HERTS & ESSEX SITE INVESTIGATIONS

'THE OLD POST OFFICE', WELLPOND GREEN, STANDON, WARE, HERTS, SG11 1NJ
 TELEPHONE
 01920 822233

 E-MAIL
 01920 822200

E-MAIL INFO@HESI.CO.UK WEBSITE WWW.HESI.CO.UK

GEOTECHNICAL ASSESSMENTS - ENVIRONMENTAL ASSESSMENT - DESKTOP STUDY - CONTAMINATED LAND

Report For :

Higgins Homes PLC

Phase II ENVIRONMENTAL REPORT

Site location :

Former Cherry Garden School, Macks Road, Bermondsey, London SE16 3XU

> December 2019 Report No. 15629

DOCUMENT INFORMATION AND CONTROL SHEET A									
REPORT ISSUE RECORD									
EXECUTIVE SUMMARY									
1		Introduction	1						
2	2.1 2.2	Report Objectives Limitations Planning Condition	1 1 1						
3		Site Location and National Grid Reference	1						
4	4.1 4.2	Review of Previous Reports or Documents Relating to the Site Site Details Risks derived from DTS	2 2 2						
5		Details of Preparatory Work	3						
6		Details of Investigation Objectives.	3						
7	7.1 7.2	Summery of Work Undertaken Investigation Works Completed Historic Investigation	4 4 4						
8		Location Plans for Exploratory Excavations	4						
9		Description of Site Works and on/off Site Observations	4						
10	10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10	Contamination Assessment Contamination Human Health Risk Statistical Analysis Human Health Source Conclusions Ground and Surface Water Source Land Gas Assessments Vapour Risks Water Main Pipework Building Risks General Source Risk Conclusions	5 5 8 9 9 9 9 10 10						
11		Risk Assessment Based on Source Risk	11						
12		Implications of the End Use of the Site	12						
13	13.1	Outline Remediation Measures Cover Systems - NHBC	12 12						
14	14.1	Waste Disposal WAC Testing	14 14						
15		Source Risk Conclusions	15						
APPEN	DIXES								

- Appendix A Conceptual Model
- Appendix 1 Plans
- Appendix 2 Excavation Logs
- Appendix 3 Chemical Test Data
- Appendix 4 Statistical Analysis

INDEX OF TABLES

Site Detail	1
Pollutant Risk	3
Geological Profile	5
Table of Source risk contamination based on GQRA	7
Statistical Assessment	8
Soil Contamination Risks	9
Vapour Risk Assessment - Response Zone	10
Risk Assessment A	11
Outline Remediation Measures for end use of the site	13
WAC testing Results	14
	Site Detail Pollutant Risk Geological Profile Table of Source risk contamination based on GQRA Statistical Assessment Soil Contamination Risks Vapour Risk Assessment - Response Zone Risk Assessment A Outline Remediation Measures for end use of the site WAC testing Results

DOCUMENT INFORMATION AND CONTROL SHEET

<u>Client</u>

Higgins Homes PLC One Langston Road Loughton Essex IG10 3SD

Client Contact :

Unknown

Environmental Consultants :

Herts & Essex Site Investigations.

The Old Post Office, Wellpond Green, Standon, Ware, Hertfordshire. SG11 1NJ Chris Gray, M.Sc

Project Manager :

Principal Author :

Rebecca Chamberlain

Tel : 01920 822233 Fax : 01920 822200 Mobile : 07770274498 E-Mail : <u>csgray@hesi.co.uk</u> Web : http://www.hesi.co.uk

Qualifications

C.S.Gray

- ONC Civil Engineering
- HNC Civil Engineering
- P.G. Certificate Geotechnical Engineering, (Inc. Environmental Engineering)
- P.G. Diploma Geotechnical Engineering, (Inc. Environmental Engineering),
- Master of Science, (Geotechnical Engineering), (Inc. Environmental Engineering)
- SNIFFER modelling course
- CONSIM Groundwater Assessment Course.
- (30 Years in Geotechnical and Environmental Engineering)
- Asbestos Awareness Course;
- Non-Licensed Work with Asbestos Including NNLW.
- Site Supervisors Safety Training Scheme, (SSSTS).
- First Aid Course in Construction 3 Day Course 3 years
- CSCS Labourer Card

Document Status and Approval Schedule

Issue No	Status	Date	<i>Prepared by :</i> Rebecca Chamberlain	Technical review by : Martyn Smith Chris Gray	Checked By : Chris Gray Martyn Smith	
			Signature / Date	Signature / Date	Signature / Date	
1	Final	December 2019	PALL	M RSmith	Juli	

Reference : CSG /ENV/ 15629 Former Cherry Garden School, Macks Road, Bermondsey, London SE16 3XU

REPORT ISSUE RECORD

As part of Herts & Essex Site Investigations approved Quality Management System, the company is required to document the issue of all reports to provide the client with a traceable control mechanism to prevent the issue of unauthorised copies.

All final copy reports are issued to the client on paper headed with Herts & Essex Site Investigations to assist in the identification of copied reports. Additionally, final copies are printed 'Velum' coloured paper for easy identification of final copy reports.

Notwithstanding the above, clients are at liberty to make copies of full or parts of these reports as they see fit, should they wish to do so. Additional controlled copies of documents may be supplied upon request, although, may be charged for, dependent upon the number of copies.

Please note, this reports has not been sent to the Local Authority, NHBC or Environment Agency with only the below issues made. Should copies be required for sending the relevant authorities, this can be undertaken upon request.

Controlled copies of this report have been issued according to the following schedule :-

	lssue No	Recipient	Туре	No. of copies	Date
1		HESI, (File Copy)	Electronic Copy	1	December 2019
2		Higgins Homes PLC	Electronic Copy	1	December 2019
3					
4					
5					
6					
7					
8					

<u>EXECUTIVE SU</u> Phase II - Envir	I <u>MMARY</u> onmental Report				
Client	Higgins Homes PLC		The site has identified three specific lay		
Site Location	Former Cherry Garden School, Macks Road, Bermondsey, London SE16 3XU		These form the following layers and ass		
Existing Development	Vacant primary School	HUMAN HEALTH RISK	• FILL :- Isolated contamination and Remediation works will b		
Proposed Development	It is proposed to develop residential dwellings within the site area, in the form of flats, duplexes and houses, forming between two and six storeys. Private gardens as well as communal landscaping is also proposed.		Based on the above, remedial meas receptors are in place .		
Site Settings and	From the earliest map reference that site area is recorded as terraced residential dwellings with rear gardens, in about 1940 the area was redeveloped (likely due to bomb damage during the war) the site and land to the east, south and west remain residential land. From 1973 the site area was redeveloped to form the school which remains in place to date.	WORKFORCE	The above human health risk is in place bases to any workforce within the areas contamination risk should be noted w		
Previous Uses	Surrounding the site residential land remains in place to the east, south and west. Some commercial shops are in place to the south east of the site area. To the north of the site area a grassed recreational area is in place.	GROUNDWATER RISKS	 Due to the low level of contami are generally considered low. 		
Nearest Surface Water Feature	The nearest surface water feature is recorded as 704 meters to the east of the site which is recorded as a pond within Southwark Park.	VAPOUR RISKS	Chemical testing of the soils sho		
	Goology	GAS RISKS	 No sources of land gas risk are significant depths of made grou 		
	Made Ground Shallow Made Ground to a maximum depth of 1 70 Not Classified				
Geological and Hydrological Profile	Kempton Park Chalky till, together with outwash sands and gravels, silts and clays in place to about 5.40m Secondary A Aquifer	CONSTRUCTION MATERIALS	 Construction materials have been con main pipework developed at the site; Water main pipework can be Any water main pipework sh risk to workforce used in the 		
	Lambeth Encountered to the close of the borehole at 25 meters Secondary A Aquifer				
Groundwater Abstractions	The nearest abstraction well is located 775 meters to the east of the site which is recorded as a Public Administration: Drinking, Cooking, Sanitary, Washing, (Small Garden) and Municipal Grounds: Make-Up or Top Up Water.	FURTHER WORKS	 It is recommended that add complete assessments which 		
Source Protection Zone	The site does not lie within a Source Protection Zone.		 Additional sat WS7 to compl 		
Potential Sources of Contamination	On Site Off Site • Parking area Off Site • School • Made Ground • Iterrace dwellings and gardens- Redeveloped • Made Ground (bomb Damage) • Made Ground • Made Ground (bomb Damage)		 In the location Submit reports to Local Auth the risks identified in this rep and acceptable. The exact details of remediation 		
Previous Investigations	No reports relating to contaminated land are known to us at the time of writing this report relating to the site		practice, (BS 10175 & CLR 11		

yers of Made Ground and potentially contaminated ground. sociated contamination :-

from *Lead* to the areas of *WS7 ONLY* – *additional testing be required to this area;*

sures will likely be required areas where pathways to

e within the site area, will promote a low risk on a short term as. *Appropriate PPE / RPE should be worn and the soil within any site inductions.*

nination in place within the site area, *risks to groundwater*

now that low risks are in place. Vapour risk is not in place.

e recorded in place following the investigation not recording und nor highly organic soils.

sidered and no risk has been identified directly to any water

laid in a conventional pipework system; ould be laid in clean corridors in order to prevent future maintenance and repair of any water main system.

litional works will be required for the site in order to hare detailed as follows :-

mpling to be completed across the site and targeting lete the data set and potentially isolate the targeted risk n of WS7.

hority and Environment Agency for review and confirm port along with the further works proposed are suitable

liation required for the site should be assessed and Strategy Report in order to comply with current best 1).

INVESTIGATION WORKS AND RISK ASSESSMENT REPORTING

1 Introduction

We have been asked by Higgins Homes PLC to undertake an investigation of the above site in order to assess the potential environmental impact of the historical use of the site on the proposed development. The development of this report has been completed utilising information and assessments completed by HESI developed from a desk top study completed in Oct 2019.

2 Report Objectives

The objectives of this report are to assess and define the extent of contamination within the site as a result of the investigation works undertaken to date.

2.1 Limitations

The opinions expressed within this document and the comments and recommendations given, are based on the information gained, to date within a desktop study previously undertaken on the site. The interpretation of the data has been made by Herts & Essex Site Investigations.

Within any site investigation, materials sampled represent only a small proportion of the materials present on site. It is therefore possible that other conditions prevailing at the site which have not been revealed within the scope of this report, have not been taken into account. Where suspect materials are encountered during any further or future works within the site, additional specialist advice should be sought to assess whether any new information will materially affect the recommendations given within any physical ground investigation.

2.2 Planning Condition

At the time of writing this report no planning application has been submitted with Southwark Council.

3 Site Location and National Grid Reference

The site is located within a residential area of London, the details of which are summarised in Table 1 with the location plan of the site shown in Appendix 2, Sheet 1.

Table 1 Site Detail						
Site Address :	Former Cherry Garden School, Macks Road, Bermondsey, London SE16 3XU					
Site assessed under	Site Owners Request - Aid as part of future planning					
Current use of land :	Primary School					
Previous use of site, (if known)	As above					
Grid Reference	NGR 534340, 178850					
Site Area	0.23 Hectares					
Local Authority	Southwark Council					
Gradient of the site	The site and the surrounding area form a level area of land.					
Proximity of Controlled Waters, (if known)	The nearest surface water feature is recorded as 704 meters to the east of the site area, where a pond is in place with Southwark Park.					

Review of Previous Reports or Documents Relating to the Site

4.1 Site Details

- The site area forms a vacant school, with a parking area and recreational areas;
- It is proposed to develop residential dwellings within the site area, in the form of flats, duplexes and houses, forming between two and six storeys. Private gardens as well as communal landscaping is also proposed
- From the earliest map reference that site area is recorded as terraced residential dwellings with rear gardens, in about 1940 the area was redeveloped (likely due to bomb damage during the war) the site and land to the east, south and west remain residential land. From 1973 the site area was redeveloped to form the school which remains in place to date.
- Surrounding the site residential land remains in place to the east, south and west. Some commercial shops are in place to the south east of the site area. To the north of the site area a grassed recreational area is in place.
- The nearest surface water feature is recorded as 704 meters to the east of the site which is recorded as a pond within Southwark Park.
- The nearest abstraction well is located 775 meters to the east of the site which is recorded as a Public Administration: Drinking, Cooking, Sanitary, Washing, (Small Garden) and Municipal Grounds: Make-Up or Top Up Water.
- The site does not lie within a Source Protection Zone
- The ground conditions based on geological maps and BGS information shows the site to be located within an area of Kempton Park Gravel Member within the superficial deposit which over lays Lambeth Group. To the south of the site area, 40m, there is Thanet Formation report in place below the Kempton Park Gravel Member.

4.2 Risks derived from DTS

As a result of the works undertaken, the following have been confirmed as the following : **Source Risk On Site**

Parking areaSchool

- Off Site
- Terrace dwellings and gardens-Redeveloped
- Made Ground (bomb Damage)
- (possible bomb damage)
- Made Ground

Table 2 Pollutant Risk								
Risk Assessment	Land Use	Pollutant						
	Features On Site	Soil, Groundwater & Vapour Risk						
	Parking area–W	Moisture Content, pH, Electrical C	Conductivity, Cyanide, (Free),					
Risk	School	Cyanide, (Total), Organic Matter, soluble), Chromium, (Hexavalent	Boron, Sulfate, (2:1 water), Sulfate, (Total), Arsenic,					
Assessment A	Terrace dwellings and gardens- Redeveloped (possible bomb damage)	Cadmium, Chromium, Copper, Mercury, Nickel, Lead, Zinc, Speciated PAH's, (EPA Priority 16), Phenols, Asbestos, Total Petroleum Hydrocarbons (aliphatic/ aromatic 8-Band), Naphthalene, CO ₂ , CH ₄ .						
	Made ground	Soil Sampling Groundwater & Vapour Assessment						
Spatial Sampling, (General Assessment)		Moisture Content, pH, Electrical Conductivity, Cyanide, (Free), Cyanide, (Total), Organic Matter, Boron, Sulfate, (2:1 water soluble), 25 meter Centres Chromium, (Hexavalent), Sulfate, In accordance with BS10175: (Total), Arsenic, Cadmium, 2011+A2:2017. Chromium, Copper, Mercury, Nickel, Lead, Zinc, Speciated PAH's, (EPA Priority 16), Phenols.						
		Asbestos	5-10 meter Centres In accordance with BS10175: 2011+A2:2017.					

