value should be taken, whilst ERL (1988), which provides the scientific basis for the ICRCL document, states that one should use the arithmetic mean of the highest 20% of the results.

Given no reference is made to Mineral Oil and GRO in the DEFRA or ICRCL guidance values, reference has also been made to the Moen et al 1986 guidance values for these

Report Ref: B1462

analytes. Although now not the most current values, given limited data for any site, they are accepted to still provide some indication of clean up requirements for that site. The Moen guidance gives three threshold values which refer to A - A reference value B - An indicative value for further investigation C - An indicative value for cleaning up.

6.4 Chemical Test Results and Significance

The following analytes were found at detectable levels:

Arsenic, cadmium, chromium (total), lead, boron (water soluble), copper, nickel, zinc, PAH (total), sulphate (total), sulphide, sulphur (total), pH, sulphate (water soluble), mineral oil, gasoline range organics (GRO). (See full results Appendix 3.)

SGV's

Only cadmium was detected marginally above the SGV value in Trial Pits 2, 4 and 5. One sample from the upper horizons of each of these trial pits (within 0.30m depth) was found to exceed the SGV value, although reference to the pH for these samples places them more or less at the threshold limit. The marginal nature of these concentrations in relation to the threshold value suggests an insignificant level in relation to potential risk.

ICRCL

Zinc which is phytotoxic and therefore may affect plant growth above the threshold value, however is not thought to pose a risk to human health was the only analyte found to exceed ICRCL threshold values. With a threshold value of 300mg/kg, the highest concentration detected was 679.2 mg/kg at 0.30m depth in Trial Pit 2. Samples from Trial Pits 1, 4 and 5 also exceeded the threshold value, those from Trial Pits 4 and 5 were within the upper 0.30m of the ground.

Petrochemical Concentrations (Moen)

Mineral oil was found in sample CE4 (0.20m - 0.30m) above the Moen indicative value for further investigation of 1000mg/kg at 1204.0 mg/kg. A further five of the total 11 samples tested showed levels of mineral oil above the reference value indicated by Moen. Four of the samples containing concentrations of mineral oil of significance, including that of Trial Pit 4, were within the upper 0.50m of the site ground. The remaining samples are from Trial Pits 1 and 2. GRO was detected above the Moen Reference Value of 20mg/kg at 93.2 mg/kg (CE2) at a depth of 1.60m which approaches the Moen further investigation value of 100 mg/kg.

Report Ref: B1462

6.5 Discussion

Although three samples show cadmium levels marginally above the SGV values, these are not considered to be of real significance and therefore no action is suggested in relation to these concentrations.

Raised zinc levels found in several samples, three of which were close to the surface of the site have the potential to affect plant growth, although considering the apparent poor organic quality of these soils, plants would not conceivably be grown without removing the hard-standing layer and improving the upper layer of the site. Improving the upper horizon of the site to a depth of 0.50m where plants were planned by replacing poor quality earth with topsoil, would eliminate this potential problem.

Petrochemical levels within some of the samples showed that levels of Mineral oil which includes diesel range components are elevated. The highest level recorded is close to the surface adjacent to the buried diesel tank at the southern end of the site and elevated levels are shown throughout this Trial Pit 4 indicating the presence of contamination throughout the full pit depth. Mineral oil is also present in both samples tested in Trial Pit 1 adjacent to the present above ground tank and where surface spillages are likely to be partially contained due to the presence of the concrete slab. Mineral oil was also detected in the upper level of Trial Pits 2 and 3 suggesting some leakage from the oil interceptor with some GRO detected at greater depth in Trial Pit 2. Olfactoral evidence from Trial Pits 2 and 3 pointed towards a greater apparent dispersal of petrochemicals in these pits than may be suggested by the chemical analysis results, however the evidence suggests a shallow horizontal layer of mineral oil contamination is more likely to be present around the oil receptor. Although also affected by a slightly raised level of zinc, Trial Pit 5 shows no significant indication of contamination.

6.6 Suggested Remediation and Progression

Given the highest concentration of mineral oil has been detected around the area of the diesel tank at the southern end of the site and that this concentration is above the Moen indicative value for further investigation, it is suggested that particular attention is given to this part of the site during development works.

It is suggested that a precautionary approach is adopted and that once a proposed development and finished levels are known, that further assessment of potential risk from possible contamination from petrochemicals is undertaken on the basis that:

1) Exposure of this material close or at the surface of the developed site should be avoided. Failure to achieve this would result in possible exposure of petrochemical

Report Ref: B1462

contamination and vaporisation of petrochemicals at the surface causing a pungent odour to be released, which would not be conducive to a residential site.

2) It is suggested that these materials, particularly where levels of contaminant have been shown to be high, do not remain within the upper 1.0m of the site ground in relation to finished ground levels.

3) In areas where impermeable hard-standing materials are planned this depth might be reduced.

4) It is suggested that a best practice approach would remove the most contaminated materials on site and dispose of these along with the remaining petrochemical tanks in line with best practice procedures and legal requirements. If buried fuel tanks are to be removed, any contamination within the surrounding soils should be analysed to asses whether further remediation is required.

Egniol Ref: B1462 October 2004

APPENDIX

Summary Of Results Egniol Limited - Butters Coaches

	DH/TP_REF	(0.30m)	(0.85m)	CE2 (0.30m)	CE2 (0.30m) (1.60m) (2.00m)	CE2 (2.00m)	CE3 (0,30m)	CE3 (1.50m)	CE4 (0.20 - 0.30m)	CE4 (1.90m)	CE4 (3.50 - 3.60m)	(E5 (0.75m)	
	CLIENT IN	1									Tunner		
	OF DUSTYN				A				p,				
MMUTES	HINH TS	SUUSSEDUS	EVU76 MU2	Chancoon	No. of the local division of the local divis								
	ë i tito	00600400	10500 bAC	30436909	50436910	50436911	20436912	\$0436913	20420900 20420907 20436909 S0436910 S0436911 S0436912 S0436913 S0436914 S0436915 S0436916 S0436917	50436915	50436916	50436917	
Sulphide	mg/kg	<2.0	<2.0	7 7	1 11	-						d'rener an	
	e ve		. T. T.	6.1	12.1	⊐e	22.7	#	5.3		'#=	<2.0	¥
Suiphur (total)	mg/kg	767	171	338	191	H.	477	#	755	t	=	345	
DH	N/M	4.3	4	4					1.00	-	4	040	-
	N/H	1.5	1.4	7.2	6.8	71	1.5	а.	6.9	9	a	6.2	¢e.
susphate (water soluble)	g/1 S04	0.084	0.061	0,044	0.052	4	0.068	łt.	N 175		-	2.42	1
Mineral Oil	me / Les	or a r		A A A A					14.0	П		202+0	-4
	inių kū	254.6	372-1	118.8	<0.1	<0.1	187.5	-0.1	1204.0	182.1	175.8	8.6	40
BHO	mg/kg	<0.1	<0.1	<0.1	93.2	#	~0. E	<0.1	2.6	11.6	10 R	1 112	1.

A : Analyte not requested

Report No. R04/3985

Page 5 of 5

Report No. R04/3985

Results for soil samples expressed as dry weight, # : Analyte not requested

	BH/TP RET	CEI	CEJ	CE2			- 11			A DA		1
		(0,30m)	(0.85m)	(0.30m)	(1.50m)	(2.00m)	(0.30m)	(1.50m)	CE4 (0.20 - 0.30m)	CE4 (1.90m)	CE4 (3.50 - 3.60m)	CE5 (0.25m)
	CLIENT 10			Ī	ħ				A			T
AHALYTES	STIMO	50436906	50436907	50436909	\$ \$0436910	1 S043691	\$8436907 \$0436909 \$0436910 \$0436911 \$0436917	\$0436013	CUTSKOTA	COATENCE		- Partie
Arsenic	mg/kg	1.7	7.5	8.0	1.2	*	77		a contract	CLENCHAR	at cochive	304
Cadmium	nid/ka	0.3	0.05	4	. n. n				9.0	78	71	3.
Chermium (haunuslant)	Ru (fau	V+2	19.0	2.2	\$0.2	9	<0.2	4	1.6	.tt.	-115	-
virvantum (nexavdient)	ng/kg	<1.0	<1.0	<1.0	<1.0	71.	<1.0	ŧ	<1.0	412	¥	<1.0
Chromium (total)	mg/kg	13.4	19.1	13.4	19.7	ŧ.	18.1	ġ	15.4	te -	24 3	
Lead	mg/kg	85.6	84.4	163.5	29.2	*0	DA3 1	N				16.21
Mercury	no/ba	2	-				1.013		100.2	Ŧ	78	122.5
Gelanium	fix thu	1.0	0.1>	<1.0	<1.0	u:	<1.0	ġ	<1.0	*	ŧ	<1.0
imitiatae	nyj/kg	<1.0	<1.0	<1.0	<1.0	a.	<1.0	ac.	~1.0	ŧ	æ	<1.0
Boron (water soluble)	mg/kg	0.8	0.9	1.4	0.9	-11	0.6	ġ	1.4	15		+
Copper	mg/kg	34.2	32.6	67.2	15.3	÷	97 C	1	***		- 1	4.1
Nickel	mon I basi	1.4.4	214 ×		Passa -		C, 13	71	. 47.9	-m-	ŦĿ	35.2
a firm	tuật kỹ	1/,1	20.1	37.2	17.0	ų	18.2	-8-	33.9	W	4	24.2
2100	mg/kg	278.0	334.9	679.2	70.2	ų	218,6	se:	472.0	#	#	377.6
P/W (total)	ng/kg	1.7	3.0	9.4	<0.1	ЧĘ.	8.4	*	4.8	40	410	-0 1
Phenol s	mg/kg	<1.0	<1.0	<1.0	<1.fr	ŧ	<1,0	æ	\$1.0	tù	H: -	
Cyanide (free)	nig/kg	<2.0	-2.0	<2.0	<2.0	æ	<2.0	#	No of		-	-1.0
Cyanide (complex)	aid/ka	~ 0.0	0.62	1 61	0 A				×2.0	7	24	<2.0
Funda (tatal)	undr Kij	~2.0	<7.0	<2.0	<2.1	tl-	<2.0	i Pc	~2.0	-12-	*#e	-2.0
cyaniae (total)	mg/kg	<2.0	<2.0	<2.0	<2.0	*	<2.0	-te	~2.0	Ъr:	36	-2.0
Intocyanate	mg/kg	<10	<10	<10	<10	łł	<10	⊐n:	<10	*	#k:	*10
Suiphate (totai)	mg/kg 504	609	332	683	293	ŧ	1392		1370	R		1003

Summary Of Results Egniol Limited - Butters Coaches

Page 4 of 5

7105

680

3TYJANA AMALYJE

Guillen and	013 00	080
6y/6w ["0	CC-FID	Tio farenim
#05 1/6 100°0	HPLC-IC	
		(aldulos ratew) atanqluz
A/N	natem-Hq	ьq
5x/5w DI	IC6-OE2	(16101) Tundalu2
2.0 mg/kg		
HOC BY/BUL DO	Colorimetry	∋binqluZ
30 mg/kg 504	ICB-OES	(Ibiot) etaid(u2
5x/6m OI	Vatemino[00	Thiocyanate
5.0 mg/kg	Colorimetry	
5×0 mg/kg		(Tstot) sbinsvJ
04/00 0 6	Colorimetry	(Xsiqmop) sbinev)
2.0 mg/kg	Colorimetry	(sent) sbinskj
54/бш 0.т	Colorimetry	
0.1 mg/kg		2 Lonsh9
	CC-FID	([5tot) HA9
6×/6w Z.O	ICb-OES	DUIZ
6×/6ш 2.0	ICb-0E2	
6y/6u Z.0		[BAD FN
017.000 2 Q	ICb-DE2	Copper
6* 9 ma/ka	ICb-OES	(efdulos netew) noro8
бу/бш 0°т	ICb-OES	
6x/6w 0'T		muinala2
Sale U	ICE-OES	Kanorem
64/6ш с.0	ICb-OE2	263d
0*5 mg/kg	IC6-DE2	
6x/6m 0.1		([sid)) muimon()
By/Gu U L	1Cb-0E2	(Inglavaxed) muimord)
6×/6ш 2.0	ICb-OES	cadmium Cadmium
бу/бш 0.1	IC6-OE2	
1/ 01	20 001	DINGENA

WEIHOD OF DETECTION

CC-FID

бу/бш т.0 бу/бш т.0

FIWIL OF DETECTION

What's so special about a UKAS report or certificate?
Accreditation of testing is granted by the United Kingdom Accreditation Service (UKAS).
It's your assurance that the work has been carried out to the highest standards.
The laboratory issuing the test report has been stringently assessed by independent experts.
You are assured that the agreed or specified methods and procedures have been followed.
Measurements are traceable to national and international standards.

Comments:

Sampling & tests marked t in this report are not included in the UKAS Accreditation Schedule for the testing laboratory. Any opinions and interpretations expressed herein are outside the scope of the testing laboratory's UKAS Accreditation. The Coefficient of Variation CV_T (where CV_T = standard deviation/mean*100) is better than 15% All analysis carried out using ECoS standard methods unless otherwise agreed The test results in this report refer only to the actual samples on which testing has been performed. This test report shall not be reproduced, except in full, without written approval of ECoS Environmental. The laboratory cannot be held responsible for the condition or suitability of samples submitted for testing by a third party or for the competency of personnel other than its own staff. Date submitted for analysis : 21/09/04 Your Job/Order Number : Analyst(s) : HP DF SS CM CO KLH PSW DS CLH Report Approval

Approved signatories: J R Brown (Customer Services Manager) E Dewell (Production Manager) P Richardson (Quality Manager) J Stoddart (Technical Manager)

Signature

Report date : 5 October 2004

Analytical Test Report For

> EGNIOL LIMITED Tre Felin Bangor Gwynedd North Wales LL57 4LH

PROJECT ID: BUTTERS COACHES

Report No : R04/3985

Copies To: Mr R Woodford File

E ECOS ENVIRONMENTAL Low Moor Business Park, Common Road, Bradford BD12 ONB Tel: 01274 691122 - Fax: 01274 608100 www: soll-engineering.co.uk E-mail: info@ecos.co.uk

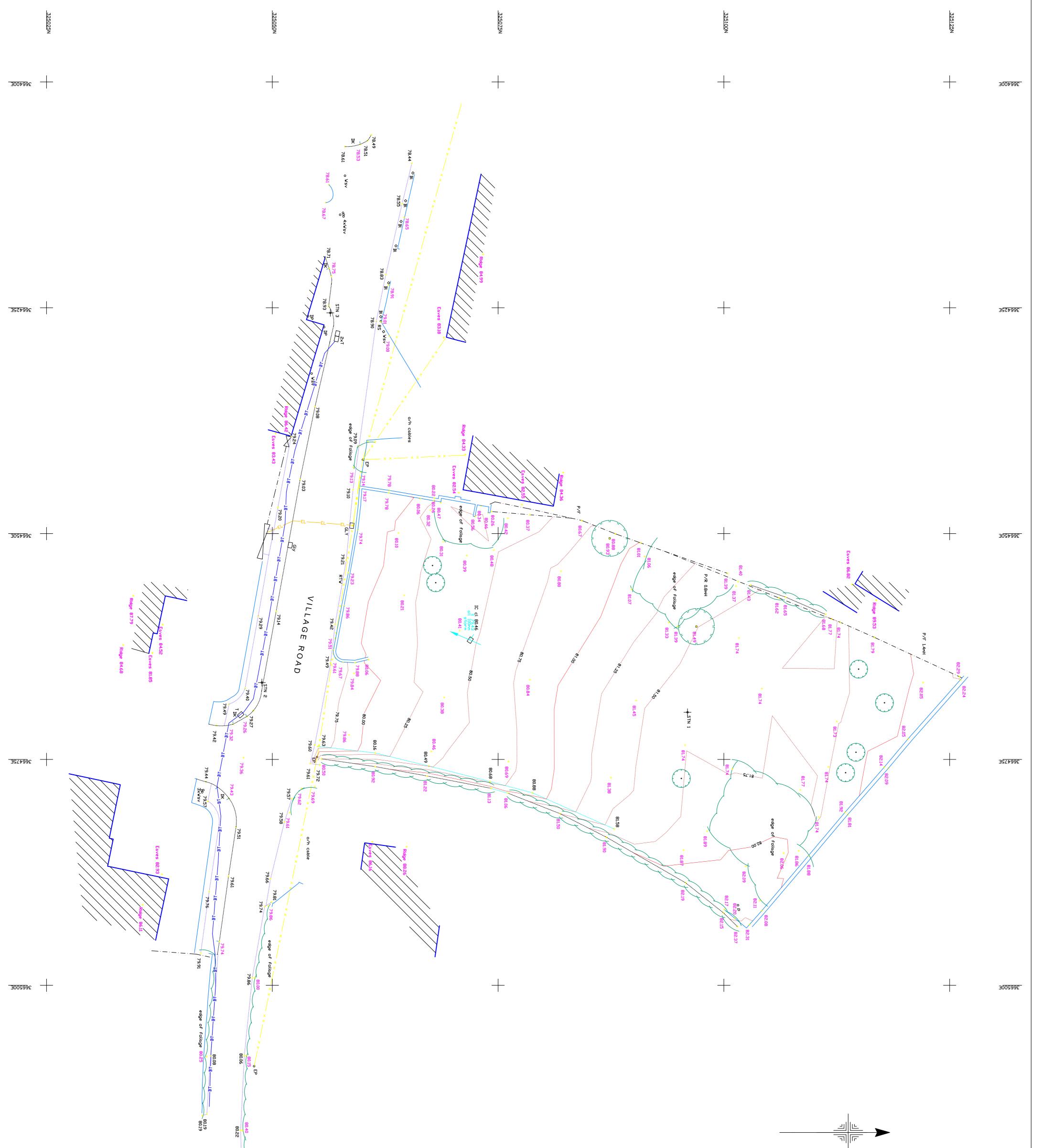
A Division of Norwest Holst Soil Engineering Ltd Registered in England No.980795 Registered Office: Parkside Lane, Dewsbury Road, Leeds LS11 SSX

mCERT

Mage T of 5

Ref: NB/LS

C)gm	iol			E	gniol Ltd. (Bang re Felin Jangor Swynedd L57 4LH	or)		Trialpit No 5 Sheet 1 of 3
Project					Proj	ect No.	Co-ords: -		Date
Butters		the second se			146	2/SI	Level: -		14/09/2004
Locatio	n: (Childs Ercall					Dimensions:	2.10m	Scale
-	-						Depth Egg.		1:25
Client:	(Celtest					2.60m 😲		Logged By RVW
Samp Depth (m)	les & In Type	Situ Testing Results	Depth (m)	Level (m AOD)	Legend		Stratum De	refeter	- NYW
Debut (m)	тура	nesuits	0.10	(****	MADE GROUN): Gravel	sciption	
0.25	D		0.70			(TOPSOIL)	wn organic topsoil	RI ES of condetone Gro	
						rounded to sub-	t brown/orange gravelly COB rounded of sandstone.	alles of seriastone, rere	-
			1.90	100		Clayey SAND: V	ery clayey SAND with some g	(rave).	_
						(SANUS & GRA	VELS)		
			2.60	1	and the second		Truipit Complete	at 2.60 m	
				1					1
									- 4
									-
amarks:		No apparent con	ntamina	tion					1 Manuar
Groundwa	ter:	None			-				AGS


