

Project				Job Ref.
15 Landor Road, London SW9 9RX			20.052	
Section			Sheet no.	
Basem	ent Underpinnir	1		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

15 Landor Road, London SW9 9RX Basement Underpinning Structural Design Report

Prepared by – Eng A Jaiswal (BEng MSc) Checked by – F Maida (BEng MSc CEng MIStructE)

Rev	Date	Comment
A0	10-03-2021	-

Beta Design Consultants

www.betadc.co.uk

info@betadc.co.uk

Contact: +44 20 3687 3904

Great West House E4, Great West Road, TW8 9DF, London, United Kingdom

© Beta Design Consultants, Registered in England (No. 6921466, VAT No. 978 6872 35)

Project				Job Ref.
	15 Landor Roa	d, London SW9	9RX	20.052
Section				Sheet no.
Basen	nent Underpinnir	2		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

	Table of Contents	
1.	Scope	3
2.	Existing Structure	4
3.	Proposal	4
4.	Potential Impact – Party Wall Matters	4
5.	Subterranean Conditions	4
6.	Structural Design Principles	7
7.	Design Criteria	7
8.	Design data	8
9.	BB1: UC254x254x73 S355	10
10.	BB2: UC203x203x52 S355 Span 5.1M	16
11.	BB3: UB203x133x30 S355 Span 3.79M	21
12.	BB4: UB203x133x30 S355 Span 2.75M	26
13.	BC1 and BC2: UC203x203x52 S355 Span 2.4M	31
14.	Connection Design CON1	36
15.	Connection Design CON2	43
16.	Connection Design CON3	50
17.	Connection Design connection CON4: Base Plate and Anchor Bolts	65
18.	Padstone BP1 Design	73
19.	Design of Underpins and Slab	76
19.1	1 Underpin Design inc Slab & Wall Stability (Side wall and party wall)	76
19.2	2 Design Front and back Slab & Wall	87
20.	Design steel beams B4 and B5 supporting Chimney Breast.	95
21.	Design steel column C3.	99
22.	Design padstone P3 and P4	103
23.	Design Connection CON4	105
24.	Designer's risk assessment	112
24.1	1 Health and safety	112
24.2	2 Noise control	112
24.3	3 Party Wall Matters	113
24.4	4 Strategy for waste Disposal and management	113
25.	Outline Method Statement for the Basement Construction	114
26.	Appendix 01: Designer's risk assessment form	114

Project				Job Ref.
15 Landor Road, London SW9 9RX				20.052
Section				Sheet no.
Basem	ent Underpinnir	3		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

1. Scope

The scope of this report is to provide the structural design report for the basement underpinning at subject address.

The report scope is the structural design for:

- Design of external side wall and party wall underpinning.
- Design of basement wall for front lightwell and rear garden wall.
- Design of Basement slab.
- Design of steel beams BB1, BB2, BB3 and BB4 supporting load bearing walls and/or floor joist.
- Design column BC1, BC2 supporting beam BB1.
- Design padstone BP1 supporting beams BB2 and BB4 (only one side).
- Design steel beams B4 and B5 supporting Chimney Breast.
- Design column C3 to support steel beam B4 and B5.
- Design Padstone P3 to support beam B4 (only one side) and P4 to support beam B5 (only one side).
- Design all connections: beam to beam, beam to column and column base plates.

Figure 1 15 Landor Road View

It is envisaged that a contractor who is experienced in this type of work is appointed to carry out the works. The contractor will be responsible for the design and implementation of any temporary works necessary to build the basement. They will also be repsonsible for maintaining the stability of the

Project				Job Ref.
15 Landor Road, London SW9 9RX				20.052
Section				Sheet no.
Basem	ent Underpinnir	4		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

existing structure throughout the works. A method statement showing the proposed temporary works shall be submitted by the chosen contractor for the review and approval of Beta Design Consultants.

2. Existing Structure

The existing property is end of terrace house arranged over three levels (ground, first and second floor levels).

Generally, the construction is typical of period properties in London. The main walls are masonry on corbelled out footings. The upper floors and roof are timber.

3. Proposal

The proposal invloves the underpinning of the new basement by 2400mm. Following the underpinning, and the laying of a new basement slab, double waterproofing systems shall be installed to comply with BS8102.

4. Potential Impact - Party Wall Matters

The structural design of the basement, wall and slab as well as the design of all necessary temporary works (contractor scope), and the sequencing of the construction; will take into account the all the geographical aspects and the locality of the adjoining properties. The underpinning of the existing house would be via sequantial mass concrete underpins in a sequential pattern, adopting contruction legs no wider than 1.0m followed by a reinforced concrete slab. This will avoid undue stresses being applied to the walls being underpinned. The works shall follow the Outline Method Statement included in this report. This method is generally accepted for basement construction of this type. Adoption of this method statement will limit any movement to the existing fabric of Adjoining Owner and any adjoining properties to 'aesthetic' as described by the BRE document for movement in buildings, or category of damage 1 under the Burland Scale.

