Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.9 Printed on 28 October 2020 at 14:55:26

Project Information:

Assessed By: Zahid Ashraf (STRO001082) **Building Type:** Flat

Dwelling Details:

NEW DWELLING DESIGN STAGE Total Floor Area: 67.74m² Plot Reference: Site Reference : Hermitage Lane Plot 2

Address:

Client Details:

Name: Address:

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas (c)

Fuel factor: 1.00 (mains gas (c))

Target Carbon Dioxide Emission Rate (TER) 19.88 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER) 12.81 kg/m² OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 56.0 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 43.6 kWh/m²

OK

2 Fabric U-values

Element Highest Average 0.15 (max. 0.70) External wall 0.14 (max. 0.30) OK Floor 0.12 (max. 0.25) 0.12 (max. 0.70) **OK** Roof 0.10 (max. 0.20) 0.10 (max. 0.35) OK **Openings** 1.40 (max. 2.00) 1.40 (max. 3.30) OK

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

3 Air permeability

Air permeability at 50 pascals 3.00 (design value)

OK Maximum 10.0

4 Heating efficiency

Main Heating system: Community heating schemes - mains gas

Secondary heating system: None

5 Cylinder insulation

Hot water Storage: No cylinder

6 Controls

Space heating controls Charging system linked to use of community heating,

programmer and at least two room thermostats

No cylinder thermostat Hot water controls:

No cylinder

OK

Regulations Compliance Report

- 1 P 12		
7 Low energy lights		
Percentage of fixed lights with low-energy fittings	100.0%	
Minimum	75.0%	OK
8 Mechanical ventilation		
Continuous supply and extract system		
Specific fan power:	0.91	
Maximum	1.5	OK
MVHR efficiency:	93%	
Minimum	70%	OK
9 Summertime temperature		
Overheating risk (Thames valley):	Medium	oK
Based on:		
Overshading:	Average or unknown	
Windows facing: South West	8.65m ²	
Ventilation rate:	4.00	
10 Key features		
Air permeablility	3.0 m³/m²h	
Roofs U-value	0.1 W/m ² K	
External Walls U-value	0.13 W/m ² K	
Floors U-value	0.12 W/m ² K	
Community heating, heat from boilers – mains gas Photovoltaic array		

User Details:												
Assessor Name: Zahid Ashraf Stroma Number: STRO001 Software Name: Stroma FSAP 2012 Software Version: Version: 1												
Property Address: Plot 2 Address:												
1. Overall dwelling dimensions:												
Š	olume(m³)											
Ground floor 67.74 (1a) x 2.5 (2a) =	169.35 (3a)											
Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ 67.74 (4)												
Dwelling volume $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) =$	169.35 (5)											
2. Ventilation rate:												
main secondary other total n heating heating	n³ per hour											
Number of chimneys $0 + 0 = 0 \times 40 =$	0 (6a)											
Number of open flues $0 + 0 + 0 = 0 \times 20 =$	0 (6b)											
Number of intermittent fans 0 x 10 =	0 (7a)											
Number of passive vents 0 x 10 =	0 (7b)											
Number of flueless gas fires 0 × 40 =	0 (7c)											
Air chanç	ges per hour											
Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) =$ $0 \div (5) =$	0 (8)											
If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns)	0 (9)											
Additional infiltration [(9)-1]x0.1 =	0 (10)											
Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction	0 (11)											
if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35												
If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0	0 (12)											
If no draught lobby, enter 0.05, else enter 0	0 (13)											
Percentage of windows and doors draught stripped	0 (14)											
Window infiltration $0.25 - [0.2 \times (14) \div 100] =$	0 (15)											
Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$	0 (16)											
Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area	3 (17)											
If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used	0.15 (18)											
Number of sides sheltered	2 (19)											
Shelter factor (20) = 1 - [0.075 x (19)] =	0.85 (20)											
Infiltration rate incorporating shelter factor (21) = (18) x (20) =	0.13 (21)											
Infiltration rate modified for monthly wind speed												
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec												
Monthly average wind speed from Table 7												
(22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7												
Wind Factor (22a)m = (22)m ÷ 4												
Willia Factor (22a)III = $(22a)III = 4$												

Adjusted infiltr	ation rat	e (allowi	ng for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m					
0.16	0.16	0.16	0.14	0.14	0.12	0.12	0.12	0.13	0.14	0.14	0.15		
Calculate effe If mechanic		_	rate for t	he appli	cable ca	se						0.5	(23
If exhaust air h			endix N. (2	3b) = (23a	a) × Fmv (e	eguation (I	N5)) othe	wise (23h) = (23a)			0.5	(23
If balanced with		0		, ,	,	. ,	,, .	,	(200)			0.5	= '
a) If balance		•	•	J		,		•	2h\m + (23P) ^ [1 _ (23c)	79.05	(2:
24a)m= 0.27	0.26	0.26	0.25	0.24	0.23	0.23	0.22	0.23	0.24	0.25	0.25]	(2
b) If balance	<u> </u>	ļ	<u> </u>		l	<u> </u>	ļ		<u>Į</u>	ļ.	0.20	J	`
24b)m= 0	0	0	0	0	0	0	0	0	0	0	0	1	(2
c) If whole h	<u> </u>											l	•
•		< (23b), t		•	•				.5 × (23b	o)			
24c)m= 0	0	0	0	0	0	0	0	0	0	0	0		(2
d) If natural	ventilati	on or wh	ole hous	e positiv	e input	ventilatio	on from I	oft		!		•	
if (22b)r	n = 1, th	en (24d)	m = (22l	o)m othe	rwise (2	4d)m =	0.5 + [(2	2b)m² x	0.5]			,	
24d)m= 0	0	0	0	0	0	0	0	0	0	0	0		(2
Effective air	change	rate - er	nter (24a) or (24k	o) or (24	c) or (24	d) in box	(25)				1	
25)m= 0.27	0.26	0.26	0.25	0.24	0.23	0.23	0.22	0.23	0.24	0.25	0.25		(2
3. Heat losse	s and he	eat loss p	paramet	er:									
LEMENT	Gros area		Openin		Net Ar A ,r		U-valı W/m2		A X U (W/		k-value kJ/m²-		X k J/K
oors		()			2	x	1.4		2.8	$\stackrel{\prime}{\Box}$			(2
Vindows					8.651	x1	/[1/(1.4)+	0.04] =	11.47	=			(2
loor					67.73	_	0.12		8.12867				_ _(2
Valls Type1	50.9	00	8.65		42.34	_	0.12		6.35	<u></u>			—\(\^{-}
Valls Type2	21.2		2	_	19.26	_	0.13		2.76	<u> </u>			—\(\^{-}
Valls Type3				=		_		=		믁 ¦			—\(\begin{array}{c} \cdot \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Roof Type1	18.0		0	=	18.02		0.13	╣ .	2.41				==
• •	5.7		0	_	5.7	×	0.1	=	0.57	 			(3
Roof Type2	4.1		0		4.12	×	0.1	=	0.41				(3
otal area of e					167.8			/F/4/11 1	\ 0.047		,	0.0	(3
for windows and * include the area						atea using	j tormula 1.	/[(1/U-vail	ie)+0.04] a	as given in	n paragrapr	1 3.2	
abric heat los				·			(26)(30)	+ (32) =				34.9	(3
leat capacity	Cm = S	(Axk)						((28).	(30) + (32	2) + (32a).	(32e) =	8654.27	(3
hermal mass	parame	ter (TMF	P = Cm -	- TFA) ir	n kJ/m²K			Indica	itive Value	: Low		100	(3
or design assess an be used inste				construct	ion are not	t known pr	ecisely the	indicative	e values of	TMP in T	able 1f		
hermal bridge	es : S (L	x Y) cal	culated (using Ap	pendix ł	<						13.2	(3
details of therma	al bridging	are not kn	own (36) =	= 0.05 x (3	1)								
otal fabric he	at loss							(33) +	(36) =			48.09	(3
entilation hea	at loss ca	alculated	monthly	/				(38)m	= 0.33 × (25)m x (5)	1	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
38)m= 14.94	14.76	14.58	13.69	13.51	12.62	12.62	12.44	12.98	13.51	13.87	14.23		(3
leat transfer of	coefficie	nt, W/K						(39)m	= (37) + (38)m			
39)m= 63.03	62.86	62.68	61.79	61.61	60.72	60.72	60.54	61.07	61.61	61.96	62.32		
=======================================	2 Varaian	.1059/9	SAP 9 92)	http://ww	w.stroma.d	com			Average =	Sum(39)	112 /12=	61.7 ≱ ag	2 0 (3

Heat loss para	ımeter (I	HLP), W	′m²K					(40)m	= (39)m ÷	· (4)			
(40)m= 0.93	0.93	0.93	0.91	0.91	0.9	0.9	0.89	0.9	0.91	0.91	0.92		
						l	l		Average =	Sum(40) ₁ .	12 /12=	0.91	(40)
Number of day	1	nth (Tab	le 1a)					ı	1	i			
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m= 31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Water heat	ting ene	rgy requi	rement:								kWh/ye	ear:	
Assumed occu if TFA > 13.9 if TFA £ 13.9	9, N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (⁻	TFA -13		19		(42)
Annual averag Reduce the annua not more that 125	al average	hot water	usage by	5% if the a	welling is	designed t			se target o		.75		(43)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot water usage in				,				*F					
(44)m= 99.83	96.2	92.57	88.94	85.31	81.68	81.68	85.31	88.94	92.57	96.2	99.83		
									Total = Su	m(44) ₁₁₂ =		1089	(44)
Energy content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x C	OTm / 3600) kWh/mor	nth (see Ta	ables 1b, 1	c, 1d)		
(45)m= 148.04	129.47	133.61	116.48	111.77	96.45	89.37	102.56	103.78	120.95	132.02	143.37		_
If instantaneous w	vater heati	na at noint	of use (no	hot water	etoraga)	enter∩in	hoves (16		Total = Su	m(45) ₁₁₂ =	=	1427.85	(45)
		· ·	,				· · ·	, , , -					(40)
(46)m= 22.21 Water storage	19.42 loss:	20.04	17.47	16.76	14.47	13.41	15.38	15.57	18.14	19.8	21.51		(46)
Storage volum) includir	ig any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
If community h	neating a	and no ta	nk in dw	elling, e	nter 110	litres in	(47)						
Otherwise if no	o stored	hot wate	er (this in	icludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
Water storage													
a) If manufact				or is kno	wn (kWh	n/day):					0		(48)
Temperature f											0		(49)
Energy lost fro		•			or io not		(48) x (49)) =		1	10		(50)
b) If manufactHot water stora			-							0	02		(51)
If community h	-			- (.,	-77				<u>_</u>	<u> </u>		(5.7)
Volume factor	from Ta	ble 2a								1.	03		(52)
Temperature f	actor fro	m Table	2b							0	.6		(53)
Energy lost fro		_	, kWh/ye	ear			(47) x (51)) x (52) x (53) =	1.	03		(54)
Enter (50) or ((54) in (55)								1.	03		(55)
Water storage	loss cal	culated f	or each	month	_		((56)m = ((55) × (41)	m				
(56)m= 32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(56)
If cylinder contains	s dedicate	d solar sto	rage, (57)ı	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m= 32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(57)
Primary circuit	loss (ar	nnual) fro	m Table	 3	_						0		(58)
Primary circuit	`	,			59)m = ((58) ÷ 36	65 × (41)	m					
(modified by	factor f	rom Tab	le H5 if t	here is s	olar wat	ter heatii	ng and a	cylinde	r thermo	stat)			
(59)m= 23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)

Combi loss calculated	for each	month (61)m =	(60) <u>+</u> 3	65 v (41)m						
(61)m= 0 0	0	0	0	00) - 3	00 x (41)) 0	0	0	T 0	0	1	(61)
Total heat required for	water he	eating ca	alculated	l for eac	h month	<u> </u>			(46)m +	ļ] · (59)m + (61)m	, ,
(62)m= 203.31 179.4	188.88	169.98	167.04	149.94	144.65	157.8		176.22	185.52	198.64]	(62)
Solar DHW input calculated	using Appe	endix G or	Appendix	L H (negati	ive quantity	/) (enter	'0' if no sola	r contribu	tion to wate	er heating)	1	
(add additional lines if										0,		
(63)m= 0 0	0	0	0	0	0	0	0	0	0	0]	(63)
Output from water hea	ter				!	•	•	•	•	!	•	
(64)m= 203.31 179.4	188.88	169.98	167.04	149.94	144.65	157.8	3 157.27	176.22	185.52	198.64]	
				<u> </u>		0	utput from w	ater heate	er (annual)	112	2078.69	(64)
Heat gains from water	heating,	kWh/mo	onth 0.2	5 ´ [0.85	× (45)m	+ (61)	m] + 0.8 x	k [(46)m	+ (57)m	+ (59)m	n]	
(65)m= 93.44 82.99	88.65	81.52	81.38	74.86	73.94	78.32	77.3	84.44	86.69	91.89]	(65)
include (57)m in cal	culation c	of (65)m	only if c	ylinder i	s in the	dwellin	g or hot w	ater is f	rom com	munity h	neating	
5. Internal gains (see	e Table 5	and 5a):									
Metabolic gains (Table	e 5), Watt	s										
Jan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
(66)m= 109.5 109.5	109.5	109.5	109.5	109.5	109.5	109.5	109.5	109.5	109.5	109.5]	(66)
Lighting gains (calcula	ted in Ap	pendix l	L, equat	ion L9 o	r L9a), a	lso se	e Table 5				-	
(67)m= 18.74 16.64	13.53	10.25	7.66	6.47	6.99	9.08	12.19	15.48	18.06	19.26]	(67)
Appliances gains (calc	ulated in	Append	dix L, eq	uation L	13 or L1	3a), al	so see Ta	ble 5		_	-	
(68)m= 191.96 193.96	188.94	178.25	164.76	152.08	143.61	141.6	146.64	157.33	170.82	183.49]	(68)
Cooking gains (calcula	ated in Ap	pendix	L, equat	ion L15	or L15a), also	see Table	5	-			
(69)m= 33.95 33.95	33.95	33.95	33.95	33.95	33.95	33.95	33.95	33.95	33.95	33.95]	(69)
Pumps and fans gains	(Table 5	a)									_	
(70)m= 0 0	0	0	0	0	0	0	0	0	0	0]	(70)
Losses e.g. evaporation	n (negat	ive valu	es) (Tab	le 5)							_	
(71)m= -87.6 -87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6]	(71)
Water heating gains (Table 5)										_	
(72)m= 125.6 123.5	119.15	113.23	109.39	103.98	99.38	105.2	7 107.36	113.49	120.41	123.51]	(72)
Total internal gains =	: 			(66)m + (67)m	n + (68)r	n + (69)m +	(70)m + (7	71)m + (72))m	_	
(73)m= 392.15 389.95	377.47	357.57	337.66	318.37	305.83	311.8	322.04	342.14	365.13	382.11		(73)
6. Solar gains:												
Solar gains are calculated	•				•	itions to		ne applica		tion.		
Orientation: Access F Table 6d		Area m²		Flu Ta	ıx ble 6a		g_ Table 6b	Т	FF able 6c		Gains (W)	
0 11 1						, –				_		1(70)
0 11 1	X	8.6		-	36.79	¦ ⊨	0.63	X	0.7	=	97.28	(79)
On with war at	X	8.6			52.67	j L	0.63	×	0.7	=	165.7	(79)
0.11		8.6			35.75	,	0.63	×	0.7	_ =	226.72](79)] ₍₇₀₎
		8.6		-	06.25] -	0.63	×	0.7	=	280.91	(79)
Southwest _{0.9x} 0.77	X	8.6	5	x 1	19.01	J L	0.63	X	0.7	=	314.65	(79)