Pathways

Potential pathways in place within the site area recorded as : -

- Dermal Contact;
- Inhalation of dust and fibres;
- Ingestion of dust and fibres
- Ingestion of contaminated water through water main pipework;
- Inhalation of vapours from soils;
- Inhalation Asbestos dust and fibres (from Asbestos within the building);
- Inhalation Asbestos dust and fibres (from asbestos within the soil).
- Inhalation of vapours from Groundwater.

Receptors

Potential receptors in place within the site area recorded as : -

- Human Health, (Site Development Personnel);
- Human Health, (Residents or staff);
- Adjoining Land Owners, (unlikely);
- Flora, (Plant Growth);
- Buildings, Construction Materials, Services;
- Groundwater;

5 Details of Preparatory Work

Preparatory works had originally been agreed with the client to gain access and undertake excavations within the site. This incorporates free access across the site area, although access for the drilling to some of the proposed locations was not possible due to the size of the rig.

6 Details of Investigation Objectives.

Within the scope of this report, the objectives will form the following :-

 To anticipate regulatory action and provide sufficient data to overcome and answer any outstanding queries they may raise;

- Provide the relevant authorities sufficient information to satisfy any regulatory requirements set for the site;
- To ensure that the development, on completion, will be fit for the proposed use with all risk assessed and removed.
- It is proposed within this investigation to assess the suitability of the site for a new development which will incorporate residential structure and associated landscaping;
- In order to assess this suitability for development, it is proposed to use a source-pathway-receptor analogy, which, if broken, presents a reduced risk to the development.
- It is proposed to assess, where possible, sources of contamination within the site as a result of historical or ongoing use and whether these uses have pathways to receptors within the proposed development.

7 Summary of Work Undertaken

The scope of the works involved excavation of boreholes to gain a better and more visual understanding of the site conditions. This was undertaken at locations around the site and broadly confirmed the findings of the visual inspection of the site.

Samples were taken in containers dependant upon the proposed sampling regime required and placed in cool boxes where they were transported directly to the analytical chemist for assessment. These works included the following :-

7.1 Investigation Works Completed

The investigation works completed are as detailed below :-

- 1. The focus of the investigation was to confirm risks from the site which are detailed as follows :a. Assessment of soils across the site area;
- 2. Spatial sampling around the remainder of the site to provide a general assessment.

Initial Investigation – November 2019

- 7 No Competitor Rig Windowless Sampler borehole sunk to depths of approximately 3.00 meters Date of Works – Nov 2018 (Access to the location of WS3 & WS5 was not possible)
- 2 No Shell and Auger Drilling Rig Boreholes were completed to a depth of 25 meters; Date of Work Nov 2019
- Installation of 2 No standpipes to a depth of 6.00 meters for the purpose of ground water assessments;
- Chemical Sampling and Testing recovered from samples and sent to analytical chemist, (26 November 2019).

7.2 Historic Investigation

• Prior to our involvement in the development of the site, no historic investigations are known to us.

8 Location Plans for Exploratory Excavations

The plans which detail the location of the site, existing site use, proposed site use and identification of features on the site that may promote a risk are shown in Appendix Two. The plans also confirm the location of the excavations made on the site.

The areas of risk will be dictated by the risk classification given in this report and confirm where risk is in place relevant to the proposed end land use classification.

9 Description of Site Works and on/off Site Observations

In order to provide an easy understanding of the proposed development, we can confirm that the site will assess as a single section of land with the same proposed residential land use with potential for homegrown produce.

The Site.

Table 3 Geolog	gical Profile		
Stratum	Description	Depth, Range	Thickness, Range
	Tarmac	0.05 – 0.20 meters	0.05-0.20 meters
Made Ground	clayey brick, Concrete and gravel FILL brown sand FILL brown silty clay FILL	0.50 - 1.70 meters	0.40 – 1.59 meters
	Medium dense brown slightly claybound SAND	1.30 – 1.80 meters	0.60 – 1.30 meters
Kempton Park Gravel Member	Firm brown mottled grey sandy CLAY increasing in silt and sand content with depth	1.20 - 1.60 meters	1.00 meter
	Dense brown SAND & GRAVEL	5.00 - 5.40 meters	3.35 – 3.60 meters
	Very stiff grey sandy slightly silty CLAY with shell fragments	7.00 meters	1.40m+ meters
Lambath Crown	Very stiff grey sandy slightly silty CLAY with pockets of increase silt	8.60 – 7.00 meters	1.60 meters
Lambeln Group	CLAY with rounded black gravel over SAND with black gravel	9.00 – 9.70 meters	1.00 - 1.10 meters
	Dense grey SAND	25.00m + meters	14.50+ meters

The site has been reviewed and we can confirm that the geology within the site is as follows :-

Ground Water : Groundwater has been identified within the scope of the site works within the Deeper Shell and auger boreholes at 6.00 and 6.20 meters. No long term monitoring has been completed to date.

10 Contamination Assessment

10.1 Contamination

In order to assess the site, the site will be considered based on the historic land use of the site which will depict the extent of testing undertaken to consider risk within the area and additionally, the site will consider the proposed land use for assessment of whether target values have been exceeded for that particular land use.

10.2 Human Health Risk

As part of a generic assessment of the subsoil conditions, a comparison has initially been made using Generic Quantitative Assessment Criteria, (GQRA), values for contaminants derived the Environment Agency in Soil Guideline Values released in August 2015, LQM / CIEH - S4UL's for Human Health Risk Assessment and also Category 4 Screening Values, (DEFRA), to evaluate whether the levels of contamination measured at the site exceed the human health risk levels which have been derived for the site. For the proposed land use of this site, we can confirm that Generic Quantitative Assessment Criteria have been identified for the site. This is the order in which the Health Criteria Values will be used.

We are aware that the CIEH have published a 'Position Statement' which confirms that they do not wish to be associated with Category 4 screening values under the planning regime and as such would revert back to their own values, although, we are also aware that Local Authorities recommend the use of these value, although this is dependent upon the council EHO. As detailed above, the order of progression will be EA - SGV's, LQM / CIEH Data and then C4SL data.

It is possible that where exceedance of these values are recorded, a more Detailed, Qualitative Risk Assessment, (DQRA), could be completed using site specific scenarios and toxicological properties of the subsoil and site conditions to derive Site Specific Assessment Criteria, (SSAC), for the site. The assessment of testing has been completed as follows and reports the initial risks considered in place compared to GQRA

For ease of assessment, we can confirm that the site will be considered based on single zone of development as detailed below :-

• Zone 1 The Site Residential Land Use Standards

The density of sampling has been appropriate to consider Asbestos risks across the entire proposed development area, which required a 10 metre sampling grid pattern. Also, for general risk pollutants, the identified risks have been appropriately classified in accordance with BS10175:2011+A2:2017.

We consider that general risk pollutants have appropriate density sampling and as such, can be taken forward to be considered through statistical analysis.

By comparison of the data recovered from the sample analysis against the human health risk assessments with the potential for plant uptake, it can be seen that exceedance of the relevant generic guidance values have been identified which are detailed as follows.

Table 4 Table of Source risk contamination based on GQRA

									Testing completed						Data sets where elevated level are in place			
xisting use	roposed use	ite Work Date		Depth of strata	Sample	L	Dept	th	HESI Suite 1	PAH's (speciated)	TPH CWG	Asbestos	VOCs	PCBs	WAC	ACM Type	% Asbestos Identification	read Lead mg/kg
<u> </u>	م	<u> </u>	clayey brick and	<i>m.b.g.l.</i>		0.6	(m)	0.65									No Appendix Detected	50
		15 11 19	gravel FILL	0.70	0051	0.0	-	0.05	ľ	ľ	`	ľ	`			-	NO ASDESIOS DELECIED	50
		15 11 19	brown sand FILL	0.60	WS2	0.5	-	0.55	 ✓ 	✓	✓	✓				-	No Asbestos Detected	201
		15 11 19	[A] Firm brown silty CLAY with occasional flint gravel	1.20	WS4	0.50	-	0.55	~	~	~	~	~	~		-	No Asbestos Detected	12
		15 11 19	Brick and concrete hardcore	0.50	WS6	0.40	-	0.45	~	~	~	~				-	No Asbestos Detected	107
		15 11 19	Brown silty clay FILL	1.10	WS6	1.00	-	1.05	✓	✓	✓	✓				-	No Asbestos Detected	108
School	ential	15 11 19	[B] Dense orange brown SAND & GRAVEL	3.00+	WS6	3.00	-	3.05	~	~	~	~			~	-	No Asbestos Detected	13
ant	eside	15 11 19	clavev brick and	. =0	WS7	0.40	-	0.45	 ✓ 	✓	✓	✓				-	No Asbestos Detected	432
Vac	Ř	15 11 19	gravel FILL	1.70	WS7	1.50	-	1.55	~	~	~	~	~	~		-	No Asbestos Detected	61
		26 11 19	Loose to compact brown sandy gravelly sandy FILL	0.50	BH1	0.40	-	0.45	~	~	~	~	~	~		-	No Asbestos Detected	204
		26 11 19	[A]	1.65	BH1	0.70	-	0.75	~	~	~	~				-	No Asbestos Detected	63
		26 11 19	Loose to compact brown sandy gravelly sandy FILL	0.50	BH2	0.40	-	0.45	~	~	~	~	~	~		-	No Asbestos Detected	174
		26 11 19	Firm brown clayey SAND	1.80	BH2	0.80	-	0.85	~	~	~	~				-	No Asbestos Detected	44
* Indicates the value which forms the lowest trigger level. Some PAH's are additionally tested within the VOC List. The highest values have been taken. For the purposes of assessment, Soil Organic Matter values of 2.5% has been used. All measurements are given in mg/kg ⁻¹				Residential Exposure Level Absent / Present			Absent / Present	200										

Page 7

10.3 Statistical Analysis

Statistical analysis has been completed on the samples recovered from the site in order to further risk assess the site. Based on the information present, we can confirm the following results were achieved from the assessment : -

Table 5	Statistical Assessme	ent	
		Lead	Notes and Conclusions
Strata			
	No of Samples	12	
	Confidence	84%	Based on the information gained, confidence is good although in
round	Outliers Present	\checkmark	accordance with best practice, additional sampling should be undertaken to achieve a 95% confidence.
Made G	Upper 95 th Percentile	118.57	 Outliers are recorded in place likely to form WS7. CONCLUSIONS:. Isolated risk is likely in place to WS7, Additional testing is recommended to confirm the risk OR Assume widespread
	Residential Exposure 200		risk is in place.
	Upper 95 th Percentile PASS/ FAIL	Pass	-

10.4 Human Health Source Conclusions

Risk based on assessments of the site confirm that risk is in place as follows :-

Risk Factor	Risks in place	Remediation
Targeted Risks	<i>Lead</i> Risk within the Fill <i>WS7</i>	Remediation action required. Additional sampling to comply with the statistical data set.
Spatial Risks	None	None

Table 6 Soil Contamination Risks

10.5 Ground and Surface Water Source

The nearest surface water feature is recorded as 704 meters to the east of the site which is recorded as a pond within Southwark Park.

The nearest abstraction well is located 775 meters to the east of the site which is recorded as a Public Administration: Drinking, Cooking, Sanitary, Washing, (Small Garden) and Municipal Grounds: Make-Up or Top Up Water.

The site does not lie within a Source Protection Zone

The ground conditions based on geological maps and BGS information shows the site to be located within an area of Kempton Park Gravel Member within the superficial deposit which over lays Lambeth Group.

Isolated low levels of risk from *Lead will promote low risk to groundwater*.

Considering the above, we can confirm that the likely current and historical impact of pollution on a groundwater system underlying the site will be minimal due to the low risks in place.

10.6 Land Gas Assessments

In accordance with CLR11, BS 10175:2011, BS 8485:2007, CIRIA C665 and CIRIA R149, risks from land gas were potentially recorded in place within site area due to the potential form increased depths of made ground.

Within the investigations completed the depth of fill within the site was recorded up to 1.70 meters in one location, the majority of the fill is recorded as a sandy Hardcore FILL. No elevated levels of organic matter are recorded within the site area.

Therefore, we would considered that sources of land gases are not in place within the site area.

10.7 Vapour Risks

Considering the potential for vapour risk to be in place from various source as noted below, the following risks are in place.

Table 7 Vapour Risk Ass	essment - Response	Zone	
Feature	Targeted Response Zone	Location to Target	Vapour risk
Parking area		On Site - W	
School	_	Site wide	_
Terrace dwellings and gardens- Redeveloped (possible bomb damage)	Made Ground	Site wide	TPH's, Naphthalene
Made ground		Site wide	

Chemical testing has been completed and no elevated level of these vaporous contamination have been recorded in place also when logging and sub-sampling a visual and olfactoral assessment of the soils have been completed, and no contamination that promotes a vapour risk has been encountered within the assessment completed to date.

10.8 Water Main Pipework

Construction materials have been considered and no risk has been identified directly to any water main pipework developed at the site;

- New water main pipework can be laid in a conventional pipework system;
- Any water main pipework should be laid in clean corridors in order to prevent future risk to workforce used in the maintenance and repair of any water main system.