5. Subterranean Conditions

The design is based on the following:

- Basement Impact assessment report document 18372/BIA_R38 prepared for the property by KK Facades Ltd, dated June 2020
- Geotechnical data are taken from Basement Impact assessment report.
- Borehole logs are taken from Basement Impact assessment report .
- 5.1 Site conditions are established from Basement Impact assessment report data. The ground condition in trial holes have describes as Made Ground typically comprised yellowish orange building SAND/concrete over soft black, slightly sandy,gravelly,light and dark brown sandy,slightly

Project				Job Ref.
15 Landor Road, London SW9 9RX			20.052	
Section				Sheet no.
Basem	ent Underpinnir	5		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

gravelly CLAY for 0.8m bgl. The London clay formation was incountered in one of the trial hole from directly below the Head to the final depth of 8.0m bgl. The soil conditions are known to be DRY at the proposed basement depth.

- 5.2 Records for borehole for the site show firm brown London clay formation from ~4m depth overlain by gravel. The basement would be founded on gravel (2.6m to 5.7m BGL) while the retained soil is stiff dark grey slightly sandy clay.
- 5.3 The groundwater was not encountered within any of the trial holes, but change of ground water level occur for seasonal effects and variations in drainage. The variable ground water was encountered at 2.39m bgl.The formation of the new basement will be above any water table and no de-watering to form the basement will be required.
- 5.4 The soils at new basement formation level will be LONDON CLAY OVERLAIN BY GRAVEL, and from Basement Impact assessment report data a safe bearing pressure on the clay of 85KN/m2, this value should ensure that differential and total settlements are very minimal.
- 5.5 The basement works will not affect any public services or utilities.
- 5.6 There are no nearby trees that will be affected by the works.
- 5.7 The design of the basement walls and bases and temporary works will take into account the locality of adjoining structures and any loading that may be imposed by these structures. The formation of the underpins and bases will be made in a sequential underpinning pattern adopting legs no wider than 1.0m will ensure help to avoid undue distress to the walls being underpinned.

Strata	Epoch	Depth Encountered (m bgl)		Typical Thickness	Typical Description	
		Тор	Bottom	(m)		
MG	Anthropocene	GL	0.80 - 1.20 ¹	0.90	Yellowish orange building SAND/concrete over soft black, slightly sandy, gravelly PEAT overlying soft, light and dark brown sandy, slightly gravelly CLAY with flint, concrete, brick, glass, clinker and wood gravel.	
HEAD	Holocene	0.80	1.90	1.10	Soft to firm light orangish brown mottled grey very sandy CLAY.	
LCF	Eocene	1.90	8.001 - 9.0013	Not proven ²	Firm, orange brown mottled grey, slightly sandy CLAY becoming stiff, dark grey, slightly sandy CLAY.	

Figure 2 Map showing site Ground condition taken from the Basement Impact assessment

	Project				Job Ref.
		15 Landor Road	d, London SW9	9RX	20.052
	Section				Sheet no.
Basement Underpinning Structural Design Report					6
	Calc. by	Date	Chk'd by	Date	Doc No.
	AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

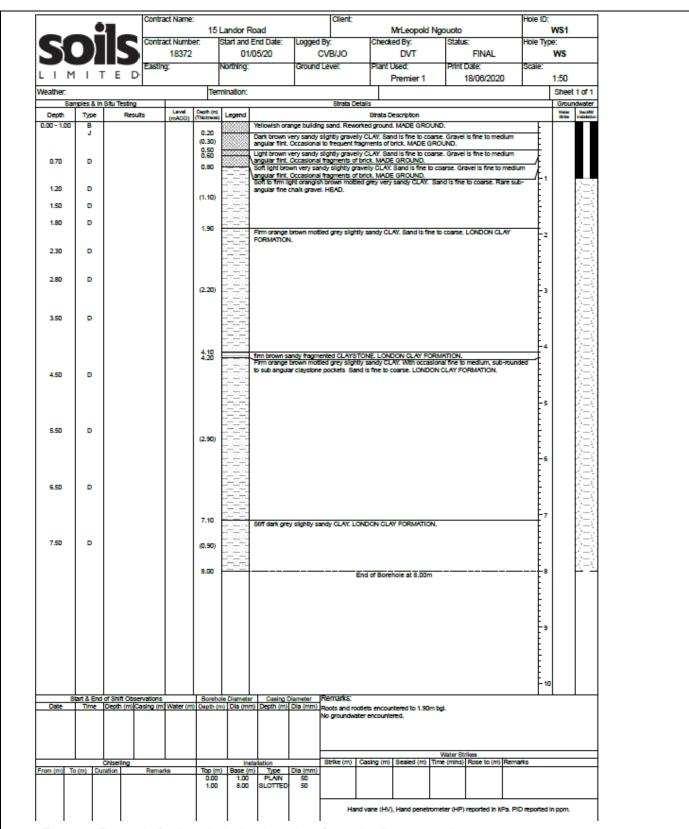


Figure 3 Records for borehole in site taken from the Basement Impact assessment

Project				Job Ref.
15 Landor Road, London SW9 9RX			20.052	
Section		Sheet no.		
Basem	nent Underpinnir	7		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

6. Structural Design Principles

Underpins are designed as propped cantilievers in reinforced concrete. The basement slab acts as the prop at base level. The walls are designed using parameters relevant to the London Clay. Even though no water table was found in the trial pits, in boreholes in the area or in basements in the area, the design adopts a water head behind the wall to ¾ the height of the wall below ground in accordance with BS 8102. The surcharge load allowed on the external walls of the property will be 10KN/m^2 . The design will consider floor loading, any partition wall construction and will also take into account any loads from structure above.

