Geology 1:50,000 Maps Legends

Artificial Ground and Landslip

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
Z	MGR	Made Ground (Undivided)	Artificial Deposit	Not Supplied - Holocene
	WGR	Worked Ground (Undivided)	Void	Not Supplied - Holocene
	SLIP	Landslide Deposit	Clay	Not Supplied - Quaternary

Superficial Geology

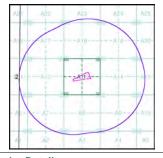
Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
	ALV	Alluvium	Clay, Silt, Sand and Gravel	Not Supplied - Holocene
	TFD	Tidal Flat Deposits	Clay and Silt	Not Supplied - Holocene
	STGR	Stanmore Gravel Formation	Sand and Gravel	Not Supplied - Pleistocene
	HEAD	Head	Clay, Silt, Sand and Gravel	Not Supplied - Quaternary
	RTDU	River Terrace Deposits (Undifferentiated)	Sand and Gravel	Not Supplied - Quaternary

Bedrock and Faults

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
	LC	London Clay Formation	Clay, Silt and Sand	Not Supplied - Ypresian
	CLGB	Claygate Member	Clay, Silt and Sand	Not Supplied - Ypresian
	BGS	Bagshot Formation	Sand	Not Supplied - Ypresian

Geology 1:50,000 Maps

This report contains geological map extracts taken from the BGS Digital Geological map of Great Britain at 1:50,000 scale and is designed for users carrying out preliminary site assessments who require geological maps for the area around the site. This mapping may be more up to date than previously published paper maps.


The various geological layers - artificial and landslip deposits, superficial

The various geological layers - artificial and landslip deposits, superficial geology and solid (bedrock) geology are displayed in separate maps, but superimposed on the final 'Combined Surface Geology' map. All map legends feature on this page. Not all layers have complete nationwide coverage, so availability of data for relevant map sheets is indicated below.

Geology 1:50,000 Maps Coverage

Map ID:	2	Map ID:	1
Map Sheet No:	257	Map Sheet No:	258
Map Name:	Romford	Map Name:	Southend and Fo
Map Date:	1996	Map Date:	1976
Bedrock Geology:	Available	Bedrock Geology:	Available
Superficial Geology:	Available	Superficial Geology:	Available
Artificial Geology:	Available	Artificial Geology:	Available
Faults:	Not Supplied	Faults:	Not Supplied
Landslip:	Available	Landslip:	Available
Rock Segments:	Not Supplied	Rock Segments:	Not Supplied

Geology 1:50,000 Maps - Slice A

Order Details:

 Order Number:
 259013368_1_1

 Customer Reference:
 2009004

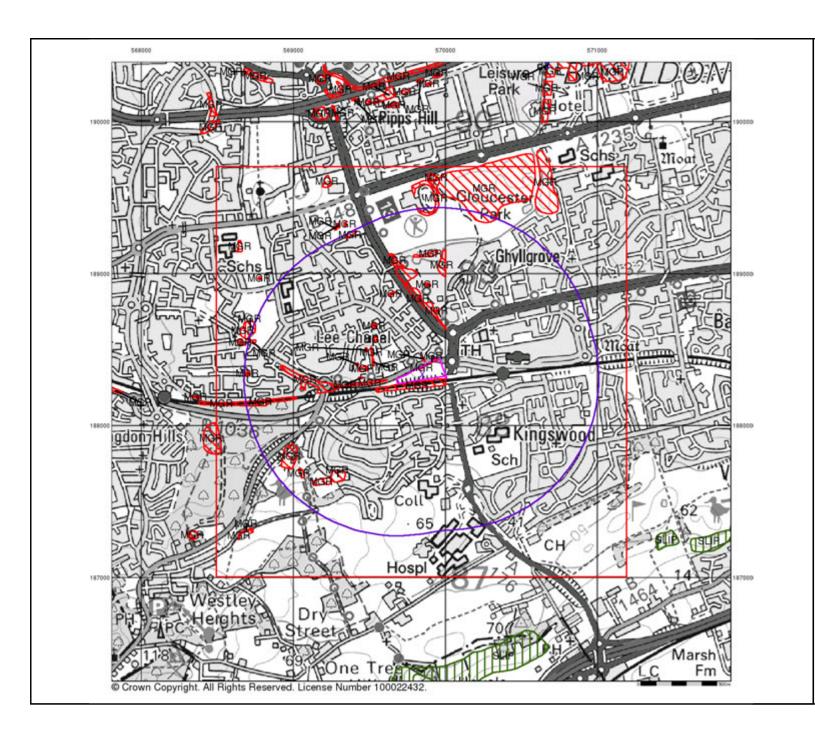
 National Grid Reference:
 569850, 188340

 Slice:
 A

 Site Area (Ha):
 2.48

 Search Buffer (m):
 1000

Site Details:


1, Hempstalls, BASILDON, SS15 5AA

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck.or

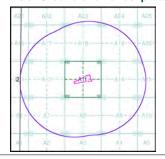
v15.0 25-Sep-2020

Page 1 of 5

TWEEDIE EVANS CONSULTING

Artificial Ground and Landslip

Artificial ground is a term used by BGS for those areas where the ground surface has been significantly modified by human activity. Information about previously developed ground is especially important, as it is often associated with potentially contaminated material, unpredictable engineering conditions and unstable ground.


Artificial ground includes:

- Made ground man-made deposits such as embankments and spoil
- heaps on the natural ground surface.

 Worked ground areas where the ground has been cut away such as quarries and road cuttings.
- Infilled ground areas where the ground has been cut away then wholly or partially backfilled.
- Landscaped ground areas where the surface has been reshaped.
 Disturbed ground areas of ill-defined shallow or near surface mineral workings where it is impracticable to map made and worked ground

Mass movement (landslip) deposits on BGS geological maps are primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground. The dataset also includes foundered strata, where the ground has collapsed due to subsidence.

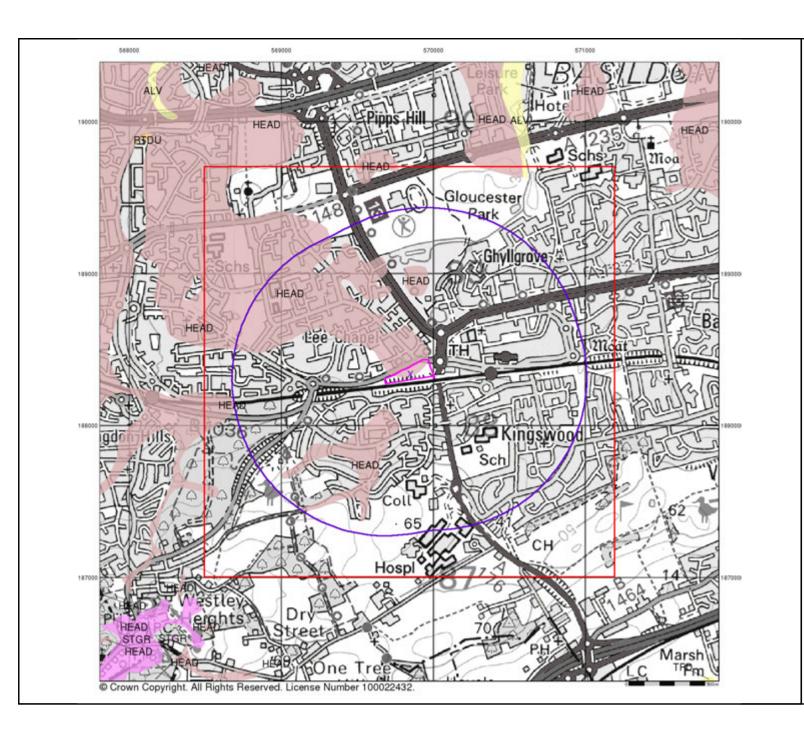
Artificial Ground and Landslip Map - Slice A

Order Details:

Order Number: Customer Reference: 259013368_1_1 2009004 569850, 188340 National Grid Reference: A 2.48

Site Area (Ha): Search Buffer (m): 1000

Site Details:

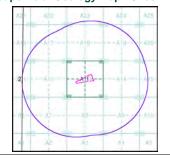

1, Hempstalls, BASILDON, SS15 5AA

0844 844 9952 0844 844 9951

v15.0 25-Sep-2020

Page 2 of 5

TWEEDIE EVANS CONSULTING


Superficial Geology

Superficial Deposits are the youngest geological deposits formed during the most recent period of geological time, the Quaternary, which extends back about 1.8 million years from the present.

They rest on older deposits or rocks referred to as Bedrock. This dataset contains Superficial deposits that are of natural origin and 'in place'. Other superficial strata may be held in the Mass Movement dataset where they have been moved, or in the Artificial Ground dataset where they are of man-made origin.

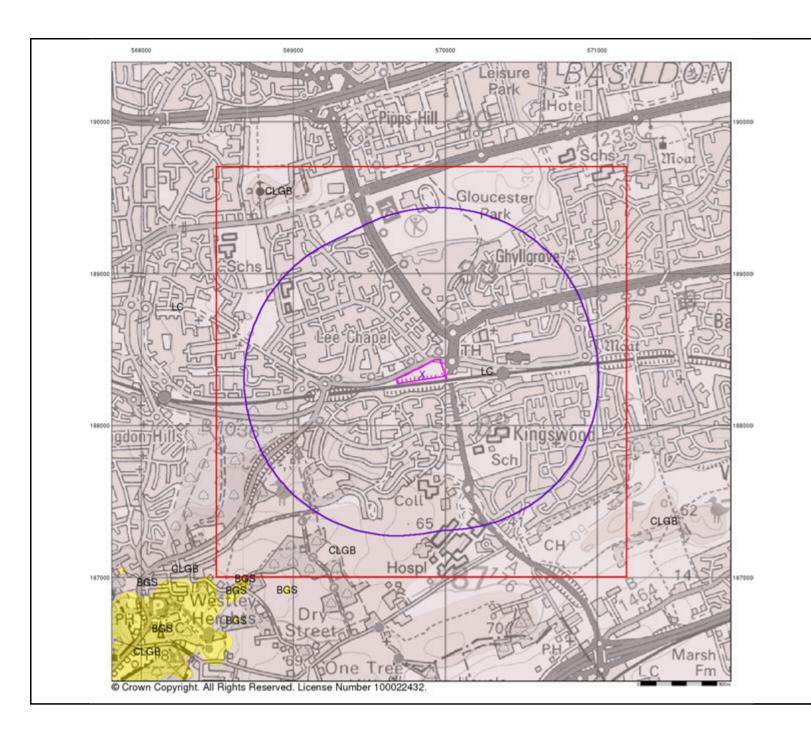
Most of these Superficial deposits are unconsolidated sediments such as gravel, sand, silt and clay, and onshore they form relatively thin, often discontinuous patches or larger spreads.

Superficial Geology Map - Slice A

Order Details:

Order Number: 259013368_1_1
Customer Reference: 2009004
National Grid Reference: 569850, 188340
Slice: A
Site Area (Ha): 2.48
Search Buffer (m): 1000

Site Details:

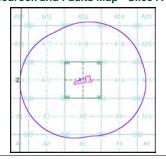

1, Hempstalls, BASILDON, SS15 5AA

Tel: 0844 844 9952 Fax: 0844 844 9951 Veb: www.envirocheck.co.uk

v15.0 25-Sep-2020

Page 3 of 5

Bedrock and Faults


Bedrock geology is a term used for the main mass of rocks forming the Earth and are present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

The bedrock has formed over vast lengths of geological time ranging from ancient and highly altered rocks of the Proterozoic, some 2500 million years ago, or older, up to the relatively young Pliocene, 1.8 million years ago.

The bedrock geology includes many lithologies, often classified into three types based on origin: igneous, metamorphic and sedimentary.

The BGS Faults and Rock Segments dataset includes geological faults (e.g. normal, thrust), and thin beds mapped as lines (e.g. coal seam, gypsum bed). Some of these are linked to other particular 1:50,000 Geology datasets, for example, coal seams are part of the bedrock sequence, most faults and mineral veins primarily affect the bedrock but cut across the strata and post date its deposition.

Bedrock and Faults Map - Slice A

Order Details:

 Order Number:
 259013368_1_1

 Customer Reference:
 2009004

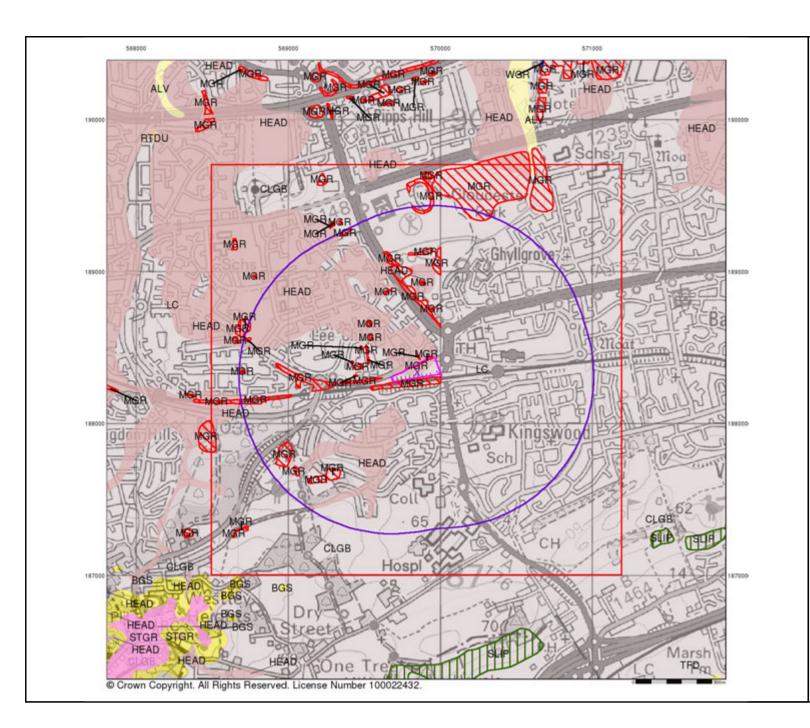
 National Grid Reference:
 569850, 188340

 Slice:
 A

 Site Area (Ha):
 2.48

 Search Buffer (m):
 1000

Site Details:


1, Hempstalls, BASILDON, SS15 5AA

Tel: 0844 844 9952 Tax: 0844 844 9951 Veb: www.envirocheck.c

v15.0 25-Sep-2020

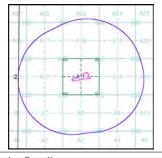
Page 4 of 5

TWEEDIE EVANS CONSULTING

Combined Surface Geology

The Combined Surface Geology map combines all the previous maps into one combined geological overview of your site.

Please consult the legends to the previous maps to interpret the Combined "Surface Geology" map.


Additional Information

More information on 1:50,000 Geological mapping and explanations of rock classifications can be found on the BGS website. Using the LEX Codes in this report, further descriptions of rock types can be obtained by interrogating the 'BGS Lexicon of Named Rock Units'. This database can be accessed by following the 'Information and Data' link on the BGS website.

Contact

British Geological Survey Kingsley Dunham Centre Keyworth Nottingham NG12 5GG Telephone: 0115 936 3143 Fax: 0115 936 3276 email: enquiries@bgs.ac.uk website: www.bgs.ac.uk

Combined Geology Map - Slice A

Order Details:

Order Number: 259013368_1_1
Customer Reference: 2009004
National Grid Reference: 569850, 188340
Slice: A
Slice Area (Ha): 2.48
Search Buffer (m): 1000

to Detaile.

Site Details:

1, Hempstalls, BASILDON, SS15 5AA

Tel: 0844 844 9952 Tax: 0844 844 9951 Veb: www.envirocheck.co

v15.0 25-Sep-2020

Page 5 of 5

Envirocheck® Report:

Mining and Ground Stability Datasheet

Order Details:

Order Number:

259013368_1_1

Customer Reference:

2009004

National Grid Reference:

569850, 188340

Slice:

Δ

Site Area (Ha):

2.48

Search Buffer (m):

1000

Site Details:

1, Hempstalls BASILDON SS15 5AA

Client Details:

Mr T . Tweedie Evans Consulting Ltd The Old Chapel 35a Southover Wells Somerset BA5 1UH

Report Section and Details	Page Number			
Summary	-			
The Summary section provides an overview of the data contained within the report, detailing the number of data set features				

or the existence of a data set in relation to the buffer selected.

For ease of reference, the report is broken down into 4 sections of data; Mining and Natural Cavities Data, Historical Land Use Information (1:2,500), Historical Land Use Information (1:10,000) and Ground Stability Data (1:50,000).

Mining and Natural Cavities Data

The Mining and Natural Cavities Data section features data sets related to the existence of mining areas and their potential hazards; and details of naturally formed cavities.

Data sets within this section are not plotted, with the exception of BGS Recorded Mineral Sites and Potential Mining Areas which feature on the Historical Land Use Information (1:10,000) map.

Historical Land Use Information (1:2,500)

The Historical Land Use Information (1:2,500) section contains data captured from analysis carried out by Landmark of 1:1,250 and 1:2,500 scale historical Ordnance Survey mapping, identifying areas where, historically, the land uses were potentially contaminative.

For the purpose of this Envirocheck module, only historical data relating to mining and ground stability has been included and plotted on the corresponding Historical Land Use Information (1:2,500) map. This section also includes the Subterranean Features data set, which details various man-made and man-used underground spaces obtained from the Subterranea Britannica society.

Historical Land Use Information (1:10,000)

2

The Historical Land Use (1:10,000) section covers data captured from the systematic analysis carried out by Landmark of 1:10, 560 and 1:10,000 scale historical Ordnance Survey mapping dating back to the mid-19th century, identifying potentially contaminative past industrial land uses.

For the purpose of this Envirocheck module, only data relating to mining and ground stability has been included and plotted on the accompanying Historical Land Use Information (1:10,000) map.

Ground Stability Data (1:50,000)

4

The Ground Stability (1:50,000) section includes the BGS Geosure data suite, reporting features to 250m and plotted onto 3 separate maps. Also reported is brine subsidence, brine mining and salt mining data sets, of which Brine Pumping and Salt Mining Related Features are plotted, and subsidence insurance claims and insurance investigations data, which is not plotted

Historical Map List 6

The Historical Map List section details the historical mapping that has been analysed for your site, in relation to the Historical Land Use Information sections

Data Currency	7
Data Suppliers	8
Useful Contacts	9

Copyright Notice

© Landmark Information Group Limited 2020. The Copyright on the information and data and its format as contained in this Envirocheck® Report ("Report") is the property of Landmark Information Group Limited ("Landmark") and several other Data Providers, including (but not limited to) Ordnance Survey, British Geological Survey, and the Environment Agency/Natural Resources Wales, and must not be reproduced in whole or in part by photocopying or any other method. The Report is supplied under Landmark's Terms and Conditions accepted by the Customer. A copy of Landmark's Terms and Conditions can be found with the Index Map for this report. Additional copies of the Report may be obtained from Landmark, subject to Landmark's charges in force from time to time. The Copyright, design rights and any other intellectual rights shall remain the exclusive property of Landmark and /or other Data providers, whose Copyright material has been included in this Report.

© Copyright Stantec UK Limited. All rights reserved.

The brine subsidence data relating to the Driotwich area as provided in this report is derived from JPB studies and physical monitoring undertaken annually over more than 35 years. For more detailed interpretation contact enquiries@jpb.co.uk. JPB retain the copyright and intellectual rights to this data and accept no liability for any loss or damage, including in direct or consequential loss, arising from the use of this data.

The Mining Instability data was obtained on licence from Ove Arup & Partners Limited (for further information, contact mining.review@arup.com). No reproduction or further use of such Data is to be made without the prior written consent of Ove Arup & Partners Limited. The supplied Mining Instability data is derived from publicly available records and other third party sources and neither Ove Arup & Partners nor Landmark warrant the accuracy or completeness of such information or data.

Report Version v53.0

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m
Mining and Natural Cavities Data					
BGS Recorded Mineral Sites					
Coal Mining Affected Areas			n/a	n/a	n/a
Man Made Mining Cavities					
Mining Instability			n/a	n/a	n/a
Natural Cavities					
Non Coal Mining Areas of Great Britain				n/a	n/a
Potential Mining Areas					
Historical Land Use Information (1:2,500)					
Extractive Industries or Potential Excavations from 1855-1909 (100m)				n/a	n/a
Extractive Industries or Potential Excavations from 1893-1915 (100m)				n/a	n/a
Extractive Industries or Potential Excavations from 1906-1937 (100m)				n/a	n/a
Extractive Industries or Potential Excavations from 1924-1949 (100m)				n/a	n/a
Extractive Industries or Potential Excavations from 1950-1980 (100m)	pg 1	1	1	n/a	n/a
Subterranean Features (100m)				n/a	n/a
Historical Land Use Information (1:10,000)					
Air Shafts					
Disturbed Ground					
General Quarrying					
Heap, unknown constituents					
Mineral Railway					
Mining & quarrying general					
Mining of coal & lignite					
Quarrying of sand & clay, operation of sand & gravel pits					
Former Marshes					
Potentially Infilled Land (Non-Water)					
Potentially Infilled Land (Water)	pg 2		5	5	15
Ground Stability Data (1:50,000)					
CBSCB Compensation District			n/a	n/a	n/a
Brine Pumping Related Features					
Brine Subsidence Solution Area					
Potential for Collapsible Ground Stability Hazards	pg 4	Yes		n/a	n/a
Potential for Compressible Ground Stability Hazards	pg 4	Yes	Yes	n/a	n/a
Potential for Ground Dissolution Stability Hazards	pg 4	Yes		n/a	n/a
Potential for Landslide Ground Stability Hazards	pg 4	Yes	Yes	n/a	n/a
Potential for Running Sand Ground Stability Hazards	pg 5	Yes		n/a	n/a
Potential for Shrinking or Swelling Clay Ground Stability Hazards	pg 5	Yes		n/a	n/a
Salt Mining Related Features					

Report Version v53.0

Order Number: 259013368_1_1 Date: 25-Sep-2020 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Historical Land Use Information (1:2,500)

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Extractive Industries or Potential Excavations from 1950-1980				
1	Use: Railway Embankment First Map Published 1956 Date: Last Map Published Not Applicable Date:	A13SE (S)	0	-	569862 188297
	Extractive Industries or Potential Excavations from 1950-1980				
2	Use: Pond First Map Published 1956 Date: Last Map Published N/A Date:	A13SW (W)	8	-	569673 188287

Order Number: 259013368_1_1 Date: 25-Sep-2020 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 1 of 9

Historical Land Use Information (1:10,000)

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Potentially Infilled Land (Water)				
3	Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1960	A13NW (NW)	12	-	569819 188386
4	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1960	A13SW (W)	16	-	569668 188278
5	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1960	A13NW (N)	143	-	569788 188522
6	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1960	A13SE (S)	181	-	569868 188122
7	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1960	A13NW (N)	239	-	569761 188616
8	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1960	A18SE (N)	309	-	569876 188736
9	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1960	A14NW (E)	332	-	570329 188398
10	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1960	A8NW (SW)	403	-	569631 187877
11	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1960	A14NW (E)	406	-	570387 188463
12	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1960	A14NW (NE)	452	-	570384 188614
13	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1960	A18SW (NW)	508	-	569581 188825
14	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1960	A18SE (N)	523	-	570017 188954
15	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1960	A7NE (SW)	534	-	569233 187992
16	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1924	A12NW (NW)	662	-	569113 188656
17	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1938	A12NW (W)	709	-	568972 188401
18	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1960	A12NW (W)	713	-	568968 188397
19	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1960	A19SE (NE)	755	-	570578 188880
20	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1938	A12NW (W)	760	-	568954 188549
21	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1960	A9NE (SE)	774	-	570692 187954
22	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1938	A14SE (E)	846	-	570852 188261
23	Potentially Infilled Land (Water) Use: Unknown Filled Ground (Pond, marsh, river, stream, dock etc) Date of Mapping: 1960	A14NE (E)	875	-	570853 188541

Order Number: 259013368_1_1 Date: 25-Sep-2020 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Historical Land Use Information (1:10,000)

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Potentially Infilled	Land (Water)				
24	Use: Date of Mapping:	Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1960	A9SW (SE)	887	-	570333 187488
	Potentially Infilled	Land (Water)				
25	Use: Date of Mapping:	Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1960	A8SW (S)	893	-	569601 187388
	Potentially Infilled	Land (Water)				
26	Use: Date of Mapping:	Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1960	A19NW (NE)	921	-	570255 189306
	Potentially Infilled	Land (Water)				
27	Use: Date of Mapping:	Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1960	A9NE (SE)	952	-	570720 187682

Order Number: 259013368_1_1 Date: 25-Sep-2020 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 3 of 9

Ground Stability Data (1:50,000)

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	CBSCB Compensation District The site does not fall within the brine compensation area.				
	Brine Subsidence Solution Area The site does not fall within the brine subsidence solution area.				
	Potential for Collapsible Ground Stability Hazards				
28	Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A13SE (E)	0	1	570000 188337
29	Potential for Collapsible Ground Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A13SE (SW)	0	1	569849 188337
30	Potential for Compressible Ground Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A13NW (NW)	0	1	569829 188369
31	Potential for Compressible Ground Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A13NE (NE)	0	1	569877 188399
	Potential for Compressible Ground Stability Hazards	, ,			
32	Hazard Potential: Very Low British Geological Survey, National Geoscience Information Service	A13SE (S)	6	1	569855 188292
33	Potential for Compressible Ground Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A13NE (N)	20	1	569862 188423
34	Potential for Compressible Ground Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A13SW (W)	58	1	569617 188300
35	Potential for Compressible Ground Stability Hazards Hazard Potential: Very Low	A13NW	170	1	569532
	Source: British Geological Survey, National Geoscience Information Service Potential for Compressible Ground Stability Hazards	(W)			188399
36	Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A12NE (W)	199	1	569487 188375
37	Potential for Compressible Ground Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A13NE (NE)	204	1	570000 188634
38	Potential for Compressible Ground Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A13NW (W)	213	1	569523 188456
39	Potential for Compressible Ground Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A12SE (W)	221	1	569454 188314
	Potential for Compressible Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service	A13SE (E)	0	1	570000 188337
	Potential for Compressible Ground Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service	A13SE (SW)	0	1	569849 188337
	Potential for Ground Dissolution Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service	A13SE (SW)	0	1	569849 188337
	Potential for Ground Dissolution Stability Hazards Hazard Potential: No Hazard Source: British Geological Survey, National Geoscience Information Service	A13SE (E)	0	1	570000 18833
10	Potential for Landslide Ground Stability Hazards Hazard Potential: Low Source: British Geological Survey, National Geoscience Information Service	A13SE (S)	0	1	569850 188322
11	Potential for Landslide Ground Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A13SE (SW)	0	1	569849 188337
42	Potential for Landslide Ground Stability Hazards Hazard Potential: Very Low Source: British Geological Survey, National Geoscience Information Service	A13SE (E)	0	1	570000 188337

Order Number: 259013368_1_1 Date: 25-Sep-2020 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Ground Stability Data (1:50,000)

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Potential for Land	slide Ground Stability Hazards				
43	Hazard Potential: Source:	Low British Geological Survey, National Geoscience Information Service	A13SW (W)	36	1	569643 188288
	Potential for Land	slide Ground Stability Hazards				
44	Hazard Potential: Source:	Low British Geological Survey, National Geoscience Information Service	A13SE (S)	49	1	569857 188253
	Potential for Land	slide Ground Stability Hazards				
45	Hazard Potential: Source:	Low British Geological Survey, National Geoscience Information Service	A13SW (W)	81	1	569601 188270
	Potential for Runn	ing Sand Ground Stability Hazards				
46	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13SE (SW)	0	1	569849 188337
	Potential for Runn	ing Sand Ground Stability Hazards				
47	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13SE (E)	0	1	570000 188337
	Potential for Shrin	king or Swelling Clay Ground Stability Hazards				
48	Hazard Potential: Source:	Moderate British Geological Survey, National Geoscience Information Service	A13SE (SW)	0	1	569849 188337
	Potential for Shrin	king or Swelling Clay Ground Stability Hazards				
49	Hazard Potential: Source:	Moderate British Geological Survey, National Geoscience Information Service	A13SE (E)	0	1	570000 188337