10.9 Building Risks

Based on the information shown, we can confirm that the risk from explosive land gases is low based on the information identified. The justification for low ground gas risk has been identified and reviewed in Section 10.6.

Considering the risk from Sulphates to concrete we can confirm that the chemical testing completed confirms the sulphate levels in the ground which can identify risk to concrete and whether special sulphate resisting cement may be required.

Based on the information gained, we can confirm that a classification of DS2-AC1s should be adopted for the site. Further assessment of the lower natural soils is recommended.

10.10 General Source Risk Conclusions

The Site

- A targeted risk from lead has been identified in the location of WS7. Additional testing to this location is required to complete the data set and assess the extent of the targeted risk.
- Groundwater risk is identified as Low and is recorded as of low environmental sensitivity.
- No vapour risks are recorded within the site area.
- No sources of Land Gases are recorded within the site area.
- No risk to the water main pipework are recorded in place.

Additional testing is recommended to further assess the risks found within the site, to aid in the density of sampling and to isolate the extent of the targeted risks identified within the site, and increase the confidence in the statistical analysis.

11 Risk Assessment Based on Source Risk

Considering the presence of contamination which has been identified above, we confirm the following outlines the assessment of the site completed and way forward for the site.

Source	Receptors	Pathway	Mitigation / Discussion
Lead	Site Users, (current and future);	Direct contact	
	Construction Workers; Adjacent Site	e Ingestion dust and soil	Risk is likely to be isolated to WS7
	Users, Fauna.	Ingestion of soils attached to vegetation	-
		Inhalation of asbestos fibers	Not Applicable
		Inhalation of vapours, (gas and organic)	No vapour risk from Lead contamination identified
		Explosive risk from Land Gas	Not Applicable
		Ingestion of contaminated water through water main pipework	No risk in place from Lead contamination identified
		Inhalation of vapours through contaminated ground waters	No vapour risk from Lead.
		Direct contact with contaminated ground waters	
	Surface Water.	Lateral migration of shallow groundwater to a target receptor.	Groundwater risk has been identified as low based on the information gained.
	Ground Water; Abstraction Well.	Migration through fissures / cracks which may migrate to a groundwater receptor.	-
	Plants; Vegetation.	Plant uptake; Direct contact.	Plant Risks are considered Low based on assessments with ICRCL old exposure levels. No specific plant risk assessment criteria is in place to date.
	Buildings;	Direct contact with contaminated soils;	PAH's pose a low risk to the built environment.
	Construction Materials.	Direct contact with contaminated groundwater	Groundwater risk has been identified as low based on the information gained.

Table 8Risk Assessment A

12 Implications of the End Use of the Site

Within the assessment of the site completed within this report, we can confirm that existing source – pathway – receptor risk assessments are now in place based on actual site data. Based on the change in use of the site through this proposed development, it is possible that pathways to receptors will be either be removed or enhanced such that risk may be in place / removed.

The end use risks based on pathways are discussed below and relate to the site as a whole:-

- **Hard Landscaping** will effectively cap off any contamination and remove risk, although, the placement of hard surfaces across the site should be confirmed as part of the planning application and not form a system of remediation that homeowners could remove as part of the ongoing habitation.
- **Soft Landscaping** will form an area where risk is in place and as such, remedial measures are likely to be required.
- **Under Buildings** will effectively cap off any contamination and remove risk.
- **Services** By examination of the UKWIR, (Guidance for the selection of water supply pipes to be used in brownfield sites) we can confirm the risks associated with human health from water main feeds are not in place, as such, as such conventual pipework can be used. We would suggest that consultation with the relevant statutory authority will be required.

13 Outline Remediation Measures

Considering the above, we would suggest that the following outline remediation measures could be employed in order to develop the site based on the existing data. This will be based on the assumption that there is isolated risk within the site area. although further testing is needed to confirm this.

13.1 Cover Systems - NHBC

The remedial measures are likely to include one of the following cover systems for the site :-

Engineered cover systems – designed to provide the complete separation of the receptor from the hazard and to perform a number of functions including limiting upward migration of contaminants due to capillary rise and controlling the downward infiltration of water.

Simple cover systems – to provide a reduction of the hazard to human health and to provide a suitable medium for plant growth.

Consultation within NHBC guidance documents, (Cover Systems for Land Regeneration), confirm that maximum depths of cover will be required for residential sites and overcome the inherent issues with earthworm activity, burrowing animals, effects of trees and plants, digging during garden activities and intermixing of leaf fall. Justification of this is included within the NHBC guidance document.

It is also recorded that as part of the review, a questionnaire was sent out to various Developers, Consultants and Regulators who all confirmed variable degrees of cover system based on the level of contamination which ranged from 0.30 meters to 3.00 meters, although, the report by NHBC removes these as conservative and the suggestion of a 0.60 meter cover system adopted by the report as a maximum depth of cover required to be sufficient.

It should be noted that these cover systems do not overcome the risks from soil gases, hydrocarbons, highly elevated Mercury or Arsenic, the groundwater or any controlled waters, significant contamination, deep excavations, services, slopes or areas where rabbit or badger populations are significant.

Table 9 Outline I	Remediation Measures for end use of the site		
Land Use	Mitigation Measure	Depth to remove risk	Confirmation required.
Private Gardens & Communal Areas Shrub Planting Areas	<i>Lead</i> risk likely to area of <i>WS7</i> Excavate and remove soils which are assessed to form a risk and placement of clean inert soils to a minimum depth of 0.60 meters. (See Cover Systems above for justification)	0.60m excavation and replacement of clean inert soils tested to confirm the infilled soils fall below the human health residential land use standards – Confirm level of contamination.	Validation Works will be required. Validation of sides and base of excavation and validation of any soils brought onto the site.
Hard Landscaping	 Hard landscaping will remove any risks through pathway removal. Must be a permanent feature, (not patio's). Patio's should assume a soft landscape finish. Additionally, confirmation will be required from the Local or relevant Authority that hard landscaping areas will require specific permission to remove any and / or all hard surfaces which may expose contamination to human receptors. 	None	Confirmation from relevant authority
Under Buildings	None		
Water Main	Any new water main installations can be installed using convential pipework.	None	To Be Confirmed with the relevant statutory authority
Controlled Waters –			
Surface Water & Ground Water	Groundwater risks removed		

14 Waste Disposal

The Landfill Directive sets rigorous standards to reduce both our reliance on landfill and the environmental impact of wastes disposed of by landfill. Tighter operational and infrastructure standards limit the types and nature of waste that we can send to landfill and place greater restrictions on the location of landfill sites

The key points are:

- · Certain kinds of waste cannot be landfilled.
- Landfills are classified according to whether they can accept hazardous, non-hazardous or inert wastes.

• Wastes can only be accepted at a landfill if they meet the waste acceptance criteria (WAC) for that class of landfill.

• Most wastes must be treated before you can send them to landfill.

• There are formal processes for identifying and checking wastes you must follow before wastes can be accepted at a landfill site.

The Council Decision lays down waste acceptance procedures (WAP). From this foundation landfill operators should build their own site-specific WAP. The Council Decision WAP must be used to determine whether a waste is suitable to go to landfill, and if so, to which class of landfill. The WAP consist of three steps to identify and periodically check the main characteristics of the waste (see Section 9):

- **Level 1**: basic characterisation. Before you can send a load of waste to landfill, you need to know its composition and properties so you can determine whether it is suitable for acceptance and at which class of site (see the Council Decision Annex, paragraph 1.1),
- **Level 2**: compliance testing. If you produce waste that is 'regularly arising', e.g. from an industrial process, you must periodically check the waste to ensure that those properties have not changed (see the Council Decision Annex, paragraph 1.2),
- **Level 3**: on-site verification. The operator must check each delivery at the landfill to verify that it is the expected waste and that it has not been contaminated in storage or transport (see the Council Decision Annex, paragraph 1.3).

Before a waste producer can take waste to a landfill site for disposal, they need to check the landfill site has the appropriate permit and must have completed the following:

- Duty of care transfer note/Hazardous Waste consignment note
- Pre-treatment declaration form
- Basic characterisation of the waste, to include:
 - o Description of the waste
 - Waste code (using List of Wastes)
 - \circ Composition of the waste (by testing, if necessary)
 - WAC testing (if required)

14.1 WAC Testing

Two WAC tests have been completed on samples from the site area as follows:-

Table 10	WAC testir	ng Results		
Location	Depth (m)	Soil description	Classification	Reason
WS1	0.60	Clayey brick and gravel FILL	Stable Non- reactive HAZARDOUS waste	Elevated Antimony
WS6	3.00	Dense orange brown SAND & GRAVEL	INERT	

15 Source Risk Conclusions

HUMAN HEALTH RISK

- The site has identified three specific layers of Made Ground and potentially contaminated ground. These form the following layers and associated contamination :-
 - FILL :- Isolated contamination from Lead to the areas of WS7 ONLY additional testing and Remediation works will be required to this area;
- Based on the above, *remedial measures will likely be required areas where pathways to receptors are in place*.

WORKFORCE

The above human health risk is in place within the site area, will promote a low risk on a short term bases to any workforce within the areas. *Appropriate PPE / RPE should be worn and the soil contamination risk should be noted within any site inductions.*

GROUNDWATER RISKS

• Due to the low level of contamination in place within the site area, *risks to groundwater are generally considered low*.

VAPOUR RISKS

• Chemical testing of the soils show that low risks are in place. Vapour risk is not in place.

GAS RISKS

• No sources of land gas risk are recorded in place following the investigation not recording significant depths of made ground nor highly organic soils.

CONSTRUCTION MATERIALS

- Construction materials have been considered and no risk has been identified directly to any water main pipework developed at the site;
 - Water main pipework can be laid in a conventional pipework system;
 - Any water main pipework should be laid in clean corridors in order to prevent future risk to workforce used in the maintenance and repair of any water main system.

FURTHER WORKS

- It is recommended that additional works will be required for the site in order to complete assessments which are detailed as follows :-
 - Additional sampling to be completed across the site and targeting WS7 to complete the data set and potentially isolate the targeted risk in the location of WS7.
- Submit reports to Local Authority and Environment Agency for review and confirm the risks identified in this report along with the further works proposed are suitable and acceptable.
- The exact details of remediation required for the site should be assessed and reported in a Remediation Strategy Report in order to comply with current best practice, (BS 10175 & CLR 11).

Telephone: 01920 822233 info@hesi.co.uk e-mail

Appendix No 1 Sheet No 1 Job No 15629 Date Oct 2019

HERTS & ESSEX SITE INVESTIGATIONS

The Old Post Office, Wellpond Green Standon, Ware, Herts. SG11 1NJ Telephone: 01920822233 e-mail info@hesi.co.uk Appendix No2Sheet No1Job No15629DateNov 2019

F	-ormer Cherry Garden School, Mack's Road, Berm	ond	sey, L	ondon	SE16	5 3XL	J					
١	Nindow Sample One	1	T							1		1
	Description Of Stratum	Legend	Depth	Thickness (m)	Water Level	s No	Sam	ples Depth	S.P.T N-Value or Vane Strength	VOC's (ppm)	nstallations	Casing Depth, (m)
	Tarmac		0.10	0.10		1	U	GL -				
]	MADE GROUND : clayey brick and gravel FILL							1.00				
_				0.00								
-				0.60								
_			0.70									
4			0.70									
-	Medium dense brown slightly claybound SAND											
 1.0				0.60								1.00
_						2	U	1.00-	N=11			
-			1.30									
_	Dense brown SAND & GRAVEL	1		I								
-												
_												
<u>2.0</u>						3	U	2.00 -	N=31			
				1.70		Ū		3.00				
_												
_												
-												
_												
_												
3.0			3.00					3.00	N=47			
_	Borehole Complete at 3.00 metres											
-												
-												
-												
-												
_												
<u>4.0</u>												
-												
_												
_												
-												
5.0												
~.~	Remarks	•	-				•	•	•	Sc	ale 1 : 25	•
			Same 1		,	tor C			N C			
	rkey : U - Undisturbed Sample B - Bulk Sample D - Dist (100mm diameter)	urbed ter Sta	Sample anding	M T	/ - Wa - Ch/	ter Sar emical	mple Tub		N - S V - Va	r i N-Val ane Test.	ue (kN.m²)	

HERTS & ESSEX SITE INVESTIGATIONS

The Old Post Office, Wellpond Green Standon, Ware, Herts. SG11 1NJ

ſ

Telephone: 01920822233 e-mail info@hesi.co.uk Appendix No2Sheet No2Job No15629DateNov 2019

Former Cherry Garden School, Mack's Road, Berm	ond	sey, L	ondon	SE16	5 3XI	J					
Window Sample Two	1								, ,		1
Description Of Stratum	Legend	Depth	Thickness (m)	Water Level	s No	Sam	ples Depth (m)	S.P.T N-Value or Vane Strength	VOC's (ppm)	Installations	Casing Depth, (m)
Tarmac		0.10	0.10		1	Ū	GL -				
_ MADE GROUND : brown sand FILL							1.00				
-			0.50								
		0.60	0.00								
Firm brown mottled grey sandy CLAY increasing in		0.60									
10			1 00		0		1 00				1.00
-			1.00		2	0	2.00				
-											
		1.60									
Dense orange brown SAND & GRAVEL											
-											
2.0											
-			1.40		3	U	2.00 - 3.00	N=29			
-											
_											
		3.00					3.00	N=33			
Borehole Complete at 3.00 metres							5.00	N=33			
-											
-											
-											
<u>4.0</u>											
-											
-											
-											
1											
5.0 Demortes											
Remarks									Sca	ale 1 : 25	
Key : U - Undisturbed Sample B - Bulk Sample D - Dist (100mm diameter) ॼ - Water Struck <u>ज</u> - Wa	urbed ter Sta	Sample	W T	/ - Wa - Che	iter Sai emical	mple Tub		N - S V - V	PT N-Valı ane Test,	ue (kN.m²)	

