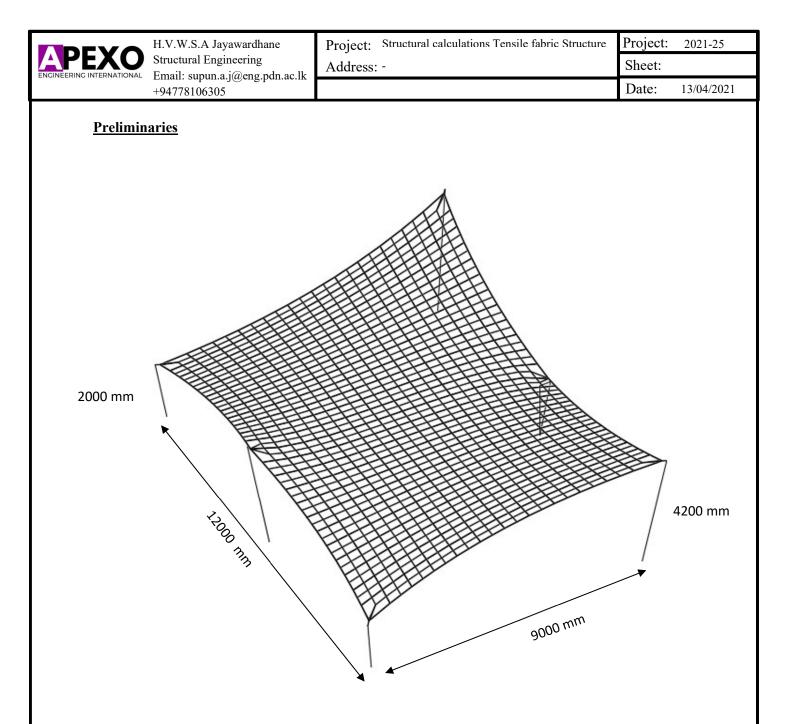

# STRUCTURAL CALCULATIONS

PER IBC 2018, BS EN 1993 Eurocode 3



FOR TENSION FABRIC STRUCTURES

APRIL 07 2021


**DESIGN INFORMATION** 

H.V.W.S. A Jayawardhane B.sc Eng(Hons) ,AMIE(SL), GREEN SL\*AP (GBCSL)



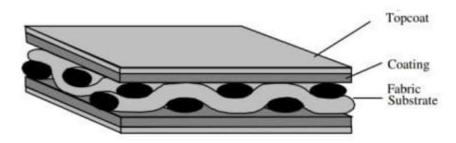
# TABLE OF CONTENTS

- 1. Preliminaries
- 2. Tensile Fabric Material Properties
- 3. Design Calculations
  - a. Wind Loading
  - b. Tensile fabric analysis
  - c. Steel Column Design -1
  - d. Steel Column Design-2
  - e. Pad Footing Design
- 4. Conclusion



# **General Dimensions of the Structure**

# **Dead Loads**


| PVC Tensile Fabric | 0.006 | kN/m2 |
|--------------------|-------|-------|
| Steel Members      | 77    | kN/m3 |
| Live Loads         |       |       |
| Roof Live Load     | 0.2   | kN/m2 |
| Snow Load(min)     | 0.2   | kN/m2 |
| Wind Load(min)     | 0.5   | kN/m2 |



| Project: Structural calculations Tensile fabric Structure | Project: | 2021-25    |
|-----------------------------------------------------------|----------|------------|
| Address: -                                                | Sheet:   |            |
|                                                           | Date:    | 13/04/2021 |

### **Tensile Fabric Material Properties**

A fabric material consists of three main components are fabric substrate, coating, and top coating.



### 1. Tensile Strength

It is a basic indicator of relative strength. It is fundamental for architectural fabrics that function primarily in tension.

### 2. Tear Strength

Tear strength is important in that if a fabric ruptures in place, it generally will do so by tearing.

### 3. Adhesion Strength

It is a measure of the strength of the bond between the base material and coating or film laminate that protects it. It is useful for evaluating the strength of welded joints for connecting strips of fabric into fabricated assembly.

### 4. Flame Retardancy

Fabric that contains a flame-retardant coating can withstand even a very hot point source. However, it can still burn if a large ignition source is present.

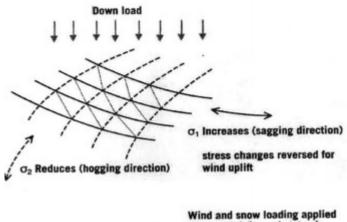
*PVC Tensile fabric Material Properties: Let's take the Tear Strength and Tensile Strength of the fabric Material as 0.3 kN, 54 kN/m and the density as 580 g/m2. Thickness of the fabric is 0.48 mm.* 

### **Tear Strength:**

Warp: 300 N Weft : 230 N

# **Tensile Strength:**

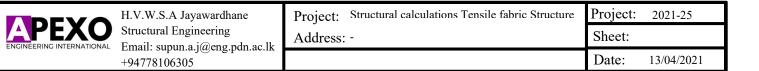
Warp: 54 kN/m Weft : 46 kN/m




Date:

13/04/2021

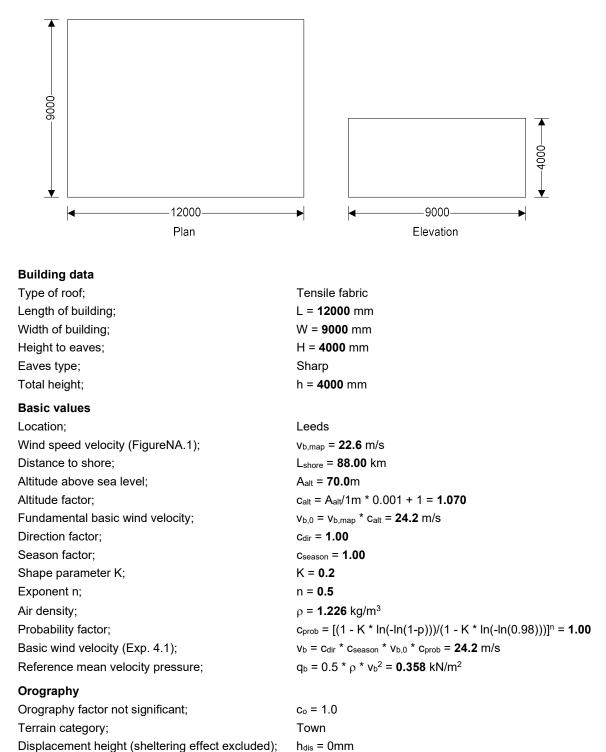
Wind loads are the main consideration for membrane structures. In order to resist these loads, the membrane must have sufficient tensioning and curvature while load coefficients are easily assessable in most places, other tests such as a wind tunnel test maybe necessary for larger and more complex structures to determine loading distributions.


When loading is applied to the membrane, equilibrium is regained by changes in both the geometry of the membrane as well as the change in stress. Other structures, such as beams, have shear and flexural stiffness and therefore can resist the loads without significant deflection. However, membranes, which lack both shear and flexural stiffness, must "make up" for this Down load by big deflections.



Wind and snow loading applied to current deformed state via membrane element surface

Figure 15: The change in stress in the sagging and hogging directions of a membrane under vertical load (Koch et al., 2004)


The span: sag ratio should be kept at less than 15. With increased spans, lower ratio and/or cable reinforcement is needed.



### **Design Calculations**

### WIND LOADING

In accordance with EN1991-1-4:2005+A1:2010 and the UK national annex





| The velocity pressure for the windward face of as 1 part as the height h is less than b (cl.7.2.2) | the building with a 0 degree wind is to be considered  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| The velocity pressure for the windward face of                                                     | the building with a 90 degree wind is to be considered |
| as 1 part as the height h is less than b (cl.7.2.2)                                                |                                                        |
| Peak velocity pressure - windward wall - Wind                                                      |                                                        |
| Reference height (at which q is sought);                                                           | z = <b>4000</b> mm                                     |
| Displacement height (sheltering effects excluded);                                                 |                                                        |
| Exposure factor (Figure NA.7);                                                                     | c <sub>e</sub> = <b>1.78</b>                           |
| Exposure correction factor (Figure NA.8);                                                          | Ce,T = <b>0.80</b>                                     |
| Peak velocity pressure;                                                                            | $q_p = c_e * c_{e,T} * q_b = 0.51 \text{ kN/m}^2$      |
| Structural factor                                                                                  |                                                        |
| Structural damping;                                                                                | δ <sub>s</sub> = 0.100                                 |
| Height of element;                                                                                 | h <sub>part</sub> = <b>4000</b> mm                     |
| Size factor (Table NA.3);                                                                          | c <sub>s</sub> = <b>0.856</b>                          |
| Dynamic factor (Figure NA.9);                                                                      | c <sub>d</sub> = <b>1.007</b>                          |
| Structural factor;                                                                                 | $c_{sCd} = c_s \times c_d = 0.862$                     |
| Peak velocity pressure - windward wall - Wind                                                      | 90 deg and roof                                        |
| Reference height (at which q is sought);                                                           | z = <b>4000</b> mm                                     |
| Displacement height (sheltering effects excluded);                                                 | h <sub>dis</sub> = <b>0</b> mm                         |
| Exposure factor (Figure NA.7);                                                                     | c <sub>e</sub> = 1.78                                  |
| Exposure correction factor (Figure NA.8);                                                          | c <sub>e,T</sub> = <b>0.80</b>                         |
| Peak velocity pressure;                                                                            | $q_p = c_e * c_{e,T} * q_b = 0.51 \text{ kN/m}^2$      |
| Structural factor                                                                                  |                                                        |
| Structural damping;                                                                                | $\delta_s = 0.100$                                     |
| Height of element;                                                                                 | h <sub>part</sub> = <b>4000</b> mm                     |
| Size factor (Table NA.3);                                                                          | c <sub>s</sub> = <b>0.868</b>                          |
| Dynamic factor (Figure NA.9);                                                                      | c <sub>d</sub> = <b>1.012</b>                          |
| Structural factor;                                                                                 | $c_{sCd} = c_s \times c_d = 0.879$                     |
| Peak velocity pressure for internal pressure                                                       |                                                        |
| Peak velocity pressure – internal (as roof press.);                                                | q <sub>p,i</sub> = <b>0.51</b> kN/m <sup>2</sup>       |
| Pressures and forces                                                                               |                                                        |
| Net pressure;                                                                                      | $p = c_{sCd} * q_p * c_{pe} - q_{p,i} * c_{pi};$       |
| Net force;                                                                                         | $F_w = p_w * A_{ref};$                                 |
| Roof load case 1 - Wind 0, cpi 0.20, - cpe                                                         |                                                        |

Roof load case 1 - Wind 0, cpi 0.20, - cpe

| Zone     | Ext pressure<br>coefficient<br>c <sub>pe</sub> | Peak velocity<br>pressure<br>q <sub>P</sub> , (kN/m²) | Net pressure<br>p (kN/m²) | Area<br>A <sub>ref</sub> (m²) | Net force<br>F <sub>w</sub> (kN) |
|----------|------------------------------------------------|-------------------------------------------------------|---------------------------|-------------------------------|----------------------------------|
| F (-ve)  | -2.00                                          | 0.51                                                  | -0.99                     | 3.20                          | -3.16                            |
| G (-ve)  | -1.40                                          | 0.51                                                  | -0.72                     | 6.40                          | -4.63                            |
| H (-ve)  | -0.70                                          | 0.51                                                  | -0.41                     | 38.40                         | -15.86                           |
| l (-ve)  | -0.20                                          | 0.51                                                  | -0.19                     | 60.00                         | -11.49                           |
| Tatalyza | rtiaal not forces                              |                                                       | E - 2544 LNI              |                               |                                  |

