

Appendix B - Simple Index Approach

- Table 1 Pollution Hazard Indices (CIRIA: The SUDS Manual).
- Table 2 Mitigation Indices for Discharges to Surface Water (CIRIA: The SUDS Manual).
- Summary of Simple Index Approach Results (HR Wallingford SIA: Tool)

Pollution hazard indices for different land use classifications									
Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydrocarbons					
Residential roofs	Very low	0.2	0.2	0.05					
Other roofs (typically commercial/industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05					
Individual property driveways, residential car parks, low traffic roads (e.g. cul de sacs, homezones and general access roads) and non-residential car parking with infrequent change (e.g. schools, offices) i.e. < 300 traffic movements/day	Low	0.5	0.4	<mark>0.4</mark>					
Commercial yard and delivery areas, non-residential car parking with frequent change (e.g. hospitals, retail), all roads except low traffic roads and trunk roads/motorways	Medium	0.7	0.6	0.7					
Sites with heavy pollution (e.g. haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk roads and motorways	High	0.8	0.8	0.9					

Table 1 - Pollution Hazard Indices (CIRIA: The SUDS Manual)

NB. All applicable land uses relevant to this application highlighted, but only the worst case one to be used to progress SUDS selection.

Indicative SuDS mitigation indices for discharges to surface waters								
		Mitigation indices						
Type of SuDS component	TSS	Metals	Hydrocarbons					
Filter strip	0.4	0.4	0.5					
Filter drain	0.4	0.4	0.4					
Swale	<mark>0.5</mark>	0.6	<mark>0.6</mark>					
Bioretention system	0.8	0.8	0.8					
Permeable pavement	0.7	0.6	0.7					
Detention basin	<mark>0.5</mark>	<mark>0.5</mark>	<mark>0.6</mark>					
Pond	0.7	0.7	0.5					
Wetland	0.8	0.8	0.8					
Proprietary treatment systems	These must demonstrate that they can address each of the contaminant types to acceptable levels for frequent events up to approximately the 1 in 1 year return period event, for inflow concentrations relevant to the contributing drainage area.							

Table 2 - Mitigation Indices for Discharges to Surface Water (CIRIA: The SUDS Manual)

NB. Proposed SUDS measures to be used in Simple Index Approach highlighted.

SUMMARY TABLE		DESIGN CONDITIONS						
VVIIIAITI TABEL		1	2	3	4			
Land Use Type	Low traffic roads (e.g. residential roads and general access roads, < 300 traffic movements/day)							
Pollution Hazard Level Pollution Hazard Indices	Low							
TSS Metals Hydrocarbons	0.5 0.4 0.4							
SuDS components proposed								
Component 1	Detention basin	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B	Detention basins should be designed to ensure the effective retention and management of sediment, such that the sedimen will not be re-suspended and washed out in subsequent events					
Component 2	None							
Component 3	None							
SuDS Pollution Mitigation Indices TSS Metals Hydrocarbons	0.5 0.5 0.6							
Groundwater protection type	None							
Groundwater protection Pollution Mitigation Indices TSS Metals Hydrocarbons	0 0 0							
Combined Pollution Mitigation Indices TSS Metals Hydrocarbons Acceptability of Pollution Mitigation TSS Metals Hydrocarbons Hydrocarbons	0.5 0.5 0.6 Sufficient Sufficient Sufficient	Note: In order to meet both Water Quality criteria set out in the SuDS Manual (Chapter 4), Interception should be delivered for all impermeable areas wherever possible. Interception delivery and treatment may be met by the same components, but Interception requires separate evaluation.	Reference to local planning documents should also be made to identify any additional protection required for sites due to habitat conservation (see Chapter 7 The SuDS design process). The implications of developments on or within close proximity to an area with an environmental designation, such as a Site of Special Scientific Interest (SSSI), should be considered via consultation with relevant conservation bodies such as Natural England					

SUMMARY TABLE		DESIGN CONDITIONS						
JOMMAIII TABLE		1	2	3	4			
Land Use Type	Residential parking							
Pollution Hazard Level Pollution Hazard Indices	Low							
Metals	0.5 0.4 0.4							
SuDS components proposed								
Component 1	Detention basin	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B	retention and management of sediment, such that the sediment					
Component 2	None							
Component 3	None							
SuDS Pollution Mitigation Indices TSS Metals Hydrocarbons	0.5 0.5 0.6							
	None							
Groundwater protection Pollution Mitigation Indices TSS Metals Hydrocarbons	0 0 0							
Metals	0.5 0.5 0.6 Sufficient Sufficient Sufficient	Note: In order to meet both Water Quality criteria set out in the SuDS Manual (Chapter 4), Interception should be delivered for all impermeable areas wherever possible. Interception delivery and treatment may be met by the same components, but Interception requires separate evaluation.	Reference to local planning documents should also be made to identify any additional protection required for sites due to habitat conservation (see Chapter 7 The SuDS design process). The implications of developments on or within close proximity to an area with an environmental designation, such as a Site of Special Scientific Interest (SSSI), should be considered via consultation with relevant conservation bodies such as Natural England					

SUMMARY TABLE		DESIGN CONDITIONS						
SOMMATT TABLE		1	2	3	4			
Land Use Type	Residential roofing							
Pollution Hazard Level Pollution Hazard Indices	Very low							
TSS Metals Hydrocarbons	0.2 0.2 0.05							
SuDS components proposed								
Component 1	Detention basin	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B	retention and management of sediment, such that the sediment	t				
Component 2	None							
Component 3	None							
SuDS Pollution Mitigation Indices TSS Metals Hydrocarbons	0.5 0.5	5						
Groundwater protection type	None							
Groundwater protection Pollution Mitigation Indices TSS Metals Hydrocarbons	0 0 0							
Combined Pollution Mitigation Indices TSS Metals Hydrocarbons Acceptability of Pollution Mitigation TSS Metals Hydrocarbons	0.5 0.5 0.6 Sufficient Sufficient Sufficient	Note: In order to meet both Water Quality criteria set out in the SuDS Manual (Chapter 4), Interception should be delivered for all impermeable areas wherever possible. Interception delivery and treatment may be met by the same components, but Interception requires separate evaluation.	Reference to local planning documents should also be made to identify any additional protection required for sites due to habitat conservation (see Chapter 7 The SuDS design process). The implications of developments on or within close proximity to an area with an environmental designation, such as a Site of Special Scientific Interest (SSSI), should be considered via consultation with relevant conservation bodies such as Natural England					

Appendix C – Calculations

- Countesswells Greenfield Run-off Rates 10, 30 and 200 year rainfall return event.
- Two-Stage Detention Basin Calculations 10, 30 and 200 year rainfall return event.