0) gmi	iol			E	Egniol Ltd. (Bango Tre Felin Bangor Gwynedd LL57 4LH	x)		Trialpit No 4 Sheet 1 of 1
and the second se	Name					ject No.	Co-ords: -		Date
Butters			_		146	2/SI	Level: -		14/09/2004
Locatio	in: Ci	hilds Ercall					Dimensions:	2.10m	Scale
Olivert							Depth Eggs		1:25
Client:		eltest	-				5.90m -		Logged By RVW
Depih (m)	Type	itu Testing Results	Depth (m)	Level (m AOD)	Legend		Stratum De	scription	
			10.1	3	****	MADE GROUND (MADE GROUND	Gravel		
0.20-0.30	D		0.20	V (1) 11 11 11 11 11 11 11 11 11 11 11 11 1		SAND: Dark brow (SANDS & GRAV	n slightly gravelly SAND ELS)		1
			1.50				slightly gravelly SAND ELS)		
1.90	D					SAND: Orange/bro (SANDS & GRAVE	wm slightly graveliy slightly ELS)	silty SAND	-2
			2.20			SAND: Light brown (SANDS & GRAVE	Vorange silty SAND LS)		
3.50-3.60	D		3.00			SAND: Clayey SAN (SANDS & GRAVE	ID with bands and lenses of LS)	sand and silt.	3
			3.90	<u> </u>			Trialpit Complete at	3.90 m	-4
emarks:		djacent to burie	d diesel	tank					
Groundwat	er: N	one	-						AGS

	gni	iol			E	Egniol Ltd. (Bang Fre Felin Bangor Gwynedd LL57 4LH	or)	1.1	Trialpit N 3 Sheet 1 of	
	t Name					ect No.	Co-ords: -		Date	
	s Coaci		1		146	2/SI	Level: -		14/09/200)4
Locatio	on: C	hilds Ercall					Dimensions:	2.10m	Scale	
-							Depth 5.10m E		1:25	-
Client:		eltest	-			-	3.10m 😷		Logged B RVW	y
Samj Depth (m)	Type	Situ Testing Results	Depth (m)	Level (m AOD)	Legend		Stratum De	scription		
_				3	****	MADE GROUN	D: Placed angular GRAVEL			t
0.30	D		0.20			(MADE GROUN SAND: dark bro (SANDS & GRA	D) wn slightly gravelly SAND. VELS)			
1.50	D		1.40			SAND: Orange/t (ALLUVIUM)	prown SAND. Slight petrocher	nical odour.		-
			2.00			SAND: Soft clay (ALLUVIUM)	ey SAND, Slight petrochemic	al odour.		2
			2.50			CLAY: Very San (CLAY)	dy CLAY. Strong petrochemic	al odour.	1	-1
			3.10	Ē			Trislpit Complete	at 3.10 m		
emarks		Non								

e	gm	iol			E	gniol Ltd. (Bangor) re Felin angor wynedd L57 4LH	Trialpit No 2 Sheet 1 of
roject					Pro	ect No. Co-ords: -	Date
Butters					146		14/09/2004
Locatio	in: C	hilds Ercall				Dimensions;	2.10m Scale
1.5			_		-	Depth Ec.	1:25
Client:		eltest				2.90m 🙀	Logged By RVW
Depth (m)	Type	Situ Testing Results	Depth (m)	(m AOD)	Legend	Stratum Descrip	
0.30	D		0.30			MADE GROUND: Brown angular placed gravel wit (MADE GROUND) MADE GROUND: Slightly gravelly dark brown SAN cobbles of brick. (MADE GROUND) SAND: Slightly gravelly dark brown humic SAND. (SANDS & GRAVELS)	
			1.40			SAND: Light brown grey moist slightly gravelly SAN odour detected with black shoen present.	ID. Strong petrochemical
1.60	D					odour detected with black shoen present. (SANDS & GRAVELS)	
2,00	D		1.90	中世界的大学生生产生产生产生产生产生		CLAY: Orange to brown slightly sandy gravelly CLA lenses. Petrochemical stain and strong petrochemic (CLAY)	Y with occassional silt al ocour present.
	11		2.90	-	<u>1836</u> .	Trialpit Complete at 2.90	m
emarks: Groundwat	ter: 1	Von					AGS

C) gmi	ol			E	gniol Ltd. (Bango Tre Felin Bangor Gwynedd L57 4LH	r)		Trialpit No 1 Sheet 1 of 1
	Name				Proj	ect No.	Co-ords: -		Date
Locatio	Coach	ilds Ercall	_		146	2/SI	Level: -		14/09/2004
Locaso	. O	inus ciudii					Dimensions:	2,10m	Scale 1:25
Client:	Ce	ltest					Depth E000000000000000000000000000000000000		Logged By
		itu Testing	Depth	Level		_			RVW
Depth (m)	Туре	Results	(m)	Level (m AOD	Legend	MADE GROUND	Stratum Des Brown coarse angular GRA		
			0.10		****	(MADE GROUND	1		
0,30	D		0.30		*****	MADE GROUND: some root materia (MADE GROUND)	Brown angular cobbies of br I.	ick and weathered sands	itone with
1			0.55			SAND: Dark brown	n gravelly SAND. Gravel is ro ELS)	unded.	
			0.00	1		SAND: Light brown	Vorange moist gravelly SAN		and
0.85	D		0.90		and the	(SANDS & GRAVE			Sector Sector
							Tnalpit Complete a	0.90 m	
									-3
emarks:	Ad	ljacent to prese	nt abov	e ground	d diesel/d	oil tank			(6414 mm)
Groundwate									AGS

APPENDIX C

1966525E				
BATTLEFIELD LAND SURVEYS LTD 3 YEOMANRY ROAD BATTLEFIELD ENTERPRISE PARK SHREWSBURY SHROPSHIRE SY1 3EH TEL/FAX 01743 443388 EMAIL MAILBOX@BLSURVEYS.CO.UK Client AP ARCHITECTURE LIMITED Title VILLAGE ROAD, CHILDS ERCALL Scale Date Job No Rev. Scale Date Job No Rev. Scale Date Job No Rev. MB/LD/CS DE ACTIVE Levels are related to	<pre>*** DENOTES OVERHEAD CABLES ** DENOTES UNDERGROUND SERVICES LEVELS AT ROAD KERBS ARE TAKEN AT CHANNEL LEVELS UNLESS OTHERWISE REQUESTED STN 1 E 366469.779 N 325095.973 H 81.749 STN 2 E 366466.489 N 3250548.844 H 79.344 STN 3 E 366425.568 N 325056.423 H 79.097</pre>	CHICKEN POST AI POST AI POST AI CHICKEN CHICKEN METAL F PANEL F PANEL F CORRUGA RETAIN RETAIN RETAIN COPIE IT. COPIE IT. COPIE IT. COPIE COUND C	IC INSPECTION COVER IC INSPECTION COVER IL INVERT LEVEL IB LITTER BIN IP LAMP POST MKR MARKER NB NOTICE BOARD P POST PH POST HOLE PL POST HOLE PL PEDESTRIAN LAMP POST RE RODDING EYE RS ROAD SIGN STY STAY WRE T TELECOMMUNICATIONS COVER T. TRAFFIC LIGHT TP TELEGRAPH POLE TW. TOP OF WALL LEVEL UT. UNABLE TO LIGHT TP TELEGRAPH POLE TW. TOP OF WALL LEVEL UT. UNABLE TO MEASURE VP VENT PIPE WL WATER LEVEL WP WASTE PIPE B/W BARBED WRE B/W BARBED WRE	Legend BL BOLLARD BS BUS STOP CATV CABLE TV COVER CL COVER LEVEL CPS CONCRETE PAVING SLAB DP DRAIN PIPE DX DROP KERB EL ELECTRICITY POLE ER EARTH ROD FH FIRE HYDRANT FL FLOOR LEVEL FS FLAG STAFF G GAS COVER GLY GULLY

APPENDIX D

Photo 2: View to East

Photo 3: View to Northwest

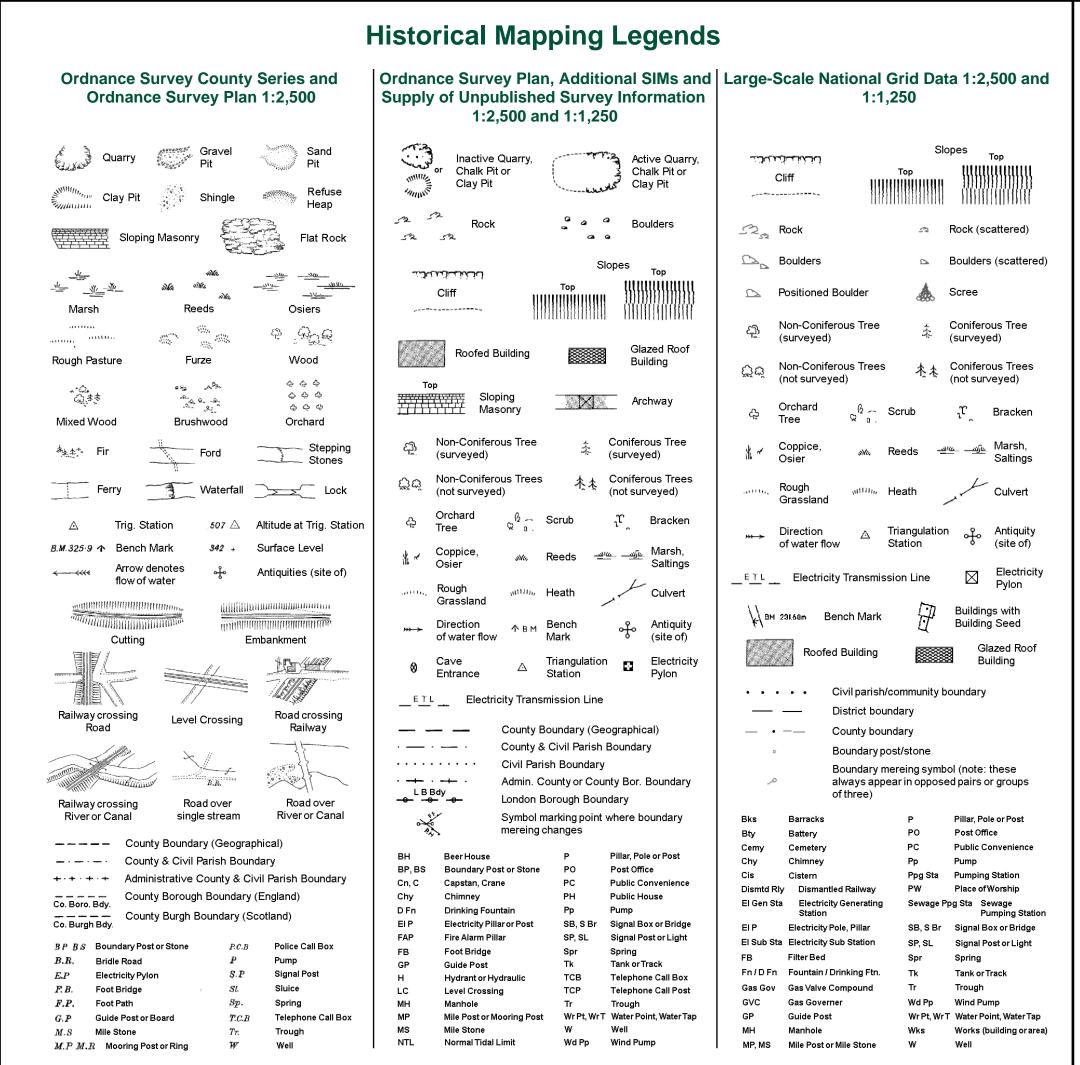
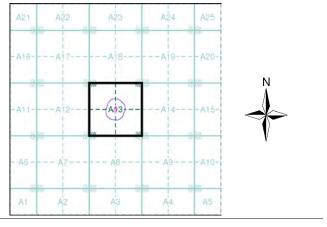


Photo 4: View to South

Photo 6: Existing Manhole Cover

APPENDIX E



Envirocheck®

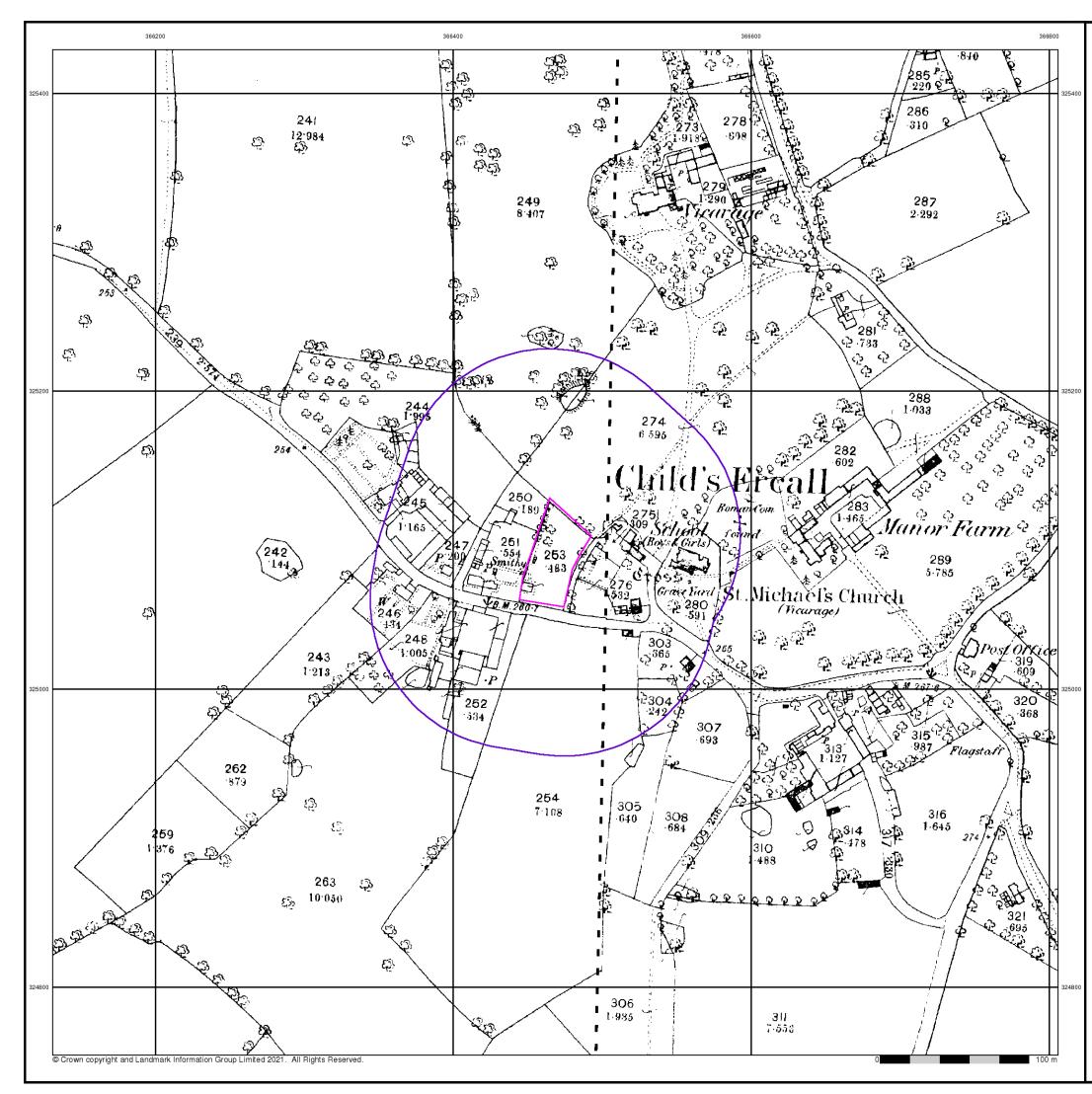
Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Shropshire	1:2,500	1881	2
Shropshire	1:2,500	1902	3
Ordnance Survey Plan	1:2,500	1969 - 1970	4
Additional SIMs	1:2,500	1993	5
Large-Scale National Grid Data	1:2,500	1994	6
Historical Aerial Photography	1:2,500	2000	7

Historical Map - Segment A13

Order Details

Order Number:	272216423_1_1
Customer Ref:	P21004
National Grid Reference:	366470, 325090
Slice:	A
Site Area (Ha):	0.2
Search Buffer (m):	100


Site Details

Village Road, Childs Ercall, MARKET DRAYTON, TF9 2BZ

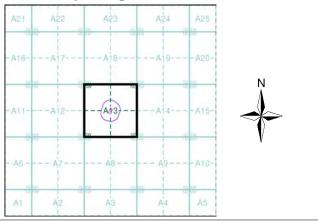
0844 844 9952 0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v50.0 25-Jan-2021

Envirocheck®

Shropshire

Published 1881


Source map scale - 1:2,500

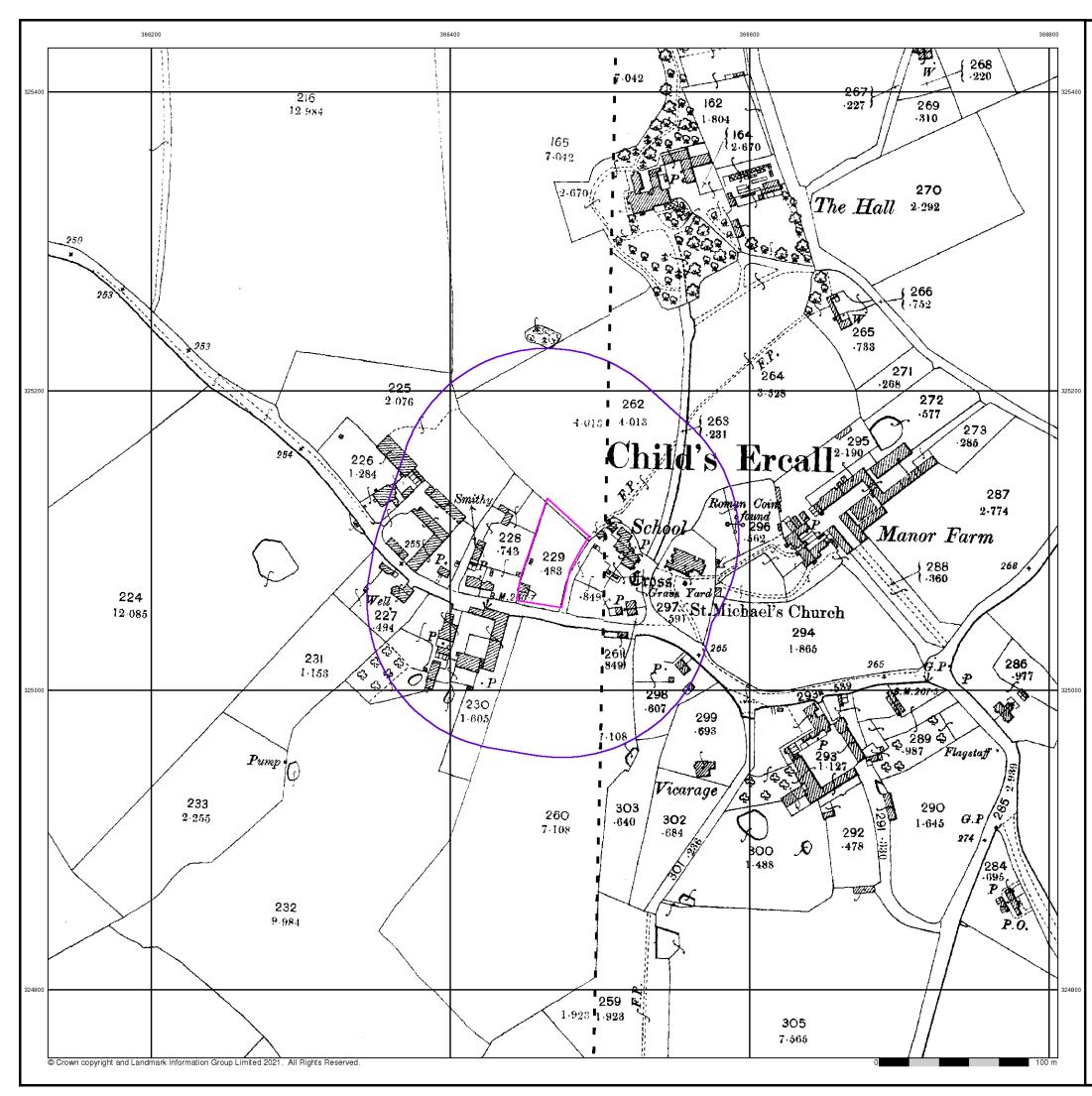
The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