The basement slab will be formed in reinforced concrete. It will be designed for uplift due to water pressure below. The basement slab will act as a prop to the base of the basement walls.

7. Design Criteria

Basement walls and bases are designed using the program 'TEDDS' parameters for the retained soils and bearing soils are as chosen for each particular project. The design is in accordance with BS 8002:1994. The design adopts the coulomb theory in calculating the active and passive earth pressures. Pressure coeficients in the design adopt ' at rest pressures'.

The wall and base are designed for the following

- 1. Vertical loads from walls above.
- 2. Party wall will be designed for a surcharge loading of 10kN/m2.
- 3. Other external walls, will be designed with a surchage load of 10KN/m2.
- 4. The design adopts a water head behind the wall to ¾ the height of the wall below ground in accordance with BS 8102. (EVEN THOUGH NO WATER TABLE WAS FOUND IN THE TRIAL PITS)
- 5. An allowable increase in bearing pressure at base formation on the LONDON CLAY will be taken at 85KN/m2 this will limit settlements as noted above.
- 6. Concrete will generally be grade C30/35 and Class 1 to BRE Digest 363. Reinforcement will be grade 500N/mm2.
- 7. Existing brickwork assumes 10N bricks in a lime mortar, CP.111 gives basic compressive stress for this makeup of 0.70N/mm2, and therefore allowable bearing stress will be 0.70N/mm2. Any bearings into existing external or party wall masonry will take account of this allowable stress. Mortar will be class (ii) or (iii) as required.

Project				Job Ref.
	15 Landor Road	d, London SW9	9RX	20.052
Section				Sheet no.
Basement Underpinning Structural Design Report				8
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

8. Design data

8.1 Materials

Steel Young's Modulus (Mpa)	E =	210000
Yield Strength Steel Grade S355 (Mpa)	F _y =	355
Steel Specific Gravity (kN/m3)	SGs =	78.6
Masonry Specific Gravity – Brickwork (kN/m3)	SG _M =	22
Masonry Specific Gravity - Blockwork 7N/mm2	SG _B =	15
Masonry Specific Gravity - Aircrete (kN/m3)	SG _B =	15
Blockwork Specific Gravity - hollow/hourdi (kN/m3)	$SG_P =$	10
Timber Specific Gravity (kN/m3)	SG⊤=	6
Plaster Specific Gravity (kN/m3)	SGP =	10
Gypsum boards Specific Gravity (kN/m3)	$SG_{GY} =$	6.55
Reinforced concrete Specific Gravity (kN/m3)	SG _{RC} =	25.00
Concrete Specific Gravity (kN/m3)	SG _C =	24.00
Concrete Grade C30/37 (Mpa)	$F_{yck} =$	30

8.2 Design Codes

Component	Year	Code
Loading: imposed loading, material weights, wind	1996	BS6399
Design of Steelwork Structures	2005	EC3
Structural Use of Timber	2002	BS5268-Part 2
Code of Practice for Use of Masonry	2005	BS5628-Part 1
Code of Practice for Foundations	2015	BS8004
Code of Practice for earth retaining structures	1994	BS8002

8.3 Design Data

Floor Live Loads (First Floor, Future Loft)	LLFloor =	1.5	kN/m²	Ref BS EN 1991-1-1-2002 Cat A Floors
Roof Live Load	LL _{Roof} =	0.5	kN/m²	Ref BS EN 1991-1-1-2002 30 ⁰ Roofs
Factor of Safety, Permanent (Dead) Loads	γG =	1.4		Ref UK NA BS EN 1990
Factor of Safety, Variable (Live) Loads	γ Q =	1.6		Ref UK NA BS EN 1990
Factor of Safety, Material Strength Bending	γм =	1.05		For structural steel in bending
Factor of Safety, Material Strength Shear	γмо1 =	1.15		For structural steel in shear
Factor of Safety, Material Strength Compression	γмс =	3.5		Normal Control, Cat II, Table 4 BS5628
Factor of Safety, Material Strength Bending	γмс =	3.0		For masonry in bending
Factor of Safety, Material Strength Bending	γм =	1.3		For structural timber in bending

Project		Job Ref.		
	15 Landor Roa	20.052		
Section		Sheet no.		
Basem	nent Underpinnir	9		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

8.4 Loading Data

Flat roof

Dead Loads

Felt and chippings 0.45 kN/m²
Boards and joists 0.20 kN/m²
Ceiling 0.20 kN/m²
Services 0.15 kN/m²
Total Dead Load 1.00 kN/m²
Imposed Load 0.75 kN/m²