Total vertical net force;

F<sub>w,v</sub> = -35.14 kN

Total horizontal net force; Walls load case 1 - Wind 0, cpi 0.20, - cpe F<sub>w,h</sub> = **0.00** kN

H.V.W.S.A Jayawardhane Structural Engineering Email: supun.a.j@eng.pdn.ac.lk +94778106305

Project: Structural calculations Tensile fabric Structure Project: 2021-25 Sheet: Address: -

Date:

13/04/2021

| Zone | Ext pressure<br>coefficient<br>c <sub>pe</sub> | Peak velocity<br>pressure<br>q <sub>P</sub> , (kN/m²) | Net pressure<br>p (kN/m²) | Area<br>A <sub>ref</sub> (m²) | Net force<br>F <sub>w</sub> (kN) |
|------|------------------------------------------------|-------------------------------------------------------|---------------------------|-------------------------------|----------------------------------|
| A    | -1.20                                          | 0.51                                                  | -0.63                     | 6.40                          | -4.06                            |
| В    | -0.80                                          | 0.51                                                  | -0.46                     | 25.60                         | -11.71                           |
| С    | -0.50                                          | 0.51                                                  | -0.32                     | 4.00                          | -1.30                            |
| D    | 0.73                                           | 0.51                                                  | 0.22                      | 48.00                         | 10.50                            |
| E    | -0.35                                          | 0.51                                                  | -0.26                     | 48.00                         | -12.42                           |

### **Overall loading**

Equiv leeward net force for overall section; Net windward force for overall section; Lack of correlation (cl.7.2.2(3) – Note); Overall loading overall section;

FI = Fw,wE = -12.4 kN F<sub>w</sub> = F<sub>w,wD</sub> = **10.5** kN f<sub>corr</sub> = **0.85**; as h/W is 0.444  $F_{w,D} = f_{corr} * (F_w - F_l + F_{w,h}) = 19.5 \text{ kN}$ 

### Roof load case 2 - Wind 90, cpi 0.20, - cpe

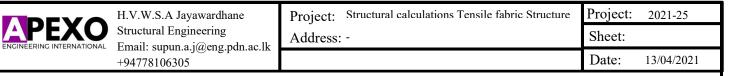
| Zone     | Ext pressure<br>coefficient<br>c <sub>pe</sub> | Peak velocity<br>pressure<br>q <sub>P</sub> , (kN/m²) | Net pressure<br>p (kN/m²)           | Area<br>A <sub>ref</sub> (m²) | Net force<br>F <sub>w</sub> (kN) |
|----------|------------------------------------------------|-------------------------------------------------------|-------------------------------------|-------------------------------|----------------------------------|
| F (-ve)  | -2.00                                          | 0.51                                                  | -1.01                               | 3.20                          | -3.22                            |
| G (-ve)  | -1.40                                          | 0.51                                                  | -0.74                               | 4.00                          | -2.94                            |
| H (-ve)  | -0.70                                          | 0.51                                                  | -0.42                               | 28.80                         | -12.07                           |
| l (-ve)  | -0.20                                          | 0.51                                                  | -0.19                               | 72.00                         | -13.91                           |
| Total ve | ertical net force;                             |                                                       | F <sub>w,v</sub> = <b>-32.14</b> kN |                               |                                  |

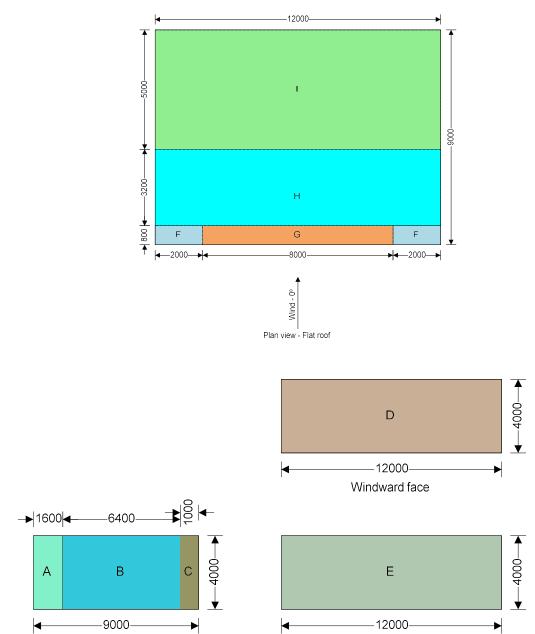
Total vertical net force;

Total horizontal net force;

F<sub>w,h</sub> = 0.00 kN

### Walls load case 2 - Wind 90, cpi 0.20, - cpe

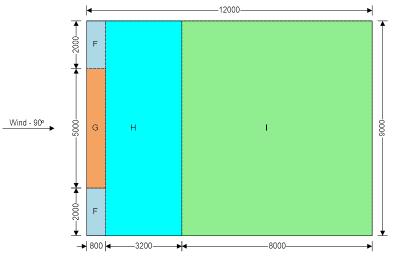

| Zone | Ext pressure<br>coefficient<br>c <sub>pe</sub> | Peak velocity<br>pressure<br>q <sub>P</sub> , (kN/m²) | Net pressure<br>p (kN/m²) | Area<br>A <sub>ref</sub> (m²) | Net force<br>F <sub>w</sub> (kN) |
|------|------------------------------------------------|-------------------------------------------------------|---------------------------|-------------------------------|----------------------------------|
| А    | -1.20                                          | 0.51                                                  | -0.64                     | 6.40                          | -4.13                            |
| В    | -0.80                                          | 0.51                                                  | -0.46                     | 25.60                         | -11.88                           |
| С    | -0.50                                          | 0.51                                                  | -0.33                     | 16.00                         | -5.26                            |
| D    | 0.71                                           | 0.51                                                  | 0.22                      | 36.00                         | 7.86                             |
| E    | -0.32                                          | 0.51                                                  | -0.25                     | 36.00                         | -8.94                            |


### **Overall loading**

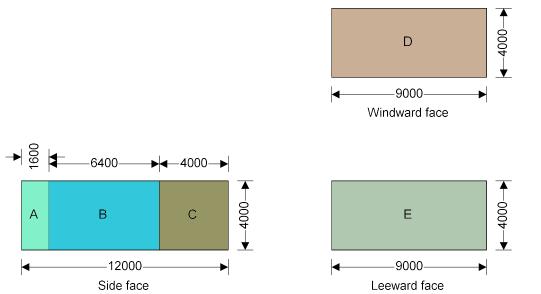
Equiv leeward net force for overall section; Net windward force for overall section; Lack of correlation (cl.7.2.2(3) – Note); Overall loading overall section;

FI = Fw,wE = -8.9 kN F<sub>w</sub> = F<sub>w,wD</sub> = **7.9** kN f<sub>corr</sub> = **0.85**; as h/L is 0.333

 $F_{w,D} = f_{corr} * (F_w - F_l + F_{w,h}) = 14.3 \text{ kN}$ 





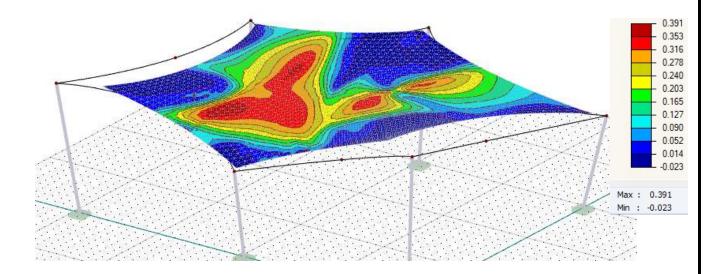


Side face

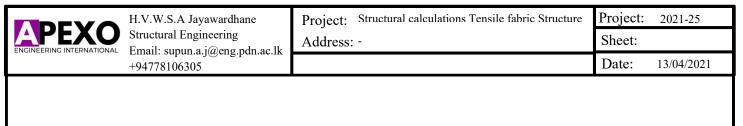


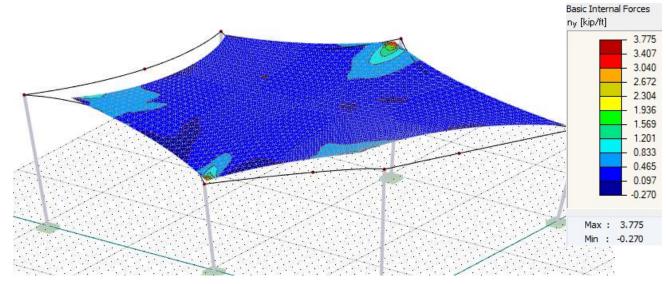
| H.V.W.S.A Jayawardhane                         | Project: Structural calculations Tensile fabric Structure | Project: | 2021-25   |
|------------------------------------------------|-----------------------------------------------------------|----------|-----------|
| Structural Engineering                         | Address: -                                                | Sheet:   |           |
| Email: supun.a.j@eng.pdn.ac.lk<br>+94778106305 |                                                           | Date: 1  | 3/04/2021 |
|                                                |                                                           |          |           |



Plan view - Flat roof





А


4



# **Tensile Fabric Analysis**

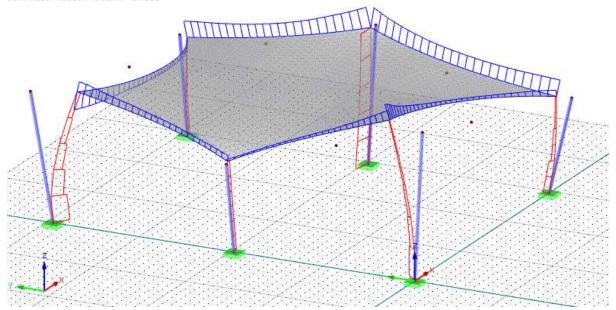




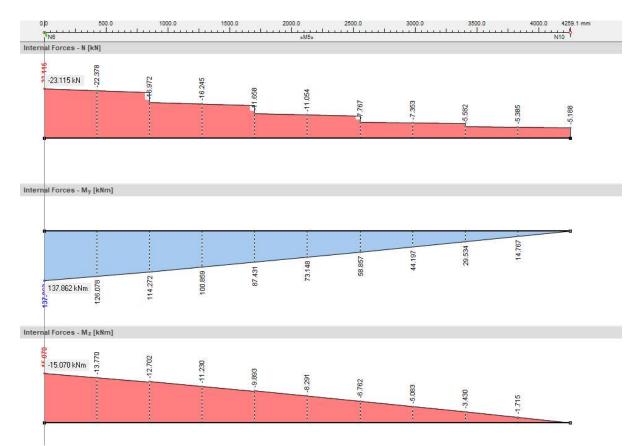


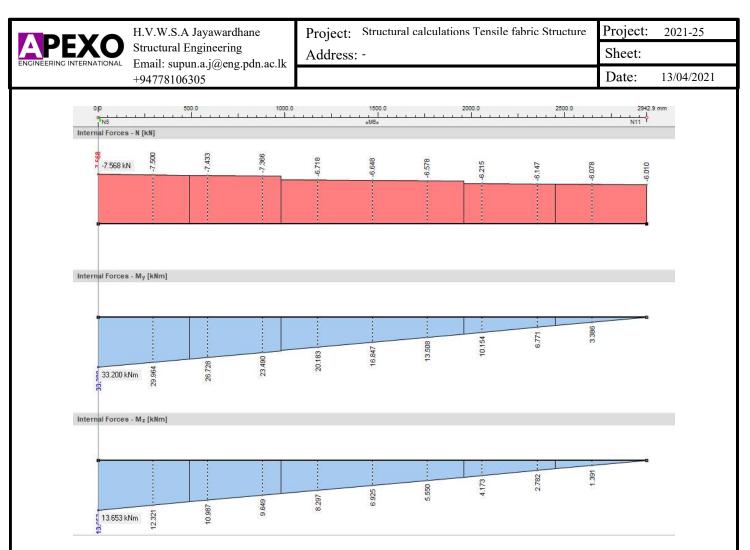
# **Finite Element Model for the Tensile Fabric**