													_
Southwest _{0.9}	× 0.77	X	8.6	5	x 1	18.15		0.63	×	0.7	=	312.37	(79)
Southwest _{0.9}	× 0.77	x	8.6	55	x 1	13.91		0.63	X	0.7	=	301.16	(79)
Southwest _{0.9}	x 0.77	X	8.6	55	x 1	04.39		0.63	X	0.7	=	275.99	(79)
Southwest _{0.9}	× 0.77	x	8.6	55	x g	92.85		0.63	x	0.7	=	245.49	(79)
Southwest _{0.9}	× 0.77	x	8.6	55	x (69.27		0.63	x	0.7	=	183.13	(79)
Southwest _{0.9}	× 0.77	x	8.6	55	X	44.07		0.63	x	0.7	=	116.52	(79)
Southwest _{0.9}	x 0.77	x	8.6	55	x (31.49		0.63	x	0.7	=	83.25	(79)
													
Solar gains	in watts, ca	alculated	for eac	n month	_	_	(83)m = S	um(74)m .	(82)m	_			
(83)m= 97.2	3 165.7	226.72	280.91	314.65	312.37	301.16	275.99	245.49	183.13	116.52	83.25		(83)
Total gains -	- internal a	and solar	(84)m =	(73)m	+ (83)m	, watts							
(84)m= 489.4	2 555.65	604.18	638.49	652.3	630.75	606.99	587.81	567.53	525.27	481.65	465.36		(84)
7. Mean int	ernal temp	perature	(heating	season)								
Temperatu	re during h	neating p	eriods ir	the livi	ng area	from Tal	ole 9, Th	1 (°C)				21	(85)
Utilisation f	actor for g	ains for I	iving are	ea, h1,m	(see Ta	able 9a)							
Jar	n Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(86)m= 0.94	0.92	0.88	0.81	0.7	0.55	0.42	0.45	0.63	0.82	0.92	0.95		(86)
Mean inter	nal temper	ature in	living are	ea T1 (fo	ollow ste	eps 3 to 7	r in Tabl	e 9c)	•	•			
(87)m= 19.3		19.92	20.33	20.67	20.89	20.96	20.96	20.82	20.4	19.79	19.27		(87)
Tomporotu	ro during h	L	oriodo ir	root of	dualling	from To	shlo O. T	h2 (°C)					
Temperatu (88)m= 20.14		20.15	20.16	20.16	20.17	20.17	20.17	20.17	20.16	20.15	20.15		(88)
						ļ	<u> </u>	20.17	20.10	20.10	20.10		()
Utilisation f					· ·	I	T	I 0.50	0.70	0.0	0.04		(90)
(89)m= 0.94	0.91	0.86	0.78	0.66	0.5	0.35	0.38	0.58	0.79	0.9	0.94		(89)
Mean inter	- '	ature in			 `	1	eps 3 to	1					
(90)m= 17.8	3 18.24	18.75	19.33	19.78	20.06	20.15	20.14	19.99	19.43	18.58	17.82		(90) —
								1	LA = Livin	g area ÷ (4	1) =	0.43	(91)
Mean inter	nal temper	ature (fo	r the wh	ole dwe	lling) = f	LA × T1	+ (1 – fL	A) × T2					
(92)m= 18.5	18.81	19.25	19.77	20.17	20.42	20.5	20.49	20.35	19.85	19.11	18.44		(92)
Apply adjus	stment to t	he mean	internal	temper	ature fro	m Table	4e, whe	ere appro	priate				
(93)m= 18.5	18.81	19.25	19.77	20.17	20.42	20.5	20.49	20.35	19.85	19.11	18.44		(93)
8. Space h													
Set Ti to th the utilisation					ned at st	ep 11 of	Table 9	b, so tha	t Ti,m=(76)m an	d re-calc	ulate	
Jar		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisation f			•	iviay	Juli	1 341	Aug	Гоер	001	1407	Dec		
(94)m= 0.92		0.84	0.77	0.66	0.51	0.38	0.4	0.59	0.78	0.89	0.93		(94)
Useful gair	s, hmGm	, W = (94	1)m x (84	4)m	ļ	!		<u>!</u>					
(95)m= 449.3	_	509.64	491.89	432.41	324.26	228.47	237.31	335.01	410.76	426.45	431.16		(95)
Monthly av	erage exte	ernal tem	perature	from T	able 8		!	!					
(96)m= 4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat loss r	ate for me	an intern	al tempe	erature,	Lm , W	=[(39)m	x [(93)m	– (96)m]				
(97)m= 895.0		799.2	671.31	521.56	353.3	236.69	247.69	381.47	569.86	743.91	887.71		(97)
Space hea		r			Wh/mon	th = 0.02	24 x [(97)m – (95		r –			
(98)m= 331.5	9 256.13	215.43	129.19	66.33	0	0	0	0	118.37	228.57	339.67		

	Total per year (kWh/year) = $Sum(98)_{15,912}$ =	1685.27	(98)
Space heating requirement in kWh/m²/year		24.88	(99)
9b. Energy requirements – Community heating scheme			
This part is used for space heating, space cooling or water heating Fraction of space heat from secondary/supplementary heating (Tab		0	(301)
Fraction of space heat from community system 1 – (301) =	,	1	(302)
The community scheme may obtain heat from several sources. The procedure allow	vs for CHP and up to four other heat sources: t		` ′
includes boilers, heat pumps, geothermal and waste heat from power stations. See		no iditor	_
Fraction of heat from Community boilers		1	(303a)
Fraction of total space heat from Community boilers	(302) x (303a) =	1	(304a)
Factor for control and charging method (Table 4c(3)) for community	heating system	1	(305)
Distribution loss factor (Table 12c) for community heating system		1.05	(306)
Space heating		kWh/yea	r_
Annual space heating requirement		1685.27	╛
Space heat from Community boilers	(98) x (304a) x (305) x (306) =	1769.53	(307a)
Efficiency of secondary/supplementary heating system in % (from 7	Table 4a or Appendix E)	0	(308
Space heating requirement from secondary/supplementary system	(98) x (301) x 100 ÷ (308) =	0	(309)
Water heating Annual water heating requirement		2078.69	7
If DHW from community scheme: Water heat from Community boilers	(64) x (303a) x (305) x (306) =	2182.63	(310a)
Electricity used for heat distribution	0.01 × [(307a)(307e) + (310a)(310e)] =	39.52	(313)
Cooling System Energy Efficiency Ratio		0	(314)
Space cooling (if there is a fixed cooling system, if not enter 0)	= (107) ÷ (314) =	0	(315)
Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input from out	side	235.01	(330a)
warm air heating system fans		0	(330b)
pump for solar water heating		0	(330g)
Total electricity for the above, kWh/year	=(330a) + (330b) + (330g) =	235.01	(331)
Energy for lighting (calculated in Appendix L)	=(000d) + (000d) + (000g) =	330.87	(332)
Electricity generated by PVs (Appendix M) (negative quantity)		-683.38	(333)
Electricity generated by VVs (Appendix M) (negative quantity)	itu)		(334)
	пу)	0	(334)
12b. CO2 Emissions – Community heating scheme	Energy Emission factor kWh/year kg CO2/kWh	Emissions kg CO2/year	
CO2 from other sources of space and water heating (not CHP) Efficiency of heat source 1 (%) If there is CHP using two	o fuels repeat (363) to (366) for the second fue	94	(367a)
CO2 associated with heat source 1 [(307b)+(310	(b)] x 100 ÷ (367b) x 0.22 =	908.16	(367)
Electrical energy for heat distribution [(31:	3) x 0.52 =	20.51	(372)

Total CO2 associated with community systems	(363)(366) + (368)(372)		= [928.67	(373)
CO2 associated with space heating (secondary)	(309) x	0	= [0	(374)
CO2 associated with water from immersion heater or	r instantaneous heater (312) x	0.22	= [0	(375)
Total CO2 associated with space and water heating	(373) + (374) + (375) =			928.67	(376)
CO2 associated with electricity for pumps and fans w	vithin dwelling (331)) x	0.52	= [121.97	(378)
CO2 associated with electricity for lighting	(332))) x	0.52	= [171.72	(379)
Energy saving/generation technologies (333) to (334 Item 1) as applicable 0.52	x 0.01 =		-354.67	(380)
Total CO2, kg/year sum of (376)	(382) =			867.68	(383)
Dwelling CO2 Emission Rate (383) ÷ (4) =				12.81	(384)
El rating (section 14)				89.69	(385)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 28 October 2020

Property Details: Plot 2

Dwelling type:FlatLocated in:EnglandRegion:Thames valley

Cross ventilation possible: No **Number of storeys:** 1

Front of dwelling faces: North East

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Indicative Value Low

Night ventilation: False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach): 4 (Windows fully open)

Overheating Details:

Summer ventilation heat loss coefficient: 223.54 (P1)

Transmission heat loss coefficient: 48.1

Summer heat loss coefficient: 271.63 (P2)

Overhangs:

Orientation: Ratio: Z_overhangs:

South West (SW) 0 1

Solar shading:

Orientation:Z blinds:Solar access:Overhangs:Z summer:South West (SW)10.910.9

Solar gains:

Orientation FF Area Flux Shading Gains g_{-} 119.92 0.9 370.59 South West (SW) 0.9 x8.65 0.63 0.7 **Total** 370.59 (P3/P4)

Internal gains:

June July **August** 441.26 433.48 Internal gains 425.32 830.28 795.91 779.19 (P5) Total summer gains Summer gain/loss ratio 3.06 2.93 2.87 (P6) Mean summer external temperature (Thames valley) 16 17.9 17.8 Thermal mass temperature increment 1.3 1.3 1.3 (P7) Threshold temperature 20.36 22.13 21.97 Likelihood of high internal temperature Not significant Medium Slight

Assessment of likelihood of high internal temperature: Medium

		User_[Details:									
Assessor Name: Software Name:	Zahid Ashraf Stroma FSAP 2012		Strom Softwa					0001082 on: 1.0.5.9				
		Property	Address	: Plot 2								
Address: 1 Overall dwelling dimensions:												
1. Overall dwelling dime	ensions:											
Ground floor			a(m²)	1,, ,	Av. He	- '	_	Volume(m ³	<u>`</u>			
			67.74	(1a) x		2.5	(2a) =	169.35	(3a)			
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)+(1e)+(1	n)	67.74	(4)								
Dwelling volume				(3a)+(3b)+(3c)+(3c	d)+(3e)+.	(3n) =	169.35	(5)			
2. Ventilation rate:												
	main seconda heating heating	ry	other		total			m³ per hou	ır			
Number of chimneys	0 + 0	+	0	= [0)	< 40 =	0	(6a)			
Number of open flues	0 + 0	_ + [0	Ī = [0	,	(20 =	0	(6b)			
Number of intermittent fa	ins			_ 	2	,	c 10 =	20	(7a)			
Number of passive vents	;				0		< 10 =	0	(7b)			
Number of flueless gas fi				L	0		< 40 =	0	(7c)			
rvambor or naciooc gac n				L				0	(10)			
							Air ch	nanges per ho	our			
Infiltration due to chimne	ys, flues and fans = (6a)+(6b)+	(7a)+(7b)+	(7c) =	Γ	20		÷ (5) =	0.12	(8)			
	peen carried out or is intended, proce	ed to (17),	otherwise (continue fi	rom (9) to	(16)						
Number of storeys in the Additional infiltration	he dwelling (ns)					• (-		0	(9)			
	.25 for steel or timber frame o	r 0 35 fc	r macon	ny coneti	ruction	[(9	9)-1]x0.1 =	0	(10)			
	resent, use the value corresponding			•	uction			0	(11)			
deducting areas of opening									_			
·	floor, enter 0.2 (unsealed) or ().1 (seal	ed), else	enter 0				0	(12)			
If no draught lobby, en	s and doors draught stripped							0	(13)			
Window infiltration	s and doors draught stripped		0.25 - [0.2	2 x (14) ÷ 1	100] =			0	(14)			
Infiltration rate					- 12) + (13) ·	+ (15) =		0	(16)			
Air permeability value,	q50, expressed in cubic metr	es per h	our per s	quare m	etre of e	envelop	e area	3	(17)			
If based on air permeabil	lity value, then $(18) = [(17) \div 20] +$	(8), otherv	vise (18) =	(16)				0.27	(18)			
	es if a pressurisation test has been do	ne or a de	egree air pe	ermeability	is being u	sed			_			
Number of sides sheltere Shelter factor	ed		(20) = 1 -	[0.075 x (19)] =			2	(19) (20)			
Infiltration rate incorporat	ting shelter factor		(21) = (18	•	/,1			0.85	(21)			
Infiltration rate modified f	•		() (-	, (- /				0.23	(21)			
Jan Feb	Mar Apr May Jun	Jul	Aug	Sep	Oct	Nov	Dec]				
Monthly average wind sp	1 , 1 , 1	1	<u>, </u>			1	L	J				
(22)m= 5.1 5	4.9 4.4 4.3 3.8	3.8	3.7	4	4.3	4.5	4.7]				
	2)	1	1	•	•	•	1	ı				
Wind Factor (22a)m = $(2.2a)$ m = $(2.2a)$		0.05	1 0.00		1 4 00	4.40	140	1				
(22a)m= 1.27 1.25	1.23 1.1 1.08 0.95	0.95	0.92	1	1.08	1.12	1.18	J				

Adjusted infiltr	ation rat	e (allowi	ng for sl	nelter an	d wind s	peed) =	(21a) x	(22a)m					
0.29	0.28	0.28	0.25	0.24	0.22	0.22	0.21	0.23	0.24	0.26	0.27		
Calculate effe If mechanic		_	rate for t	пе арри	саріе са	se						0	(2
If exhaust air h			endix N, (2	3b) = (23a	a) × Fmv (e	equation (I	N5)) , othe	rwise (23b) = (23a)			0	(2
If balanced with	n heat reco	overy: effic	iency in %	allowing f	or in-use f	actor (fron	n Table 4h) =	, , ,			0	(2
a) If balance		-	-	_					2h)m + (23h) 🗴 [1 – (23c)		(2
24a)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(2
b) If balance	ed mech	L anical ve	ntilation	without	heat rec	covery (N	MV) (24b)m = (2)	2b)m + (23b)		J	
24b)m= 0	0	0	0	0	0	0	0	0	0	0	0	1	(2
c) If whole h	L OUSE EX	tract ver	tilation o	r positiv	e input v	ventilatio	on from c	LLLL outside				J	
•				•	•		c) = (22k)		.5 × (23b	o)			
24c)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(2
d) If natural	ventilatio	on or wh	ole hous	e positiv	e input	ventilatio	on from I	oft		!		•	
if (22b)r	n = 1, th	en (24d)	m = (22l	o)m othe	rwise (2	4d)m =	0.5 + [(2	2b)m² x	0.5]				
24d)m= 0.54	0.54	0.54	0.53	0.53	0.52	0.52	0.52	0.53	0.53	0.53	0.54		(2
Effective air	change	rate - er	iter (24a) or (24b	o) or (24	c) or (24	d) in box	(25)		,	,		
25)m= 0.54	0.54	0.54	0.53	0.53	0.52	0.52	0.52	0.53	0.53	0.53	0.54		(2
3. Heat losse	s and he	eat loss p	paramet	er:									
LEMENT	Gros	SS	Openin	gs	Net Ar		U-valu		AXU		k-value		A X k
0010	area	(m²)	m) *	A ,r	 1	W/m2	_	(W/	K)	kJ/m²-l	K.	kJ/K
oors					2	×	1.4	=	2.8	_			(2
Vindows 					8.651	x1	/[1/(1.4)+	0.04] =	11.47	ᆗ ,			(2
loor					67.73	9 x	0.12	=	8.12867	9		_	(2
Valls Type1	50.9	9	8.65		42.34	X	0.15	=	6.35			ᆜ	(2
Valls Type2	21.2	26	2		19.26	X	0.14	=	2.76				(2
Valls Type3	18.0)2	0		18.02	<u>x</u>	0.13	=	2.41				(2
Roof Type1	5.7	,	0		5.7	X	0.1	=	0.57				(3
Roof Type2	4.1	2	0		4.12	X	0.1	=	0.41				(3
otal area of e	elements	, m²			167.8	2							(3
for windows and						ated using	g formula 1	/[(1/U-valu	ıe)+0.04] a	as given in	paragraph	1 3.2	
* include the area				ls and par	titions		(22) (22)	(22)					
abric heat los		•	U)				(26)(30)					34.9	(3
leat capacity		,	_						(30) + (32	, , ,	(32e) =	8654.27	(3
hermal mass	•	•		,					tive Value			100	(3
or design asses: an be used inste				construct	ion are not	t known pi	recisely the	: indicative	e values of	'IMP IN I	able 1f		
hermal bridg				using Ap	pendix ł	<						13.2	(3
details of therma	,	,			•								`
otal fabric he	at loss							(33) +	(36) =			48.09	(3
entilation hea	at loss ca	alculated	l monthly	y				(38)m	= 0.33 × ((25)m x (5)		_
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
8)m= 30.3	30.21	30.12	29.7	29.62	29.25	29.25	29.18	29.39	29.62	29.78	29.95		(3
leat transfer	coefficie	nt, W/K						(39)m	= (37) + (38)m			
39)m= 78.4	78.3	78.21	77.79	77.71	77.35	77.35	77.28	77.49	77.71	77.87	78.04]	
			A D 0 00\	http://www	w.stroma.d		•		Average =	Sum(39)	12 /12=	77.7 ⊝ a	- C