Order Number: 259013368_1_1 Date: 25-Sep-2020 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 5 of 9

Historical Map List

The following mapping has been analysed for Historical Land Use Information (1:2,500):

1:2,500	Mapsheet	Published Date
Ordnance Survey Plan	TQ6988	1956
Ordnance Survey Plan	TQ7088	1956

The following mapping has been analysed for Historical Land Use Information (1:10,000):

1:10,560	Mapsheet	Published Date
Essex	076_00	1876
Essex	068_00	1881
Essex	076_NE	1897
Essex	068_SE	1898
Essex	081_SE	1923
Essex	081_NE	1924
Essex	081_NW	1924
Essex	081_SW	1924
Essex	081_NE	1938
Essex	081_NW	1938
Essex	081_SE	1938
Essex	081_SW	1938
Ordnance Survey Plan	TQ68NE	1960
Ordnance Survey Plan	TQ78NW	1960
1:10,000	Mapsheet	Published Date
Ordnance Survey Plan	TQ78NW	1985
Ordnance Survey Plan	TQ68NE	1987

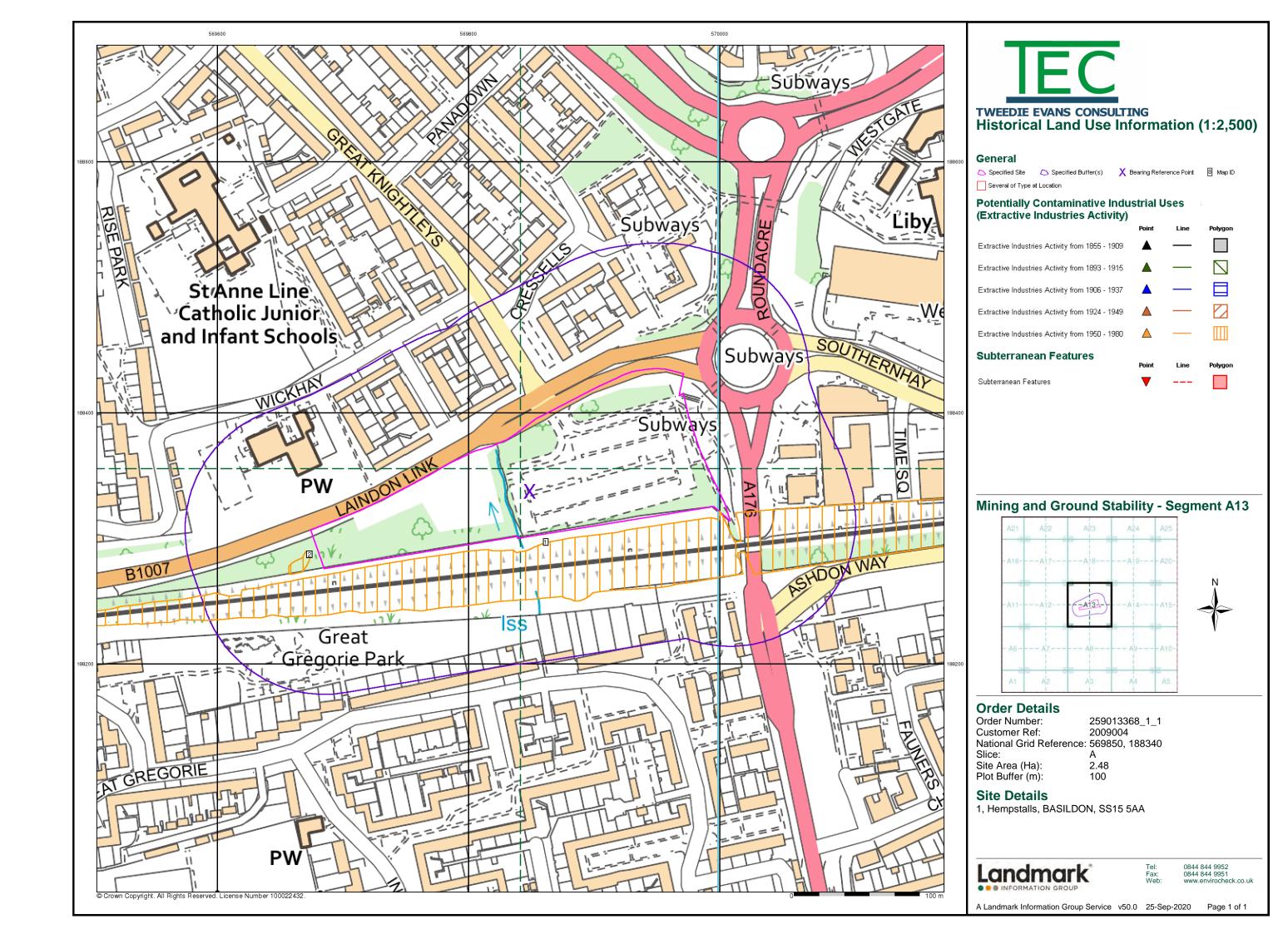
Data Currency

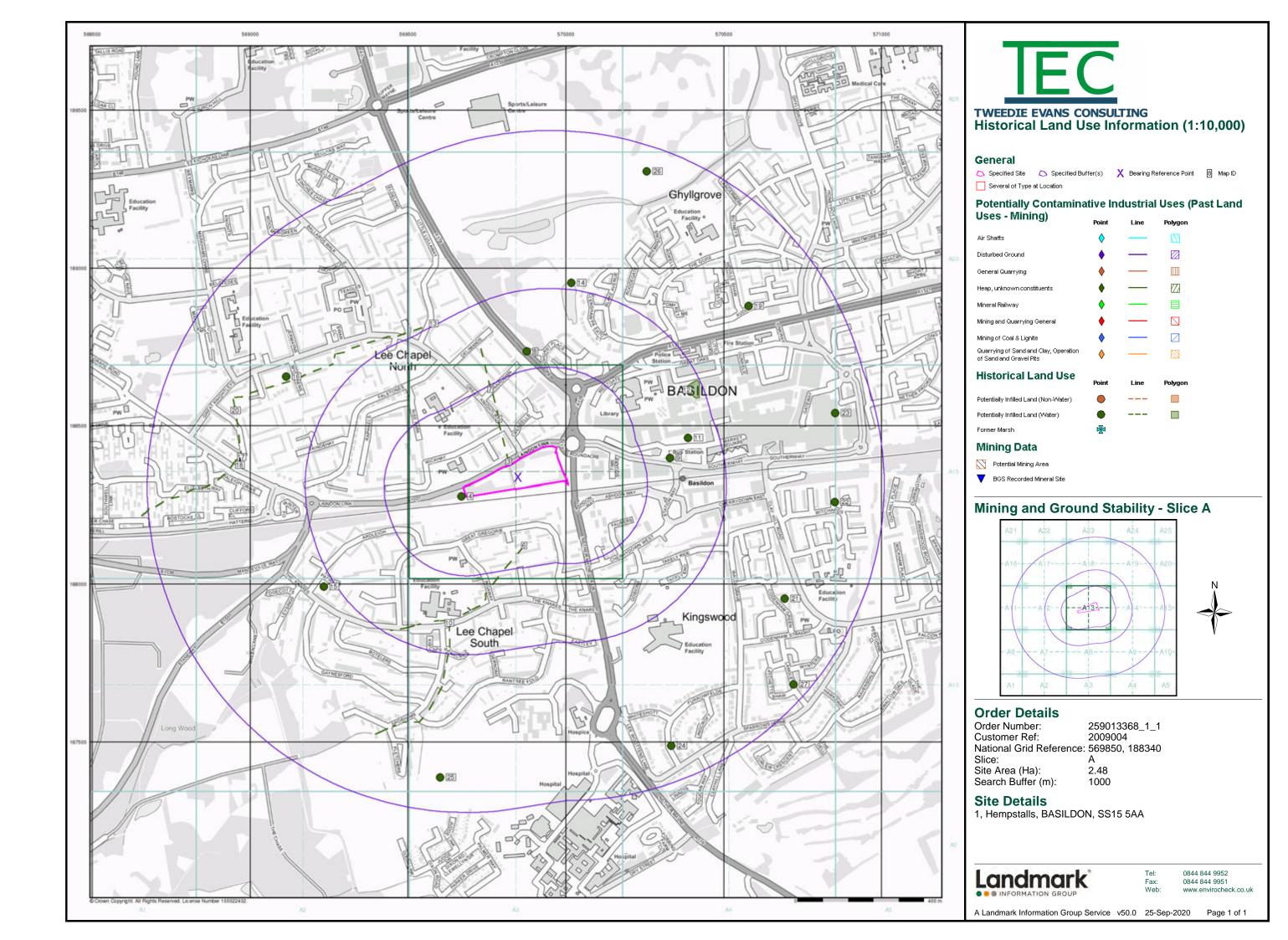
Mining and Cavities Data	Version	Update Cycle
BGS Recorded Mineral Sites		
British Geological Survey - National Geoscience Information Service	June 2020	Bi-Annually
Coal Mining Affected Areas		
The Coal Authority - Property Searches	March 2014	Annual Rolling Updat
Man Made Mining Cavities		
Stantec UK Ltd	December 2019	Bi-Annually
Mining Instability		
Ove Arup & Partners	October 2000	Not Applicable
Natural Cavities		
Stantec UK Ltd	December 2019	Bi-Annually
Non Coal Mining Areas of Great Britain		
British Geological Survey - National Geoscience Information Service	May 2015	Not Applicable
Historical Land Use Information (1:2,500)	Version	Update Cycle
Subterranean Features		
Landmark Information Group Limited	February 2020	Bi-Annually
Ground Stability Data (1:50,000)	Version	Update Cycle
CBSCB Compensation District		
Cheshire Brine Subsidence Compensation Board (CBSCB)	August 2011	Not Applicable
Potential for Collapsible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	April 2020	Annually
Potential for Compressible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	Annually
Potential for Ground Dissolution Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	Annually
Potential for Landslide Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	Annually
Potential for Running Sand Ground Stability Hazards		
· · · · · · · · · · · · · · · · · · ·	January 2019	Annually
British Geological Survey - National Geoscience Information Service Potential for Shrinking or Swelling Clay Ground Stability Hazards	January 2019	Annually
Potential for Running Sand Ground Stability Hazards British Geological Survey - National Geoscience Information Service Potential for Shrinking or Swelling Clay Ground Stability Hazards British Geological Survey - National Geoscience Information Service	January 2019 January 2019	Annually Annually
British Geological Survey - National Geoscience Information Service Potential for Shrinking or Swelling Clay Ground Stability Hazards	·	,

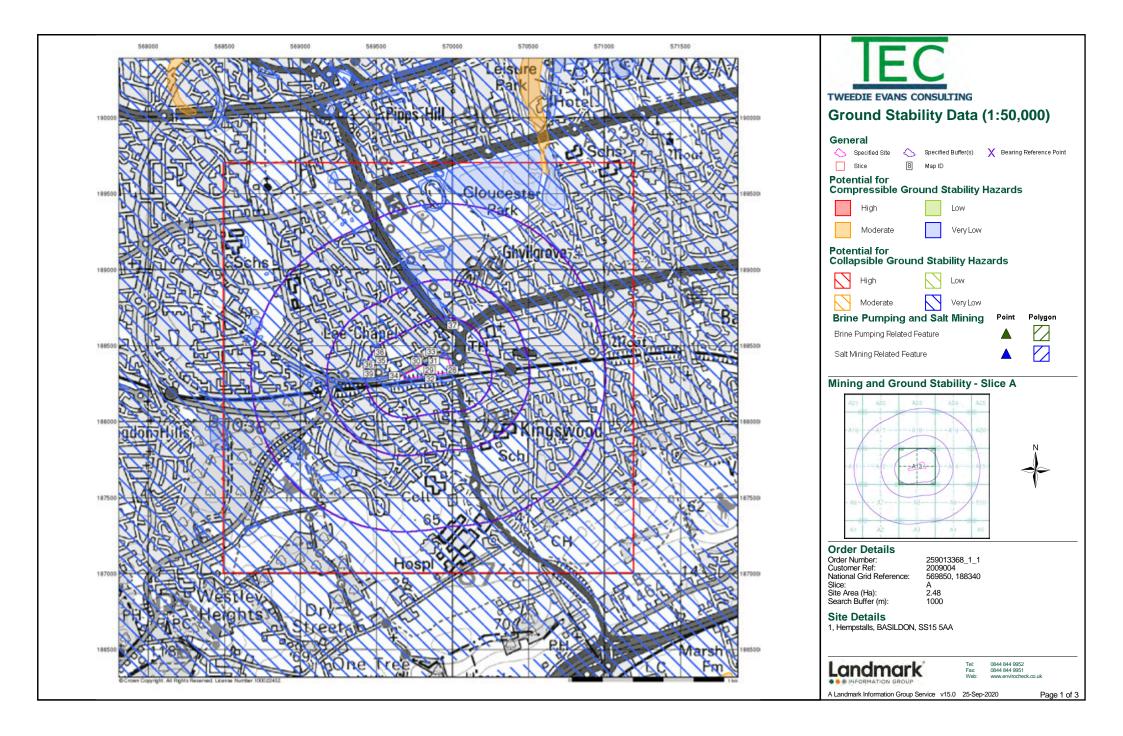
Order Number: 259013368_1_1 Date: 25-Sep-2020 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 7 of 9

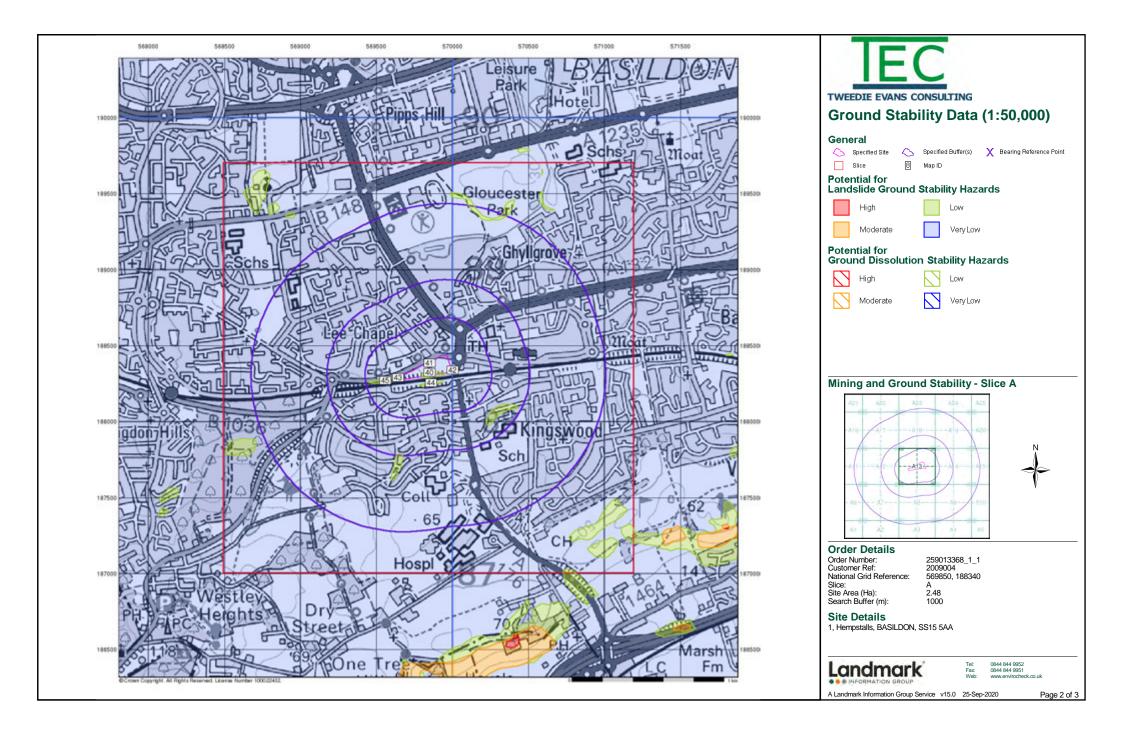
A selection of organisations who provide data within this report

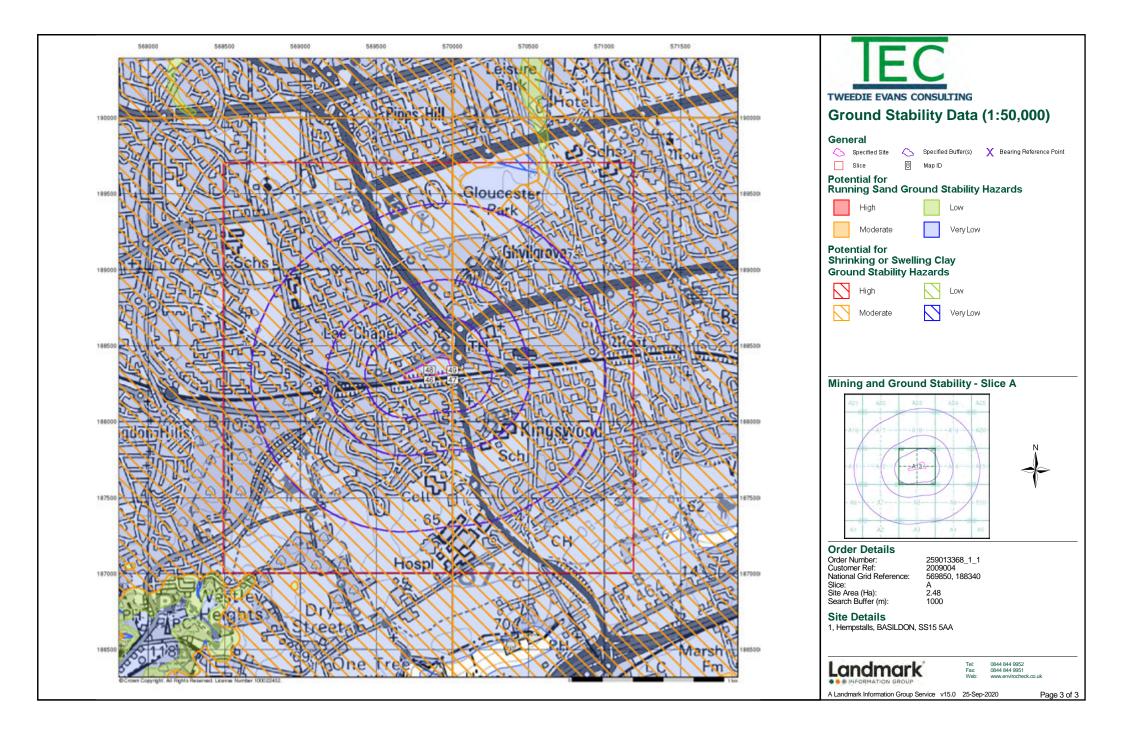
Data Supplier	Data Supplier Logo
Ordnance Survey	Mop data
British Geological Survey	British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL
The Coal Authority	The Coal Authority
Ove Arup	ARUP
Stantec UK Ltd	Stantec
Wardell Armstrong	wardell armstrong your earth our world
Johnson Poole & Bloomer	JPB


Order Number: 259013368_1_1 Date: 25-Sep-2020 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 8 of 9




Useful Contacts


Contact	Name and Address	Contact Details
1	British Geological Survey - Enquiry Service British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, Nottinghamshire, NG12 5GG	Telephone: 0115 936 3143 Fax: 0115 936 3276 Email: enquiries@bgs.ac.uk Website: www.bgs.ac.uk
-	Landmark Information Group Limited Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Telephone: 0844 844 9952 Fax: 0844 844 9951 Email: customerservices@landmarkinfo.co.uk Website: www.landmarkinfo.co.uk


Order Number: 259013368_1_1 Date: 25-Sep-2020 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 9 of 9

Appendix D Regulatory Correspondence

Mr James Naylor

James.naylor@tecon.co.uk

Please ask for Department

Date

15 October 2020 Sarah Wakely

Environmental Health Services

Tel. No (01268) 206894

E-Mail Sarah.wakely@basildon.gov.uk

Reference EIRSR161470

BY EMAIL

Dear Sir,

ENVIRONMENTAL INFORMATION REGULATIONS 2004 ENVIRONMENTAL INFORMATION ENQUIRY – CAR PARK 14. BASILDON

I refer to your enquiry dated 1 October 2020 in respect of the above site. Thank you for paying the search fee. This Service would answer your questions as follows:

1. This Service does not hold any records with respect to pre-licensed landfills within 500m of the site (pink circle on attached plan). In respect of landfill queries it would be advisable to enquire with the Environment Agency. I understand their contact address for this area is:

Rivens House Threshelfords Business Park Inworth Road Feering Colchester Essex **CO5 9SE**

2. You are advised that files in this Service generally extend back to the early 1990's. A search of these systems has not disclosed any records regarding pollution incidents or known areas of contaminated land (determined under Part IIA of the EPA 1990) within 500m of the subject site. However, this Service has a duty to identify sites of potential contamination from various sources. This Service has identified five potentially contaminative land uses within 500m of the site. The sites are listed below and shaded and referred to on the attached plan:

Ref No	Grid Ref	Identification Source	Further Details	Priority Category
BAS 176	569839m, 188697m	Pre 1953 Historical OS maps	Small unknown infill	2
BAS 176a	569870m, 188742m	Pre 1953 Historical OS maps	Small unknown infill	2
POST 741	569666m, 188279m	Historical OS maps 1953-present	Small unknown infill	2
POST 753	570281m, 188362m	Historical OS maps 1953-present	Garage	1
POST 754	570334m, 188393m	Historical OS maps 1953-present	Small unknown infill	2

The sites are classified (using a locally derived assessment criteria) into preliminary priority categories 1 to 4, where 1 represents high risk and 4 represents low risk.

3. There is one Part B APC authorisation within 500m of the subject site, which is listed below and shaded in green on the attached plan:

Name of Business	Grid Ref	Type of Permit
BP Connect Roundacre Filling Station	570063m,188361m	Petrol Filling Station

- 4. This Service does not hold any records with respect to private water supplies.
- 5. This Service does not hold any records relating to storage of petroleum hydrocarbons. You are advised to contact the Petroleum Officer who is based at Essex County Council Trading Standards.
- 6. This Service is aware of one site (Roundacre grid ref 569966m,188520m) where a site investigation has been carried out. Should you wish to see a copy of the site investigation, this Service would need to request permission from the owner of the report before providing it. Such a request will also incur an additional charge.
- 7. This Services does not hold any records relating to unexploded ordnance.
- 8. This Service is not aware of any known problems with ground gas in the site area.
- 9. This Service does not hold any records with respect to naturally elevated contaminant concentrations.
- 10. This Service does not hold any other information that may have an impact upon the contaminative status of the site.

I trust this information assists.

Yours faithfully,

Sarah Wakely Environmental Planning Officer enc.

Appendix E Risk Methodologies and Evaluation

Risk Evaluation

The qualitative assessment methodology presented in CIRIA publication C552 (2001) titled 'Contaminated Land Risk Assessment: A Guide to Good Practice' has been used by TEC for the basis of evaluating potential risk.

The method requires an assessment of the:

- magnitude of the probability or likelihood of the risk occurring (Table 1); and
- magnitude of the potential consequence or severity of the risk occurring (Table 2)

Table 1. Classification of Probability

Classification	Definition
High likelihood	There is a pollution linkage and an event that either appears very likely in the short-term and almost inevitable over the long-term, or there is evidence at the receptor of harm or pollution.
Likely	There is a pollution linkage and all the elements are present and in the right place, which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short-term and likely over the long-term.
Low likelihood	There is a pollution linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a longer period such an event would take place, and is less likely in the short-term.
Unlikely	There is a pollution linkage but circumstances are such that it is improbable that an event would occur even in the very long-term.

Table 2. Classification of Consequence

Classification	Definition	Examples
Severe	Short-term (acute) risk to human health likely to result in "significant harm" as defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution of sensitive water resource. (Note: Water Resources Act contains no scope for considering significance of pollution). Catastrophic damage to buildings/property. A short-term risk to a particular ecosystem, or organisation forming part of such ecosystem (note: the definitions of ecological systems within the draft circular on Contaminated Land, DETR, 2000).	High concentrations of cyanide on the surface of an informal recreation area. Major spillage of contaminants from site into controlled water. Explosion, causing building collapse (can also equate to a short-term human health risk if buildings are occupied).
Medium	Chronic damage to human health ("significant harm" as defined in DETR, 2000). Pollution of sensitive water resources. (Note: Water Resources Act contains no scope for considering significance of pollution). A significant change in a particular ecosystem, or organism forming part of such ecosystem, (note: the definitions of ecological systems within draft circular on Contaminated Land, DETR, 2000).	Concentration of a contaminant from site exceeding the generic or site-specific assessment criteria. Leaching of contaminants from a site to a major or minor aquifer. Death of a species within a designated nature reserve.
Mild	Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ("significant harm" as defined in the draft circular on Contaminated Land, DETR, 2000). Damage to sensitive buildings/structures/services or the environment.	Pollution of non-classified groundwater. Damage to building rendering it unsafe to occupy (for example foundation damage resulting in instability).
Minor	Harm, although not necessarily significant harm, which may result in a financial loss, or expenditure to resolve. Non-permanent health effects to human health (easily prevented by means such as personal protective clothing etc), easily repairable effects of damage to buildings, structures and services.	The presence of contaminants at such concentrations that protective equipment is required during site works. The loss of plants in a landscaping scheme. Discolouration of concrete.

The combination of the two factors is determined using Table 3 and the resulting level of risk is described in Table 4. The evaluation can be applied to each of the scenarios identified in the risk model and the overall risk assessed.