# Loads acting on the fabric


| Roof Live Load | 0.2  | kN/m2 |
|----------------|------|-------|
| Wind Load      | 0.45 | kN/m2 |

# Sail Fabric Resultant Tensile Loading table


| Load Case                 | Direction | Maximum<br>Force | Minimum<br>Force | Utility<br>Factor | Status    |
|---------------------------|-----------|------------------|------------------|-------------------|-----------|
| 1.35DL+1.5LL+0.9WL+0.75SL | F11       | 5.7              | -0.336           | 0.12              | Ok        |
| 1.35DL+1.5LL+0.9WL+0.75SL | F22       | 55               | -3.93            | 1.01              | On Margin |


|                           | H.V.W.S.A Jayawardhane                                   | Project: Structural calculations Tensile fabric Structure | Project: 2021-25 |
|---------------------------|----------------------------------------------------------|-----------------------------------------------------------|------------------|
| ENCINEERING INTERNATIONAL | Structural Engineering<br>Email: supun.a.j@eng.pdn.ac.lk | Address: -                                                | Sheet:           |
|                           | +94778106305                                             |                                                           | Date: 13/04/2021 |

# Analysis of Structural Members nternal Forces N [kip] 201 : 1.35G + 1.5QiA + 0.9Qw1 + 0.75Qs



# **Steel Column Analysis**





SELECTED CHS SECTION ( 4200 MM HEIGHT) = CHS 244.5X 8

SELECTED CHS SECTION (2900 MM HEIGHT) = CHS 168.3X6.3

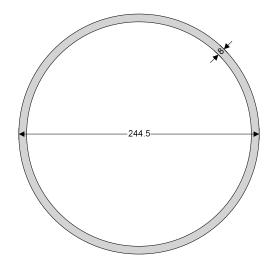
# STEEL COLUMN DESIGN

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

| Description              | Unit | Provided | Required | Utilisation | Result |
|--------------------------|------|----------|----------|-------------|--------|
| Shear resistance (y-y)   | kN   | 513      | 25       | 0.049       | PASS   |
| Shear resistance (z-z)   | kN   | 513      | 25       | 0.049       | PASS   |
| Axial compression        | kN   | 1397     | 25       | 0.018       | PASS   |
| Bending resistance (y-y) | kNm  | 105      | 100      | 0.951       | PASS   |
| Bending resistance (z-z) | kNm  | 105      | 16       | 0.152       | PASS   |
| Biaxial bending          |      |          |          | 0.929       | PASS   |
| Buckling in compression  | kN   | 1220     | 25       | 0.020       | PASS   |
| Buckling in bending      | kNm  | 105      | 100      | 0.951       | PASS   |
| Combined buckling        |      |          |          | 0.652       | PASS   |

# Partial factors - Section 6.1

| Resistance of cross-sections; | γмо = <b>1</b> |
|-------------------------------|----------------|
|-------------------------------|----------------|


Resistance of members to instability;  $\gamma_{M1} = 1$ 

Resistance of cross-sections in tension to fracture;  $\gamma_{M2}$  = 1.1



H.V.W.S.A Jayawardhane Structural Engineering Email: supun.a.j@eng.pdn.ac.lk +94778106305

| Project: Structural calculations Tensile fabric Structure | Project: | 2021-25    |
|-----------------------------------------------------------|----------|------------|
| Address: -                                                | Sheet:   |            |
|                                                           | Date:    | 13/04/2021 |



#### CHS 244.5x8.0 (Tata Steel Celsius)

Diameter, d, 244,5 mm Mass of section, Mass, 46.7 kg/m Section thickness, t, 8 mm Area of section, A, 5944 mm<sup>2</sup> Radius of gyration about y-axis,  $i_y$ , 83.663 mm Radius of gyration about z-axis,  $i_z$ , 83.663 mm Elastic section modulus about y-axis,  $W_{el,y}$  340323 mm<sup>3</sup> Elastic section modulus about z-axis,  $W_{el,y}$  340323 mm<sup>3</sup> Plastic section modulus about y-axis,  $W_{pl,y}$  447629 mm<sup>3</sup> Plastic section modulus about z-axis,  $W_{pl,y}$  447629 mm<sup>3</sup> Second moment of area about y-axis,  $l_y$  41604467 mm<sup>4</sup>

| Column details        |                                                        |
|-----------------------|--------------------------------------------------------|
| Column section        | CHS 244.5x8.0                                          |
| Steel grade           | S235H                                                  |
| Yield strength        | f <sub>y</sub> = <b>235</b> N/mm <sup>2</sup>          |
| Ultimate strength     | f <sub>u</sub> = <b>360</b> N/mm <sup>2</sup>          |
| Modulus of elasticity | E = <b>210</b> kN/mm <sup>2</sup>                      |
| Poisson's ratio       | v = <b>0.3</b>                                         |
| Shear modulus         | G = E / [2 × (1 + v)] = <b>80.8</b> kN/mm <sup>2</sup> |
|                       |                                                        |

### **Column geometry**

### **Column loading**

| Axial load                                        | N <sub>Ed</sub> = <b>25</b> kN (Compression)      |
|---------------------------------------------------|---------------------------------------------------|
| Major axis moment at end 1 - Bottom               | M <sub>y,Ed1</sub> = <b>100.0</b> kNm             |
| Major axis moment at end 2 - Top                  | M <sub>y,Ed2</sub> = <b>0.0</b> kNm               |
|                                                   | Major axis bending is single curvature            |
| Minor axis moment at end 1 - Bottom               | M <sub>z,Ed1</sub> = <b>16.0</b> kNm              |
| Minor axis moment at end 2 - Top                  | M <sub>z,Ed2</sub> = <b>0.0</b> kNm               |
|                                                   | Minor axis bending is single curvature            |
| Major axis shear force                            | V <sub>y,Ed</sub> = <b>25</b> kN                  |
| Minor axis shear force                            | V <sub>z,Ed</sub> = <b>25</b> kN                  |
| Buckling length for flexural buckling - Major axi | s                                                 |
| End restraint factor;                             | K <sub>y</sub> = <b>1.200</b>                     |
| Buckling length;                                  | $L_{cr_y} = L_y \times K_y = $ <b>5040</b> mm     |
| Buckling length for flexural buckling - Minor axi | is                                                |
| End restraint factor;                             | K <sub>z</sub> = 1.200                            |
| Buckling length;                                  | $L_{cr_z} = L_z \times K_z = $ <b>5040</b> mm     |
| Section classification (Table 5.2)                |                                                   |
| Coefficient depending on fy;                      | ε = √(235 N/mm² / f <sub>y</sub> ) = <b>1.000</b> |
| Ratio of d/t;                                     | ratio = d / t = <b>30.56</b>                      |