at loss para	meter (H	HLP), W/	m²K					(40)m	= (39)m ÷	- (4)			
m= 1.16	1.16	1.15	1.15	1.15	1.14	1.14	1.14	1.14	1.15	1.15	1.15		
mber of day	e in moi	oth (Tah	la 1a)		•			,	Average =	Sum(40) ₁ .	12 /12=	1.15	(4
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
m= 31	28	31	30	31	30	31	31	30	31	30	31		(4
Water heat	ing ener	gy requi	rement:								kWh/ye	ar:	
sumed occu TFA > 13.9 TFA £ 13.9	N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9))2)] + 0.0	0013 x (⁻	ΓFA -13.		19		(4
nual averago Juce the annua more that 125	l average	hot water	usage by	5% if the a	lwelling is	designed t			se target o		.75		(4
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
water usage in	litres per	day for ea	ach month	Vd,m = fa	ctor from	able 1c x	(43)			•			
m= 99.83	96.2	92.57	88.94	85.31	81.68	81.68	85.31	88.94	92.57	96.2	99.83		
rgy content of	hot water	used - cal	culated ma	onthly – 4	190 v Vd r	n v nm v F	Tm / 3600			m(44) ₁₁₂ =		1089	(
	129.47	133.61	116.48	111.77	96.45	89.37	102.56	103.78	120.95	132.02	143.37		
m= 148.04	129.47	133.01	110.40	111.77	90.45	09.37	102.30			m(45) ₁₁₂ =	 	1427.85	(
stantaneous w	ater heatii	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46)		rotar = Su	111(43)112 =	L	1427.03	
m= 0	0	0	0	0	0	0	0	0	0	0	0		(
ter storage													
rage volum	, ,		•			_		ame ves	sel		0		(
ommunity herwise if no	_			_				ora) onto	or 'O' in /	′ 47 \			
ter storage		noi wate	: (11115 111	ciudes i	HStaritar	ieous co	יווטט וטוווי	ers) erite	51 U III ((47)			
If manufacti		eclared l	oss facto	or is kno	wn (kWh	n/day):					0		(
nperature fa	actor fro	m Table	2b								0		(
ergy lost fro	m water	storage	, kWh/ye	ear			(48) x (49)) =			0		(
If manufacti			-										
t water stora ommunity h	-			e ∠ (KVV	n/litre/da	ıy)					0		(
ume factor	•		JII 4.5								0		(
nperature fa	actor fro	m Table	2b								0		(
ergy lost fro	m water	storage	, kWh/ye	ear			(47) x (51)	x (52) x (53) =		0		(
ter (50) or (_	•								0		(
ter storage	loss cal	culated f	or each	month			((56)m = (55) × (41)	m				
m= 0	0	0	0	0	0	0	0	0	0	0	0		(
linder contains	dedicate	d solar sto	rage, (57)r	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Appendix	κН	
m= 0	0	0	0	0	0	0	0	0	0	0	0		(
mary circuit	loss (an	nual) fro	m Table	3							0		(
-	•	•											
mary circuit	ioss cai	culated t	or each	month (59)m = ((58) ÷ 36	65 × (41)	m					
mary circuit modified by				,	•	. ,	, ,		r thermo	stat)			

Combi loss ca	alculated	for each	month (′61)m =	(60) ± 3	65 v (41)m						
(61)m= 0	0	0	0	0	0	0	0	0	0	0	0	1	(61)
	uired for	water h	eating ca	alculated	l for eac	h month	(62)m	= 0.85 ×	(45)m +	(46)m +	(57)m +	- (59)m + (61)m	
(62)m= 125.83	`	113.57	99.01	95	81.98	75.97	87.17		102.8	112.22	121.86]	(62)
Solar DHW input	: calculated	using App	endix G oı	· Appendix	H (negat	ive quantity	y) (entei	'0' if no sola	r contribu	tion to wate	er heating)) L	
(add additiona													
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(63)
Output from v	vater hea	ter				•	•	•	•	•	•	-	
(64)m= 125.83	110.05	113.57	99.01	95	81.98	75.97	87.17	88.21	102.8	112.22	121.86]	
	•			•	•	•	0	utput from w	ater heate	er (annual)	112	1213.68	(64)
Heat gains fro	om water	heating,	kWh/m	onth 0.2	5 ´ [0.85	5 × (45)m	ı + (61)m] + 0.8	k [(46)m	+ (57)m	+ (59)m	ı]	
(65)m= 31.46	27.51	28.39	24.75	23.75	20.49	18.99	21.79	22.05	25.7	28.05	30.47]	(65)
include (57)m in cald	culation (of (65)m	only if c	ylinder	is in the	dwellir	g or hot w	ater is f	rom com	munity h	neating	
5. Internal g	jains (see	e Table 5	and 5a):									
Metabolic gai	ns (Table	e 5), Wat	ts										
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	g Sep	Oct	Nov	Dec]	
(66)m= 109.5	109.5	109.5	109.5	109.5	109.5	109.5	109.5	109.5	109.5	109.5	109.5]	(66)
Lighting gains	s (calcula	ted in Ap	pendix	L, equat	ion L9 c	or L9a), a	lso se	e Table 5				-	
(67)m= 18.74	16.64	13.53	10.25	7.66	6.47	6.99	9.08	12.19	15.48	18.06	19.26]	(67)
Appliances ga	ains (calc	ulated ir	Append	dix L, eq	uation L	.13 or L1	3a), al	so see Ta	ble 5			-	
(68)m= 191.96	193.96	188.94	178.25	164.76	152.08	143.61	141.6	2 146.64	157.33	170.82	183.49]	(68)
Cooking gain	s (calcula	ted in A	ppendix	L, equat	ion L15	or L15a), also	see Table	5	•		-	
(69)m= 33.95	33.95	33.95	33.95	33.95	33.95	33.95	33.95	33.95	33.95	33.95	33.95]	(69)
Pumps and fa	ans gains	(Table 5	ōa)					•				-	
(70)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(70)
Losses e.g. e	vaporatio	n (nega	tive valu	es) (Tab	le 5)		•	•				-	
(71)m= -87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6]	(71)
Water heating	g gains (T	able 5)						-	•			-	
(72)m= 42.28	40.94	38.16	34.38	31.92	28.46	25.53	29.29	30.63	34.54	38.96	40.95]	(72)
Total interna	l gains =				(66	5)m + (67)m	า + (68)เ	n + (69)m +	(70)m + (7	71)m + (72))m	-	
(73)m= 308.83	307.39	296.48	278.72	260.19	242.86	231.97	235.8	4 245.31	263.2	283.69	299.55]	(73)
6. Solar gair	ns:												
Solar gains are	calculated	using sola	r flux from	Table 6a	and asso	ciated equa	ations to	convert to th	ne applical		tion.		
Orientation:	Access F Table 6d		Area m²		Flu	ux ible 6a		g_ Table 6b	т	FF able 6c		Gains	
						ible ba		Table ob	_ '	able oc		(W)	,
Southwest _{0.9x}		X	8.6	35	X	36.79	<u> </u>	0.63	x	0.7	=	97.28	(79)
Southwest _{0.9x}	•	X	8.6	S5	X	62.67	ļ <u>Ļ</u>	0.63	×	0.7	=	165.7	(79)
Southwest _{0.9x}		X	8.6	S5	x	85.75	ļ Ļ	0.63	x	0.7	=	226.72	(79)
Southwest _{0.9x}		X	8.6	S5	x	106.25	ļĹ	0.63	x	0.7	=	280.91	(79)
Southwest _{0.9x}	0.77	X	8.6	35	X	119.01		0.63	X	0.7	=	314.65	(79)

Southwest _{0.9x} 0.77	X	8.6	55	x	118.15		0.63	х	0.7	=	312.37	(79)
Southwest _{0.9x} 0.77	x	8.6	55	x	113.91		0.63	x	0.7	=	301.16	(79)
Southwest _{0.9x} 0.77	х	8.6	55	x	104.39		0.63	x	0.7	=	275.99	(79)
Southwest _{0.9x} 0.77	х	8.6	55	x	92.85		0.63	x	0.7	=	245.49	(79)
Southwest _{0.9x} 0.77	х	8.6	55	x	69.27		0.63	x	0.7	=	183.13	(79)
Southwest _{0.9x} 0.77	x	8.6	55	x	44.07	Ī	0.63	x	0.7		116.52	(79)
Southwest _{0.9x} 0.77	x	8.6	55	х	31.49	ĪĪ	0.63	x	0.7		83.25	(79)
				_								
Solar gains in watts, c	alculated	for eacl	n month			(83)m	= Sum(74)m	(82)m			•	
(83)m= 97.28 165.7	226.72	280.91	314.65		2.37 301.16	275.	99 245.49	183.13	116.52	83.25		(83)
Total gains – internal a		` 	, ,	Ò				-	1		1	
(84)m= 406.11 473.09	523.2	559.64	574.84	55	55.23 533.13	511.	84 490.79	446.33	400.21	382.8		(84)
7. Mean internal temp	perature	(heating	season)								
Temperature during I	neating p	eriods ir	the livi	ng a	area from Ta	able 9,	Th1 (°C)				21	(85)
Utilisation factor for g	ains for I	iving are	ea, h1,m	(se	ee Table 9a)				_		1	_
Jan Feb	Mar	Apr	May	_	Jun Jul	Αι	ıg Sep	Oct	Nov	Dec		
(86)m= 0.97 0.95	0.92	0.88	0.8	0	.68 0.55	0.58	0.75	0.89	0.95	0.97		(86)
Mean internal temper	rature in I	iving are	ea T1 (fo	ollov	w steps 3 to	7 in Ta	able 9c)					
(87)m= 18.59 18.86	19.29	19.81	20.31	20	0.69 20.88	20.8	5 20.56	19.92	19.15	18.52		(87)
Temperature during I	neating p	eriods ir	rest of	dwe	elling from T	able 9	, Th2 (°C)	-	-	-	•	
(88)m= 19.95 19.96	19.96	19.96	19.96	1	9.97 19.97	19.9		19.96	19.96	19.96		(88)
Utilisation factor for g	iains for r	est of d	welling	h2 r	m (see Table	- 9a)		- !	•			
(89)m= 0.96 0.94	0.91	0.86	0.76	Г	.61 0.45	0.48	3 0.7	0.87	0.94	0.97		(89)
Mean internal temper	roturo in t	ho root	of dwall	ina.	T2 (follow et	one 2	to 7 in Tol	-lo ()o)	Į.			
(90)m= 17.75 18.03	18.44	18.95	19.42	Ť	9.77 19.91	19.8		19.07	18.31	17.69		(90)
(66)	1	.0.00			1 10.01	1	1		ng area ÷ (0.43	(91)
Managiatawaltawa		41	-ll	II:	\		41 A) To	2				` ′
Mean internal temper (92)m= 18.11 18.39	18.81	19.32	19.8	T T	0.17 20.33	20.3	 	19.43	18.67	18.05		(92)
Apply adjustment to t				Ь					10.07	10.03		(02)
(93)m= 18.11 18.39	18.81	19.32	19.8	1	0.17 20.33	20.3		19.43	18.67	18.05		(93)
8. Space heating req	uirement											
Set Ti to the mean in	ternal ten	nperatur	e obtair	ned	at step 11 o	f Table	9b, so th	at Ti,m=	(76)m an	d re-calc	culate	
the utilisation factor f	or gains u	using Ta	ble 9a	_							Ī	
Jan Feb	Mar	Apr	May	_	Jun Jul	Αι	ig Sep	Oct	Nov	Dec		
Utilisation factor for g						1		1	1		Ī	(0.4)
(94)m= 0.95 0.93	0.89	0.84	0.76	0	.63 0.49	0.52	2 0.7	0.86	0.93	0.96		(94)
Useful gains, hmGm (95)m= 385.7 438.88	, VV = (94) 468.25	470.48	4)m 434.28	24	8.09 258.59	265	48 344.01	382.12	371.99	265.90		(95)
(95)m= 385.7 438.88 Monthly average exte						265.	46 344.01	302.12	371.99	365.89		(90)
(96)m= 4.3 4.9	6.5	8.9	11.7	$\overline{}$	4.6 16.6	16.4	1 14.1	10.6	7.1	4.2		(96)
Heat loss rate for me	1 1			<u> </u>					1	I	1	. ,
(97)m= 1082.92 1056.13		810.93	629.83	1	0.54 288.16	 	, , , ,	-	901.36	1080.97		(97)
Space heating requir	ement fo	r each m	nonth, k	Wh/	month = 0.0	24 x [(97)m – (9	5)m] x (4	11)m	I	1	
(98)m= 518.73 414.8	367.68	245.12	145.49		0 0	0	0	226.48	381.15	532.01		
-											-	

								Tota	l per year	(kWh/yeaı	r) = Sum(9	8) _{15,912} =	2831.46	(98)
Space	heatin	g require	ement in	kWh/m²	² /year								41.8	(99)
8c. Sp	ace co	oling req	uiremer	nt										
Calcul	ated fo	r June, J	July and	August.	See Tal	ole 10b					_	_	_	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Heat I	oss rate	e Lm (ca	lculated	using 2	5°C inter	nal temp	erature	and exte	ernal ten	nperatur	e from T	able 10)		
(100)m=	0	0	0	0	0	727.06	572.37	587.32	0	0	0	0		(100)
Utilisa	tion fac	tor for lo	ss hm											
(101)m=	0	0	0	0	0	0.73	0.79	0.77	0	0	0	0		(101)
Useful	loss, h	mLm (V	/atts) = ((100)m x	(101)m	-							•	
(102)m=	0	0	0	0	0	527.68	454.32	455.03	0	0	0	0		(102)
Gains	(solar	gains cal	lculated	for appli	cable we	eather re	gion, se	e Table	10)				•	
(103)m=	0	0	0	0	0	730.86	703.47	680.09	0	0	0	0		(103)
		g require zero if (lwelling,	continu	ous (kW	h' = 0.02	24 x [(10	03)m – (102)m] .	x (41)m	
(104)m=	0	0	0	0	0	146.28	185.37	167.44	0	0	0	0		
_		•							Total	= Sum(104)	=	499.1	(104)
Cooled	fraction	n							f C =	cooled	area ÷ (4	4) =	1	(105)
Intermi <u>t</u>	tency f	actor (Ta	able 10b)									•	
(106)m=	0	0	0	0	0	0.25	0.25	0.25	0	0	0	0		
									Total	I = Sum(104)	=	0	(106)
Space <u>c</u>	cooling	requirer	nent for	month =	(104)m	× (105)	× (106)r	n					•	
(107)m=	0	0	0	0	0	36.57	46.34	41.86	0	0	0	0		
									Total	= Sum(107)	=	124.77	(107)
Space o	cooling	requirer	ment in k	«Wh/m²/y	/ear				(107)	÷ (4) =			1.84	(108)
8f. Fabr	ric Ene	rgy Effici	ency (ca	alculated	only un	der spec	cial cond	litions, se	ee sectio	on 11)				
Fabric	Energ	y Efficier	псу						(99) -	+ (108) =	=		43.64	(109)