1	~ , ~		
I	1	023_10 1881 1:2,500	
023_09 1881	I.		I
1:2,500	I		I
1	1		I.
· ·	- 1 -		I

Historical Map - Segment A13

Order Details


Order Number:	272216423_1_1
Customer Ref:	P21004
National Grid Reference:	366470, 325090
Slice:	Α
Site Area (Ha):	0.2
Search Buffer (m):	100

Site Details

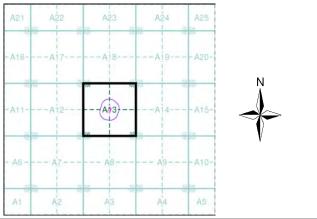
Village Road, Childs Ercall, MARKET DRAYTON, TF9 2BZ

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Envirocheck®

Shropshire

Published 1902

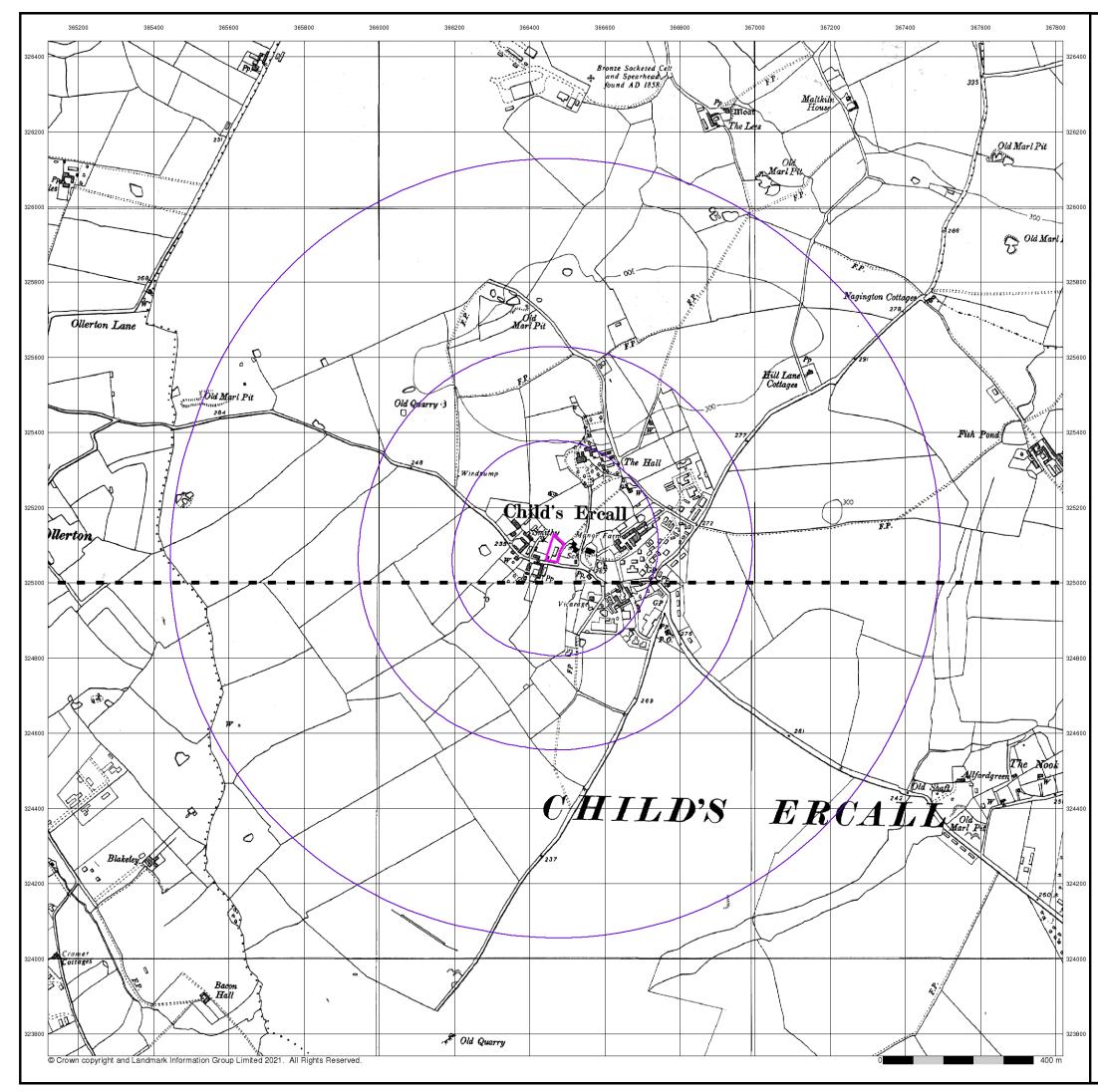

Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

1	- , -		,
1	1		I
023_09 1902	1	023_10 1902	1
1:2,500	I	1902 1:2,500	I
	I		I
I	I		1
	~ ' ~		1

Historical Map - Segment A13


Order Details

Order Number:	272216423_1_1
Customer Ref:	P21004
National Grid Reference:	366470, 325090
Slice:	Α
Site Area (Ha):	0.2
Search Buffer (m):	100

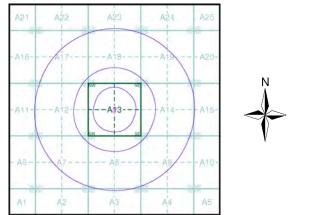
Site Details

Village Road, Childs Ercall, MARKET DRAYTON, TF9 2BZ

Envirocheck LANDMARK INFORMATION GROUP*

Ordnance Survey Plan

Published 1954


Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

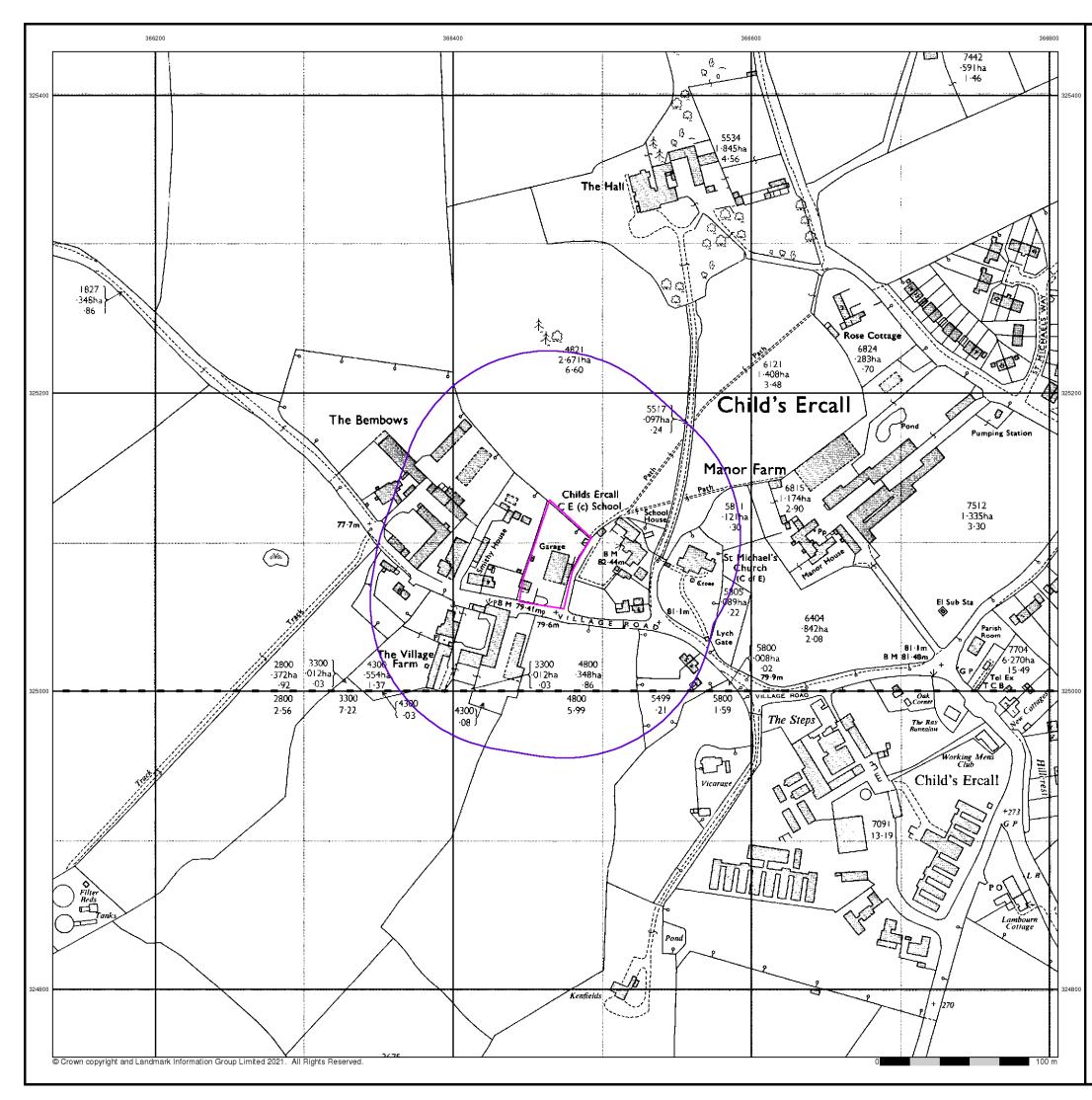
. – – – SJ62NE I 1954 1:10.560 _ _ SJ62SE 1954 1:10,560

Historical Map - Slice A

Order Details

Order Number: Customer Ref: National Grid Reference: 366470, 325090 Slice: Site Area (Ha): Search Buffer (m):

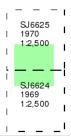
272216423_1_1 P21004 Α 0.2 1000


Site Details

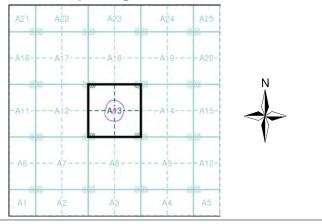
Village Road, Childs Ercall, MARKET DRAYTON, TF9 2BZ

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

Page 4 of 9


Envirocheck®

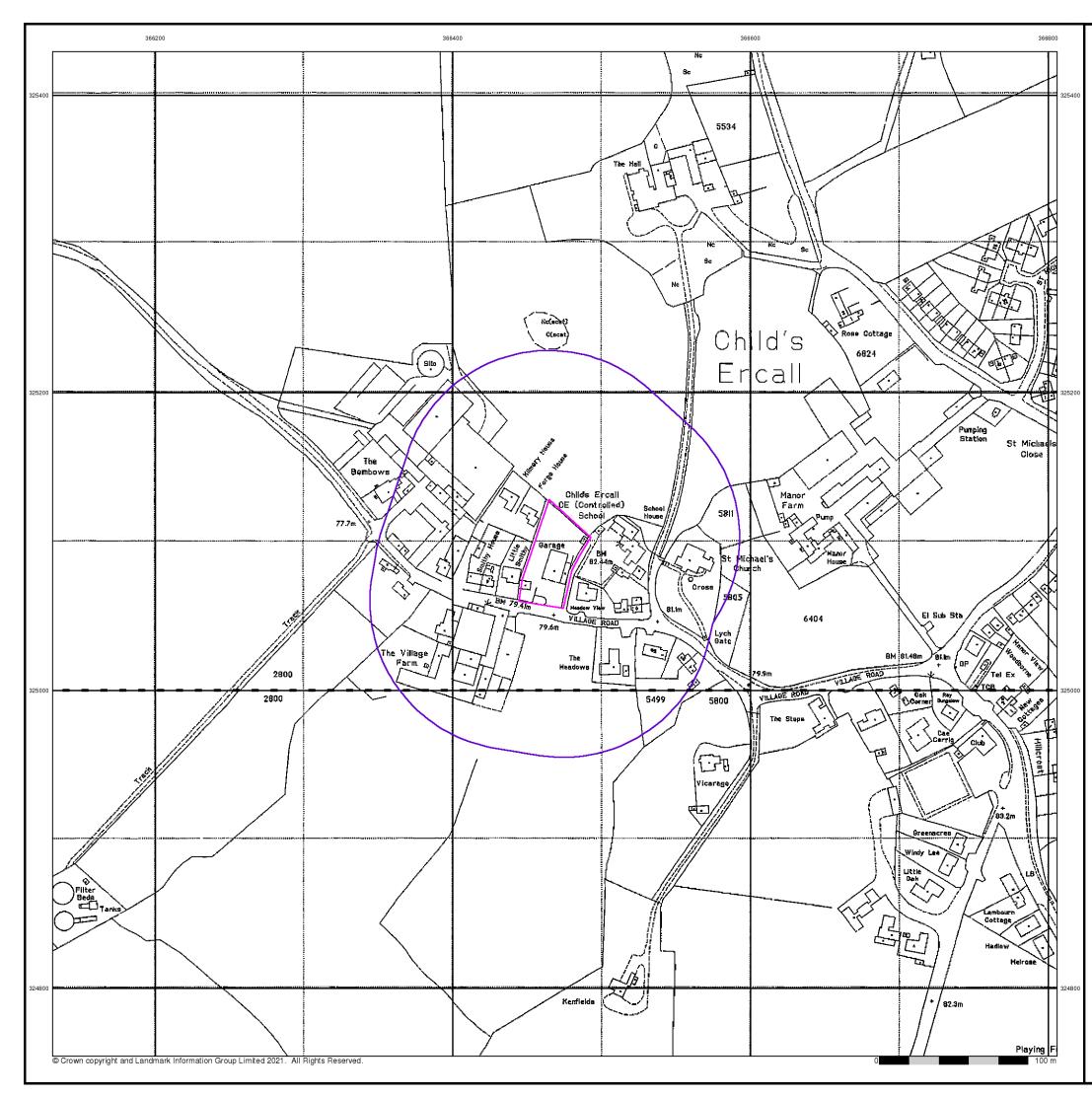
Ordnance Survey Plan Published 1969 - 1970


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

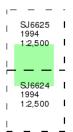

Order Details

Order Number:	272216423_1_1
Customer Ref:	P21004
National Grid Reference:	366470, 325090
Slice:	Α
Site Area (Ha):	0.2
Search Buffer (m):	100

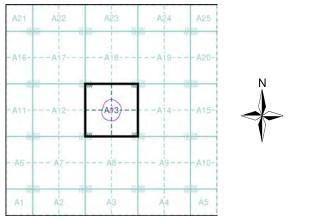
Site Details

Village Road, Childs Ercall, MARKET DRAYTON, TF9 2BZ

Envirocheck®


Large-Scale National Grid Data

Published 1994


Source map scale - 1:2,500

'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	272216423_1_1
Customer Ref:	P21004
National Grid Reference:	366470, 325090
Slice:	A
Site Area (Ha):	0.2
Search Buffer (m):	100

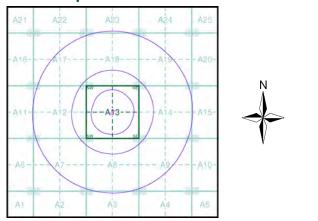
Site Details

Village Road, Childs Ercall, MARKET DRAYTON, TF9 2BZ

Envirocheck[®]

10k Raster Mapping

Published 2000


Source map scale - 1:10,000

The historical maps shown were produced from the Ordnance Survey's 1:10,000 colour raster mapping. These maps are derived from Landplan which replaced the old 1:10,000 maps originally published in 1970. The data is highly detailed showing buildings, fences and field boundaries as well as all roads, tracks and paths. Road names are also included together with the relevant road number and classification. Boundary information depiction includes county, unitary authority, district, civil parish and constituency.

Map Name(s) and Date(s)

SJ62NE | 2000 | 1:10,000 | 1:10,000 | . SJ62SE | 2000 | 1:10,000

Historical Map - Slice A

Order Details

 Order Number:
 272216423_1_1

 Customer Ref:
 P21004

 National Grid Reference:
 366470, 325090

 Slice:
 A

 Site Area (Ha):
 0.2

 Search Buffer (m):
 1000

Site Details

Village Road, Childs Ercall, MARKET DRAYTON, TF9 2BZ

Historical Aerial Photography Published 2000

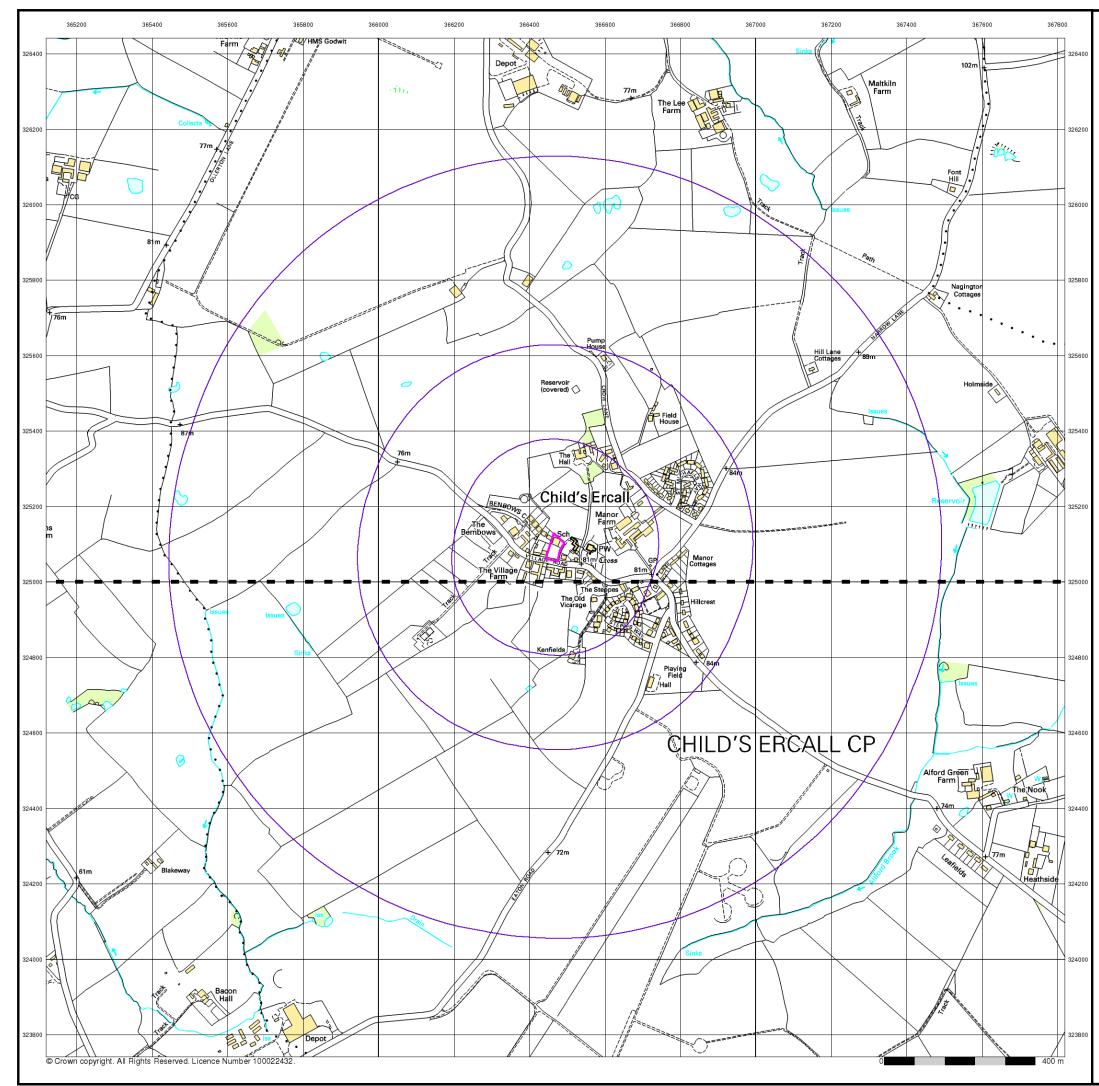
This aerial photography was produced by Getmapping, these vertical aerial photographs provide a seamless, full colour survey of the whole of Great Britain

Historical Aerial Photography - Segment A13

A21		abw 1 H	A24	A25
A16	A17	A18	A19	- A20-
12 20		WW M	99. i ii	N
A11	A12	(A)3)	A]4	- A15-
-A6	A7	A8	A9	-A10-
A1	A2	A3		A5

Order Details

Order Number:272216423_1_1Customer Ref:P21004National Grid Reference:366470, 325090Slice:ASite Area (Ha):0.2Search Buffer (m):100


Site Details

Village Road, Childs Ercall, MARKET DRAYTON, TF9 2BZ

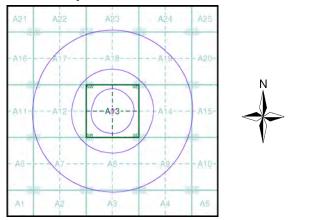
A Landmark Information Group Service v50.0 25-Jan-2021

Tel: Fax: Web:

Envirocheck[®]

10k Raster Mapping

Published 2006


Source map scale - 1:10,000

The historical maps shown were produced from the Ordnance Survey's 1:10,000 colour raster mapping. These maps are derived from Landplan which replaced the old 1:10,000 maps originally published in 1970. The data is highly detailed showing buildings, fences and field boundaries as well as all roads, tracks and paths. Road names are also included together with the relevant road number and classification. Boundary information depiction includes county, unitary authority, district, civil parish and constituency.