DESCRIPTION	AREA (ha)	GREE	GREENFIELD RUNOFF RATE (I/s)		
		10 YEAR	30 YEAR	200 YEAR	
BASIN 1	4.024	23.22	30.42	45.31	
BASIN 2	4.962	28.63	37.51	55.87	
BASIN 3	10.057	58.03	76.03	113.24	
BASIN 4	6.530	37.68	49.37	73.53	
BASIN 5 TEMP	3.875	22.36	29.30	43.63	
BASIN 6	16.100	92.90	121.72	181.29	
BASIN 7	1.118	6.45	8.45	12.59	

Table 3 - Countesswells Phase 1 Basins - Greenfield Run-off Rates

NB. Basin and associated run-off rates pertinent to this drainage assessment highlighted, 10 year rate based on agreed 5.77l/s/ha with Aberdeen City Council.

FAIRHURST		Page 1
Woodburn Road	112614	
Blackburn	Basin 06	4
Aberdeen AB21 ORX	Countesswells	Micro
Date 01/12/2017	Designed by MC	The state of the s
File BASIN 06 1-10YR.SRCX	Checked by DA	Drainage
Micro Drainage	Source Control 2017.1.2	

	Sto		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min	Summer	146.740	0.740	92.9	0.0	92.9	1025.2	ОК
30	min	Summer	146.937	0.937	92.9	0.0	92.9	1406.5	ОК
60	min	Summer	147.118	1.118	92.9	0.0	92.9	1792.9	O K
120	min	Summer	147.248	1.248	92.9	0.0	92.9	2095.8	O K
180	min	Summer	147.313	1.313	92.9	0.0	92.9	2253.3	O K
240	min	Summer	147.345	1.345	92.9	0.0	92.9	2333.1	O K
360	min	Summer	147.380	1.380	92.9	0.0	92.9	2421.6	O K
480	min	Summer	147.397	1.397	92.9	0.0	92.9	2466.1	O K
600	min	Summer	147.405	1.405	92.9	0.0	92.9	2485.6	ОК

	Sto Eve		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
15	min	Summer	57.200	0.0	1126.4	0.0	29
30	min	Summer	39.780	0.0	1566.8	0.0	42
60	min	Summer	26.390	0.0	2079.1	0.0	70
120	min	Summer	16.705	0.0	2632.7	0.0	128
180	min	Summer	12.850	0.0	3037.7	0.0	186
240	min	Summer	10.693	0.0	3369.4	0.0	238
360	min	Summer	8.277	0.0	3913.0	0.0	300
480	min	Summer	6.907	0.0	4354.4	0.0	366
600	min	Summer	6.003	0.0	4730.3	0.0	436

FAIRHURST		Page 2
Woodburn Road	112614	
Blackburn	Basin 06	4
Aberdeen AB21 ORX	Countesswells	Micro
Date 01/12/2017	Designed by MC	and the second s
File BASIN 06 1-10YR.SRCX	Checked by DA	Drainage
Micro Drainage	Source Control 2017.1.2	

	Stor		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
720	min	Summer	147.406	1.406	92.9	0.0	92.9	2488.5	ОК
960	min	Summer	147.395	1.395	92.9	0.0	92.9	2460.1	O K
1440	min	Summer	147.337	1.337	92.9	0.0	92.9	2313.9	O K
2160	min	Summer	147.190	1.190	92.9	0.0	92.9	1957.9	O K
2880	min	Summer	147.022	1.022	92.9	0.0	92.9	1584.0	O K
4320	min	Summer	146.709	0.709	92.9	0.0	92.9	968.1	O K
5760	min	Summer	146.480	0.480	92.5	0.0	92.5	584.4	O K
7200	min	Summer	146.342	0.342	90.0	0.0	90.0	378.3	O K
8640	min	Summer	146.278	0.278	86.4	0.0	86.4	290.3	O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
960 1440 2160	min min min	Summer Summer Summer Summer	5.352 4.461 3.434 2.627 2.164	0.0 0.0 0.0 0.0	5060.6 5624.5 6494.3 7449.8 8185.1	0.0 0.0 0.0 0.0	506 648 928 1328 1704
5760 7200	min min	Summer Summer Summer Summer	1.636 1.343 1.156 1.025	0.0 0.0 0.0	9283.6 10160.4 10931.8 11635.4	0.0 0.0 0.0	2388 3064 3744 4408

FAIRHURST P			
Woodburn Road	112614		
Blackburn	Basin 06	4	
Aberdeen AB21 ORX	Countesswells	Micro	
Date 01/12/2017	Designed by MC	A STATE OF THE PARTY OF THE PAR	
File BASIN 06 1-10YR.SRCX	Checked by DA	Drainage	
Micro Drainage	Source Control 2017.1.2		

_	Storm Event	Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
10080	min Summe:	146.250	0.250	79.0	0.0	79.0	252.0	O K
15	min Winte	146.812	0.812	92.9	0.0	92.9	1159.0	O K
30	min Winte	147.027	1.027	92.9	0.0	92.9	1593.5	O K
60	min Winte	147.227	1.227	92.9	0.0	92.9	2045.1	O K
120	min Winte	147.377	1.377	92.9	0.0	92.9	2415.7	O K
180	min Winte	147.452	1.452	92.9	0.0	92.9	2609.2	O K
240	min Winte	147.494	1.494	92.9	0.0	92.9	2720.8	O K
360	min Winte	147.529	1.529	92.9	0.0	92.9	2818.1	O K
480	min Winte	147.544	1.544	92.9	0.0	92.9	2858.4	O K

	Storm Event		Rain (mm/hr)	Flooded Volume	Discharge Volume	Overflow Volume	Time-Peak (mins)	
			,	(m³)	(m³)	(m³)	, -,	
10080	min	Summer	0.929	0.0	12295.5	0.0	5144	
15	min '	Winter	57.200	0.0	1261.5	0.0	29	
30	min '	Winter	39.780	0.0	1754.8	0.0	43	
60	min '	Winter	26.390	0.0	2328.9	0.0	70	
120	min '	Winter	16.705	0.0	2948.3	0.0	126	
180	min '	Winter	12.850	0.0	3402.2	0.0	184	
240	min '	Winter	10.693	0.0	3774.2	0.0	238	
360	min 1	Winter	8.277	0.0	4382.6	0.0	340	
480	min '	Winter	6.907	0.0	4876.2	0.0	388	

FAIRHURST P			
Woodburn Road	112614		
Blackburn	Basin 06	4	
Aberdeen AB21 ORX	Countesswells	Micro	
Date 01/12/2017	Designed by MC		
File BASIN 06 1-10YR.SRCX	Checked by DA	Drainage	
Micro Drainage	Source Control 2017.1.2	'	

	Stor		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
600	min	Winter	147.547	1.547	92.9	0.0	92.9	2867.2	ОК
720	min 1	Winter	147.541	1.541	92.9	0.0	92.9	2850.2	O K
960	min 1	Winter	147.510	1.510	92.9	0.0	92.9	2766.5	O K
1440	min	Winter	147.402	1.402	92.9	0.0	92.9	2479.7	O K
2160	min	Winter	147.143	1.143	92.9	0.0	92.9	1849.4	O K
2880	min 1	Winter	146.860	0.860	92.9	0.0	92.9	1252.1	O K
4320	min	Winter	146.413	0.413	91.7	0.0	91.7	482.3	O K
5760	min	Winter	146.263	0.263	82.5	0.0	82.5	269.8	O K
7200	min	Winter	146.224	0.224	71.5	0.0	71.5	217.6	O K