|                           | H.V.W.S.A Jayawardhane                                                    | Project: Structural calculations Tensile fabric Structure                                                                                                        | Project: 2021-25 |  |
|---------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
| <b>APEXO</b>              | Structural Engineering<br>Email: supun.a.j@eng.pdn.ac.lk                  | 5                                                                                                                                                                | Sheet:           |  |
| ENGINEERING INTERNATIONAL |                                                                           | Address: -                                                                                                                                                       |                  |  |
|                           | +94778106305                                                              |                                                                                                                                                                  | Date: 13/04/2021 |  |
| Limit                     | of d/t for along 1 agotion:                                               | $Limit_1 = 50 \times \epsilon^2 = 50.00$                                                                                                                         |                  |  |
|                           | of d/t for class 1 section;                                               | $Limit_{2} = 70 \times \epsilon^{2} = 70.00$                                                                                                                     |                  |  |
|                           | of d/t for class 2 section;                                               |                                                                                                                                                                  |                  |  |
| Limit                     | of d/t for class 3 section;                                               | $\text{Limit}_3 = 90 \times \varepsilon^2 = 90.00$                                                                                                               | ction is class 1 |  |
| Resid                     | stance of cross section (cl. 6.2                                          |                                                                                                                                                                  |                  |  |
|                           | -                                                                         | 1                                                                                                                                                                |                  |  |
|                           | r - Major axis (cl. 6.2.6)<br>gn shear force;                             | V <sub>y,Ed</sub> = <b>25.0</b> kN                                                                                                                               |                  |  |
|                           | r area;                                                                   | $A_{vy} = 2 * A / \pi = ;3784; mm^2$                                                                                                                             |                  |  |
|                           | ic shear resistance;                                                      | $V_{pl,y,Rd} = A_{vy} \times (f_y / \sqrt{3}) / \gamma_{M0} = 513.4 \text{ kN}$                                                                                  |                  |  |
| Flash                     | ic silear resistance,                                                     | $V_{pl,y,Rd} = Avy \times (iy / V(3)) / YM0 = 313.4 KNV_{v,Ed} / V_{pl,v,Rd} = 0.049$                                                                            |                  |  |
|                           |                                                                           | PASS - Shear resistance exceeds the desig                                                                                                                        | an shear force   |  |
|                           | V                                                                         | $_{Ed} <= 0.5*V_{pl,y,Rd}$ - No reduction in fy required for bend                                                                                                | -                |  |
| Chao                      | -                                                                         |                                                                                                                                                                  | ing/axial loloc  |  |
|                           | r - Minor axis (cl. 6.2.6)                                                |                                                                                                                                                                  |                  |  |
| -                         | yn shear force;<br>r area:                                                | $V_{z,Ed} = 25.0 \text{ kN}$                                                                                                                                     |                  |  |
|                           | ,                                                                         | $A_{vz} = 2 * A / \pi = ;$ <b>3784</b> ; mm <sup>2</sup>                                                                                                         |                  |  |
| Plast                     | ic shear resistance;                                                      | $V_{pl,z,Rd} = A_{vz} \times (f_y / \sqrt{3}) / \gamma_{M0} = 513.4 \text{ kN}$                                                                                  |                  |  |
|                           |                                                                           | V <sub>z,Ed</sub> / V <sub>pl,z,Rd</sub> = 0.049<br>PASS - Shear resistance exceeds the desig                                                                    | an shoar forco   |  |
|                           | V-                                                                        | $_{Ed} <= 0.5*V_{pl,z,Rd}$ - No reduction in fy required for bend                                                                                                | -                |  |
|                           |                                                                           |                                                                                                                                                                  | ing/axial lolee  |  |
|                           | pression (cl. 6.2.4)                                                      |                                                                                                                                                                  |                  |  |
| -                         | yn force;                                                                 | $N_{Ed} = 25 \text{ kN}$                                                                                                                                         |                  |  |
| Desig                     | yn resistance;                                                            | $N_{c,Rd} = N_{pl,Rd} = A \times f_y / \gamma_{M0} = 1397 \text{ kN}$<br>N <sub>Ed</sub> / N <sub>c.Rd</sub> = <b>0.018</b>                                      |                  |  |
|                           | PA                                                                        | SS - The compression design resistance exceeds the                                                                                                               | e design force   |  |
| Dand                      |                                                                           |                                                                                                                                                                  |                  |  |
|                           | ling - Major axis (cl. 6.2.5)                                             | M = x = max(aba(M = x)) = 10                                                                                                                                     |                  |  |
|                           | gn bending moment;<br>on modulus;                                         | M <sub>y,Ed</sub> = max(abs(M <sub>y,Ed1</sub> ), abs(M <sub>y,Ed2</sub> )) = <b>10</b><br>W <sub>y</sub> = W <sub>pl.y</sub> = ; <b>447.6</b> ; cm <sup>3</sup> | U.U KINIII       |  |
|                           | n resistance;                                                             | $M_{c,y,Rd} = W_y \times f_y / \gamma_{M0} = 105.2 \text{ kNm}$                                                                                                  |                  |  |
| Desig                     |                                                                           | $M_{v,Ed} / M_{c,v,Rd} = 0.951$                                                                                                                                  |                  |  |
|                           | 1                                                                         | PASS - The bending design resistance exceeds the d                                                                                                               | esian moment     |  |
| Bond                      | ling - Major axis(cl. 6.2.5)                                              | <b>, , , , , , , , , ,</b>                                                                                                                                       | <b>j</b>         |  |
|                           | gn bending moment;                                                        | $M_{z,Ed} = max(abs(M_{z,Ed1}), abs(M_{z,Ed2})) = 16$                                                                                                            | <b>0</b> kNm     |  |
| -                         | on modulus;                                                               | $W_z = W_{pl,z} = ;447.6; \text{ cm}^3$                                                                                                                          |                  |  |
|                           | n resistance;                                                             | $M_{c.z.Rd} = W_z \times f_y / \gamma_{M0} = 105.2 \text{ kNm}$                                                                                                  |                  |  |
|                           | ,                                                                         | $M_{z,Ed} / M_{c,z,Rd} = 0.152$                                                                                                                                  |                  |  |
|                           | I                                                                         | PASS - The bending design resistance exceeds the d                                                                                                               | esign moment     |  |
| Com                       | bined bending and axial force                                             | (cl. 6.2.9)                                                                                                                                                      |                  |  |
|                           | design axial to design plastic re                                         |                                                                                                                                                                  |                  |  |
| Bend                      | ling - Major axis (cl. 6.2.9.1)                                           |                                                                                                                                                                  |                  |  |
|                           | gn bending moment;                                                        | $M_{y,Ed} = max(abs(M_{y,Ed1}), abs(M_{y,Ed2})) = 10$                                                                                                            | 0.0 kNm          |  |
| Plast                     | ic design resistance;                                                     | $M_{\text{pl},y,\text{Rd}}$ = $W_{\text{pl},y} \times f_y$ / $\gamma_{M0}$ = <b>105.2</b> kNm                                                                    |                  |  |
| Modif                     | fied design resistance;                                                   | $M_{N,y,Rd} = M_{pl,y,Rd} \times min(1, (1 - n^{1.7})) = 105.$                                                                                                   | 1 kNm            |  |
|                           |                                                                           | M <sub>y,Ed</sub> / M <sub>N,y,Rd</sub> = <b>0.952</b>                                                                                                           |                  |  |
|                           | PASS - Bending resistance in presence of axial load exceeds design moment |                                                                                                                                                                  |                  |  |
| Bend                      | ling - Minor axis (cl. 6.2.9.1)                                           |                                                                                                                                                                  |                  |  |
|                           | yn bending moment;                                                        | $M_{z,Ed} = max(abs(M_{z,Ed1}), abs(M_{z,Ed2})) = 16$                                                                                                            | 5 <b>.0</b> kNm  |  |
|                           | -                                                                         |                                                                                                                                                                  |                  |  |

|                                    | H.V.W.S.A Jayawardhane                                   | Project: Structural calculations Tensile fabric Structure | Project: 2021-25 |
|------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|------------------|
| <b>PEXO</b><br>ERING INTERNATIONAL | Structural Engineering<br>Email: supun.a.j@eng.pdn.ac.lk | Address: -                                                | Sheet:           |
|                                    | +94778106305                                             |                                                           | Date: 13/04/2021 |
|                                    |                                                          |                                                           |                  |

| Plastic design resistance;              | $M_{pl,z,Rd}$ = $W_{pl,z} \times f_y / \gamma_{M0}$ = <b>105.2</b> kNm                                                                     |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Modified design resistance;             | $M_{N,z,Rd} = M_{pl,z,Rd} \times min(1, (1 - n^{1.7})) = 105.1 \text{ kNm}$                                                                |
|                                         | $M_{z,Ed} / M_{N,z,Rd} = 0.152$                                                                                                            |
| PASS - Bending resis                    | tance in presence of axial load exceeds design moment                                                                                      |
| Biaxial bending                         |                                                                                                                                            |
| Exponent $\alpha$ ;                     | α = ; <b>2.00</b>                                                                                                                          |
| Exponent β;                             | β = ; <b>2.00</b>                                                                                                                          |
| Section utilisation at end 1;           | $UR_{CS_1} = [abs(M_{Y,Ed_1}) / M_{N,Y,Rd}]^{\alpha} + [abs(M_{Z,Ed_1}) / M_{N,Z,Rd}]^{\beta}$                                             |
| = 0.929                                 |                                                                                                                                            |
| Section utilisation at end 2;           | $UR_{CS_2}$ = [abs(M <sub>y,Ed2</sub> ) / M <sub>N,y,Rd</sub> ] $^{\alpha}$ + [abs(M <sub>z,Ed2</sub> ) / M <sub>N,z,Rd</sub> ] $^{\beta}$ |
| = 0.000                                 |                                                                                                                                            |
|                                         | PASS - The cross-section resistance is adequate                                                                                            |
| Buckling resistance (cl. 6.3)           |                                                                                                                                            |
| Yield strength for buckling resistance; | f <sub>y</sub> = <b>235</b> N/mm <sup>2</sup>                                                                                              |
| Flexural buckling - Major axis          |                                                                                                                                            |
| Elastic critical buckling force;        | $N_{cr,y} = \pi^2 \times E \times I_y / L_{cr_y^2} = 3395 \text{ kN}$                                                                      |
| Non-dimensional slenderness;            | $\overline{\lambda}_y = \sqrt{(A \times f_y / N_{cr,y})} = 0.641$                                                                          |
| Buckling curve (Table 6.2);             | a                                                                                                                                          |
| Imperfection factor (Table 6.1);        | α <sub>y</sub> = <b>0.21</b>                                                                                                               |
| Parameter $\Phi$ ;                      | $\Phi_{y} = 0.5 \times [1 + \alpha_{y} \times (\overline{\lambda}_{y} - 0.2) + \overline{\lambda}_{y}^{2}] = 0.752$                        |
| Reduction factor;                       | $\chi_y = \min(1.0, 1 / [\Phi_y + \sqrt{(\Phi_y^2 - \overline{\lambda}_y^2)}]) = 0.874$                                                    |
| Design buckling resistance;             | $N_{b,y,Rd}$ = $\chi_y \times A \times f_y$ / $\gamma_{M1}$ = <b>1220.2</b> kN                                                             |
|                                         | N <sub>Ed</sub> / N <sub>b,y,Rd</sub> = 0.02                                                                                               |
| PASS - The fle                          | exural buckling resistance exceeds the design axial load                                                                                   |
| Flexural buckling - Minor axis          |                                                                                                                                            |
| Elastic critical buckling force;        | $N_{cr,z}$ = $\pi^2 \times E \times I_z / L_{cr_z^2}$ = 3395 kN                                                                            |
| Non-dimensional slenderness;            | $\overline{\lambda}_z = \sqrt{(A \times f_y / N_{cr,z})} = 0.641$                                                                          |
| Buckling curve (Table 6.2);             | a                                                                                                                                          |
| Imperfection factor (Table 6.1);        | α <sub>z</sub> = <b>0.21</b>                                                                                                               |
| Parameter $\Phi$ ;                      | $\Phi_{z} = 0.5 \times [1 + \alpha_{z} \times (\overline{\lambda}_{z} - 0.2) + \overline{\lambda}_{z}^{2}] = 0.752$                        |
| Reduction factor;                       | $\chi_z = \min(1.0, 1 / [\Phi_z + \sqrt{(\Phi_z^2 - \overline{\lambda}_z^2)}]) = 0.874$                                                    |
| Design buckling resistance;             | $N_{b,z,Rd}$ = $\chi_z \times A \times f_y / \gamma_{M1}$ = <b>1220.2</b> kN                                                               |
|                                         | N <sub>Ed</sub> / N <sub>b,z,Rd</sub> = 0.02                                                                                               |
| PASS - The fle                          | exural buckling resistance exceeds the design axial load                                                                                   |
| Minimum buckling resistance             |                                                                                                                                            |
|                                         |                                                                                                                                            |

| Minimum buckling resistance; | $N_{b,Rd} = min(N_{b,y,Rd}, N_{b,z,Rd}) = 1220.2 \text{ kN}$ |
|------------------------------|--------------------------------------------------------------|
|                              | N <sub>Ed</sub> / N <sub>b,Rd</sub> = 0.02                   |

PASS - The axial load buckling resistance exceeds the design axial load

### Buckling resistance moment (cl.6.3.2.1)

Δ

Circular hollow section not subject to lateral torsional buckling therefore:-

| Reduction factor;                  | χ <sub>LT</sub> = <b>1.0</b>                                                             |
|------------------------------------|------------------------------------------------------------------------------------------|
| Design buckling resistance moment; | $M_{b,Rd} = \chi_{LT} \times W_y \times f_y \text{ / } \gamma_{M1} = \textbf{105.2 kNm}$ |
| Design bending moment;             | $M_{y,Ed} = max(abs(M_{y,Ed1}), abs(M_{y,Ed2})) = 100.0 \text{ kNm}$                     |
|                                    | M <sub>y,Ed</sub> / M <sub>b,Rd</sub> = 0.951                                            |