HERTS & ESSEX SITE INVESTIGATIONS The Old Post Office, Wellpond Green

Standon, Ware, Herts. SG11 1NJ

Telephone: 01920822233 e-mail info@hesi.co.uk Appendix No 2 Sheet No 3 15629 Job No Nov 2019 Date

Former Cherry Garden School, Mack's Road, Berm	ond	sey, L	ondon	SE16	3 3 X I	J					
Window Sample Three											
Description Of Stratum	Legend	Depth	Thickness (m)	Water Level	s No	Sam	ples Depth	S.P.T N-Value or Vane Strength	VOC's (ppm)	nstallations	Casing Depth, (m)
No Access at the time of the site works							()				
No Access at the time of the site works											
5.0 5.0											
Remarks									Sc	ale 1 : 25	
Key : U - Undisturbed Sample B - Bulk Sample D - Dist (100mm diameter) - Water Struck Water Struck	turbed iter Sta	Sample anding	W T	/ - Wa - Ch	ater Sai emical	mple Tub		N - S V - V	PT N-Va ane Test	lue , (kN.m²)	

HERTS & ESSEX SITE INVESTIGATIONS

The Old Post Office, Wellpond Green Standon, Ware, Herts. SG11 1NJ Telephone: 01920822233 e-mail info@hesi.co.uk Appendix No2Sheet No4Job No15629DateNov 2019

	Former Cherry Garden School, Mack's Road, Bermondsey, London SE16 3XU											
	Window Sample Four											
	Description Of Stratum	Legend	Depth	Thickness (m)	Water Level	s No	Sam	ples Depth (m)	S.P.T N-Value or Vane Strength	VOC's (ppm)	nstallations	Casing Depth, (m)
-	Tarmac over concrete		0.20	0.20		1	ΰ	GL - 1.00				
-	Firm brown silty CLAY with occasional flint gravel		0.20									
-												
-				1 00								
-				1.00								
<u>1.0</u>			4 00			2	U	1.00-	N=17			1.00
-	Firm brown slightly claybound SAND & GRAVEL		1.20					2.00				
-												
-				0.60								
-			1.80									
<u>-</u> 2.0	Dense orange brown SAND & GRAVEL					2		2.00	N-26			
-						3	0	3.00	IN-20			
-				1 20								
-				1.20								
-												
-			3.00					2.00	N-20			
<u>3.0</u>	Borehole Complete at 3.00 metres							3.00	N=39			
-												
-												
-												
-												
<u>4.0</u>												
-												
-												
-												
-												
5.0												
	Remarks		_	_	_			_		Sca	ale 1 : 25	
╞	Key : U - Undisturbed Sample B - Bulk Sample D - Dist (100mm diameter) ▼ - Water Struck ∇ - Wai	urbed	Sample	V T	/ - Wa - Ch	iter Sar emical	nple Tub		N - S V - V	PT N-Vali ane Test	ue (kN.m²)	

HERTS & ESSEX SITE INVESTIGATIONS The Old Post Office, Wellpond Green

Standon, Ware, Herts. SG11 1NJ

ſ

Telephone: 01920822233 info@hesi.co.uk e-mail

Appendix No 2 Sheet No 5 15629 Job No Nov 2019 Date

Former Cherry Garden School, Mack's Road, Berm	onds	sey, L	ondon	SE16	3XL	J					
Window Sample Five											
Description Of Stratum	gend	epth	kness m)	/ater evel	0,	Sam	ples	S.P.T N-Value or Vane	OC's pm)	llations	ing th, (m)
	Le	ð	Thic (I	Ľ	No	Type	Depth (m)	Strength	≥ q	Insta	Casi
No Access at the time of the site works											
-											
1.0											
-											
20											
-											
3.0											
-											
4.0											
5.0 Remarks									<u> </u>		
									Sc	ale 1 : 25	
Key : U - Undisturbed Sample B - Bulk Sample D - Dist (100mm diameter) ▼ - Water Struck ▽ - Wa	urbed ter Sta	Sample Inding	W T	/ - Wa - Che	ter Sar emical	nple Tub		N - SI V - Va	PT N-Val ane Test	lue ., (kN.m²)	

HERTS & ESSEX SITE INVESTIGATIONS

The Old Post Office, Wellpond Green Standon, Ware, Herts. SG11 1NJ

ſ

Telephone: 01920822233 e-mail info@hesi.co.uk Appendix No2Sheet No6Job No15629DateNov 2019

Window Sample Six		<u>,</u> _	2			-					
Description Of Stratum	Legend	Depth	Thickness (m)	Water Level	s No	Sam	ples Depth (m)	S.P.T N-Value or Vane Strength	VOC's (ppm)	nstallations	Casing Depth, (m)
Tarmac		0.10	0.10		1	U	GL -				-
MADE GROUND : Brick and concrete hardcore							1.00				
		0.50	0.40								
_ MADE GROUND : Brown silty clay FILL											
			0.60								
-											1 00
<u>1.0</u>		1.10			2	U	1.00-	N=16			1.00
Firm brown silty claybound fine SAND with occasional flint gravel			0.40				2.00				
		1.50									
Dense orange brown SAND & GRAVEL											
- 20											
-					3	U	2.00 - 3.00	N=41			
-											
			1.50								
-			1.50								
1											
-											
3.0		3.00					3.00	N=48			
Borehole Complete at 3.00 metres											
-											
-											
-											
4.0											
-											
-											
<u>_</u>											
-											
-											
5.0 Bomorka											
									Sca	ile 1 : 25	
Key : U - Undisturbed Sample B - Bulk Sample D - Dis (100mm diameter) ॼ - Water Struck <u>ज</u> - W	sturbed ater Sta	Sample	W T	/ - Wa - Che	iter Sai emical	mple Tub		N - S V - V	PT N-Valu ane Test,	e (kN.m²)	

HERTS & ESSEX SITE INVESTIGATIONS

The Old Post Office, Wellpond Green Standon, Ware, Herts. SG11 1NJ Telephone: 01920822233 e-mail info@hesi.co.uk Appendix No2Sheet No7Job No15629DateNov 2019

	Former Cherry Garden School, Mack's Road, Berm	ond	sey, L	ondon	SE16	5 3XI	J					
	Window Sample Seven											
	Description Of Stratum	-egend	Jepth	ickness (m)	Water Level	5	Sam	ples Depth	S.P.T N-Value or Vane	VOC's (ppm)	tallations	asing epth, (m)
	-			Th	-	No	: Typ	(m)	Strength		Ins	ы С
-	Tarmac		0.11	0.11		1	U	GL - 1.00				
-												
-												
_												
-												
-												
<u>1.0</u>				1.59								1.00
-						2	U	1.00- 2.00	N=16			
-												
-												
_												
-			1.70									
-	Dense brown SAND & GRAVEL											
<u>2.0</u>												
-						3	U	2.00 - 3.00	N=38			
-												
-				1.30								
-												
-												
-												
<u>3.0</u>			3.00					3.00	N=42			
-	Borehole Complete at 3.00 metres											
-												
-												
-												
-												
-												
<u>4.0</u>												
-												
-												
-												
_												
-												
-												
5.0	Remarks											
	Komuno									SC	ale 1 : 25	
	Key : U - Undisturbed Sample B - Bulk Sample D - Dist (100mm diameter) 	urbed ter Sta	Sample anding	V T	/ - Wa - Che	ter Sar emical	mple Tub		N - S V - Va	PT N-Val ane Test,	ue , (kN.m²)	

Telephone: 01920822233 FAX 01920822200 Appendix No 2 Sheet No 8 Job No Date

15629 Nov 2019

Former Cherry Garden School, Mack's Road, Bermondsey, London SE16 3XU											
Borehole One											
Description Of Stratum	gend	epth	kness m)	/ater evel	:	Sam	ples	S.P.T N-Value or Vane	OC's pm)	llations	ing th, (m)
	Le	ă	Thic (1	ζĭ	No	Type	Depth (m)	Strength	≥ q	Insta	Casi Depi
Tarmac (0.10m) over Loose to compact brown sandy gravelly sandy FILL		0.50	0.50								
Firm brown sandy slightly silty CLAY										entoni	
1.0			1.15		1		1 20				
		1.65			1		1.20				
Dense brown SAND & GRAVEL					1	В	2.00	N=46			
3.0					0			N 45			
			3.35		2	В	3.00	N=45		tted Pipe	
4 <u>.0</u>					3	В	4.00	N=45			
5.0		5.00		el at oorinç							
Very stiff grey sandy slightly silty CLAY with shell fragments				er leve sh of b	2	U	5.20				
				Wate							
6 <u>.0</u>			2.00	$\sum_{6,20}$:	<u> : 2011 - 7202</u>	
				0.20	3	U	6.40				
7.0		7.00					7 40	N=40			
Very stiff grey sandy slightly silty CLAY with pockets of increase silt							7.10	IN-40			
			1.60								
8.0											
Stiff arey mottled brown CLAY with rounded black		8.60			4	в	8.60	N=50+			
9.0 gravel		9.00	0.40		5	в	9.00				
Dense yellow SAND with black rounded gravel		0.55	0.70								
Very stiff grey brown mottled grey and brown slightly silty sand CLAY	\vdash	9.70	0.80		6	В	9.70				
Remarks									Sc	ale 1 : 50	
Key : U - Undisturbed Sample B - Bulk Sample D - Dis (100mm diameter) ▼ - Water Struck ▼ - Wa	turbed	l Sample anding	V T	V - Wa	iter Sa emical	mple Tub		N - S V - V	PT N-Val ane Test	lue . (kN.m²)	

Telephone: 01920822233 FAX 01920822200

15629 Nov 2019

Former Cherry Garden School, Mack's Road, Bermondsey, London SE16 3XU												
Borehole One continued		-			-			-			-	
Description Of Stratum	gend	spth	kness n)	ater evel	S	Sam	ples	S.P.T N-Value	DC's pm)	llations	ng th, (m)	
	Le	D	Thic (r	≥≞	No	Type	Depth (m)	Strength	≥ q	Instal	Casi Dept	
As above		10.5	0.50									
Dense dark greenish blue brown clayey SAND					7	В	10.60	N=48				
			1 50									
-			1.50									
2		12.0					12.00	N=50+				
Dense dark grey SAND							12.00	11-301				
											3.00 -	
							13.50	N=50+				
<u>-</u> 4												
5							15.00	N=50+				
5			12.00									
			15.00									
							16.50	N=50+				
- 7 -												
							40.00	NI. 50 -				
							18.00	N=50+				
							19 50	N=50+				
Remarks	,				•	<u>.</u>			Sc	ale 1 : 50		
Key : U - Undisturbed Sample B - Bulk Sample D - D (100mm diameter) ▼ - Water Struck ▼ - W	isturbed Vater Sta	Sample	W T	/ - Wa - Ch	iter Sar emical	mple Tub		N - S V - V	PT N-Val ane Test	ue , (kN.m²)		

Telephone: 01920822233 FAX 01920822200 Appendix No 2 Sheet No 10 Job No 15629 Date Nov 2019

Former Cherry Garden School, Mack's Road, Bermondsey, London SE16 3XU												
Borehole One continued												
Description Of Stratum	gend	epth	skness m)	<i>l</i> ater evel		Sam	ples	S.P.T N-Value or Vane	OC's pm)	Illations	ing th, (m)	
	Ľ	Ō	Thic (< L	No	Type	Depth (m)	Strength	> G	Insta	Cas Dep	
As above												
1												
21							21.00	N=50+				
							21.00	11-001				
22												
			10.00									
			13.00				22.50	N=50+				
23											23.00	
24												
							24.50	N=50+				
25		25.0										
Borehole closed at 25.00 meters												
26												
27												
28												
29												
301 Bomarka]]	
INCELLIGE RS									Sc	ale 1 : 50		
Key : U - Undisturbed Sample B - Bulk Sample D - Disturbed Sample W - Water Sample N - SPT N-Value (100mm diameter) Image: Comparison of the struct Image: Comparison of the struct												

Telephone: 01920822233 FAX 01920822200 Appendix No 2 Sheet No Job No Date

11 15629 Nov 2019

Former Cherry Garden School, Mack's Road, Bermondsey, London SE16 3XU												
Borehole Two				r								
Description Of Stratum	gend	pth	kness n)	ater evel	Ś	Sam	ples	S.P.T N-Value	DC's om)	lations	ng h, (m)	
	L E	ă	Thic	٣٤	No	Type	Depth (m)	Strength	V (pl	Instal	Casi Dept	
Tarmac (0.05m) over Loose to compact brown sandy gravelly sandy FILL with fine roots		0.50	0.50									
Firm brown clayey SAND										Seal		
1.0			1 30		1	В	1.00	N=10				
			1.00									
		1.80			0	_	1.00	N 40				
2. <u>d</u> Dense brown SAND & GRAVEL					2	В	1.80	N=43				
3 <u>0</u>					3	в	3 00	N=46				
					Ū	-	0.00	11 10				
			3.60							Slott		
4 <u>0</u>					4	B	4 00	N-40				
					4	D	4.00	N-49				
				t ng								
50				/el a	_	_						
		5 40		er le∨ h of	5	В	5.00	N=43				
Very stiff grey sandy slightly silty CLAY		5.40		Wate finis	6	В	5.50	N=25				
				~								
6. <u>0</u>			1.60	6.00					:	<u></u>		
					7	В	6.50	N=50+				
		7 00										
7.d Dense brown clavev SAND with rounded black		7.00			8	В	7.10	N=50+				
GRAVEL			1.00									
		0.00										
8.0 Stiff arey mottled brown CLAY with rounded black	+	ö.00										
gravel			1.00									
			1.00									
9 <u>.0</u>	-	9.00			9	В	9.00	N=50+				
Stiff greenish blue brown slightly silty sandy												
			1.80									
10 Bomarka												
									Sc	ale 1 : 50		
Key:U - Undisturbed Sample B - Bulk Sample D - Dis (100mm diameter) 又 - Water Struck _▽ - Wa	turbed	l Sample anding	V T	V - Wa	iter Sai emical	nple Tub		N - SI V - V/2	PT N-Val ane Test	ue (kN.m²)		