	Stor		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
600	min	Winter	6.003	0.0	5297.2	0.0	466
720	min	Winter	5.352	0.0	5667.5	0.0	546
960	min	Winter	4.461	0.0	6299.0	0.0	702
1440	min	Winter	3.434	0.0	7273.6	0.0	1006
2160	min	Winter	2.627	0.0	8343.6	0.0	1416
2880	min	Winter	2.164	0.0	9167.4	0.0	1768
4320	min	Winter	1.636	0.0	10397.3	0.0	2384
5760	min	Winter	1.343	0.0	11381.0	0.0	2952
7200	min	Winter	1.156	0.0	12243.8	0.0	3680

FAIRHURST		Page 5
Woodburn Road	112614	
Blackburn	Basin 06	4
Aberdeen AB21 ORX	Countesswells	Micco
Date 01/12/2017	Designed by MC	Designation
File BASIN 06 1-10YR.SRCX	Checked by DA	Drainage
Micro Drainage	Source Control 2017.1.2	•

Storm Event	Max Level (m)	-		Max Overflow (1/s)		Status	
8640 min Winter			63.6 57.6		 185.6 163.2	0 K	

Storm	Rain Flooded (mm/hr) Volume		Discharge			
Event	(mm/nr)	(m³)	Volume (m³)	Volume (m³)	(mins)	
8640 min Winter	1.025	0.0	13031.5	0.0	4408	
10080 min Winter	0.929	0.0	13770.9	0.0	5136	

FAIRHURST		Page 6
Woodburn Road	112614	
Blackburn	Basin 06	4
Aberdeen AB21 ORX	Countesswells	Micro
Date 01/12/2017	Designed by MC	
File BASIN 06 1-10YR.SRCX	Checked by DA	Drainage
Micro Drainage	Source Control 2017.1.2	<u> </u>

Rainfall Details

Rainfall Model						FEH	T.	Vinte	r Storms	Yes
Return Period (years)						10		Cv	(Summer)	0.750
FEH Rainfall Version						2013		Cv	(Winter)	0.840
Site Location	GB	387600	804400	NJ	87600	04400	Shortest	Stor	m (mins)	15
Data Type					Cato	chment	Longest	Stor	m (mins)	10080
Summer Storms						Yes	Clir	nate	Change %	+30

Time Area Diagram

Total Area (ha) 10.506

Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.000	4	8	3.502	8	12	3.502	12	16	3.502

FAIRHURST			
Woodburn Road	112614		
Blackburn	Basin 06	4	
Aberdeen AB21 ORX	Countesswells	Micro	
Date 01/12/2017	Designed by MC		
File BASIN 06 1-10YR.SRCX	Checked by DA	Drainage	
Micro Drainage	Source Control 2017.1.2	,	

Model Details

Storage is Online Cover Level (m) 148.400

Tank or Pond Structure

Invert Level (m) 146.000

Depth (m)	Area (m²)										
0.000	615.1	1.000	2112.8	2.000	3343.4	3.000	3715.2	4.000	3715.2	5.000	3715.2
0.200	1288.7	1.200	2342.6	2.200	3527.3	3.200	3715.2	4.200	3715.2		
0.400	1480.0	1.400	2581.8	2.400	3715.2	3.400	3715.2	4.400	3715.2		
0.600	1681.4	1.600	2830.1	2.600	3715.2	3.600	3715.2	4.600	3715.2		
0.800	1892.4	1.800	3163.6	2.800	3715.2	3.800	3715.2	4.800	3715.2		

Hydro-Brake® Optimum Outflow Control

Unit Reference	MD-SHE-0372-9290-1900-9290
Design Head (m)	1.900
Design Flow (1/s)	92.9
Flush-Flo™	
Objective	
Application	<u> </u>
Sump Available	
±	1es 372
Diameter (mm)	*
Invert Level (m)	145.920
Minimum Outlet Pipe Diameter (mm)	450
Suggested Mannole Diameter (mm)	Site Specific Design (Contact Hydro International)

FAIRHURST	Page 8	
Woodburn Road	112614	
Blackburn	Basin 06	4
Aberdeen AB21 ORX	Countesswells	Micro
Date 01/12/2017	Designed by MC	The state of the s
File BASIN 06 1-10YR.SRCX	Checked by DA	Drainage
Micro Drainage	Source Control 2017.1.2	

Hydro-Brake® Optimum Outflow Control

Control E	Points	Head (m)	Flow	(1/s)		Control	Points	Head (r	n) Flow	(1/s)
Design Point (Calculated)	1.900		92.9			Kick-Flo®	1.35	59	79.0
	Flush-Flo™	0.649		92.9	Mean	Flow ove	er Head Range		_	78.4

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)										
0.100	10.5	0.600	92.8	1.600	85.5	2.600	108.2	5.000	148.8	7.500	181.4
0.200	37.2	0.800	92.2	1.800	90.5	3.000	116.0	5.500	155.9	8.000	187.2
0.300	70.2	1.000	90.1	2.000	95.2	3.500	125.0	6.000	162.6	8.500	192.9
0.400	89.3	1.200	86.1	2.200	99.7	4.000	133.4	6.500	169.1	9.000	198.3
0.500	91.8	1.400	80.1	2.400	104.0	4.500	141.3	7.000	175.4	9.500	203.7

Orifice Overflow Control

Diameter (m) 0.205 Discharge Coefficient 0.600 Invert Level (m) 147.650

FAIRHURST	Page 1	
Woodburn Road	112614	
Blackburn	Basin 06	4
Aberdeen AB21 ORX	Countesswells	Micro
Date 01/12/2017	Designed by MC	and the second s
File BASIN 06 1-30YR.SRCX	Checked by DA	Drainage
Micro Drainage	Source Control 2017.1.2	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15 n	min Sum	nmer	146.933	0.933	92.9	0.0	92.9	1398.0	ОК
30 n	min Sum	nmer	147.181	1.181	92.9	0.0	92.9	1937.9	O K
60 n	min Sum	nmer	147.411	1.411	92.9	0.0	92.9	2502.0	O K
120 n	min Sum	nmer	147.555	1.555	92.9	0.0	92.9	2890.2	O K
180 n	min Sum	nmer	147.628	1.628	92.9	0.0	92.9	3094.9	O K
240 n	min Sum	nmer	147.669	1.669	92.9	0.3	92.9	3213.7	O K
360 n	min Sum	nmer	147.708	1.708	92.9	2.3	92.9	3329.1	O K
480 n	min Sum	nmer	147.727	1.727	92.9	4.0	94.7	3388.9	O K
600 n	min Sum	nmer	147.737	1.737	92.9	5.0	95.9	3419.3	ОК