Map Name(s) and Date(s)

SJ62NE | 2006 | 1:10,000 | | SJ62SE | 2006 | 1:10,000 | |

Historical Map - Slice A

Order Details

 Order Number:
 272216423_1_1

 Customer Ref:
 P21004

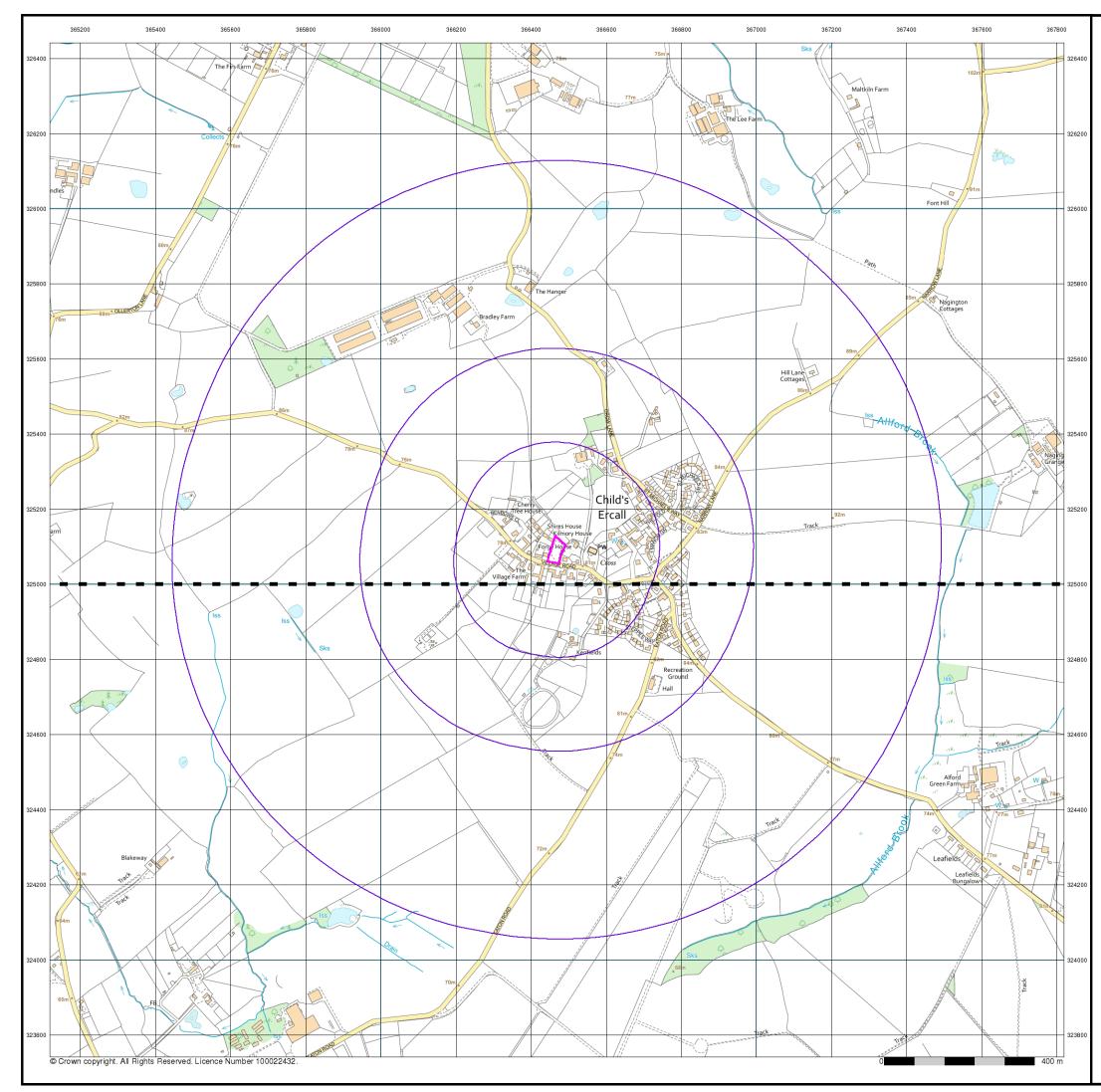
 National Grid Reference:
 366470, 325090

 Slice:
 A

 Site Area (Ha):
 0.2

 Search Buffer (m):
 1000

Site Details


Village Road, Childs Ercall, MARKET DRAYTON, TF9 2BZ

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

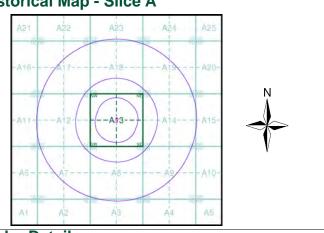
A Landmark Information Group Service v50.0 25-Jan-2021

Page 8 of 9

Envirocheck[®] LANDMARK INFORMATION GROUP*

VectorMap Local

Published 2020


Source map scale - 1:10,000

VectorMap Local (Raster) is Ordnance Survey's highest detailed 'backdrop' mapping product. These maps are produced from OS's VectorMap Local, a simple vector dataset at a nominal scale of 1:10,000, covering the whole of Great Britain, that has been designed for creating graphical mapping. OS VectorMap Local is derived from large-scale information surveyed at 1:1250 scale (covering major towns and cities),1:2500 scale (smaller towns, villages and developed rural areas), and 1:10 000 scale (mountain, moorland and river orbuge) river estuary areas).

Map Name(s) and Date(s)

- 1- -SJ62NE I 2020 Variable I _ _ _ ____I
- SJ62SE I
- 2020 Variable

Historical Map - Slice A

Order Details

Order Number: Customer Ref: National Grid Reference: 366470, 325090 Slice: Site Area (Ha): Search Buffer (m):

272216423_1_1 P21004 А 0.2 1000

Site Details

Village Road, Childs Ercall, MARKET DRAYTON, TF9 2BZ

APPENDIX F

Photo 1: Excavated Underground Tanks Awaiting Off-Site Disposal

APPENDIX G

Spilman Associates		MINI RIG BOREHOLE RECORD					
38 South Avenue Stourbridge West Midlands DY8 3XY		Site Location	Village Road, Ch	ilds Ercall			BH1
		Client Name	Ling Developments Limited			Job No.	
01384	820578 tel	Date of Drilling	04/02/21	Grid Ref			P21004
Strata Depth (m)	Sample Depth (m)	Strata Description	I	I	Legend	Casing and Test Record	Water/ <i>Reduced</i> Levels (m)
0.00	Continuous sample	Loose brown sandy s fragments (MADE G	lightly gravelly silt (top ROUND)	soil) with occasional brick			
1		Loose to medium der (GLACIAL DEPOSIT	ise red brown slightly (5)	gravelly clayey SAND.	1	SPT N = 17	
² 2.50		Soft occasionally firm	red brown slightly gra	velly very sandy CLAY.	2	SPT N = 7	
3		(GLACIAL DEPOSITS	5)		3	SPT N = 4	
3.50 3.80 4 4.15		(GLACIAL DEPOSIT: Very weak red brown	own clayey SAND with S) slightly silty fine graine DSTONE FORMATIO	ed SANDSTONE	4	SPT N = 53 for 75mm	
5 6 7 8 9 9					5		

Undrained Shear Strength (from Shear Vane) \mathbf{C}_{u}

- Slotted 50mm ID HDPE pipe from 1.00m to 3.50m with pea gravel surround. Plain pipe from surface to 1.00m with bentonite seal. Pipe capped with bung and gas tap No visual or olfactory evidence of contamination 2.
- 3.

Spilman Associates 38 South Avenue			MINI RIG BOREHOLE RECORD						BH No.	
Stourbridge West Midlands		lge	Site Location Village Road, Childs Ercall							BH2
DY8 3XY			Client Name	e L	Ling Developments Limited					Job No.
	01384 8	20578 tel	Date of Dril	ling (04/02/21		Grid Ref			P21004
	Strata Depth (m)	Sample Depth (m)	Strata Descri	iption				Legend	Casing and Test Record	Water/ <i>Reduced</i> Levels (m)
	0.00	Continuous sample	Loose dark bro (MADE GROUN	wn and r ND)	ed brown very silty grav	elly sa	nd.			
1	0.95		Loose brown sl	ightly gra	avelly clayey SAND (GL	ACIAL	DEPOSITS)	1	SPT N = 8	
2	1.70		very clayey fr Very dense red (BRIDGNORTH	brown s	m to 1.70m ilty fine grained SAND STONE FORMATION)			2	SPT N = 59	
3	2.50 3.15		Very weak red FORMATION)	brown sil	Ity fine grained (BRIDG	NORT	H SANDSTONE	3	SPT N = 58	
	3.15								for 75 mm	
4								4		
5								5		
6								6		
7								7		
8								8		
9								9		
SPT Standard Penetration Test N N value c _u Undrained Shear Strength (from Shear Vane)			Remar 1. 2. 3.	No groundwater enco Slotted 50mm ID HDI surface to 1.00m with	PE pip bentc bdour 1 bn odo	e from 1.00m to 2.60 nite seal. Pipe capp l.00 – 1.70m ur 1.70 – 2.50m			lain pipe from	

G BOREHOLE REC ad, Childs Ercall opments Limited Grid Ref			вн No. ВНЗ
			<u> </u>
Grid Ref			Job No.
			P21004
	Legend	Casing and Test Record	Water/ <i>Reduced</i> Levels (m)
<u>DE GROUND)</u> sandy slightly gravelly silt (topsoil) w GROUND)	vith		
	1	SPT N = 1	
medium grained SAND.	2	SPT N = 8	
brown sandy to very sandy CLAY	3	SPT N = 25	
MATION)	4	for 75mm	
	5		
	6		
	7		
	8		
	9		
or olfactory evidence of contaminati	on		
	medium grained SAND. I brown sandy to very sandy CLAY add SANDSTONE MATION) seepage at 2.00m	t brown sandy to very sandy CLAY a d SANDSTONE MATION) a d b d SANDSTONE MATION b d d c d SANDSTONE c d SANDST	seepage at 2.00m or olfactory evidence of contamination

		Associates		MINI RIG BO	OREH	OLE RECO	RD		BH No.
38 South Avenue Stourbridge West Midlands DY8 3XY		lge	Site Location Village Road, Childs Ercall						BH4
			Client Name	Ling Developments Limited				Job No.	
	01384 8	20578 tel	Date of Drilling	25/02/21		Grid Ref			P21004
	Strata Depth (m)	Sample Depth (m)	Strata Description	I			Legend	Casing and Test Record	Water/ <i>Reduced</i> Levels (m)
	0.00 0.20	Continuous sample		one (MADE GROUND)	,				
	0.90	Sample	Loose dark brown ver	y silty gravelly sand (To	OPSOIL/SU	IBSOIL)			
1			Very loose brown slig (GLACIAL DEPOSITS	htly gravelly fine to mee S)	dium graine	d sand	1		
	1.50		Loose red brown fine	grained SAND (GLAC	IAL DEPOS	SITS)			
2	2.15		2.05 to 2.15m	own and red brown san		gravelly clay from	2		
			Loose red brown sligt (GLACIAL DEPOSITS	ntly gravelly coarse grai δ)	ined SAND				
3	3.00 3.20			slightly silty fine graine DSTONE FORMATION		ONE	3		
4							4		
5							5		
6							6		
7							7		
8							8		
9							9		
ę	Key to s SPT N	amples/in situ Standard Pen N value	netration Test	arks:- 1. Groundwater enco	ountered at	2 00m			
	N N value 1. Groundwater encountered at 2.00m cu Undrained Shear Strength 2. Slotted 50mm ID HDPE pipe from 0.50m to 2.20m with pea gravel surround. Plain pipe from								

Cu	Undrained Shear Strengt
	(from Shear Vane)

- surface to 0.50m with bentonite seal. Pipe capped with bung and gas tap No visual or olfactory evidence of contamination
- 3.

		Associates		MINI RIG BO		RECORD		BH No.	
38 South Avenue Stourbridge West Midlands		lge	Site Location	Village Road, Child	ds Ercall			BH5	
	DY8 3XY		Client Name	Ling Developments Limited				Job No.	
	01384 8	20578 tel	Date of Drilling	25/02/21	Grid Re	ef		P21004	
	Strata Depth (m)	Sample Depth (m)	Strata Description		·	Legend	Casing and Test Record	Water/ <i>Reduced</i> Levels (m)	
	0.00	Continuous sample	Brick and concrete ru	bble (MADE GROUND)					
	0.30	Sample	Loose dark brown sar	Loose dark brown sandy gravelly silt (TOPSOIL/SUBSOIL)					
1	0.90		Loose red brown sligh	tly clayey fine grained S	and (glacial de	EPOSITS)			
2			with some fine to m	edium subangular to rou	nded gravel from 1.	90m			
	2.70		2.70m	ed brown and brown silty		m 2.60 to			
3	2.85		(BRIDGNORTH SAN	slightly silty fine grained DSTONE FORMATION)	SANDSTONE	3			
4									
4						4			
5						5			
6						6			
7									
7						7			
8									
8						8			
9						9			
		L	I					I	
	Key to samples/in situ tests:- Remarks:- SPT Standard Penetration Test 1. N N value 1. c _u Undrained Shear Strength 2. Slotted 50mm ID HDPE pipe from 0.50m to 2.65m with pea gravel surround. Plain pipe from								

u	Undrained Shear Streng
	(from Shear Vane)

- surface to 0.50m with bentonite seal. Pipe capped with bung and gas tap No visual or olfactory evidence of contamination
- 3.

Spilman Associates MINI RIG BOREHOLE RECORD				BH No.				
	38 South Stourbrid West Mic	lge	Site Location	Village Road, Childs Er	call			BH6
	DY8 3XY		Client Name	Ling Developments Lin	iited			Job No.
	01384 8	20578 tel	Date of Drilling	25/02/21	Grid Ref			P21004
	Strata Depth (m)	Sample Depth (m)	Strata Description		- -	Legend	Casing and Test Record	Water/ <i>Reduced</i> Levels (m)
	0.00	Continuous sample	Loose dark brown sar (MADE GROUND)	ndy slightly gravelly silt with oc	casional brick fragments			
1	0.70		Loose brown slightly	gravelly fine grained SAND (G	LACIAL DEPOSITS)			
1	1.10		Firm red brown with s (GLACIAL DEPOSITS	ome light brown mottling sligh	ly gravelly sandy CLAY			
2	1.90			gravelly very clayey SAND(G edium subangular to rounded		2		
3	2.60 2.80			slightly silty fine grained SANI DSTONE FORMATION)	DSTONE	3		
4								
						4		
5						5		
6						6		
7						7		
8						8		
9						9		
			1					
:	Key to s SPT N	amples/in situ Standard Pen N value	etration Test	arks:- 1. Groundwater encountere 2. Slotted 50mm ID HDPE r	d at 2.00m ipe from 0.50m to 2.30m	with pop a	roval surround D	ain ning from

Undrained Shear Strength (from Shear Vane)

Slotted 50mm ID HDPE pipe from 0.50m to 2.30m with pea gravel surround. Plain pipe from surface to 0.50m with bentonite seal. Pipe capped with bung and gas tap
 No visual or olfactory evidence of contamination

APPENDIX H

	ASSOCIATES		TRIAL PIT	NO:	TP1		
Geotechnical and E 38 South Avenue Stourbridge West Midlands DY	nvironmental Engineers 8 3XY						
Tel: 01384 820578			TRIAL P	IT RECOF	RD		
Client: Ling Deve	elopments Limited	Excavatio	n Method:	Tracked Ex	xcavator		
Site: Village R	oad, Childs Ercall	Logged By	/:	HDS			
Date: 04/02/21		Job Numb	er:	P21004			
Depth (m)	Strata Description						
0 – 0.70	Loose dark brown s brick fragments (MA		il) with occ	asional			
0.70 – 1.00	Loose orange brown to medium subangula (GLACIAL DEPOSITS	ar to subrounded S)		l is fine			
Stability of Exca	vation:	Stable					
Groundwater Ob	oservations:	Slight water ing	ress at 1.00)m			
Samples Taken:		SB @ 0.30m; S	B @ 1.00m	I			
Insitu Testing:		None					

-	ASSOCIATES		TRIAL PIT	NO:	TP2
Geotechnical and E 38 South Avenue Stourbridge West Midlands DY8	nvironmental Engineers 3 3XY				
Tel: 01384 820578			TRIAL P		RD
Client: Ling Deve	elopments Limited	Excavatior	Method:	Tracked E	xcavator
Site: Village Re	oad, Childs Ercall	Logged By	/:	HDS	
Date: 04/02/21		Job Numb	er:	P21004	
Depth (m)	Strata Description				
0 – 0.90	Loose dark brown an silt with some ash and			gravelly	
0.90 – 1.70	Loose brown silty g medium subangular to (GLACIAL DEPOSITS	o subrounded S)		fine to	
Stability of Exca	vation:	Unstable below	0.90m		
2Groundwater C	bservations:	Moderate water	ingress at	1.20m	
Samples Taken:		SB @ 0.20m: S	B @ 1.70m		
Insitu Testing:		None			

	ASSOCIATES			۲NO:	ТРЗ
Geotechnical and E 38 South Avenue Stourbridge West Midlands DY	nvironmental Engineers 3 3XY				
Tel: 01384 820578			TRIAL P	IT RECOF	RD
Client: Ling Deve	elopments Limited	Excavation	n Method:	Tracked Ex	kcavator
Site: Village R	oad, Childs Ercall	Logged By	/:	HDS	
Date: 04/02/21		Job Numb	er:	P21004	
Depth (m)	Strata Description				
0 – 0.20	Grey sandy gravel of	roadstone (MAD	E GROUNI	D)	
0.20 – 0.50	Loose brown sandy s	ilt (TOPSOIL)			
0.50 - 1.00	Loose red brown slidy s Gravel is fine to medi (GLACIAL DEPOSITS	ightly silty slight um subangular to S)	o subround		
Stability of Exca	vation:	Stable			
Groundwater Ob		Ground saturate	ed below 0.	50m	
Samples Taken:		SB @ 0.40m; S	B @ 1.00m	1	
Insitu Testing:		None			