Table 3. Combination of Consequence with Probability

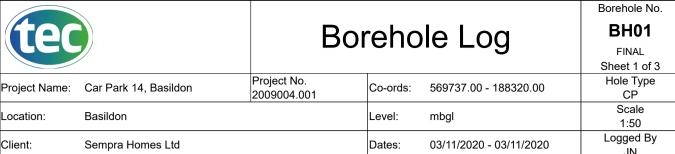
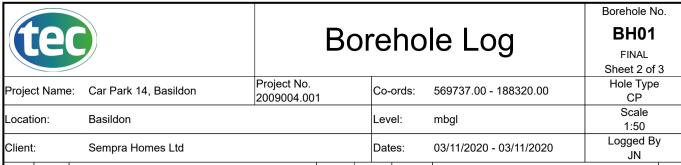

		Consequence					
		Severe	Medium	Mild	Minor		
	High Likelihood	Very High Risk	High Risk	Moderate Risk	Moderate/Low Risk		
Probability	Likely	High Risk	Moderate Risk	Moderate/Low Risk	Low Risk		
Proba	Low Likelihood	Moderate Risk	Moderate/Low Risk	Low Risk	Very Low Risk		
	Unlikely	Moderate/Low Risk	Low Risk	Very Low Risk	Very Low Risk		

Table 4. Description of risks and likely action required

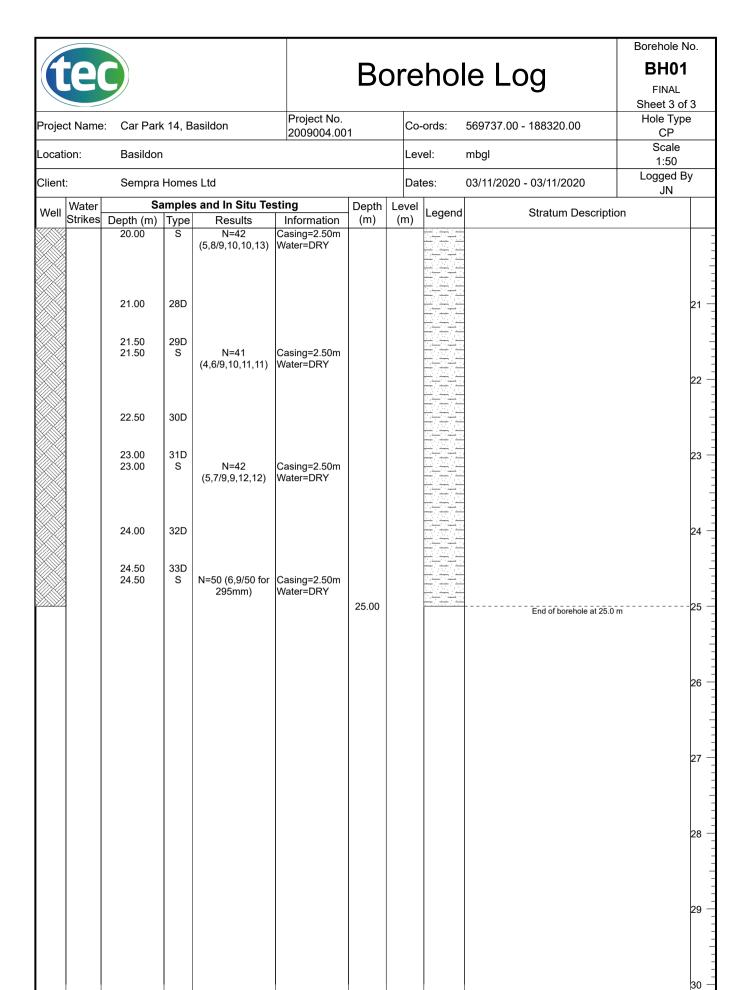
Very High Risk	There is a high probability that severe harm could arise to a designated receptor from an identified hazard, or there is evidence that severe harm to a designated receptor is currently happening. This risk, if realised, is likely to result in a substantial liability. Urgent investigation (if not undertaken already) and remediation are likely to be required.
High Risk	Harm is likely to arise to a designated receptor from an identified hazard. Realisation of the risk is likely to present a substantial liability. Urgent investigation (if not undertaken already) is required and remedial works may be necessary in the short-term and are likely over the longer-term.
Moderate Risk	It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild. Investigation (if not already undertaken) is normally required to clarify the risk and to determine the potential liability. Some remedial works may be required in the long-term.
Low Risk	It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realised, would at worst normally be mild.
Very Low Risk	There is a low possibility that harm could arise to a receptor. In the event of such harm being realised it is not likely to be severe.

Using the risk model the pollutant linkages are identified and a preliminary estimate of risk undertaken. If there is no pollutant linkage identified, then there is no risk. If the estimate of risk for all the linkages and exposure scenarios is very low at this stage then it is likely that no further assessment will be required.


Appendix F
Exploratory Hole Logs

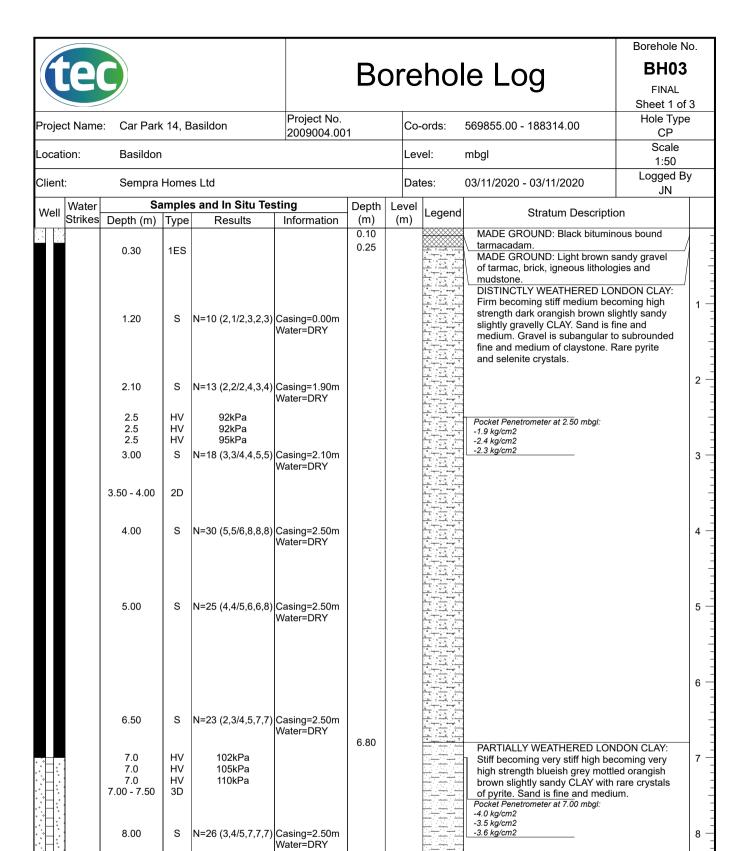
Client	:	Sempra	Home	es Ltd			Da	tes:	03/11/2020 - 03/11/2020	JN	,
Well	Water	Samples and In Situ Testing Depth						Legend			
vveii	Strikes	Depth (m)	Туре	Results	Information	(m)	(m)	Legena	Stratum Descripti		
		0.20 0.40 - 0.60	1D 2B			0.15			MADE GROUND: Orangish bro sandy gravelly clay. Gravel of fli concrete and brick. Firm becoming stiff medium be strength orangish brown slightly	ont, mudstone, coming high	- - - - -
		1.00 1.20 1.20	3D 4D S	N=12 (1,2/2,3,3,4)	Casing=0.00m Water=DRY				slightly gravelly silty CLAY. San medium. Gravel is subangular t fine and medium of claystone. F and selenite crystals.	o rounded	1 -
		1.90 2.10 2.10	5D 6D S	N=11 (2,2/2,3,3,3)	Casing=1.90m Water=DRY						2 -
		3.00 3.00 3.0 3.0 3.0	7D S HV HV	N=14 (2,3/3,3,4,4) 78kPa 80kPa 80kPa	Casing=2.50m Water=DRY				Pocket Penetrometer at 3.00 mbgl: -2.1 kg/cm2 -2.1 kg/cm2 -2.1 kg/cm2		3 -
		4.00 4.00	8D S	N=18 (2,2/3,5,5,5)	Casing=2.50m Water=DRY						4 -
		5.00 5.00	9D S	N=18 (2,2/4,4,5,5)	Casing=2.50m Water=DRY						5 -
		6.00 6.50 6.50	10D 11D S	N=22 (3,4/4,6,6,6)	Casing=2.50m						6 -
		7.50	12D	14-22 (0,4/4,0,0,0)	Water=DRY						7 -
		8.00 8.00 8.0 8.0 8.0	13D S HV HV	N=23 (3,3/5,6,6,6) 102kPa 105kPa 10kPa	Casing=2.50m Water=DRY				Pocket Penetrometer at 8.00 mbgl: -3.4 kg/cm2 -3.0 kg/cm2		8 —
		9.00 9.50 9.50		N=25 (3,3/5,6,7,7)	Casing=2.50m Water=DRY						9
x///XY///		10.0	HV	128kPa		10.00			Continued on next she	et	10 —

Terminated at scheduled depth on Engineer's instruction. Groundwater not encountered.



ent:		Sempra	Home	s Lta			Dai	ies:	03/11/2020 - 03/11/2020	JN	•
ااد	Water						Level	Legend	Stratum Description	n n	
511	Strikes		Туре	Results	Information	(m)	(m)	Legend			
		10.0	HV	130kPa 130kPa					PARTIALLY WEATHERED LONDON CLAY: Stiff becoming very stiff high strength blueish		
		10.0	HV	ISUKPa					grey locally mottled orangish bro	engin blueisn own slightly	
		10.50	16D						sandy CLAY. Sand is fine and m	edium.	
		11.00	17D						1		11
X		11.00 11.00	S	N=25 (2,3/5,6,7,7)	Casing=2.50m						111
			_	(=, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Water=DRY						
									<u>-</u>		
		12.00	18D								1,
		12.00	180						<u>.</u>		12
\gg									-		
		12.50	19D								
		12.50	S	N=23 (3,3/4,5,7,7)	Casing=2.50m				<u>-</u>		
					Water=DRY						١.,
											1:
									<u>.</u>		
\mathbb{X}		13.50	20D						-		
									<u>.</u>		
		14.00 14.00	21D S	N=33	Casing=2.50m						1
		14.00		(4,4/6,8,9,10)	Water=DRY				1		
				(, , , , , , , , , , , , , , , , , , ,							
									<u>.</u>		
		15.00	22D								1
		15.50	s	N=34	Casing=2.50m				<u>1</u>		
		10.00		(3,6/8,8,8,10)	Water=DRY						
		16.00	23D						<u>.</u>		1
									<u>1</u>		
		17.00	24D								1
		17.00	S	N=41 (5,7/9,10,11,11)	Casing=2.50m				<u>.</u>		
				(3,773,10,11,11)	Water-Bitti						
									1		
%		18.00	25D								1
%											
		18.50	s	N=44	Casing=2 50m				<u>.</u>		
		10.50	"	(4,7/8,12,11,13)	Casing=2.50m Water=DRY						
				,							
									1		1
\mathbb{X}											
%		19.50	26D								
		19.50	200						1		
		20.00	27D						Continued on next shee		-20

Terminated at scheduled depth on Engineer's instruction. Groundwater not encountered.



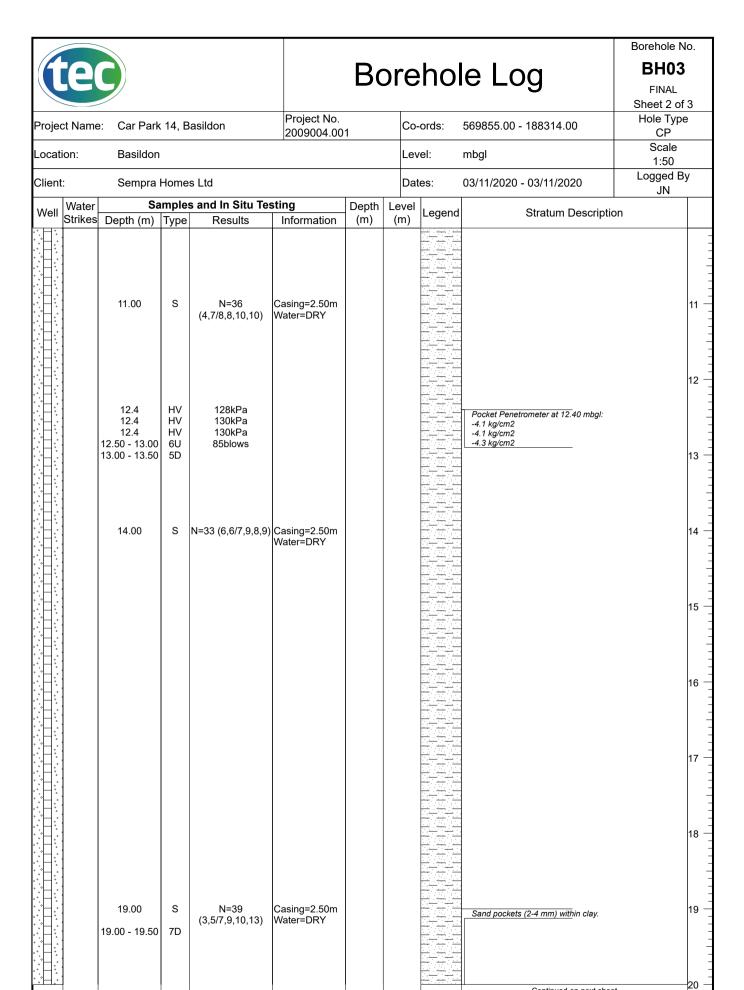
Terminated at scheduled depth on Engineer's instruction.

Groundwater not encountered.

Terminated at scheduled depth on Engineer's instruction. Groundwater not encountered.

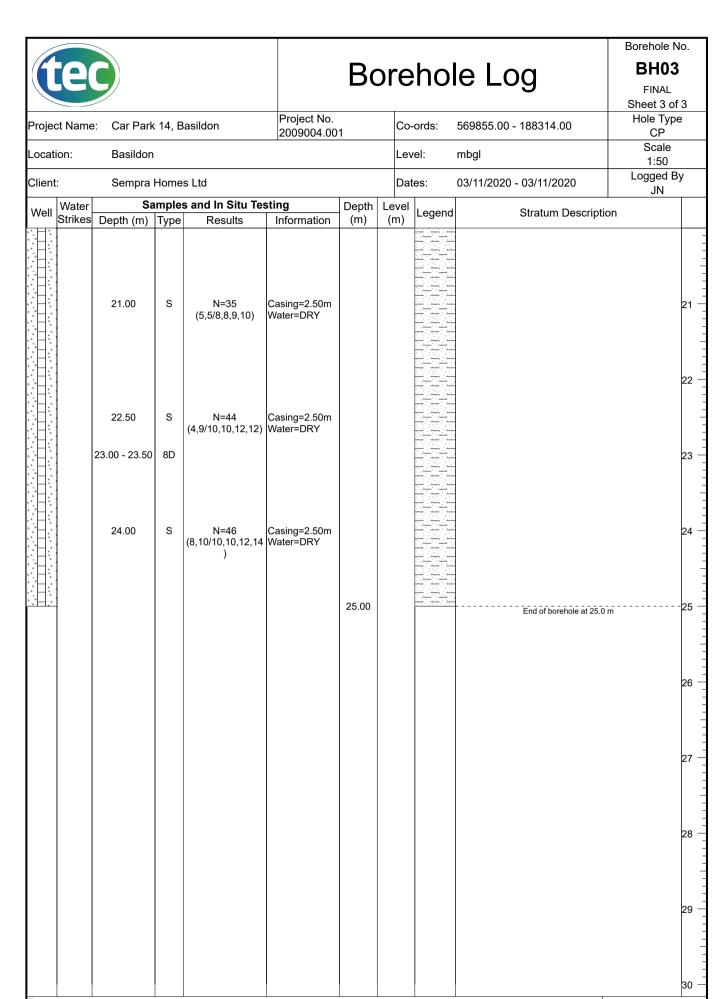
4U

90blows

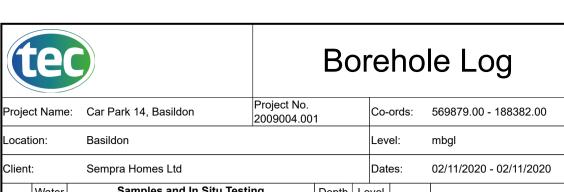

9.50 - 10.00

Continued on next sheet

9


10

Terminated at scheduled depth on Engineer's instruction. Groundwater not encountered.

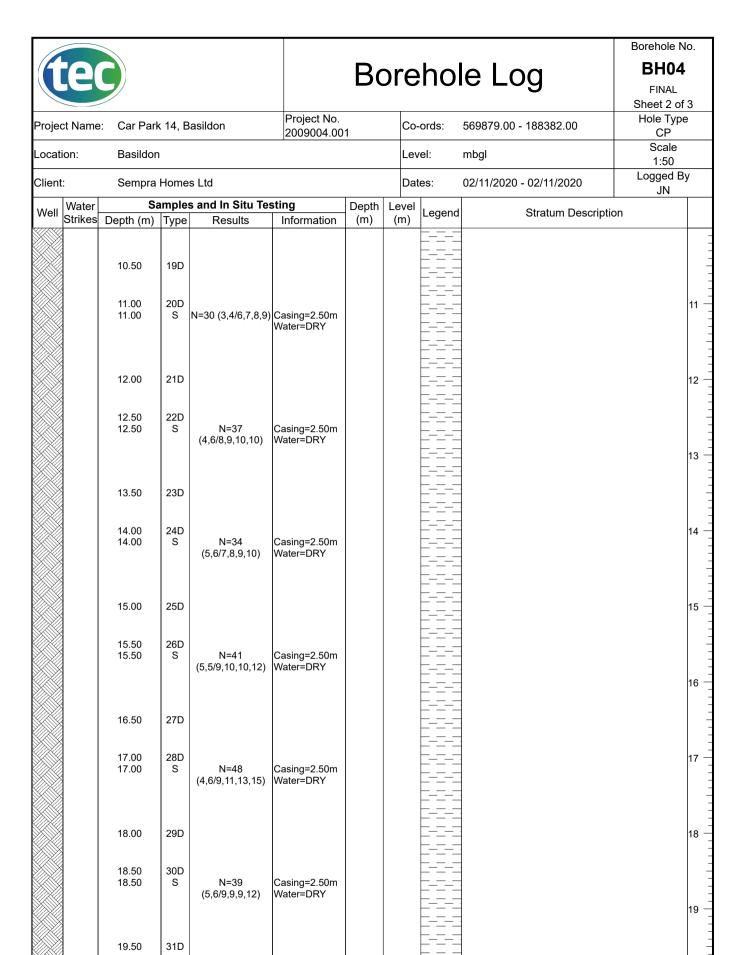

Continued on next sheet

Terminated at scheduled depth on Engineer's instruction.

Groundwater not encountered.

ient:		Sempra	Home	s Ltd			Dat	tes:	02/11/2020 - 02/11/2020	Logged By JN	у
	Water Strikes			s and In Situ Tes	sting Information	Depth	Level (m)	Legend	Stratum Description	on	Ī
	Suikes	,	Туре	Results	information	(m) 0.05	(111)		MADE GROUND: Black bitumin	ous bound	t
		0.20	1D			0.30			∖ tarmacadam. MADE GROUND: Orangish brov	to aliabthy	1
		0.50 - 0.70	2B						clayey sandy gravel of igneous l		/
									mudstone, tarmac and brick.		
		1.00	3D			1.00			Soft becoming firm blueish grey greenish brown mottled blueish	mottled arev slightly	
		1.20	4D			1.00			gravelly CLAY. Sand is fine and	medium.	I
\gg		1.20		N=10 (1,1/2,2,3,3)	Casing=0.00m				Gravel of subangular to subrour medium claystone.	ided fine and	/
					Water=DRY				DISTINCTLY WEATHERED LOI	NDON CLAY:	
									Firm becoming stiff medium bec	oming high	
		2.00 - 2.50	5U	60blows					strength orangish brown slightly Sand is fine and medium. Occas	sandy CLAY. sional pyrite	
									and selenite crystals.	5.5a. pys	
		2.45	6D						Band of claystone.		
		2.5	HV	75kPa					Pocket Penetrometer at 2.50 mbgl:		
		2.5 2.5	HV HV	75kPa 75kPa					-1.9 kg/cm2 -2.0 kg/cm2		
×		2.50 - 2.90	7B	/ JKFa					-2.0 kg/cm2		
\mathbb{X}		3.00	8D	N 40 (0 0 (4 4 5 0)	0 1 0 00						
		3.00	S	N=19 (2,3/4,4,5,6)	Casing=2.00m Water=DRY						
		3.50	9D								
		4.00 4.00	10D S	N=20 (3,3/4,5,5,6)	Casing=2.50m						
		4.00			Water=DRY						
		4.50	11D								
		5.00	12D								
M		5.00		N=19 (2,3/4,4,5,6)	Casing=2.50m						
					Water=DRY						
		6.00	13D								
		0.50	445								
M		6.50 6.50	14D S	N=21 (2,5/5,5,5,6)	Casing=2.50m						
			_	(=,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	Water=DRY	6.80			PARTIALLY WEATHERED LON	DON CLAY	-
M								<u></u>	Stiff becoming very stiff high bed	coming very	
M									high strength blueish grey slight CLAY. Sand is fine to coarse. Ra		
		7.50	15D					<u></u> -	selenite crystals.	are pyrite and	
								F_=_	•		
		8.00 8.00	16D S	N=29 (3,4/5,8,8,8)	Casing=2 50m			E===	Pocket Penetrometer at 8.00 mbgl: -3.0 kg/cm2		
		8.0	HV	120kPa	Water=DRY			<u></u>	-2. kg/cm2		
		8.0 8.0	HV HV	123kPa 125kPa				<u> </u>	-2.8 kg/cm2		
M		0.0	'''	IZUNFA				F			
		9.00	17D								
		5.00	5					<u> </u>			
		e						<u> </u>			
		9.50 9.50	18D S	N=30 (3,4/7,7,8,8)	Casing=2 50m			F_=_=			
		9.00	ا ا	[14-30 (3,4/1,1,0,0)		1		\vdash $ -$			1
					Water=DRY			\vdash $ \dashv$			J

Terminated at scheduled depth on Engineer's instruction. Groundwater seepage from claystone band at 2.40-2.50 mbgl.

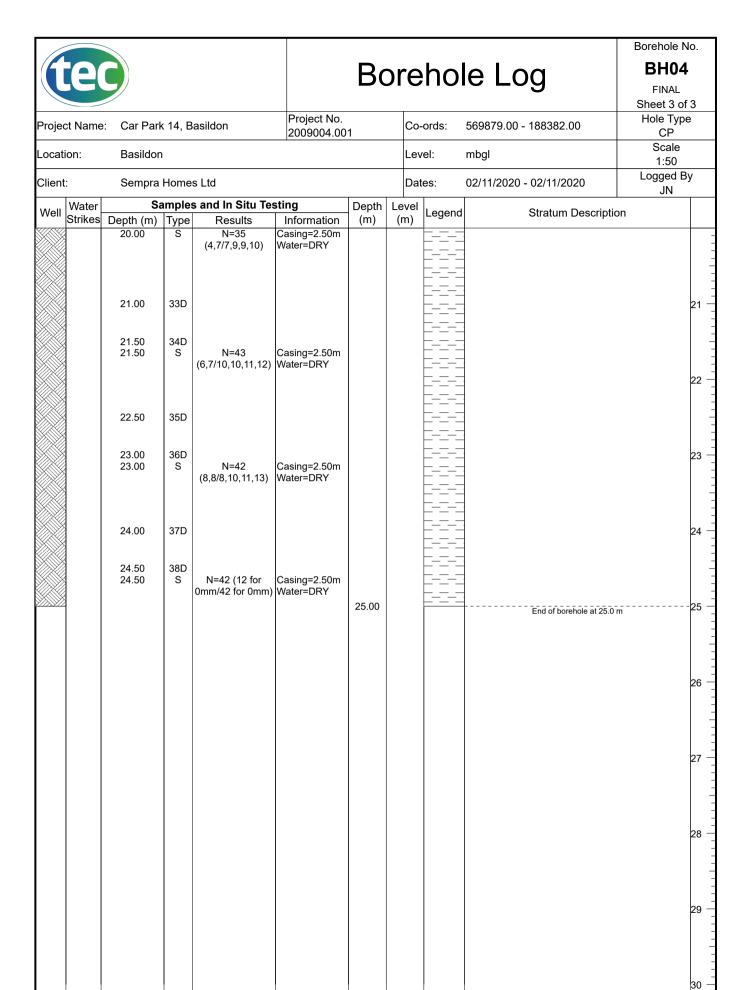


Borehole No.

FINAL
Sheet 1 of 3
Hole Type
CP

Scale

1:50



Terminated at scheduled depth on Engineer's instruction. Groundwater seepage from claystone band at 2.40-2.50 mbgl.

20.00

Continued on next sheet

Project Name:

Car Park 14, Basildon

Borehole Log

Co-ords:

569908.00 - 188342.00

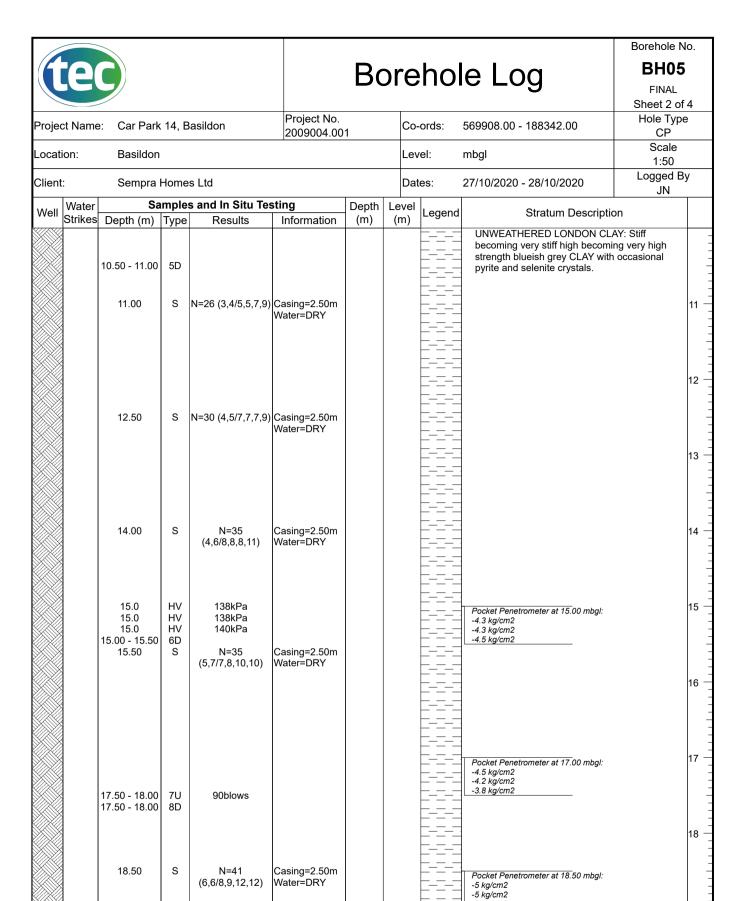
Borehole No. **BH05**

Hole Type

FINAL Sheet 1 of 4

2009004.001 CP Scale Location: Basildon Level: mbgl 1:50

Project No.