Telephone: 01920822233 FAX 01920822200 Appendix No 2 Sheet No 12 Job No 15629 Date Nov 2019

Former Cherry Garden School, Mack's Road, Bermondsey, London SE16 3XU													
Borehole Two continued													
Description Of Stratum	Legend	Depth	Thickness (m)	Water Level	s No	Sam	ples Depth (m)	S.P.T N-Value or Vane Strength	VOC's (ppm)	Installations	Casing Depth, (m)		
As above			1.80				10.60	N=48					
¹² Dense dark greenish blue brown clayey SAND		11.8					12.00	N=50+					
12 14 14			3.20				13.50	N=50+			3.00 -		
1 <u>5</u> Dense dark grey SAND		15.0					15.00	N=50+					
							16.50	N=50+					
18			10.0				18.00	N=50+					
19 							19.50	N=50+					
									50	ale 1:50			
Key : U - Undisturbed Sample B - Bulk Sample D - Dis (100mm diameter) - Water Struck - Water Struck	turbed ater Sta	Sample anding	V T	V - Wa - Ch	ater Sai emical	mple Tub		N - S V - V	PT N-Val ane Test	ue , (kN.m²)			

ſ

Telephone: 01920822233 FAX 01920822200 Appendix No 2 Sheet No 13 Job No 15629 Date Nov 2019

Former Unerry Garden School, Mack's Road, Bermo	onds	ey, Lo	ondon	SE16	JXL	J					
	-		S					0.57		s	
Description Of Stratum	Legend	Depth	Thicknes (m)	Water Level	No	Sam	ples Depth (m)	S.P.T N-Value or Vane Strength	VOC's (ppm)	Installation	Casing Depth, (m
As above											
24											
							21.00	N=50+			
22											
			10.0				22 50	N=50+			
											00.00
23											23.00
24											
							24.50	N=50+			
25		25.0									
Borehole closed at 25.00 meters											
26											
27											
28											
Remarks	<u> </u>	<u> </u>	l	<u>l</u>	<u> </u>	l <u> </u>	<u>l</u>	1	Sc	ale 1 : 50	I
Kay II. Indisturbed Sample R - Bulk Sample D Diet	urbod	Sample	10	/ _ \\/o	iter So	mple		N		lue	
(100mm diameter) - Water Struck - Water	ter Sta	anding	T	- vva - Ch	emical	Tub		V - V	ane Test	, (kN.m²)	

			DETS Ltd				Clien	t: He	rts an	d Ess	ex Sit	e Inve	estiga	tion		Date	Sampl	es				Sheet	1
		FTS	Unit 1, I	Rose Lane I	Industrial E	state	Addr	ess:	The O	ld Pos	st Offi	ice				Dispa	atched						1
			Ros	e Lane, Ler	nham Heat	h	Well	oond	Greer	I						Samp	oler:		Chr	is Gray	,	of	
				Maidst	one		Stan	don S	G11 1	lnj						Quot	ation N	lo:					1
				Kent ME1	l7 2JN		Tel:	01920)8222	33						(if no	o contr	act rate	s appl	V)			
	Tel: 01622	2 850410					Proje	ect / S	Site Na	ame:				F	orme	r Che	erry G	arden	Schoo	l Bern	nonds	sey London SE16 3XU	
							Proje	ect / J	ob No):				Chu	in Cur	1	15629	Chang					
	russell.jarvi	s@suez.com					Cont		ame:				cca	Chr	is Gra	ay/Ro	ebecca	i Chami	eriain Oboci	co uk			
					1	1			o Nai	mo /	Anal	vcic F		irod	1051.00	J.uk /	TCHan	IDEITAIT	witcsi	CO.UK		Turnaround (plaaco in	dicata)
					s l			Suit		ne /	Anar	ysis r 	equi									5 day (standard)	v v
					L Se																		~
		_	8		ere	lers																4 day	
		oled	ple		ref	tair	þe	~														3 day	
	a	amp	San	E	na l	l log	Ē	uite	Ŋ													Other	
	Us	e Xi	int (Ę	litio	Ğ	đ	ي ارتى	2	S	s l	0										Specific Date	
	Lab	Dat	Clie	Dep	Add	° Z	San	ΗË	TP	N0	PCE	MA										Comments	
1		15 11 19	WS1	0.6		PT/AJ250	S	х	x	х	x	x									1		
2		15 11 19	WS2	0.5		PT/AJ250	S	x	x														
3		15 11 19	WS4	0.50		PT/AJ250	S	x	x	x	x												
4		15 11 19	WS6	0.40		PT/AJ250	S	x	x														
5		15 11 19	WS6	1.00		PT/AJ250	S	x	x														
6		15 11 19	WS6	3.00		PT/AJ250																	
7		15 11 19	WS7	0.40		PT/AJ250																	
8		15 11 19	WS7	1.50		PT/AJ250	5	X	x	x	X								_				
9																			_	-			
10																			_				
12																							
13																			-				
14																			-				
15																							
16							1																
17																							
18																							
19					-																		
20																							
21				 															_	_			
22				 															_				
23																			_				
24 25							<u> </u>												_		<u> </u>		
25 26																				+			
20																	\vdash		+	+			
-/ 28				1																-			
29				1													\vdash		+	+			
30				1																			
	Additional instructions should be																						
	KO Varsian A	1 0 02/02/2017	entered here											ן ו	arcite	U	i uci l	10. Ja	ne de	1001			

KO Version 4.0 03/02/2017

		DETS Ltd Unit 1, Rose Lane Industrial Estate					Clien	t: He	rts an	d Ess	ex Sit	e Inv	estiga	ition		Date	Samp	les					Sheet	1
		IF 15	Unit 1, R	lose Lane .	Industrial E	state	Addr	ess:	The O	Id Pos	st Off	ice				Dispa	atcheo	:			6		-6	
			ROSE	e Lane, Lei Maidat	nnam Heat	n	weil	ona Jan C	Green							Sam	Dier:	N		Chris	Gray		ог	
	l			MaidSt Kent MF1	one 17 21N		Stan Tel·	aon 5 01920	18222	23 23						Quot (if n	ation	NO: ract r	ates a	nnlv)			1
	T.L. 01(22	050410		Rent HE	27 2311		Proje	ect / S	Site Na	ame:		1		F	orme	er Che	erry G	arde	n Scł	100l	Berm	onds	ey London SE16 3XU	
	Tel: 01622	2 850410					Proje	ect / J	ob No):							15629)						
	russell.jarvi	is@suez.com					Cont	act N	ame:					Chr	is Gra	ay / R	ebecc	a Cha	mber	lain	l.			
					<u> </u>		E-1116	in: Icuit	o Nar	<u>mo /</u>	Anal	veie G		irod	lesi.c	0.UK /	rcnar	nbena	anwr	lesi.c	0.UK		Turnaround (please in	dicate)
					s			Suit				y 515 F	Cequi										5 day (standard)	x
					ance	Ś																	4 day	
		σ	e ID		fere	nen																	3 day	
		alqı	ldm	~	l e	ntai	ype	-															Other	
	se	San	Sai	۳.	iona	S	le T	Suite	DN:														Other	
	n di	ate	ient	eptł	lditi			N.	L C	Cs	CBs												Specific Date	
	La	č	C	<u>ă</u>	¥	Ž	ŝ	Ξ	 	×	۲ ۲												Comments	
1		26 11 19	BHI BH1	0.40		PT/AJ250	S c	X	X	X	X													
2		26 1 1 19	BH2	0.70		PT/AJ250 PT/Δ1250	5	X	X	×														
4		26 1 1 19	BH2	0.10		PT/A1250	S	×	×	~	^													
5		201115	BIIL	0.00		11//0200	- U	<u></u>	^															
6																								
7																								
8																								
9																								
10																								
11																								
12																								
14																								
15																								
16																								
17																								
18					ļ																			
19																								
20																								
22																								
23					1																			
24																								
25																								
26																								
27																								
28																								
29 30																								
50	Additi	onal instruc	tions should be		I					I	I	I	L	-									1	
			entered here											^P	urch	ase C	order	NO:	Same	e as .	JOD N	0		
	KO Version 4	4.0 03/02/2017												-										

Chris Gray Herts and Essex Site Investigations The Old Post Office Wellpond Green Standon Ware Herts SH11 1DJ

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 19-16286

Site Reference:	Former Cherry Garden School Bermondsey London SE16 3XU
Project / Job Ref:	15629
Order No:	15629
Sample Receipt Date:	20/11/2019
Sample Scheduled Date:	20/11/2019
Report Issue Number:	1
Reporting Date:	26/11/2019

Authorised by:

Mur

Dave Ashworth Technical Manager

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate								
DETS Report No: 19-16286			Date Sampled	15/11/19	15/11/19	15/11/19	15/11/19	15/11/19
Herts and Essex Site Investigation	ns		Time Sampled	None Supplied				
Site Reference: Former Cherry Ga	arden School		TP / BH No	WS1	WS2	WS4	WS6	WS6
Bermondsey London SE16 3XU			-					
Project / Job Ref: 15629		I	Additional Refs	None Supplied				
Order No: 15629			Depth (m)	0.60	0.50	0.50	0.40	1.00
Reporting Date: 26/11/2019		D	ETS Sample No	448264	448265	448266	448267	448268
Determinand	Unit	RL	Accreditation			(n)		
Asbestos Screen (S)	N/a	N/a	IS017025	Not Detected				
pH	pH Units	N/a	MCERTS	8.2	7.8	12.0	11.1	7.7
Electrical Conductivity	uS/cm	< 5	NONE	306	79	2600	483	176
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Free Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Total Sulphate as SO ₄	mg/kg	< 200	NONE	654	336	5700	5899	492
Total Sulphate as SO ₄	%	< 0.02	NONE	0.07	0.03	0.57	0.59	0.05
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	118	11	< 10	46	52
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.12	0.01	< 0.01	0.05	0.05
Organic Matter	%	< 0.1	MCERTS	1	1.3	1.6	1.5	1.1
Arsenic (As)	mg/kg	< 2	MCERTS	12	12	10	9	11
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	< 1
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (Cr)	mg/kg	< 2	MCERTS	19	17	14	16	15
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS	21	32	13	22	24
Lead (Pb)	mg/kg	< 3	MCERTS	50	201	12	107	108
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	13	10	9	10	10
Zinc (Zn)	mg/kg	< 3 MCERTS		35	49	36	62	33
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30^oC Subcontracted analysis (S) (n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

٦

Soil Analysis Certificate							
DETS Report No: 19-16286			Date Sampled	15/11/19	15/11/19	15/11/19	
Herts and Essex Site Investigation	ıs		Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Former Cherry Ga	arden School		TP / BH No	WS6	WS7	WS7	
Bermondsey London SE16 3XU			-				
-							
Project / Job Ref: 15629			Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: 15629			Depth (m)	3.00	0.40	1.50	
Reporting Date: 26/11/2019		D	ETS Sample No	448269	448270	448271	
Determinand	Unit	RL	Accreditation				
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected	Not Detected	Not Detected	
pH	pH Units	N/a	MCERTS	8.2	8.3	8.2	
Electrical Conductivity	uS/cm	< 5	NONE	52	113	155	
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	
Free Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	
Total Sulphate as SO ₄	mg/kg	< 200	NONE	260	1150	1436	
Total Sulphate as SO ₄	%	< 0.02	NONE	0.03	0.11	0.14	
W/S Sulphate as SO_4 (2:1)	mg/l	< 10	MCERTS	32	18	28	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.03	0.02	0.03	
Organic Matter	%	< 0.1	MCERTS	0.2	3.4	0.5	
Arsenic (As)	mg/kg	< 2	MCERTS	20	22	13	
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	< 1	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	0.5	< 0.2	
Chromium (Cr)	mg/kg	< 2	MCERTS	32	25	16	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	10	110	17	
Lead (Pb)	mg/kg	< 3	MCERTS	13	432	61	
Mercury (Hg)	mg/kg	< 1	NONE	< 1	1.5	< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	25	18	10	
Zinc (Zn)	mg/kg	< 3	MCERTS	34	358	59	
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30° C Subcontracted analysis (S)

Soil Analysis Certificate	- Speciated PAHs							
DETS Report No: 19-1628	86		Date Sampled	15/11/19	15/11/19	15/11/19	15/11/19	15/11/19
Herts and Essex Site Inve	stigations		Time Sampled	None Supplied				
Site Reference: Former C	herry Garden		TP / BH No	WS1	WS2	WS4	WS6	WS6
School Bermondsey Lond	on SE16 3XU	1					1 1	, I
						!		
Project / Job Ref: 15629		/	Additional Refs	None Supplied				
Order No: 15629			Depth (m)	0.60	0.50	0.50	0.40	1.00
Reporting Date: 26/11/2	019	D	TS Sample No	448264	448265	448266	448267	448268
Determinand	Unit	RL	Accreditation			(n)		
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.12	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	1.37	< 0.1
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.43	< 0.1
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	3.37	< 0.1
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	2.62	< 0.1
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	1.55	< 0.1
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	1.54	< 0.1
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	2.02	< 0.1
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.64	< 0.1
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	1.33	< 0.1
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	1.10	< 0.1
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.21	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.98	< 0.1
Total FPA-16 PAHs	ma/ka	< 1.6	MCERTS	< 1.6	< 1.6	< 1.6	17.3	< 1.6