-	ASSOCIATES		TRIAL PI	۲NO:	TP4
Geotechnical and E 38 South Avenue Stourbridge West Midlands DY	nvironmental Engineers 8 3XY				
Tel: 01384 820578			TRIAL P		RD
Client: Ling Deve	elopments Limited	Excavatio	n Method:	Tracked E	xcavator
Site: Village R	oad, Childs Ercall	Logged By	/:	HDS	
Date: 04/02/21		Job Numb	er:	P21004	
Depth (m)	Strata Description				
0 – 0.40	Loose brown sandy occasional brick fragr			oil) with	
0.40 – 1.20	Loose red brown silty fine to medium suban (GLACIAL DEPOSITS	igular to subroun S)	Ided	ravel is	
Stability of Exca	vation:	Unstable throug	ghout		
Groundwater Ob	oservations:	Slight water ing	ress at 1.00)m	
Samples Taken:		SB @ 0.15m: S	B @ 1.20m	ı	
Insitu Testing:		None			

	ASSOCIATES		TRIAL PI	۲NO:	TP5		
Geotechnical and E 38 South Avenue Stourbridge West Midlands DY8	nvironmental Engineers 3 3XY						
Tel: 01384 820578			TRIAL P	IT RECOF	RD		
Client: Ling Deve	elopments Limited	Excavation	n Method:	Tracked E	xcavator		
Site: Village R	oad, Childs Ercall	Logged By	/:	HDS			
Date: 04/02/21		Job Numb	er:	P21004			
Depth (m)	Strata Description						
0 – 0.30	Grey sandy gravel of	roadstone (MAE	DE GROUN	D)			
0.30 – 0.40	Concrete slab (MADI	E GROUND)					
0.40 – 0.55	Brick rubble (MADE	GROUND)					
0.55 – 1.10	Loose grey brown sar and clinker (MADE G		vith occasic	onal ash			
1.10 – 1.50	Loose brown silty slig to medium subangula (GLACIAL DEPOSITS	r to subrounded	ND. Grave	I is fine			
	No visual or olfactory	evidence of con	tamination				
Stability of Exca	vation:	Slightly unstable	е				
Groundwater Ob	oservations:	Damp below 1.0	00m				
Samples Taken:		SB @ 0.60m; S	B @ 1.50m	1			
Insitu Testing:		None					

APPENDIX I

Spilman Associates 38 South Avenue		ROTARY BOREHOLE RECORD						BH No.	
Stourbridge West Midlands DY8 3XY		Site Location	Village Road, Childs Erc	all					101
Y8 3XY		Client Name	Ling Developments Limi	ted					Job No.
1384 8	20578 tel	Date of Drilling	26/02/21 - 01/03/21	Grid Ref					P21004
rata epth m)	Drilling Method	Strata Description	1			TCR %	SCR %	RQD %	Water/ <i>Reduced</i> Levels (m)
0.00	Rotary Open	Grey brown sandy gra	avel of roadstone (MADE GRO	JND					
1.80		Brown slightly gravelly	/ clayey SAND(GLACIAL DEP	OSITS)	2				
		Red brown SANDSTO	DNE (BRIDGNORTH SANDST	ONE FORMATION)	3				
5.00	Rotary Cored	closely spaced sub-ho	prizontal planar smooth discoun	extremely closely to tinuities		63			
		spaced sub-horizonta	I planar smooth disconituities	closely to medium	5	68			
					7	91			
		No core recovery 8.00)m to 9.50m		9	0 90			
	.80 .240	Jast 8 20578 tel Jast 8 20578 tel Jast 8 20578 tel Drilling Method Method 0.00 Rotary Open 80 Rotary Cored	R 3XY Client Name 384 820578 tel Date of Drilling rata pth n) Drilling Method Strata Description 1.00 Rotary Open Grey brown sandy gravely .80 Brown slightly gravely .80 Red brown SANDSTO .80 Red brown SANDSTO .80 Very weak red brown closely spaced sub-ho (BRIDGNORTH SANI Spaced sub-horizonta (BRIDGNORTH SANI (BRIDGN	Client Name Ling Developments Limit 384 820578 tel Date of Drilling 26/02/21 – 01/03/21 Tata Drilling Method Strata Description 0.00 Rotary Grey brown sandy gravel of roadstone (MADE GROU 0.00 Rotary Grey brown sandy gravel of roadstone (MADE GROU 0.00 Rotary Brown slightly gravelly clayey SAND (GLACIAL DEP 0.00 Red brown SANDSTONE (BRIDGNORTH SANDSTONE) 0.00 Rotary Very weak red brown fine grained SANDSTONE with closely spaced sub-horizontal planar smooth discoun (BRIDGNORTH SANDSTONE FORMATION)	Glient Name Ling Developments Limited 384 \$20578 tel Date of Drilling 26/02/21 – 01/03/21 Grid Ref ata prilling pth method Strata Description Image: Strata Description Image: Strata Description .00 Rotary Open Grey brown sandy gravel of roadstone (MADE GROUND Image: Strata Description .80 Brown slightly gravelly clayey SAND (GLACIAL DEPOSITS) Image: Strata Description .80 Brown slightly gravelly clayey SAND (GLACIAL DEPOSITS) .80 Red brown SANDSTONE (BRIDGNORTH SANDSTONE FORMATION) .60 Very weak red brown fine grained SANDSTONE with extremely closely to closely spaced sub-horizontal planar smooth discontinuities (BRIDGNORTH SANDSTONE FORMATION) .60 Very weak red brown fine grained SANDSTONE with closely to medium spaced sub-horizontal planar smooth discontinuities (BRIDGNORTH SANDSTONE FORMATION) .60 Very weak red brown fine grained SANDSTONE with closely to medium spaced sub-horizontal planar smooth discontinuities (BRIDGNORTH SANDSTONE FORMATION)	Glient Name Ling Developments Limited 384 820578 tel Date of Drilling 26/02/21 – 01/03/21 Grid Ref Legend atta Drilling Strata Description Legend 1.00 Rotary Open Grey brown sandy gravel of roadstone (MADE GROUND Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Grey brown sandy gravel of roadstone (MADE GROUND .00 Rotary Open Grey brown sandy gravel of roadstone (MADE GROUND Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2">Grey brown sandy gravel of roadstone (MADE GROUND .00 Rotary Open Brown slightly gravelly clayey SAND (GLACIAL DEPOSITS) Image: Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Col	9:3X* Client Name Ling Developments Limited 3B4 320578 tel Date of Drilling 26/02/21 - 01/03/21 Grid Ref integrate Strata Description Legend TCR ** 0:00 Rotary Open Grey brown sandy gravel of roadstone (MADE GROUND Legend TCR ** .00 Rotary Open Grey brown sandy gravel of roadstone (MADE GROUND Image: Comparison of the state of	SX Client Name Ling Developments Limited 384 320578 tel Date of Drilling 26/02/21 - 01/03/21 Grid Ref intermine Method Strata Description Legend TCR SCR .00 Rotary Grey brown sandy gravel of roadstone (MADE GROUND Image: SCR Image: SCR	9 3X7 Client Name Ling Developments Limited 384 820578 tell Date of Drilling 26/02/21 - 01/03/21 Grid Ref 384 820578 tell Strata Description Legend TCR SCR ROD 386 000 Rotary Grey brown sandy gravel of roadstone (MADE GROUND Image: Comparison of the strate Description Image: Comparison

Key to s	amples/in situ tests:-	Remark	S:-
TCR	Total Core Recovery		
SCR	Solid Core Recovery	1.	Borehole drilled with air mist flush
RQD	Rock Quality Designation	2.	Groundwater encountered at 9.00m
W	Water	3.	50mm ID slotted pipe from 11.00m to 18.50m with pea gravel surround. Plain pipe from
SPT	Standard Penetration Test		surface to 11.0m with bentonite seal. Pipe terminated with bung and gas tap
CPT	Cone Penetration Test		
Ν	N value		

		Associates		ROTARY BORE	HOLE RECC	RD				BH No.
38 South Avenue Stourbridge West Midlands DY8 3XY		lge	Site Location	Village Road, Childs Ere	all					101
			Client Name	Ling Developments Lim	ted					Job No.
	01384 8	20578 tel	Date of Drilling	26/02/21 - 01/03/21	2/21 – 01/03/21 Grid Ref					P21004
	Strata Depth (m)	Drilling Method	Strata Description	1	Legend	TCR %	SCR %	RQD %	Water/ <i>Reduced</i> Levels (m)	
10 11 12 13 14 15 16 17 18		Method Rotary Cored	Spaced sub-horizonta (BRIDGNORTH SAN	fine grained SANDSTONE with I planar smooth disconituities DSTONE FORMATION)	TONE with very		92 92 92 92 92			
1 9						19				

Key to s	Key to samples/in situ tests:-		S:-
TCR	Total Core Recovery		
SCR	Solid Core Recovery	1.	Borehole drilled with air mist flush
RQD	Rock Quality Designation	2.	Groundwater encountered at 9.00m
W	Water	3.	50mm ID slotted pipe from 11.00m to 18.50m with pea gravel surround. Plain pipe from
SPT	Standard Penetration Test		surface to 11.0m with bentonite seal. Pipe terminated with bung and gas tap
CPT	Cone Penetration Test		
N	N value		
		1	

APPENDIX J

SUMMARY OF SPT 'N' RESULTS

Borehole	Depth (m)	N Value		Blow	rs for 75m	m Penetr	ration	
BH1	1.00 - 1.45	17	5	4	4	5	4	4
	2.00 - 2.45	7	4	3	2	2	2	1
	3.00 - 3.45	4	2	2	1	1	1	1
	4.00 - 4.45	53 for 75mm	10	53 for 75	mm			
BH2	1.00 - 1.45	8	3	3	2	2	2	2
	2.00 - 2.45	59	6	10	15	12	14	18
	3.00 - 3.45	58 for 75mm	14	58				
BH3	1.00 - 1.45	1	1	0	1	0	0	0
	2.00 - 2.45	8	2	2	2	2	2	2
	3.00 - 3.45	25	1	1	4	6	7	8
	4.00 - 4.45	63 for 75mm	17	63				
BH7	1.00 - 1.45	8	2	2	2	2	2	2
	2.00 - 2.45	10	3	2	2	3	2	3
	3.00 - 3.45*	0	0	0	0	0	0	0
	3.50 - 3.84 51 for 200mm		1	1	2	7	42 for 50	mm

* SPT sank 450mm under own weight

APPENDIX K

PID SCREENING RESULTS

Exploratory Hole	Depth (m)	PID Reading (ppm)
BH1	0.50	0.0
	1.50	0.2
	2.50	0.0
	3.50	0.0
BH2	0.30	0.3
5=	0.50 - 1.00	0.9
	1.00 - 1.50	21.8
	1.50 - 1.70	0.9
	1.70 - 2.00	1.3
	2.00 - 2.50	5.7
	2.50 - 3.00	17.0
BH3	0.30	0.0
2110	1.50	0.0
	2.50	0.0
BH4	0.60	0.4
DIT	1.20	0.0
	1.80	0.0
	2.80	0.0
BH5	0.50	0.0
DIIO	1.20	0.0
	1.80	0.0
	2.40	0.0
	2.70	0.0
	2.80	0.0
BH6	0.80	0.0
DIIO	1.10	0.0
	1.70	0.0
	2.00	0.0
	2.70	0.0
BH7		0.7
	0.10	
	1.00 2.00	0.4
	3.50	0.2
BH101		0.1
БПІЛІ	4.00	
	5.00	0.1
	6.00	0.2
	6.50	0.1
	7.00	0.1
	8.00	0.2
	10.00	0.2
	11.50	0.0
	12.80	0.1
	13.00	0.2
	14.50	0.0
	15.50	0.0
	17.00	0.0
	18.50	0.0

PID SCREENING RESULTS

Exploratory Hole	Depth (m)	PID Reading (ppm)			
TP1	0.30	0.0			
	1.00	0.0			
TP2	0.20	0.0			
	1.70	0.0			
TP3	0.40	0.7			
	1.00	0.0			
TP4	0.15	0.2			
	1.20	0.0			
TP5	0.60	1.8			
	1.50	0.0			
Tank Base T1	2.00	35.9			
T2	2.00	11.9			
Т3	2.00	9.6			

APPENDIX L

STANDPIPE INSTALLATION DETAILS

Borehole	Plain Pipe	Slotted Pipe	Response Zone	Approximate
	(m)	(m)	(m)	Ground Level
				(m AOD)
BH1	0 - 1.00	1.00 - 3.50	1.00 - 4.15	81.63
BH2	0 - 1.00	1.00 - 2.60	1.00 - 3.15	79.92
BH4	0 - 0.50	0.50 - 2.20	0.50 - 3.20	80.96
BH5	0 - 0.50	0.50 - 2.65	0.50 - 2.85	80.16
BH6	0 - 0.50	0.50 - 2.30	0.50 - 2.80	79.31
BH7	0 - 0.50	0.50 - 3.60	0.50 - 3.85	81.71
BH101	0 - 11.00	11.00 - 18.50	11.00 - 18.50	79.79

APPENDIX M

SPILMAN ASSOCIATES						Gas Monitoring Record Form				
Geotechnical and Environmental Engineers 38 South Avenue						Job No	Job No: Village Road, Childs Ercall (P2100			
Stourbridge West Midlands DY8 3XY						Date:	Date: 04/02/21			
Tel: 01384 820578						Operator: HDS				
Weather Conditions: Overcast						Surfac	e Ground Co	nditions:	Damp	
Barometric Pressure Trend (24 hr):										
Ambient Air Concentration (% Vol)		Metha	ane		Carbon Dioxide			,,,		Barometric Pressure, Mb
Before		0.0			0.0			20.2 997		997
During										
After		0.0			0.0			20.2		997
Monito Point	oring	Gas Concentration (9					%)			
		Peak	1	1	Stea	ady	Γ			
BH No	Depth to Water (m bgl)	CH₄	CO ₂	O ₂	CH₄	CO ₂	O ₂	Gas Emission Rate (l/hr)	Observations/ Comments	
BH1	Dry				0.0	0.5	19.6	<0.5	PID 4.2ppm	
BH2	2.08				0.0	0.1	19.8	<0.5	PID 24.2ppm	

SPILMAN ASSOCIATES						Gas Monitoring Record Form				
Geotechnical and Environmental Engineers 38 South Avenue						Job N	Job No: Village Road, Childs Ercall (P210			
Stourbridge West Midlands DY8 3XY						Date:	Date: 10/02/21			
Tel: 01384 820578							Operator: HDS			
Weather Conditions: Overcast					Surface Ground Conditions: Damp					
Barometric Pressure Trend (24 hr):										
Ambie Conce (% Vol	ntration	Metha	ane		Car	Carbon Dioxide		,,,		Barometric Pressure, Mb
Before		0.0			0.0	0.0		20.0		998
During										
After		0.0			0.0			20.0		998
Monitoring Gas Gas			s Con	Concentration (%)						
		Peak			Stea	ady				
BH No	Depth to Water (m bgl)	CH₄	CO ₂	O ₂	CH₄	CO ₂	O ₂	Gas Emission Rate (l/hr)	Observations/ Comments	
BH1	3.22				0.0	4.1	14.9	<0.5	PID 0.0ppm	
BH2	2.06				2.4	6.2	4.5	<0.5	PID 78.8ppm	

	SPILMAN ASSOCIATES Geotechnical and Environmental Engineers							Gas Monitoring Record Form				
38 Sout	h Avenue			Ingine	513		Job N	o: Villag	Village Road, Childs Ercall (P21004/01)			
Stourbri West Mi	dge dlands DYa	8 3XY					Date: 16/02/21					
Tel:	01384 82057	78					Opera	Operator: HDS				
	r Conditions			•			Surfac	e Ground Co	nditions:	Damp		
Barometric Pressure Trend (24 hr):												
Ambient AirConcentrationMethane(% Vol)			Car	bon Di	ioxide	oxide Oxygen		Barometric Pressure, Mb				
Before		0.0			0.0			20.3		994		
During												
After		0.0			0.0			20.3		994		
Monito Point	oring		Ga	s Con	centra	ation (%)					
Point		Peak			Stea	ady						
BH No	Depth to Water (m bgl)	CH₄	CO ₂	O ₂	CH ₄	CO ₂	O ₂	Gas Emission Rate (l/hr)	Observ Comm			
BH1	3.12				0.0	3.9	16.6	<0.5	PID 2.1	lppm		
BH2	2.00				0.0	5.7	0.4	<0.5	PID 54	.8ppm		
<u></u>												
<u> </u>												

SPILMAN ASSOCIATES Geotechnical and Environmental Engineers						Gas	Monitor	ing Re	ecord Form	
38 South	h Avenue	invironr	nental E	Enginee	ers		Job N	o: Villag	e Road, C	hilds Ercall (P21004/01)
Stourbrie West Mi	diands DY	8 3XY					Date:	Date: 22/02/21		
Tel:	01384 82057	78					Opera	tor: HDS		
Weather Conditions: Sunny						Surfac	e Ground Co	nditions:	Wet	
Barometric Pressure Trend (24 hr):										
Ambie Conce (% Vol	ntration	Meth	ane		Car	bon Di	ioxide	Oxygen		Barometric Pressure, Mb
Before		0.0			0.0			20.0		1006
During										
After		0.0			0.0			20.0		1006
Monito Point	oring			s Con		ation (%)			
	1	Peak			Stea	ady				
BH No	Depth to Water (m bgl)	CH₄	CO ₂	O ₂	CH₄	CO ₂	O ₂	Gas Emission Rate (l/hr)	Observ Comm	
BH1	Dry				0.0	4.4	15.9	<0.5	PID 1.8	3ppm
BH2	1.96				0.0	0.4	19.8	<0.5	PID 31	.2ppm

	SPILMAN ASSOCIATES Geotechnical and Environmental Engineers							Gas Monitoring Record Form			
38 South	n Avenue	invironr	nental E	Enginee	ers		Job N	o: Villag	e Road, C	hilds Ercall (P21004/01)	
Stourbrie West Mi	dge dlands DY	8 3XY					Date:	Date: 02/03/21			
Tel:	01384 82057	78					Opera	tor: HDS			
Weather Conditions: Sunny						Surfac	e Ground Co	nditions:	Damp		
Barometric Pressure Trend (24 hr):											
Conce	Ambient AirMethaneCarbon DiConcentrationMethaneCarbon Di(% Vol)Carbon DiCarbon Di				ioxide	Oxygen		Barometric Pressure, Mb			
Before		0.0			0.0			19.8		1020	
During											
After		0.0			0.0			19.8		1020	
Monito Point	oring			s Con		ation (%)				
		Peak		· · · ·	Stea	ady	[
BH No	Depth to Water (m bgl)	CH₄	CO ₂	O ₂	CH₄	CO ₂	O ₂	Gas Emission Rate (l/hr)	Commo	vations/ ents	
BH1	Dry				0.0	4.6	15.6	<0.5	PID 0.8	3ppm	
BH2	1.99				0.0	0.7	19.5	<0.5	PID 4.8	3ppm	
BH4	1.07				0.0	0.7	18.3	<0.5	PID 0.3	3ppm	
BH5	1.45				0.0	3.4	16.8	<0.5	PID 0.4	lppm	
BH6	0.55				0.0	0.8	19.4	<0.5	PID 0.7	7ppm	
BH7	1.52				0.0	1.0	18.1	<0.5	PID 0.9		
BH101	3.29				0.0	0.3	19.1	<0.5	PID 0.1	lppm	