	Storm Event				c) Volume Volume		Time-Peak (mins)	
				(m³)	(m³)	(m³)		
15	min	Summer	76.338	0.0	1503.6	0.0	29	
30	min	Summer	53.377	0.0	2102.9	0.0	43	
60	min	Summer	35.456	0.0	2793.9	0.0	72	
120	min	Summer	21.933	0.0	3456.0	0.0	130	
180	min	Summer	16.675	0.0	3941.4	0.0	188	
240	min	Summer	13.778	0.0	4342.4	0.5	246	
360	min	Summer	10.586	0.0	5004.7	13.2	318	
480	min	Summer	8.790	0.0	5540.9	29.7	382	
600	min	Summer	7.608	0.0	5994.9	39.2	446	

FAIRHURST	Page 2	
Woodburn Road	112614	
Blackburn	Basin 06	
Aberdeen AB21 ORX	Countesswells	Micro
Date 01/12/2017	Designed by MC	The state of the s
File BASIN 06 1-30YR.SRCX	Checked by DA	Drainage
Micro Drainage	Source Control 2017.1.2	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
720	min	Summer	147.742	1.742	92.9	5.4	96.4	3432.2	ОК
960	min	Summer	147.737	1.737	92.9	5.0	95.9	3419.3	ОК
1440	min	Summer	147.701	1.701	92.9	1.8	92.9	3309.2	O K
2160	min	Summer	147.598	1.598	92.9	0.0	92.9	3009.9	O K
2880	min	Summer	147.472	1.472	92.9	0.0	92.9	2662.9	O K
4320	min	Summer	147.142	1.142	92.9	0.0	92.9	1847.8	O K
5760	min	Summer	146.832	0.832	92.9	0.0	92.9	1196.5	O K
7200	min	Summer	146.595	0.595	92.9	0.0	92.9	770.9	O K
8640	min	Summer	146.435	0.435	92.0	0.0	92.0	516.1	O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
720	min	Summer	6.760	0.0	6391.5	42.7	516
960	min	Summer	5.600	0.0	7060.2	38.1	658
1440	min	Summer	4.281	0.0	8095.0	11.1	942
2160	min	Summer	3.244	0.0	9203.0	0.0	1356
2880	min	Summer	2.656	0.0	10043.8	0.0	1768
4320	min	Summer	1.994	0.0	11314.2	0.0	2516
5760	min	Summer	1.630	0.0	12329.6	0.0	3184
7200	min	Summer	1.398	0.0	13219.7	0.0	3832
8640	min	Summer	1.237	0.0	14033.7	0.0	4504

FAIRHURST	Page 3	
Woodburn Road	112614	
Blackburn	Basin 06	4
Aberdeen AB21 ORX	Countesswells	Micro
Date 01/12/2017	Designed by MC	The Control of the Co
File BASIN 06 1-30YR.SRCX	Checked by DA	Drainage
Micro Drainage	Source Control 2017.1.2	

Storm Event	Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
10080 min Summer	146.335	0.335	89.8	0.0	89.8	369.0	O K
15 min Winter	147.019	1.019	92.9	0.0	92.9	1577.6	O K
30 min Winter	147.288	1.288	92.9	0.0	92.9	2192.9	O K
60 min Winter	147.535	1.535	92.9	0.0	92.9	2834.7	O K
120 min Winter	147.698	1.698	92.9	1.6	92.9	3300.9	O K
180 min Winter	147.778	1.778	92.9	11.0	102.8	3545.3	O K
240 min Winter	147.820	1.820	92.9	16.6	109.4	3678.5	O K
360 min Winter	147.855	1.855	93.7	22.5	116.2	3788.8	O K
480 min Winter	147.876	1.876	94.2	26.3	120.5	3857.7	O K

Storm Event		Rain (mm/hr)	Flooded Volume	Discharge Volume	Overflow Volume	Time-Peak (mins)	
				(m³)	(m³)	(m³)	
10080	min	Summer	1.118	0.0	14801.1	0.0	5152
15	min	Winter	76.338	0.0	1683.8	0.0	29
30	min	Winter	53.377	0.0	2355.3	0.0	43
60	min	Winter	35.456	0.0	3128.7	0.0	72
120	min	Winter	21.933	0.0	3871.0	2.1	128
180	min	Winter	16.675	0.0	4414.7	35.7	184
240	min	Winter	13.778	0.0	4863.4	87.6	238
360	min	Winter	10.586	0.0	5605.5	190.5	312
480	min	Winter	8.790	0.0	6205.8	263.5	378

FAIRHURST		Page 4
Woodburn Road	112614	
Blackburn	Basin 06	4
Aberdeen AB21 ORX	Countesswells	Micro
Date 01/12/2017	Designed by MC	
File BASIN 06 1-30YR.SRCX	Checked by DA	Drainage
Micro Drainage	Source Control 2017.1.2	

	Stor		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
600	min	Winter	147.883	1.883	94.4	27.6	121.9	3880.9	ОК
720	min	Winter	147.882	1.882	94.3	27.3	121.6	3875.8	O K
960	min	Winter	147.864	1.864	93.9	24.1	118.0	3816.8	O K
1440	min	Winter	147.800	1.800	92.9	13.7	106.1	3613.4	O K
2160	min	Winter	147.650	1.650	92.9	0.0	92.9	3159.2	O K
2880	min	Winter	147.441	1.441	92.9	0.0	92.9	2579.6	O K
4320	min	Winter	146.860	0.860	92.9	0.0	92.9	1251.5	O K
5760	min	Winter	146.441	0.441	92.1	0.0	92.1	525.2	O K
7200	min	Winter	146.277	0.277	86.1	0.0	86.1	288.9	O K

	Stor		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
600	min	Winter	7.608	0.0	6714.7	304.8	456
720	min	Winter	6.760	0.0	7158.6	320.9	534
960	min	Winter	5.600	0.0	7907.5	294.9	690
1440	min	Winter	4.281	0.0	9066.2	160.5	1000
2160	min	Winter	3.244	0.0	10307.4	0.0	1464
2880	min	Winter	2.656	0.0	11249.6	0.0	1904
4320	min	Winter	1.994	0.0	12672.1	0.0	2600
5760	min	Winter	1.630	0.0	13810.7	0.0	3176
7200	min	Winter	1.398	0.0	14807.7	0.0	3680

FAIRHURST			
Woodburn Road	112614		
Blackburn	Basin 06	4	
Aberdeen AB21 ORX	Countesswells	Micro	
Date 01/12/2017	Designed by MC	The Control of the Co	
File BASIN 06 1-30YR.SRCX	Checked by DA	Drainage	
Micro Drainage	Source Control 2017.1.2	•	

Storm Event	Max Level (m)	-		Max Overflow (1/s)			Status
8640 min Winter	146.241	0.241	76.5	0.0	76.5	240.3	O K
10080 min Winter	146.217	0.217	69.3	0.0	69.3	208.4	O K

Storm		Rain	Flooded	Discharge	Overflow	Time-Peak	
Event		(mm/hr)	Volume	Volume	Volume	(mins)	
			(m³)	(m³)	(m³)		
8640	min Win	nter 1.237	0.0	15719.8	0.0	4408	
10080	min Win	ter 1.118	0.0	16575.9	0.0	5136	