SAP Input

Property Details: Plot 2

Address:

Located in: England Region: Thames valley

UPRN:

Date of assessment: 08 July 2020
Date of certificate: 28 October 2020

Assessment type: New dwelling design stage

Transaction type:

Tenure type:

Related party disclosure:

Thermal Mass Parameter:

New dwelling
Unknown

No related party
Indicative Value Low

Water use <= 125 litres/person/day: False

PCDF Version: 466

Property description:

Dwelling type:

Flat

Detachment:

Year Completed: 2020

Floor Location: Floor area:

Storey height:

Floor 0 67.739 m² 2.5 m

Living area: 29.219 m² (fraction 0.431)

Front of dwelling faces: North East

Opening types:

Name: Source: Type: Glazing: Argon: Frame:

NE Manufacturer Solid

SW Manufacturer Windows double-glazed Yes

Name: Gap: Frame Factor: g-value: **U-value:** Area: No. of Openings: NE mm 0 0 1.4 2 SW 0.7 0.63 1.4 8.651 16mm or more

Name: Type-Name: Location: Orient: Width: Height: NE Corridor Wall North East 0 0

NECorridor WallNorth East00SWExternal WallSouth West00

Overshading: Average or unknown

Opaque Elements:

Type:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Kappa:
External Elemen	<u>ts</u>						
External Wall	50.988	8.65	42.34	0.15	0	False	N/A
Corridor Wall	21.261	2	19.26	0.15	0.31	False	N/A
Stairwell Wall	18.017	0	18.02	0.15	0.82	False	N/A
Flat Roof	5.701	0	5.7	0.1	0		N/A
Corridor Ceiling	4.118	0	4.12	0.1	0		N/A
Ground Floor	67.739			0.12			N/A

Internal Elements
Party Elements

Thormal bridges

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.0786

Length Psi-value

4.795 0.291 E2 Other lintels (including other steel lintels)

SAP Input

	13.2	0.048	E4	Jamb
	31.989	0.144	E5	Ground floor (normal)
	21.272	0.063	E7	Party floor between dwellings (in blocks of flats)
	3.62	0.12	E24	Eaves (insulation at ceiling level - inverted)
	5.195	0.56	E15	Flat roof with parapet
	11.8	0.083	E16	Corner (normal)
	1.575	0.059	E14	Flat roof
	5.9	-0.081	E17	Corner (inverted internal area greater than external area)
[Approved]	2.95	0.06	E18	Party wall between dwellings
	2.95	0.096	E25	Staggered party wall between dwellings
	5.147	0.16	P1	Ground floor
	3.391	0	P3	Intermediate floor between dwellings (in blocks of flats)

Ventilation.

Pressure test: Yes (As designed)

Ventilation: Balanced with heat recovery

Number of wet rooms: Kitchen + 1

Ductwork: Insulation, rigid

Approved Installation Scheme: True

Number of chimneys: 0
Number of open flues: 0
Number of fans: 0
Number of passive stacks: 0
Number of sides sheltered: 2
Pressure test: 3

Main heating system

Main heating system: Community heating schemes

Heat source: Community boilers

heat from boilers – mains gas, heat fraction 1, efficiency 94 Piping>=1991, pre-insulated, low temp, variable flow

Central heating pump: 2013 or later Design flow temperature: Unknown

Boiler interlock: Yes

Main heating Control:

Main heating Control: Charging system linked to use of community heating, programmer and at least two room

thermostats

Control code: 2312

Secondary heating system:

Secondary heating system: None

Water heating

Water heating: From main heating system

Water code: 901

Fuel :heat from boilers - mains gas

No hot water cylinder Solar panel: False

Others:

Electricity tariff: Standard Tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%

Terrain type: Low rise urban / suburban

EPC language: English Wind turbine: No

Photovoltaics: <u>Photovoltaic 1</u>

Installed Peak power: 0.83

SAP Input

Tilt of collector: 30°

Overshading: None or very little Collector Orientation: South West

Assess Zero Carbon Home: No

		User_l	Details:						
Assessor Name: Software Name:	Zahid Ashraf Stroma FSAP 2012		Strom Softwa					0001082 on: 1.0.5.9	
		Property	Address	: Plot 2					
Address :									
1. Overall dwelling dime	ensions:	_							
Ground floor		_	ea(m²)	l(10) v	Av. He		_	Volume(m ³	<u>`</u>
			67.74	(1a) x		2.5	(2a) =	169.35	(3a)
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)+(1e)+(1	n)	67.74	(4)					
Dwelling volume				(3a)+(3b)+(3c)+(3c	d)+(3e)+	(3n) =	169.35	(5)
2. Ventilation rate:	·		41					2	
	main seconda heating heating		other		total			m³ per hou	ır
Number of chimneys	0 + 0	+ [0] = [0)	40 =	0	(6a)
Number of open flues	0 + 0	+	0] = [0)	20 =	0	(6b)
Number of intermittent fa	ins				2)	10 =	20	(7a)
Number of passive vents	;			Ī	0	,	10 =	0	(7b)
Number of flueless gas fi	ires			Ĺ	0		40 =	0	(7c)
ŭ				L				_	`
							Air ch	nanges per ho	our
Infiltration due to chimne	ys, flues and fans = $(6a)+(6b)+$	(7a)+(7b)+	(7c) =		20		÷ (5) =	0.12	(8)
	peen carried out or is intended, proce	ed to (17),	otherwise (continue fi	rom (9) to	(16)			_
Number of storeys in the Additional infiltration	ne aweiling (ns)					1/0	9)-1]x0.1 =	0	(9) (10)
	.25 for steel or timber frame of	or 0.35 fo	r mason	rv consti	ruction	I(s)-1]XO.1 =	0	(11)
	resent, use the value corresponding			•					(/
deducting areas of openii) 1 /oool	مما المم	t O					7
If no draught lobby, en	floor, enter 0.2 (unsealed) or the 0.05, else enter 0.05	J. i (Seai	ea), eise	enter 0				0	(12)
•	s and doors draught stripped							0	(14)
Window infiltration	o ama accio araagini carippoa		0.25 - [0.2	2 x (14) ÷ 1	100] =			0	(15)
Infiltration rate			(8) + (10)	+ (11) + (12) + (13)	+ (15) =		0	(16)
Air permeability value,	q50, expressed in cubic metr	es per h	our per s	quare m	etre of e	envelop	e area	5	(17)
·	lity value, then $(18) = [(17) \div 20] +$							0.37	(18)
Air permeability value applie Number of sides sheltere	es if a pressurisation test has been do	one or a de	egree air pe	rmeability	is being u	sed			7(10)
Shelter factor	tu .		(20) = 1 -	[0.075 x (19)] =			0.85	(19) (20)
Infiltration rate incorporat	ting shelter factor		(21) = (18	s) x (20) =				0.31	(21)
Infiltration rate modified f	or monthly wind speed								
Jan Feb	Mar Apr May Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp	peed from Table 7		-		-		-	-	
(22)m= 5.1 5	4.9 4.4 4.3 3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Easter (22a)m = (2	2)m : 4								
Wind Factor $(22a)m = (22a)m = 1.27$ 1.25	2)m ÷ 4 1.23	0.95	0.92	1 1	1.08	1.12	1.18	1	
(220)1117 1.21 1.20	1.20 1.11 1.00 0.95	1 0.00	1 0.02		1	112	10	J	

djusted infiltr	ation rat	e (allowi	ng for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m		,	_	•	
0.4	0.39	0.38	0.34	0.34	0.3	0.3	0.29	0.31	0.34	0.35	0.37		
<i>alculate effe</i> If mechanica		•	rate for t	пе арри	саріе са	se						0	
If exhaust air h			endix N, (2	3b) = (23a	ı) × Fmv (e	equation (I	N5)) , othe	rwise (23b) = (23a)			0	(
If balanced with	n heat reco	overy: effic	iency in %	allowing f	or in-use f	actor (fron	n Table 4h) =				0	· · · · · · · · · · · · · · · · · · ·
a) If balance	ed mecha	anical ve	entilation	with hea	at recove	ery (MVI	HR) (24a	ı)m = (2:	2b)m + (23b) × [1 – (23c)	÷ 100]	,
4a)m= 0	0	0	0	0	0	0	0	0	0	0	0		(
b) If balance	ed mech	anical ve	ntilation	without	heat red	overy (I	MV) (24b)m = (22	2b)m + (23b)		-	
4b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(
c) If whole h					•		on from (c) = (22b		.5 × (23k	o)			
1c)m= 0	0	0	0	0	0	0	0	0	0	0	0		
d) If natural if (22b)r				•			on from I 0.5 + [(2		0.5]			•	
4d)m= 0.58	0.58	0.57	0.56	0.56	0.54	0.54	0.54	0.55	0.56	0.56	0.57		(
Effective air	change	rate - er	iter (24a) or (24b	o) or (24	c) or (24	d) in box	(25)					
5)m= 0.58	0.58	0.57	0.56	0.56	0.54	0.54	0.54	0.55	0.56	0.56	0.57		(
B. Heat losse	s and he	eat loss r	paramet	er:									
LEMENT	Gros area	SS	Openin m	gs	Net Ar A ,r		U-valı W/m2		A X U (W/		k-value kJ/m²-l		A X k kJ/K
oors					2	х	1	-	2				
indows					8.651	x1	/[1/(1.4)+	0.04] =	11.47				
oor					67.73	9 x	0.13	-	8.80606	9		$\neg \vdash$	
alls Type1	50.9	9	8.65		42.34	×	0.18	=	7.62	T i		7 F	
alls Type2	21.2	26	2		19.26	x	0.18	=	3.47	T i		7 F	
alls Type3	18.0)2	0		18.02	2 x	0.18	=	3.24	T i		7 F	
oof Type1	5.7	-	0	=	5.7	x	0.13	=	0.74	₹ i		7 F	
oof Type2	4.12	2	0		4.12	x	0.13	=	0.54	F i		7 F	
otal area of e	elements	, m²			167.8	2							
or windows and include the area						ated using	g formula 1	/[(1/U-valu	ıe)+0.04] a	as given in	paragraph	1 3.2	
bric heat los	ss, W/K :	= S (A x	U)				(26)(30)	+ (32) =				37.88	
eat capacity	Cm = S((Axk)						((28).	(30) + (3	2) + (32a).	(32e) =	8654.2	7
nermal mass	parame	ter (TMF	P = Cm -	- TFA) ir	ı kJ/m²K			Indica	tive Value	: Medium		250	(
r design assess n be used inste	ad of a de	tailed calc	ulation.				recisely the	indicative	e values of	TMP in T	able 1f		
nermal bridg	•	,			•	<						12.71	
letails of therma otal fabric he		are not kn	own (36) =	= 0.05 x (3	1)			(33) +	(36) =			50.59	
entilation hea		alculated	l monthly	/					= 0.33 × ((25)m x (5))		'
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
32.39	32.22	32.05	31.25	31.1	30.41	30.41	30.28	30.68	31.1	31.4	31.72		(
eat transfer	coefficier	nt. W/K						(39)m	= (37) + (38)m	1	ı	
9)m= 82.98	82.81	82.64	81.84	81.69	81	81	80.87	81.27	81.69	81.99	82.31]	
,	l	L				l		l <u></u> .	1	1	1	Ī	

Heat loss para	ameter (l	HLP), W	′m²K					(40)m	= (39)m ÷	· (4)			
(40)m= 1.22	1.22	1.22	1.21	1.21	1.2	1.2	1.19	1.2	1.21	1.21	1.22		
	!			ļ .	<u> </u>	ļ	<u> </u>	'	Average =	Sum(40) ₁ .	12 /12=	1.21	(40)
Number of day	ys in mo	nth (Tab	le 1a)					1	1	1			
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m= 31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Water hea	ting ene	rgy requi	rement:								kWh/ye	ear:	
Assumed occu if TFA > 13. if TFA £ 13.	9, N = 1		[1 - exp	0.0003	349 x (TI	FA -13.9)2)] + 0.0	0013 x (¯	TFA -13:		19		(42)
Annual average Reduce the annual not more that 125	al average	hot water	usage by	5% if the α	lwelling is	designed t	` ,		se target o		.21		(43)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot water usage i		1						·'			<u> </u>		
(44)m= 94.83	91.39	87.94	84.49	81.04	77.59	77.59	81.04	84.49	87.94	91.39	94.83		
	•	•			!	!	!			m(44) ₁₁₂ =		1034.55	(44)
Energy content of	f hot water	used - cal	culated m	onthly = 4.	190 x Vd,ı	n x nm x C	OTm / 3600) kWh/mor	nth (see Ta	ables 1b, 1	c, 1d)		
(45)m= 140.64	123	126.93	110.66	106.18	91.62	84.9	97.43	98.59	114.9	125.42	136.2		_
If instantaneous v	vater heat	ina at noint	of use (no	n hot water	r storage)	enter∩in	hoves (46		Total = Su	m(45) ₁₁₂ =	=	1356.46	(45)
		1							l	l 0			(46)
(46)m= 0 Water storage	loss:	0	0	0	0	0	0	0	0	0	0		(46)
Storage volum) includir	ig any so	olar or W	/WHRS	storage	within sa	ame ves	sel		150		(47)
If community h	neating a	and no ta	nk in dw	velling, e	nter 110	litres in	(47)						
Otherwise if no	o stored	hot wate	er (this in	ncludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
Water storage					(1.3.4.(1	<i>,</i> , , ,							
a) If manufact				or is kno	wn (kWl	n/day):					0		(48)
Temperature f											0		(49)
Energy lost from b) If manufact		_	-		or io not		(48) x (49)) =			0		(50)
Hot water stor			-								0		(51)
If community h	•			•		,					<u> </u>		` '
Volume factor	from Ta	ıble 2a									0		(52)
Temperature f	actor fro	m Table	2b								0		(53)
Energy lost fro		•	, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54)
Enter (50) or	` , ` `	,									0		(55)
Water storage	loss ca	lculated f	or each	month			((56)m = ((55) × (41)	m				
(56)m= 0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinder contain	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m= 0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primary circuit	loss (ar	nnual) fro	m Table	e 3							0		(58)
Primary circuit	•	•			59)m =	(58) ÷ 36	65 × (41)	m					
(modified by	/ factor f	rom Tab	le H5 if t	here is s	solar wa	ter heatii	ng and a	cylinde	r thermo	stat)			
(59)m= 0	0	0	0	0	0	0	0	0	0	0	0		(59)