Pitched Roof

Dead Loads

Slate and felt 0.35 kN/m^2 Boards and joists 0.25 kN/m^2 Ceiling 0.25 kN/m^2 Services 0.15 kN/m^2 Total Dead Load 1.00 kN/m^2

Imposed Load Roof 0.75 kN/m² **Total Imposed Loading 0.75 kN/m²**

Timber Floors

Dead Loads

Suspended slab Floors (200 thk slab)

Dead Loads

Walls

105 Brickwork + plaster
215 Brickwork + plaster
330 Brickwork + Plaster
Cavity brick / block (100/100)
Stud partitions (on elevation)
2.60 kN/m²
5.10 kN/m²
4.20 kN/m²
0.70 kN/m²

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	10		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

9.	BB1: UC254x254x73 S355	Span 4.5M

		Load	UDL (kN/m2)	Length (m)	Contribution Factor	Calculation	Loads	Units	Position
	wall Load 330thk	Dead	7.2	8.1	1	7.2 x 8.1 x 1	58.32	kN/m	For 1 m. width from LHS
	wall Load 330thk	Dead	7.2	8.1	1	7.2 x 8.1 x 1	58.32	kN/m	For 0.5 m. width from RHS
	Bifolding door load	Dead	0.5	3.2	1	0.5 x 3.2 x 1	1.60	kN/m	For 3.2m width from RHS
	Column reaction GF	Dead(kN/m)	45.48	3.2	0.5	45.48 x 3.2 x 0.5	72.77	kN	at 1.0m from LHS
	Column reaction GF	Dead(kN/m)	45.48	3.2	0.5	45.48 x 3.2 x 0.5	72.77	kN	at 0.5m from RHS
	Column reaction GF	Live(kN/m)	8.94	3.2	0.5	8.94 x 3.2 x 0.5	14.30	kN	at 1.0m from LHS
	Column reaction GF	Live(kN/m)	8.94	3.2	0.5	8.94 x 3.2 x 0.5	14.30	kN	at 0.5m from RHS
	Beam Reaction B3	Dead(kN/m)	1.91	4.5	0.5	1.9125 x 4.5 x 0.5	4.30	kN	1.m from LHS
	Beam Reaction B3	Live(kN/m)	3.83	4.5	0.5	3.825 x 4.5 x 0.5	8.61	kN	1.m from LHS
	Beam Reaction B3	Dead(kN/m)	4.30	1	0.5	4.3 x 1 x 0.5	2.15	kN	1.m from LHS
	Beam Reaction B3	Live(kN/m)	8.61	1	0.5	8.61 x 1 x 0.5	4.30	kN	1.m from LHS
JDL	SUM UDL	Dead				Dead UDL =	58.32	kN/m	For 1 m. width from LHS
							58.32	kN/m	For 0.5 m. width from RHS
							1.60	kN/m	For 3.2m width from RHS
JDL	SUM UDL	Live				Live UDL =	0.00	kN/m	Full UDL
Point	Point	Dead				Dead Point =	79.22	kN	at 1.0m from LHS
oint	Point	Dead				Dead Point =	72.77	kN	at 0.5m from RHS
oint	Point	Live				Live Load =	27.21	kN	at 1.0m from LHS
Point	Point	Live				Live Load =	14.30	kN	at 0.5m from RHS
ייי	DL pint pint pint	Bifolding door load Column reaction GF Beam Reaction B3 DI SUM UDL DI SUM UDL Point Point Point	Bifolding door load Dead	Bifolding door load Dead 0.5	Bifolding door load Dead Dead	Bifolding door load Dead 0.5 3.2 1	Bifolding door load Dead Dead	Bifolding door load Dead Dead	Bifolding door load Dead 0.5 3.2 1 0.5 x 3.2 x 1 1.60 kN/m

Beam deflection is checked for L/250.

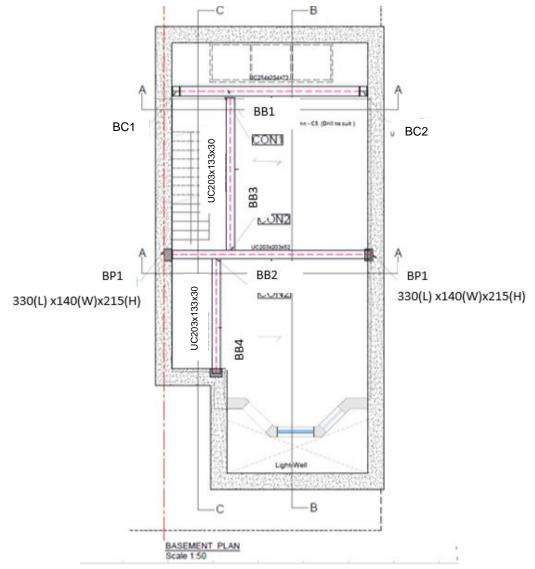
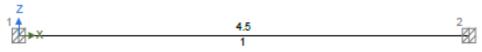


Figure 4: Location of Steel Beams on Plan showing BB1

Project		Job Ref.		
	15 Landor Road	20.052		
Section			Sheet no.	
Basen	nent Underpinnir	sign Report	11	
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