FAIRHURST		Page 6
Woodburn Road	112614	
Blackburn	Basin 06	4
Aberdeen AB21 ORX	Countesswells	Micro
Date 01/12/2017	Designed by MC	
File BASIN 06 1-30YR.SRCX	Checked by DA	Drainage
Micro Drainage	Source Control 2017.1.2	<u>'</u>

Rainfall Details

Rainfall Model						FEH	T.	Winte	r Storms	Yes
Return Period (years)						30		Cv	(Summer)	0.750
FEH Rainfall Version						2013		Cv	(Winter)	0.840
Site Location	GB	387600	804400	NJ	87600	04400	Shortest	Stor	m (mins)	15
Data Type					Cato	chment	Longest	Stor	m (mins)	10080
Summer Storms						Yes	Clir	nate	Change %	+30

Time Area Diagram

Total Area (ha) 10.506

						l	(mins)		1		
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.000	4	8	3.502	8	12	3.502	12	16	3.502

FAIRHURST			
Woodburn Road	112614		
Blackburn	Basin 06	4	
Aberdeen AB21 ORX	Countesswells	Micco	
Date 01/12/2017	Designed by MC	Desipage	
File BASIN 06 1-30YR.SRCX	Checked by DA	Drainage	
Micro Drainage	Source Control 2017.1.2		

Model Details

Storage is Online Cover Level (m) 148.400

Tank or Pond Structure

Invert Level (m) 146.000

Depth (m)	Area (m²)										
0.000	615.1	1.000	2112.8	2.000	3343.4	3.000	3715.2	4.000	3715.2	5.000	3715.2
0.200	1288.7	1.200	2342.6	2.200	3527.3	3.200	3715.2	4.200	3715.2		
0.400	1480.0	1.400	2581.8	2.400	3715.2	3.400	3715.2	4.400	3715.2		
0.600	1681.4	1.600	2830.1	2.600	3715.2	3.600	3715.2	4.600	3715.2		
0.800	1892.4	1.800	3163.6	2.800	3715.2	3.800	3715.2	4.800	3715.2		

Hydro-Brake® Optimum Outflow Control

Unit Reference	MD-SHE-0372-9290-1900-9290
Design Head (m)	1.900
Design Flow (1/s)	92.9
Flush-Flo™	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	372
Invert Level (m)	145.920
Minimum Outlet Pipe Diameter (mm)	450
Suggested Manhole Diameter (mm)	Site Specific Design (Contact Hydro International)

FAIRHURST		Page 8
Woodburn Road	112614	
Blackburn	Basin 06	4
Aberdeen AB21 ORX	Countesswells	Micro
Date 01/12/2017	Designed by MC	
File BASIN 06 1-30YR.SRCX	Checked by DA	Drainage
Micro Drainage	Source Control 2017.1.2	

Hydro-Brake® Optimum Outflow Control

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.900	92.9	Kick-Flo®	1.359	79.0
	Flush-Flo™	0.649	92.9	Mean Flow over Head Range	_	78.4

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)										
0.100	10.5	0.600	92.8	1.600	85.5	2.600	108.2	5.000	148.8	7.500	181.4
0.200	37.2	0.800	92.2	1.800	90.5	3.000	116.0	5.500	155.9	8.000	187.2
0.300	70.2	1.000	90.1	2.000	95.2	3.500	125.0	6.000	162.6	8.500	192.9
0.400	89.3	1.200	86.1	2.200	99.7	4.000	133.4	6.500	169.1	9.000	198.3
0.500	91.8	1.400	80.1	2.400	104.0	4.500	141.3	7.000	175.4	9.500	203.7

Orifice Overflow Control

Diameter (m) 0.205 Discharge Coefficient 0.600 Invert Level (m) 147.650

FAIRHURST	Page 1	
Woodburn Road	112614	
Blackburn	Basin 06	4
Aberdeen AB21 ORX	Countesswells	Micro
Date 01/12/2017	Designed by MC	
File BASIN 06 1-200YR.SRCX	Checked by DA	Drainage
Micro Drainage	Source Control 2017.1.2	

	Storm		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min S	ummer	147.304	1.304	92.9	0.0	92.9	2232.1	ОК
30	min S	ummer	147.643	1.643	92.9	0.0	92.9	3139.5	O K
60	min S	ummer	147.919	1.919	95.2	34.0	129.2	3998.2	O K
120	min S	ummer	148.061	2.061	98.4	48.7	147.2	4471.2	O K
180	min S	ummer	148.124	2.124	99.8	53.4	153.3	4685.5	O K
240	min S	ummer	148.151	2.151	100.4	55.4	155.8	4780.0	O K
360	min S	ummer	148.182	2.182	101.1	57.5	158.6	4887.9	O K
480	min S	ummer	148.195	2.195	101.4	58.3	159.7	4932.9	O K
600	min S	ummer	148.197	2.197	101.4	58.5	159.9	4939.5	O K

	Storm Event		Rain (mm/hr)	Flooded Volume	Discharge Volume	Overflow Volume	Time-Peak (mins)
				(m³)	(m³)	(m³)	
15	min	Summer	118.740	0.0	2339.0	0.0	30
30	min	Summer	84.137	0.0	3314.7	0.0	44
60	min	Summer	55.339	0.0	4360.6	136.1	72
120	min	Summer	33.192	0.0	5230.5	372.4	128
180	min	Summer	24.761	0.0	5852.7	542.8	186
240	min	Summer	20.171	0.0	6357.8	675.3	234
360	min	Summer	15.174	0.0	7173.6	871.9	292
480	min	Summer	12.411	0.0	7823.8	1005.2	358
600	min	Summer	10.622	0.0	8369.4	1098.1	426

FAIRHURST	Page 2	
Woodburn Road	112614	
Blackburn	Basin 06	4
Aberdeen AB21 ORX	Countesswells	Micro
Date 01/12/2017	Designed by MC	A STATE OF THE PARTY OF THE PAR
File BASIN 06 1-200YR.SRCX	Checked by DA	Drainage
Micro Drainage	Source Control 2017.1.2	

	Stor		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
720	min	Summer	148.192	2.192	101.3	58.1	159.4	4923.0	ОК
960	min	Summer	148.173	2.173	100.9	56.9	157.8	4856.6	ОК
1440	min	Summer	148.114	2.114	99.6	52.7	152.3	4650.9	O K
2160	min	Summer	148.013	2.013	97.3	44.8	142.1	4307.1	O K
2880	min	Summer	147.923	1.923	95.3	34.8	130.1	4009.9	O K
4320	min	Summer	147.763	1.763	92.9	8.8	100.3	3498.7	O K
5760	min	Summer	147.550	1.550	92.9	0.0	92.9	2874.9	O K
7200	min	Summer	147.304	1.304	92.9	0.0	92.9	2231.9	O K
8640	min	Summer	146.999	0.999	92.9	0.0	92.9	1534.6	O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
720	min	Summer	9.355	0.0	8844.8	1163.7	496
960	min	Summer	7.657	0.0	9653.0	1226.2	636
1440	min	Summer	5.747	0.0	10867.6	1145.8	912
2160	min	Summer	4.290	0.0	12169.3	923.7	1320
2880	min	Summer	3.482	0.0	13168.1	654.2	1716
4320	min	Summer	2.589	0.0	14688.7	122.6	2560
5760	min	Summer	2.104	0.0	15917.7	0.0	3400
7200	min	Summer	1.799	0.0	17011.3	0.0	4184
8640	min	Summer	1.588	0.0	18017.2	0.0	4768