Combiles a	Combi loss calculated for each month (61) m = $(60) \div 365 \times (41)$ m													
(61)m= 0	alculated	or each	montn ($\frac{(61)m}{0}$	(60) ÷ 3	05 × (41)m 0	0	0	0	0		(61)	
(*)	_!	<u> </u>					<u> </u>	Ļ	<u> </u>	<u> </u>	<u> </u>	(F0)m + (G1)m	(01)	
(62)m= 119.5		107.89	94.06	90.25	77.88	72.17	82.81	83.8	97.66	106.61	115.77	(59)m + (61)m	(62)	
Solar DHW inpu		LI						1					(02)	
(add addition									ii continou	iion to watt	or ricating)			
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)	
Output from	 water hea	ter								Į		l		
(64)m= 119.5		107.89	94.06	90.25	77.88	72.17	82.81	83.8	97.66	106.61	115.77			
		<u> </u>		<u> </u>		ļ.	Ou	put from w	ater heate	r (annual)₁	l12	1152.99	(64)	
Heat gains fr	om water	heating,	kWh/m	onth 0.2	5 ´ [0.85	5 × (45)m	ı + (61)ı	n] + 0.8 x	x [(46)m	+ (57)m	+ (59)m	1	-	
(65)m= 29.89	1	26.97	23.51	22.56	19.47	18.04	20.7	20.95	24.42	26.65	28.94]	(65)	
include (57	7)m in cald	culation o	of (65)m	only if c	ylinder	is in the	dwelling	or hot w	ater is f	rom com	munity h	neating		
5. Internal	<u> </u>				-						,			
Metabolic ga				,										
Jan	1	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
(66)m= 109.5	109.5	109.5	109.5	109.5	109.5	109.5	109.5	109.5	109.5	109.5	109.5		(66)	
Lighting gain	s (calcula	ted in Ap	pendix	L, equat	ion L9 c	r L9a), a	lso see	Table 5				•		
(67)m= 18.74	16.64	13.53	10.25	7.66	6.47	6.99	9.08	12.19	15.48	18.06	19.26		(67)	
Appliances g	ains (calc	ulated in	Append	dix L, eq	uation L	.13 or L1	3a), als	o see Ta	ble 5			•		
(68)m= 191.9	6 193.96	188.94	178.25	164.76	152.08	143.61	141.62	146.64	157.33	170.82	183.49		(68)	
Cooking gair	ns (calcula	ted in Ap	pendix	L, equat	ion L15	or L15a), also s	ee Table	5			•		
(69)m= 33.95	33.95	33.95	33.95	33.95	33.95	33.95	33.95	33.95	33.95	33.95	33.95		(69)	
Pumps and f	ans gains	(Table 5	ia)											
(70)m= 0	0	0	0	0	0	0	0	0	0	0	0		(70)	
Losses e.g.	evaporatio	n (negat	ive valu	es) (Tab	le 5)									
(71)m= -87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6		(71)	
Water heatin	g gains (T	able 5)										_		
(72)m= 40.17	38.9	36.25	32.66	30.33	27.04	24.25	27.83	29.1	32.82	37.02	38.9		(72)	
Total interna	al gains =				(66	s)m + (67)m	n + (68)m	+ (69)m +	(70)m + (7	71)m + (72))m	_		
(73)m= 306.7	2 305.34	294.57	277	258.59	241.44	230.7	234.38	243.78	261.47	281.74	297.5		(73)	
6. Solar gai														
Solar gains are		•				•	ations to c	onvert to th	ne applica		tion.			
Orientation:	Access F Table 6d		Area m²		Flu Ta	ıx ıble 6a	-	g_ Fable 6b	т	FF able 6c		Gains (W)		
0							, –		_			` '	1	
Southwesto.9x		X	8.6		-	36.79	ļ Ļ	0.63	X	0.7	=	97.28	(79)	
Southwesto.9x	<u> </u>	X	8.6		-	62.67	ļ ⊨	0.63		0.7	=	165.7	[(79)	
Southwesto.9x		X	8.6			85.75	┆╶┝	0.63	×	0.7	=	226.72](79)	
Southwesto.9x		X	8.6		-	06.25	ļ Ļ	0.63		0.7	=	280.91	(79)	
Southwest _{0.9} x	0.77	X	8.6	35	X 1	19.01		0.63	X	0.7	=	314.65	(79)	

Southwest _{0.9x} 0	77 ×	8.6	35	x	118.15		0.63	x	0.7	=	312.37	(79)
Southwest _{0.9x} 0	77 x	8.6	35	x	113.91		0.63	x	0.7	=	301.16	(79)
Southwest _{0.9x} 0	77 ×	8.6	35	x	104.39		0.63	x	0.7	=	275.99	(79)
Southwest _{0.9x}	77 ×	8.6	35	x	92.85		0.63	x	0.7	=	245.49	(79)
Southwest _{0.9x} 0	77 x	8.6	35	x	69.27		0.63	x	0.7	=	183.13	(79)
Southwest _{0.9x} 0	77 ×	8.6	35	x [44.07	Ī [0.63	x	0.7		116.52	(79)
Southwest _{0.9x} 0	77 ×	8.6	35	x [31.49	Ī [0.63	x	0.7	=	83.25	(79)
Solar gains in watts	calculated	for eac	h month			(83)m	= Sum(74)m	(82)m			•	
(83)m= 97.28 165.		280.91	314.65		2.37 301.16	275.9	99 245.49	183.13	116.52	83.25		(83)
Total gains – interna		<u> </u>	<u> </u>	·	'	1			1	ı	1	
(84)m= 403.99 471.	521.29	557.92	573.24	553	3.81 531.86	510.3	37 489.26	444.6	398.26	380.75		(84)
7. Mean internal te	mperature	(heating	season)								
Temperature durin	g heating p	eriods ir	n the livi	ng a	rea from Ta	ble 9,	Th1 (°C)				21	(85)
Utilisation factor fo	r gains for	living are	ea, h1,m	(se	e Table 9a)					1	•	
Jan Fe	b Mar	Apr	May	J	un Jul	Au	g Sep	Oct	Nov	Dec		
(86)m= 1 1	0.99	0.97	0.92	0	.8 0.64	0.68	0.88	0.98	1	1		(86)
Mean internal tem	erature in	living are	ea T1 (fo	ollov	steps 3 to	7 in Ta	able 9c)					
(87)m= 19.66 19.8	2 20.07	20.39	20.68	20	0.9 20.97	20.9	6 20.82	20.43	19.98	19.63		(87)
Temperature durin	g heating p	eriods ir	n rest of	dwe	elling from T	able 9	, Th2 (°C)					
(88)m= 19.9 19.9	19.9	19.91	19.92	19	.92 19.92	19.9	2 19.92	19.92	19.91	19.91		(88)
Utilisation factor fo	r gains for	rest of d	wellina.	h2.n	n (see Table	9a)	•	•	•	•	•	
(89)m= 1 0.99	<u> </u>	0.96	0.89	T	71 0.5	0.54	1 0.82	0.97	0.99	1		(89)
Mean internal tem	erature in	the rest	of dwelli	ina T	 Γ2 (follow st	ens 3	to 7 in Tah	le 9c)				
(90)m= 18.68 18.8		19.41	19.69		.87 19.92	19.9	ı	19.46	19.01	18.66		(90)
	-!	l		<u> </u>	·	<u> </u>	<u> </u>	fLA = Livii	ng area ÷ (4	4) =	0.43	(91)
Mean internal tem	ocraturo (fo	or the wh	ole dwe	lling) _ fl Λ ∨ T1	± (1 _	- fl Λ\ ∨ ΤΩ	ı				
(92)m= 19.1 19.2	<u> </u>	19.83	20.12	Ť	.31 20.37	20.3		19.88	19.43	19.08		(92)
Apply adjustment t								<u> </u>	1			, ,
(93)m= 19.1 19.2		19.83	20.12	ī	.31 20.37	20.3		19.88	19.43	19.08		(93)
8. Space heating r	equiremen				· ·	•	•		•			
Set Ti to the mean				ned a	at step 11 o	f Table	9b, so tha	at Ti,m=	(76)m an	d re-calc	culate	
the utilisation factor			l		<u> </u>	1 .	1 -		1	_	Ī	
Jan Fe		Apr	May	J	un Jul	Au	g Sep	Oct	Nov	Dec		
Utilisation factor for (94) m= 1 0.99	<u> </u>	0.96	0.89	<u> </u>	75 0.56	0.6	0.84	0.97	0.99	1		(94)
Useful gains, hmG			<u> </u>	0.	73 0.30	0.0	0.04	0.97	0.99	<u>'</u>		(01)
(95)m= 402.66 467.		535.02	512.86	414	4.18 296.52	307.0	62 410.05	430.05	395.55	379.8		(95)
Monthly average e				L		ļ		ļ				
(96)m= 4.3 4.9	i	8.9	11.7	_	1.6 16.6	16.4	1 14.1	10.6	7.1	4.2		(96)
Heat loss rate for r	nean interr	al tempe	erature,	Lm	, W =[(39)m	x [(93)m– (96)m]				
(97)m= 1228.21 1189	37 1075.23	894.67	687.81	462	2.91 305.62	320.8	499.88	758.09	1011.09	1224.36		(97)
Space heating req		r	r		1	24 x [(97)m – (95	i	T		ı	
(98)m= 614.21 485	418.44	258.95	130.16		0 0	0	0	244.06	443.18	628.35		

Total per year (kWh/year) = Sum(98) ₁₅ ,													3222.34	(98)
Space	e heating	g require	ement in	kWh/m²	/year								47.57	(99)
8c. Sp	oace cod	oling req	uiremen	it										
Calcu	lated for	r June, J	luly and	August.	See Tal	ole 10b								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Heat I	loss rate	Lm (ca	lculated	using 25	5°C inter		perature	and exte	ernal ten	nperatur	e from T	able 10)		
(100)m=	0	0	0	0	0	761.41	599.41	614.64	0	0	0	0		(100)
Utilisa	ation fac	tor for lo	ss hm										,	
(101)m=	0	0	0	0	0	0.81	0.89	0.87	0	0	0	0		(101)
Usefu	l loss, h	mLm (V	/atts) = (100)m x	(101)m								,	
(102)m=	0	0	0	0	0	617.82	532.35	533.62	0	0	0	0		(102)
Gains	(solar g	gains cal	culated	for appli	cable we	eather re	gion, se	e Table	10)				-	
(103)m=	0	0	0	0	0	729.43	702.2	678.62	0	0	0	0		(103)
			<i>ment fo</i> 104)m <			lwelling,	continue	ous (kW	h = 0.0	24 x [(10	03)m – (102)m] :	x (41)m	
(104)m=	 	0	0	0 7 (30	0	80.36	126.37	107.88	0	0	0	0]	
(101)										= Sum(=	314.61	(104)
Cooled	fraction	1									area ÷ (4		1	(105)
Intermi	ttency fa	actor (Ta	able 10b)							`	,		 `
(106)m=	0	0	0	0	0	0.25	0.25	0.25	0	0	0	0		
									Total	= Sum(104)	=	0	(106)
Space	cooling	requirer	nent for	month =	(104)m	× (105)	× (106)r	n						_
(107)m=	0	0	0	0	0	20.09	31.59	26.97	0	0	0	0		
•									Total	= Sum(107)	=	78.65	(107)
Space	cooling	requirer	nent in k	:Wh/m²/y	/ear				(107)	÷ (4) =			1.16	(108)
8f. Fab	ric Ener	gy Effici	ency (ca	alculated	only un	der spec	cial cond	litions, se	ee sectio	on 11)				
Fabrio	c Energy	/ Efficier	псу						(99) -	+ (108) =	=		48.73	(109)
Targe	et Fabrio	Energ	y Efficie	ency (TF	EE)								56.04	(109)

User Details:	
Assessor Name: Zahid Ashraf Stroma Number: STRO001 Software Name: Stroma FSAP 2012 Software Version: Version: 1	
Property Address: Plot 2 Address:	
1. Overall dwelling dimensions:	
Š	olume(m³)
Ground floor 67.74 (1a) x 2.5 (2a) =	169.35 (3a)
Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ 67.74 (4)	
Dwelling volume $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) =$	169.35 (5)
2. Ventilation rate:	
main secondary other total n heating heating	n³ per hour
Number of chimneys $0 + 0 = 0 \times 40 =$	0 (6a)
Number of open flues $0 + 0 + 0 = 0 \times 20 =$	0 (6b)
Number of intermittent fans 0 x 10 =	0 (7a)
Number of passive vents 0 x 10 =	0 (7b)
Number of flueless gas fires 0 × 40 =	0 (7c)
Air chanç	ges per hour
Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) =$ $0 \div (5) =$	0 (8)
If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns)	0 (9)
Additional infiltration [(9)-1]x0.1 =	0 (10)
Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction	0 (11)
if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35	
If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0	0 (12)
If no draught lobby, enter 0.05, else enter 0	0 (13)
Percentage of windows and doors draught stripped	0 (14)
Window infiltration $0.25 - [0.2 \times (14) \div 100] =$	0 (15)
Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$	0 (16)
Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area	3 (17)
If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used	0.15 (18)
Number of sides sheltered	2 (19)
Shelter factor (20) = 1 - [0.075 x (19)] =	0.85 (20)
Infiltration rate incorporating shelter factor (21) = (18) x (20) =	0.13 (21)
Infiltration rate modified for monthly wind speed	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	
Monthly average wind speed from Table 7	
(22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7	
Wind Factor (22a)m = (22)m ÷ 4	
Willia Factor (22a)III = $(22a)III = 4$	

Adjusted infiltration rate (allowing for shelter	and wind speed) =	(21a) x (22	2a)m				
0.16 0.16 0.16 0.14 0.14	- i 	ì í ì	0.13 0.14	0.14	0.15		
Calculate effective air change rate for the ap	pplicable case	I	<u> </u>				_
If mechanical ventilation:	(00-) Fame (a amosticae (1)	15\\	(00h) (00 -)		ļ	0.5	(23a)
If exhaust air heat pump using Appendix N, (23b) = (. ,		se (23b) = (23a)		[0.5	(23b)
If balanced with heat recovery: efficiency in % allowi			(001)	001) [4	(00.)	79.05	(23c)
a) If balanced mechanical ventilation with		- 	` ' ' `		<u> </u>	÷ 100]	(24a)
(24a)m= 0.27 0.26 0.26 0.25 0.24			0.23 0.24	0.25	0.25		(24a)
b) If balanced mechanical ventilation with		- 	````		0		(24b)
(24b)m= 0 0 0 0 0 0	0 0	0	0 0	0	0		(240)
c) If whole house extract ventilation or positif $(22b)m < 0.5 \times (23b)$, then $(24c) = (25c)$	•))			
(24c)m= 0 0 0 0 0	0 0	0	0 0	0	0		(24c)
d) If natural ventilation or whole house pos	sitive input ventilation	on from loft	<u> </u>				
if (22b)m = 1, then (24d)m = (22b)m o	•						
(24d)m= 0 0 0 0 0	0 0	0	0 0	0	0		(24d)
Effective air change rate - enter (24a) or (24a)	24b) or (24c) or (24	d) in box (2	25)				
(25)m= 0.27 0.26 0.26 0.25 0.26	4 0.23 0.23	0.22	0.23 0.24	0.25	0.25		(25)
3. Heat losses and heat loss parameter:							
ELEMENT Gross Openings area (m²) m²	Net Area A ,m²	U-value W/m2K	A X U (W/i	()	k-value kJ/m².ł		
Doors	2 x	1.4	2.8	, 	1.0/111	1.0,	(26)
Windows		/[1/(1.4)+ 0.0	J <u> </u>	=			(27)
Floor	67.739 ×	0.12	= 8.128679				(28)
			{	<u>"</u>			(29)
Walls Table	42.34 X	0.15	= 6.35	-		╣	╡ .
	19.26 ×	0.14	= 2.76	- 		╣ ├──	(29)
Walls Type3 18.02 0	18.02 X	0.13	= 2.41	닠 ¦		╣	(29)
Roof Type1 5.7 0	5.7 ×	0.1	= 0.57	ᆜ		_	(30)
Roof Type2 4.12 0	4.12 X	0.1	= 0.41	L			(30)
Total area of elements, m ²	167.82						(31)
* for windows and roof windows, use effective window ** include the areas on both sides of internal walls and	•	g formula 1/[(1/	/U-value)+0.04] a	is given in	paragraph	3.2	
Fabric heat loss, $W/K = S (A \times U)$,	(26)(30) + ((32) =			34.9	(33)
Heat capacity Cm = S(A x k)			((28)(30) + (32	2) + (32a)	.(32e) =	8654.27	(34)
Thermal mass parameter (TMP = Cm ÷ TFA	a) in kJ/m²K		Indicative Value:	Low	ļ	100	(35)
For design assessments where the details of the const. can be used instead of a detailed calculation.	ruction are not known pr	ecisely the inc	dicative values of	TMP in Ta	able 1f		_
Thermal bridges : S (L x Y) calculated using	Appendix K				I	13.2	(36)
if details of thermal bridging are not known (36) = 0.05	• •				I		` ′
Total fabric heat loss			(33) + (36) =			48.09	(37)
Ventilation heat loss calculated monthly			(38) m = $0.33 \times (38)$	25)m x (5)			
Jan Feb Mar Apr Ma	ay Jun Jul	Aug	Sep Oct	Nov	Dec		
(38)m= 14.94 14.76 14.58 13.69 13.5	12.62 12.62	12.44 1	12.98 13.51	13.87	14.23		(38)
Heat transfer coefficient, W/K			(39)m = (37) + (37)	38)m			
(39)m= 63.03 62.86 62.68 61.79 61.6	61 60.72 60.72	60.54 6	61.61	61.96	62.32		_
Stroma FSAP 2012 Version: 1.0.5.9 (SAP 9.92) - http://	/www.stroma.com		Average =	Sum(39) ₁	.12 /12=	61.7 ≱ age :	2 of 39)