PASS - The design buckling resistance moment exceeds the maximum design moment



13/04/2021

| +94778106305                                                   |                                                    |                                                                                                             | Date:                        | 13/0  |
|----------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------|-------|
| Combined bending and axial comp                                | ression (cl. 6                                     | 5.3.3)                                                                                                      |                              |       |
| Characteristic resistance to normal fo                         | rce;                                               | N <sub>Rk</sub> = A × f <sub>y</sub> = <b>1397</b> kN                                                       |                              |       |
| Characteristic moment resistance - M                           | ajor axis;                                         | M <sub>y,Rk</sub> = W <sub>pl.y</sub> * f <sub>y</sub> = ; <b>105.2</b> ; kNm                               |                              |       |
| Characteristic moment resistance - M                           | inor axis;                                         | M <sub>z,Rk</sub> = W <sub>pl.z</sub> * f <sub>y</sub> = ; <b>105.2</b> ; kNm                               |                              |       |
| $\psi_y = if(abs(M_{y,Ed1}) \le abs(M_{y,Ed2}), M_{y,Ed2})$    | 1 / if(M <sub>y,Ed2</sub> >=0                      | 0 kNm,max(M <sub>y,Ed2</sub> ,0.0001 kNm),M <sub>y,Ed2</sub> ), M <sub>y,Ed</sub>                           | 12 /                         |       |
| if(M <sub>y,Ed1</sub> >=0 kNm,max(M <sub>y,Ed1</sub> ,0.0001 k | (Nm),M <sub>y,Ed1</sub> )) =                       | = 0.000                                                                                                     |                              |       |
| Moment distribution factor - Major axi                         | s;                                                 | $\psi_y = M_{y,Ed2} / M_{y,Ed1} = ;0.000$                                                                   |                              |       |
| Moment factor - Major axis;                                    |                                                    | $C_{my} = max(0.4, 0.6 + 0.4 \times \psi_y) = 0.600$                                                        |                              |       |
| Moment distribution factor - Minor axi                         | s;                                                 | $\psi_z = M_{z,Ed2} / M_{z,Ed1} = ;0.000$                                                                   |                              |       |
| Moment factor - Minor axis;                                    |                                                    | $C_{mz} = max(0.4, 0.6 + 0.4 \times \psi_z) = 0.600$                                                        |                              |       |
| Moment distribution factor for LTB;                            |                                                    | $\psi_{\text{LT}} = M_{y,\text{Ed2}} / M_{y,\text{Ed1}} = ;0.000$                                           |                              |       |
| Moment factor for LTB;                                         |                                                    | $C_{mLT} = max(0.4, 0.6 + 0.4 \times \psi_{LT}) = 0.600$                                                    |                              |       |
| Interaction factor kyy;                                        |                                                    | $k_{yy} = C_{my} \times [1 + min(0.8, \overline{\lambda}_y - 0.2) \times N_{Ed} / (2)]$                     | χy × <b>Ν</b> Rk / γ         | /M1)] |
| = 0.605                                                        |                                                    |                                                                                                             |                              |       |
| Interaction factor k <sub>zy</sub> ;                           |                                                    | $k_{zy} = 0.6 \times k_{yy} = 0.363$                                                                        |                              |       |
| Interaction factor kzz;                                        |                                                    | $k_{zz} = C_{mz} * [1 + min(1.4, 2 * \overline{\lambda}_z - 0.6)*N_{Ed} / 1]$                               | (χz * N <sub>Rk</sub> /      |       |
| γм1)] = ; <b>0.608</b>                                         |                                                    |                                                                                                             |                              |       |
| Interaction factor kyz;                                        |                                                    | $k_{yz} = 0.6 \times k_{zz} = 0.365$                                                                        |                              |       |
| Section utilisation; UR <sub>B</sub> _                         | $_{1}$ = N <sub>Ed</sub> / ( $\chi$ <sub>y</sub> × | $N_{Rk}$ / $\gamma_{M1}$ ) + $k_{yy} \times M_{y,Ed}$ / ( $\chi_{LT} \times M_{y,Rk}$ / $\gamma_{M1}$ ) + 1 | $\kappa_{yz} 	imes M_{z,Ed}$ | /     |
| (M <sub>z,Rk</sub> / γ <sub>M1</sub> )                         |                                                    |                                                                                                             |                              |       |

UR<sub>B\_1</sub> = 0.652  $UR_{B_{2}} = N_{Ed} / (\chi_{z} \times N_{Rk} / \gamma_{M1}) + k_{zy} \times M_{y,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z} / (\chi_{T} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z} / (\chi_{T} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} \times M_{z} / (\chi_{T} \times M_{y,Rk} / \gamma_{M1}) + k_{zz} / (\chi_{T} \times M_{y,$ 

(M<sub>z,Rk</sub> / γ<sub>M1</sub>)

UR<sub>B\_2</sub> = 0.458 PASS - The buckling resistance is adequate

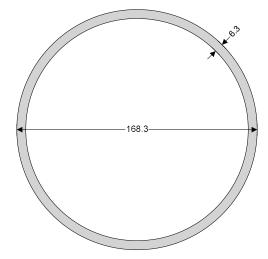
### **STEEL COLUMN DESIGN**

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the **UK national annex** 

### **Design summary**

| Description              | Unit | Provided | Required | Utilisation | Result |
|--------------------------|------|----------|----------|-------------|--------|
| Shear resistance (y-y)   | kN   | 277      | 25       | 0.090       | PASS   |
| Shear resistance (z-z)   | kN   | 277      | 25       | 0.090       | PASS   |
| Axial compression        | kN   | 753      | 10       | 0.013       | PASS   |
| Bending resistance (y-y) | kNm  | 39       | 35       | 0.900       | PASS   |
| Bending resistance (z-z) | kNm  | 39       | 15       | 0.386       | PASS   |
| Biaxial bending          |      |          |          | 0.961       | PASS   |
| Buckling in compression  | kN   | 657      | 10       | 0.015       | PASS   |
| Buckling in bending      | kNm  | 39       | 35       | 0.900       | PASS   |
| Combined buckling        |      |          |          | 0.699       | PASS   |

### Partial factors - Section 6.1


| Resistance of cross-sections;         | γмо <b>= 1</b>             |
|---------------------------------------|----------------------------|
| Resistance of members to instability; | γ <sub>M1</sub> = <b>1</b> |



**Column details** 

| Project: Structural calculations Tensile fabric Structure | Project: | 2021-25    |
|-----------------------------------------------------------|----------|------------|
| Address: -                                                | Sheet:   |            |
|                                                           | Date:    | 13/04/2021 |

Resistance of cross-sections in tension to fracture;  $\gamma_{M2} = 1.1$ 



CHS 168.3x6.3 (Tata Steel Celsius) Diameter, d, 168.3 mm

Mass of section, Mass, 25.2 kg/m Section thickness, t, 6.3 mm Area of section, A, 3206 mm<sup>2</sup>

Radius of gyration about y-axis,  $\mathrm{i}_{\mathrm{v}}$ , 57.319 mm

Radius of gyration about z-axis,  $i_z$ , 57.319 mm

Elastic section modulus about y-axis,  $W_{el\,y}$ , 125184 mm<sup>3</sup>

Elastic section modulus about *z*-axis,  $W_{ely'}$  125184 mm<sup>3</sup> Plastic section modulus about *z*-axis,  $W_{ely'}$  165421 mm<sup>3</sup> Plastic section modulus about *z*-axis,  $W_{ply'}$  165421 mm<sup>3</sup> Second moment of area about *y*-axis,  $I_y$  10534205 mm<sup>4</sup>

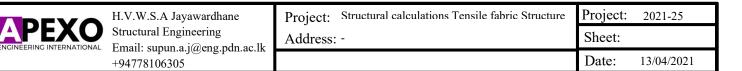
Second moment of area about z-axis, I<sub>z</sub>, 10534205 mm<sup>4</sup>

| Column section                                       | CHS 168.3x6.3                                          |
|------------------------------------------------------|--------------------------------------------------------|
| Steel grade                                          | S235H                                                  |
| Yield strength                                       | f <sub>y</sub> = <b>235</b> N/mm <sup>2</sup>          |
| Ultimate strength                                    | f <sub>u</sub> = <b>360</b> N/mm <sup>2</sup>          |
| Modulus of elasticity                                | E = <b>210</b> kN/mm <sup>2</sup>                      |
| Poisson's ratio                                      | v = <b>0.3</b>                                         |
| Shear modulus                                        | G = E / [2 × (1 + v)] = <b>80.8</b> kN/mm <sup>2</sup> |
| Column geometry                                      |                                                        |
| System length for buckling - Major axis              | L <sub>y</sub> = <b>2900</b> mm                        |
| System length for buckling - Minor axis              | L <sub>z</sub> = <b>2900</b> mm                        |
| The column is not part of a sway frame in the direct | ion of the minor axis                                  |
| The column is not part of a sway frame in the direct | ion of the major axis                                  |
| Column loading                                       |                                                        |
| Axial load                                           | N <sub>Ed</sub> = <b>10</b> kN (Compression)           |
| Major axis moment at end 1 - Bottom                  | M <sub>y,Ed1</sub> = <b>35.0</b> kNm                   |

| Axial load                                                                                                                                       | N <sub>Ed</sub> = <b>10</b> kN (Compression)                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Major axis moment at end 1 - Bottom                                                                                                              | M <sub>y,Ed1</sub> = <b>35.0</b> kNm                                                                  |
| Major axis moment at end 2 - Top                                                                                                                 | M <sub>y,Ed2</sub> = <b>0.0</b> kNm                                                                   |
|                                                                                                                                                  | Major axis bending is single curvature                                                                |
| Minor axis moment at end 1 - Bottom                                                                                                              | M <sub>z,Ed1</sub> = <b>15.0</b> kNm                                                                  |
| Minor axis moment at end 2 - Top                                                                                                                 | M <sub>z,Ed2</sub> = <b>0.0</b> kNm                                                                   |
|                                                                                                                                                  | Minor axis bending is single curvature                                                                |
| Major axis shear force                                                                                                                           | V <sub>y,Ed</sub> = <b>25</b> kN                                                                      |
| Minor axis shear force                                                                                                                           | V <sub>z,Ed</sub> = <b>25</b> kN                                                                      |
|                                                                                                                                                  |                                                                                                       |
| Buckling length for flexural buckling - Major a                                                                                                  | xis                                                                                                   |
| Buckling length for flexural buckling - Major a<br>End restraint factor;                                                                         | xis<br>K <sub>y</sub> = 1.200                                                                         |
|                                                                                                                                                  |                                                                                                       |
| End restraint factor;                                                                                                                            | K <sub>y</sub> = <b>1.200</b><br>L <sub>cr_y</sub> = L <sub>y</sub> × K <sub>y</sub> = <b>3480</b> mm |
| End restraint factor;<br>Buckling length;                                                                                                        | K <sub>y</sub> = <b>1.200</b><br>L <sub>cr_y</sub> = L <sub>y</sub> × K <sub>y</sub> = <b>3480</b> mm |
| End restraint factor;<br>Buckling length;<br>Buckling length for flexural buckling - Minor a                                                     | $K_y = 1.200$<br>$L_{cr_y} = L_y \times K_y = 3480 \text{ mm}$<br>exis                                |
| End restraint factor;<br>Buckling length;<br><b>Buckling length for flexural buckling - Minor a</b><br>End restraint factor;                     | $K_y = 1.200$<br>$L_{cr_y} = L_y \times K_y = 3480 \text{ mm}$<br>ixis<br>$K_z = 1.200$               |
| End restraint factor;<br>Buckling length;<br><b>Buckling length for flexural buckling - Minor a</b><br>End restraint factor;<br>Buckling length; | $K_y = 1.200$<br>$L_{cr_y} = L_y \times K_y = 3480 \text{ mm}$<br>ixis<br>$K_z = 1.200$               |