FAIRHURST	Page 3	
Woodburn Road	112614	
Blackburn	Basin 06	4
Aberdeen AB21 ORX	Countesswells	Micro
Date 01/12/2017	Designed by MC	
File BASIN 06 1-200YR.SRCX	Checked by DA	Drainage
Micro Drainage	Source Control 2017.1.2	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
10080	min Sum	mer	146.774	0.774	92.9	0.0	92.9	1087.7	ОК
15	min Win	ter	147.414	1.414	92.9	0.0	92.9	2511.4	O K
30	min Win	ter	147.774	1.774	92.9	10.4	102.2	3531.3	O K
60	min Win	ter	148.068	2.068	98.6	49.3	147.9	4495.6	O K
120	min Win	ter	148.233	2.233	102.2	60.8	163.0	5070.2	O K
180	min Win	ter	148.312	2.312	103.9	65.6	169.5	5351.3	Flood Risk
240	min Win	ter	148.351	2.351	104.7	67.9	172.6	5495.5	Flood Risk
360	min Win	ter	148.382	2.382	105.3	69.6	174.9	5608.5	Flood Risk
480	min Win	ter	148.397	2.397	105.7	70.4	176.1	5664.6	Flood Risk

Storm Event		Rain (mm/hr)	Flooded Volume	Discharge Volume	Overflow Volume	Time-Peak (mins)	
			(,	(m³)	(m³)	(m³)	(
10080	min	Summer	1.433	0.0	18968.8	0.0	5448
15	min	Winter	118.740	0.0	2619.6	0.0	30
30	min	Winter	84.137	0.0	3712.7	18.0	44
60	min	Winter	55.339	0.0	4883.6	314.2	72
120	min	Winter	33.192	0.0	5858.0	617.3	126
180	min	Winter	24.761	0.0	6555.3	832.7	182
240	min	Winter	20.171	0.0	7120.6	1000.9	236
360	min	Winter	15.174	0.0	8035.1	1254.3	300
480	min	Winter	12.411	0.0	8762.0	1430.6	376

FAIRHURST	Page 4	
Woodburn Road	112614	
Blackburn	Basin 06	
Aberdeen AB21 ORX	Countesswells	Micro
Date 01/12/2017	Designed by MC	
File BASIN 06 1-200YR.SRCX	Checked by DA	Drainage
Micro Drainage	Source Control 2017.1.2	'

	Storm Event				Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status	
600	min Wi	nter	148.395	2.395	105.6	70.3	175.9	5656.1	Flood Risk	
720	min Wi	nter	148.382	2.382	105.3	69.6	175.0	5609.3	Flood Risk	
960	min Wi	nter	148.342	2.342	104.5	67.4	171.9	5462.5	Flood Risk	
1440	min Wi	nter	148.237	2.237	102.3	61.0	163.3	5081.8	O K	
2160	min Wi	nter	148.077	2.077	98.8	50.0	148.8	4525.2	O K	
2880	min Wi	nter	147.944	1.944	95.8	38.4	134.2	4080.4	O K	
4320	min Wi	nter	147.721	1.721	92.9	3.4	93.9	3368.0	O K	
5760	min Wi	nter	147.315	1.315	92.9	0.0	92.9	2258.8	O K	
7200	min Wi	nter	146.766	0.766	92.9	0.0	92.9	1071.9	O K	

Storm		Rain	Flooded	Discharge	Overflow	Time-Peak
Event		(mm/hr)	Volume	Volume	Volume	(mins)
			(m³)	(m³)	(m³)	
min	Winter	10 622	0 0	0272 7	1557 0	454
min	Winter	9.355	0.0	9906.7	1649.1	532
min	Winter	7.657	0.0	10811.5	1764.8	682
min	Winter	5.747	0.0	12171.0	1753.4	974
min	Winter	4.290	0.0	13630.4	1390.7	1396
min	Winter	3.482	0.0	14748.3	947.2	1820
min	Winter	2.589	0.0	16450.6	49.0	2768
min	Winter	2.104	0.0	17829.2	0.0	3632
min	Winter	1.799	0.0	19053.4	0.0	4120
	min min min min min min min		min Winter 10.622 min Winter 9.355 min Winter 7.657 min Winter 5.747 min Winter 4.290 min Winter 3.482 min Winter 2.589 min Winter 2.104	Event (mm/hr) Volume (m³) min Winter 10.622 0.0 min Winter 9.355 0.0 min Winter 7.657 0.0 min Winter 5.747 0.0 min Winter 4.290 0.0 min Winter 3.482 0.0 min Winter 2.589 0.0 min Winter 2.104 0.0	Event (mm/hr) Volume (m³) Volume (m³) min Winter 10.622 0.0 9373.7 min Winter 9.355 0.0 9906.7 min Winter 7.657 0.0 10811.5 min Winter 5.747 0.0 12171.0 min Winter 4.290 0.0 13630.4 min Winter 3.482 0.0 14748.3 min Winter 2.589 0.0 16450.6 min Winter 2.104 0.0 17829.2	Event (mm/hr) Volume (m³) Volume (m³) Volume (m³) Volume (m³) min Winter 10.622 0.0 9373.7 1557.0 min Winter 9.355 0.0 9906.7 1649.1 min Winter 7.657 0.0 10811.5 1764.8 min Winter 5.747 0.0 12171.0 1753.4 min Winter 4.290 0.0 13630.4 1390.7 min Winter 3.482 0.0 14748.3 947.2 min Winter 2.589 0.0 16450.6 49.0 min Winter 2.104 0.0 17829.2 0.0

FAIRHURST		Page 5
Woodburn Road	112614	
Blackburn	Basin 06	4
Aberdeen AB21 ORX	Countesswells	Migga
Date 01/12/2017	Designed by MC	Desipage
File BASIN 06 1-200YR.SRCX	Checked by DA	Drainage
Micro Drainage	Source Control 2017.1.2	

	Storm Event		-		Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
8640	min Winte	r 146.439	0.439	92.1	0.0	92.1	520.9	ОК
10080	min Winte	r 146 289	0 289	88 1	0 0	88 1	304 4	O K

Storm	Rain	Flooded	Discharge	Overflow	Time-Peak	
Event	(mm/hr)	Volume	Volume	Volume	(mins)	
		(m³)	(m³)	(m³)		
8640 min Winter	1.588	0.0	20179.9	0.0	4672	
10080 min Winter	1.433	0.0	21244.3	0.0	5152	

FAIRHURST		Page 6
Woodburn Road	112614	
Blackburn	Basin 06	4
Aberdeen AB21 ORX	Countesswells	Micro
Date 01/12/2017	Designed by MC	
File BASIN 06 1-200YR.SRCX	Checked by DA	Drainage
Micro Drainage	Source Control 2017.1.2	<u> </u>