Heat loss para	ımeter (I	HLP), W	′m²K					(40)m	= (39)m ÷	· (4)			
(40)m= 0.93	0.93	0.93	0.91	0.91	0.9	0.9	0.89	0.9	0.91	0.91	0.92		
						l	l		Average =	Sum(40) ₁ .	12 /12=	0.91	(40)
Number of day	1	nth (Tab	le 1a)					ı	1	i			
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m= 31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Water heat	ting ene	rgy requi	rement:								kWh/ye	ear:	
Assumed occu if TFA > 13.9 if TFA £ 13.9	9, N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (⁻	TFA -13		19		(42)
Annual averag Reduce the annua not more that 125	al average	hot water	usage by	5% if the a	welling is	designed t			se target o		.75		(43)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot water usage in				,				*F					
(44)m= 99.83	96.2	92.57	88.94	85.31	81.68	81.68	85.31	88.94	92.57	96.2	99.83		
									Total = Su	m(44) ₁₁₂ =		1089	(44)
Energy content of	hot water	used - cal	culated mo	onthly = 4.	190 x Vd,r	n x nm x C	OTm / 3600) kWh/mor	nth (see Ta	ables 1b, 1	c, 1d)		
(45)m= 148.04	129.47	133.61	116.48	111.77	96.45	89.37	102.56	103.78	120.95	132.02	143.37		_
If instantaneous w	vater heati	na at noint	of use (no	hot water	etoraga)	enter∩in	hoves (16		Total = Su	m(45) ₁₁₂ =	=	1427.85	(45)
		· ·	,				· · ·	, , , -					(40)
(46)m= 22.21 Water storage	19.42 loss:	20.04	17.47	16.76	14.47	13.41	15.38	15.57	18.14	19.8	21.51		(46)
Storage volum) includir	ig any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
If community h	neating a	and no ta	nk in dw	elling, e	nter 110	litres in	(47)						
Otherwise if no	o stored	hot wate	er (this in	icludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
Water storage													
a) If manufact				or is kno	wn (kWh	n/day):					0		(48)
Temperature f											0		(49)
Energy lost fro		•			or io not		(48) x (49)) =		1	10		(50)
b) If manufactHot water stora			-							0	02		(51)
If community h	-			- (.,	-77				<u>_</u>	<u> </u>		(5.7)
Volume factor	from Ta	ble 2a								1.	03		(52)
Temperature f	actor fro	m Table	2b							0	.6		(53)
Energy lost fro		_	, kWh/ye	ear			(47) x (51)) x (52) x (53) =	1.	03		(54)
Enter (50) or ((54) in (55)								1.	03		(55)
Water storage	loss cal	culated f	or each	month	_		((56)m = ((55) × (41)	m				
(56)m= 32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(56)
If cylinder contains	s dedicate	d solar sto	rage, (57)ı	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m= 32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(57)
Primary circuit	loss (ar	nnual) fro	m Table	 3	_						0		(58)
Primary circuit	`	,			59)m = ((58) ÷ 36	65 × (41)	m					
(modified by	factor f	rom Tab	le H5 if t	here is s	olar wat	ter heatii	ng and a	cylinde	r thermo	stat)			
(59)m= 23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)

Combi loss	calculated	for each	month ((61)m –	(60) ± 3	165 ~ (11)m						
(61)m= 0	0 0	0	0	0 1)111 =	00) + 0	0 7 (41) o	T 0	0	0	0	1	(61)
	Ļ										<u> </u>	J · (59)m + (61)m	(-)
(62)m= 203.3	-i	188.88	169.98	167.04	149.94	144.65	157.8		176.22	185.52	198.64]	(62)
Solar DHW inp						1	ļ.,,,,,			1		<u> </u>	(-)
(add additio										iioir to wat	or riodairig,	•	
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0	1	(63)
Output from	water hea	ter	!			!	ļ.		ļ.	ļ	!	J	
(64)m= 203.3	_	188.88	169.98	167.04	149.94	144.65	157.8	3 157.27	176.22	185.52	198.64	1	
		<u> </u>	!	l .	<u> </u>		0	utput from w	ater heate	er (annual)	l12	2078.69	(64)
Heat gains t	rom water	heating,	, kWh/m	onth 0.2	5 ´ [0.85	5 × (45)m	า + (61)m] + 0.8	x [(46)m	+ (57)m	+ (59)m	 n]	_
(65)m= 93.4		88.65	81.52	81.38	74.86	73.94	78.32		84.44	86.69	91.89	1	(65)
include (5	7)m in cal	culation	of (65)m	only if c	ylinder	is in the	dwellir	ng or hot w	ater is f	rom com	munity h	neating	
5. Internal	gains (see	e Table 5	and 5a):	•								
Metabolic g	ains (Table	e 5), Wat	ts										
Jai	n Feb	Mar	Apr	May	Jun	Jul	Au	g Sep	Oct	Nov	Dec]	
(66)m= 131.	4 131.4	131.4	131.4	131.4	131.4	131.4	131.4	131.4	131.4	131.4	131.4]	(66)
Lighting gai	ns (calcula	ted in Ap	opendix	L, equat	ion L9 d	or L9a), a	ılso se	e Table 5					
(67)m= 46.8	4 41.6	33.83	25.61	19.15	16.16	17.47	22.7	30.47	38.69	45.16	48.14]	(67)
Appliances	gains (calc	ulated in	Append	dix L, eq	uation L	13 or L1	3a), a	so see Ta	ble 5				
(68)m= 286.5	289.49	281.99	266.04	245.91	226.99	214.35	211.3	7 218.86	234.81	254.95	273.87		(68)
Cooking gai	ns (calcula	ated in A	ppendix	L, equat	ion L15	or L15a), also	see Table	5				
(69)m= 50.3	3 50.33	50.33	50.33	50.33	50.33	50.33	50.33	50.33	50.33	50.33	50.33		(69)
Pumps and	fans gains	(Table 5	5a)										
(70)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(70)
Losses e.g.	evaporatio	n (nega	tive valu	es) (Tab	le 5)							_	
(71)m= -87.	6 -87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6]	(71)
Water heati	ng gains (T	able 5)										_	
(72)m= 125.	6 123.5	119.15	113.23	109.39	103.98	99.38	105.2	7 107.36	113.49	120.41	123.51]	(72)
Total interr	al gains =				(66	6)m + (67)n	n + (68)	m + (69)m +	(70)m + (7	71)m + (72))m	_	
(73)m= 553.0	08 548.72	529.1	499.02	468.57	441.26	425.32	433.4	8 450.83	481.12	514.64	539.65		(73)
6. Solar ga													
Solar gains a		Ü				•	ations to		ne applica		tion.		
Orientation:	Access F Table 6d		Area m²		Fli Ta	ux ıble 6a		g_ Table 6b	Т	FF able 6c		Gains (W)	
Couthwoote							, ,				_	. ,	1,-0
Southwesto.s		X				36.79]	0.63	X	0.7	=	97.28	(79)
Southwesto.s	0	X				62.67	ļĻ	0.63		0.7	_ =	165.7	[(79)]
		X				85.75	ļĻ	0.63	X	0.7	=	226.72](79)] ₍₇₀₎
Southweston		X	8.6		-	106.25	ļĻ	0.63	X	0.7	=	280.91	[(79)
Southwest _{0.9}	X 0.77	X	8.6	35	X .	119.01	J L	0.63	X	0.7	=	314.65	(79)

Southw	est _{0.9x}	0.77	х	8.6	S5	x	1	18.15	1 [0.63	x	0.7	=	312.37	(79)
Southw	est _{0.9x}	0.77	x	8.6	35	x	1	13.91	i F	0.63	x	0.7		301.16	(79)
Southw	est _{0.9x}	0.77	X	8.6	35	x	1	04.39	i F	0.63	x	0.7	=	275.99	(79)
Southw	est _{0.9x}	0.77	x	8.6	35	х	9	92.85	i F	0.63	x [0.7	=	245.49	(79)
Southw	est _{0.9x}	0.77	x	8.6	35	х	6	9.27	i F	0.63	x [0.7	=	183.13	(79)
Southw	est _{0.9x}	0.77	X	8.6	35	x	4	14.07	i F	0.63	x [0.7		116.52	(79)
Southw	est _{0.9x}	0.77	x	8.6	35	х	3	31.49	i F	0.63	x [0.7	=	83.25	(79)
	_								_						
Solar (gains in	watts, ca	alculate	d for eac	h month	1			(83)m =	Sum(74)m	(82)m			_	
(83)m=	97.28	165.7	226.72	280.91	314.65	31	12.37	301.16	275.99	245.49	183.13	116.52	83.25		(83)
Total g	gains – i	nternal a	and sola	r (84)m =	= (73)m	+ (8	33)m	, watts						,	
(84)m=	650.35	714.42	755.82	779.93	783.22	75	53.63	726.48	709.47	696.32	664.26	631.16	622.9		(84)
7. Me	an inter	nal temp	perature	(heating	seasor	n)									
Temp	erature	during h	neating p	oeriods ir	n the livi	ng a	area	from Tal	ble 9, T	h1 (°C)				21	(85)
Utilisa	ation fac	tor for g	ains for	living are	ea, h1,m	า (ระ	ee Ta	ble 9a)							_
	Jan	Feb	Mar	Apr	May		Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(86)m=	0.89	0.86	0.81	0.74	0.63	().48	0.36	0.38	0.55	0.74	0.85	0.9		(86)
Mean	interna	l temper	ature in	living are	ea T1 (f	ollo	w ste	ps 3 to 7	7 in Tal	ole 9c)					
(87)m=	19.65	19.87	20.16	20.5	20.76	2	0.92	20.98	20.97	20.88	20.57	20.07	19.61		(87)
Temr	erature	durina h	neating i	eriods ir	rest of	dw	elling	from Ta	able 9.	Th2 (°C)	•	•	•	•	
(88)m=	20.14	20.14	20.15	20.16	20.16	т —	0.17	20.17	20.17	20.17	20.16	20.15	20.15]	(88)
l Itilio	ation fac	tor for a	aine for	rest of d	wolling	h2	m (se	no Tablo	(02)		!	Į	<u>!</u>	ı	
(89)m=	0.88	0.85	0.79	0.71	0.59	Т).43	0.29	0.32	0.49	0.71	0.84	0.89]	(89)
				ļ	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	1			, ,
(90)m=	18.36	18.67	19.08	19.55	19.9	ΤŤ	12 (T	20.15	20.15	7 in Tab 20.05	19.65	18.97	18.31	l	(90)
(90)111=	10.50	10.07	19.00	19.55	19.9		-0.1	20.13	20.13			ng area ÷ (4		0.43	(91)
													,	0.40	(0.7
						~ `	<u> </u>		- `	fLA) × T2		10.45	10.07	1	(02)
(92)m=	18.92	19.18	19.55	19.96	20.27	_	0.46	20.51	20.51	20.41	20.05	19.45	18.87		(92)
(93)m=	18.92	19.18	19.55	19.96	20.27	_	0.46	20.51	20.51	nere appro	20.05	19.45	18.87	1	(93)
		ting requ		L	20.27		0.40	20.01	20.01	20.41	20.00	10.40	10.07		(33)
					re obtaiı	ned	at st	ep 11 of	Table	9b, so tha	at Ti.m=	76)m an	d re-cal	culate	
				using Ta										_	
	Jan	Feb	Mar	Apr	May		Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	ation fac	tor for g	ains, hn	າ:	ı			1					1	1	
(94)m=	0.86	0.83	0.78	0.7	0.59	().45	0.32	0.34	0.51	0.7	0.82	0.87		(94)
		1	<u>`</u>	4)m x (8		_		1				_		1	(0.5)
(95)m=	560.5	591.5	588.6	546.13	462.68		35.83	232.13	242.04	354.24	465.33	516.62	543.4		(95)
	4.3	age exte	1	perature		_		16.6	16.4	144	10.6	7 1	1 42	1	(96)
(96)m=			6.5	8.9	11.7		۱4.6	16.6 -[(30)m	16.4 v [(03)	14.1 n_ (96)m	10.6	7.1	4.2	J	(30)
(97)m=	921.62	897.89	817.65	683.41	527.9	_	, vv = 55.52	237.37	248.57	n- (96)m 385.3	582.02	765.08	914.37	1	(97)
		<u> </u>	<u> </u>		<u> </u>				<u> </u>	7)m – (95	L		1	J	ζ= /
(98)m=	268.68	205.89	170.41	98.84	48.52	T	0	0.02	0	0	86.81	178.89	276]	
•					<u> </u>									J	

	Total per year (kWh/year) = $Sum(98)_{15912}$ =	1334.05	(98)
Space heating requirement in kWh/m²/year		19.69	(99)
9b. Energy requirements – Community heating scheme			
This part is used for space heating, space cooling or water I Fraction of space heat from secondary/supplementary heating		0	(301)
Fraction of space heat from community system $1 - (301) =$		1	(302)
The community scheme may obtain heat from several sources. The proceed	l dure allows for CHP and up to four other heat sources; th	he latter	
includes boilers, heat pumps, geothermal and waste heat from power static Fraction of heat from Community boilers	ons. See Appendix C.	1	(303a)
Fraction of total space heat from Community boilers	(302) x (303a) =	1	(304a)
Factor for control and charging method (Table 4c(3)) for cor		1	(305)
Distribution loss factor (Table 12c) for community heating sy	, , ,	1.05	(306)
Space heating	,	kWh/year	
Annual space heating requirement		1334.05	7
Space heat from Community boilers	(98) x (304a) x (305) x (306) =	1400.75	(307a)
Efficiency of secondary/supplementary heating system in %	(from Table 4a or Appendix E)	0	(308
Space heating requirement from secondary/supplementary	system (98) x (301) x 100 ÷ (308) =	0	(309)
Water heating			
Annual water heating requirement		2078.69	
If DHW from community scheme: Water heat from Community boilers	(64) x (303a) x (305) x (306) =	2182.63	(310a)
Electricity used for heat distribution	0.01 × [(307a)(307e) + (310a)(310e)] =	35.83	(313)
Cooling System Energy Efficiency Ratio		0	(314)
Space cooling (if there is a fixed cooling system, if not enter	~ 0) = (107) ÷ (314) =	0	(315)
Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input f	rom outside	235.01	(330a)
warm air heating system fans		0	(330b)
pump for solar water heating		0	(330g)
Total electricity for the above, kWh/year	=(330a) + (330b) + (330g) =	235.01	(331)
Energy for lighting (calculated in Appendix L)		330.87	(332)
Electricity generated by PVs (Appendix M) (negative quantit	ty)	-683.38	(333)
Electricity generated by wind turbine (Appendix M) (negative	e quantity)	0	(334)
10b. Fuel costs – Community heating scheme			
Fuel kWh/ye	Fuel Price ear (Table 12)	Fuel Cost £/year	
Space heating from CHP (307a)	x 4.24 x 0.01 =	59.39	(340a)
Water heating from CHP (310a)	x 4.24 x 0.01 =	92.54	(342a)