|                           |                                                  |                                                                                                      | Durington and an |
|---------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------|
|                           | H.V.W.S.A Jayawardhane<br>Structural Engineering | Project: Structural calculations Tensile fabric Structure                                            | Project: 2021-25 |
| ENGINEERING INTERNATIONAL | Email: supun.a.j@eng.pdn.ac.lk                   | Address: -                                                                                           | Sheet:           |
|                           | +94778106305                                     |                                                                                                      | Date: 13/04/2021 |
| Datia                     | -f -l/4.                                         |                                                                                                      |                  |
|                           | of d/t;                                          | ratio = d / t = <b>26.71</b>                                                                         |                  |
|                           | of d/t for class 1 section;                      | Limit <sub>1</sub> = 50 × $\epsilon^2$ = 50.00                                                       |                  |
|                           | of d/t for class 2 section;                      | Limit <sub>2</sub> = $70 \times \varepsilon^2$ = <b>70.00</b>                                        |                  |
| Limit                     | of d/t for class 3 section;                      | $\text{Limit}_3 = 90 \times \epsilon^2 = 90.00$                                                      | ction is class 1 |
| Resis                     | stance of cross section (cl. 6.2                 |                                                                                                      |                  |
|                           | r - Major axis (cl. 6.2.6)                       | 7                                                                                                    |                  |
|                           | in shear force;                                  | V <sub>v,Ed</sub> = <b>25.0</b> kN                                                                   |                  |
| -                         | r area;                                          | $A_{VV} = 2 * A / \pi = ;2041; mm^2$                                                                 |                  |
|                           | c shear resistance;                              | $V_{pl,y,Rd} = A_{vy} \times (f_y / \sqrt{3}) / \gamma_{M0} = 276.9 \text{ kN}$                      |                  |
|                           | o onour roolotanoo,                              | $V_{y,Ed} / V_{pl,y,Rd} = 0.09$                                                                      |                  |
|                           |                                                  | PASS - Shear resistance exceeds the desig                                                            | an shear force   |
|                           | Vv.                                              | $_{Ed} \leq 0.5^* V_{pl,y,Rd}$ - No reduction in fy required for bend                                | -                |
| Shoa                      | r - Minor axis (cl. 6.2.6)                       |                                                                                                      | <b>J</b>         |
|                           | in shear force;                                  | V <sub>z.Ed</sub> = <b>25.0</b> kN                                                                   |                  |
| -                         | r area;                                          | $A_{vz} = 2 * A / \pi = ;2041; mm^2$                                                                 |                  |
|                           | c shear resistance;                              | $V_{pl,z,Rd} = A_{vz} \times (f_y / \sqrt{3}) / \gamma_{M0} = 276.9 \text{ kN}$                      |                  |
| 1 1030                    |                                                  | $V_{p,z,Rd} - Z_{NZ} \times (iy / V(3)) / Y_{MU} - Z_{NU} \times (iy / V_{z,Ed} - V_{p,z,Rd} = 0.09$ |                  |
|                           |                                                  | PASS - Shear resistance exceeds the desig                                                            | an shear force   |
|                           | V,                                               | $_{Ed} <= 0.5^* V_{pl,z,Rd}$ - No reduction in fy required for bend                                  | -                |
| Com                       |                                                  |                                                                                                      |                  |
|                           | pression (cl. 6.2.4)<br>In force;                | N <sub>Ed</sub> = <b>10</b> kN                                                                       |                  |
| -                         | in resistance;                                   | $N_{c,Rd} = N_{pl,Rd} = A \times f_y / \gamma_{M0} = 753 \text{ kN}$                                 |                  |
| Desig                     | in resistance,                                   | $N_{c,Rd} = N_{pl,Rd} = A \land ly / \gamma_{M0} = 733 KN$<br>NEd / Nc.Rd = 0.013                    |                  |
|                           | PA                                               | ASS - The compression design resistance exceeds the                                                  | e design force   |
| Bend                      | ling - Major axis (cl. 6.2.5)                    |                                                                                                      | -                |
|                           | in bending moment;                               | $M_{y,Ed} = max(abs(M_{y,Ed1}), abs(M_{y,Ed2})) = 35$                                                | 5 <b>.0</b> kNm  |
| -                         | on modulus;                                      | $W_{y} = W_{pl,y} = ;165.4; \text{ cm}^{3}$                                                          |                  |
| Desig                     | n resistance;                                    | $M_{c,y,Rd} = W_y \times f_y / \gamma_{M0} = 38.9 \text{ kNm}$                                       |                  |
|                           |                                                  | $M_{y,Ed} / M_{c,y,Rd} = 0.9$                                                                        |                  |
|                           |                                                  | PASS - The bending design resistance exceeds the d                                                   | esign moment     |
| Bend                      | ling - Major axis(cl. 6.2.5)                     |                                                                                                      |                  |
|                           | in bending moment;                               | $M_{z,Ed} = max(abs(M_{z,Ed1}), abs(M_{z,Ed2})) = 15$                                                | 5 <b>.0</b> kNm  |
| -                         | on modulus;                                      | W <sub>z</sub> = W <sub>pl.z</sub> = ; <b>165.4</b> ; cm <sup>3</sup>                                |                  |
| Desig                     | n resistance;                                    | M <sub>c,z,Rd</sub> = W <sub>z</sub> × f <sub>y</sub> / γ <sub>M0</sub> = <b>38.9</b> kNm            |                  |
|                           |                                                  | $M_{z,Ed} / M_{c,z,Rd} = 0.386$                                                                      |                  |
|                           |                                                  | PASS - The bending design resistance exceeds the d                                                   | esign moment     |
| Com                       | bined bending and axial force                    | (cl. 6.2.9)                                                                                          |                  |
| Ratio                     | design axial to design plastic re                | sistance; $n = abs(N_{Ed}) / N_{pl,Rd} = 0.013$                                                      |                  |
| Bend                      | ling - Major axis (cl. 6.2.9.1)                  |                                                                                                      |                  |
|                           | in bending moment;                               | $M_{y,Ed} = max(abs(M_{y,Ed1}), abs(M_{y,Ed2})) = 35$                                                | . <b>0</b> kNm   |
| Plasti                    | c design resistance;                             | $M_{pl,y,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 38.9 \text{ kNm}$                                 |                  |
| Modif                     | ied design resistance;                           | $M_{N,y,Rd} = M_{pl,y,Rd} \times min(1, (1 - n^{1.7})) = 38.8$                                       | kNm              |
|                           |                                                  | M <sub>y,Ed</sub> / M <sub>N,y,Rd</sub> = <b>0.901</b>                                               |                  |
|                           |                                                  |                                                                                                      |                  |

PASS - Bending resistance in presence of axial load exceeds design moment




Date:

13/04/2021

| +94//8106305                                    | Date. 15/04/2021                                                                                                    |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Bending - Minor axis (cl. 6.2.9.1)              |                                                                                                                     |
| Design bending moment;                          | M <sub>z,Ed</sub> = max(abs(M <sub>z,Ed1</sub> ), abs(M <sub>z,Ed2</sub> )) = <b>15.0</b> kNm                       |
| Plastic design resistance;                      | $M_{pl,z,Rd} = W_{pl,z} \times f_y / \gamma_{M0} = 38.9 \text{ kNm}$                                                |
| Modified design resistance;                     | $M_{N,z,Rd} = M_{pl,z,Rd} \times min(1, (1 - n^{1.7})) = 38.8 \text{ kNm}$                                          |
| 5                                               | $M_{z,Ed} / M_{N,z,Rd} = 0.386$                                                                                     |
| PASS - Bending r                                | resistance in presence of axial load exceeds design moment                                                          |
| Biaxial bending                                 |                                                                                                                     |
| Exponent α;                                     | α = ; <b>2.00</b>                                                                                                   |
| Exponent $\beta$ ;                              | β = ; <b>2.00</b>                                                                                                   |
| Section utilisation at end 1;<br>= <b>0.961</b> | $UR_{CS\_1} = [abs(M_{Y,Ed1}) \ / \ M_{N,Y,Rd}]^{\alpha} + [abs(M_{Z,Ed1}) \ / \ M_{N,Z,Rd}]^{\beta}$               |
| Section utilisation at end 2;<br>= <b>0.000</b> | $UR_{CS\_2} = [abs(M_{Y,Ed2}) \ / \ M_{N,Y,Rd}]^{\alpha} + [abs(M_{Z,Ed2}) \ / \ M_{N,Z,Rd}]^{\beta}$               |
|                                                 | PASS - The cross-section resistance is adequate                                                                     |
| Buckling resistance (cl. 6.3)                   |                                                                                                                     |
| Yield strength for buckling resistance;         | fy <b>= 235</b> N/mm <sup>2</sup>                                                                                   |
| Flexural buckling - Major axis                  |                                                                                                                     |
| Elastic critical buckling force;                | $N_{cr,y} = \pi^2 \times E \times I_y / L_{cr_y^2} = 1803 \text{ kN}$                                               |
| Non-dimensional slenderness;                    | $\overline{\lambda}_{y} = \sqrt{(A \times f_{y} / N_{cr,y})} = 0.646$                                               |
| Buckling curve (Table 6.2);                     | а                                                                                                                   |
| Imperfection factor (Table 6.1);                | α <sub>y</sub> = <b>0.21</b>                                                                                        |
| Parameter $\Phi$ ;                              | $\Phi_{y} = 0.5 \times [1 + \alpha_{y} \times (\overline{\lambda}_{y} - 0.2) + \overline{\lambda}_{y}^{2}] = 0.756$ |
| Reduction factor;                               | $\chi_y = \min(1.0, 1 / [\Phi_y + \sqrt{(\Phi_y^2 - \overline{\lambda}_y^2)}]) = 0.871$                             |
| Design buckling resistance;                     | $N_{b,y,Rd} = \chi_y \times A \times f_y / \gamma_{M1} = 656.6 \text{ kN}$                                          |
|                                                 | N <sub>Ed</sub> / N <sub>b,y,Rd</sub> = 0.015                                                                       |
| PASS - Th                                       | e flexural buckling resistance exceeds the design axial load                                                        |
| Flexural buckling - Minor axis                  |                                                                                                                     |
| Elastic critical buckling force;                | $N_{cr,z} = \pi^2 \times E \times I_z / L_{cr_z^2} = 1803 \text{ kN}$                                               |
| Non-dimensional slenderness;                    | $\overline{\lambda}_z = \sqrt{(A \times f_y / N_{cr,z})} = 0.646$                                                   |
| Buckling curve (Table 6.2);                     | а                                                                                                                   |
| Imperfection factor (Table 6.1);                | αz = <b>0.21</b>                                                                                                    |
| Parameter $\Phi$ ;                              | $\Phi_z = 0.5 \times [1 + \alpha_z \times (\overline{\lambda}_z - 0.2) + \overline{\lambda}_z^2] = 0.756$           |
| Reduction factor;                               | $\chi_z = \min(1.0, 1 / [\Phi_z + \sqrt{(\Phi_z^2 - \overline{\lambda}_z^2)}]) = 0.871$                             |
| Design buckling resistance;                     | $N_{b,z,Rd} = \chi_z \times A \times f_y / \gamma_{M1} = 656.6 \text{ kN}$                                          |
|                                                 | N <sub>Ed</sub> / N <sub>b,z,Rd</sub> = 0.015                                                                       |
| PASS - Th                                       | e flexural buckling resistance exceeds the design axial load                                                        |
| Minimum buckling resistance                     |                                                                                                                     |
| Minimum buckling resistance;                    | N <sub>b,Rd</sub> = min(N <sub>b,y,Rd</sub> , N <sub>b,z,Rd</sub> ) = <b>656.6</b> kN                               |
|                                                 | N <sub>Ed</sub> / N <sub>b,Rd</sub> = 0.015                                                                         |
| PASS - The a                                    | axial load buckling resistance exceeds the design axial load                                                        |