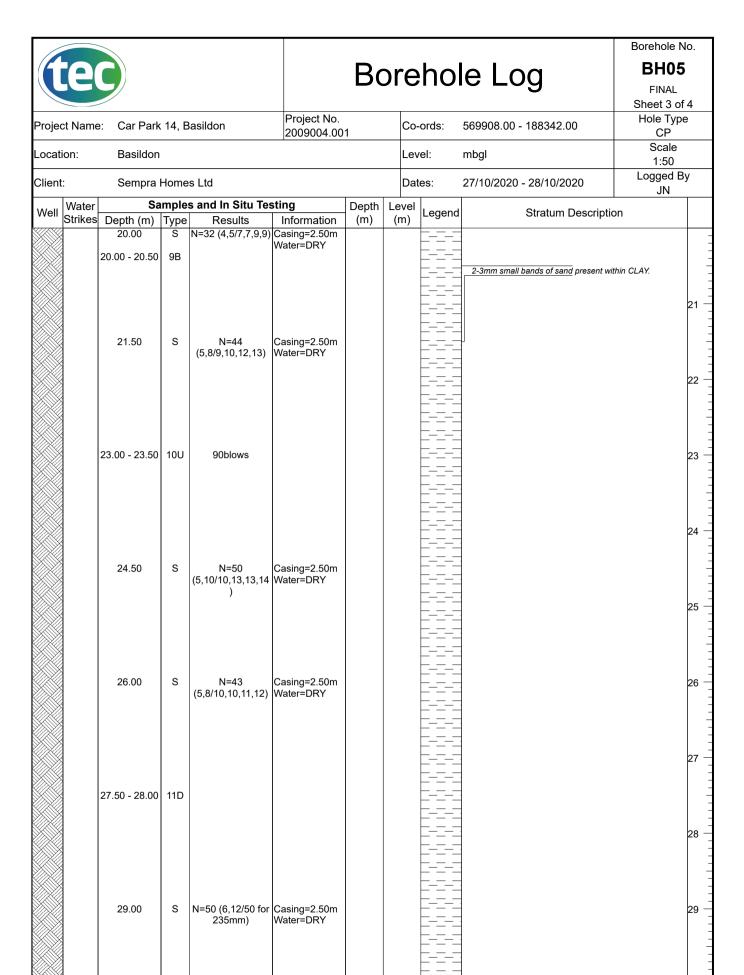

Logged By 27/10/2020 - 28/10/2020 Client: Sempra Homes Ltd Dates:

Client	:	Sempra	Home	es Ltd			Da	tes:	27/10/2020 - 28/10/2020	JN
Well	Water			s and In Situ Tes		Depth	Level	Legend	Stratum Description	
VVCII	Strikes	Depth (m)	Туре	Results	Information	(m)	(m)	Legenu		
		0.00	450			0.20			MADE GROUND: Black bituminous be tarmacadam.	ound
		0.30	1ES			0.45			MADE GROUND: Orangish brown mo	
									blueish grey slightly clayey sandy graviflint, tarmacadam, brick and mudstone	vel of
									Soft becoming firm low strength bluei	sh grey
									becoming orangish brown mottled blu- grey slightly gravelly CLAY. Sand is fir	
		1.20	S	N=5 (1,0/1,1,1,2)	Casing=0.00m Water=DRY				medium. Gravel is subangular to subr	
					Water-DK1	1.50			fine and medium of claystone. Firm becoming stiff medium becoming	, biab
									strength orangish brown slightly sand	y CLAY.
		2.0	HV	68kPa					Sand is fine and medium.	2
		2.0	HV	80kPa					Pocket Penetrometer at 2.00 mbgl: -1.9 kg/cm2	2
		2.0	HV	80kPa	0 i 0 40				-2.0 kg/cm2 -2.0 kg/cm2	
		2.10	S	N=10 (1,1/2,2,3,3)	Water=DRY				-2.0 kg/cm2	
					Trails: Divi					
		3.00	s	N=10 (1,2/1,3,3,3)	Casing=2.50m					3 -
		3.00 - 3.50	20		Water=DRY					
		3.00 - 3.50	2D							
		4.00	S	N=17 (2,3/3,4,4,6)	Casing=2.50m Water=DRY					4
					Water-DR1					
		5.00	s	N=11 (1,2/2,2,3,4)	Casing=2.50m					5
		5.00	٦	11-11 (1,2/2,2,3,4)	Water=DRY					5
										6
		6.50	s	N=17 (2,3/4,4,4,5)	Casing=2.50m					
		0.50	٦		Water=DRY					
										7
						7.30			Stiff high strength blueish grey mottled	
		7.50 - 8.00	3D						orangish brown slightly sandy CLAY. S	Sand is
									fine and medium. Occasional pyrite ar	nd
		8.00	S	N=19 (3,3/3,5,5,6)	Casing=2.50m				selenite crystals.	8 -
					Water=DRY					8
		8.00 - 8.50	4B							
		9.0	HV	120kPa					Pocket Penetrometer at 9.00 mbgl:	9 -
		9.0	HV	125kPa					-2.9 kg/cm2	
		9.0	HV	132kPa	Cooling=2 F0rs				-3.1 kg/cm2 -3.0 kg/cm2	
		9.50	S	N=21 (3,3/4,5,5,7)	Water=DRY					
Y//>X//						10.00			Continued on next sheet	10

Remarks

Terminated at scheduled depth on Engineer's instruction. Groundwater not encountered.

Terminated at scheduled depth on Engineer's instruction. Groundwater not encountered.

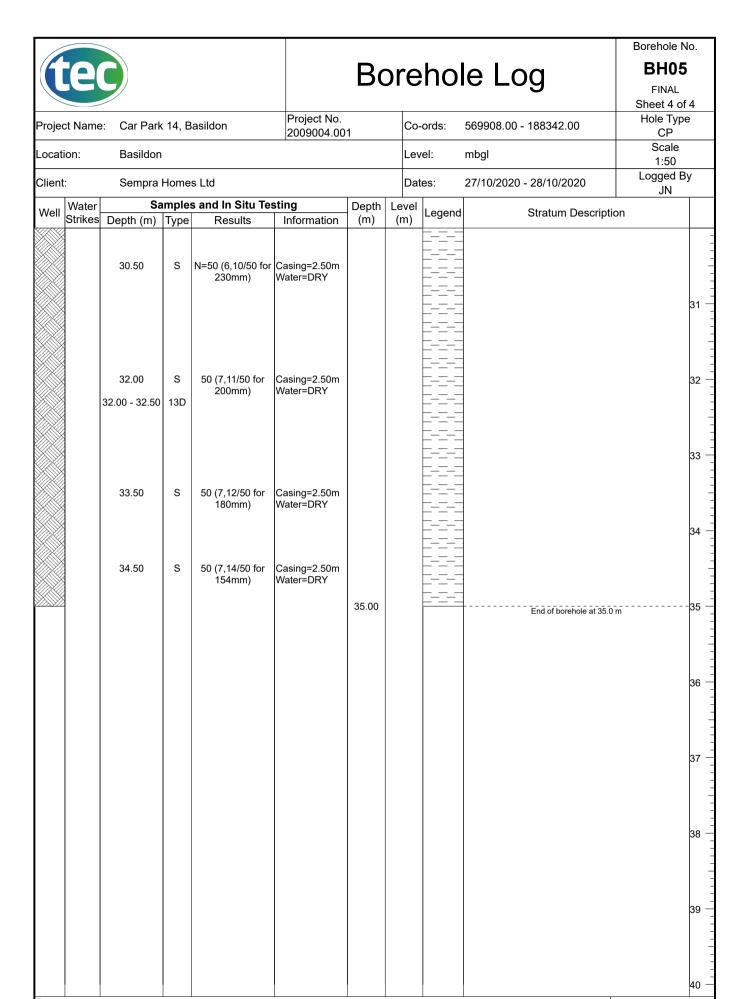


Continued on next sheet

19

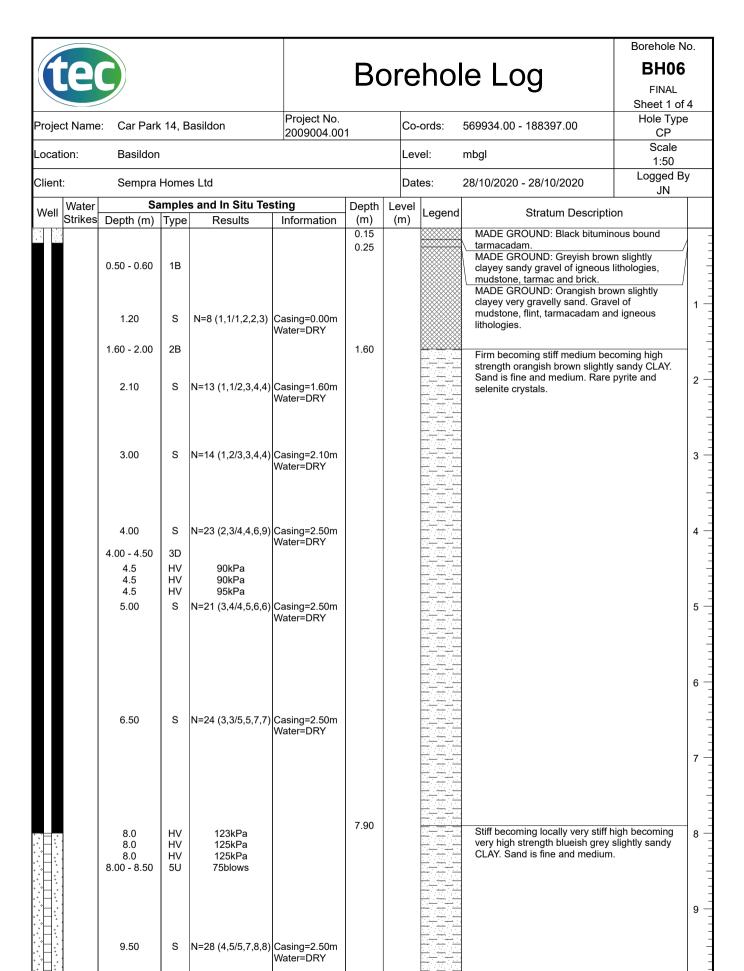
20

-5 kg/cm2



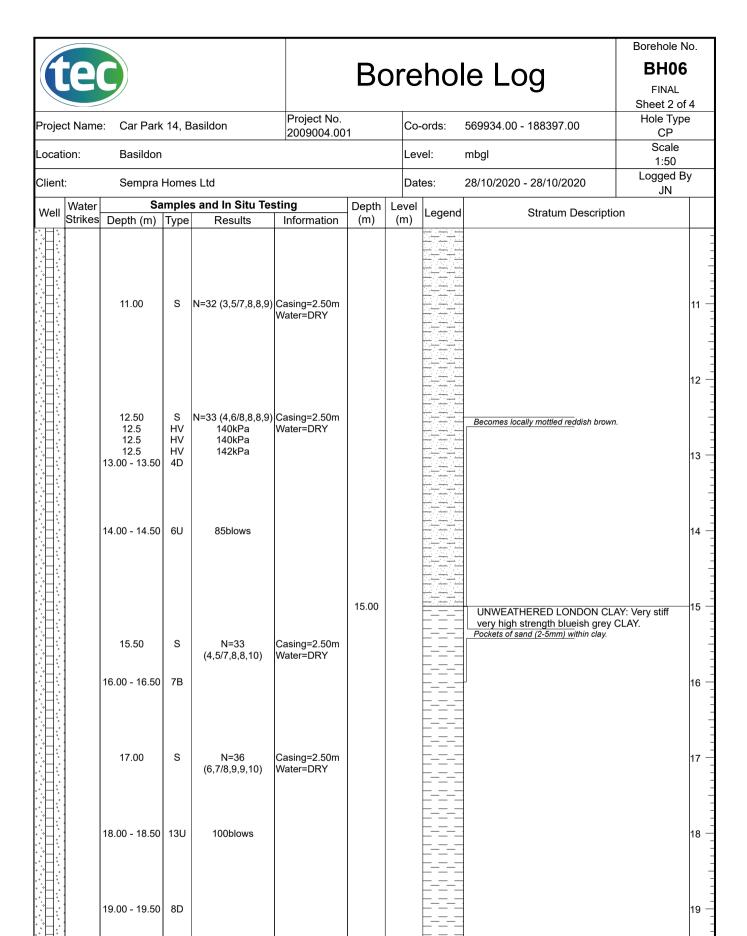
Terminated at scheduled depth on Engineer's instruction. Groundwater not encountered.

30.00 - 30.50 12B

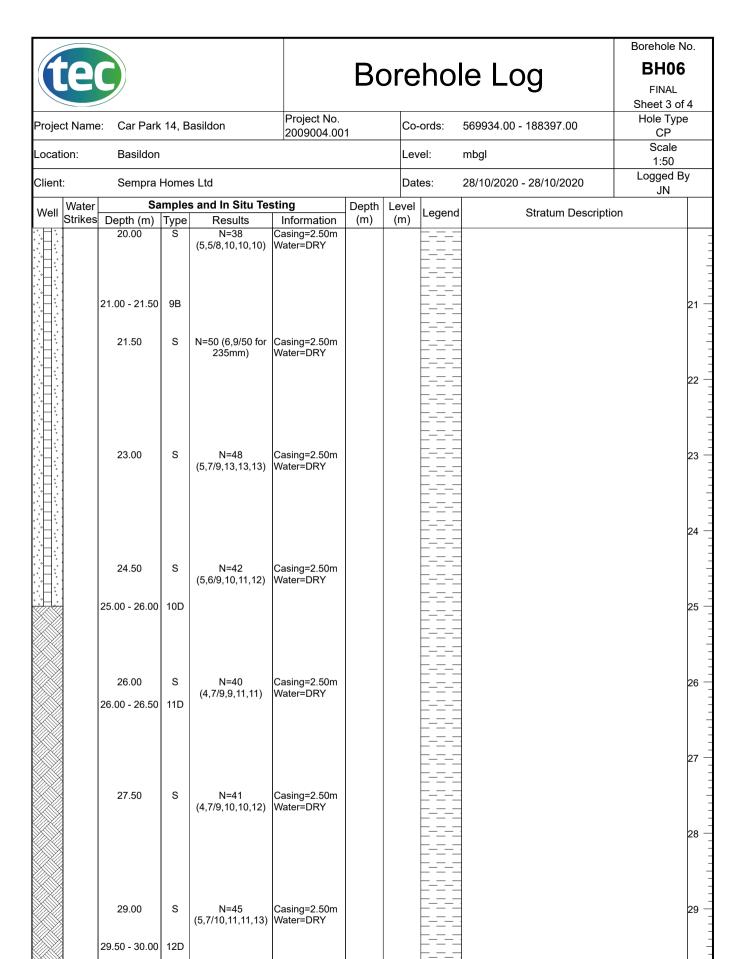


Continued on next sheet

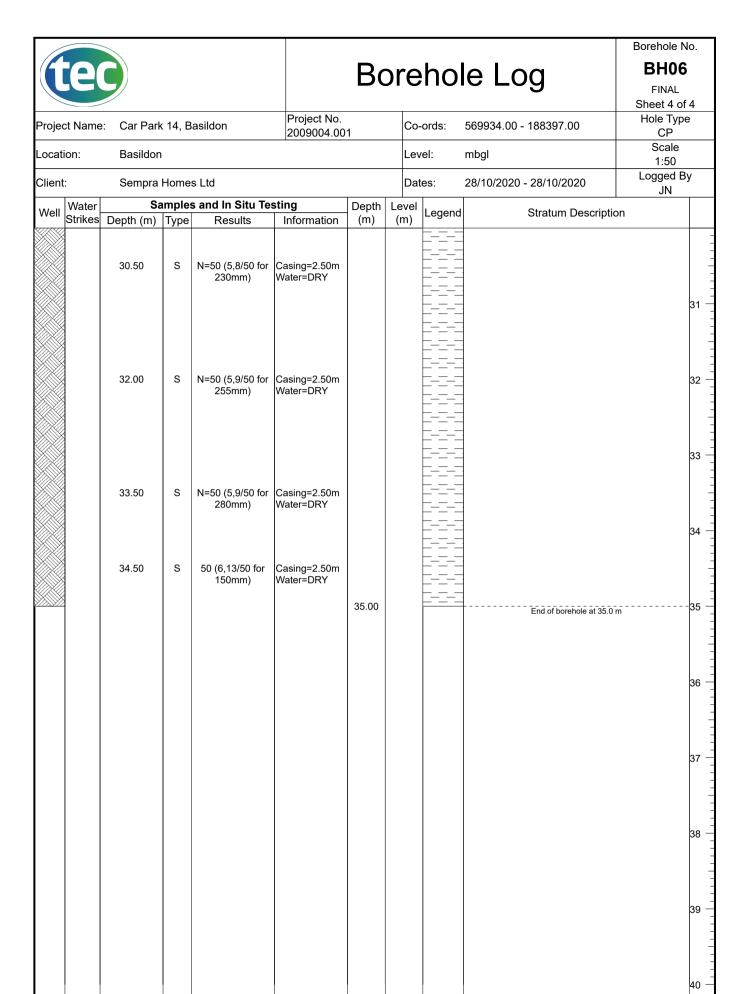
Terminated at scheduled depth on Engineer's instruction. Groundwater not encountered.



Terminated at scheduled depth on Engineer's instruction. Groundwater not encountered.


Continued on next sheet

Terminated at scheduled depth on Engineer's instruction. Groundwater not encountered.


Continued on next sheet

Terminated at scheduled depth on Engineer's instruction. Groundwater not encountered.

Continued on next sheet

Terminated at scheduled depth on Engineer's instruction. Groundwater not encountered.

AGS

Project Name:

Car Park 14, Basildon

Borehole Log

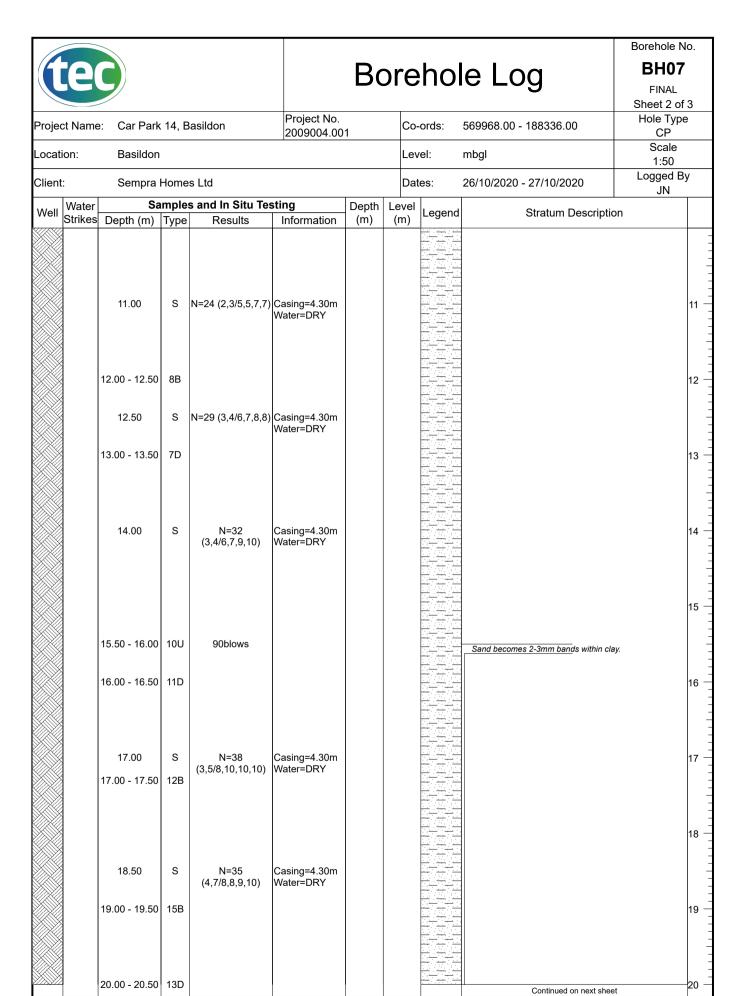
569968.00 - 188336.00

Co-ords:

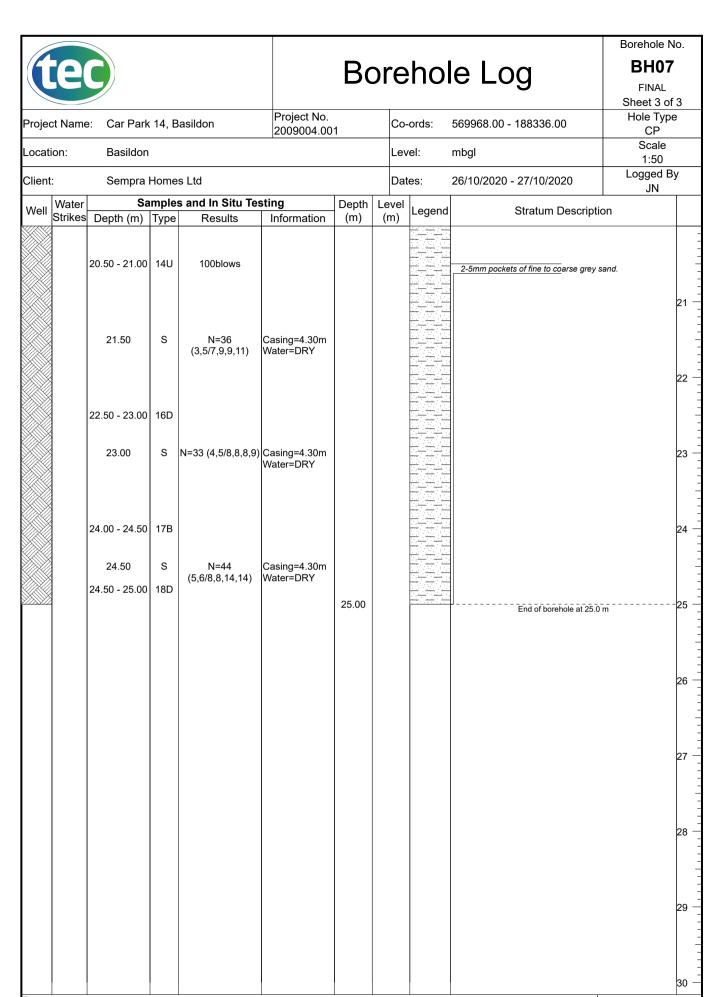
Borehole No. **BH07**

FINAL Sheet 1 of 3

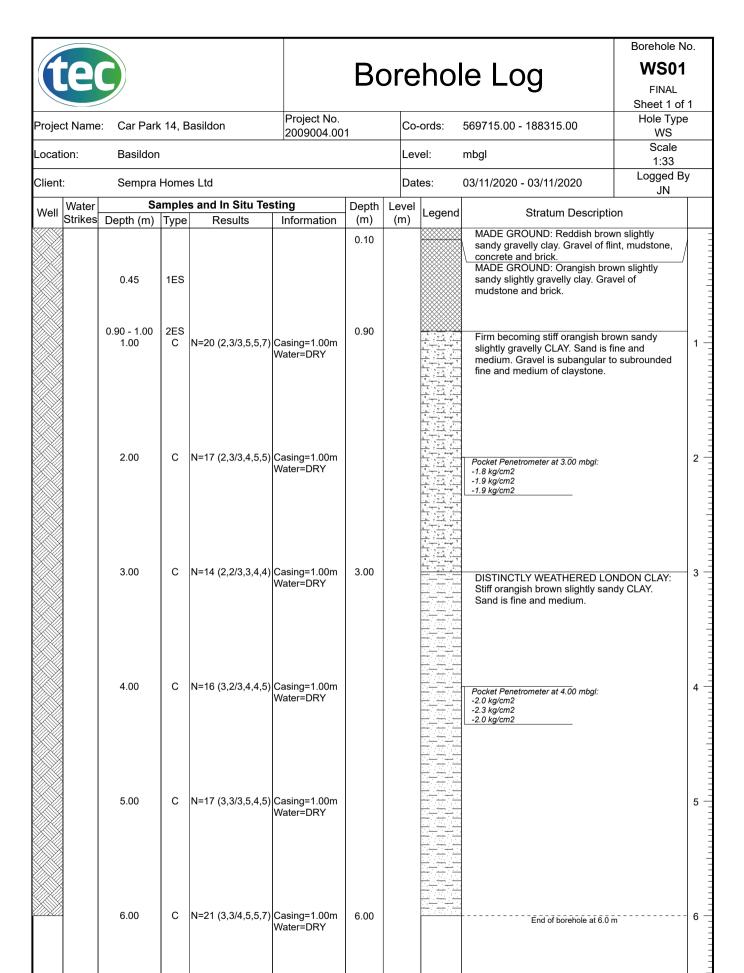
Hole Type CP Scale Location: Basildon Level: mbgl 1:50

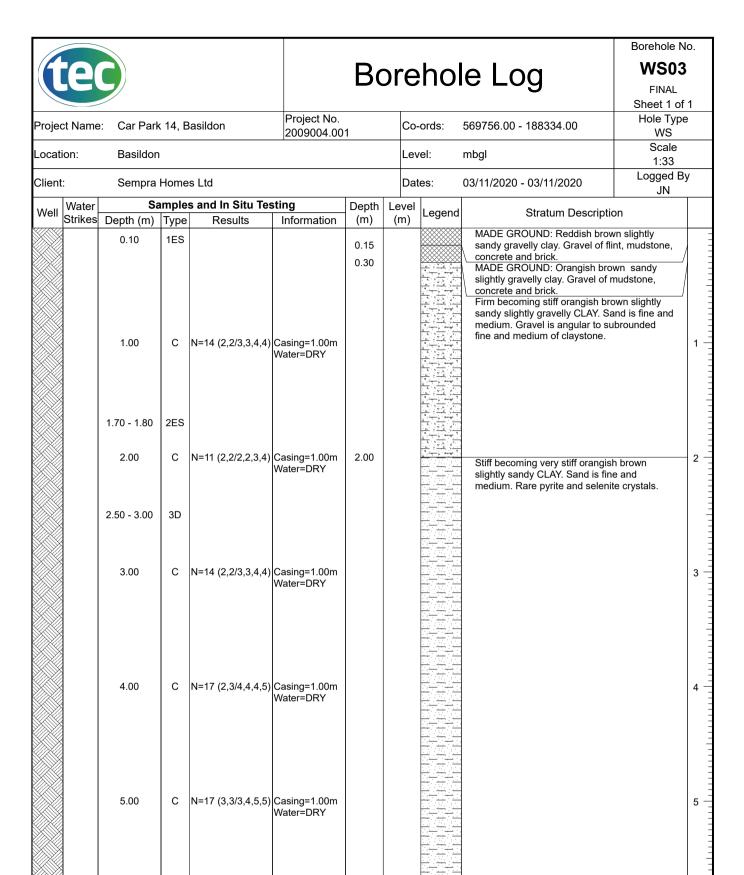

Project No.

2009004.001


Logged By Sempra Homes I td 26/10/2020 - 27/10/2020

Client	:	Sempra	Home	s Ltd			Dat	tes:	26/10/2020 - 27/10/2020	Logged By	′
Well	Water		ample	s and In Situ Tes	,	Depth		Legend	Stratum Description		
VVC11	Strikes	Depth (m)	Туре	Results	Information	(m)	(m)	Legenu	'		
		0.30	1ES			0.20			MADE GROUND: Black bitumin tarmacadam. MADE GROUND: Light orangisi	/	
		0.30 0.50	PID 2ES	0ppmv		0.50			slightly gravelly sandy clay. Gra	vel of of	
		0.50	PID	0ppmv		0.70			tarmac, brick, igneous lithologie mudstone.	//]
		0.50 - 0.70 0.8	5B HV	78kPa					MADE GROUND: Orangish bro gravelly clay. Gravel of igneous	wn slightly	1 -
		0.8 0.8	HV HV	78kPa 82kPa					∄∖ and mudstone.		
	1	1.20	S	N=11 (1,2/2,3,3,3)					DISTINCTLY WEATHERED LO Firm becoming stiff medium becoming		-
		1.60 - 2.00	4B		Water=DRY				strength orangish brown mottled	d blueish grey	
				10 (0 0/2 2 2 4)	2 ··· == 2 10m				slightly gravelly CLAY. Gravel is to rounded fine and medium of		2 -
		2.10	S	N=13 (2,2/3,3,3,4)	Casing=2.10m Water=DRY				1	,]
		2.5	HV	117kPa					1		=
		2.5 2.5	HV HV	118kPa 120kPa					1]
		3.00		120kPa N=13 (1,2/2,3,4,4)	Casing=2.10m				-1 -1		3 —
		0.00	-	N=10 (1,2/2,0,1,1,	Water=DRY				-		
		3.50 - 4.00	3D]
		3.50 - 7.55	55						Claystone band within clay. Slight wate depth.	r seepage at	‡
		4.00	s	N=20 (2.2/4.5.5.6)	0-sing=4.00m						4 -
		4.0	HV		Water=DRY				Pocket Penetrometer at 4.00 mbgl: -2.2 kg/cm2		4 -
		4.0 4.0	HV HV	142kPa 142kPa					-2.4 kg/cm2 -2.1 kg/cm2		
		7.0	1115	17411 5					- Let Ny on-]
		5.00	S	N=19 (2,3/4,5,5,5)	Casing=4.30m Water=DRY						5 —
		l			114.5.						-
		I									-
		I							-]
		6.0 6.0	HV HV	160kPa 160kPa							6 -
	4	6.0	HV	162kPa]
	4	6.50	S	N=21 (2,3/5,5,5,6)	Casing=4.30m Water=DRY				-		-
					Walei-Dr. i				-		
		7.00 - 7.50	6D			7.10		<u> </u>			7 -
						/			PARTIALLY WEATHERED LON Stiff becoming very stiff high becoming very stiff high becomes the stiff beco		
		7.5	HV	150kPa					high strength blueish grey locall	ly mottled	-
		7.5 7.5	HV	150kPa 152kPa					orangish brown slightly sandy C		-
		8.00		N=23 (3,3/5,5,6,7)					selenite crystals. Pocket Penetrometer at 7.00 mbgl:		8 -
		1			Water=DRY				-3.0 kg/cm2 -3.1 kg/cm2		
									-3.1 kg/cm2 -2.9 kg/cm2		_
		1							-		
		1							-		9 –
		1							-		-
		9.50 - 10.00	9U	80blows					-]
		9.50 - 10.00	90	OUDIOWS					-		-
											10 _
	لـــــــا								Continued on next shee	et	10 —





Terminated at scheduled depth on Engineer's instruction. Groundwater not encountered.