		Fu	iel Price		
Pumps and fans	(331)		13.19 × 0.01 =	31	(349)
Energy for lighting	(332)		13.19 x 0.01 =	43.64	(350)
Additional standing charges (Table 12)				120	(351)
Energy saving/generation technologies					
Total energy cost	= (340a)(342e) + (345)	.(354) =		346.57	(355)
11b. SAP rating - Community heating	scheme				
Energy cost deflator (Table 12)				0.42	(356)
Energy cost factor (ECF)	$[(355) \times (356)] \div [(4) + 45.0]$	0] =		1.29	(357)
SAP rating (section12)				81.99	(358)
12b. CO2 Emissions – Community hea	ting scheme	_			
		Energy kWh/year	Emission factor kg CO2/kWh	kg CO2/year	
CO2 from other sources of space and v					_
Efficiency of heat source 1 (%)	If there is CHP us	ing two fuels repeat (363) t	to (366) for the second fu	uel 94	(367a)
CO2 associated with heat source 1	[(307b))+(310b)] x 100 ÷ (367b) x	0.22	823.41	(367)
Electrical energy for heat distribution		[(313) x	0.52	= 18.6	(372)
Total CO2 associated with community	systems	(363)(366) + (368)(3	72)	= 842.01	(373)
CO2 associated with space heating (se	condary)	(309) x	0	= 0	(374)
CO2 associated with water from immer	sion heater or instantar	neous heater (312) x	0.22	= 0	(375)
Total CO2 associated with space and v	vater heating	(373) + (374) + (375) =		842.01	(376)
CO2 associated with electricity for pum	ps and fans within dwe	lling (331)) x	0.52	121.97	(378)
CO2 associated with electricity for light	ing	(332))) x	0.52	= 171.72	(379)
Energy saving/generation technologies Item 1	(333) to (334) as appli	cable	0.52 x 0.01 =	-354.67	(380)
Total CO2, kg/year	sum of (376)(382) =		0.32	781.03	(383)
Dwelling CO2 Emission Rate	(383) ÷ (4) =			11.53	(384)
El rating (section 14)				90.72	(385)
13b. Primary Energy – Community hea	ting scheme				
		Energy kWh/year	Primary factor	P.Energy kWh/year	
Energy from other sources of space an	d water heating (not Cl	_		you.	
Efficiency of heat source 1 (%)	If there is CHP us	ing two fuels repeat (363) t	to (366) for the second fu	uel 94	(367a)
Energy associated with heat source 1	[(307b))+(310b)] x 100 ÷ (367b) x	1.22	= 4650.77	(367)
Electrical energy for heat distribution		[(313) x		= 110.01	(372)
Total Energy associated with communi	ty systems	(363)(366) + (368)(3	72)	= 4760.78	(373)
if it is negative set (373) to zero (unle	ess specified otherwise,	see C7 in Appendix	C)	4760.78	(373)
Energy associated with space heating	(secondary)	(309) x	0	= 0	(374)

Energy associated with water from immersion heater or insta	ntaneous heater(312) x	1.22	=	0	(375)
Total Energy associated with space and water heating	(373) + (374) + (375) =			4760.78	(376)
Energy associated with space cooling	(315) x	3.07	=	0	(377)
Energy associated with electricity for pumps and fans within	dwelling (331)) x	3.07	=	721.49	(378)
Energy associated with electricity for lighting	(332))) x	3.07	=	1015.76	(379)
Energy saving/generation technologies Item 1		3.07 × 0.0)1 =	-2097.98	(380)
Total Primary Energy, kWh/year sum of (37)	6)(382) =			4400.05	(383)

		l Iser I	Details:						
Assessor Name: Software Name:	Zahid Ashraf Stroma FSAP 2012	<u> </u>	Strom Softwa					001082 on: 1.0.5.9	
.	F	roperty	Address	Plot 2					
Address: 1. Overall dwelling dime	ensions:								
The Overall awalling all he		Are	a(m²)		Av. He	ight(m)		Volume(m ³	3)
Ground floor				(1a) x	2	2.5	(2a) =	169.35	(3a)
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)+(1e)+(1	n) (67.74	(4)			-		_
Dwelling volume				(3a)+(3b)+(3c)+(3c	d)+(3e)+	.(3n) =	169.35	(5)
2. Ventilation rate:									
	main seconda heating heating	ry	other		total			m³ per hou	ır
Number of chimneys	0 + 0	+ [0	= [0	X 4	40 =	0	(6a)
Number of open flues	0 + 0	- + -	0	Ī - [0	x	20 =	0	(6b)
Number of intermittent fa	ns				2	x -	10 =	20	(7a)
Number of passive vents	•			Ē	0	x -	10 =	0	(7b)
Number of flueless gas fi	res			Ī	0	X 4	40 =	0	(7c)
				L					
				_			Air ch	anges per ho	_
	ys, flues and fans = $(6a)+(6b)+(6b)+(6a)$ seen carried out or is intended, process			continue fr	20		÷ (5) =	0.12	(8)
Number of storeys in the		u 10 (11),	ouror wido (orianao n	0111 (0) 10	(10)		0	(9)
Additional infiltration						[(9)	-1]x0.1 =	0	(10)
	.25 for steel or timber frame o			•	ruction			0	(11)
it both types of wall are pa deducting areas of openia	resent, use the value corresponding t ngs); if equal user 0.35	o the grea	ter wall are	a (atter					
If suspended wooden t	floor, enter 0.2 (unsealed) or 0	.1 (seal	ed), else	enter 0				0	(12)
If no draught lobby, en	•							0	(13)
-	s and doors draught stripped		0.05 10.0	(4.4) 4	1001			0	(14)
Window infiltration			0.25 - [0.2] (8) + (10)	. ,	-	± (15) =		0	(15)
Infiltration rate	q50, expressed in cubic metre	se nar h					area	0	(16)
•	lity value, then $(18) = [(17) \div 20] + (18)$	•	•	•	cuc or c	invelope	arca	0.37	(17)
•	es if a pressurisation test has been do				is being u	sed		0.01	(:-0)
Number of sides sheltered	ed							2	(19)
Shelter factor			(20) = 1 -		19)] =			0.85	(20)
Infiltration rate incorporat	•		(21) = (18) x (20) =				0.31	(21)
Infiltration rate modified f	- 1 	11		Can		Nov	Daa	1	
Jan Feb	Mar Apr May Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp (22)m= 5.1 5	4.9 4.4 4.3 3.8	3.8	3.7	4	4.3	4.5	4.7		
(-2)::-	1.0 7.7 7.0 0.0	L	1 5.7		I 7.5	I 7.5	I 7./	I	
Wind Factor (22a)m = (2			1		1		1	1	
(22a)m= 1.27 1.25	1.23 1.1 1.08 0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjusted infilti	ration rat	e (allowi	ng for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m				_	
0.4	0.39	0.38	0.34	0.34	0.3	0.3	0.29	0.31	0.34	0.35	0.37		
Calculate effe If mechanic		_	rate for t	ne appli	cable ca	se							(23
If exhaust air h			endix N. (2	(3b) = (23a	a) × Fmv (e	equation (I	N5)) . othe	rwise (23b	o) = (23a)			0	(23
If balanced wit		0		, ,	,	. ,	,, .	,	(200)			0	
a) If balance		-	-	_					Oh)m ı (22h) v [1 (220)		(2:
24a)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(2
b) If balance]	•
24b)m= 0	0	0	0	0	0	0	0	0	0	0	0	1	(2
c) If whole h												J	`
•	m < 0.5 >			•	•				.5 × (23k	o)		_	
24c)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(2
d) If natural	ventilation				•				0.51				
24d)m= 0.58	0.58	0.57	0.56	0.56	0.54	0.54	0.54	0.55	0.56	0.56	0.57	1	(2
Effective air	change			L) or (24h		c) or (24		(25)	!	!	!	J	
25)m= 0.58	0.58	0.57	0.56	0.56	0.54	0.54	0.54	0.55	0.56	0.56	0.57	1	(2
							l		l	1		J	
3. Heat losse LEMENT	Gros	SS	Openin	gs	Net Ar		U-valı		AXU		k-value		AXk
10.000	area	(m²)	m	14	A ,r		W/m2	_	(W/	K)	kJ/m²-	K	kJ/K
oors					2	×	1	=	2	=			(2
Vindows					8.651	x1	/[1/(1.4)+	0.04] =	11.47	ᆜ .			(2
loor					67.73	9 x	0.13	=	8.80606	9		_	(2
Valls Type1	50.9	99	8.65	<u>. </u>	42.34	X	0.18	=	7.62				(2
Valls Type2	21.2	26	2		19.26	X	0.18	=	3.47				(2
Valls Type3	18.0)2	0		18.02	<u>x</u>	0.18	=	3.24				(2
Roof Type1	5.7	,	0		5.7	X	0.13	=	0.74				(3
Roof Type2	4.1	2	0		4.12	X	0.13		0.54				(3
otal area of e	elements	, m²			167.8	2							(3
for windows and						ated using	g formula 1	/[(1/U-valu	ue)+0.04] á	as given in	paragraph	3.2	
* include the are				ls and par	titions		(26)(30)	(22) –					
abric heat lo		•	U)				(20)(30)		(20) . (2)	0) . (00-)	(20-)	37.88	(3
leat capacity			O	. T[A]:	. l. 1/ma21/			., ,	(30) + (3	, , ,	(32e) =	8654.2	
hermal mass For design asses	•	•		,			raciaaly the		tive Value		abla 1f	250	(3
an be used inste				CONSTRUCT	ion are not	kilowii pi	ecisely life	inuicative	values of	TIVIT III I	аые п		
hermal bridg	es : S (L	x Y) cal	culated (using Ap	pendix ł	<						12.71	(3
details of therm	al bridging	are not kn	own (36) =	= 0.05 x (3	1)								
otal fabric he	eat loss							(33) +	(36) =			50.59	(3
entilation he	at loss ca	i	l monthly	y	1	i	•		= 0.33 × ((25)m x (5)) Ī	1	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
38)m= 32.39	32.22	32.05	31.25	31.1	30.41	30.41	30.28	30.68	31.1	31.4	31.72]	(3
leat transfer	coefficie	nt, W/K						(39)m	= (37) + (38)m			
39)m= 82.98	82.81	82.64	81.84	81.69	81	81	80.87	81.27	81.69	81.99	82.31		
troma FSAP 20	12 Version	: 1.0.5.9 (S	SAP 9.92)	- http://ww	w.stroma.c	com			Average =	Sum(39) ₁	12 /12=	81.8≱	age 2 of 3

Heat loss para	meter (l	HP) W/	m²K					(40)m	= (39)m ÷	- (4)			
(40)m= 1.22	1.22	1.22	1.21	1.21	1.2	1.2	1.19	1.2	1.21	1.21	1.22		
(13)										Sum(40) ₁ .		1.21	(40)
Number of day	s in mo	nth (Tab	le 1a)							(1)			``
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m= 31	28	31	30	31	30	31	31	30	31	30	31		(41)
		<u> </u>			<u> </u>	<u> </u>							
4	•										130/1./		
4. Water heat	ing ene	rgy requi	rement:								kWh/ye	ear:	
Assumed occur if TFA > 13.9 if TFA £ 13.9	9, N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (¯	ΓFA -13.		19		(42)
Annual averag Reduce the annua	ıl average	hot water	usage by	5% if the a	lwelling is	designed t			se target o		.21		(43)
not more that 125	litres per	person per	day (all w	ater use, l	hot and co	ld)							
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot water usage in	n litres pe	r day for ea	ch month	Vd,m = fa	ctor from	Table 1c x	(43)			•			
(44)m= 94.83	91.39	87.94	84.49	81.04	77.59	77.59	81.04	84.49	87.94	91.39	94.83		
								_	Γotal = Su	m(44) ₁₁₂ =		1034.55	(44)
Energy content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	m x nm x E	OTm / 3600	kWh/mor	nth (see Ta	ables 1b, 1	c, 1d)		
(45)m= 140.64	123	126.93	110.66	106.18	91.62	84.9	97.43	98.59	114.9	125.42	136.2		
		•				•		_	Γotal = Su	m(45) ₁₁₂ =		1356.46	(45)
If instantaneous w	ater heati	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46)) to (61)			•		
(46)m= 21.1	18.45	19.04	16.6	15.93	13.74	12.74	14.61	14.79	17.23	18.81	20.43		(46)
Water storage		•			•	•							
Storage volum	e (litres) includin	g any so	olar or W	/WHRS	storage	within sa	ame ves	sel		150		(47)
If community h	•			•			` '						
Otherwise if no		hot wate	er (this in	icludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
Water storage				!	(1-) (1/1	. /-1							(15)
a) If manufact				or is kno	wn (kvvr	n/day):				1.	39		(48)
Temperature fa										0.	54		(49)
Energy lost fro		_	-				(48) x (49)) =		0.	75		(50)
b) If manufactHot water stora			-										(54)
If community h	-			C Z (KVVI	ii/iiti c /ua	iy <i>)</i>					0		(51)
Volume factor	•		311 4.0								0		(52)
Temperature fa			2b							—	0		(52)
Energy lost fro				-ar			(47) x (51)) x (52) x (53) =		0		(54)
Enter (50) or (_	, 10 VIII/ y 0	Jui			(, (0.)	,	,	-	75		(55)
Water storage	, ,	•	or each	month			((56)m = (55) × (41):	m	0.			()
					00.50	i	,, , ,	, , ,		00.50	00.00		(EC)
(56)m= 23.33	21.07	23.33	22.58	23.33	22.58	23.33	23.33	22.58	23.33	22.58	23.33	iv I I	(56)
If cylinder contains	dedicate	u solai sio	rage, (57)	11 = (36)111	x [(50) – (п i i)] ÷ (э	o), eise (s	7)111 = (56)	m where (<u>г</u>	m Append	.х п	
(57)m= 23.33	21.07	23.33	22.58	23.33	22.58	23.33	23.33	22.58	23.33	22.58	23.33		(57)
Primary circuit	loss (ar	nnual) fro	m Table	3							0		(58)
Primary circuit	loss ca	culated f	or each	month (59)m = ((58) ÷ 36	65 × (41)	m		<u> </u>			
(modified by	factor f	rom Tabl	le H5 if t	here is s	solar wat	er heatii	ng and a	cylinde	r thermo	stat)			
(59)m= 23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)