STEEL MEMBER ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex


Tedds calculation version 4.3.04

ANALYSIS

Tedds calculation version 1.0.27

Geometry

Geometry (m) - Steel (EC3) - UC 254x254x73

Span	Length (m)	Section	Start Support	End Support		
1	4.5	UC 254x254x73	Fixed	Fixed		
US 054 054 70 4 00 2 1 11 14 157 4 1 11 15 0000 4 01 11 14 15						

UC 254x254x73: Area 93 cm², Inertia Major 11407 cm⁴, Inertia Minor 3908 cm⁴, Shear area parallel to Minor 22 cm², Shear area parallel to Major = 65 cm²

Steel (EC3): Density 7850 kg/m³, Youngs 210 kN/mm², Shear 80.8 kN/mm², Thermal 0.000012 °C1

Loading

Self weight included

Permanent - Loading (kN/m,kN)

Imposed - Loading (kN)

Load combination factors

Load combination	Self Weight	Permanent	pesodwj
1.35G + 1.5Q + 1.5RQ (Strength)	1.35	1.35	1.50
1.35G + 1.5Q + 1.5ψ ₀ S (Strength)	1.35	1.35	1.50
1.35G + 1.5ψoQ + 1.5S (Strength)	1.35	1.35	1.05

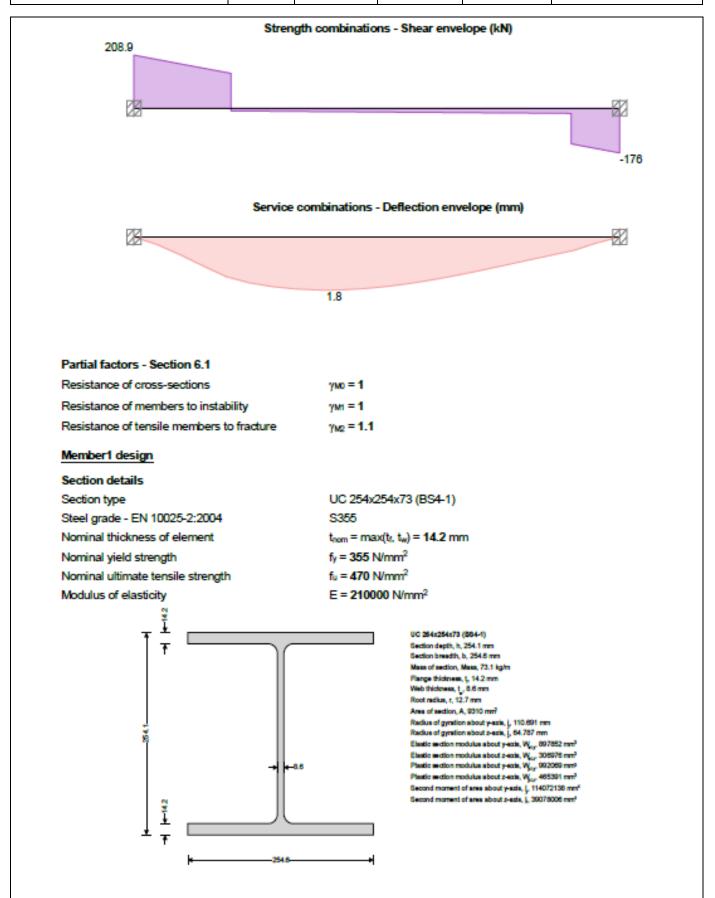
Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	12		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Load combination	Self Weight	Permanent	Imposed
1.35G + 1.5Q + 1.5ψεS + 1.5ψεW (Strength)	1.35	1.35	1.50
1.35G + 1.5ψ ₀ Q + 1.5S + 1.5ψ ₀ W (Strength)	1.35	1.35	1.05
1.35G + 1.5ψεQ + 1.5ψεS + 1.5W (Strength)	1.35	1.35	1.05
1.0G + 1.5W (Strength)	1.00	1.00	
1.0G + 1.0W (Service)	1.00	1.00	
1.35G + 1.5ψοQ + 1.5ψοRQ (Strength)	1.35	1.35	1.05
1.35G + 1.5ψοQ + 1.5ψοS (Strength)	1.35	1.35	1.05
1.35\(\xight)G + 1.5Q + 1.5RQ (Strength)	1.25	1.25	1.50
1.35ξG + 1.5Q + 1.5ψoS (Strength)	1.25	1.25	1.50
1.35ξG + 1.5ψoQ + 1.5S (Strength)	1.25	1.25	1.05
1.35G + 1.5ψ ₀ Q + 1.5ψ ₀ S + 1.5ψ ₀ W (Strength)	1.35	1.35	1.05
1.35ξG + 1.5Q + 1.5ψ ₀ S + 1.5ψ ₀ W (Strength)	1.25	1.25	1.50
1.35ξG + 1.5ψοQ + 1.5S + 1.5ψοW (Strength)	1.25	1.25	1.05
1.35ξG + 1.5ψοQ + 1.5ψοS + 1.5W (Strength)	1.25	1.25	1.05
SERVICE LOAD CASE (Service)	1.00	1.00	1.00