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30^oC (n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate	- Speciated PAHs						
DETS Report No: 19-162	86		Date Sampled	15/11/19	15/11/19	15/11/19	
Herts and Essex Site Inve	stigations		Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Former C	herry Garden		TP / BH No	WS6	WS7	WS7	
School Bermondsey Lond	on SE16 3XU		-				
_							
Project / Job Ref: 15629		4	Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: 15629			Depth (m)	3.00	0.40	1.50	
Reporting Date: 26/11/2	019	D	ETS Sample No	448269	448270	448271	
Determinand	Unit	RL	Accreditation				
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	0.14	< 0.1	
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	0.34	< 0.1	
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1	0.27	< 0.1	
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	0.29	< 0.1	
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	0.16	< 0.1	
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	0.37	< 0.1	
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	0.11	< 0.1	
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	0.19	< 0.1	
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	0.14	< 0.1	
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Total EPA-16 PAHs	ma/ka	< 1.6	MCERTS	< 1.6	2	< 1.6	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate	- TPH CWG Bande	d						
DETS Report No: 19-162	.86		Date Sampled	15/11/19	15/11/19	15/11/19	15/11/19	15/11/19
Herts and Essex Site Inve	stigations		Time Sampled	None Supplied				
Site Reference: Former C	herry Garden		TP / BH No	WS1	WS2	WS4	WS6	WS6
School Bermondsey London SE16 3XU		1						, I
								I
Project / Job Ref: 15629		· /	Additional Refs	None Supplied				
Order No: 15629			Depth (m)	0.60	0.50	0.50	0.40	1.00
Reporting Date: 26/11/2	2019	D	ETS Sample No	448264	448265	448266	448267	448268
Determinand	Unit	RL	Accreditation			(n)		
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10	< 10	41	< 10	< 10
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21	< 21	41	< 21	< 21
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	< 3	< 3	9	< 3
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	< 10	< 10	89	16	< 10
Aromatic (C5 - C35)	mg/kg	< 21	NONE	< 21	< 21	89	25	< 21
Total >C5 - C35	ma/ka	< 42	NONE	< 42	< 42	130	< 42	< 42

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

(n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate	- TPH CWG Bande	d					
DETS Report No: 19-162	.86		Date Sampled	15/11/19	15/11/19	15/11/19	
Herts and Essex Site Inve	stigations		Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Former Cherry Garden School Bermondsey London SE16 3XU			TP / BH No	WS6	WS7	WS7	
Project / Job Ref: 15629			Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: 15629			Depth (m)	3.00	0.40	1.50	
Reporting Date: 26/11/2	2019	D	ETS Sample No	448269	448270	448271	
-							
Determinand	Unit	RL	Accreditation				
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3	< 3	< 3	
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	< 3	< 3	
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10	< 10	< 10	
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21	< 21	< 21	
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	< 3	< 3	
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	< 10	< 10	< 10	
Aromatic (C5 - C35)	mg/kg	< 21	NONE	< 21	< 21	< 21	
Total >C5 - C35	ma/ka	< 42	NONE	< 42	< 42	< 42	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate - BTEX / MTBE												
DETS Report No: 19-1628	36		Date Sampled	15/11/19	15/11/19	15/11/19	15/11/19	15/11/19				
Herts and Essex Site Investigations Time Sampled			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied					
Site Reference: Former Cherry Garden TP / BH			TP / BH No	WS1	WS2	WS4	WS6	WS6				
School Bermondsey Londo	on SE16 3XU											
Project / Job Ref: 15629			Additional Refs	None Supplied								
Order No: 15629 Depth (m)			0.60	0.50	0.50	0.40	1.00					
Reporting Date: 26/11/2019			ETS Sample No	448264	448265	448266	448267	448268				
Determinand	Unit	RL	Accreditation			(n)						
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2				
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5				
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2				
p & m-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2				
o-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2				
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5				

MTBE ug/kg < 5 MCERTS Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

(n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate	- BTEX / MTBE						
DETS Report No: 19-1628	36		Date Sampled	15/11/19	15/11/19	15/11/19	
Herts and Essex Site Inve	stigations		Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Former Cherry Garden TP / BH No School Bermondsey London SE16 3XU		WS6	WS7	WS7			
Project / Job Ref: 15629 Additional Refs		None Supplied	None Supplied	None Supplied			
Order No: 15629 Depth (m)			3.00	0.40	1.50		
Reporting Date: 26/11/2019			ETS Sample No	448269	448270	448271	
Determinand	Unit	RL	Accreditation				
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
p & m-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
o-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	

 MTBE
 ug/kg
 < 5</th>
 MCERTS

 Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate	- Volatile Organic	Compo	ounds (VOC)					
DETS Report No: 19-1628	86		Date Sampled	15/11/19	15/11/19	15/11/19		
Herts and Essex Site Inve	stigations		Time Sampled	None Sunnlied	None Sunnlied	None Sunnlied		
Site Reference: Former C	herry Garden		TD / BH No	\\/C1	\\\C/	\\/C7	Ì	
School Pormandacy Land	an CE16 2VU			VV51	VV54	vv5/		
School Bermonasey Londo	011 SETO 2X0							
							ļ	
Project / Job Ref: 15629			Additional Refs	None Supplied	None Supplied	None Supplied		
Order No: 15629			Depth (m)	0.60	0.50	1.50		
Reporting Date: 26/11/2	019	D	ETS Sample No	448264	448266	448271		
							-	-
Determinand	Unit	PI	Accreditation		(n)			
Dicklosedifluoremethone	Unit	KL	ACCIEUICACION		(1)	. 5	1	
Dichlorodinuoromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Vinyl Chloride	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Chloromethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10		
Chloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Bromomethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10		
Trichlorofluoromethane	ua/ka	< 5	MCERTS	< 5	< 5	< 5		
1 1-Dichloroethene	ua/ka	< 5	MCERTS	< 5	< 5	< 5		
1,1 Dichloroediche	ug/kg	< J 2 F	MCEDIC	< 5	< 5	< 5		
MIBE	ug/Kg	< 5	MCEDIC	< 5	< 5	< 5	<u> </u>	
trans-1,2-Dichloroethene	ug/kg	< 5	MCERIS	< 5	< 5	< 5	ł	
1,1-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
cis-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
2,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Chloroform	ua/ka	< 5	MCERTS	< 5	< 5	< 5		
Bromochloromethane	ua/ka	< 5	MCERTS	< 5	< 5	< 5	l	
1 1 1-Trichloroothana		、J / F	MCEDTE		<pre> < 5</pre>	 	ł	
	uy/ky	< 10	MCEDTO	< 0	< 0	< 0	}	
1,1-Dicnioropropene	ug/kg	< 10	MCERTS	< 10	< 10	< 10		
Carbon Tetrachloride	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,2-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	ļ	
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2		
1,2-Dichloropropane	ug/ka	< 5	MCERTS	< 5	< 5	< 5		
Trichloroethene	ua/ka	< 5	MCERTS	< 5	< 5	< 5	1	
Bromodichloromethane	ua/ka	< 5 < 5	MCERTS	 , 5 , 5 		~ 5	Ì	
Dibromomothane	ug/kg	 J 	MCEDTS	>	>		1	
	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
TAME	ug/kg	< 5	MCERTS	< 5	< 5	< 5	Į	
cis-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
trans-1,3-Dichloropropene	ug/ka	< 5	MCERTS	< 5	< 5	< 5		
1,1,2-Trichloroethane	ua/ka	< 10	MCERTS	< 10	< 10	< 10		
1.3-Dichloronronane		< 5	MCFRTS	< 5	< 5	< 5	İ	
Tatrachloroothono		 , , , , , , , , , , , , , , , , , , ,	MCEDTO	< J _ r	< J 			
Dibromochloromothere	uy/ky	< S - F	MCEDIC	< 0	< 0	< 5	<u> </u>	
	ug/kg	< 5	MUERIS	< 5	< 5	< 5	<u> </u>	
1,2-Dibromoethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Chlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,1,1,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
Ethyl Benzene	ug/ka	< 2	MCERTS	< 2	< 2	< 2		
m.p-Xvlene	ua/ka	< 2	MCERTS	< 2	< 2	< 7	1	
o-Xvlene		< 7	MCERTS	< 7	< 7	< 7	İ	
Styropo	ug/kg	~ 5	MCEDTO	× 2	× 2	~ [ł	
Bromoferm	ug/kg	< 10	MCEDIC	< 0	< 0	< 0	}	
Bromotorm	ug/kg	< 10	MULERIS	< 10	< 10	< 10		
Isopropylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	ļ	
1,1,2,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	ļ	
1,2,3-Trichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
n-Propylbenzene	ug/ka	< 5	MCERTS	< 5	< 5	< 5		
Bromobenzene	ua/ka	< 5	MCERTS	< 5	< 5	< 5	1	
2-Chlorotoluene	ua/ka	~ 5	MCERTS	 , 5 , 5 		~ 5	Ì	
1 2 5-Trimothylbonzone	ug/kg	 J 	MCEDTS	>	>		1	
	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
4-Chiorotoiuene	ug/kg	< 5	MCERIS	< 5	< 5	< 5	ł	
tert-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,2,4-Trimethylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
sec-Butylbenzene	ug/ka	< 5	MCERTS	< 5	< 5	< 5		
p-Isopropyltoluene	ua/ka	< 5	MCERTS	< 5	< 5	< 5	1	
1 3-Dichlorobenzene	ua/ka	~ 5	MCERTS	- 5 - 5	~ 5	~ 5	Ì	
1.4-Dichlorohonzana	ug/Kg	 J J 	MCEDIC	>	>		1	
1,4-DICNIORODENZENE	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
n-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	ļ	
1,2-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
.,2-Dibromo-3-chloropropane	ug/kg	< 10	MCERTS	< 10	< 10	< 10		
Hexachlorobutadiene	ug/kg	< 5	MCERTS	< 5	< 5	< 5		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30^oC (n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate	- PCB (7 Congener	s)					
DETS Report No: 19-1628	36		Date Sampled	15/11/19	15/11/19	15/11/19	
Herts and Essex Site Investigations Time Sampled			None Supplied	None Supplied	None Supplied		
Site Reference: Former C	herry Garden		TP / BH No	WS1	WS4	WS7	
School Bermondsey London SE16 3XU							
Project / Job Ref: 15629		ŀ	Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: 15629			Depth (m)	0.60	0.50	1.50	
Reporting Date: 26/11/2019			ETS Sample No	448264	448266	448271	
Determinend							
Determinand	Unit	RL	Accreditation		(n)		
PCB Congener 28	Unit mg/kg	RL 0.008	Accreditation NONE	< 0.008	(n) < 0.008	< 0.008	
PCB Congener 28 PCB Congener 52	Unit mg/kg mg/kg	RL 0.008	Accreditation NONE NONE	< 0.008 < 0.008	(n) < 0.008 < 0.008	< 0.008 < 0.008	
PCB Congener 28 PCB Congener 52 PCB Congener 101	Unit mg/kg mg/kg mg/kg	RL 0.008 0.008 0.008	Accreditation NONE NONE NONE	< 0.008 < 0.008 < 0.008	(n) < 0.008 < 0.008 < 0.008	< 0.008 < 0.008 < 0.008	
PCB Congener 28 PCB Congener 52 PCB Congener 101 PCB Congener 118	Unit mg/kg mg/kg mg/kg mg/kg	RL 0.008 0.008 0.008 0.008	Accreditation NONE NONE NONE NONE	< 0.008 < 0.008 < 0.008 < 0.008	(n) < 0.008 < 0.008 < 0.008 < 0.008	< 0.008 < 0.008 < 0.008 < 0.008	
PCB Congener 28 PCB Congener 52 PCB Congener 101 PCB Congener 118 PCB Congener 138	Unit mg/kg mg/kg mg/kg mg/kg mg/kg	RL 0.008 0.008 0.008 0.008 0.008	Accreditation NONE NONE NONE NONE NONE	< 0.008 < 0.008 < 0.008 < 0.008 < 0.008 < 0.008	(n) < 0.008 < 0.008 < 0.008 < 0.008 < 0.008	< 0.008 < 0.008 < 0.008 < 0.008 < 0.008	
PCB Congener 28 PCB Congener 52 PCB Congener 101 PCB Congener 118 PCB Congener 138 PCB Congener 153	Unit mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	RL 0.008 0.008 0.008 0.008 0.008 0.008 0.008	Accreditation NONE NONE NONE NONE NONE	< 0.008 < 0.008 < 0.008 < 0.008 < 0.008 < 0.008	(n) < 0.008 < 0.008 < 0.008 < 0.008 < 0.008 < 0.008	< 0.008 < 0.008 < 0.008 < 0.008 < 0.008 < 0.008 < 0.008	
PCB Congener 28 PCB Congener 28 PCB Congener 52 PCB Congener 118 PCB Congener 118 PCB Congener 138 PCB Congener 153 PCB Congener 180	Unit mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	RL 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008	Accreditation NONE NONE NONE NONE NONE NONE	< 0.008 < 0.008 < 0.008 < 0.008 < 0.008 < 0.008 < 0.008 < 0.008	(n) < 0.008 < 0.008 < 0.008 < 0.008 < 0.008 < 0.008 < 0.008	< 0.008 < 0.008 < 0.008 < 0.008 < 0.008 < 0.008 < 0.008	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30^oC (n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