Combi loso d	a laulata d	for oach	month /	(64)m	(CO) + 20	SE (41	١,,,,						
Combi loss of (61) m= 0	balculated 0	or each	month (0	(60) ÷ 3	05 × (41)	0	0	T 0	0	0]	(61)
	<u> </u>			<u> </u>			<u> </u>	<u> </u>			ļ	J (59)m + (61)m	(0.)
(62)m= 187.2		173.52	155.75	152.77	136.72	131.5	144.02	143.68	161.49	170.51	182.79	(59)111 + (61)111	(62)
Solar DHW inpu				<u> </u>		<u> </u>		1		<u> </u>		l	(02)
(add addition									ii contribu	ion to wat	or ricating)		
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from	water hea	ter				!	!	<u>ļ</u>	ļ.	!	!	1	
(64)m= 187.2	_	173.52	155.75	152.77	136.72	131.5	144.02	143.68	161.49	170.51	182.79		
	Į.						Out	put from w	ater heate	r (annual) ₁	112	1905.08	(64)
Heat gains fi	rom water	heating,	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	ı + (61)r	n] + 0.8 :	x [(46)m	+ (57)m	+ (59)m	1	
(65)m= 84.04	4 74.57	79.48	72.87	72.58	66.54	65.51	69.67	68.85	75.48	77.78	82.56		(65)
include (5	7)m in cal	culation of	of (65)m	only if c	ylinder i	s in the	dwelling	or hot w	ater is f	rom com	munity h	neating	
5. Internal	gains (see	e Table 5	and 5a):			-				•		
Metabolic ga													
Jan		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1	
(66)m= 109.5	5 109.5	109.5	109.5	109.5	109.5	109.5	109.5	109.5	109.5	109.5	109.5		(66)
Lighting gair	ns (calcula	ted in Ap	pendix	L, equat	on L9 o	r L9a), a	lso see	Table 5	•	•	•	1	
(67)m= 18.74	1 16.64	13.53	10.25	7.66	6.47	6.99	9.08	12.19	15.48	18.06	19.26		(67)
Appliances of	gains (calc	ulated in	Append	dix L, eq	uation L	13 or L1	3a), als	see Ta	ble 5			•	
(68)m= 191.9	6 193.96	188.94	178.25	164.76	152.08	143.61	141.62	146.64	157.33	170.82	183.49		(68)
Cooking gair	ns (calcula	ted in A	ppendix	L, equat	ion L15	or L15a), also s	ee Table	5		•	•	
(69)m= 33.95	33.95	33.95	33.95	33.95	33.95	33.95	33.95	33.95	33.95	33.95	33.95		(69)
Pumps and f	fans gains	(Table 5	ōa)									•	
(70)m= 3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses e.g.	evaporatio	n (negat	tive valu	es) (Tab	le 5)	-							
(71)m= -87.6	87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6	-87.6		(71)
Water heating	ng gains (T	able 5)		-		-		-					
(72)m= 112.9	5 110.96	106.83	101.2	97.55	92.41	88.05	93.64	95.63	101.45	108.02	110.97		(72)
Total intern	al gains =				(66))m + (67)m	n + (68)m	+ (69)m +	(70)m + (7	'1)m + (72))m		
(73)m= 382.5	380.41	368.15	348.55	328.82	309.81	297.49	303.19	313.31	333.1	355.75	372.57		(73)
6. Solar gai													
Solar gains ar		_	r flux from	Table 6a			ations to c	onvert to th	ne applical		tion.		
Orientation:	Access F Table 6d		Area m²		Flu	ıx ble 6a	_	g_ rable 6b	т	FF able 6c		Gains (W)	
0 11 1							, –		, -, -			` '	7
Southwest _{0.9}		X	8.6	55	x 3	36.79	<u> </u>	0.63	x	0.7	=	97.28	<u> </u> (79)
Southwest _{0.9}	0.77	X	8.6	55	x (52.67	<u> </u>	0.63	x	0.7	=	165.7	(79)
Southwest _{0.9}	0.77	X	8.6			35.75	ļ <u>Ļ</u>	0.63	x	0.7	=	226.72	<u> </u> (79)
Southwest _{0.9}		X	8.6	55	x 1	06.25	ļ <u>Ļ</u>	0.63	x	0.7	=	280.91	(79)
Southwest _{0.9}	0.77	X	8.6	65	x 1	19.01		0.63	X	0.7	=	314.65	(79)

Southwest _{0.9x} 0.77	х	8.6	55	x	118.15			0.63	x	0.7	=	312.37	(79)
Southwest _{0.9x} 0.77	х	8.6	55	x	113.91			0.63	x	0.7	=	301.16	(79)
Southwest _{0.9x} 0.77	X	8.6	55	x	104.39			0.63	x	0.7	=	275.99	(79)
Southwest _{0.9x} 0.77	X	8.6	55	x	92.85			0.63	x	0.7	=	245.49	(79)
Southwest _{0.9x} 0.77	х	8.6	55	x	69.27			0.63	x	0.7	=	183.13	(79)
Southwest _{0.9x} 0.77	х	8.6	55	x	44.07			0.63	x	0.7	=	116.52	(79)
Southwest _{0.9x} 0.77	х	8.6	55	x	31.49			0.63	x	0.7	=	83.25	(79)
Solar gains in watts, c	alculated	for each	n month			(83	3)m = S	um(74)m .	(82)m	1		ı	
(83)m= 97.28 165.7	226.72	280.91	314.65		2.37 301.		275.99	245.49	183.13	116.52	83.25		(83)
Total gains – internal a		` 	, ,	·						1		1	
(84)m= 479.78 546.11	594.86	629.46	643.47	62	22.18 598.	65 5	579.19	558.8	516.24	472.27	455.82		(84)
7. Mean internal tem	oerature ((heating	season)									
Temperature during h	neating p	eriods ir	the livi	ng a	area from	Table	9, Th	1 (°C)				21	(85)
Utilisation factor for g	ains for I	iving are	ea, h1,m	(se	ee Table 9	a)						ı	
Jan Feb	Mar	Apr	May	_	Jun Ju	ıl	Aug	Sep	Oct	Nov	Dec		
(86)m= 1 0.99	0.98	0.96	0.89	0	0.75 0.5	8	0.61	0.83	0.96	0.99	1		(86)
Mean internal temper	rature in I	iving are	ea T1 (fo	ollo	w steps 3	to 7 ir	n Table	e 9c)					
(87)m= 19.76 19.92	20.16	20.47	20.74	20	0.93 20.9	98 2	20.98	20.87	20.52	20.08	19.73		(87)
Temperature during h	neating p	eriods ir	rest of	dwe	elling from	Tabl	le 9, Tl	h2 (°C)					
(88)m= 19.9 19.9	19.9	19.91	19.92	19	9.92 19.9	92	19.92	19.92	19.92	19.91	19.91		(88)
Utilisation factor for g	ains for r	est of d	wellina.	h2.ı	m (see Ta	ble 9a	a)			•		'	
(89)m= 0.99 0.99	0.98	0.94	0.85	Г	0.65 0.4		0.48	0.75	0.95	0.99	1		(89)
Mean internal temper	rature in t	he rest	of dwelli	ina i	T2 (follow	stens	s 3 to 7	7 in Tahl	e 9c)			l	
(90)m= 18.26 18.49	18.85	19.29	19.66	Ť	9.87 19.9	— i	19.92	19.82	19.37	18.74	18.22		(90)
								f	LA = Livir	ig area ÷ (4	1) =	0.43	(91)
Mean internal temper	rature (fo	r tha wh	ala dwa	lling	7) — fl A 🗸	T1 _	/1 _ fl	۸) پ T2					
(92)m= 18.91 19.11	19.41	19.8	20.13	-	$\begin{array}{c c} 0.33 & 20.3 \end{array}$		20.37	20.27	19.86	19.32	18.87		(92)
Apply adjustment to t				<u> </u>									, ,
(93)m= 18.91 19.11	19.41	19.8	20.13	1	0.33 20.3		20.37	20.27	19.86	19.32	18.87		(93)
8. Space heating req	uirement				,								
Set Ti to the mean in				ned	at step 11	of Ta	able 9b	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the utilisation factor for				_			_			l	_	1	
Jan Feb	Mar	Apr	May	_ '	Jun Ju		Aug	Sep	Oct	Nov	Dec		
Utilisation factor for g	0.97	0.94	0.86	<u></u> ο	0.69 0.5	:	0.54	0.78	0.94	0.99	0.99		(94)
Useful gains, hmGm					.09 0.0	<u></u>	0.54	0.70	0.34	0.99	0.99		(0.1)
(95)m= 476.31 538.6	578.33	589.89	550.47	42	9.52 300.	15	313	436.68	487.35	465.55	453.19		(95)
Monthly average exte				ı— able	<u> </u> e 8	!				<u> </u>			
(96)m= 4.3 4.9	6.5	8.9	11.7	$\overline{}$	4.6 16.	6	16.4	14.1	10.6	7.1	4.2		(96)
Heat loss rate for me	an intern	al tempe	erature,	Lm	, W =[(39)	m x [[(9 <u>3</u>)m	– (96)m]				
(97)m= 1212.14 1176.53	1067.11	891.91	688.44	46	3.89 305.	95 3	321.35	501.38	756.67	1001.74	1207.7		(97)
Space heating requir	1 1			Wh/	month = 0	0.024	x [(97))m – (95		1)m			
(98)m= 547.46 428.69	363.65	217.45	102.65		0 0		0	0	200.37	386.06	561.35		

						Tota	l per year	(kWh/yea	r) = Sum(9	08)15,912 =	2807.69	(98)
Space heating: Fraction of space heat from secondary/supplementary system	Space heating requirement i	n kWh/m ²	²/year							ļ	41.45	(99)
Fraction of space heat from secondary/supplementary system	9a. Energy requirements – In-	dividual h	eating s	ystems i	ncluding	micro-C	CHP)					
Fraction of space heat from main system (s) Fraction of total heating from main system 1 (204) = (202) × (1 - (203)) =										ı		-
Fraction of total heating from main system 1 Efficiency of main space heating system 1 Efficiency of secondary/supplementary heating system, % Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Space heating requirement (calculated above) S47.46 28.68 363.55 217.45 102.65 0 0 0 0 200.37 386.06 561.35	-			mentary	-		(204)				0	= '
Efficiency of main space heating system 1 Efficiency of secondary/supplementary heating system, % Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Space heating requirement (calculated above) [547.46 428.69 363.65 217.45 102.65 0 0 0 0 0 0 200.37 385.06 561.35 [211]m = [([99]m x (201])] × 100 ÷ (206) Space heating fuel (secondary), kWh/month = ([(198)m x (201])] × 100 ÷ (208) [215]m = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	•	, ,			` '	` '	(2.2.2)			1	╡` ′
Efficiency of secondary/supplementary heating system, % Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	_	-				(204) = (2	02) × [1 –	(203)] =				╡` ′
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year		0,			24							╡` ′
Space heating requirement			·	g systen	Ո, % 	ī	ī	·	•			`
S47.46	<u> </u>		<u> </u>	L	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	∍ar
(211) m = {{((98)m x (204)}} } x 100 ÷ (206)	· 	<u> </u>	T		0	0	0	200.37	386.06	561.35		
S85.52 458.49 388.93 232.57 109.79 0 0 0 0 214.3 412.9 600.38 Total (kWh/year) =Sum(211)_Lxa_Lx^2 3002.88 (211)			l	<u> </u>								(211)
Space heating fuel (secondary), kWh/month = {[(98)m x (201)] } x 100 ÷ (208) (215)m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0	0	0	0	214.3	412.9	600.38		(=11)
([98] m x (201)] x 100 ÷ (208) (215) (l l	-		ļ.	•	Tota	l (kWh/yea	ar) =Sum(2	211) _{15,101}	2=	3002.88	(211)
Carry Carr	Space heating fuel (seconda	ıry), kWh	month/							'		_
Total (kWh/year) = Sum(215) Labal Laba			1	ı		ı	ı	1	1			
Water heating Output from water heater (calculated above) [187,23] 165.09 173.52 155.75 152.77 136.72 131.5 144.02 143.68 161.49 170.51 182.79 [Efficiency of water heater	(215)m= 0 0 0	0	0	0	0							7(045)
Output from water heater (calculated above) [187.23 165.09 173.52 155.75 152.77 136.72 131.5 144.02 143.68 161.49 170.51 182.79 Efficiency of water heater	Water heating					TOLA	ii (KVVII/yea	ar) =Surri(2	213) _{15,101}	2=	0	(215)
Efficiency of water heater	•	culated a	bove)									
(217)		_	1	136.72	131.5	144.02	143.68	161.49	170.51	182.79		
Fuel for water heating, kWh/month (219)m = (64)m x 100 ÷ (217)m (219)m = 213.95 189.22 200.04 181.73 182.35 171.32 164.78 180.48 180.05 189.12 196.15 208.63 Total = Sum(219a)_{1.12} =	Efficiency of water heater										79.8	(216)
(219)m = (64)m x 100 ÷ (217)m (219)m = 213.95 189.22 200.04 181.73 182.35 171.32 164.78 180.48 180.05 189.12 196.15 208.63 Total = Sum(219a) ₁₋₁₂ = 2257.84 (219) Annual totals Space heating fuel used, main system 1	(217)m= 87.51 87.25 86.74	85.7	83.78	79.8	79.8	79.8	79.8	85.39	86.93	87.61		(217)
213.95 189.22 200.04 181.73 182.35 171.32 164.78 180.48 180.05 189.12 196.15 208.63	•											
Annual totals Space heating fuel used, main system 1 Water heating fuel used Electricity for pumps, fans and electric keep-hot central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/year Electricity for lighting Energy kWh/year Energy kWh/year Emission factor kg CO2/kWh kg CO2/kWh kg CO2/year	` '		182.35	171.32	164.78	180.48	180.05	189.12	196.15	208.63		
Space heating fuel used 3002.88 Water heating fuel used 2257.84 Electricity for pumps, fans and electric keep-hot central heating pump: 30 (230c) boiler with a fan-assisted flue 45 (230e) Total electricity for the above, kWh/year sum of (230a)(230g) = 75 (231) Electricity for lighting 330.87 (232) 12a. CO2 emissions – Individual heating systems including micro-CHP Energy kWh/year kg CO2/kWh kg CO2/year		·!		!		Tota	I = Sum(2	19a) ₁₁₂ =	!		2257.84	(219)
Water heating fuel used Electricity for pumps, fans and electric keep-hot central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/year Electricity for lighting Energy kWh/year Energy kWh/year Emission factor kg CO2/kWh kg CO2/kWh kg CO2/year								k'	Wh/yea	r		<u></u>
Electricity for pumps, fans and electric keep-hot central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/year Electricity for lighting Energy kWh/year Energy kg CO2/kWh Energy kg CO2/year	Space heating fuel used, mai	n system	1								3002.88	╛
central heating pump: boiler with a fan-assisted flue Total electricity for the above, kWh/year Electricity for lighting Energy kWh/year Energy kg CO2/kWh Energy kg CO2/kWh	Water heating fuel used										2257.84	
boiler with a fan-assisted flue Total electricity for the above, kWh/year Electricity for lighting Energy kWh/year Energy kg CO2/kWh kg CO2/year	Electricity for pumps, fans and	d electric	keep-ho	t								
Total electricity for the above, kWh/year sum of (230a)(230g) = 75 (231) Electricity for lighting 330.87 (232) 12a. CO2 emissions – Individual heating systems including micro-CHP Energy kWh/year Emission factor kg CO2/kWh kg CO2/year	central heating pump:									30		(230c)
Electricity for lighting 12a. CO2 emissions – Individual heating systems including micro-CHP Energy Emission factor kg CO2/kWh Emissions kg CO2/year	boiler with a fan-assisted flu	Э								45		(230e)
12a. CO2 emissions – Individual heating systems including micro-CHP Energy Emission factor kg CO2/kWh kg CO2/year	Total electricity for the above,	kWh/yea	ar			sum	of (230a).	(230g) =	:		75	(231)
Energy Emission factor Emissions kWh/year kg CO2/kWh kg CO2/year	Electricity for lighting										330.87	(232)
kWh/year kg CO2/kWh kg CO2/year	12a. CO2 emissions – Indivi	dual heat	ing syste	ems inclu	uding mi	cro-CHF)					
										tor		
	Space heating (main system	1)			-					= [_

Space heating (secondary)	(215) x	0.519	0 (263)
Water heating	(219) x	0.216 =	487.69 (264)
Space and water heating	(261) + (262) + (263) + (264) =		1136.31 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519 =	38.93 (267)
Electricity for lighting	(232) x	0.519 =	171.72 (268)
Total CO2, kg/year	sum	of (265)(271) =	1346.96 (272)

TER = 19.88 (273)