Member Loads

Member	Load case	Load Type	Orientation	Description
Member1	Permanent	UDL	GlobalZ	58.32 kN/m at 0 m to 0.9 m
Member1	Permanent	Point load	GlobalZ	79.22 kN at 0.9 m
Member1	Permanent	Point load	GlobalZ	72.77 kN at 4.05 m
Member1	Permanent	UDL	GlobalZ	58.32 kN/m at 4.05 m to 4.5 m
Member1	Permanent	UDL	GlobalZ	1.6 kN/m at 0.9 m to 4.05 m
Member1	Imposed	Point load	GlobalZ	27.21 kN at 0.9 m
Member1	Imposed	Point load	GlobalZ	14.3 kN at 4.05 m

Results


Forces

Strength combinations - Moment envelope (kNm)

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	13		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Project		Job Ref.		
	15 Landor Roa	20.052		
Section		Sheet no.		
Baser	nent Underpinnir	14		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Lateral restraint

Both flanges have lateral restraint at supports only

Consider Combination 6 - 1.35G + 1.5Q + 1.5yoS + 1.5yoW (Strength)

Classification of cross sections - Section 5.5

 $s = \sqrt{[235 \text{ N/mm}^2/\text{fy}]} = 0.81$

Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3)

Width of section c = d = 200.3 mm

c/tw = 23.3 = 28.6 × s <= 72 × s Class 1

Outstand flanges - Table 5.2 (sheet 2 of 3)

Width of section $c = (b - t_w - 2 \times r)/2 = 110.3 \text{ mm}$

c/tr=7.8 = 9.5 × s <= 10 × s Class 2

Section is class 2

Check design at start of span

Check shear - Section 6.2.6

Height of web $h_w = h - 2 \times t_f = 225.7 \text{ mm}$ $\eta = 1.000$

 $h_w/t_w = 26.2 = 32.3 \times \epsilon / \eta < 72 \times \epsilon / \eta$

Shear buckling resistance can be ignored

Design shear force V_{x,Ed} = 208.9 kN

Shear area - cl 6.2.6(3) $A_v = \max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \ \eta \times h_w \times t_w) = 2562 \text{ mm}^2$

Design shear resistance - cl 6.2.6(2) $V_{Q,Rd} = V_{pl,y,Rd} = A_v \times (f_y / \sqrt{3}) / \gamma_{NO} = 525.2 \text{ kN}$

Vy,Ed / Vq,y,Rd = 0.398

PASS - Design shear resistance exceeds design shear force

Check bending moment - Section 6.2.5

Design bending moment M_{i,Ed} = 117.6 kNm

Design bending resistance moment - eq 6.13 $M_{e,y,Ped} = M_{pl,y} \times f_y / \gamma_{MO} = 352.2 \text{ kNm}$

 $M_{y,Ed} / M_{c,y,Rd} = 0.334$

PASS - Design bending resistance moment exceeds design bending moment

Slendemess ratio for lateral torsional buckling

Correction factor - Table 6.6 k₀ = **0.472**

 $C_1 = 1 / k_0^2 = 4.48$

Poissons ratio v = 0.3

Shear modulus $G = E / [2 \times (1 + v)] = 80769 \text{ N/mm}^2$ Unrestrained effective length $L = 1.0 \times L_{\text{mf.s1.seg1.B}} = 4500 \text{ mm}$

Elastic critical buckling moment $M_{tx} = C_1 \times \pi^2 \times E \times I_z / L^2 \times \sqrt{(I_W / I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z))} = 2890.6 \text{ kNm}$

Slendemess ratio for lateral torsional buckling $\bar{\lambda}_{LT} = \sqrt{(W_{pky} \times f_y / M_{zr})} = 0.349$

Limiting slendemess ratio $\lambda_{LT,0} = 0.4$

 $\bar{\lambda}_{LT} < \bar{\lambda}_{LT,0}$ - Lateral torsional buckling can be ignored

Check design 900 mm along span

Check shear - Section 6.2.6

Height of web $h_w = h - 2 \times t_f = 225.7 \text{ mm}$ $\eta = 1.000$

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	sign Report	15	
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

hw/tw = $26.2 = 32.3 \times \epsilon / \eta < 72 \times \epsilon / \eta$

Shear buckling resistance can be ignored

Design shear force V_{x,Ed} = 137.2 kN

Shear area - cl 6.2.6(3) $A_v = max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \eta \times h_w \times t_w) = 2562 \text{ mm}^2$

Design shear resistance - cl 6.2.6(2) $V_{Q,P,Rd} = V_{pl,y,Rd} = A_v \times (f_y / \sqrt{3}) / \gamma_{MO} = 525.2 \text{ kN}$

 $V_{y,Ed} / V_{c,y,Rd} = 0.261$

PASS - Design shear resistance exceeds design shear force

Check bending moment - Section 6.2.5

Design bending moment $M_{v,Ed} = 38.1 \text{ kNm}$

Design bending resistance moment - eq 6.13 $M_{q,y,Pd} = M_{pl,y} \times f_y / \gamma_{M0} = 352.2 \text{ kNm}$