Circular hollow section not subject to lateral torsional buckling therefore:-Reduction factor; χ<sub>LT</sub> = 1.0 Design buckling resistance moment;  $M_{b,Rd} = \chi_{LT} \times W_y \times f_y \ / \ \gamma_{M1} = \textbf{38.9} \ kNm$ Design bending moment;  $M_{y,Ed} = max(abs(M_{y,Ed1}), abs(M_{y,Ed2})) = 35.0 \text{ kNm}$  $M_{y,Ed} / M_{b,Rd} = 0.9$ 



| PASS - The design buckling resistance moment exceeds the maxim | um design moment |
|----------------------------------------------------------------|------------------|
|----------------------------------------------------------------|------------------|

### Combined bending and axial compression (cl. 6.3.3)

| eennen benanig and axia                                 |                                                    |                                                                                                                                      |
|---------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Characteristic resistance to no                         | ormal force;                                       | $N_{Rk} = A \times f_y = 753 \text{ kN}$                                                                                             |
| Characteristic moment resista                           | nce - Major axis;                                  | M <sub>y,Rk</sub> = W <sub>pl.y</sub> * f <sub>y</sub> = ; <b>38.9</b> ; kNm                                                         |
| Characteristic moment resista                           | nce - Minor axis;                                  | M <sub>z,Rk</sub> = W <sub>pl.z</sub> * f <sub>y</sub> = ; <b>38.9</b> ; kNm                                                         |
| $\psi_y = if(abs(M_{y,Ed1}) \le abs(M_{y,Ed2})$         | 2), M <sub>y,Ed1</sub> / if(M <sub>y,Ed2</sub> >=0 | 0 kNm,max(M <sub>y,Ed2</sub> ,0.0001 kNm),M <sub>y,Ed2</sub> ), M <sub>y,Ed2</sub> /                                                 |
| if(M <sub>y,Ed1</sub> >=0 kNm,max(M <sub>y,Ed1</sub> ,0 | .0001 kNm),M <sub>y,Ed1</sub> )) =                 | = 0.000                                                                                                                              |
| Moment distribution factor - Ma                         | ajor axis;                                         | $\psi_y = M_{y,Ed2} / M_{y,Ed1} = ;0.000$                                                                                            |
| Moment factor - Major axis;                             |                                                    | $C_{my} = max(0.4, 0.6 + 0.4 \times \psi_y) = 0.600$                                                                                 |
| Moment distribution factor - M                          | inor axis;                                         | $\psi_z = M_{z,Ed2} / M_{z,Ed1} = ;0.000$                                                                                            |
| Moment factor - Minor axis;                             |                                                    | $C_{mz} = max(0.4, 0.6 + 0.4 \times \psi_z) = 0.600$                                                                                 |
| Moment distribution factor for                          | LTB;                                               | $\psi_{LT} = M_{y,Ed2} / M_{y,Ed1} = ;0.000$                                                                                         |
| Moment factor for LTB;                                  |                                                    | $C_{mLT} = max(0.4, 0.6 + 0.4 \times \psi_{LT}) = 0.600$                                                                             |
| Interaction factor kyy;                                 |                                                    | $k_{yy} = C_{my} \times [1 + min(0.8, \ \overline{\lambda}_y - 0.2) \times N_{Ed} \ / \ (\chi_y \times N_{Rk} \ / \ \gamma_{M1})]$   |
| = 0.604                                                 |                                                    |                                                                                                                                      |
| Interaction factor kzy;                                 |                                                    | $k_{zy} = 0.6 \times k_{yy} = 0.362$                                                                                                 |
| Interaction factor kzz;                                 |                                                    | $k_{zz}$ = $C_{mz}$ * [1 + min(1.4, 2 * $\overline{\lambda}_z$ - 0.6)* $N_{Ed}$ / ( $\chi_z$ * $N_{Rk}$ /                            |
| γ <sub>M1</sub> )] = ; <b>0.606</b>                     |                                                    |                                                                                                                                      |
| Interaction factor kyz;                                 |                                                    | $k_{yz} = 0.6 \times k_{zz} = 0.364$                                                                                                 |
| Section utilisation;                                    | $UR_{B_1} = N_{Ed} / (\chi_y \times$               | $N_{Rk}$ / $\gamma_{M1}$ ) + $k_{yy} \times M_{y,Ed}$ / ( $\chi_{LT} \times M_{y,Rk}$ / $\gamma_{M1}$ ) + $k_{yz} \times M_{z,Ed}$ / |
| (M <sub>z,Rk</sub> / γ <sub>M1</sub> )                  |                                                    |                                                                                                                                      |
|                                                         |                                                    | UR <sub>B_1</sub> = <b>0.699</b>                                                                                                     |
|                                                         | $UR_{B_2} = N_{Ed} / (\chi_z \times$               | $N_{Rk}$ / $\gamma_{M1}$ ) + $k_{zy} \times M_{y,Ed}$ / ( $\chi_{LT} \times M_{y,Rk}$ / $\gamma_{M1}$ ) + $k_{zz} \times M_{z,Ed}$ / |
|                                                         |                                                    |                                                                                                                                      |

(M<sub>z,Rk</sub> / γ<sub>M1</sub>)

UR<sub>B\_2</sub> = 0.576

PASS - The buckling resistance is adequate

### FOUNDATION ANALYSIS (EN1992-1:2004)

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

### Pad foundation details

| Length of foundation;          | L <sub>x</sub> = <b>2000</b> mm                                   |
|--------------------------------|-------------------------------------------------------------------|
| Width of foundation;           | L <sub>y</sub> = <b>2000</b> mm                                   |
| Foundation area;               | A = L <sub>x</sub> × L <sub>y</sub> = <b>4.000</b> m <sup>2</sup> |
| Depth of foundation;           | h = <b>450</b> mm                                                 |
| Depth of soil over foundation; | h <sub>soil</sub> = <b>200</b> mm                                 |
| Level of water;                | h <sub>water</sub> = <b>0</b> mm                                  |
| Density of water;              | $\gamma_{water}$ = 9.8 kN/m <sup>3</sup>                          |
| Density of concrete;           | $\gamma_{conc}$ = 24.5 kN/m <sup>3</sup>                          |
|                                |                                                                   |

|                           | H.V.W.S.A Jayawardhane Project: Structural calculations Tensile fabric Structure |                                                                          | Project:               | 2021-25 |            |
|---------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------|---------|------------|
| APEXO                     | Structural Engineering                                                           | Address: -                                                               |                        | Sheet:  |            |
| ENGINEERING INTERNATIONAL | Email: supun.a.j@eng.pdn.ac.lk<br>+94778106305                                   |                                                                          |                        | Date:   | 13/04/2021 |
|                           | 87.5 kN/m <sup>2</sup>                                                           |                                                                          | 125 kN/m <sup>2</sup>  |         |            |
|                           | 87.5 kN/m <sup>2</sup>                                                           |                                                                          | 125 kN/m <sup>2</sup>  |         |            |
| -                         | th of column;                                                                    | l <sub>x1</sub> = <b>300</b> mm                                          |                        |         |            |
|                           | ו of column;<br>on in x-axis;                                                    | l <sub>y1</sub> = <b>300</b> mm<br>x <sub>1</sub> = <b>1000</b> mm       |                        |         |            |
| -                         | on in y-axis;                                                                    | y <sub>1</sub> = <b>1000</b> mm                                          |                        |         |            |
|                           |                                                                                  | ,                                                                        |                        |         |            |
|                           | p <b>roperties</b><br>ity of soil;                                               | γ <sub>soil</sub> = <b>20.0</b> kN/m <sup>3</sup>                        | 1                      |         |            |
|                           | acteristic cohesion;                                                             | $c'_{k} = 0 \text{ kN/m}^{2}$                                            |                        |         |            |
|                           | acteristic effective shear resistar                                              |                                                                          |                        |         |            |
|                           | acteristic friction angle;                                                       | $\delta_k = 19.3 \text{ deg}$                                            |                        |         |            |
|                           | dation loads                                                                     |                                                                          |                        |         |            |
|                           | veight;                                                                          | $F_{swt} = h * \gamma_{conc} = r$                                        | 11.0 kN/m <sup>2</sup> |         |            |
|                           | veight;                                                                          | $F_{soil} = h_{soil} * \gamma_{soil} =$                                  |                        |         |            |
|                           |                                                                                  |                                                                          |                        |         |            |
|                           | <b>mn no.1 loads</b><br>anent load in z;                                         | F <sub>Gz1</sub> = <b>200.0</b> kN                                       |                        |         |            |
|                           | ble load in z;                                                                   | F <sub>Gz1</sub> = <b>200.0</b> kN<br>F <sub>Qz1</sub> = <b>165.0</b> kN |                        |         |            |
|                           | anent moment in x;                                                               | M <sub>Gx1</sub> = <b>15.0</b> kNm                                       |                        |         |            |
|                           | ble moment in x;                                                                 | M <sub>Qx1</sub> = <b>10.0</b> kNm                                       |                        |         |            |
| valla                     | Sie moment III A,                                                                |                                                                          |                        |         |            |

# Bearing resistance (Section 6.5.2)

Forces on foundation Force in z-axis;

### Moments on foundation

Moment in x-axis;