Rainfall Details

Rainfall Model						FEH	V	Winte	r Storms	Yes
Return Period (years)						200		Cv	(Summer)	0.750
FEH Rainfall Version						2013		Cv	(Winter)	0.840
Site Location	GB	387600	804400	NJ	87600	04400	Shortest	Stor	m (mins)	15
Data Type					Cato	chment	Longest	Stor	m (mins)	10080
Summer Storms						Yes	Clir	nate	Change %	+30

Time Area Diagram

Total Area (ha) 10.506

Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.000	4	8	3.502	8	12	3.502	12	16	3.502

FAIRHURST		Page 7
Woodburn Road	112614	
Blackburn	Basin 06	4
Aberdeen AB21 ORX	Countesswells	Micro
Date 01/12/2017	Designed by MC	
File BASIN 06 1-200YR.SRCX	Checked by DA	Drainage
Micro Drainage	Source Control 2017.1.2	·

Model Details

Storage is Online Cover Level (m) 148.400

Tank or Pond Structure

Invert Level (m) 146.000

Depth (m)	Area (m²)										
0.000	615.1	1.000	2112.8	2.000	3343.4	3.000	3715.2	4.000	3715.2	5.000	3715.2
0.200	1288.7	1.200	2342.6	2.200	3527.3	3.200	3715.2	4.200	3715.2		
0.400	1480.0	1.400	2581.8	2.400	3715.2	3.400	3715.2	4.400	3715.2		
0.600	1681.4	1.600	2830.1	2.600	3715.2	3.600	3715.2	4.600	3715.2		
0.800	1892.4	1.800	3163.6	2.800	3715.2	3.800	3715.2	4.800	3715.2		

Hydro-Brake® Optimum Outflow Control

Unit Reference	MD-SHE-0372-9290-1900-9290
Design Head (m)	1.900
Design Flow (1/s)	92.9
Flush-Flo™	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	372
Invert Level (m)	145.920
Minimum Outlet Pipe Diameter (mm)	450
Suggested Manhole Diameter (mm)	Site Specific Design (Contact Hydro International)

FAIRHURST		Page 8
Woodburn Road	112614	
Blackburn	Basin 06	4
Aberdeen AB21 ORX	Countesswells	Micro
Date 01/12/2017	Designed by MC	
File BASIN 06 1-200YR.SRCX	Checked by DA	Drainage
Micro Drainage	Source Control 2017.1.2	'

Hydro-Brake® Optimum Outflow Control

Control	Points	Head	(m)	Flow	(1/s)		Cont	rol I	Points	Head	(m)	Flow	(1/s)
Design Point	(Calculated)	1.	900		92.9				Kick-Flo®	1.	359		79.0
	Flush-Flo™	0.	649		92.9	Mean	Flow	over	Head Range		-		78.4

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)										
0.100	10.5	0.600	92.8	1.600	85.5	2.600	108.2	5.000	148.8	7.500	181.4
0.200	37.2	0.800	92.2	1.800	90.5	3.000	116.0	5.500	155.9	8.000	187.2
0.300	70.2	1.000	90.1	2.000	95.2	3.500	125.0	6.000	162.6	8.500	192.9
0.400	89.3	1.200	86.1	2.200	99.7	4.000	133.4	6.500	169.1	9.000	198.3
0.500	91.8	1.400	80.1	2.400	104.0	4.500	141.3	7.000	175.4	9.500	203.7

Orifice Overflow Control

Diameter (m) 0.205 Discharge Coefficient 0.600 Invert Level (m) 147.650

Appendix D – Approval Letters

• Aberdeen City Council – Agreed Greenfield Run-off Rates.

MEMO

То	Paul Williamson Planning & Infrastructure	Date	28/04/2014
	Training & initastructure	Your Ref.	P140435 (ZLJ)
		Our Ref.	
From	Flooding		
Email Dial Fax	seilla@aberdeencity.gov.uk 01224 53 8099		

Flooding
Enterprise, Planning &
Infrastructure
Aberdeen City Council
Ground Floor
74 - 76 Spring Garden
Aberdeen AB25 1GN

Planning application no. P140435

Aberdeen Local Dev' Plan Site OP58, Countesswells (Phase 1), West of Hazlehead Park

Provision of infrastructure including access, internal road layout, landscaping and drainage provision for Phase 1 of residential-led mixed use development

I have considered the above planning application and have the following observations:

The proposed rate of discharge (5.77 l/s/h) stays within the usual values range. Once the area starts being developed, each different catchment will have to ensure that this value is taken into account.

The attenuation volume might be provided within the two stages extended detention basins in order to contain the run-off volumes generated by the critical 10 year rainfall return event plus 20% and the run-off volumes generated by critical rainfall events up to 200 year plus 20%.

The basins will be provided with the appropriate flow control device in order to limit the run-off at the greenfield run-off rate.

As the SuDS system will discharge into a SW sewer, all designs and calculations might be also agreed with them.

Regards,

Sergi Illa Principal Technical Officer

Appendix E – SUDS Function Document

• SUDS Function Document.

Two Stage SuDS Function at Various Rainfall Return Events

22/06/16

This document has been prepared to further explain the operation of the 2 stage SuDS facility detailed in drawing 92762/sk2001A and should be read in conjunction with this drawing.

The operation of the 2 Stage SuDS provision will vary depending on the rainfall return event being dealt with. The following gives details of how the facility will function during, and immediately following 2 year, 10 year, 30 year, 100 year and 200 year rainfall return events.

1. General operation in all rainfall events

The incoming surface water sewer network is designed in accordance with Scottish water's specification, to accommodate the design flows without any surcharging of the drainage network. Initial flows from any rainfall event will mobilise any pollution and sediment on the drained surfaces. These "first flush" flows will therefore be dealt with as follows:-

- a) Flows into Basin A will initially discharge to the shallow inlet pool, which will allow any heavy sediment to settle.
- b) The pool will overflow into the shallow grass swales formed in the base of Basin A. The grass in the swales will provide a filtering effect to remove sediment and a degree of infiltration will be possible for the initial flows.
- c) The flows from the swales will discharge to the outlet pool. The outlet from Basin A to Basin B is a 100mm diameter pipe set at a level above the base of Basin A. The small diameter and level of this pipe will detain the run-off in Basin A and encourage a degree of infiltration in the wider basin for the initial flows.
- d) The limited flow passing from Basin A to Basin B will discharge to the wetland channel running the length of Basin B.
- e) The low flows through the wetland will encourage further sediment settlement and the wetland planting will filter and provide biological treatment of the initial flows.
- f) The restricted discharge from Basin B will detain the flows to increase the time that the run-off spends within the SuDS facility.
- g) For low flows, a combination of settlement, filtration, infiltration, biological treatment and detention provides in excess of 2 levels, and types, of treatment for the "first flush" runoff from the development roads.