Casing=1.00m

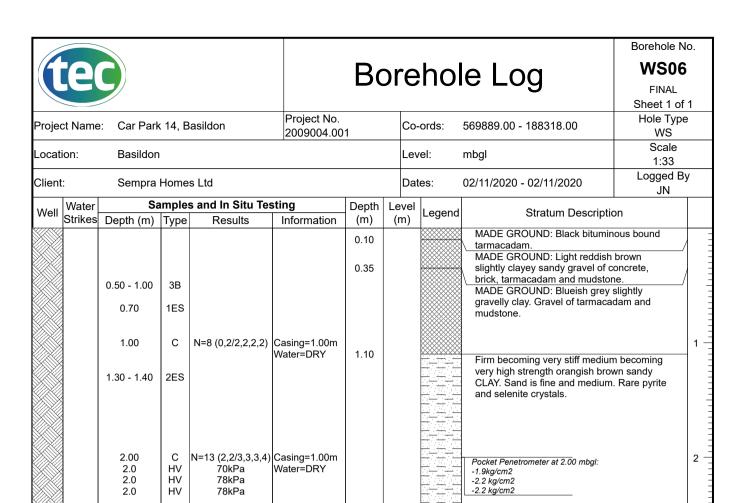
Water=DRY

6.00

Remarks

Terminated at scheduled depth on Engineer's instruction. Groundwater not encountered.

С


N = 34

(3,4/7,8,9,10)

6.00

End of borehole at 6.0 m

Terminated at scheduled depth on Engineer's instruction. Groundwater not encountered.

С

3.00

4.00

4.0

4.0

4.0

5.00

6.00

C

ΗV

ΗV

HV

N=14 (2,3/3,3,4,4) Casing=1.00m

N=17 (2,3/3,4,5,5) Casing=1.00m

N=19 (3,3/4,4,5,6) Casing=1.00m

85kPa

88kPa

88kPa

N = 35

(4,6/7,8,9,11)

Water=DRY

Water=DRY

Water=DRY

Casing=1.00m

Water=DRY

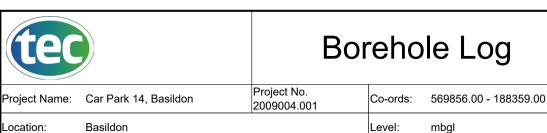
6.00

3

4

5

6


Pocket Penetrometer at 4.00 mbgl:

End of borehole at 6.0 m

-2.4 kg/cm2

-2.4 kg/cm2

-2.4 kg/cm2

ws Scale mbgl 1:33

Borehole No.

WS07

Sheet 1 of 1

Hole Type

Client	:	Sempra	Home	es Ltd			Dat	es:	02/11/2020 - 02/11/2020 Logged By JN		У
Well	Water Strikes	Sa Depth (m)	mple Type	s and In Situ Tes Results	sting Information	Depth (m)	Level (m)	Legend	JN		
	Stikes	0.50	1ES	Results	mormation	0.15 0.25 0.40	(111)		MADE GROUND: Black bitumin tarmacadam. MADE GROUND: Strong light g MADE GROUND: Light orangisl slightly clayey sandy gravel of c brick, tarmacadam and mudstor Firm orangish brown sandy CLA fine and medium. Rare pyrite ar crystals.	rey concrete. n brown oncrete, ne. NY. Sand is	- - - - - - - - - - - - - - - - - - -
		1.00	С	N=8 (0,0/2,2,2,2)	Casing=1.00m Water=DRY	1.20			Firm becoming stiff medium stre	ind is fine	1 -
		1.5 1.5 1.5 1.50 - 1.60	HV HV HV 2ES	63kPa 65kPa 65kPa					and medium. Rare pyrite and se crystals. Pocket Penetrometer at 1.50 mbgi: -1.7 kg/cm2 -1.6 kg/cm2	elenite	- - - - - -
		2.00	C 3D	N=13 (2,2/3,3,3,4)	Casing=1.00m Water=DRY						2 -
		3.00 3.0	C HV	N=14 (2,3/3,3,4,4) 85kPa	Casing=1.00m Water=DRY						3 -
		3.50	С	50 (25 for 110mm/50 for 180mm)	Casing=1.00m Water=DRY	3.50			End of borehole at 3.5 r	n	-
											4 -
											5 -
											6

Remarks

Borehole Log

Borehole No. WS10

FINAL Sheet 1 of 1

 Project Name:
 Car Park 14, Basildon
 Project No. 2009004.001
 Co-ords:
 569936.00 - 188329.00

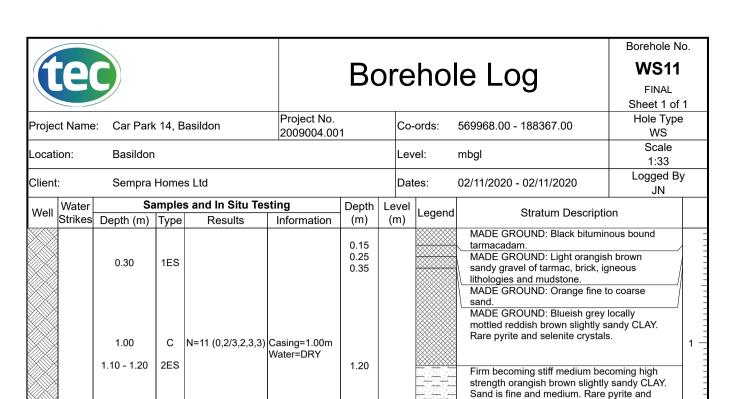
 Location:
 Basildon
 Level:
 mbgl

Hole Type WS Scale

Client: Sempra Homes Ltd

Dates: 02/11/2020 - 02/11/2020

Logged By JN


1:33

				s Ltd			Dat	00.	02/11/2020 - 02/11/2020	JN
Well Str	ater rikes		mple Type	s and In Situ Tes Results	sting Information	Depth (m)	Level (m)	Legend	Stratum Description	
	intoo	Deptil (III)	Турс	resuits	Illomation	0.10	(111)		MADE GROUND: Black bituminous bottarmacadam.	/
		0.40	1ES			0.50			MADE GROUND: Light orangish brow sandy gravel of tarmac, brick, igneous lithologies and mudstone. MADE GROUND: Blueish grey slightly	
		1.00	С	N=13 (2,2/2,3,4,4)	Casing=1.00m	1.00			gravelly slightly sandy clay. Gravel of i lithologies and mudstone.	gneous
		1.00			Water=DRY	1.00			Firm becoming stiff medium strength orangish brown mottled blueish grey s sandy CLAY. Sand is fine and medium	ightly
		1.60 - 1.70	2ES							
		2.00 2.0 2.0 2.0	C HV HV	N=15 (3,3/3,4,4,4) 60kPa 65kPa 65kPa	Casing=1.00m Water=DRY				Pocket Penetrometer at 2.00 mbgl: -1.7kg/cm2 -1.7 kg/cm2 -1.9 kg/cm2	
		3.00		N=21 (2,3/4,6,6,5)	Casing=1.00m Water=DRY					
		3.30 - 3.50	3D			3.30			Stiff medium becoming very high stren reddish brown slightly sandy CLAY. Sa fine and medium. Very stiff clay band present, slight water seepa	nd is
		4.00 4.0 4.0 4.0	C HV HV	N=18 (3,3/4,4,5,5) 80kPa 80kPa 80kPa 80kPa	Casing=1.00m Water=DRY				Pocket Penetrometer at 4.00 mbgl: -2.3 kg/cm2 -2.3 kg/cm2 -1.9 kg/cm2	
		5.00	С	N=18 (3,4/4,4,5,5)	Casing=1.00m Water=DRY					
		6.00	С	N=35 (4,6/7,8,10,10)	Casing=1.00m Water=DRY	6.00			End of borehole at 6.0 m	

Remarks

Terminated at scheduled depth on Engineer's instruction. Groundwater not encountered.

AGS

N=10 (0,0/2,2,3,3) Casing=1.00m

N=13 (2,2/3,3,3,4) Casing=1.00m

N=17 (2,3/4,4,4,5) Casing=1.00m

N=16 (3,3/4,3,4,5) Casing=1.00m

N=22 (3,3/4,5,6,7) Casing=1.00m

80kPa

82kPa

85kPa

Water=DRY

Water=DRY

Water=DRY

Water=DRY

Water=DRY

6.00

65kPa

65kPa

65kPa

2.00

2.0

2.0

3.00

4.00

4.00 - 4.10

5.00

5.0

5.0

6.00

С

ΗV

HV

Н۷

3D

С

HV

HV

selenite crystals.

-2.3 kg/cm2 -2.0 kg/cm2

-2.0 kg/cm2

Pocket Penetrometer at 2.00 mbgl:

Pocket Penetrometer at 5.00 mbgl:

End of borehole at 6.0 m

-2.8 kg/cm2

-2.9 kg/cm2

Remarks

Terminated at scheduled depth on Engineer's instruction. Groundwater not encountered.

2

3

4

5

Appendix G Geochemical Certificates of Analysis

James Naylor

Tweedie Evans Consulting Ltd The Old Chapel 35a Southover Wells Somerset BA5 1UH

t: 01749 677 760 **f:** 01749 679 345

e: james.naylor@tecon.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-39484

Project / Site name: Car Park 14, Basildon Samples received on: 03/11/2020

Your job number: 2009004.001 Samples instructed on/ 05/11/2020

Analysis started on:

Your order number: Analysis completed by: 18/11/2020

Report Issue Number: 1 **Report issued on:** 18/11/2020

Samples Analysed: 6 soil samples

Signed: Keroline Harel

Karolina Marek PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1673055	1673056	1673057	1673058
Sample Reference				WS01	WS01	WS03	WS06
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.45	0.90-1.00	0.10	0.50
Date Sampled				03/11/2020	03/11/2020	03/11/2020	02/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	_	Lin det	Acq ta				
(Soil Analysis)	Units	Limit of detection	Accredi tation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	19	16	14	14
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5
Total mass of sample received	ĸg	0.001	NONE	0.5	0.5	0.5	0.5
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected
ABBCSCOS III SOII	1700	МА	150 17025	Not detected	Not detected	Not detected	Not detected
General Inorganics							
pH - Automated	nti Unito	NI/A	MCERTS	9.2	0.6	8.4	0 5
Total Cyanide	pH Units	N/A	MCERTS	< 1	8.6 < 1	< 1	8.5 < 1
	mg/kg	50	MCERTS	980	390	510	390
Total Sulphate as SO4 Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/kg					0.029	
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l mg/kg	0.00125	MCERTS	0.079	0.13		0.16
Sulphide Total Organic Carbon (TOC)	mg/kg %	0.1	MCERTS	< 1.0 1.2	< 1.0 0.2	5.2 1.2	0.9
Total Organic Carbon (TOC)	70	0.1	MCERTS	1.2	0.2	1.2	0.9
Total Phenois							
Total Phenois Total Phenois (monohydric)	mallia.	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Total Prieriois (mononyuric)	mg/kg	1	MCERIS	< 1.0	< 1.0	< 1.0	< 1.0
Consisted BAILS							
Speciated PAHs		0.05	MOEDES	. 0.05	. 0.05	. 0.05	. 0.05
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Total DAII							
Total PAH		0.0	MCEDIC	. 0.00	. 0.00	. 0.00	. 0.00
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80
Hann Matala / Matallaida							
Heavy Metals / Metalloids		Ι.		4-	4-	42	0.5
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	17	15	12	9.6
Barium (aqua regia extractable)	mg/kg	1	MCERTS	1400	120	70	29
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.6	1.4	1	0.7
Boron (water soluble)	mg/kg	0.2	MCERTS	1.4	1	0.4	0.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	64	62	40	23
Copper (aqua regia extractable)	mg/kg	1	MCERTS	26	27	32	12
Lead (aqua regia extractable)	mg/kg	1	MCERTS	19	18	39	19
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	43	53	29	12
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	100	100	63	45
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	71	78	98	45

Lab Sample Number				1673055	1673056	1673057	1673058
Sample Reference				WS01	WS01	WS03	WS06
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.45	0.90-1.00	0.10	0.50
Date Sampled				03/11/2020	03/11/2020	03/11/2020	02/11/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	Ē	Lim	Acc tat Sta				
(Soil Analysis)	Units	Limit of detectio	Accredi tation Status				
Monoaromatics & Oxygenates	=	-					
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons TPH C10 - C40	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg mg/kg	0.001 0.001	MCERTS MCERTS	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10							
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	0.001	MCERTS	< 0.001 < 0.001 < 1.0	< 0.001 < 0.001 < 1.0	< 0.001 < 0.001 < 1.0	< 0.001 < 0.001 < 1.0
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16	mg/kg mg/kg	0.001	MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0	< 0.001 < 0.001 < 1.0 < 2.0	< 0.001 < 0.001 < 1.0 < 2.0	< 0.001 < 0.001 < 1.0 < 2.0
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21	mg/kg mg/kg mg/kg	0.001 0.001 1 2 8	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35	mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21	mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8 10	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC8	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8 10	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 10 < 0.001 < 0.001	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001	MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 0.001
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC8 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1	MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 0.001 < 1.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 0.001 < 1.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC14 - EC35 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aliphatic (EC5 - EC35) TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1	MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0 < 2.0
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10 TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35 TPH-CWG - Aliphatic >EC5 - EC35 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC8 - EC10 TPH-CWG - Aromatic >EC10 - EC12	mg/kg	0.001 0.001 1 2 8 8 10 0.001 0.001 0.001 1	MCERTS	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 0.001 < 1.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 0.001 < 1.0	< 0.001 < 0.001 < 1.0 < 2.0 < 8.0 < 8.0 < 10 < 0.001 < 0.001 < 0.001 < 1.0

 $\label{eq:US} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

Lab Sample Number				1673059	1673060
Sample Reference				WS10	WS11
Sample Number				None Supplied	None Supplied
Depth (m)				0.40	0.30
Date Sampled				02/11/2020	02/11/2020
Time Taken	1			None Supplied	None Supplied
Analytical Parameter	Units	Limit of detection	Accredi tation Status		
(Soil Analysis)	ţ	t of ctio	edi on		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	3.6	7.1
Total mass of sample received	kg	0.001	NONE	0.5	0.5
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected
General Inorganics					
pH - Automated	pH Units	N/A	MCERTS	9.1	9.1
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	380	140
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.025	0.021
Sulphide	mg/kg	1	MCERTS	62	< 1.0
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	< 0.1
Total Phenois					
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0
Total Friends (mononyune)	ilig/kg	1	PICERTS	< 1.0	< 1.0
Speciated PAHs					
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Total DAII					
Total PAH Consisted Total EDA 16 DAH	m - n -	0.0	MCERTC	< 0.00	~ A AA
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80
Honor Motole / Motollaide					
Heavy Metals / Metalloids	mallia.		MCEDIC	5.6	47
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	5.6 270	4.7 31
Barium (aqua regia extractable) Beryllium (aqua regia extractable)	mg/kg mg/kg	0.06	MCERTS MCERTS	0.12	0.38
Boron (water soluble)	mg/kg	0.00	MCERTS	< 0.2	< 0.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	1.1	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	6.9	13
Copper (aqua regia extractable)	mg/kg	1	MCERTS	9.4	8.4
Lead (aqua regia extractable)	mg/kg	1	MCERTS	40	10
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	5.9	9
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	8.9	20
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	100	22

Lab Sample Number				1673059	1673060
Sample Reference				WS10	WS11
Sample Number				None Supplied	None Supplied
Depth (m)				0.40	0.30
Date Sampled				02/11/2020	02/11/2020
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accredi tation Status		
Monoaromatics & Oxygenates					
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0
TPH C10 - C40	mg/kg	10	MCERTS	< 10	< 10
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC6 TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10
TPH-CWG - Aromatic > EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1673055	WS01	None Supplied	0.45	Brown clay.
1673056	WS01	None Supplied	0.90-1.00	Brown clay.
1673057	WS03	None Supplied	0.1	Brown clay with gravel and vegetation.
1673058	WS06	None Supplied	0.5	Light brown clay and sand.
1673059	WS10	None Supplied	0.4	Light brown gravelly sand.
1673060	WS11	None Supplied	0.3	Light brown sand with gravel.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

	1				
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
i .					

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

James Naylor

Tweedie Evans Consulting Ltd The Old Chapel 35a Southover Wells Somerset BA5 1UH

t: 01749 677 760 **f:** 01749 679 345

e: james.naylor@tecon.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-38364

Project / Site name: Car Park 14, Basildon Samples received on: 28/10/2020

Your job number: 2009004.001 **Samples instructed on/** 29/10/2020

Analysis started on:

Your order number: Analysis completed by: 11/11/2020

Report Issue Number: 1 Report issued on: 11/11/2020

Samples Analysed: 2 soil samples

Signed: M. Calminski

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Sample Reference Sample Number Depth (m)				BH07	BH05			
Depth (m)		Sample Number						
	Depth (m)							
Date Sampled	26/10/2020	26/10/2020						
Time Taken	None Supplied	None Supplied						
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1			
Moisture Content	%	0.01	NONE	20	7.9			
Total mass of sample received	kg	0.001	NONE	0.2	0.2			
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected			
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.2	9			
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1			
Total Sulphate as SO4	mg/kg	50	MCERTS	1800	320			
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.74	0.044			
Sulphide	mg/kg	1	MCERTS	21	30			
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.5	0.2			
Total Phenois Total Phenois (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0			
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80			

Lab Sample Number	1667272	1667273						
Sample Reference	BH07	BH05						
Sample Number	None Supplied	None Supplied						
Depth (m)	0.30	0.30						
Date Sampled	26/10/2020	26/10/2020						
Time Taken				None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	12	2.7			
Barium (aqua regia extractable)	mg/kg	1	MCERTS	190	81			
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.3	0.1			
Boron (water soluble)	mg/kg	0.2	MCERTS	2.9	2.4			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.4	0.7			
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2			
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	58	6.6			
Copper (aqua regia extractable)	mg/kg	1	MCERTS	13	4.8			
Lead (aqua regia extractable)	mg/kg	1	MCERTS	21	36			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3			
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	20	4.3			
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0			
Vanadium (aqua regia extractable) Zinc (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	85 76	5.8 45			
Monoaromatics & Oxygenates Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0			
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0			
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0			
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0			
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0			
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0			
Petroleum Hydrocarbons TPH C10 - C40	mg/kg	10	MCERTS	< 10	< 10			
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001			
TPH-CWG - Aliphatic > EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001			
TPH-CWG - Aliphatic > EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001			
TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 1.0 < 2.0	< 1.0 < 2.0			
TPH-CWG - Aliphatic >EC12 - EC16 TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 2.0 < 8.0			
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg mg/kg	8	MCERTS MCERTS	< 8.0	< 8.0			
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10			
2 7	mg/kg	10		- 10	. 10			
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001			
TPH-CWG - Aromatic > EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001			
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001			
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0			
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0			
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10			
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10			
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10			

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

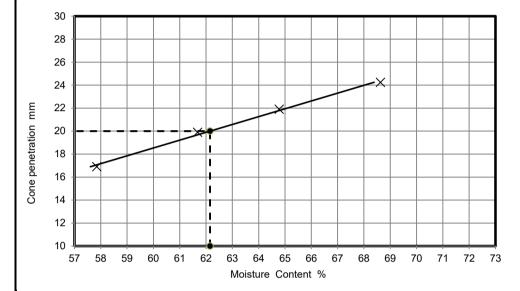
Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1667272	BH07	None Supplied	0.3	Brown clay and sand with gravel.
1667273	BH05	None Supplied	0.3	Brown sand with gravel.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

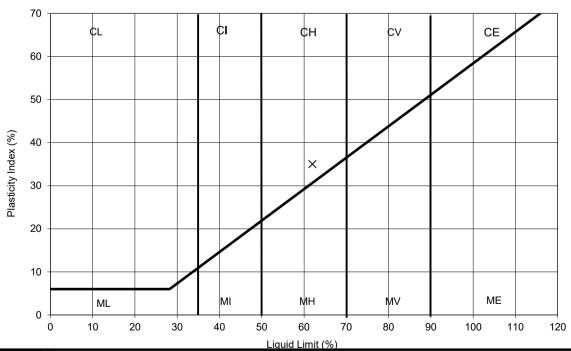
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPH Banding in Soil by FID	•	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	W	MCERTS

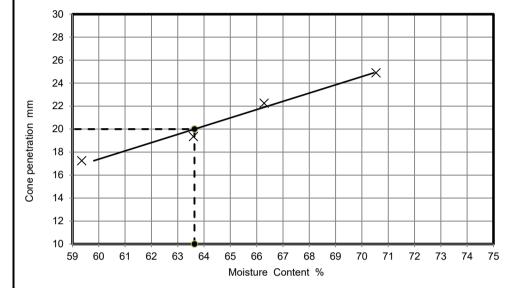

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

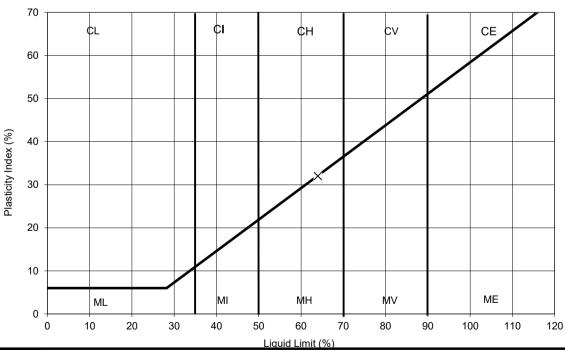

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Appendix H
Geotechnical Laboratory Report

(4)	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX			Job No.	29124	
SOILS				Borehole/Pit No.	BH01	
Site Name	Car Park 14, Basildon 2009004.001 Client TEC		Sample No.	-		
Project No.			TEC	Depth Top	3.00	m
				Depth Base	-	m
				Sample Type	D	
Soil Description	orangish brown slightly mottled grey silty CLAY with traces of seler crystals	CLAY with traces of selenite	Samples received	03/11/2020		
		Grystals			24/11/2020	
				Project Started	25/11/2020	
					04/12/2020	

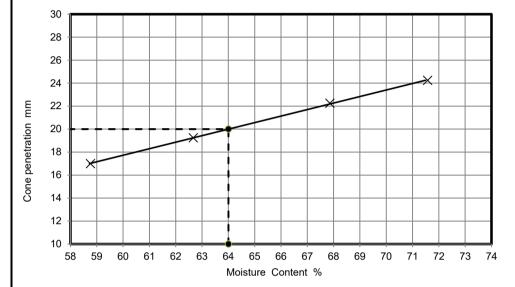


NATURAL MOISTURE CONTENT	30	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	62	%
PLASTIC LIMIT	27	%
PLASTICITY INDEX	35	%

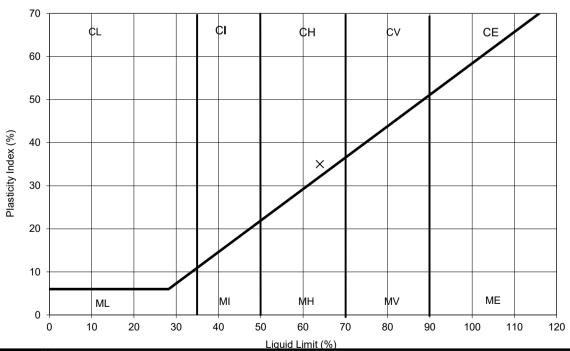


materia.		TEST METHOD	Che	cked and
_ @		BS1377: Part 2 :Clause 4.3 : 1990 Determination of the liquid limit by the cone penetrometer method	A	oproved
	\	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index		
[(≯≮)		BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying method	Initials:	J.P
Ε			Date:	09/12/2020
UKAS TESTING	•	Tel: 01923 711 288 Email: James@k4soils.com		
2519)	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	N	ISF-5 R2

(4)	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX		Job No.	29124		
SOILS				Borehole/Pit No.	BH01	
Site Name	Car Park 14, Basildon TEC 2009004.001 Client TEC		Sample No.	-		
Project No.			Depth Top	24.00	m	
					-	m
					D	
Soil Description	Dark brown slightly mottled grey silty CLAY			Samples received	03/11/2020	
					24/11/2020	
				Project Started	25/11/2020	
				Date Tested	04/12/2020	

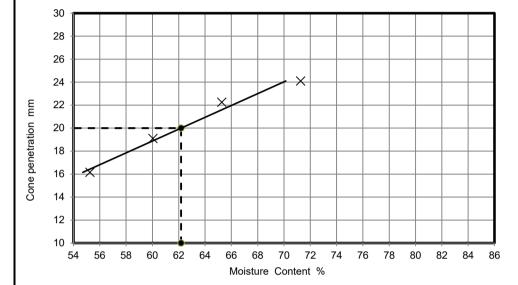


NATURAL MOISTURE CONTENT	30	%
% PASSING 425μm SIEVE	100	%
LIQUID LIMIT	64	%
PLASTIC LIMIT	32	%
PLASTICITY INDEX	32	%

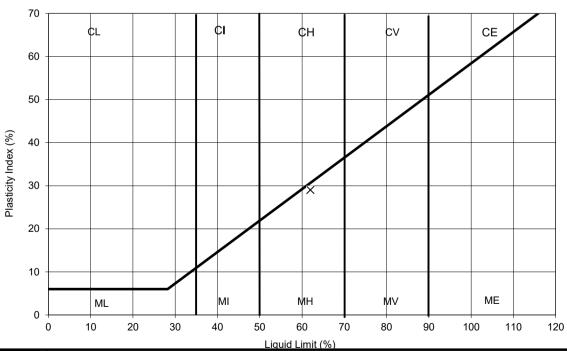


Jun 2		TEST METHOD	Checked	and
	# _	BS1377: Part 2:Clause 4.3: 1990 Determination of the liquid limit by the cone penetrometer method BS1377: Part 2:Clause 5.0: 1990: Determination of the plastic limit and plasticity index BS1377: Part 2:Clause 3.2: 1990:Determination of the moisture content by the oven drying method	Approv	ved .
	<u>`</u>	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index		
₽(≯<	∮)	BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying method	Initials:	J.P
	/ =	Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU	Date: 09/	12/2020
UK/ TESTIN	A S NG	Tel: 01923 711 288 Email: James@k4soils.com		
25	19	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 F	R2

(4)	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX			Job No.	29124	
SOILS			Borehole/Pit No.	BH03		
Site Name			Sample No.	-		
Project No.			Depth Top	7.00	m	
				Depth Base	7.50	m
					D	
Soil Description		Greyish brown silty	CLAY	Samples received	03/11/2020	
					24/11/2020	
				Project Started	25/11/2020	
				Date Tested	04/12/2020	

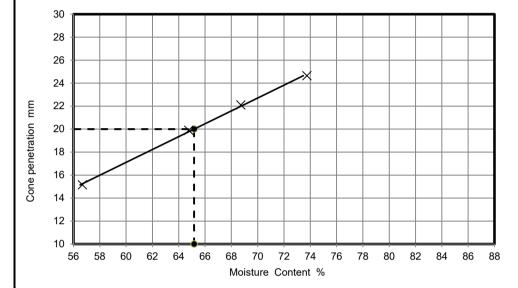


NATURAL MOISTURE CONTENT	31	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	64	%
PLASTIC LIMIT	29	%
PLASTICITY INDEX	35	%