SPILMAN ASSOCIATES Geotechnical and Environmental Engineers							Gas Monitoring Record Form			
	n Avenue	nvironr	nental E	Enginee	ers		Job N	o: Villag	e Road, C	hilds Ercall (P21004/01)
	dlands DY	8 3XY					Date:	Date: 09/03/21		
Tel:	01384 82057	78					Opera	tor: HDS		
Weather Conditions: Overcast						Surfac	e Ground Co	nditions:	Dry	
Barometric Pressure Trend (24 hr):										
Ambient AirMethaneCarbonConcentrationMethaneCarbon(% Vol)CarbonCarbon				bon Di	ioxide	Oxygen		Barometric Pressure, Mb		
Before		0.0			0.0			19.8		1000
During										
After		0.0			0.0			19.8		1000
Monito Point	oring		Ga	s Con	centra	ation ('	%)			
1 Onit		Peak			Stea	ady				
BH No	Depth to Water (m bgl)	CH₄	CO ₂	O ₂	CH₄	CO ₂	O ₂	Gas Emission Rate (I/hr)	Observ Comm	
BH1	Dry				0.0	4.3	16.2	<0.5	PID 2.1	lppm
BH2	2.28				0.0	2.5	15.8	<0.5	PID 17	.4ppm
BH4	1.22				0.0	0.5	19.6	<0.5	PID 0.5	ōppm
BH5	1.54				0.0	4.2	15.9	<0.5	PID 0.0)ppm
BH6	0.60				0.0	0.9	19.4	<0.5	PID 0.6	òppm
BH7	1.55				0.0	0.3	19.9	<0.5	PID 0.0)ppm
BH101	3.28				0.0	0.0	20.1	<0.5	PID 0.3	3ppm

APPENDIX N

Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY Telephone: (01424) 718618

> cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical	Report	Number:	21-32015
------------	--------	---------	----------

- Issue:
- Date of Issue: 15/02/2021
- Contact: Nicki Spilman
- Customer Details: Spilman Associates Ltd 38 South Avenue Stourbridge

1

- Quotation No: Q19-01596
- Order No: P21004A
- Customer Reference: P21004A
- **Date Received:** 08/02/2021
- **Date Approved:** 15/02/2021

Village Road, Childs Ercall

West MidlandsDY9 3XY

Approved by:

Details:

Mike Varley, Technical Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

This report may only be reproduced in full

Sample Summary

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
226948	TP1 0.30	04/02/2021	08/02/2021	Sandy loam	
226949	TP2 0.20	04/02/2021	08/02/2021	Sandy loam	
226950	TP3 0.40	04/02/2021	08/02/2021	Loamy sand	
226951	TP4 0.15	04/02/2021	08/02/2021	Sandy loam	
226952	TP5 0.60	04/02/2021	08/02/2021	Loamy sand	

•		ELAB	Reference	226948	226949	226950	226951
	(Customer	Reference				
			Sample ID				
			•	2011	001	001	001
			mple Type	SOIL	SOIL	SOIL	SOIL
		•	e Location	TP1	TP2	TP3	TP4
		Sample	Depth (m)	0.30	0.20	0.40	0.15
		Sam	pling Date	04/02/2021	04/02/2021	04/02/2021	04/02/2021
Determinand	Codes	Units	LOD				
Soil sample preparation parameters	\$						
Moisture Content	N	%	0.1	15.1	19.8	15.1	17.8
Material removed	N	%	0.1	< 0.1	30.3	< 0.1	22.9
Description of Inert material removed	N	70	0	None	Stones,clinker	None	Stones,clinker
Metals		1					
	N 4		4	0.0	40.4	6.0	0.7
Arsenic	M	mg/kg	1	9.2	18.4	6.0	9.7
Cadmium Chromium	M	mg/kg	0.5 5	2.4 16.7	2.6 27.4	< 0.5 14.1	3.8 27.0
	M	mg/kg mg/kg	5	60.3	155	47.9	27.0
Copper Lead	M	mg/kg	5 5	176	275	47.9	647
Mercury	M	mg/kg	0.5	< 0.5	< 0.5	< 0.5	< 0.5
Nickel	M	mg/kg	5	30.4	59.8	14.0	27.2
Selenium	M	mg/kg	1	10.4	< 1.0	< 1.0	< 1.0
Zinc	M	mg/kg	5	539	943	158	714
Inorganics					0.0		
	N		4	.10	. 1.0	.10	0.5
Complex Cyanide	N	mg/kg	1	< 1.0	< 1.0	< 1.0	6.5
Elemental Sulphur Free Cyanide	M N	mg/kg	20 1	< 20 < 1.0	23 < 1.0	< 20 < 1.0	< 20 < 1.0
Hexavalent Chromium	N	mg/kg mg/kg	0.8	< 0.8	< 0.8	< 0.8	< 0.8
Total Sulphide	N	mg/kg	2	< 2	< 2	< 0.0	< 0.8
Total Cyanide	M	mg/kg	1	< 1.0	< 1.0	< 1.0	6.5
Acid Soluble Sulphate (SO4)	U	%	0.02	0.03	0.04	< 0.02	0.04
Water Soluble Boron	N	mg/kg	0.5	< 0.5	1.5	0.5	1.4
Miscellaneous			0.0			0.0	
	N 4	al Lunita	0.4	6.0	7.0	7.0	74
pH	M	pH units	0.1	6.9	7.2	7.0	7.1
Phenols							
Total Monohydric Phenols	N	mg/kg	5	< 5	< 5	< 5	< 5
Polyaromatic hydrocarbons							
Naphthalene	M	mg/kg	0.1	< 0.1	0.2	< 0.1	0.5
Acenaphthylene	М	mg/kg	0.1	< 0.1	0.4	< 0.1	0.3
Acenaphthene	М	mg/kg	0.1	< 0.1	0.2	< 0.1	0.2
Fluorene	М	mg/kg	0.1	< 0.1	0.1	< 0.1	< 0.1
Phenanthrene	М	mg/kg	0.1	< 0.1	1.9	< 0.1	0.8
Anthracene	M	mg/kg	0.1	< 0.1	1.1	< 0.1	0.6
Fluoranthene	M	mg/kg	0.1	< 0.1	5.0	< 0.1	1.8
Pyrene	M	mg/kg	0.1	< 0.1	4.3	< 0.1	1.4
Benzo(a)anthracene	M	mg/kg	0.1	< 0.1	3.0	< 0.1	1.2
Chrysene	M	mg/kg	0.1	< 0.1	2.7	< 0.1	1.0
Benzo(b)fluoranthene	M	mg/kg	0.1	< 0.1	2.7	< 0.1	2.4
Benzo(k)fluoranthene	M	mg/kg	0.1	< 0.1	3.0	< 0.1	2.4
Benzo(a)pyrene	M	mg/kg	0.1	< 0.1	3.5	< 0.1 < 0.1	3.8
Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	M	mg/kg	0.1 0.1	< 0.1 < 0.1	3.2 0.7	< 0.1	4.2
Benzo[g,h,i]perylene	M	mg/kg	0.1	< 0.1	2.5	< 0.1	5.4
Total PAH(16)	M	mg/kg		< 0.1		< 0.1	27.6
10(a) FAN(10)	IVI	mg/kg	0.4	< 0.4	34.6	< 0.4	21.0

		Reference	226948	226949	226950	226951	
	C	ustomer	Reference				
			Sample ID				
		Sa	mple Type	SOIL	SOIL	SOIL	SOIL
		Samp	le Location	TP1	TP2	TP3	TP4
			Depth (m)		0.20	0.40	0.15
			• • • •	04/02/2021	04/02/2021	04/02/2021	04/02/2021
Determinand	Codes	Units	LOD	04/02/2021	04/02/2021	04/02/2021	04/02/2021
BTEX	ooues	onito	200				
Benzene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0
Toluene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0
Ethylbenzene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0
Xylenes	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0
MTBE	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0
TPH CWG							
>C5-C6 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C6-C8 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C8-C10 Aliphatic	N	mg/kg	1	< 1.0	< 1.0	< 1.0	1.1
>C10-C12 Aliphatic	М	mg/kg	1	< 1.0	< 1.0	< 1.0	1.5
>C12-C16 Aliphatic	М	mg/kg	1	< 1.0	< 1.0	< 1.0	5.7
>C16-C21 Aliphatic	М	mg/kg	1	< 1.0	1.8	< 1.0	21.7
>C21-C35 Aliphatic	М	mg/kg	1	6.2	15.5	< 1.0	504
>C35-C40 Aliphatic	М	mg/kg	1	< 1.0	3.4	< 1.0	102
>C40-C44 Aliphatic	N	mg/kg	1	< 1.0	1.7	< 1.0	74.3
Total aliphatic hydrocarbons (>C5 - C44)	N	mg/kg	1	8.4	23.4	1.4	711
>C5-C7 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C7-C8 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C8-C10 Aromatic	N	mg/kg	1	< 1.0	< 1.0	< 1.0	2.8
>C10-C12 Aromatic	M	mg/kg	1	< 1.0	< 1.0	< 1.0	2.7
>C12-C16 Aromatic	М	mg/kg	1	< 1.0	2.2	< 1.0	19.4
>C16-C21 Aromatic	М	mg/kg	1	4.4	15.6	< 1.0	111
>C21-C35 Aromatic	М	mg/kg	1	53.7	140	< 1.0	2100
>C35-C40 Aromatic	М	mg/kg	1	19.2	37.8	< 1.0	883
>C40-C44 Aromatic Soil	N	mg/kg	1	3.3	8.0	< 1.0	259
Total aromatic hydrocarbons (>C5 - C44)	N	mg/kg	1	82.0	204	< 1.0	3380
Total petroleum hydrocarbons (>C5 - C44)	N	mg/kg	1	90.3	228	2.2	4090

Report No.: 21-32015, issue number 1				
		ELAB	Reference	226952
	C	Customer	Reference	
			Sample ID	
			•	0.011
			mple Type	SOIL
		Sampl	e Location	TP5
		Sample	Depth (m)	0.60
		Sam	pling Date	04/02/2021
Determinand	Codes	Units	LOD	
Soil sample preparation paramete		Unite	202	
Moisture Content		0/	0.1	45.0
Material removed	N N	% %	0.1	15.3 < 0.1
Description of Inert material removed	N	/0	0.1	None
	IN		0	INONE
Metals				
Arsenic	M	mg/kg	1	4.3
Cadmium	M	mg/kg	0.5	< 0.5
Chromium	M	mg/kg	5	11.7
Copper	M	mg/kg	5 5	37.7
Lead	M	mg/kg mg/kg	0.5	69.1 < 0.5
Mercury Nickel	M	mg/kg	5	< 0.5 9.5
Selenium	M	mg/kg	1	< 1.0
Zinc	M	mg/kg	5	91.9
-		mg/kg		51.5
Inorganics				
Complex Cyanide	N	mg/kg	1	< 1.0
Elemental Sulphur	M	mg/kg	20	< 20
Free Cyanide Hexavalent Chromium	N	mg/kg	1	< 1.0
Total Sulphide	N N	mg/kg mg/kg	0.8	< 0.8 < 2
Total Cyanide	M	mg/kg	1	< 1.0
Acid Soluble Sulphate (SO4)	U	//////////////////////////////////////	0.02	0.02
Water Soluble Boron	N	mg/kg	0.5	< 0.5
Miscellaneous			0.0	
	•		0.4	0.4
pH	M	pH units	0.1	6.1
Phenols				
Total Monohydric Phenols	N	mg/kg	5	< 5
Polyaromatic hydrocarbons				
Naphthalene	M	mg/kg	0.1	< 0.1
Acenaphthylene	M	mg/kg	0.1	< 0.1
Acenaphthene	M	mg/kg	0.1	< 0.1
Fluorene	M	mg/kg	0.1	< 0.1
Phenanthrene	M	mg/kg	0.1	< 0.1
Anthracene	M	mg/kg	0.1	< 0.1
Fluoranthene	M	mg/kg	0.1	< 0.1
Pyrene	M	mg/kg	0.1	< 0.1
Benzo(a)anthracene	M	mg/kg	0.1	< 0.1
Chrysene	M	mg/kg	0.1	< 0.1
Benzo(b)fluoranthene	M	mg/kg	0.1	< 0.1
Benzo(k)fluoranthene Benzo(a)pyrene	M	mg/kg	0.1	< 0.1
Denzu(a)pyrene	M	mg/kg mg/kg	0.1	< 0.1
			0.1	< 0.1
Indeno(1,2,3-cd)pyrene	M			- 0 1
	M M M	mg/kg mg/kg	0.1 0.1	< 0.1 < 0.1

Report No.: 21-32015, issue number 1

ELAB Reference 226952								
	C	Reference						
			Sample ID					
		Sa	mple Type	SOIL				
		Sampl	e Location	TP5				
			Depth (m)	0.60				
			pling Date					
Determinand	Codes	Units	LOD	04/02/2021				
BTEX	ooucs	Unito	LUD					
Benzene	M	ug/kg	10	< 10.0				
Toluene	M	ug/kg	10	< 10.0				
Ethylbenzene	M	ug/kg	10	< 10.0				
Xylenes	M	ug/kg	10	< 10.0				
MTBE	N	ug/kg	10	< 10.0				
TPH CWG								
>C5-C6 Aliphatic	N	mg/kg	0.01	< 0.01				
>C6-C8 Aliphatic	N	mg/kg	0.01	< 0.01				
>C8-C10 Aliphatic	N	mg/kg	1	< 1.0				
>C10-C12 Aliphatic	M	mg/kg	1	< 1.0				
>C12-C16 Aliphatic	M	mg/kg	1	1.3				
>C16-C21 Aliphatic	M	mg/kg	1	< 1.0				
>C21-C35 Aliphatic	M	mg/kg	1	12.4				
>C35-C40 Aliphatic	M	mg/kg	1	2.6				
>C40-C44 Aliphatic	N	mg/kg	1	3.4				
Total aliphatic hydrocarbons (>C5 - C44)	N	mg/kg	1	21.3				
>C5-C7 Aromatic	N	mg/kg	0.01	< 0.01				
>C7-C8 Aromatic	N	mg/kg	0.01	< 0.01				
>C8-C10 Aromatic	N	mg/kg	1	< 1.0				
>C10-C12 Aromatic	M	mg/kg	1	2.1				
>C12-C16 Aromatic	M	mg/kg	1	1.6				
>C16-C21 Aromatic	M	mg/kg	1	6.2				
>C21-C35 Aromatic	M	mg/kg	1	50.1				
>C35-C40 Aromatic	M	mg/kg	1	14.0				
>C40-C44 Aromatic Soil	N	mg/kg	1	7.6				
Total aromatic hydrocarbons (>C5 - C44)	N	mg/kg	1	82.5				
Total petroleum hydrocarbons (>C5 - C44)	N	mg/kg	1	104				

7

Unit A2, Windmill Road, Ponswood Industrial Estate, St Leonards on Sea, East Sussex, TN38 9BY Tel: +44 (0)1424 718618, Email: info@elab-uk.co.uk, Web: www.elab-uk.co.uk

Results Summary

Report No.: 21-32015, issue number 1

Asbestos Results

Analytical result only applies to the sample as submitted by the client. Any comments, opinions or interpretations (marked #) in this report are outside UKAS accreditation (Accreditation No2683). They are subjective comments only which must be verified by the client.

Elab No Depth (m)	Clients Reference	Description of Sample Matrix #	Asbestos	Gravimetric Analysis Total	Gravimetric Analysis by ACM Type	Free Fibre Analysis	Total Asbestos
226948 0.30	TP1	Brown sandy soil with stones, clinker	No asbestos detected	n/t	n/t	n/t	n/t
226949 0.20	TP2	Brown sandy soil with	No asbestos detected	n/t	n/t	n/t	n/t
226950 0.40	TP3	Brown sandy soil	No asbestos detected	n/t	n/t	n/t	n/t
226951 0.15	TP4	Brown sandy soil with stones, clinker	No asbestos detected	n/t	n/t	n/t	n/t
226952 0.60	TP5	Brown sandy soil	No asbestos detected	n/t	n/t	n/t	n/t

Method Summary Report No.: 21-32015, issue number 1

Parameter	Codes	Analysis Undertaken	Date	Method	Technique
	locace	On	Tested	Number	
Soil					
Free cyanide	N	As submitted sample	10/02/2021		Colorimetry
Sulphide	N	As submitted sample	10/02/2021	109	Colorimetry
Hexavalent chromium	N	As submitted sample	10/02/2021	110	Colorimetry
рН	М	Air dried sample	12/02/2021	113	Electromeric
Acid Soluble Sulphate	U	Air dried sample	11/02/2021	115	Ion Chromatography
Phenols in solids	N	As submitted sample	09/02/2021	121	HPLC
Elemental Sulphur	М	Air dried sample	10/02/2021	122	HPLC
PAH (GC-FID)	М	As submitted sample	10/02/2021	133	GC-FID
Low range Aliphatic hydrocarbons soil	N	As submitted sample	10/02/2021	181	GC-MS
Low range Aromatic hydrocarbons soil	N	As submitted sample	10/02/2021	181	GC-MS
BTEX in solids	М	As submitted sample	10/02/2021	181A	GC-MS
Water soluble boron	N	Air dried sample	10/02/2021	202	Colorimetry
Total cyanide	М	As submitted sample	10/02/2021	204	Colorimetry
TPH CWG soil by gc-gc	М	As submitted sample	10/02/2021	271	
Asbestos identification	U	Air dried sample	12/02/2021	280	Microscopy
Aqua regia extractable metals	М	Air dried sample	10/02/2021	300	ICPMS

Tests marked N are not UKAS accredited

Report Information

Report No.: 21-32015, issue number 1

Key

Key	
U	hold UKAS accreditation
М	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
^	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"
LOD	LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination.
	Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.
	ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received.
	PCB congener results may include any coeluting PCBs
	Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may
Deviation	affect the validity of the results.
Deviation	
a	No date of sampling supplied
b	No time of sampling supplied (Waters Only)
С	Sample not received in appropriate containers

- d Sample not received in cooled condition
- e The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- g Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage **APPENDIX O**

Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY Telephone: (01424) 718618

> cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical	Report	Number:	21-32016
------------	--------	---------	----------

- Issue:
- **Date of Issue:** 15/02/2021
- Contact: Nicki Spilman
- Customer Details: Spilman Associates Ltd 38 South Avenue Stourbridge

1

- Quotation No: Q19-01596
- Order No: P21004B
- Customer Reference: P21004B
- **Date Received:** 08/02/2021
- **Date Approved:** 15/02/2021

Village Road, Childs Ercall

West MidlandsDY9 3XY

Approved by:

Details:

Mike Varley, Technical Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

This report may only be reproduced in full

Sample Summary

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
226953	BH1 0.50	04/02/2021	08/02/2021	Loamy sand	
226954	BH1 1.50	04/02/2021	08/02/2021	Sand	
226955	BH2 0.50 - 1.00	04/02/2021	08/02/2021	Loamy sand	
226956	BH2 1.00 - 1.50	04/02/2021	08/02/2021	Loamy sand	
226957	BH2 1.70 - 2.00	04/02/2021	08/02/2021	Sand	
226958	BH2 2.00 - 2.50	04/02/2021	08/02/2021	Sand	
226959	BH2 2.50 - 3.00	04/02/2021	08/02/2021	Sand	