 $M_{v,Ed} / M_{c,v,Rd} = 0.108$

PASS - Design bending resistance moment exceeds design bending moment

Slenderness ratio for lateral torsional buckling

Correction factor - Table 6.6 $k_0 = 0.472$

 $C_1 = 1 / k_0^2 = 4.48$

Poissons ratio v = 0.3

Shear modulus $G = E / [2 \times (1 + v)] = 80769 \text{ N/mm}^2$ Unrestrained effective length $L = 1.0 \times L_{\text{mf}} = 4500 \text{ mm}$

Elastic critical buckling moment $M_{Nf} = C_1 \times \pi^2 \times E \times I_Z / L^2 \times \sqrt{(I_W / I_Z + L^2 \times G \times I_T / (\pi^2 \times E \times I_Z))} = 2890.6 \text{ kNm}$

Slendemess ratio for lateral torsional buckling $\overline{\lambda}_{LT} = \sqrt{(W_{pky} \times f_y / M_{pr})} = 0.349$

Limiting slendemess ratio $\bar{\lambda}_{LT,0} = 0.4$

 $\bar{\lambda}_{LT} < \bar{\lambda}_{LT,0}$ - Lateral torsional buckling can be ignored

Consider Combination 23 - SERVICE LOAD CASE (Service)

Check design 1785 mm along span

Check y-y axis deflection - Section 7.2.1

Maximum deflection $\delta_v = 1.8 \text{ mm}$

Allowable deflection δ_{J,Allowable} = Min(L_{m1_81} / 250, 15 mm) = 15 mm

 $\delta_y / \delta_{y,Allowable} = 0.117$

PASS - Allowable deflection exceeds design deflection

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	ng Structural Des	sign Report	16
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

10. BB2: UC203x203x52 S355	Span 5.1M
----------------------------	-----------

Steel Beam GF B2		Section	Load	UDL (kN/m2)	Length (m)	Contribution Factor	Calculation	Loads	Units	Position
5100mm										
		Beam Reaction B3	Dead(kN/m)	1.91	4.5	0.5	1.91 x 4.5 x 0.5	4.30	kN	1.m from LHS
		Beam Reaction B3	Live(kN/m)	3.83	4.5	0.5	3.83 x 4.5 x 0.5	8.61	kN	1.m from LHS
		Beam Reaction B3	Dead(kN/m)	4.30	1	0.5	4.3 x 1 x 0.5	2.15	kN	1.m from LHS
		Beam Reaction B3	Live(kN/m)	8.61	1	0.5	8.61 x 1 x 0.5	4.30	kN	1.m from LHS
		Beam Reaction B4	Dead(kN/m)	1.91	3.5	0.5	1.91 x 3.5 x 0.5	3.35	kN	0.8m from LHS
		Beam Reaction B4	Live(kN/m)	3.83	3.5	0.5	3.83 x 3.5 x 0.5	6.69	kN	0.8m from LHS
	UDL	SUM UDL	Dead				Dead Point =	6.45	kN	1.m from LHS
	UDL	SUM UDL	Live				Live Point =	12.91	kN	1.m from LHS
	Point	Point	Dead				Dead Point =	3.35	kN	0.8m from LHS
UC 203x203x52	Point	Point	Live				Live Point =	6.69	kN	0.8m from LHS

Beam effective length is taken as 1.2 L + 1.2 D to allow for support by bearing on padstone/metal plate. Beam deflection is checked for L/250.

Beam deflection is checked for L/250.

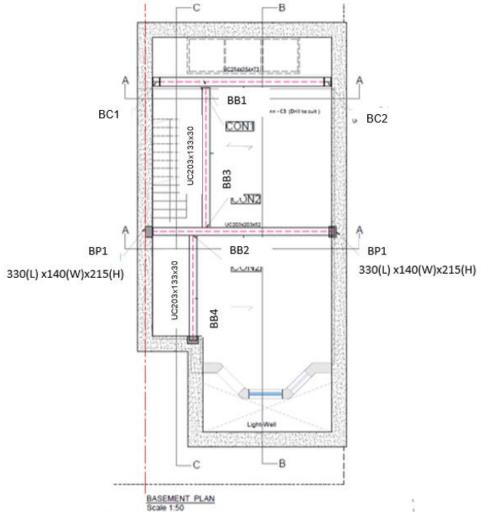
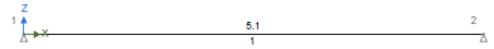


Figure 5: Location of Steel Beams on Plan showing BB2

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	sign Report	17	
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

STEEL MEMBER ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex


Tedds calculation version 4.3.04

ANALYSIS

Tedds calculation version 1.0.27

Geometry

Geometry (m) - Steel (EC3) - UC 203x203x52

Span	Length (m)	Section	Start Support	End Support			
1	5.1	UC 203x203x52	Pinned	Pinned			
LIC 202×202×52: Area 66 cm2 Inartia Major 5250 cm4 Inartia Minor 1779 cm4 Chaor area parallel to Minor							