DETS Ltd Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Waste Acceptance Criteria	Analytical Ce	ertificate - BS EN	N 12457/3					
DETS Report No: 19-16286		Date Sampled	15/11/19			Landfill Wast	e Acceptance (Criteria Limits
Herts and Essex Site Investigat	tions	Time Sampled	None Supplied					
Site Reference: Former Cherry School Bermondsev London SE	Garden 16 3XU	TP / BH No	WS1				Stable Non-	
Project / Job Ref: 15629		Additional Refs	None			Inert Waste	reactive HAZARDOUS	Hazardous Waste
Order No: 15629		Depth (m)	0.60			Landfill	waste in non- hazardous	Landfill
Reporting Date: 26/11/2019		DETS Sample No	448264				Landfill	
Determinand	Unit	MDL						
TOC ^{MU}	%	< 0.1	0.6			3%	5%	6%
Loss on Ignition	%	< 0.01	2.10					10%
BTFX ^{MU}	ma/ka	< 0.05	< 0.05	1		6		
Sum of PCBs	ma/ka	< 0.1	< 0.1			1		
Mineral Oil ^{MU}	ma/ka	< 10	< 10			500		
	mg/kg	< 17	< 17			100		
	nH Units	N/a	82				>6	
bi i	pri onics	N/d	0.2				To be	To be
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	< 1				evaluated	evaluated
	-			0.1	Cumulative	Limit values	for compliance	leaching test
Eluate Analysis			2:1	8:1	10:1	using BS E	N 12457-3 at l	./S 10 l/kg
-			mg/l	mg/l	mg/kg	-	(mg/kg)	
Arsenic ^U			< 0.01	< 0.01	< 0.2	0.5	2	25
Barium ^U			< 0.02	< 0.02	< 0.1	20	100	300
Cadmium ^U			< 0.0005	< 0.0005	< 0.02	0.04	1	5
Chromium ^U			< 0.005	< 0.005	< 0.20	0.5	10	70
Copper ^U			0.02	0.02	< 0.20	2	50	100
Morcupul	-		< 0.02	< 0.02	< 0.0	0.01	0.2	2
Melyhdanum ^U			0.022	0.006	< 0.005	0.01	10	30
			0.022	0.000	< 0.1	0.3	10	30
			< 0.007	< 0.007	< 0.2	0.4	10	-+0
Lead			< 0.003	< 0.003	0.2	0.5	10	JU
Antimony ²	-		0.036	0.019	 0.21	0.00	0.7	2
	-		< 0.005	< 0.005	 < 0.05	0.1	0.5	/
	-		0.008	< 0.005	 < 0.2	4	50	200
Chloride			/	2	25	800	15000	25000
Fluoride			< 0.5	< 0.5	 < 1	10	150	500
Sulphate			107	8	 175	1000	20000	50000
TDS			197	71	 832	4000	60000	100000
Phenol Index			< 0.01	< 0.01	 < 0.5	1	-	-
DOC			20	19.5	195	500	800	1000
Leach Test Information								
Sample Mass (kg)			0.19					
Dry Matter (%)			90.3					
Moisture (%)			10.8					
Stage 1								
Volume Eluate L2 (litres)			0.33					
Filtered Eluate VE1 (litres)			0.17					
				l i				
				l i				
			-	-	 -	-		
Results are expressed on a dry weight b	asis, after correc	tion for moisture conte	nt where applica	ble				

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation M Denotes MCERTS accredited test U Denotes ISO17025 accredited test

DETS Ltd Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Waste Acceptance Criteria A	Analytical Ce	ertificate - BS EN	12457/3					
DETS Report No: 19-16286		Date Sampled	15/11/19			Landfill Wast	e Acceptance (Criteria Limits
Herts and Essex Site Investigat	tions	Time Sampled	None Supplied					
Site Reference: Former Cherry School Bermondsey London SE	Garden 16 3XU	TP / BH No	WS6	1			Stable Non-	
Project / Job Ref: 15629		Additional Refs	None			Inert Waste	reactive HAZARDOUS	Hazardous Waste
Order No: 15629		Depth (m)	3.00			Landfill	waste in non- hazardous	Landfill
Reporting Date: 26/11/2019		DETS Sample No	448269				Landfill	
Determinand	Unit	MDL		1				
TOC ^{MU}	%	< 0.1	0.1			3%	5%	6%
Loss on Ignition	%	< 0.01	0.80					10%
BTEX ^{MU}	ma/ka	< 0.05	< 0.05			6		
Sum of PCBs	ma/ka	< 0.1	< 0.1			1		
Mineral Oil ^{MU}	ma/ka	< 10	< 10			500		
	ma/ka	< 1.7	< 1.7			100		
pH ^{MU}	pH Units	N/a	8.2				>6	
Asid Neutralization Conseits		. 1	- 1				To be	To be
Acid Neutralisation Capacity	moi/kg (+/-)	< 1	< 1				evaluated	evaluated
			2:1	8:1	Cumulative	Limit values	for compliance	leaching test
Eluate Analysis				0.1	10:1	using BS E	N 12457-3 at l	./S 10 l/kg
			mg/l	mg/l	 mg/kg		(mg/kg)	
Arsenic	-		< 0.01	< 0.01	< 0.2	0.5	2	25
Barium	-		< 0.02	< 0.02	 < 0.1	20	100	300
Cadmium	-		< 0.0005	< 0.0005	< 0.02	0.04	1	5
Chromium	-		< 0.005	< 0.005	< 0.20	0.5	10	70
Copper ⁰	-		< 0.01	< 0.01	< 0.5	2	50	100
Mercury	-		< 0.0005	< 0.0005	< 0.005	0.01	0.2	2
Molybdenum ^u			< 0.001	< 0.001	< 0.1	0.5	10	30
Nickel			< 0.007	< 0.007	< 0.2	0.4	10	40
Lead ^U			< 0.005	< 0.005	< 0.2	0.5	10	50
Antimony			< 0.005	< 0.005	< 0.05	0.06	0.7	5
Selenium			< 0.005	< 0.005	< 0.05	0.1	0.5	7
Zinc ^U			< 0.005	0.006	< 0.2	4	50	200
Chloride ^U			3	3	25	800	15000	25000
Fluoride ^U			1.2	< 0.5	< 1	10	150	500
Sulphate ^U			6	1	< 20	1000	20000	50000
TDS			53	44	445	4000	60000	100000
Phenol Index			< 0.01	< 0.01	< 0.5	1	-	-
DOC			3.5	10.9	104	500	800	1000
Leach Test Information								
			l'					
Sample Mass (kg)			0.19					
Dry Matter (%)			93.2					
Moisture (%)			7.4					
Stage 1								
Volume Eluate L2 (litres)			0.34					
Filtered Eluate VE1 (litres)			0.11					
Results are expressed on a dry weight b	asis, after correct	tion for moisture conte	nt where applical	DIE				

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation M Denotes MCERTS accredited test U Denotes ISO17025 accredited test

DETS Report No: 19-16286 Herts and Essex Site Investigations
Herts and Essex Site Investigations
Site Reference: Former Cherry Garden School Bermondsey London SE16 3XU
Project / Job Ref: 15629
Order No: 15629
Reporting Date: 26/11/2019

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
448264	WS1	None Supplied	0.60	9.7	Brown loamy sand
448265	WS2	None Supplied	0.50	11.9	Brown loamy sand
448266	WS4	None Supplied	0.50	2.6	Brown concrete
448267	WS6	None Supplied	0.40	8.5	Brown loamy sand with brick and concrete
448268	WS6	None Supplied	1.00	9.1	Brown loamy sand
448269	WS6	None Supplied	3.00	6.8	Brown sandy gravel with stones
448270	WS7	None Supplied	0.40	11.8	Black loamy sand with stones and brick
448271	WS7	None Supplied	1.50	6.5	Brown sandy gravel with stones and concrete

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm US}$ Unsuitable Sample $^{\rm U/S}$

Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 19-16286
Herts and Essex Site Investigations
Site Reference: Former Cherry Garden School Bermondsey London SE16 3XU
Project / Job Ref: 15629
Order No: 15629
Reporting Date: 26/11/2019

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OFS	E012
Soil	AR	BTFX	Determination of BTEX by beadspace GC-MS	F001
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	F002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	E016
C 'I	10		1,5 diphenylcarbazide followed by colorimetry	5045
Soll	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soll	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soll	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soll	D	Cyclonexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclonexane	E011
SOIL	AR	Diesel Range Organics (C10 - C24)	Determination of nexane/acetone extractable nydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 - C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
C '1	10	EPH TEXAS (C6-C8, C8-C10, C10-C12,	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	5004
SOIL	AR	C12-C16, C16-C21, C21-C40)	headspace GC-MS	E004
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OFS	E025
Soil	D	Metals	Determination of metals by aqua-regia direction followed by ICP-OES	E023
501	D	Thetais	Determination of hexane/actione extractable hydrocarbone by CC-ETD fractionating with SDE	2002
Soil	AR	Mineral Oil (C10 - C40)	cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D	Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR	Sulphide	Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with agua-regia followed by ICP-OES	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) subpate	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Iron (11) suppare Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
5011	AK	VULS	Determination of volatile organic compounds by neadspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried

Chris Gray Herts and Essex Site Investigations The Old Post Office Wellpond Green Standon Ware Herts SH11 1DJ

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 19-16718

Site Reference:	Former Cherry Garden School, Bermondsey, London, SE16 3XU
Project / Job Ref:	15629
Order No:	15629
Sample Receipt Date:	28/11/2019
Sample Scheduled Date:	28/11/2019
Report Issue Number:	1
Reporting Date:	04/12/2019

Authorised by:

Mur

Dave Ashworth Technical Manager

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate								
DETS Report No: 19-16718			Date Sampled	26/11/19	26/11/19	26/11/19	26/11/19	
Herts and Essex Site Investigation	ıs		Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Former Cherry Ga	rden School,		TP / BH No	BH1	BH1	BH2	BH2	
Bermondsey, London, SE16 3XU			-					
Project / Job Ref: 15629			Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	
Order No: 15629			Depth (m)	0.40	0.70	0.40	0.80	
Reporting Date: 04/12/2019		D	ETS Sample No	449830	449831	449832	449833	
Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	IS017025	Not Detected	Not Detected	Not Detected	Not Detected	
pH	pH Units	N/a	MCERTS	8.2	8.0	6.8	7.7	
Electrical Conductivity	uS/cm	< 5	NONE	220	225	1470	343	
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	
Free Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	
Total Sulphate as SO ₄	mg/kg	< 200	NONE	996	478	3912	1172	
Total Sulphate as SO ₄	%	< 0.02	NONE	0.10	0.05	0.39	0.12	
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	136	55	1170	296	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.14	0.05	1.17	0.30	
Organic Matter	%	< 0.1	MCERTS	5.9	2.6	0.4	5.7	
Arsenic (As)	mg/kg	< 2	MCERTS	13	12	15	12	
W/S Boron	mg/kg	< 1	NONE	1.3	< 1	1.7	< 1	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	0.2	< 0.2	2	0.4	
Chromium (Cr)	mg/kg	< 2	MCERTS	15	20	172	42	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	54	12	107	24	
Lead (Pb)	mg/kg	< 3	MCERTS	204	63	174	44	
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1	1.8	< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	12	14	43	17	
Zinc (Zn)	mg/kg	< 3	MCERTS	122	34	332	78	
Total Phenols (monohydric)	ma/ka	< 2	NONE	< 2	< 2	< 2	< 2	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30° C Subcontracted analysis (S)

Soil Analysis Certificate	- Speciated PAHs							
DETS Report No: 19-167	18		Date Sampled	26/11/19	26/11/19	26/11/19	26/11/19	
Herts and Essex Site Inve	stigations		Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Former C	herry Garden		TP / BH No	BH1	BH1	BH2	BH2	
School, Bermondsey, Lon	don, SE16 3XU		-					
Project / Job Ref: 15629		4	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	
Order No: 15629			Depth (m)	0.40	0.70	0.40	0.80	
Reporting Date: 04/12/2	019	D	ETS Sample No	449830	449831	449832	449833	
Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	
Acenaphthene	mg/kg	< 0.1	MCERTS	0.19	< 0.1	< 0.1	< 0.1	
Fluorene	mg/kg	< 0.1	MCERTS	0.22	< 0.1	< 0.1	< 0.1	
Phenanthrene	mg/kg	< 0.1	MCERTS	1.87	0.24	0.30	< 0.1	
Anthracene	mg/kg	< 0.1	MCERTS	0.49	< 0.1	< 0.1	< 0.1	
Fluoranthene	mg/kg	< 0.1	MCERTS	3.34	0.56	0.72	0.25	
Pyrene	mg/kg	< 0.1	MCERTS	2.45	0.49	0.60	0.22	
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	1.23	0.26	0.33	0.23	
Chrysene	mg/kg	< 0.1	MCERTS	1.45	0.34	0.42	0.27	
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	1.75	0.48	0.68	0.40	
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.54	0.18	0.21	0.11	
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	1.26	0.34	0.40	0.23	
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	0.96	0.26	0.35	0.13	
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	0.15	< 0.1	< 0.1	< 0.1	
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	0.79	0.23	0.33	0.12	<u> </u>
Total EPA-16 PAHs	ma/ka	< 1.6	MCERTS	16.7	3.4	4.3	2	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate	- TPH CWG Bande	d						
DETS Report No: 19-167	'18		Date Sampled	26/11/19	26/11/19	26/11/19	26/11/19	
Herts and Essex Site Inve	stigations		Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Former C	herry Garden		TP / BH No	BH1	BH1	BH2	BH2	
School, Bermondsey, Lon	don, SE16 3XU							
Project / Job Ref: 15629		-	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	
Order No: 15629			Depth (m)	0.40	0.70	0.40	0.80	
Reporting Date: 04/12/2	2019	D	ETS Sample No	449830	449831	449832	449833	
Determinand	Unit	RL	Accreditation					
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21	< 21	< 21	< 21	
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	12	< 3	< 3	< 3	
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	20	< 10	< 10	< 10	
Aromatic (C5 - C35)	mg/kg	< 21	NONE	33	< 21	< 21	< 21	<u> </u>
Total >C5 - C35	mg/kg	< 42	NONE	< 42	< 42	< 42	< 42	1