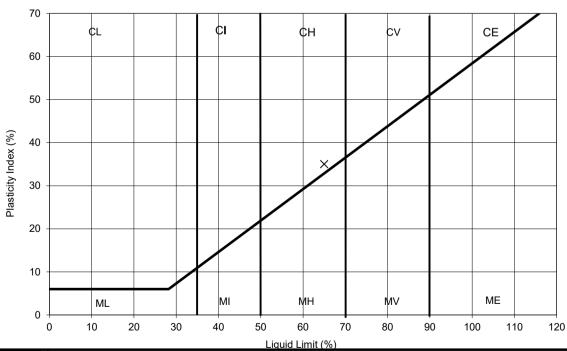


grand and	TEST METHOD	Checked and
	BS1377: Part 2 :Clause 4.3 : 1990 Determination of the liquid limit by the cone penetrometer method	Approved
	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index	
[-(≯≮)-	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying method	Initials: J.P
: \ ノ :	Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU	Date: 09/12/2020
UKAS	Tel: 01923 711 288 Email: James@k4soils.com	
2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

(4)	LIQUID LIMIT, PL	ASTIC LIMIT A	ND PLASTICITY INDEX	Job No.	29124	
SOILS			Borehole/Pit No.	BH03		
Site Name	Car Park 14, Basildon 2009004.001 Client TEC		Sample No.	-		
Project No.			Depth Top	12.95	m	
				Depth Base	13.50	m
				Sample Type	D	
Soil Description		Dark brown silty (CLAY	Samples received	03/11/2020	
					24/11/2020	
				Project Started	25/11/2020	
				Date Tested	04/12/2020	

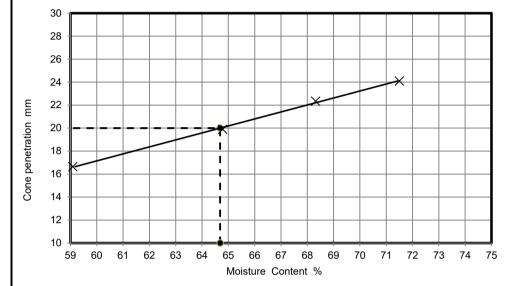


NATURAL MOISTURE CONTENT	26	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	62	%
PLASTIC LIMIT	33	%
PLASTICITY INDEX	29	%

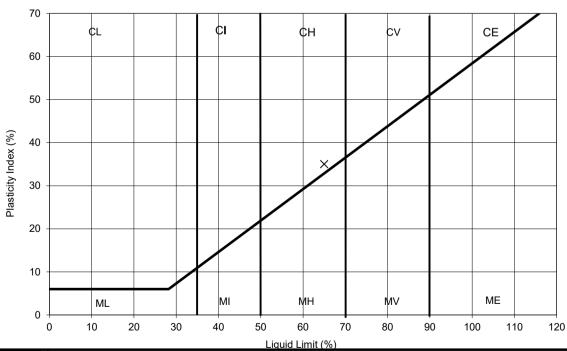


grand and	TEST METHOD	Checked and
	BS1377: Part 2 :Clause 4.3 : 1990 Determination of the liquid limit by the cone penetrometer method	Approved
	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index	
[-(≯≮)-	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying method	Initials: J.P
: \ ノ :	Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU	Date: 09/12/2020
UKAS	Tel: 01923 711 288 Email: James@k4soils.com	
2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

(4)	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX			Job No.	29124	
Soils	·			Borehole/Pit No.	BH04	
Site Name	Car Park 14, Basildon			Sample No.	-	
Project No.	2009004.001 Client TEC		Depth Top	6.50	m	
				Depth Base	-	m
				Sample Type	D	
Soil Description	Dark grey slightly mottled brown silty CLAY with traces of selenite crystals			Samples received	03/11/2020	
				Schedules received	24/11/2020	
				Project Started	25/11/2020	
				Date Tested	07/12/2020	

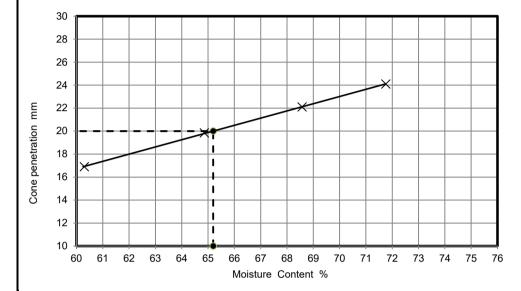


NATURAL MOISTURE CONTENT	32	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	65	%
PLASTIC LIMIT	30	%
PLASTICITY INDEX	35	%

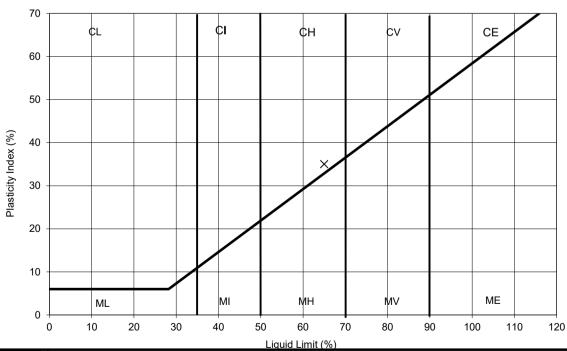


	TEST METHOD	Checked and
	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index	
(≯≮)	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying method	Initials: J.P
		Date: 09/12/2020
UKAS TESTING	Tel: 01923 711 288 Email: James@k4soils.com	
2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

(4)	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX			Job No.	29124	
SOILS				Borehole/Pit No.	BH04	
Site Name	Car Park 14, Basildon			Sample No.	-	
Project No.	2009004.001 Client TEC		Depth Top	8.00	m	
				Depth Base	-	m
	Dark brown silty CLAY			Sample Type	D	
Soil Description				Samples received	03/11/2020	
			Schedules received	24/11/2020		
				Project Started	25/11/2020	
				Date Tested	07/12/2020	

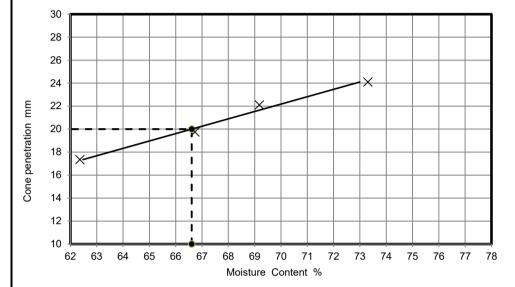


31	%
100	%
65	%
30	%
35	%
	100 65 30

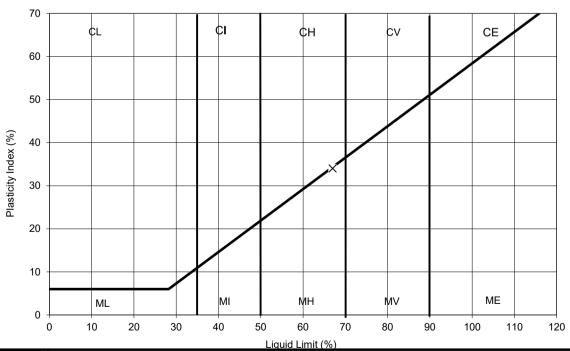


	TEST METHOD	Checked and
	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index	
(≯≮)	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying method	Initials: J.P
		Date: 09/12/2020
UKAS TESTING	Tel: 01923 711 288 Email: James@k4soils.com	
2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

(4)	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX			Job No.	29124	
SOILS				Borehole/Pit No.	BH05	
Site Name	Car Park 14, Basildon			Sample No.	-	
Project No.	2009004.001	Client	TEC	Depth Top	10.50	m
	Dark grey slightly mottled brown silty CLAY			Depth Base	11.00	m
				Sample Type	D	
Soil Description				Samples received	03/11/2020	
			Schedules received	24/11/2020		
				Project Started	25/11/2020	
				Date Tested	07/12/2020	

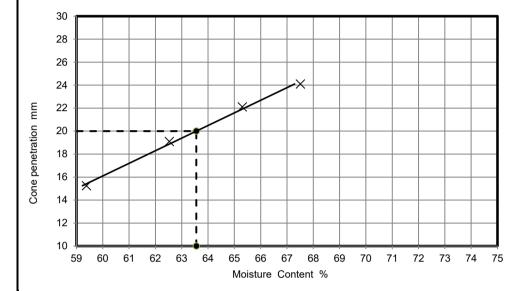


NATURAL MOISTURE CONTENT	30	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	65	%
PLASTIC LIMIT	30	%
PLASTICITY INDEX	35	%

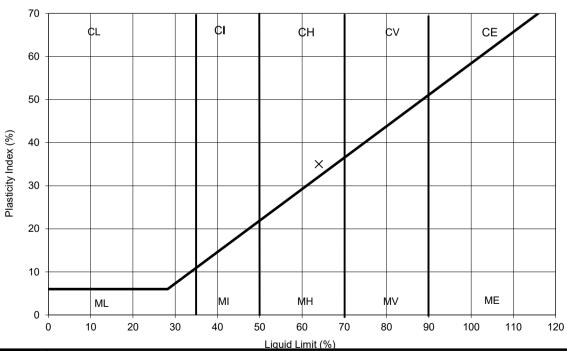


	TEST METHOD	Checked and
	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index	
(≯≮)	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying method	Initials: J.P
		Date: 09/12/2020
UKAS TESTING	Tel: 01923 711 288 Email: James@k4soils.com	
2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

(4)	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX			Job No.	29124	
SOILS			Borehole/Pit No.	BH05		
Site Name	Car Park 14, Basildon			Sample No.	-	
Project No.	2009004.001	Client TEC Depth Top		Depth Top	27.50	m
	Very high strength dark grey silty CLAY			Depth Base	28.00	m
				Sample Type	U	
Soil Description				Samples received	03/11/2020	
			Schedules received	24/11/2020		
				Project Started	25/11/2020	
				Date Tested	07/12/2020	

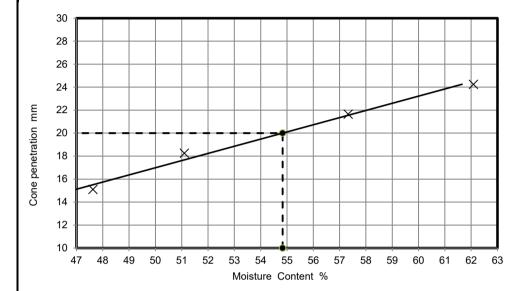


NATURAL MOISTURE CONTENT	29	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	67	%
PLASTIC LIMIT	33	%
PLASTICITY INDEX	34	%

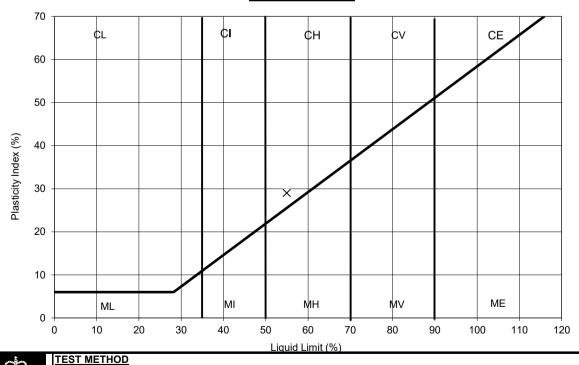


grand and	TEST METHOD	Checked and
	BS1377: Part 2 :Clause 4.3 : 1990 Determination of the liquid limit by the cone penetrometer method	
	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index	
[-(≯≮)-	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying method	Initials: J.P
: \ ノ :	Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU	Date: 09/12/2020
UKAS	Tel: 01923 711 288 Email: James@k4soils.com	
2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

(4)	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX			Job No.	29124	
SOILS				Borehole/Pit No.	BH06	
Site Name	Car Park 14, Basildon	Car Park 14, Basildon			-	
Project No.	2009004.001 Client TEC		TEC	Depth Top	17.00	m
	Dark brown silty CLAY			Depth Base	18.00	m
				Sample Type	D	
Soil Description				Samples received	03/11/2020	
			Schedules received	24/11/2020		
				Project Started	25/11/2020	
				Date Tested	08/12/2020	

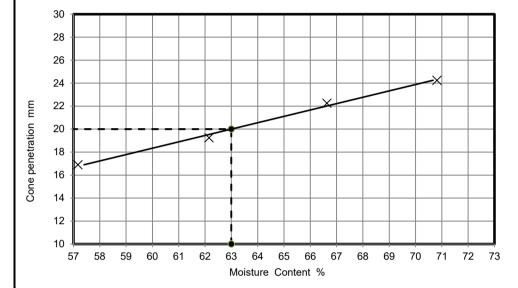


NATURAL MOISTURE CONTENT	29	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	64	%
PLASTIC LIMIT	29	%
PLASTICITY INDEX	35	%

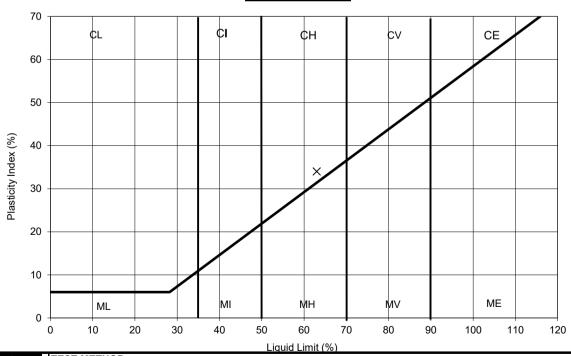


grand and	TEST METHOD	Checked and
	BS1377: Part 2 :Clause 4.3 : 1990 Determination of the liquid limit by the cone penetrometer method	
	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index	
[-(≯≮)-	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying method	Initials: J.P
: \ ノ :	Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU	Date: 09/12/2020
UKAS	Tel: 01923 711 288 Email: James@k4soils.com	
2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

(4)	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX			Job No.	29124	
Soils				Borehole/Pit No.	BH07	
Site Name	Car Park 14, Basildon	Car Park 14, Basildon			-	
Project No.	2009004.001	Client	TEC	Depth Top	3.50	m
				Depth Base	4.00	m
				Sample Type	D	
Soil Description	Orangish brown slightly mottled grey slightly fine sandy silty CLAY			Samples received	03/11/2020	
				Schedules received	24/11/2020	
			Project Started	25/11/2020		
				Date Tested	08/12/2020	


NATURAL MOISTURE CONTENT	28	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	55	%
PLASTIC LIMIT	26	%
PLASTICITY INDEX	29	%

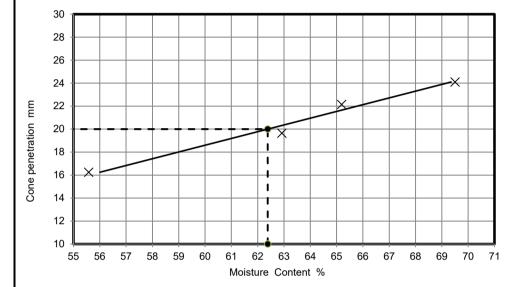
UKAS TESTING	
2519	


Liquid Limit (70)		
TEST METHOD BS1377: Part 2 :Clause 4.3 : 1990 Determination of the liquid limit by the cone		ed and oved
BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plastic BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by th	city index	J.P
Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach W Tel: 01923 711 288 Email: James@k4soils.com	atford Herts WD18 9RU Date: 0)9/12/2020
Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-	-5 R2

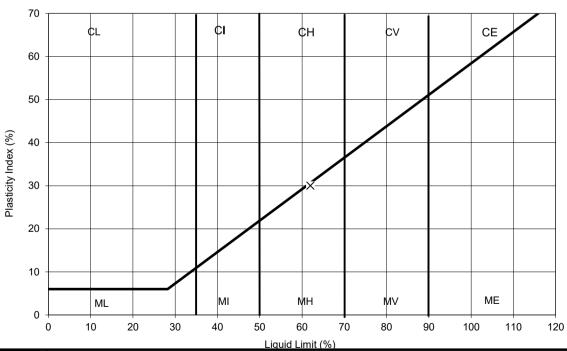
(4)	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX			Job No.	29124	
Soils				Borehole/Pit No.	BH07	
Site Name	Car Park 14, Basildon	Car Park 14, Basildon			-	
Project No.	2009004.001	Client	TEC	Depth Top	13.00	m
	Dark grey slightly mottled brown silty CLAY			Depth Base	13.50	m
				Sample Type	D	
Soil Description				Samples received	03/11/2020	
				Schedules received	24/11/2020	
				Project Started	25/11/2020	
				Date Tested	08/12/2020	

NATURAL MOISTURE CONTENT	29	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	63	%
PLASTIC LIMIT	29	%
PLASTICITY INDEX	34	%

PLASTICITY INDEX


,~ ^	TEST METHOD
	BS1377: Part 2 :Clause 4.3 : 1990 Determination of the liquid limit by the cone penetrometer method
	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index
	BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying method
	Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU
UKAS TESTING	Tel: 01923 711 288 Email: James@k4soils.com
2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

CHECK	eu anu
Appr	roved
Initials:	J.P


Date: 09/12/2020

MSF-5 R2

(4)	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX			Job No.	29124	
Soils				Borehole/Pit No.	BH07	
Site Name	Car Park 14, Basildon	Car Park 14, Basildon			-	
Project No.	2009004.001 Client TEC		Depth Top	22.50	m	
	Brown silty CLAY			Depth Base	23.00	m
				Sample Type	D	
Soil Description				Samples received	03/11/2020	
				Schedules received	24/11/2020	
				Project Started	25/11/2020	
					08/12/2020	

NATURAL MOISTURE CONTENT	30	%
% PASSING 425µm SIEVE	100	%
LIQUID LIMIT	62	%
PLASTIC LIMIT	32	%
PLASTICITY INDEX	30	%

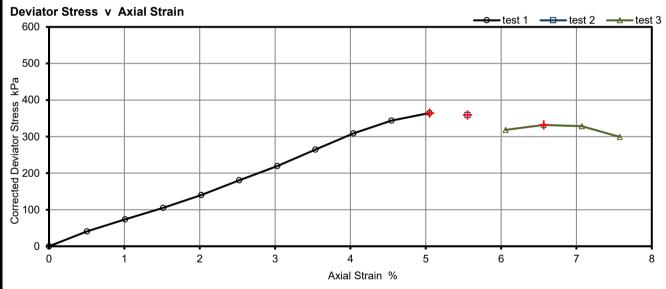
	TEST METHOD	Checked and
	BS1377: Part 2 :Clause 4.3 : 1990 Determination of the liquid limit by the cone penetrometer method	Approved
	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index	
(≯≮)	BS1377: Part 2 :Clause 5.0 : 1990: Determination of the plastic limit and plasticity index BS1377: Part 2 :Clause 3.2 : 1990:Determination of the moisture content by the oven drying method	Initials: J.P
		Date: 09/12/2020
UKAS TESTING	Tel: 01923 711 288 Email: James@k4soils.com	
2519	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)	MSF-5 R2

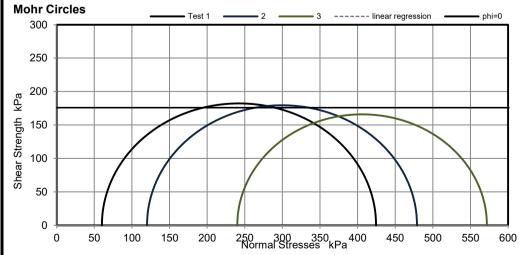
K	SOILS		Sur	nma	ary of Natural Moisture Co	ontent, L	-iquid	Limit	and Pla	astic L	imit Results	
Job No.			Project	Name						Prog	ramme	
29 ⁻	124		Car Par	k 14, E	Basildon				Samples	received	03/11/2020	
Project No.			Client						Schedule Project st		24/11/2020 25/11/2020	
-	04.00	4	TEC									
20090	04.00	I	TEC				•	1	Testing S	larieu	04/12/2020	
Hole No.	1		mple	L	Soil Description	NMC	Passing 425µm	LL	PL	PI	Remarks	
	Ref	Top m	Base m	Туре		%	%	%	%	%		
BH01	-	3.00	-	D	Orangish brown slightly mottled grey silty CLAY with traces of selenite crystals	30	100	62	27	35		
BH01	-	24.00	-	D	Dark brown slightly mottled grey silty CLAY	30	100	64	32	32		
BH03	-	7.00	7.50	D	Greyish brown silty CLAY	31	100	64	29	35		
BH03	-	12.95	13.50	D	Dark brown silty CLAY	26	100	62	33	29		
BH04	-	6.50	-	D	Dark grey slightly mottled brown silty CLAY with traces of selenite crystals	32	100	65	30	35		
BH04	-	8.00	1	D	Dark brown silty CLAY	31	100	65	30	35		
ВН05	1	10.50	11.00	D	Dark grey slightly mottled brown silty CLAY	30	100	65	30	35		
BH05		27.50	28.00	U	Very high strength dark grey silty CLAY	29	100	67	33	34		
ВН06	-	17.00	18.00	D	Dark brown silty CLAY	29	100	64	29	35		
вно7		3.50	4.00	D	Orangish brown slightly mottled grey slightly fine sandy silty CLAY	28	100	55	26	29		
BH07	-	13.00	13.50	D	Dark grey slightly mottled brown silty CLAY	29	100	63	29	34		
ВН07	-	22.50	23.00	D	Brown silty CLAY	30	100	62	32	30		
UKAS TESTING 2519	Natura Atterb	al Moistur erg Limits	e Content s: clause 4	t : claus 4.3, 4.4	se 3.2	Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288 Email: James@k4soils.com						

		-											
		Unconsolid						Job Ref			29124		
	SOILS	Compression pore pressu				ement of		Borehole/Pit N	l o.		BH03		
Si	te Name	Car Park 14, Ba		<u> </u>				Sample No.			-		
Pr	roject No.	2009004.00)1 Clier	nt		TEC		Depth Top		S	9.50	m	
								Depth Base		9	9.95	m	
		High strengt	h dark grev s	silty CLAY	/ with rare	e coarse pyrite	ı	Sample Type			U		
S	oil Description		les and rare				l	Samples recei	ved	0:	3/11/2020		
							ļ.	Schedules rece	eived	2	4/11/2020		
Te	est Method	BS1377:Part 7:19	90, clause 9, n	nultistage te	est on a sin	ngle specimen		Date of test		3	0/11/2020		
Ren	narks		Length				ım	198.0					
			Diame Bulk D			m Mg/n	nm n3	102.0 2.02	-				
			Moistu	ire Contei	nt	_	%	28	1				
			Dry De	ensity		Mg/n	n3 _	1.57	ļ				
<u>p</u> e				of Strain		%/m	nin	2.00		2	1 ^		
sam				Number ressure		kl	⊃a L	1 50		100	200		
Position within sample			Axial S				%	2.0		3.0	3.5		
n Wi			Deviat	or Stress	, (σ1 - σ3	3)f ki	⊃a	205.9		219.9	222.	0	
ositic				strength,	cu	ki	⊃a	102.9		110.0	111.	0	
ď			Mode	of failure				Compound	ļ				
	tor Stress v A	Axial Strain						 te	st 1	test :	2 te:	st 3	
300												1	
250							_					1	
Ба			_	-	+								
ဖ္တ 200			<u> </u>				+					1	
Stre													
iator 150												1	
∯ 100							-					4	
Corrected Deviator Stress kPa 00 01 05 05 00 05 00 05 00 00 00 00 00 00 00 00 00 0													
50 S												1	
0	<u></u>											1	
	0	1 2	2	3		4	5	6		7		8	
					Axia	l Strain %							
Mohr 300	Circles	—— Tes	t 1 ——	2 —	3	linear regress	ion	phi=0					
250							+			φu = 0 Average c	าม 108	3 kPa	
~ 200	,									Avoiage	,u 100	Ка	
ΚP										Linear Re	gression		
듈 150							+			φu	2.6		
. Strei										cu	98	kPa	
Shear Strength										Mohr oire	es and their		
ි ₅₀			+/-	\rightarrow			+			interpretat	tion is not co		
			/)	\							7. These are or information		
С		100 150 2	200 250 Norr	300 nal Stress	350 ses kPa	400 450	500	550 60	0	only.	or information	a 1	
ÇÎ.	9					LS LABORATO		,				ked and	
			U			Olds Approach WD18 9RU					Initials:	roved J.P	
					: 01923 7						Date: 09/12/2020		
UKA	A S			⊏maii: .	ames@k	4soils.com					1		


U K A S TESTING 2519

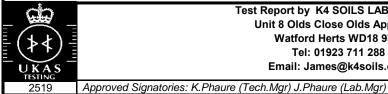
Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)


MSF-5 R8a


4	Unconsolidated		Triaxial neasurement of	Job Ref	29124				
SOILS	pore pressure -			Borehole/Pit No.	BH03				
Site Name	Car Park 14, Basildo	n		Sample No.	-				
Project No.	2009004.001	Client	TEC	Depth Top	12.50	m			
			_	Depth Base	12.95	m			
Sail Description	Von high	a atropath dark o	arou oiltu CLAV	Sample Type	U				
Soil Description	very nigi	ո strength dark <u>զ</u>	grey silly CLAY	Samples received	03/11/2020				
				Schedules received	24/11/2020				
Test Method	BS1377:Part 7:1990, cla	use 9, multistage t	est on a single specimen	Date of test	30/11/2020				

Sample failed at first pressure

Length	mm	198.0		
Diameter	mm	102.0		
Bulk Density	Mg/m3	1.98		
Moisture Content	%	27		
Dry Density	Mg/m3	1.56		
			_	
Rate of Strain	%/min	2.00		
Stage Number		1	2	3
Cell Pressure	kPa	60	120	240
Axial Strain	%	5.1	5.6	6.6
Deviator Stress, (σ1 - σ3)f	kPa	364.5	359.0	331.9
Shear strength, cu	kPa	182.3	179.5	165.9
Mode of failure		Brittle		_


φu = 0

Average cu 176 kPa

Linear Regression

0.0 ° φu cu 176 kPa

Mohr circles and their interpretation is not covered by BS1377. These are provided for information only.

Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU

Tel: 01923 711 288

Email: James@k4soils.com

Checked and **Approved**

Initials: J.P Date:

09/12/2020

MSF-5 R8a

	Unconsolid Compression						of	Job	Ref			2	29124	
SOILS	pore pressu							Bore	ehole/Pit	No.		E	BH04	
Site Name	Car Park 14, Ba	asildo	n -					Sam	ple No.				-	
Project No.	2009004.00)1	Client			TEC		Dep	th Top			2.0	00	m
								Dep	th Base			2.4	15	m
Cail Danamintian	Medium stre	ength	brown mo	ttled gre	ey silty C	CLAY wi	th rare	Sam	ple Type	Э			U	
Soil Description				e crysta				Sam	ples rece	eived		03/	11/2020	
								Sche	dules red	ceived		24/	11/2020	
Test Method	BS1377:Part 7:19	90, cla	use 9, mult	istage te	st on a sir	ngle spec	imen	Date	of test			30/	11/2020	
emarks		1	Length Diameter				mm		98.0 02.0	4				
			Bulk Den				mm Mg/m3		1.92	-				
			Moisture	Conten	t		%		34					
]	Dry Dens	sity			Mg/m3		1.43					
2			Rate of S				%/min		2.00	1				
			Stage Nu Cell Pres				kPa		1 15	+	30		60	
			Axial Stra				%		5.1		6.1		9.	
			Deviator		(σ1 - σ3	3)f	kPa	1	10.4		111.0		120	0.8
			Shear str			,	kPa		55.2		55.5		60	.4
<u> </u>			Mode of	failure				Cor	npound					
) 0	•••	-	<u> </u>	<u> </u>	4 4 4	Δ	<u> </u>	\$ 				
	2 3 4		5	6		8 I Strain	9 10	1	1 12	2 1	13	14	15	16
r Circles														
50	Test	-	2		- 3	line	ar regression		phi=0	1				
25											φu = 0)		
											Avera	ge cu	Ę	57 kPa
00											Linco	r Door	aaalan	
75											Lineai	r Regr	ession	.3 °
,						ςu			.s I7 kPa					
50											Cu		•	H KFa
25					\downarrow					-	interpo	retatio 1377.	s and the on is not o These a informat	overed re
0 25	50 75 1	00	125 Norma	150 Stresse	175 es kPa	200	225 25	50 2	275 3	00 -	only.	.ou 101	anomial	
<u> </u>							ORATOR	Y						cked a
					Close C								_	proved

Watford Herts WD18 9RU Tel: 01923 711 288 Email: James@k4soils.com

Date: 09/12/2020

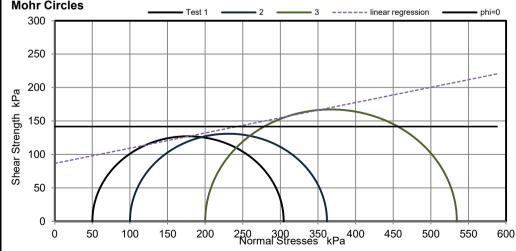
MSF-5 R8a

			1	Unc													_		Jok	Ref					29124	1		
		1	SOILS	Con	_										eme	ent	of		Во	rehole	Pit N	0.			BH05	5		
Ī	Site	e Nam	ne	Car F															Sa	mple	No.				-			
Ī	Proj	ject N	lo.	2	0090	004.0	001		С	lient					TE	С			De	pth To	р			17	.00		m	
Ī												,							De	pth Ba	ase			17	.50		m	
	0 - :	:: D						.14		41-			11	4 · OI	437				Sa	mple	Туре				U			
	501	II Des	cription				HIĞ	ın sı	ren	gtn	ark	gre	y SII	ty CL	ΑΥ				San	nples	receiv	ed		03	/11/20	020		
																			Sche	edule	s recei	ved		24	/11/20	020		
Į	Tes	st Met	hod	BS137	77:Pa	art 7:	1990				ıltista	ige te	est c	n a si	ngle s	peci	men		Da	te of t				30	/11/20)20		
	Rema	arks							Dia Bul Moi	istur	nsity e Co	nter	nt					mm mm g/m3 %		198.0 102.0 1.90 28 1.48)							
L											sity							g/m3										
	Position within sample										Stra Iumb						%	6/min		2.00			2		L	3		
	iin sa							- 1		l Pre	ssui	re						kPa %		80 7.1			160			320 14.1		
	n with											ess,	, (σ	1 - σ	3)f			kPa	224.2				9.1 14.1 280.9 371.7					
	ositio										tren	-	cu					kPa		112.1			140.5 185.9)	
	L		Stress v Axial Strain							de o	f fail	ure							Co	mpol	ind							
	viato ⊙o ⊤	or Str	ress v	Axial	Stra	in															tes	t 1	-	test 2		— tes	t 3	
	00								\dagger							+												
dy s	.00					_			_			_				_												
Stres															***	^		<u> </u>	4 &	^ ^	^							
iator s	00					\dagger						-	•															
2 Dev	00				 		سھر	- e	•			_				+												
Corrected Deviator Stress kPa																												
ြ ပ	00					\top																						
	0				<u> </u>				<u> </u>			<u> </u>				10		2 4					10	10 (1 1]	
	0) 1	1 2	3	4	5	(6	7	i	3	9	1		11 Il Stra	12 ain	13 %	3 1	4 1	5 1	6 1	<i>'</i>	18 ′	19 2	20 2	21 2	22	
Мо	hr C	Circle	s			т.	est 1			— 2			•			linaa		ession		_	hi=0							
	600						est i				T		- 3			IIIICa	ii regi	ession										
	500	_							4				4		_		_						φu =	0				
	400																						Avera	age cı	ı	146	kPa	
кРа	400																						Linea	ar Reg	ressio	on		
	300	-		-	\dashv		+		\dashv		+		\dashv		+		+			+			φu	J		13.5		
Shear Strength	200	_																		cu			70	kPa				
Shea																	Mohr cii											
-,	100	100							\dashv		\top		\bigvee				1						interpretation is not covered by BS1377. These are					
	0	0 100 200 300 400								500 600 700 800 900 100 Normal Stresses kPa									r				provided for information only.					
	<u>\$</u>	·	100	200	50	J	700	,												1100	120				1 4	Check	ed and	
_									16		it 8 (Olds	s CI	ose (Olds	App	oroa	ATOR ch	Ť							App	roved	
- (:	≯≮)						Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288															Initia Date		J.P 09/12/20	ევი		
_ U	K A	S									Ema	iil: J	lam	es@	k4so	ils.c	com								Date	· •	03/12/20	J <u>E</u> U

MSF-5 R8a

	Unconsolidate	d Undrained 1	riaxial		Job Ref	T		29124	
(Karana)	Compression -	Test without n	neasuremen	t of	-				
	pore pressure		est		Borehole/Pit N	0.		BH05	
Site Name	Car Park 14, Basild	lon			Sample No.			-	
Project No.	2009004.001	Client	TEC		Depth Top		23.	00 m	
					Depth Base		23.	50 m	
Call Description	Francisco de	. - - - - - - - - -	silba Ol Al	,	Sample Type			U	
Soil Description	Extremely	high strength darl	t grey silly CLA		Samples receiv	ed	03/	11/2020	
					Schedules recei	ved	24/	11/2020	
Test Method	BS1377:Part 7:1990, c	clause 9, multistage te	est on a single spec	cimen	Date of test		30/	11/2020	
Remarks		Length		mm					
		Diameter Bulk Density		mm Mg/m3	102.0 1.98				
		Moisture Conter	nt	wg/mo %	28				
		Dry Density		Mg/m3	1.54				
<u>e</u>		Rate of Strain		%/min	2.00				
Position within sample		Stage Number Cell Pressure		kPa	1 110		2 220	3 440	
nin s		Axial Strain			5.6		6.6	8.6	
wit		Deviator Stress,	(σ1 - σ3)f	kPa			602.4	694.1	
sition		Shear strength,		kPa	275.1	3	301.2 347.0		
. Po		Mode of failure			Brittle		<u> </u>		
Deviator Stress v A	Axial Strain						test 2 test 3		
1,200					—— tes	st 1 <u>–</u>	test 2	test 3	
1,000									
800									
Stress KPa 008 KPa			-	1					
<u>ර</u> 600 •		4							
evia				>					
으 400 ·									
Consected Operation									
0				10	11 10	- 10		<u> </u>	
0 1	2 3 4	5 6	7 8 Axial Strain	9 10 %	11 12	13	14	15 16	
Mohr Circles									
600	——— Test 1	2	3 line	ar regression	phi=0				
500						ф	ou = 0		
500							verage cu	308 kPa	
_{τσ} 400									
죠							inear Regr		
app 300							u	10.3 °	
200			\rightarrow			С	u	211 kPa	
Shea						N	Nohr circles	s and their	
σ 100 	+/		+ +			ir	nterpretatio	on is not covered	
								These are information	
	200 300 400	500 600 Normal Stress	700 800 ses kPa	900 100	00 1100 120		nly.		
zwaz			K4 SOILS LA	ORATOR	Y			Checked and	
			Close Olds Ap					Approved	

Watford Herts WD18 9RU Tel: 01923 711 288


Email: James@k4soils.com

Initials: J.P Date: 09/12/2020

MSF-5 R8a

		Unconsolie Compress						at of		Job Ref			29124		
	SOILS	pore press					emei	11 01		Borehole	/Pit No.		BH05		
Si	te Name	Car Park 14, E	Basildo	on .						Sample N	No.		-		
Pr	oject No.	2009004.0	01	Client			TEC			Depth To	р	2	7.50 m		
										Depth Ba	ise	2	8.00 m		
9	oil Description	\/	erv hia	h strength	dark di	rev siltv (21 AV			Sample 1	Гуре		U		
	on Decomption		ory mg	n oa ongar	aan gi	Cy only	JE/ (1			Samples	received	0	3/11/2020		
										Schedules			4/11/2020		
	est Method	BS1377:Part 7:1	990, cla		stage te	st on a si	ngle sp			Date of to		3	0/11/2020		
Ren	narks			Length Diameter Bulk Dens Moisture Dry Dens	Conten	ıt		m Mg/n	%	198.0 102.0 1.99 28 1.55					
nple				Rate of S Stage Nu				%/m	iin	2.00		2	3		
n san				Cell Press	sure			kF	_	175		350	700		
withi				Axial Stra Deviator 9		(\sigma1 - \sigma'	3 \f		% Ра	3.0 395.6		4.0	5.6 526.0		
Position within sample				Shear stre		•	<i>,</i> ,.		Pa	197.8		208.1			
Ъ				Mode of f	ailure					Compou	nd				
Deviat 600	or Stress v /	Axial Strain							tesi			test	2 <u>+</u> test 3		
500	-									*	-	4			
Corrected Deviator Stress kPa					.	G	#		L						
Stres					•										
ator 300									t						
à □ 200									+						
rected	/														
5 100 O									T						
0	0	<u> </u> 1	2	3	•		4		5		6	7	8		
	U	1	2)		4 I Strai		5		б	1	0		
Mohr	Circles	To	st 1 -	2		- 3	lir	near regressi	on	pl	si=0				
1500	1		.5.1					icai regressi		pi					
1250	, —								+			φu = 0			
1000												Average o	u 223 kPa		
9 1000 Ba												Linear Re	gression		
ength 420	· 		+						+			фu	6.6 °		
Shear Strength	,		-						+			cu	152 kPa		
Shea Shea													es and their		
250												by BS137	tion is not covered 7. These are		
0		500 750	1000	1250 1 Normal	 500	1750 _ 2	2000	2250	250	0 2750	3000	provided fonly.	or information		
مرائيسر	•							BORATO					Checked and	ı	
	*			Unit	8 Olds	Close (Olds A	pproach		-			Approved		
_ (} <					Tel:	d Herts 1	711 28	8					Initials: J.F Date: 09/12/2		
U K A	Approve	d Signatories: K	Dhou			ames@l						MSF-5 R8a			
251	a Approve	u Signatories. N	.r nau	ie (Techilvi	yı <i>)</i> J.P	naure (L	av.ivig	1)					เพอก-จ หชล		

	Unconsolidated			Job Ref	:	29124					
SOILS	pore pressure		neasurement of est	Borehole/Pit No	o	1.1 15.7 61.9 334.6 31.0 167.3					
Site Name	Car Park 14, Basildo			Sample No.		BH06 - 8.00 m 8.45 m U 03/11/2020 24/11/2020 30/11/2020 30/11/2020 1 15.7 9 334.6 0 167.3					
Project No.	2009004.001	Client	TEC	Depth Top	8.0	00 m					
				Depth Base	8.4	45 m					
	High strength dark	arev eilty CLAY v	vith occasional pockets of	Sample Type		U					
Soil Description	Tilgii suongui dan	fine sand	Will Goodstollal pockets of	Samples receiv	ed 03/	/11/2020					
				Schedules recei							
Test Method	BS1377:Part 7:1990, cl	lause 9, multistage te	est on a single specimen	Date of test	· ·						
emarks		Length	mr								
		Diameter	mr								
		Bulk Density	Mg/m								
		Moisture Conter Dry Density	nt % Mg/m	6 29 3 1.48							
		Dry Donony	14.9,	٠ 							
ם		Rate of Strain	%/mi	n 2.00							
<u> </u>		Stage Number		1							
20		Cell Pressure	kP		100						
		Axial Strain	0	6 9.6	11.1						
<u> </u>		Deviator Stress	, (σ1 - σ3)f kP	a 254.4	261.9	334.6					
		•	, (- · /·	204.4	201.0	004.0					
		Shear strength,	· ·		131.0						
01180			· ·								
		Shear strength,	· ·	a 127.2							
ator Stress v	Axial Strain	Shear strength,	· ·	a 127.2	131.0	167.3					
ator Stress v	Axial Strain	Shear strength,	· ·	a 127.2 Compound	131.0	167.3					
ator Stress v A	Axial Strain	Shear strength,	· ·	a 127.2 Compound	131.0	167.3					
ator Stress v A	Axial Strain	Shear strength,	· ·	a 127.2 Compound	131.0	167.3					
ator Stress v A	Axial Strain	Shear strength,	· ·	a 127.2 Compound	131.0	167.3					
ator Stress v	Axial Strain	Shear strength,	· ·	a 127.2 Compound	131.0	167.3					
ator Stress v	Axial Strain	Shear strength,	· ·	a 127.2 Compound ———————————————————————————————————	131.0	167.3					
ator Stress v	Axial Strain	Shear strength,	· ·	a 127.2 Compound	131.0	167.3					
ator Stress v	Axial Strain	Shear strength,	· ·	a 127.2 Compound ———————————————————————————————————	131.0	167.3					
ator Stress v	Axial Strain	Shear strength,	· ·	a 127.2 Compound ———————————————————————————————————	131.0	167.3					
ator Stress v	Axial Strain	Shear strength,	· ·	a 127.2 Compound ———————————————————————————————————	131.0	167.3					
ator Stress v	Axial Strain	Shear strength,	· ·	a 127.2 Compound ———————————————————————————————————	131.0	167.3					
ator Stress v	Axial Strain	Shear strength,	· ·	a 127.2 Compound ———————————————————————————————————	131.0	167.3					
ator Stress v	Axial Strain	Shear strength,	· ·	a 127.2 Compound ———————————————————————————————————	131.0	167.3					
ator Stress v		Shear strength, Mode of failure	cu kP	Table 127.2 Compound Tes	131.0	167.3					
ator Stress v	Axial Strain 3 4 5 6	Shear strength,	10 11 12 13	a 127.2 Compound ———————————————————————————————————	131.0	167.3					
actor Stress v A		Shear strength, Mode of failure	cu kP	Table 127.2 Compound Tes	131.0	167.3					
ator Stress v A	3 4 5 6	Shear strength, Mode of failure 7 8 9	10 11 12 13 Axial Strain %	127.2 Compound	131.0	167.3					
ator Stress v		Shear strength, Mode of failure	10 11 12 13	127.2 Compound	131.0	167.3					
ator Stress v	3 4 5 6	Shear strength, Mode of failure 7 8 9	10 11 12 13 Axial Strain %	127.2 Compound	131.0	167.3					

Linear Regression

12.8 ° φu

cu

87 kPa

Mohr circles and their interpretation is not covered by BS1377. These are provided for information only.

Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288

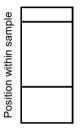
Email: James@k4soils.com

Checked and Approved

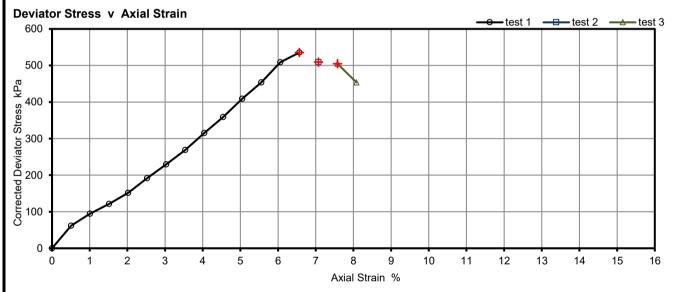
J.P Initials: 09/12/2020

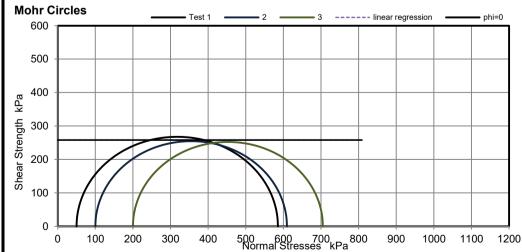
MSF-5 R8a

Date:


			1	\								d Tr						Job	Ref			2	29124		$\overline{1}$
		1	SOILS)		-						ut me e tes		ıre	mer	nt of		Воі	rehole/l	Pit No.		I	3H06		1
ľ	Site	e Nan	ne		Car P													Sai	mple N	0.			-		1
	Pro	ject N	No.		20	00900	04.00	01	(Clien	t				TEC	;		De	pth Top)		14.	00	m	,
																		De	pth Bas	se		14.	50	m	,
					Hiah	ı stre	nath	dark	arev	v siltv	/ CL/	AY with	n occ	asio	onal ı	pocke	ets of	Sai	mple T	уре			U		1
	50	III Des	scripti	on			Ū			, ,	san							San	nples re	eceived		03/	11/2020)	7
																		Sche	edules	received		24/	11/2020)	1
į	Tes	st Me	thod		BS137	′7:Par	t 7:19	990, c	lause	9, m	ultista	ge test	on a	sing	le spe	ecimer	1	Da	te of te	st		30/	11/2020)	コ
ľ	Rema	arks						1		ngth amet							mm mm		198.0 102.0						
										ılk D		/ ontent				N	/lg/m3 %		1.96 28						
L										y De						N	⁄₀ /lg/m3		1.53						
	<u>e</u> [ate of						(%/min		2.00						
	Position within sample									age l							l/D-		1 65		2 130			3 260	7
	hin s									ell Pr		е					kPa %	 			7.1			4.1	┨
	wit											ess, (σ1 -	σ3])f		kPa				291.8			53.7	┪
	sitior											gth, cu			,		kPa		118.9		145.9 176.9				1
	В.								М	ode d	of fail	ure						Co	mpour	nd					_
		or St	ress	v A	xial S	3trai	n		_											etest 1	t	est 2		test 3	
6	⁰⁰ T																			1031 1		031 2			
5	00 -					\perp																			
날 s 4	00 -				-	\vdash	+	_			-	-	+	+										_	
Stres													-	-	. 4	^ ^	A A	 	2 2 2	7					
ator 3	00 -					+			-	 				+											
Devi	00					4																			
cted																									
Corrected Deviator Stress kPa	00 -					+	+				-	+	-	+										_	
O		P																							
	0 0)	1 :	2	3	4	5	6	7	7	8	9	10 Ax	11 ial	1 Straiı		3 1	4 1	5 16	17	18 19) 20	0 21	22	
		Circle	es		_		- Tes	st 1		2	_		3 -		lin	near rec	ression	_	—— phi	=0					
	600																								
	500	-				_		_													φu = 0				
	100																				Avera	ge cu		147 kPa	а
kРа	400																				Linear	Regr	ession		_
	300	-	+		-	+		+								_				-	φu	Ū		3.0 °	
Strer	200																			cu			82 kP	а	
Shear Strength	200																			Mak	sirol	. and 41-	oir		
Ś	100	00									\forall					_				_	Mohr circles and their interpretation is not covered				ed.
	0					Λ		Λ															These inform		
	0	0	100	2	00	300		400	5	00 Norm	600 nal St) 7	00 kP	a 80	00	900	10	00	1100	1200	only.				
(cio									est R	epoi	t by I	K4 S	OIL	S LA		ATOR	Υ						ecked a	
		\ =								Ur		Olds (tford					ach						Approved Initials: J.P		e d J.P
- (:	₽≮	ノ										Tel: 0	1923	71	1 28	8							Initiais:		J.P /12/2020
Ų	K A ESTING	S									Ema	il: Jaı	nes(⊉k 4	lsoils	s.con	1							33/	3_0

MSF-5 R8a


		4	Uncon Compr							t of	Job Ref			29124	
	/	SOILS	pore p								Borehole/Pit	No.		BH06	
	Site I	Name	Car Park	14, Bas	sildon						Sample No.			-	
	Proje	ect No.	2009	004.001		Client TEC				Depth Top		1	8.50	m	
										Depth Base		1	8.85	m	
	Soil	Description		Hi	iah etre	strength dark grey silty CLAY				Sample Typ	е	U			
	COII	Besonption		• • •	igii ou c						Samples rec	eived	03/11/2020		
											Schedules re	ceived	24/11/2020		
L	Test	Method	BS1377:P	art 7:1990			istage te	st on a si	ngle spec	imen	Date of test		3	0/11/2020	
	Remarks			D B M D	ength iameter ulk Den loisture ry Dens	sity Conter sity	nt		mm mm Mg/m3 % Mg/m3	1 102.0 3 1.96 5 29					
	nple –					ate of S tage Nu				%/min	2.00		2	3	-
	n sar				С	ell Pres	sure			kPa			180	360	
	withi					xial Stra		(σ1 - σ	2 /f	% kPa			3.5 155.6	6.6 237.1	
	Position within sample					hear str		•	יו, כ	kPa			77.8	118.6	
	Pos				М	ode of t	failure				Compound			•	
		Stress v A	Axial Stra	ain								test 1	—— test	2 test∶	3
3	⁰⁰ T											iesi i	-B-test	2 -2 (est	5
2	50 🗕														
Ра											-	<u> </u>	*		
9 SS	00 🗕														
r Stre	50 -						-								
viato						Þ									
g 10	00 🗕														
Corrected Deviator Stress KPa	50 -														
රි															
	0	,	<u> </u> 1	2			3		4	5		<u> </u>	7	 8	
	O			_		`	5		- I Strain	-		•	,	Ü	
Мо	hr Cii	rcles		— Test 1	1	2		- 3	line	ar regression	phi=0				
	³⁰⁰ T			1001				Ť		ur regression	piii o	1			
	250											1	φu = 0		
													Average of	:u 89 k	(Pa
кРа	200												Linear Re	gression	
ngth	150							-				-	фu	9.2 °	
Shear Strength	100									-			cu	42	kPa
hear								/				†	Mohr circl	es and their	
0)	50			\rightarrow	$\overline{}$		$\uparrow \uparrow$	1/				1		tion is not cove 7. These are	ered
	0						<u> </u>					Ų	provided f	or information	
	0	50	100 15	50 20				350 es kPa		450 50		00	only.		
	Ď				Т					ORATOR proach	Y			Checke Appro	
	Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU									Initials:	J.P				
	KAS					Е		: 01923] ames@		com				Date:	09/12/2020
TE Z	STING 2519	Approved	d Signator	ies: K.P.	haure (MSF-5	R8a


(4)	Unconsolidated Compression Te			Job Ref	29124		
SOILS	pore pressure -	Borehole/Pit No.	BH07				
Site Name	Car Park 14, Basildon	า		Sample No.	i		
Project No.	2009004.001	Client	Depth Top	9.50	m		
				Depth Base	10.00	m	
Soil Description	Vany high atrongth	dork grov olight	ly fine sandy silty CLAY	Sample Type	U		
Soil Description	very night strength	dark grey slight	ly lifle saridy silly CLAT	Samples received	03/11/2020		
		Schedules received	24/11/2020				
Test Method	BS1377:Part 7:1990, cla	use 9, multistage t	est on a single specimen	Date of test	30/11/2020		

Sample failed at first pressure

Length	mm	198.0		
Diameter	mm	102.0		
Bulk Density	Mg/m3	1.94		
Moisture Content	%	29		
Dry Density	Mg/m3	1.50		
			_	
Rate of Strain	%/min	2.00		
Stage Number		1	2	3
Cell Pressure	kPa	50	100	200
Axial Strain	%	6.6	7.1	7.6
Deviator Stress, (σ1 - σ3)f	kPa	535.4	509.4	504.8
Shear strength, cu	kPa	267.7	254.7	252.4
Oricai strongth, oa	кга	201.1	204.7	202.4

φu = 0

Average cu

258 kPa

Linear Regression

φu

cu 258 kPa

Mohr circles and their interpretation is not covered by BS1377. These are provided for information only.

Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU

Tel: 01923 711 288

Email: James@k4soils.com

Checked and **Approved**

0.0 °

Initials: J.P

Date: 09/12/2020

MSF-5 R8a

	4	4			d Undrained est without i			nt of	Job Ref			29124	
L	<u> </u>	SOILS	pore press	ure -	Multistage t				Borehole/Pit N	lo.		BH07	
L	Site N	Name	Car Park 14, B	asildo	on .				Sample No.			-	
L	Proje	ct No.	2009004.0	01	Client TEC				Depth Top		15	5.50	m
					strength dark grey silty CLAY				Depth Base		16.00 r		m
	Soil I	Description		High s					Sample Type Samples received		U		
		2 000р									03/11/2020		
							Schedules rece	ived		4/11/2020			
L	Test Method BS1377:Part 7:1990, o					est on a sir	ıgle spe	ecimen	Date of test	-	30	0/11/2020	
Ē	Remarks				Length Diameter Bulk Density Moisture Conte Dry Density	nt		mm mm Mg/m3 % Mg/m3	102.0 1.99 27				
	ble				Rate of Strain			%/min	2.00			1 -	
	Position within sample				Stage Number Cell Pressure			kPa	70		2 140	3 280	
	ithin				Axial Strain			%	4.0		5.1	6.1	
	w lo				Deviator Stress	•	3)f	kPa	256.1		269.2	304.9	
	ositi				Shear strength, Mode of failure	cu		kPa	128.0 Compound		134.6	152.4	
Dev	∟ viator	Stress v A	vial Strain						·	ı			
				22	3		4	5	6		7	•	3
	hr Cir 300 ⊩	cles	—— Te	st 1 -	2	_ 3	lin	ear regression	—— phi=0				
:	250 -										φu = 0 Average c	u 138	kPa
kΡ _ε											Linear Reg		
engt	150										фи cu	6.1	° kPa
Shear Strength	100 -						+				Mohr circle interpretat by BS1377	es and their ion is not cov 7. These are	/ered
	0 ↓ 0	50	100 150	200	250 300 350 400 450 50 Normal Stresses kPa				00 550 600)	only.	or informatio	ı
Um Z	KAS STING 2519	Approved	l Signatories: K	Phau	Test Report b Unit 8 Old Watfo Te	y K4 SOI s Close (rd Herts \ l: 01923 7 James@l	ILS LA Dids A WD18 711 288 k4soils	pproach 9RU 8 s.com	Y			Appr Initials: Date:	ed and roved J.P 09/12/2020

Unconsolidated Undrained Triaxial Compression tests without measurement of pore pressure **Summary of Results** Tests carried out in accordance with BS1377:Part 7: 1990 clause 8 or 9 as appropriate to test type. Job No. Programme Samples received 03/11/2020 29124 Car Park 14, Basildon Schedule received 24/11/2020 Project No. Client Project started 25/11/2020 2009004.001 TEC **Testing Started** 30/11/2020 Sample Density At failure Test Lenath Diamet σ 3 Hole No. Soil Description bulk dry Remarks Ref Top Base Type 1 - σ cu strain kPa mm mm High strength dark grey silty CLAY with 50 20 206 103 BH03 C 9 50 9 95 U rare coarse pyrite nodules and rare UUM 2 02 1 57 28 198 102 100 3.0 220 110 pockets of black fine sand 200 3.5 222 111 60 5.1 365 182 Sample failed at first BH03 Very high strength dark grey silty CLAY UUM 27 198 120 В 12.50 12.95 1.98 1.56 102 5.6 359 179 pressure 240 6.6 332 166 15 5.1 110 55 Medium strength brown mottled grey silty BH04 2 00 2 45 U UUM 1 92 1 43 34 198 102 30 6 1 111 56 С CLAY with rare selenite crystals 60 9 1 121 60 80 7.1 224 112 BH05 17.00 17.50 High strength dark grey silty CLAY UUM 1.90 1.48 28 198 102 160 9.1 140 С 281 320 372 186 14.1 110 5.6 550 275 Extremely high strength dark grey silty BH05 UUM 1.98 198 102 В 23.00 23.50 U 1.54 28 220 6.6 602 301 CLAY 347 694 440 8.6 175 3.0 396 198 BH05 Very high strength dark grey silty CLAY UUM 29 198 350 208 С 27.50 28.00 1.99 1.55 102 4.0 416 700 5.6 526 263 50 9.6 254 127 High strength dark grey silty CLAY with BH06 8 00 8.45 U UUM 1.91 1.48 29 198 102 100 11.1 262 131 С occasional pockets of fine sand 200 335 167 15.7 65 4.5 238 119 High strength dark grey silty CLAY with BH06 UUM 1.96 198 102 С 14.00 14.50 U 1.53 28 130 292 146 7.1 occasional pockets of sand 260 177 14.1 354 90 2.5 139 69 BH06 18.50 18.85 U High strength dark grey silty CLAY UUM 1.96 1.52 29 198 102 180 3.5 156 78 С 360 6.6 237 119 6.6 268 50 535 Very high strength dark grey slightly fine Sample failed at first BH07 10.00 UUM 198 C 9 50 U 1 94 1.50 29 102 100 7 1 509 255 sandy silty CLAY 7.6 200 505 252 70 4.0 256 128 BH07 15.50 16.00 U High strength dark grey silty CLAY UUM 1.99 1.57 27 198 102 140 5.1 269 135 С 152 280 6.1 305 Legend UU - single stage test (single and multiple specimens) σ3 Cell pressure Mode of failure; B - Brittle UUM - Multistage test on a single specimen P - Plastic σ1 - σ3 Maximum corrected deviator stress Undrained shear strength, ½ (σ 1 - σ 3) suffix R - remoulded or recompacted C - Compound Test Report by K4 SOILS LABORATORY **Checked and Approved Unit 8 Olds Close Olds Approach** Watford Herts WD18 9RU J.P Initials:

Tel: 01923 711 288

Email: james@k4soils.com

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

2519

Date:

09/12/2020

MSF-5-R7b

Unit A2
Windmill Road
Ponswood Industrial Estate
St Leonards on Sea
East Sussex
TN38 9BY

Telephone: (01424) 718618

cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number: 20-31131

Issue: 1

Date of Issue: 08/12/2020

Contact: James Phaure

Customer Details: K4 Soils Laboratory Ltd

Unit 8 Watford

HertfordshireWD18 9RU

Quotation No: Q16-00568

Order No: Not Supplied

Customer Reference: 29124

Date Received: 01/12/2020

Date Approved: 08/12/2020

Details: Car Park 14, Basildon

. 7 [

Mike Varley, Technical Manager

Approved by:

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

This report may only be reproduced in full

Sample Summary

Report No.: 20-31131, issue number 1

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
221730	BH01 6.50	Not Provided	01/12/2020	Clayey loam	а
221731	BH01 15.5	Not Provided	01/12/2020	Clay	а
221732	BH03 3.50	30/10/2020	01/12/2020	Clayey loam	f
221733	BH03 19.00	Not Provided	01/12/2020	Claty	а
221734	BH03 22.50	Not Provided	01/12/2020	Claty	а
221735	BH04 10.50	Not Provided	01/12/2020	Claty	а
221736	BH05 7.50	28/10/2020	01/12/2020	Clayey loam	f
221737	BH05 15.00	28/10/2020	01/12/2020	Claty	f
221738	BH06 4.00	Not Provided	01/12/2020	Clayey loam	а
221739	BH06 13.00	28/10/2020	01/12/2020	Claty	f
221740	BH07 7.00	27/10/2020	01/12/2020	Clayey loam	f

Results Summary

Report No.: 20-31131, issue number 1								
		ELAB I	Reference	221730	221731	221732	221733	221734
	(
		Sample ID						
		Sar	mple Type	DISTURBED	DISTURBED	DISTURBED	DISTURBED	DISTURBED
		Sample	e Location	BH01	BH01	BH03	BH03	BH03
		Sample	Depth (m)	6.50	15.5	3.50	19.00	22.50
		Sam	pling Date	Not Provided	Not Provided	30/10/2020	Not Provided	Not Provided
Determinand	Codes	Units	LOD					
Soil sample preparation parameter	ers							
Material removed	N	%	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Description of Inert material removed	N		0	None	None	None	None	None
Anions								
Water Soluble Sulphate	М	g/l	0.02	0.65	0.36	f 2.54	^ 0.36	^ 0.12
Inorganics								
Total Sulphur	N	%	0.01	0.06	0.47	f 0.20	0.36	0.17
Acid Soluble Sulphate (SO4)	U	%	0.02	0.15	0.10	f 0.59	0.12	0.08
Miscellaneous								
рН	М	pH units	0.1	8.3	9.0	f 8.0	^ 9.0	^ 9.4

Results Summary

Report No.: 20-31131, issue number 1

Report No.: 20-31131, issue number 1								
		ELAB	Reference	221735	221736	221737	221738	221739
		Customer	Reference					
	Sample II							
	Sample Type			DISTURBED	DISTURBED	DISTURBED	DISTURBED	DISTURBED
			' ''					
		Sample	e Location	BH04	BH05	BH05	BH06	BH06
		Sample	Depth (m)	10.50	7.50	15.00	4.00	13.00
		Sam	pling Date	Not Provided	28/10/2020	28/10/2020	Not Provided	28/10/2020
Determinand	Codes	Units	LOD					
Soil sample preparation paramet	ers							
Material removed	N	%	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Description of Inert material removed	N		0	None	None	None	None	None
Anions								
Water Soluble Sulphate	M	g/l	0.02	^ 0.46	f 0.71	f^ 0.77	1.86	f^ 0.41
Inorganics								
Total Sulphur	N	%	0.01	0.25	f 0.32	f 0.74	0.19	f 0.30
Acid Soluble Sulphate (SO4)	U	%	0.02	0.13	f 0.15	f 0.15	0.50	f 0.11
Miscellaneous								
рН	M	pH units	0.1	^ 9.0	f 8.7	f^ 8.5	8.2	f^ 8.9

рН

Miscellaneous

Acid Soluble Sulphate (SO4)

U

М

%

pH units

Results Summary

Report No.: 20-31131, issue number 1

Report No.: 20-31131, Issue number 1							
	221740						
	Customer Reference						
			Sample ID				
		Sa	mple Type	DISTURBED			
		Samp	le Location	BH07			
		Sample	Depth (m)	7.00			
		Sam	pling Date	27/10/2020			
Determinand	Codes	Units	LOD				
Determinand Soil sample preparation paramet		Units	LOD				
		Units	LOD	< 0.1			
Soil sample preparation paramet	ers			< 0.1 None			
Soil sample preparation paramet	ers		0.1				
Soil sample preparation paramet Material removed Description of Inert material removed	ers		0.1				
Soil sample preparation paramet Material removed Description of Inert material removed Anions	ers N	%	0.1	None			

0.02

0.1

f 0.22

f 8.5

Method Summary Report No.: 20-31131, issue number 1

Parameter	Codes	Analysis Undertaken On	Date Tested	Method Number	Technique
Soil					
рН	М	Air dried sample	03/12/2020	113	Electromeric
Acid Soluble Sulphate	U	Air dried sample	04/12/2020	115	Ion Chromatography
Water soluble anions	М	Air dried sample	03/12/2020	172	Ion Chromatography
Total organic carbon/Total sulphur	N	Air dried sample	03/12/2020	216	IR

Tests marked N are not UKAS accredited

Report Information

Report No.: 20-31131, issue number 1

Key

U	hold UKAS accreditation
M	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
٨	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"

LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination.

Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.

ELAB are unable to provide an interpretation or opinion on the content of this report.

The results relate only to the sample received.

PCB congener results may include any coeluting PCBs

Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.

Deviation Codes

- a No date of sampling supplied
- b No time of sampling supplied (Waters Only)
- c Sample not received in appropriate containers
- d Sample not received in cooled condition
- e The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- g Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month

All water samples will be retained for 7 days following the date of the test report

Charges may apply to extended sample storage

Appendix I

Generic Quantitative Risk Assessment: Human Health

Project Number:		Lab Sample Number	1667272	1667273	1673055	1673056	1673057	1673058	1673059	1673060	
Project Name:		Sample Reference	BH07	BH05	WS01	WS01	WS03	WS06	WS10	WS11	
Site End Use:		Sample Number									
Site Eliu USE.	GAC (mg/kg)	Depth (m)	None Supplied 0.30	None Supplied 0.30	None Supplied 0.45	None Supplied 0.90-1.00	None Supplied 0.10	None Supplied 0.50	None Supplied 0.40	None Supplied 0.30	
Residential with homegrown produce	. 3 3	Date Sampled	26/10/2020	26/10/2020	03/11/2020	0.90-1.00	03/11/2020	02/11/2020	02/11/2020	02/11/2020	
Determinand			1	2	3	4	5				
Arsenic	37(1)	mg/kg	12.00	2.70	17.00	15.00	12.00	9.60	5.60	4.70	
Boron	290(3)	mg/kg	2.90	2.40	1.40	1.00	0.40	0.20	< 0.2	< 0.2	
Cadmium Chromium (total)	22 ⁽¹⁾ 910 ⁽³⁾	mg/kg	0.40 58.00	0.70 6.60	< 0.2 64.00	< 0.2 62.00	< 0.2 40.00	< 0.2 23.00	1.10 6.90	< 0.2 13.00	
Chromium (VI)	21(1)	mg/kg mg/kg	< 1.2	< 1.2	< 1.2	< 1.2	40.00 < 1.2	< 1.2	< 1.2	< 1.2	
Copper	2400(3)	mg/kg	13.00	4.80	26.00	27.00	32.00	12.00	9.40	8.40	
Lead	200(1)	mg/kg	21.00	36.00	19.00	18.00	39.00	19.00	40.00	10.00	
Mercury	40(2)	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	
Nickel	130(2)	mg/kg	20.00	4.30	43.00	53.00	29.00	12.00	5.90	9.00	
Selenium	350(2)	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Zinc Beryllium	3700 ⁽³⁾ 1.7 ⁽³⁾	mg/kg mg/kg	76.00 1.30	45.00 0.10	71.00 1.60	78.00 1.40	98.00 1.00	45.00 0.70	100.00 0.12	22.00 0.38	
Vanadium	410(3)	mg/kg	85.00	5.80	100.00	100.00	63.00	45.00	8.90	20.00	
Barium	1300(4)	mg/kg	190.00	81.00	1400.00	120.00	70.00	29.00	270.00	31.00	
Cyanide (Total)	20(5)	mg/kg	< 1	< 1	< 1	< 1	< 1	<1	< 1	< 1	
Phenol (Monohydric)	120 ⁽³⁾	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Sulphide	-	mg/kg	21.00	30.00	< 1.0	< 1.0	5.20	21.00	62.00	< 1.0	
Total Organic Carbon (TOC)	2.3(3)	% ma/ka	0.50	0.20	1.20	0.20	1.20	0.90	< 0.1	< 0.1	
Naphthalene Acenaphthylene	2.3 ⁽³⁾	mg/kg mg/kg	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	
Acenaphthylene	210 ⁽³⁾	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Fluorene	170(3)	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Phenanthrene	95(3)	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Anthracene	2400(3)	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Fluoranthene	280(3)	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Pyrene	620 ⁽³⁾ 7.2 ⁽³⁾	mg/kg	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	
Benzo(a)anthracene Chrysene	15 ⁽³⁾	mg/kg mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(b)fluoranthene	2.6(3)	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(k)fluoranthene	77 ⁽³⁾	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(a)pyrene	2.2(3)	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Indeno(1,2,3-cd)pyrene	27(3)	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Dibenz(a,h)anthracene Benzo(ghi)perylene	0.24 ⁽³⁾ 320 ⁽³⁾	mg/kg	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	
Speciated Total EPA-16 PAHs	320137	mg/kg mg/kg	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80	
Benzene	0.087(3)	µg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Toluene	130(3)	μg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	47(3)	μg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
p & m-xylene	56(3)	μg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
o-xylene	60(3)	μg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether) TPH Aliphatic C5 - C6	49 ⁽⁴⁾ 42 ⁽³⁾	μg/kg mg/kg	< 1.0 < 0.001	< 1.0 < 0.001	< 1.0 < 0.001	< 1.0 < 0.001	< 1.0 < 0.001	< 1.0 < 0.001	< 1.0 < 0.001	< 1.0 < 0.001	
TPH Aliphatic C5 - C6	100(3)	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
TPH Aliphatic C8 - C10	27(3)	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
TPH Aliphatic C10 - C12	130 ⁽³⁾	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
TPH Aliphatic C12 - C16	1100(3)	mg/kg	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	
TPH Aliphatic C16 - C21	65000 ⁽³⁾	mg/kg	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	
TPH Aliphatic C21 - C35 TPH Aromatic C5 - C7	65000 ⁽³⁾ 70 ⁽³⁾	mg/kg	< 8.0	< 8.0 < 0.001	< 8.0	< 8.0	< 8.0 < 0.001	< 8.0	< 8.0 < 0.001	< 8.0	
TPH Aromatic C5 - C7 TPH Aromatic C7 - C8	130(3)	mg/kg mg/kg	< 0.001 < 0.001	< 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001	< 0.001 < 0.001	< 0.001	< 0.001 < 0.001	
TPH Aromatic C8 - C10	34 ⁽³⁾	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
TPH Aromatic C10 - C12	74(3)	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
TPH Aromatic C12 - C16	140 ⁽³⁾	mg/kg	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	
TPH Aromatic C16 - C21	260(3)	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
TPH Aromatic C21 - C35	1100(3)	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	

Notes:

(1) DEFRA C4SLs (2014)

(2) Environment Agency SGVs (2009) (3) LQM/CIEH S4ULs (2015)

(a) LQM/CIEH S4ULs (2015)

(4) CL:AIRE, AGS & EIS (2009)

⁽⁵⁾ Dutch Intervention Value for free cyanide (VROM 2000)

*All GACs based on a sandy soil and Soil Organic Matter (SOM) of 1% where applicable.

Concentration does not exceed GAC

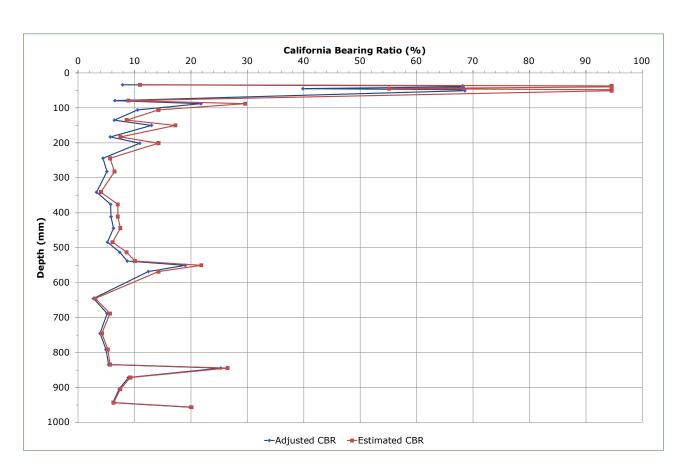
No set GAC

Appendix J

DCP-TRL Results

Cumulative	Penetration	Penetration Index	Estimated CBR ⁽¹⁾	Adjusted CBR ⁽²⁾
Blow Count	(mm)	(DPI) mm/blow	(%)	(%)
0	11			
1	34	23.0	11.0	7.9
2	37	3.0	94.6	68.1
3	40	3.0	94.6	68.2
4	45	5.0	55.1	39.8
5	48	3.0	94.6	68.4
6	51	3.0	94.6	68.5
7	79	28.0	8.9	6.5
8	88	9.0	29.6	21.8
9	106	18.0	14.2	10.5
10	135	29.0	8.6	6.4
11	150	15.0	17.3	13.0
12	183	33.0	7.5	5.7
13	201	18.0	14.2	10.9
14	244	43.0	5.7	4.4
15	282	38.0	6.5	5.1
16	341	59.0	4.1	3.3
17	376	35.0	7.0	5.8
18	411	35.0	7.0	5.8
19	444	33.0	7.5	6.3
20	484	40.0	6.1	5.2
21	513	29.0	8.6	7.4
22	538	25.0	10.1	8.7
23	550 568	12.0	21.8 14.2	19.0 12.4
25		18.0	3.1	2.7
26	645 688	77.0 43.0	5.7	5.2
27	745	43.0 57.0	4.2	3.9
28	791	46.0	5.3	5.0
29	834	43.0	5.7	5.4
30	844	10.0	26.5	25.3
31	871	27.0	9.3	8.9
32	904	33.0	7.5	7.3
33	943	39.0	6.3	6.2
34	956	13.0	20.1	19.8
35				
36				
37				
38				
39				
40				
41				
42				
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				

DCP01


Project:	Car Park 14, Basildon
Project No.	2009004.001
Client:	Sempra Homes Ltd
Test No.	DCP01
Test Date:	30/10/2020
Surface Moisture:	Moderate
Soil Type	Made ground (clayey gravel) over sandy clay.

Notes/Comments	

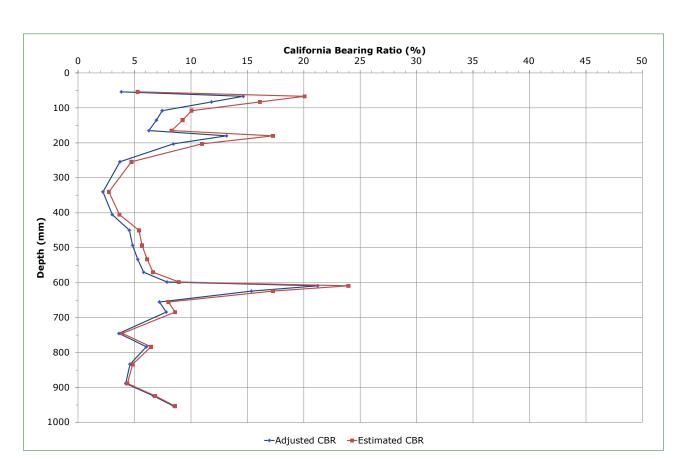
Notes: CBR Value calculated using Jones C R and J Rolt (1991), "Operating instructions for the TRL

1. dynamic cone penetrometer" | Znd edition|. Information Note. Crowthorne: Transport Research
Laboratory, as follows:

Log₁₀(CBR) = 2.48 - 1.057 Log₁₀(DPI)

Cumulative	Penetration	Penetration Index	Estimated CBR ⁽¹⁾	Adjusted CBR ⁽²⁾
Blow Count	(mm)	(DPI) mm/blow	(%)	(%)
0	8			
1	54	46.0	5.3	3.8
2	67	13.0	20.1	14.6
3	83	16.0	16.1	11.8
4	108	25.0	10.1	7.5
5	135	27.0	9.3	6.9
6	165	30.0	8.3	6.3
7	180	15.0	17.3	13.2
8	203	23.0	11.0	8.4
9	254	51.0	4.7	3.7
10	340	86.0	2.7	2.2
11	405	65.0	3.7	3.0
12	450	45.0	5.4	4.5
13	493	43.0	5.7	4.8
14 15	533 570	40.0 37.0	6.1	5.3 5.8
16	598	28.0	8.9	7.9
17	609	11.0	23.9	21.2
18	624	15.0	17.3	15.4
19	655	31.0	8.0	7.2
20	684	29.0	8.6	7.8
21	745	61.0	3.9	3.6
22	783	38.0	6.5	6.1
23	833	50.0	4.8	4.6
24	888	55.0	4.4	4.2
25	924	36.0	6.8	6.7
26	953	29.0	8.6	8.5
27				
28				
29				
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				
41				
42				
43				
45				
46				
47				
48				
49				
50				
51				
52				
53				
			•	•

DCP02


Project:	Car Park 14, Basildon
Project No.	2009004.001
Client:	Sempra Homes Ltd
Test No.	DCP02
Test Date:	30/10/2020
Surface Moisture:	Moderate
Soil Type	Made ground (clayey gravel) over sandy clay.

Notes/Comments	

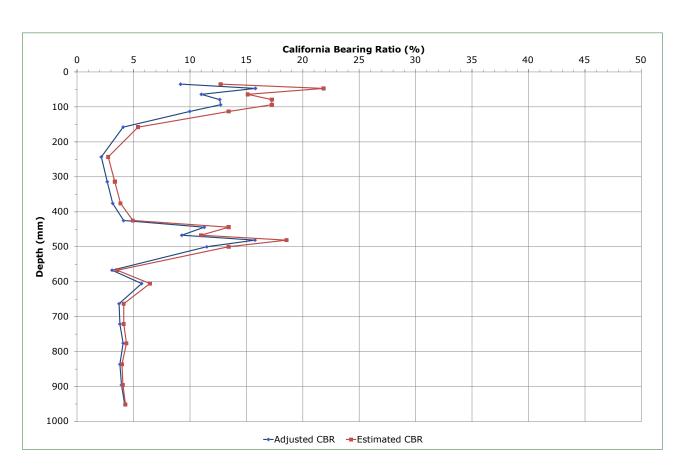
Notes: CBR Value calculated using Jones C R and J Rolt (1991), "Operating instructions for the TRL

1. dynamic cone penetrometer" (2nd edition). Information Note. Crowthorne: Transport Research
Laboratory, as follows:

Log₁₀(CBR) = 2.48 - 1.057 Log₁₀(DPI)

Cumulative	Penetration	Penetration Index	Estimated CBR ⁽¹⁾	Adjusted CBR ⁽²⁾
Blow Count	(mm)	(DPI) mm/blow	(%)	(%)
0	15			
1	35	20.0	12.7	9.2
2	47	12.0	21.8	15.8
3	64	17.0	15.1	11.0
4	79	15.0	17.3	12.6
5	94 113	15.0	17.3	12.7
7	158	19.0 45.0	13.4 5.4	10.0 4.1
8	243	85.0	2.8	2.2
9	314	71.0	3.3	2.7
10	376	62.0	3.8	3.2
11	425	49.0	4.9	4.1
12	444	19.0	13.4	11.3
13	467	23.0	11.0	9.3
14	481	14.0	18.6	15.8
15	500	19.0	13.4	11.5
16	567	67.0	3.5	3.1
17	605	38.0	6.5	5.7
18	663	58.0	4.1	3.7
19	721	58.0	4.1	3.8
20	776	55.0	4.4	4.1
21	836	60.0	4.0	3.8
22	895	59.0	4.1	3.9 4.2
23	951	56.0	4.3	4.2
25				
26				
27				
28				
29				
30				
31				
32				
33				
34				
35				
36				
37				
38				
39 40			-	
40				
41				
43			 	
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				

DCP03


Project:	Car Park 14, Basildon
Project No.	2009004.001
Client:	Sempra Homes Ltd
Test No.	DCP03
Test Date:	30/10/2020
Surface Moisture:	Moderate
Soil Type	Made ground (clayey gravel) over sandy clay.

Notes/Comments	
Notes/Comments	
	·
·	

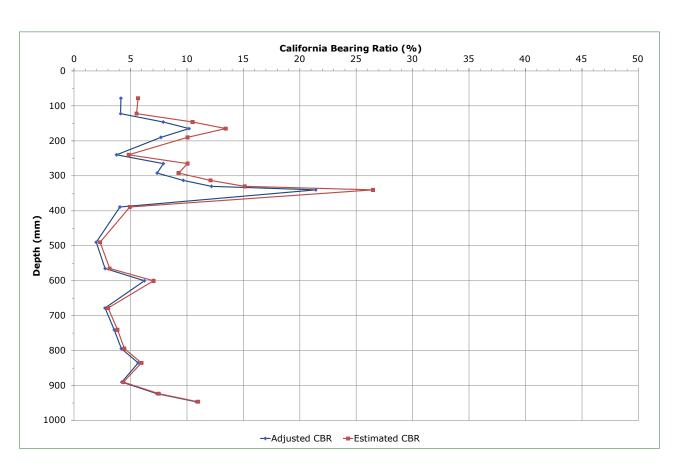
Notes: CBR Value calculated using Jones C R and J Rolt (1991), "Operating instructions for the TRL

1. dynamic cone penetrometer" (2nd edition). Information Note. Crowthorne: Transport Research
Laboratory, as follows:

Log₁₀(CBR) = 2.48 - 1.057 Log₁₀(DPI)

Cumulative	Penetration	Penetration Index	Estimated CBR ⁽¹⁾	Adjusted CBR ⁽²⁾
Blow Count	(mm)	(DPI) mm/blow	(%)	(%)
0	35			
1	78	43.0	5.7	4.2
2	122	44.0	5.5	4.1
3	146	24.0	10.5	7.9
4	165	19.0	13.4	10.2
5	190	25.0	10.1	7.7
7	240 265	50.0 25.0	4.8 10.1	3.8 7.9
8	292	27.0	9.3	7.4
9	313	21.0	12.1	9.7
10	330	17.0	15.1	12.2
11	340	10.0	26.5	21.4
12	389	49.0	4.9	4.1
13	490	101.0	2.3	2.0
14	565	75.0	3.1	2.8
15	600	35.0	7.0	6.2
16	678	78.0	3.0	2.7
17	740 794	62.0 54.0	3.8 4.5	3.6 4.2
18 19	835	41.0	6.0	5.7
20	890	55.0	4.4	4.2
21	923	33.0	7.5	7.3
22	946	23.0	11.0	10.8
			<u> </u>	
			-	
			 	

DCP04


Project:	Car Park 14, Basildon
Project No.	2009004.001
Client:	Sempra Homes Ltd
Test No.	DCP04
Test Date:	30/10/2020
Surface Moisture:	Moderate
Soil Type	Made ground (clayey gravel) over sandy clay.

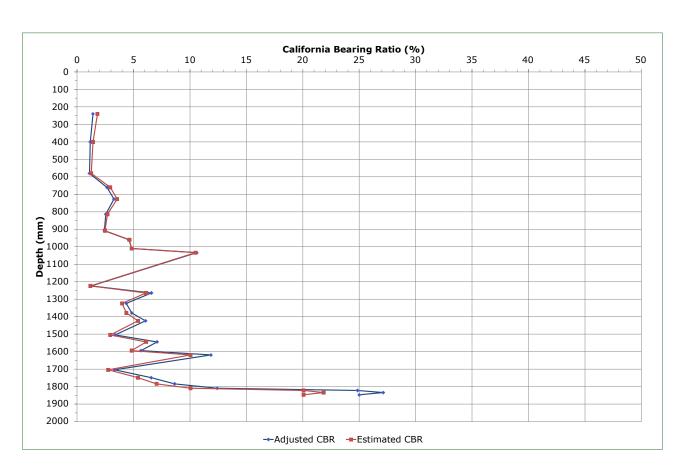
Notes: CBR Value calculated using Jones C R and J Rolt (1991), "Operating instructions for the TRL

dynamic cone penetrometer" (2nd edition). Information Note. Crowthorne: Transport Res
Laboratory, as follows:

Log₁₀(CBR) = 2.48 - 1.057 Log₁₀(DPI)

Cumulative	Penetration	Penetration Index	Estimated CBR ⁽¹⁾	Adjusted CBR ⁽²⁾
Blow Count	(mm)	(DPI) mm/blow	(%)	(%)
0	113			
1	240	127.0	1.8	1.4
2	400	160.0	1.4	1.2
3	580	180.0	1.2	1.1
4	660	80.0	2.9	2.7
5	727	67.0	3.5	3.3
6 7	814 908	87.0 94.0	2.7	2.5
8	960	52.0	4.6	4.6
9	1010	50.0	4.8	4.8
10	1034	24.0	10.5	10.6
11	1224	190.0	1.2	1.3
12	1264	40.0	6.1	6.6
13	1324	60.0	4.0	4.4
14	1379	55.0	4.4	4.8
15	1424	45.0	5.4	6.1
16	1504	80.0	2.9	3.4
17	1544	40.0	6.1	7.1
18	1594	50.0	4.8	5.7
19	1619	25.0	10.1	11.9
20	1704	85.0	2.8	3.3
21	1749	45.0	5.4	6.6
22	1784	35.0	7.0	8.6
23	1809	25.0	10.1	12.4
24	1822	13.0	20.1	24.9
25 26	1834 1847	12.0 13.0	21.8	27.1 25.0
20	1047	13.0	20.1	23.0

DCP05


Project:	Car Park 14, Basildon
Project No.	2009004.001
Client:	Sempra Homes Ltd
Test No.	DCP05
Test Date:	03/11/2020
Surface Moisture:	Moderate
Soil Type	Made ground (clayey gravel) over sandy clay.

Notes: CBR Value calculated using Jones C R and J Rolt (1991), "Operating instructions for the TRL

1. dynamic cone penetrometer" (2nd edition). Information Note. Crowthorne: Transport Res
Laboratory, as follows:

Log₁₀(CBR) = 2.48 - 1.057 Log₁₀(DPI)