	ELAB Refe						226956	226957
	Customer Referer							
		5	Sample ID					
	Sample T						SOIL	SOIL
		Sample	e Location	BH1	BH1	BH2	BH2	BH2
	e e e e e e e e e e e e e e e e e e e		Depth (m)	0.50	1.50	0.50 - 1.00		1.70 - 2.00
		•	• • • •	04/02/2021	04/02/2021	04/02/2021		04/02/2021
Determinand	Codes		LOD		0 1/ 02/2021			
BTEX								
Benzene	M	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Toluene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Ethylbenzene	М	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Xylenes	М	ug/kg	10	< 10.0	< 10.0	< 10.0	16.1	< 10.0
MTBE	N	ug/kg	10	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
TPH CWG								
>C5-C6 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01
>C6-C8 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	0.06	< 0.01
>C8-C10 Aliphatic	N	mg/kg	1	< 1.0	5.3	< 1.0	7.4	< 1.0
>C10-C12 Aliphatic	М	mg/kg	1	< 1.0	16.3	< 1.0	24.1	< 1.0
>C12-C16 Aliphatic	М	mg/kg	1	< 1.0	28.3	< 1.0	76.0	2.1
>C16-C21 Aliphatic	М	mg/kg	1	< 1.0	< 1.0	< 1.0	71.5	3.2
>C21-C35 Aliphatic	М	mg/kg	1	7.7	3.2	1.5	17.9	1.6
>C35-C40 Aliphatic	М	mg/kg	1	1.1	< 1.0	< 1.0	< 1.0	< 1.0
>C40-C44 Aliphatic	N	mg/kg	1	2.0	2.1	1.2	1.7	< 1.0
Total aliphatic hydrocarbons (>C5 - C44)	N	mg/kg	1	12.6	56.3	4.3	199	7.7
>C5-C7 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C7-C8 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
>C8-C10 Aromatic	N	mg/kg	1	< 1.0	2.6	< 1.0	5.3	< 1.0
>C10-C12 Aromatic	M	mg/kg	1	1.5	7.4	< 1.0	20.6	< 1.0
>C12-C16 Aromatic	M	mg/kg	1	8.3	16.1	5.8	67.7	4.3
>C16-C21 Aromatic	M	mg/kg	1	2.5	1.4	6.5	74.2	1.5
>C21-C35 Aromatic	M	mg/kg	1	37.4	7.7	3.7	14.7	1.4
>C35-C40 Aromatic	M	mg/kg	1	10.2	3.8	1.3	2.4	< 1.0
>C40-C44 Aromatic Soil	N	mg/kg	1	4.9	4.7	2.9	3.9	1.9
Total aromatic hydrocarbons (>C5 - C44)	N	mg/kg	1	65.5	43.6	21.4	189	10.3
Total petroleum hydrocarbons (>C5 - C44)	N	mg/kg	1	78.1	100	25.8	388	18.0

Report No.: 21-32016, issue number 1

	ELAB R						
	Customer Refe						
		5	Sample ID				
		Sar	mple Type	SOIL	SOIL		
		Sample	e Location	BH2	BH2		
	S	Sample	Depth (m)	2.00 - 2.50	2.50 - 3.00		
			pling Date		04/02/2021		
Determinand	Codes		LOD				
BTEX	1		_				
Benzene	M	ug/kg	10	< 10.0	< 10.0		
Toluene	M	ug/kg	10	< 10.0	< 10.0		
Ethylbenzene	М	ug/kg	10	< 10.0	< 10.0		
Xylenes	M	ug/kg	10	< 10.0	43.1		
МТВЕ	N	ug/kg	10	< 10.0	< 10.0		
TPH CWG							
>C5-C6 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01		
>C6-C8 Aliphatic	N	mg/kg	0.01	< 0.01	0.02		
>C8-C10 Aliphatic	N	mg/kg	1	4.5	51.4		
>C10-C12 Aliphatic	M	mg/kg	1	20.0	127		
>C12-C16 Aliphatic	M	mg/kg	1	109	497		
>C16-C21 Aliphatic	M	mg/kg	1	133	536		
>C21-C35 Aliphatic	M	mg/kg	1	45.9	197		
>C35-C40 Aliphatic	М	mg/kg	1	1.4	6.1		
>C40-C44 Aliphatic	N	mg/kg	1	1.5	2.2		
Total aliphatic hydrocarbons (>C5 - C44)	N	mg/kg	1	315	1420		
>C5-C7 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01		
>C7-C8 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01		
>C8-C10 Aromatic	N	mg/kg	1	2.8	39.1		
>C10-C12 Aromatic	M	mg/kg	1	15.1	1.1		
>C12-C16 Aromatic	M	mg/kg	1	58.7	219		
>C16-C21 Aromatic	M	mg/kg	1	75.9	173		
>C21-C35 Aromatic	M	mg/kg	1	28.7	98.2		
>C35-C40 Aromatic	M	mg/kg	1	2.5	5.8		
>C40-C44 Aromatic Soil	N	mg/kg	1	2.9	3.6		
Total aromatic hydrocarbons (>C5 - C44)	N	mg/kg	1	187	539		
Total petroleum hydrocarbons (>C5 - C44)	N	mg/kg	1	502	1960		

T

1

Method Summary Report No.: 21-32016, issue number 1

Parameter	Codes	Analysis Undertaken On	Date Tested	Method Number	Technique
Soil					
Low range Aliphatic hydrocarbons soil	N	As submitted sample	10/02/2021	181	GC-MS
Low range Aromatic hydrocarbons soil	N	As submitted sample	10/02/2021	181	GC-MS
BTEX in solids	М	As submitted sample	10/02/2021	181A	GC-MS
TPH CWG soil by gc-gc	M	As submitted sample	10/02/2021	271	

Tests marked N are not UKAS accredited

Report Information

Report No.: 21-32016, issue number 1

Key

Key	
U	hold UKAS accreditation
М	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
^	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"
LOD	LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination.
	Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.
	ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received.
	PCB congener results may include any coeluting PCBs
	Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.
Deviation	•
а	No date of sampling supplied
b	No time of sampling supplied (Waters Only)
С	Sample not received in appropriate containers

- d Sample not received in cooled condition
- e The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- g Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage **APPENDIX P**

😵 eurofins

Chemtest Ltd Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-06605-1		
Initial Date of Issue:	08-Mar-2021		
Client	Spilman Associates Ltd		
Client Address:	38 South Avenue Stourbridge DY8 3XY		
Contact(s):	Harry Spilman		
Project	P21004H Village Road, Childs Ercall		
Quotation No.:	Q21-23068	Date Received:	03-Mar-2021
Order No.:		Date Instructed:	03-Mar-2021
No. of Samples:	6		
Turnaround (Wkdays):	5	Results Due:	09-Mar-2021
Date Approved:	08-Mar-2021		
Approved By:			
Manney			
Details:	Glynn Harvey, Technical Manager		

<u> Results - Soil</u>

Project: P21004H Village Road, Childs Ercall

Client: Spilman Associates Ltd		Chei	mtest J	ob No.:	21-06605	21-06605	21-06605	21-06605	21-06605	21-06605
Quotation No.: Q21-23068	(Chemte	st Sam	ple ID.:	1152808	1152809	1152810	1152811	1152812	1152813
		Sa	ample Lo	ocation:	BH101	BH101	BH101	BH101	BH101	BH101
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	pth (m):	4.00	6.00	8.00	10.00	13.00	15.50
			Date Sa	ampled:	26-Feb-2021	26-Feb-2021	26-Feb-2021	26-Feb-2021	26-Feb-2021	26-Feb-2021
Determinand	Accred.	SOP	Units	LOD						
Moisture	N	2030	%	0.020	12	12	9.0	9.2	9.0	7.8
Florisil Cleanup	N		-	N/A	Done	Done	Done	Done	Done	Done
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N		mg/kg		< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U		mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U		mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U		mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	Ν				< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N		mg/kg		< 10	< 10	< 10	< 10	< 10	< 10
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	U		µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Test Methods

SOP	Title	Parameters included	Method summary
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Report Information

Key	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently

corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com APPENDIX Q

Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY Telephone: (01424) 718618

> cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number: 21-32017

- Issue:
- **Date of Issue:** 15/02/2021
- Contact: Nicki Spilman
- Customer Details: Spilman Associates Ltd 38 South Avenue Stourbridge

1

- Quotation No: Q19-01596
- Order No: P21004C
- Customer Reference: P21004C
- **Date Received:** 09/02/2021
- **Date Approved:** 15/02/2021

Village Road, Childs Ercall

West MidlandsDY9 3XY

Approved by:

Details:

Mike Varley, Technical Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

This report may only be reproduced in full

Sample Summary

Elab No.	Client's Ref.	Date Sampled	Date Schedule	d Description	Deviations
226960	T1 2.00	04/02/2021	09/02/2021	Loamy sand	
226961	T2 2.00	04/02/2021	09/02/2021	Loamy sand	
226962	T3 2.00	04/02/2021	09/02/2021	Loamy sand	

	ELAB Reference				226961	226962
	Customer Reference					
		:	Sample ID			
		Sa	mple Type	SOIL	SOIL	SOIL
		Sampl	e Location	T1	T2	Т3
	ç	Sample	Depth (m)	2.00	2.00	2.00
		•	• • • •	04/02/2021	04/02/2021	04/02/2021
Determinand	Codes		LOD	0 1/02/2021	0 1/ 02/2021	0 1/ 02/2021
BTEX	ocues	Units	200			
Benzene	M	ug/kg	10	< 10.0	< 10.0	< 10.0
Toluene	M	ug/kg	10	< 10.0	< 10.0	< 10.0
Ethylbenzene	M	ug/kg	10	< 10.0	< 10.0	< 10.0
Xylenes	M	ug/kg	10	< 10.0	30.5	10.4
МТВЕ	N	ug/kg	10	< 10.0	< 10.0	< 10.0
TPH CWG						
>C5-C6 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01
>C6-C8 Aliphatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01
>C8-C10 Aliphatic	N	mg/kg	1	< 1.0	1.5	3.6
>C10-C12 Aliphatic	M	mg/kg	1	2.1	6.8	16.1
>C12-C16 Aliphatic	M	mg/kg	1	9.3	26.4	59.6
>C16-C21 Aliphatic	M	mg/kg	1	9.6	28.1	64.0
>C21-C35 Aliphatic	M	mg/kg	1	2.9	8.9	13.5
>C35-C40 Aliphatic	M	mg/kg	1	< 1.0	1.2	< 1.0
>C40-C44 Aliphatic	N	mg/kg	1	< 1.0	< 1.0	< 1.0
Total aliphatic hydrocarbons (>C5 - C44)	N	mg/kg	1	25.3	73.6	157
>C5-C7 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01
>C7-C8 Aromatic	N	mg/kg	0.01	< 0.01	< 0.01	< 0.01
>C8-C10 Aromatic	N	mg/kg	1	< 1.0	1.1	2.3
>C10-C12 Aromatic	M	mg/kg	1	1.9	5.8	12.5
>C12-C16 Aromatic	M	mg/kg	1	9.3	28.3	48.4
>C16-C21 Aromatic	М	mg/kg	1	4.9	20.4	47.4
>C21-C35 Aromatic	M	mg/kg	1	4.9	22.2	13.4
>C35-C40 Aromatic	M	mg/kg	1	< 1.0	8.1	< 1.0
>C40-C44 Aromatic Soil	N	mg/kg	1	2.5	1.2	1.1
Total aromatic hydrocarbons (>C5 - C44)	N	mg/kg	1	24.8	87.1	126
Total petroleum hydrocarbons (>C5 - C44)	N	mg/kg	1	50.1	161	283

Method Summary Report No.: 21-32017, issue number 1

Parameter	Codes	Analysis Undertaken On	Date Tested	Method Number	Technique
Soil					
Low range Aliphatic hydrocarbons soil	N	As submitted sample	11/02/2021	181	GC-MS
Low range Aromatic hydrocarbons soil	N	As submitted sample	11/02/2021	181	GC-MS
BTEX in solids	М	As submitted sample	11/02/2021	181A	GC-MS
TPH CWG soil by gc-gc	M	As submitted sample	10/02/2021	271	

Tests marked N are not UKAS accredited

Report Information

Report No.: 21-32017, issue number 1

Key

Key	
U	hold UKAS accreditation
М	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
^	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"
LOD	LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination.
	Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.
	ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received.
	PCB congener results may include any coeluting PCBs
	Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.
Deviation	•
а	No date of sampling supplied
b	No time of sampling supplied (Waters Only)
С	Sample not received in appropriate containers

- d Sample not received in cooled condition
- e The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- g Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage **APPENDIX R**

Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY Telephone: (01424) 718618

> cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number: 21-32083 Issue: 1 Date of Issue: 16/02/2021 Contact: Nicki Spilman **Customer Details:** Spilman Associates Ltd 38 South Avenue Stourbridge West MidlandsDY9 3XY **Quotation No:** Q19-01596 **Order No:** P21004E **Customer Reference:** P21004E Date Received: 11/02/2021 16/02/2021 **Date Approved:** Details: Village Road, Childs Ercall Approved by:

Mike Varley, Technical Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

This report may only be reproduced in full

Sample Summary

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
227278	BH1 3.22	10/02/2021	11/02/2021		
227279	BH2 2.06	10/02/2021	11/02/2021		

Report No.: 21-52005, 1550					
		ELAB	Reference	227278	227279
	Cu	stomer	Reference		
	Sample ID				
			mple Type	WATER	WATER
			e Location	BH1	BH2
		•			
	5	•	Depth (m)		2.06
		Sam	pling Date	10/02/2021	10/02/2021
Determinand	Codes	Units	LOD		
BTEX					
Benzene	N	ug/l	1	< 1.00	13.0
Toluene	N	ug/l	1	< 1.00	1.08
Ethylbenzene	N	ug/l	1	< 1.00	< 1.00
Xylenes	N	ug/l	1	< 1.00	2.76
MTBE	N	ug/l	1	< 1.00	< 1.00
TPH CWG					
>C5-C6 Aliphatic	N	ug/l	1	< 1.0	< 1.0
>C6-C8 Aliphatic	N	ug/l	1	< 1.0	< 1.0
>C8-C10 Aliphatic	N	ug/l	5	< 5.0	< 5.0
>C10-C12 Aliphatic	N	ug/l	5	8.7	14.5
>C12-C16 Aliphatic	N	ug/l	5	15.1	78.3
>C16-C21 Aliphatic	N	ug/l	5	8.7	87.2
>C21-C35 Aliphatic	N	ug/l	5	573	30.2
>C35-C40 Aliphatic	N	ug/l	5	88.4	< 5.0
Total (>C5-C40) Aliphatic	N	ug/l	5	694	210
>C5-C7 Aromatic	N	ug/l	1	< 1.0	13.0
>C7-C8 Aromatic	N	ug/l	1	< 1.0	1.1
>C8-C10 Aromatic	N	ug/l	5	< 5.0	6.3
>C10-C12 Aromatic	N	ug/l	5	< 5.0	121
>C12-C16 Aromatic	N	ug/l	5	7.2	174
>C16-C21 Aromatic	N	ug/l	5	11.5	125
>C21-C35 Aromatic	N	ug/l	5	365	58.5
>C35-C40 Aromatic	N	ug/l	5	48.9	< 5.0
Total (>C5-C40) Aromatic	N	ug/l	5	433	499
Total (>C5-C40) Ali/Aro	N	ug/l	5	1130	710

Method Summary Report No.: 21-32083, issue number 1

Parameter		Analysis Undertaken On	Date Tested	Method Number	Technique
Water					
Aliphatic/Aromatic hydrocarbons in water	N		16/02/2021		GC-FID
Aromatic hydrocarbons in water	N		16/02/2021		GC-FID
BTEX in waters	N		15/02/2021	200	GC-MS
Low range Aliphatic hydrocarbons water	N		15/02/2021	200	GC-MS
Low range Aromatic hydrocarbons water	N		15/02/2021	200	GC-MS
Aliphatic hydrocarbons in water	N		15/02/2021	215	GC-FID
Aromatic hydrocarbons in water	N		15/02/2021	215	GC-FID

Tests marked N are not UKAS accredited

Report Information

Report No.: 21-32083, issue number 1

Key

Кеу	
U	hold UKAS accreditation
М	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
۸	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"
LOD	LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination.
	Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.
	ELAB are unable to provide an interpretation or opinion on the content of this report.
	The results relate only to the sample received.
	PCB congener results may include any coeluting PCBs
	Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.
Deviation	•
a	No date of sampling supplied

- No date of sampling supplied а
- No time of sampling supplied (Waters Only) b
- С Sample not received in appropriate containers
- d Sample not received in cooled condition
- е The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- Sample age exceeds stability time (sampling to analysis) g

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

APPENDIX S

Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY Telephone: (01424) 718618

> cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number: 21-32181

Issue:	1
Date of Issue:	24/02/2021

- Contact: Nicki Spilman
- Customer Details: Spilman Associates Ltd 38 South Avenue Stourbridge West MidlandsDY9 3XY
- Quotation No: Q19-01596
- Order No: P21004F
- Customer Reference: P21004F
- **Date Received:** 18/02/2021
- **Date Approved:** 24/02/2021

Village Road, Childs Ercall

Approved by:

Details:

Mike Varley, Technical Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

This report may only be reproduced in full

Sample Summary

Report No.: 21-32181, issue number 1

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
227882	BH1 3.12	16/02/2021	18/02/2021		
227883	BH2 2.00	16/02/2021	18/02/2021		

Results Summary

Report No.: 21-32181, issue number 1

Report No.: 21-52101, 1350									
		ELAB	Reference	227882	227883				
	Reference								
	Sample ID Sample Type								
			e Location	WATER BH1	WATER BH2				
		•							
	5	•	Depth (m)		2.00				
		Sam	pling Date	16/02/2021	16/02/2021				
Determinand	Codes	Units	LOD						
BTEX									
Benzene	N	ug/l	1	< 1.00	11.0				
Toluene	N	ug/l	1	< 1.00	< 1.00				
Ethylbenzene	N	ug/l	1	< 1.00	< 1.00				
Xylenes	N	ug/l	1	< 1.00	< 1.00				
MTBE	N	ug/l	1	< 1.00	< 1.00				
TPH CWG									
>C5-C6 Aliphatic	N	ug/l	1	< 1.0	< 1.0				
>C6-C8 Aliphatic	N	ug/l	1	< 1.0	< 1.0				
>C8-C10 Aliphatic	N	ug/l	5	< 5.0	< 5.0				
>C10-C12 Aliphatic	N	ug/l	5	< 5.0	16.0				
>C12-C16 Aliphatic	N	ug/l	5	6.3	51.0				
>C16-C21 Aliphatic	N	ug/l	5	< 5.0	53.5				
>C21-C35 Aliphatic	N	ug/l	5	15.8	14.6				
>C35-C40 Aliphatic	N	ug/l	5	< 5.0	< 5.0				
Total (>C5-C40) Aliphatic	N	ug/l	5	22.1	135				
>C5-C7 Aromatic	N	ug/l	1	< 1.0	11.0				
>C7-C8 Aromatic	N	ug/l	1	< 1.0	< 1.0				
>C8-C10 Aromatic	N	ug/l	5	< 5.0	7.6				
>C10-C12 Aromatic	N	ug/l	5	< 5.0	160				
>C12-C16 Aromatic	N	ug/l	5	< 5.0	159				
>C16-C21 Aromatic	N	ug/l	5	< 5.0	69.6				
>C21-C35 Aromatic	N	ug/l	5	< 5.0	< 5.0				
>C35-C40 Aromatic	N	ug/l	5	< 5.0	< 5.0				
Total (>C5-C40) Aromatic	N	ug/l	5	< 5.0	407				
Total (>C5-C40) Ali/Aro	N	ug/l	5	22.1	542				