F<sub>dz</sub> = A \* (F<sub>swt</sub> + F<sub>soil</sub>) + F<sub>Gz1</sub> + F<sub>Qz1</sub> = **425.1** kN

$$\begin{split} M_{dx} = A * (F_{swt} + F_{soil}) * L_x / 2 + F_{Gz1} * x_1 + M_{Gx1} + F_{Qz1} * \\ x_1 + M_{Qx1} = \textbf{450.1} \text{ kNm} \end{split}$$

|                         | H.V.W.S.A Jayawardhane                         | Project: Structural calculations Tensile fabric Structure                                                                                    | Project: 2021-25                    |  |
|-------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|
| APEX                    | Structural Engineering                         | Address: -                                                                                                                                   | Sheet:                              |  |
| ENGINEERING INTERNATION | Email: supun.a.j@eng.pdn.ac.lk<br>+94778106305 |                                                                                                                                              | Date: 13/04/2021                    |  |
| Ν                       | Moment in y-axis;                              | M <sub>dy</sub> = A * (F <sub>swt</sub> + F <sub>soil</sub> ) * L <sub>y</sub> / 2 + F <sub>Gz1</sub> * y <sub>1</sub> +<br><b>425.1</b> kNm | F <sub>Qz1</sub> * y <sub>1</sub> = |  |
| E                       | Eccentricity of base reaction                  |                                                                                                                                              |                                     |  |
| E                       | Eccentricity of base reaction in x-axis        | ; $e_x = M_{dx} / F_{dz} - L_x / 2 = 59 \text{ mm}$                                                                                          |                                     |  |
| E                       | Eccentricity of base reaction in y-axis        | ; $e_y = M_{dy} / F_{dz} - L_y / 2 = 0 \text{ mm}$                                                                                           |                                     |  |
| F                       | Pad base pressures                             |                                                                                                                                              |                                     |  |
|                         |                                                | $q_1 = F_{dz} * (1 - 6 * e_x / L_x - 6 * e_y / L_y) / (L_x * $                                                                               | L <sub>y</sub> ) = <b>87.5</b>      |  |
| k                       | ۲N/m <sup>2</sup>                              |                                                                                                                                              |                                     |  |
|                         |                                                | $q_2 = F_{dz} * (1 - 6 * e_x / L_x + 6 * e_y / L_y) / (L_x * C_x + C_y) / (L_x * C_y) $                                                      | L <sub>y</sub> ) = <b>87.5</b>      |  |
| k                       | κN/m <sup>2</sup>                              |                                                                                                                                              |                                     |  |
|                         | دN/m²                                          | q <sub>3</sub> = F <sub>dz</sub> * (1 + 6 * e <sub>x</sub> / L <sub>x</sub> - 6 * e <sub>y</sub> / L <sub>y</sub> ) / (L <sub>x</sub> *      | L <sub>y</sub> ) = 125              |  |
| r                       |                                                | $q_4 = F_{dz} * (1 + 6 * e_x / L_x + 6 * e_y / L_y) / (L_x * 1)$                                                                             | *  ) = 125                          |  |
| k                       | دN/m²                                          | $q_4 = r_{az}$ ( $r + 0 = C_x + C_x + 0 = C_y + L_y$ ) ( $L_x$                                                                               | Ly) - 123                           |  |
|                         | Vinimum base pressure;                         | q <sub>min</sub> = min(q <sub>1</sub> , q <sub>2</sub> , q <sub>3</sub> , q <sub>4</sub> ) = <b>87.5</b> kN/m <sup>2</sup>                   |                                     |  |
|                         | Maximum base pressure;                         | $q_{max} = max(q_1, q_2, q_3, q_4) = 125 \text{ kN/m}^2$                                                                                     |                                     |  |
| F                       | Presumed bearing capacity                      |                                                                                                                                              |                                     |  |
|                         | Presumed bearing capacity;                     | P <sub>bearing</sub> = <b>150.0</b> kN/m <sup>2</sup>                                                                                        |                                     |  |
|                         | 5 1 37                                         | PASS - Presumed bearing capacity exceeds design b                                                                                            | base pressure                       |  |
| [                       | Design approach 1                              |                                                                                                                                              |                                     |  |
| F                       | Partial factors on actions - Combin            | ation1                                                                                                                                       |                                     |  |
|                         | Partial factor set;                            | A1                                                                                                                                           |                                     |  |
| F                       | Permanent unfavourable action - Tab            | le A.3; γ <sub>G</sub> = <b>1.35</b>                                                                                                         |                                     |  |
| F                       | Permanent favourable action - Table            | A.3; γ <sub>Gf</sub> = <b>1.00</b>                                                                                                           |                                     |  |
| ١                       | /ariable unfavourable action - Table /         | A.3; $\gamma_{\rm Q} = 1.50$                                                                                                                 |                                     |  |
| ١                       | /ariable favourable action - Table A.3         | $γ_{Qf} = 0.00$                                                                                                                              |                                     |  |
| F                       | Partial factors for spread foundatio           | ons - Combination1                                                                                                                           |                                     |  |
|                         | Resistance factor set;                         | R1                                                                                                                                           |                                     |  |
| E                       | Bearing - Table A.5;                           | γ <sub>R.v</sub> = <b>1.00</b>                                                                                                               |                                     |  |
| 5                       | Sliding - Table A.5;                           | γ <sub>R.h</sub> = <b>1.00</b>                                                                                                               |                                     |  |
| F                       | Forces on foundation                           |                                                                                                                                              |                                     |  |
|                         | Force in z-axis;                               | F <sub>dz</sub> = γ <sub>G</sub> * (A * (F <sub>swt</sub> + F <sub>soil</sub> ) + F <sub>Gz1</sub> ) + γ <sub>Q</sub> * F <sub>G</sub>       | <sub>2z1</sub> = <b>598.6</b> kN    |  |
| N                       | Moments on foundation                          |                                                                                                                                              |                                     |  |
| -                       | Moment in x-axis;                              | $M_{dx} = \gamma_G * (A * (F_{swt} + F_{soil}) * L_x / 2 + F_{Gz1} *$                                                                        | x1) + γg * Mgx1                     |  |
|                         | ,                                              | + $\gamma_Q$ * F <sub>Qz1</sub> * x <sub>1</sub> + $\gamma_Q$ * M <sub>Qx1</sub> = <b>633.9</b> kNm                                          | , <b>,</b> -                        |  |
| Ν                       | Noment in y-axis;                              | M <sub>dy</sub> = γ <sub>G</sub> * (A * (F <sub>swt</sub> + F <sub>soil</sub> ) * L <sub>y</sub> / 2 + F <sub>Gz1</sub> *                    | y1) + γϱ * Fqz1                     |  |
|                         | -                                              |                                                                                                                                              |                                     |  |

\* y<sub>1</sub> = **598.6** kNm

 $e_x = M_{dx} / F_{dz} - L_x / 2 = 59 \text{ mm}$  $e_y = M_{dy} / F_{dz} - L_y / 2 = 0 \text{ mm}$ 

Eccentricity of base reaction

Eccentricity of base reaction in x-axis; Eccentricity of base reaction in y-axis;

# Effective area of base

Effective length; $L'_x = L_x - 2 * e_x = 1882 \text{ mm}$ Effective width; $L'_y = L_y - 2 * e_y = 2000 \text{ mm}$ Effective area; $A' = L'_x \times L'_y = 3.764 \text{ m}^2$ 

|                           | H.V.W.S.A Jayawardhane                                   | Project:     | Structural calculations Tensile fabric Structure                                                            | Project: 2021-25                 |
|---------------------------|----------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------|----------------------------------|
|                           | Structural Engineering<br>Email: supun.a.j@eng.pdn.ac.lk | Address: -   |                                                                                                             | Sheet:                           |
| ENGINEERING INTERNATIONAL | +94778106305                                             |              |                                                                                                             | Date: 13/04/2021                 |
| Bed                       |                                                          |              |                                                                                                             |                                  |
|                           | base pressure<br>ign base pressure;                      |              | f <sub>dz</sub> = F <sub>dz</sub> / A' = <b>159</b> kN/m <sup>2</sup>                                       |                                  |
|                           |                                                          |              |                                                                                                             |                                  |
|                           | ign approach 1                                           |              |                                                                                                             |                                  |
|                           | ial factors on actions - Combin                          | ation2       |                                                                                                             |                                  |
|                           | ial factor set;                                          |              | A2                                                                                                          |                                  |
|                           | nanent unfavourable action - Tabl                        | ,            | $\gamma_{\rm G}$ = 1.00                                                                                     |                                  |
|                           | nanent favourable action - Table                         | ,            | $\gamma_{\rm Gf}$ = 1.00                                                                                    |                                  |
|                           | able unfavourable action - Table A                       | ,            | γ <sub>Q</sub> = 1.30                                                                                       |                                  |
|                           | able favourable action - Table A.3                       |              | $\gamma_{Qf} = 0.00$                                                                                        |                                  |
|                           | ial factors for spread foundatio                         | ons - Combin |                                                                                                             |                                  |
|                           | istance factor set;                                      |              | R1                                                                                                          |                                  |
| Bear                      | ring - Table A.5;                                        |              | γ <sub>R.v</sub> = <b>1.00</b>                                                                              |                                  |
| Slidi                     | ng - Table A.5;                                          |              | γ <sub>R.h</sub> = <b>1.00</b>                                                                              |                                  |
| Ford                      | ces on foundation                                        |              |                                                                                                             |                                  |
| Forc                      | e in z-axis;                                             |              | $F_{dz} = \gamma_G * (A * (F_{swt} + F_{soil}) + F_{Gz1}) + \gamma_Q * F_{Gz1}$                             | <sub>Qz1</sub> = <b>474.6</b> kN |
| Mon                       | nents on foundation                                      |              |                                                                                                             |                                  |
| Morr                      | nent in x-axis;                                          |              | $M_{dx} = \gamma_{G} * (A * (F_{swt} + F_{soil}) * L_x / 2 + F_{Gz1} *$                                     | x1) + γg * M <sub>Gx1</sub>      |
|                           |                                                          |              | + γ <sub>Q</sub> * F <sub>Qz1</sub> * x <sub>1</sub> + γ <sub>Q</sub> * M <sub>Qx1</sub> = <b>502.6</b> kNm |                                  |
| Morr                      | nent in y-axis;                                          |              | $M_{dy} = \gamma_{G} * (A * (F_{swt} + F_{soil}) * L_y / 2 + F_{Gz1} *$                                     | y1) + γα * F <sub>Qz1</sub>      |
|                           |                                                          |              | * y <sub>1</sub> = <b>474.6</b> kNm                                                                         |                                  |
| Ecce                      | entricity of base reaction                               |              |                                                                                                             |                                  |
| Ecce                      | entricity of base reaction in x-axis                     | ;            | $e_x = M_{dx} / F_{dz} - L_x / 2 = 59 \text{ mm}$                                                           |                                  |
| Ecce                      | entricity of base reaction in y-axis                     | ;            | $e_y = M_{dy} / F_{dz} - L_y / 2 = 0 mm$                                                                    |                                  |
| Effe                      | ctive area of base                                       |              |                                                                                                             |                                  |
| Effec                     | ctive length;                                            |              | L' <sub>x</sub> = L <sub>x</sub> - 2 * e <sub>x</sub> = <b>1882</b> mm                                      |                                  |
| Effec                     | ctive width;                                             |              | L' <sub>y</sub> = L <sub>y</sub> - 2 * e <sub>y</sub> = <b>2000</b> mm                                      |                                  |
| Effec                     | ctive area;                                              |              | A' = L' <sub>x</sub> × L' <sub>y</sub> = <b>3.764</b> m <sup>2</sup>                                        |                                  |
| Pad                       | base pressure                                            |              |                                                                                                             |                                  |
| Desi                      | ign base pressure;                                       |              | f <sub>dz</sub> = F <sub>dz</sub> / A' = <b>126.1</b> kN/m <sup>2</sup>                                     |                                  |
|                           |                                                          |              |                                                                                                             |                                  |

# **Conclusion**

Structure capacity is sufficient with the proposed steel post sections under wind and snow loadings. Steel posts have to be embedded in the proposed pad foundation.