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate	- BTEX / MTBE							
DETS Report No: 19-1671	L8		Date Sampled	26/11/19	26/11/19	26/11/19	26/11/19	
Herts and Essex Site Inve	stigations		Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Former C	herry Garden		TP / BH No	BH1	BH1	BH2	BH2	
School, Bermondsey, Lone	don, SE16 3XU							
Project / Job Ref: 15629			Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	
Order No: 15629			Depth (m)	0.40	0.70	0.40	0.80	
Reporting Date: 04/12/2	019	D	ETS Sample No	449830	449831	449832	449833	
Determinand	Unit	RL	Accreditation					
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
p & m-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
o-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	

 MTBE
 ug/kg
 < 5</th>
 MCERTS

 Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate	e - Volatile Organic	Compo	unds (VOC)				
DETS Report No: 19-167	18		Date Sampled	26/11/19	26/11/19		
Herts and Essex Site Inve	stigations		Time Sampled	None Supplied	None Supplied		
Site Deference: Former C	borry Cardon						
Site Reference: Former C	nerry Garden		IP / BH NO	DUT	DIL		
School, Bermondsey, Lone	don, SE16 3XU						
Project / Job Ref: 15629		ļ	Additional Refs	None Supplied	None Supplied		
Order No: 15629			Depth (m)	0.40	0.40		
Reporting Date: 04/12/2	2019	D	ETS Sample No	449830	449832		
Determinand	Unit	DI	Accreditation				
Determinant		KL	Accieutation	. El			
Dichlorodifluoromethane	ug/kg	< 5	MCERIS	< 5	< 5		
Vinyl Chloride	ug/kg	< 5	MCERTS	< 5	< 5		
Chloromethane	ug/kg	< 10	MCERTS	< 10	< 10		
Chloroethane	ug/kg	< 5	MCERTS	< 5	< 5		
Bromomethane	ug/kg	< 10	MCERTS	< 10	< 10		
Trichlorofluoromethane	ua/ka	< 5	MCERTS	< 5	< 5		
1 1-Dichloroethene	ua/ka	< 5	MCERTS	< 5	< 5		
1,1 Dichloroediche	ug/kg	< 5 < 5	MCEDIS	< 5	< 5		
MIDE	ug/kg	< 5	MCERTS	< 5	< 5		
trans-1,2-Dichloroethene	ug/kg	< 5	MCERIS	< 5	< 5		
1,1-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5		
cis-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5		
2,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5		
Chloroform	ug/ka	< 5	MCERTS	< 5	< 5		
Bromochloromethane	ua/ka	< 5	MCERTS	< 5	< 5	Ī	
1.1 1-Trichloroethane	ua/ka	< 5	MCFRTS	- 5 - 5	~ 5		1
1 1-Dichloropropopo	ug/kg	< 10	MCEDTE	 10 	/ J	<u> </u>	t
	uy/ky	< 10 	MCERTS	< 10	< 10		
	ug/kg	< 5	MCERIS	< 5	< 5		
1,2-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5		
Benzene	ug/kg	< 2	MCERTS	< 2	< 2		
1,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5		
Trichloroethene	ug/kg	< 5	MCERTS	< 5	< 5		
Bromodichloromethane	ua/ka	< 5	MCERTS	< 5	< 5		
Dibromomethane	ua/ka	< 5	MCERTS	< 5	< 5		
TAME	ug/kg	< 5	MCEPTS	< 5	< 5		
	ug/kg	1	MCEDIC	 J 	< J 		
cis-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5		
l oluene	ug/kg	< 5	MCERTS	< 5	< 5		
trans-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5		
1,1,2-Trichloroethane	ug/kg	< 10	MCERTS	< 10	< 10		
1,3-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5		
Tetrachloroethene	ua/ka	< 5	MCERTS	< 5	9		
Dibromochloromethane	ua/ka	< 5	MCERTS	< 5	< 5		
1.2-Dibromoethane	ug/kg	< 5	MCEPTS	< 5 < 5			
1,2-Dibiointoethane	ug/kg	1	MCEDIC	< J 2 J	< 1		
	ug/Kg	< 5	MOTOTO	< 5	< 5	l	
1,1,1,2-1 etrachloroethane	ug/kg	< 5	MCERIS	< 5	< 5		
Ethyl Benzene	ug/kg	< 2	MCERTS	< 2	< 2		
m,p-Xylene	ug/kg	< 2	MCERTS	< 2	< 2		
o-Xylene	ug/kg	< 2	MCERTS	< 2	< 2		
Styrene	ug/ka	< 5	MCERTS	< 5	< 5		
Bromoform	ua/ka	< 10	MCERTS	< 10	< 10	Ī	
Isopropylbenzene	ua/ka	< 5	MCERTS	< 5	< 5		
1 1 2 2-Tetrachloroethano		~ 5	MCEDTE	< J _ r		<u> </u>	
	ug/kg	~ 5	MCEDTO	< 0 . F	< 0		1
1,2,3-ITICNIOropropane	ug/Kg	< 5	MULERIS	< 5	< 5		
n-Propylbenzene	ug/kg	< 5	MCERTS	< 5	< 5		4
Bromobenzene	ug/kg	< 5	MCERTS	< 5	< 5		
2-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5		
1,3,5-Trimethylbenzene	ug/kg	< 5	MCERTS	< 5	< 5		
4-Chlorotoluene	ug/ka	< 5	MCERTS	< 5	< 5		
tert-Butvlbenzene	ua/ka	< 5	MCERTS	< 5	< 5		1
1.2.4-Trimethylbenzene	ua/ka	< 5	MCFRTS	< 5	< 5	1	1
sec-Butylbonzona	ug/kg	7	MCEDTE	- 1			1
sec-butyiberizerie	uy/ky	< 5	MOTOTO	< 0 . F	< 0	l	
p-isopropyitoiuene	ug/kg	< 5	MCERIS	< 5	< 5		
1,3-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5		
1,4-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5		Į
n-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5		
1,2-Dichlorobenzene	ug/ka	< 5	MCERTS	< 5	< 5		
.,2-Dibromo-3-chloropropane	ua/ka	< 10	MCERTS	< 10	< 10	Ī	
Hexachlorobutadiene	ua/ka	< 5	MCERTS	< 5	< 5		1

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate	- PCB (7 Congener	s)				
DETS Report No: 19-1671	L8		Date Sampled	26/11/19	26/11/19	
Herts and Essex Site Inve	stigations		Time Sampled	None Supplied	None Supplied	
Site Reference: Former C	herry Garden		TP / BH No	BH1	BH2	
School, Bermondsey, Lone	don, SE16 3XU					
Project / Job Ref: 15629			Additional Refs	None Supplied	None Supplied	
Order No: 15629			Depth (m)	0.40	0.40	
Reporting Date: 04/12/2	019	D	ETS Sample No	449830	449832	
Determinand	Unit	RL	Accreditation			
PCB Congener 28	mg/kg	: 0.008	NONE	< 0.008	< 0.008	
PCB Congener 52	mg/kg	0.008	NONE	< 0.008	< 0.008	
PCB Congener 101	ma/ka	: 0.008	NONE	< 0.008	< 0.008	
	iiig/kg		HONE	× 0.000	101000	
PCB Congener 118	mg/kg	0.008	NONE	< 0.008	< 0.008	
PCB Congener 118 PCB Congener 138	mg/kg mg/kg	< 0.008	NONE NONE	< 0.008 < 0.008	< 0.008 < 0.008	
PCB Congener 118 PCB Congener 138 PCB Congener 153	mg/kg mg/kg mg/kg	 0.008 0.008 0.008 0.008 	NONE NONE NONE	< 0.008 < 0.008 < 0.008 < 0.008	< 0.008 < 0.008 < 0.008 < 0.008	
PCB Congener 118 PCB Congener 138 PCB Congener 153 PCB Congener 180	mg/kg mg/kg mg/kg mg/kg	 0.008 0.008 0.008 0.008 0.008 	NONE NONE NONE NONE	< 0.008 < 0.008 < 0.008 < 0.008 < 0.008	< 0.008 < 0.008 < 0.008 < 0.008 < 0.008	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 19-16718	
Herts and Essex Site Investigations	
Site Reference: Former Cherry Garden School, Bermondsey, London, SE16 3XU	
Project / Job Ref: 15629	
Order No: 15629	
Reporting Date: 04/12/2019	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
449830	BH1	None Supplied	0.40	10.4	Brown sandy clay with stones
449831	BH1	None Supplied	0.70	15.8	Brown sandy clay
449832	BH2	None Supplied	0.40	22.2	Brown clayey sand with stones
449833	BH2	None Supplied	0.80	10.3	Brown sandy clay

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm VS}$ Unsuitable Sample $^{\rm US}$

Soil Analysis Certificate - Methodology & Miscellaneous Information	
DETS Report No: 19-16718	
Herts and Essex Site Investigations	
Site Reference: Former Cherry Garden School, Bermondsey, London, SE16 3XU	
Project / Job Ref: 15629	
Order No: 15629	
Reporting Date: 04/12/2019	

Matrix	Analysed	Determinand	Brief Method Description	Method
Soil		Boron - Water Soluble	Determination of water caluble berge in call by 21 bet water outract followed by ICD OEC	E012
Soil			Determination of Water Soluble boron In Soli by 2:1 not water extract followed by ICP-OES	E012 E001
Soil	AR	BIEA	Determination of BTEX by headspace GC-MS	E001
Soil	D	Columnia Water Coluble (2:1)	Determination of caloris in soil by adua-regia digestion rollowed by ICP-OES	E002
5011	D	Chioride - Water Soluble (2:1)	Determination of chioride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of nexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	FPH (C10 - C40)	Determination of acetone/becane extractable hydrocarbons by GC-EID	F004
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	F004
5011	7.0.0	EPH TEXAS (C6-C8 C8-C10 C10-C12	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	2001
Soil	AR		headsnare GC-MS	E004
Soil	D	Eluoride - Water Soluble	Determination of Eluoride by extraction with water & analysed by ion chromatography	F009
501	0		Determination of fraction of organic carbon water a damaged by for chimatography	2005
Soil	D	FOC (Fraction Organic Carbon)	titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muttle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR	pÁ	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D	Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCI followed by ICP-OES	E013
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	F009
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of water soluble sulphate by extraction with water followed by ICP-OES	F014
Soil	AR	Sulphide	Determination of sulphide by distillation followed by colorimetry	F018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OFS	E024
			Determination of semi-volatile organic compounds by extraction in acetone and hevane followed by	
Soil	AR	SVOC	GC-MS patermination of this grapate by outraction in coursis cade fallowed by acidification fallowed by	E006
Soil	AR	Thiocyanate (as SCN)	addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	F011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) subpate	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
5011	AK	VULS	Determination of volatile organic compounds by neadspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried

Site ref	Former Cherry Garden School, Cherry House Road, Bermondsey, London SE16.3XL	
Data description	Made Ground	soil & groundwate
Contaminant(s)	Lead	
Test scenario	Planning: is true mean lower than critical concentration (μ < Cc)? \checkmark	
Date	16 12 19	
User details	CS Gray	<u>\</u>
Statistics calculate	or (version 1)	Input data

This spreadsheet has been produced based on the document 'Guidance on Comparing Soil Contamination Data with a Critical Concentration (CIEH/CL:AIRE, 2008)'. Users of this spreadsheet should always refer to this guidance, the User Manual and to relevant guidance on UK legislation and policy, in order to understand how the procedure should be applied in an appropriate context.

ESI Ltd (ESI) do not promise that the spreadsheet will provide any particular facilities or functions. The user must ensure that the spreadsheet meets their needs and they remain solely responsible for the competent use of the spreadsheet. Users are entirely responsible for the consequences of any use of the spreadsheet, ESI do not provide any warranty about the fitness for purpose or performance of any part of the spreadsheet. We do not promise that the media will always be free from defects, computer viruses, software locks or other similar code or that the operation of the spreadsheet will be uninterrupted or error free. The user should carry out all necessary virus checks prior to installing on their computing system.

© ESI Ltd. 2008

Go to	Go to summary			Data sheet							Project details		
Easting	Northing	Sample ID	Lead										
		WS1	50										
		WS2	201										
		WS4	12										
		WS6	107										
		WS6	108										
		WS6	13										
		WS7	432								 -		
			61										
			204										
		BH2	174										
		BH2	44										
											1		
											1		

#REF!	Lead										
Critical concentration C	200										
	200										
Notos											
Notes											
Sampla siza n	12	0	0	0	0	0	0	0	0	0	
Sample size, if	12	U No Doto					U No Doto	U No Doto	U No Doto		
Standard doviation s	122.410007	NO Data	NO Data	NO Data	NO Data	NO Data	NO Data	INO Data	NO Data	NO Data	
Number of non-detects	110.00700										
Set non-detect values to:		Lielf detection limit	Lielf detection limit	Lielf detection limit	Unif detection limit	Lielf detection limit	Lielf detection limit	Light detection limit	Lielf detection limit	Uplf detection limit	
Outliere?		Hair detection limit	Hair detection limit		Han detection limit					Hair detection limit	
Distribution	Nennermel										
Statistical approach		Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	
Statistical approach		I	1								
Test scenario:	Planning: is true mean lower than critical concentration (µ < Cc)?				Evidence	e level required:	95%	Use Normal distribution to test for outliers			
t statistic, t ₀ (or k ₀)	-2.266710212										
Upper confidence limit (on true mean concentration, μ)	271.609937										
Evidence level	84%										
Base decision on:	evidence level										
Result	µ≈≥ Cc										
Select dataset	ΟΥ	ΟΥ	ΘY	ΟΥ	ΟΥ	ΟΥ	ΟΥ	ΟΥ	ΟΥ	ΟY	
Back to data	Go to	outlier te	st	Go to no	ormality te	st	Show individual summary				