Method Summary Report No.: 21-32181, issue number 1

Parameter	Codes	Analysis Undertaken On	Date Tested	Method Number	Technique
Water					
Aliphatic/Aromatic hydrocarbons in water	N		24/02/2021		GC-FID
Aromatic hydrocarbons in water	N		24/02/2021		GC-FID
BTEX in waters	N		22/02/2021	200	GC-MS
Low range Aliphatic hydrocarbons water	N		22/02/2021	200	GC-MS
Low range Aromatic hydrocarbons water	N		22/02/2021	200	GC-MS
Aliphatic hydrocarbons in water	N		22/02/2021	215	GC-FID
Aromatic hydrocarbons in water	N		22/02/2021	215	GC-FID

Tests marked N are not UKAS accredited

Report Information

Report No.: 21-32181, issue number 1

ł	(ev
-	,

Key	
U	hold UKAS accreditation
Μ	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
^	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"
LOD	LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination.
	Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.
	ELAB are unable to provide an interpretation or opinion on the content of this report.
	The results relate only to the sample received.
	PCB congener results may include any coeluting PCBs
	Uncertainty of measurement for the determinands tested are available upon request
	Unless otherwise stated, sample information has been provided by the client. This may
	affect the validity of the results.
eviation	
а	No date of sampling supplied

De

- b No time of sampling supplied (Waters Only)
- С Sample not received in appropriate containers
- d Sample not received in cooled condition
- е The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- Sample age exceeds stability time (sampling to analysis) g

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

APPENDIX S

Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY Telephone: (01424) 718618

> cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number: 21-32464

Issue:	1

- **Date of Issue:** 10/03/2021
- Contact: Nicki Spilman
- Customer Details: Spilman Associates Ltd 38 South Avenue Stourbridge
- Quotation No: Q19-01596
- Order No: P21004I
- Customer Reference: P21004I
- **Date Received:** 04/03/2021
- **Date Approved:** 10/03/2021

Village Road, Childs Ercall

West MidlandsDY9 3XY

Approved by:

Details:

Mike Varley, Technical Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

This report may only be reproduced in full

Sample Summary

Report No.: 21-32464, issue number 1

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
229335	BH2 1.99	02/03/2021	04/03/2021		
229336	BH4 1.07	02/03/2021	04/03/2021		
229337	BH5 1.45	02/03/2021	04/03/2021		
229338	BH6 0.55	02/03/2021	04/03/2021		
229339	BH7 1.52	02/03/2021	04/03/2021		
229340	BH101 3.29	02/03/2021	04/03/2021		
229341	BH101 10.50	02/03/2021	04/03/2021		

Results Summary

Report No.: 21-32464, issue number 1

	ELAB Reference					229337	229338	229339	229340	229341
	Customer Reference									
	Sample ID									
			mple Type	WATER						
		•	e Location	BH2	BH4	BH5	BH6	BH7	BH101	BH101
		Sample	Depth (m)	1.99	1.07	1.45	0.55	1.52	3.29	10.50
		Sam	pling Date	02/03/2021	02/03/2021	02/03/2021	02/03/2021	02/03/2021	02/03/2021	02/03/2021
Determinand	Codes	Units	LOD							
BTEX			-							
Benzene	N	ug/l	1	1.77	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Toluene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Ethylbenzene	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Xylenes	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	1.24	< 1.00
MTBE	N	ug/l	1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
TPH CWG		ug/i		< 1.00	1.00	1.00	< 1.00	<u> </u>	<u> </u>	1.00
	N		4	1.0	1.0	1.0	1.0	1.0	1.0	10
>C5-C6 Aliphatic	<u>N</u>	ug/l	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C6-C8 Aliphatic	N	ug/l	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C8-C10 Aliphatic	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
>C10-C12 Aliphatic	<u>N</u>	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
>C12-C16 Aliphatic	N	ug/l	5	< 5.0	< 5.0	159	< 5.0	< 5.0	< 5.0	< 5.0
>C16-C21 Aliphatic	N	ug/l	5	< 5.0	< 5.0	150	< 5.0	< 5.0	< 5.0	< 5.0
>C21-C35 Aliphatic	N	ug/l	5	< 5.0	< 5.0	34.8	< 5.0	< 5.0	< 5.0	< 5.0
>C35-C40 Aliphatic	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total (>C5-C40) Aliphatic	N	ug/l	5	< 5.0	< 5.0	344	< 5.0	< 5.0	< 5.0	< 5.0
>C5-C7 Aromatic	N	ug/l	1	1.8	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C7-C8 Aromatic	N	ug/l	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C8-C10 Aromatic	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
>C10-C12 Aromatic	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
>C12-C16 Aromatic	N	ug/l	5	14.4	< 5.0	90.9	< 5.0	< 5.0	< 5.0	< 5.0
>C16-C21 Aromatic	N	ug/l	5	9.7	< 5.0	104	< 5.0	< 5.0	< 5.0	< 5.0
>C21-C35 Aromatic	N	ug/l	5	< 5.0	< 5.0	24.2	< 5.0	< 5.0	< 5.0	< 5.0
>C35-C40 Aromatic	N	ug/l	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total (>C5-C40) Aromatic	N	ug/l	5	25.9	< 5.0	219	< 5.0	< 5.0	< 5.0	< 5.0
Total (>C5-C40) Ali/Aro	N	ug/l	5	25.9	< 5.0	563	< 5.0	< 5.0	< 5.0	< 5.0

Method Summary Report No.: 21-32464, issue number 1

Parameter	Codes	Analysis Undertaken On	Date Tested	Method Number	Technique
Water					
Aliphatic/Aromatic hydrocarbons in water	N		10/03/2021		GC-FID
Aromatic hydrocarbons in water	N		10/03/2021		GC-FID
BTEX in waters	N		08/03/2021	200	GC-MS
Low range Aliphatic hydrocarbons water	N		08/03/2021	200	GC-MS
Low range Aromatic hydrocarbons water	N		08/03/2021	200	GC-MS
Aliphatic hydrocarbons in water	N		09/03/2021	215	GC-FID
Aromatic hydrocarbons in water	N		09/03/2021	215	GC-FID

Tests marked N are not UKAS accredited

Report Information

Report No.: 21-32464, issue number 1

Key

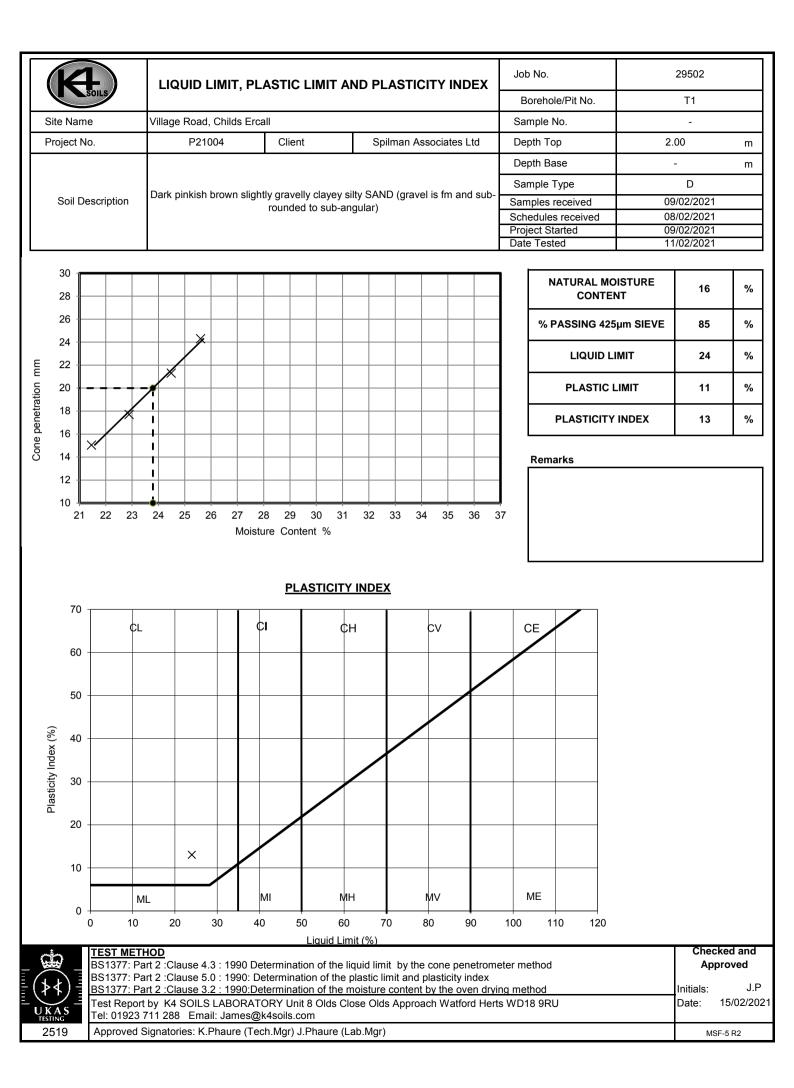
Кеу	
U	hold UKAS accreditation
М	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
۸	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"
LOD	LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination.
	Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.
	ELAB are unable to provide an interpretation or opinion on the content of this report.
	The results relate only to the sample received.
	PCB congener results may include any coeluting PCBs
	Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.
Deviation	
а	No date of sampling supplied

- a No date of sampling supplied
- b No time of sampling supplied (Waters Only)
- c Sample not received in appropriate containers
- d Sample not received in cooled condition
- e The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- g Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage **APPENDIX U**


11	
50	ILS

Sulphate Content (Gravimetric Method) for 2:1 Soil: Water Extract and pH Value - Summary of Results Tested in accordance with BS1377 : Part 3 : 2018, Clause 7.6 & Clause 12

Ubilize Road, Criterial control serveral Serveral control serveral Serveral control serveral Mode of the serveral control control serveral control contro control control control control control control contr		SOILS	y			Tested in accordance with BS1377 : Part 3 : 20	io, Clause	1.0 a Ci	ause 12		
Solution Control Condition Sector in the control of t	ob No.			Project N	lame						nme
Client Project started 0002 2104 Project started 0002 Project started Project started 0002 Project started Project started <th>9502</th> <th></th> <th></th> <th>Village R</th> <th>oad, Chilo</th> <th></th> <th></th> <th colspan="3">09/02/2021</th>	9502			Village R	oad, Chilo			09/02/2021			
Topic Junct Associates Ltd Testing State d Testing State	Project No.			Client							08/02/2021
Note that the second		•			Associate			12/02/2021			
Hole No. Ref Top Base m Type Soil description Parsing 2mm Content mg/l PH Remarks BH1 - 1.50 . D Reddish brown slightly gravelly slily very sandy CLAY (gravel is fm and sub-angular) 88 240 7.08 BH1 - 3.50 . D Reddish brown clayey SAND with rare fm sub-angular gravel 96 190 7.25 BH3 - 0.30 . D Reddish brown clayey SAND (gravel is fm and sub-angular) 94 240 7.28 BH3 - 1.50 . D Reddish brown clayey SAND (gravel is fm and sub-angular) 94 240 7.28 BH3 - 1.50 . D Reddish brown clayey gravelly SAND (gravel is fm and sub-angular) 81 300 7.28 BH3 - 1.50 . D Reddish brown clayey gravelly SAND (gravel is fm and sub-angular) 81 300 7.28 BH3 . 1.50 . D Redish brown clayey gravelly SAND (gravel is fm and sub-angular) 81 300 7.28 I . .	2.00.		Si	•	· • • • • • • • • • • • • • • • • • • •						
BH1 1.50 D Reddish brown slightly gravelly slity very sandy CLAY (gravel is fm 88 240 7.08 BH1 3.50 D Reddish brown clayey SAND with rare fm sub-angular gravel 96 190 7.25 BH3 0.30 D Reddish brown clayey SAND (gravel is fm and sub-angular gravel) 94 240 7.28 BH3 1.50 D Dark grey gravelly clayey SAND (gravel is fm and sub-angular) 94 240 7.28 BH3 1.50 D Dark grey gravelly clayey SAND (gravel is fm and sub-angular) 94 240 7.28 BH3 1.50 D Reddish brown clayey gravelly SAND (gravel is fm and sub-angular) 81 300 7.28 BH3 1.50 D Reddish brown clayey gravelly SAND (gravel is fm and sub-angular) 81 300 7.28 I	Hole No.	Ref			Туре	pН	1	Remarks			
BH1 - 1.50 - D and sub-angular) 1.11 88 240 7.08 BH1 - 3.50 - D Reddish brown clayey SAND (gravel is fm and sub-angular gravel) 96 190 7.25 BH3 - 0.30 - D Reddish brown clayey SAND (gravel is fm and sub-angular 94 240 7.28 BH3 - 1.50 - D Reddish brown clayey gravely SAND (gravel is fm and sub-angular 81 300 7.28 BH3 - 1.50 - D Reddish brown clayey gravely SAND (gravel is fm and sub-angular 81 300 7.28 BH3 - 1.50 - D Reddish brown clayey gravely SAND (gravel is fm and sub-angular 81 300 7.28 BH3 - 1.50 - D Reddish brown clayey gravely SAND (gravel is fm and sub-angular 81 300 7.28 I I I I I I I I I I I I			m	m							
BH3 · 0.30 · D Dark grey gravelly clayey SAND (gravel is fm and sub-rounded) 94 240 7.28 BH3 · 1.50 · D Reddish brown clayey gravelly SAND (gravel is fm and sub-angular osub-angular osub-rounded) 81 300 7.28 BH3 · 1.50 · D Reddish brown clayey gravelly SAND (gravel is fm and sub-angular osub-angular osub-rounded) 81 300 7.28 BH3 · 1.50 · D Reddish brown clayey gravelly SAND (gravel is fm and sub-angular osub-angular osub-angular osub-rounded) 81 300 7.28 BH3 · I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	BH1	-	1.50	-	D		88	240	7.08		
Image: A start Image	BH1	-	3.50	-	D	Reddish brown clayey SAND with rare fm sub-angular gravel	96	190	7.25		
bH3 - 1.50 - U to sub-rounded) - 81 300 7.28 I <td< td=""><td>BH3</td><td>-</td><td>0.30</td><td>-</td><td>D</td><td>Dark grey gravelly clayey SAND (gravel is fm and sub-rounded)</td><td>94</td><td>240</td><td>7.28</td><td></td><td></td></td<>	BH3	-	0.30	-	D	Dark grey gravelly clayey SAND (gravel is fm and sub-rounded)	94	240	7.28		
Image:	BH3	-	1.50	-	D		81	300	7.28		
Image: Checked a Image: Checked a											
Image: Checked a Image: Checked a											
Image:											
Image: Constraint of the second se											
Test Report by K4 SOILS LABORATORY Checked a											
Test Report by K4 SOILS LABORATORY Checked a											
Test Report by K4 SOILS LABORATORY Checked a											
Test Report by K4 SOILS LABORATORY Checked a											
Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288				<u> </u>	<u>I</u>	4	ecked and opproved J.P				
	UK/	A S								Date:	15/02/20

(K	Soils)	Sui	Summary of Natural Moisture Content, Liquid Limit and Plastic L														
Job No.			Project	Name		Programme												
										Samples r		09/02/2021						
298	502		Village	Road,	Childs Ercall	Schedule		08/02/2021										
Project No.			Client			Project sta	arted	09/02/2021										
P21	004		Spilma	ו Asso	ciates Ltd	Testing St	tarted	11/02/2021										
Hole No.			mple		Soil Description		NMC	Passing 425µm	LL	PL	PI	Remarks						
	Ref	Top m	Base m	Туре			%	425µm	%	%	%							
T1	-	2.00	-	D	Dark pinkish brown slightly gravel clayey silty SAND (gravel is fm an rounded to sub-angular)		16	85	24	11	13							
	Natura	al Moistu	is: BS13 re Conten s: clause	t : clau		ATORY ach		Checked and Approved										
					ure (Tech Mor) J Phaure (Lab Mor)		Tel: 0 Email: Jan	1923 711 nes@k4s		n		Initials J.P Date: 15/02/2021						

K							PA	RT		F	SIZ	'F I	פוס	ST F		דנו		N					Job Ref							29502								
			SOIL	5				I A				012												Bore	ehole	e/Pit	No.				T1							
	Site I	Nam	е	s Erc	all														Sam	nple	No.							-										
F	rojec	ct No).			Client Spilman Associates Ltd												Depth Top								r	n											
																				۵	Deptl	h Ba	se							-			r	n				
Soil Description Dark pinkish br								rown	wn slightly gravelly clayey silty SAND (gravel is fm and sub- rounded to sub-angular)												Sam	nple [·]	Туре	;			D											
											ounc	ied t	o su	ib-ai	ngui	ar)							Samples received							09/02/2021								
	Т	est N	<i>A</i> etho	d	BS13	377:	Part 2:	0. cl	ause	e 9.0)													edule rojec				_	08/02/2021									
			iletile	u	2010				0, 0.																Date							12/02/2021					-	
		С	LAY				SILT								SAN			_						RAVI					С	OBB	LES	BOULDERS						
	10			Fine	e	Me	edium		Coars	se		Fine	i		/lediu	ım I		Coa	arse	-	Fine	e	N	lediu	m !		oars	e	T! T		-							
	9																	┢			_																	
																\langle																						
	8	0													1/			Ť		┢												1				t		
%	7	0 -						-		_					/					┢										-		-			\vdash	-		
sing	6	0 -						_						/						-												-			\parallel	-		
Percentage Passing	5	0												/																					Щ			
ntage	4																																					
ercer	4	۰T										\mathbb{Z}						Π		Γ																		
ď.	3	0								-/										┢																t i		
	2	0							\vdash					-	-					┢		-		-				+		-		-		_		+		
	1	0 -	•					_					_							-						_						_			\parallel	-		
		。 [
		0.00)1			0.	.01					0.1				Par	ticle	1 Siz	70 1	nm			10							100 1000								
	Г			Sie	ving			П			s	Sedir	nen	tati		i ui			20 1																			
	1	Parti	cle Si	ze mm	9	% Pa	assing		Par	ticle		e mr	1		% Pa	assir	ng																					
			125			1	00			0.0	0613	3			3	30			Sample Prop					portions						% dry mass								
			90 75				00 00)453					27 26					ry co avel	arse	e							0.0 4.5								
			63				00		0.0320 0.0225							25				Gravel Sand													65				_	
			50 37.5	5			00				0164 0115					23 21				Silf Cla									_				17					
	E		28	,		1	00			0.0	0081	1				9																		.0				
	┝		20 14		+		00	-)057)040		+			8		-		Gra D1		g Ar	naly	sis				mm	+								\dashv	
	þ		10			ę	99			0.0	0028	3			1	3				D6	0							mm					0.2		_		コ	
	┝		6.3 5		<u> </u>		98 98	-		0.0	0016	j	+		1	2		_		D3 D1								mm mm	_				0.06	644			\neg	
	þ		3.35	5		ę	96						1							Un	iform		Coef						1						_		コ	
	┢		2 1.18	3	96 95	-					+					-		Cu	rvatu	ure C	Coeff	ICIER	nt															
	0.6 91								Pa			ensity			ume	d)					mark		d testi		2000	dance	14/18-	BC1	377 -	unia		od b-	low					
	0.425 85 0.3 71									2	.70		N	/lg/n	13			-		rre	paratio	JII and	น เชรไไ	ng IN i	aucor	Jalice	with	001	<i>311</i> l	une	55 1100	eu De	υW					
	0.212 58 0.15 41																																					
0.15 41 0.063 30																																						
ť	- <u>†</u>										K A	6-	ila		ha			-												С	heck	ked a	and	Appr	ove	d		
	0.00						Un	it Q				So					-	. 1	WD1	ואַר) B I I	I						Initi	ale						J.I	P		
2	≥≮	ノ					011					: jar								.0 3										•			,	F 100				
	K A										Т	el: ()19	23	71	128	8											Date	e:					5/02	202	:1		
UKAS Tel: 01923 711288 2519 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)												MSF-5-R3																										