2. 2 year rainfall return event

Initial flows will be dealt with as described in 1. above. Beyond the initial flows, the 2 year rainfall return event will be dealt with as follows:-

a) The restricted discharge to Basin B will result in flows being attenuated in Basin A and discharged to Basin B over several hours. In the critical duration event, run-off will be attenuated to depths between 150 & 300mm in Basin A.

Two Stage SuDS Function at Various Rainfall Return Events

22/06/16

- b) The discharge from Basin B is also restricted and flows into this basin will also be attenuated and detained for several hours. In the critical duration event, run-off will be attenuated to depths between 450 & 900mm in Basin B.
- c) The discharge from Basin B will be restricted to the agreed greenfield run-off rate for the 2 year rainfall return event.
- d) As well as the settlement, filtration, infiltration and biological treatment provided for the initial "first flush" flows, the run-off is detained for several hours, giving at least 2 levels, and types, of treatment for run-off from the development roads during, and immediately following, a 2 year rainfall return event.

3. 10 year rainfall return event

Initial flows will be dealt with as described in 1. above. Beyond the initial flows the 10 year rainfall return event will be dealt with as follows:-

- a) The restricted discharge to Basin B will result in flows being attenuated in Basin A and discharged to Basin B over an extended period of up to 24 hours. In the critical duration event, the design treatment volume Vt will be attenuated to depths between 350 & 600mm in Basin A.
- b) The discharge from Basin B is also restricted and flows into this basin will also be attenuated over an extended period of up to 24 hours. In the critical duration event, the design treatment volume Vt will be attenuated to depths between 650 & 1200mm in Basin B.
- c) The discharge from Basin B will be restricted to the agreed greenfield run-off rate for the 10 year rainfall return event.
- d) Each basin detains the design treatment run-off volume Vt for an extended period of up to 24 hours. Therefore 2 x Vt is detained. The extended detention time along with the settlement, filtration, infiltration and biological treatment provided for the initial "first flush" flows, gives at least 2 levels and types of treatment for run-off from the development roads during, and immediately following, a 10 year rainfall return event.

4. 30 year rainfall return event

Initial flows will be dealt with as described in 1. above. Beyond the initial flows the 30 year rainfall return event will be dealt with as follows:-

a) The restricted discharge to Basin B will result in flows being attenuated in Basin A and discharged to Basin B over an extended period of up to 24 hours. In the critical duration event, the design treatment volume Vt will be attenuated to depths between 450 & 800mm in Basin A.

Two Stage SuDS Function at Various Rainfall Return Events

22/06/16

- b) The overflow weir on the top of the bund between the two basins will allow flows in the most extreme 30 year rainfall return events to overflow from Basin A to Basin B. The volume detained in Basin A below the overflow level will be in excess of the design treatment volume Vt. This volume will discharge at a controlled rate over an extended period through the 100mm diameter pipe to Basin B.
- c) The discharge from Basin B is also restricted and flows into this basin will also be attenuated over an extended period of up to 24 hours. In the critical duration event, the design treatment volume Vt will be attenuated to depths between 750 & 1400mm in Basin B.
- d) The discharge from Basin B will be restricted to the agreed greenfield run-off rate for the 30 year rainfall return event.
- e) Each basin detains the design treatment run-off volume Vt for an extended period of up to 24 hours. Therefore 2 x Vt is detained. The extended detention time along with the settlement, filtration, infiltration and biological treatment provided for the initial "first flush" flows, gives at least 2 levels and types of treatment for run-off from the development roads during, and immediately following, a 30 year rainfall return event.

5. 100 year rainfall return event

Initial flows will be dealt with as described in 1. above. Beyond the initial flows the 100 year rainfall return event will be dealt with as follows:-

- a) The restricted discharge to Basin B will result in flows being attenuated in Basin A and discharged to Basin B over an extended period of up to 24 hours. In the critical duration event, the design treatment volume Vt will be attenuated to depths between 600 & 1050mm in Basin A.
- b) The overflow weir on the top of the bund between the two basins will allow flows in the most extreme 30 year rainfall return events, and greater, to overflow from Basin A to Basin B. The volume detained in Basin A below the overflow level will be in excess of the design treatment volume Vt. This volume will discharge at a controlled rate over an extended period through the 100mm diameter pipe to Basin B.
- c) The discharge from Basin B is also restricted and flows into this basin will also be attenuated over an extended period of up to 24 hours. In the critical duration event, the design treatment volume Vt will be attenuated to depths between 900 & 1650mm in Basin B.
- d) The discharge from Basin B will be restricted to the agreed greenfield run-off rate for the 100 year rainfall return event.
- e) Each basin detains the design treatment run-off volume Vt for an extended period of up to 24 hours. Therefore 2 x Vt is detained. The extended detention time along with the settlement, filtration, infiltration and biological treatment provided for the initial "first flush" flows, gives at least 2 levels and types of treatment for run-off from the development roads during, and immediately following, a 100 year rainfall return event.

Two Stage SuDS Function at Various Rainfall Return Events

22/06/16

6. 200 year rainfall return event

Initial flows will be dealt with as described in 1. above. Beyond the initial flows the 200 year rainfall return event will be dealt with as follows:-

- a) The restricted discharge to Basin B will result in flows being attenuated in Basin A and discharged to Basin B over an extended period of up to 24 hours. In the critical duration event, the design treatment volume Vt will be attenuated to depths between 700 & 1150mm in Basin A.
- b) The overflow weir on the top of the bund between the two basins will allow flows in the most extreme 30 year rainfall return events, and greater, to overflow from Basin A to Basin B. The volume detained in Basin A below the overflow level will be in excess of the design treatment volume Vt. This volume will discharge at a controlled rate over an extended period through the 100mm diameter pipe to Basin B.
- c) The discharge from Basin B is also restricted and flows into this basin will also be attenuated over an extended period of up to 24 hours. In the critical duration event, the design treatment volume Vt will be attenuated to depths between 1000 & 1800mm in Basin B.
- d) The discharge from Basin B will be restricted to the agreed greenfield run-off rate for the 200 year rainfall return event.
- e) Each basin detains the design treatment run-off volume Vt for an extended period of up to 24 hours. Therefore 2 x Vt is detained. The extended detention time along with the settlement, filtration, infiltration and biological treatment provided for the initial "first flush" flows, gives at least 2 levels and types of treatment for run-off from the development roads during, and immediately following, a 200 year rainfall return event.

At the most extreme 30 year rainfall return events and greater, the attenuated volume in Basin A spills over the weir in the central bund and will fill Basin B to the point where the two basins will act as one. This only occurs in extreme rainfall events, where the most polluted "first flush" flows have already been treated and the flows are therefore much cleaner. As the basins discharge and the water level drops below the central bund level, each basin will retain the design treatment volume Vt and deal with this as described above.

CIVIL ENGINEERING • STRUCTURAL ENGINEERING • TRANSPORTATION • ROADS & BRIDGES
PORTS & HARBOURS • GEOTECHNICAL & ENVIRONMENTAL ENGINEERING • PLANNING &
DEVELOPMENT • WATER SERVICES • CDM SERVICES