UC 203x203x52: Area 66 cm², Inertia Major 5259 cm⁴, Inertia Minor 1778 cm⁴, Shear area parallel to Minor 16 cm², Shear area parallel to Major = 46 cm²

Steel (EC3): Density 7850 kg/m3, Youngs 210 kN/mm2, Shear 80.8 kN/mm2, Thermal 0.000012 °C1

Loading

Self weight included

Permanent - Loading (kN)

Imposed - Loading (kN)

Load combination factors

Load combination	SelfWeight	Permanent	pesodwl
1.35G + 1.5Q + 1.5RQ (Strength)	1.35	1.35	1.50
1.35G + 1.5Q + 1.5ψ ₀ S (Strength)	1.35	1.35	1.50
1.35G + 1.5ψ ₀ Q + 1.5S (Strength)	1.35	1.35	1.05
1.35G + 1.5Q + 1.5ψ ₀ S + 1.5ψ ₀ W (Strength)	1.35	1.35	1.50

Project				Job Ref.
	15 Landor Road	20.052		
Section		Sheet no.		
Baser	nent Underpinnir	18		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

	_	_	
Load combination	Self Weight	Permanent	pesodul
1.35G + 1.5ψ ₀ Q + 1.5S + 1.5ψ ₀ W (Strength)	1.35	1.35	1.05
1.35G + 1.5ψ ₀ Q + 1.5ψ ₀ S + 1.5W (Strength)	1.35	1.35	1.05
1.0G + 1.5W (Strength)	1.00	1.00	
1.35G + 1.5ψ ₀ Q + 1.5ψ ₀ RQ (Strength)	1.35	1.35	1.05
1.35G + 1.5ψ ₀ Q + 1.5ψ ₀ S (Strength)	1.35	1.35	1.05
1.35 g + 1.5Q + 1.5RQ (Strength)	1.25	1.25	1.50
1.35ξG + 1.5Q + 1.5ψ₀S (Strength)	1.25	1.25	1.50
1.35ξG + 1.5ψ ₀ Q + 1.5S (Strength)	1.25	1.25	1.05
1.35G + 1.5ψ ₀ Q + 1.5ψ ₀ S + 1.5ψ ₀ W (Strength)	1.35	1.35	1.05
1.35ξG + 1.5Q + 1.5ψεS + 1.5ψεW (Strength)	1.25	1.25	1.50
1.35ξG + 1.5ψeQ + 1.5S + 1.5ψeW (Strength)	1.25	1.25	1.05
1.35ξG + 1.5ψ ₀ Q + 1.5ψ ₀ S + 1.5W (Strength)	1.25	1.25	1.05
SERVICE (Service)	1.00	1.00	1.00

Member Loads

Member	Load case	Load Type	Orientation	Description
Member1	Permanent	Point load	GlobalZ	6.45 kN at 1.02 m
Member1	Permanent	Point load	GlobalZ	3.35 kN at 0.765 m
Member1	Imposed	Point load	GlobalZ	12.91 kN at 1.02 m
Member1	Imposed	Point load	GlobalZ	6.69 kN at 0.765 m

Results

Forces

Strength combinations - Moment envelope (kNm)

Strength combinations - Shear envelope (kN)

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	ng Structural Des	sign Report	19
Calc. by	Date	Chk'd by	Doc No.	
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

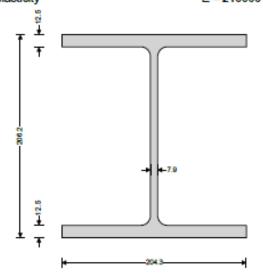
Service combinations - Deflection envelope (mm)

4.5

Partial factors - Section 6.1

Resistance of cross-sections $\gamma_{M0} = 1$ Resistance of members to instability $\gamma_{M1} = 1$ Resistance of tensile members to fracture $\gamma_{M2} = 1.1$

Member1 design


Section details

Section type UC 203x203x52 (BS4-1)

Steel grade - EN 10025-2:2004 S355

Nominal thickness of element toom = max(tr, tw) = 12.5 mm

Nominal yield strength $f_y = 355 \text{ N/mm}^2$ Nominal ultimate tensile strength $f_u = 470 \text{ N/mm}^2$ Modulus of elasticity $E = 210000 \text{ N/mm}^2$

UC 203x203x62 (B84-1) Section depth, h, 208.2 mm Section breadth, b, 204.3 mm Mass of section, Mass, 52 kg/m Flange thickness, ‡ 12.5 mm Web thickness, t, 7.9 mm Root radius, r, 10.2 mm Area of section, A, 8628 mm? Radius of gyration about y-exis, j. 89.072 mm Radius of gyration about z-exis, j. 51.787 mm Elastic section modulus about y-axis, W, 510069 mm² Elastic section modulus about z-axis, W_L, 174020 mm² Plastic section modulus about y-axis, V_{Ly} 567396 mm² Plastic section modulus about z-axis, W_{st}, 264249 mm² Second moment of area about y-axis, 1, 52588157 mm⁴ Second moment of area about z-axis, J. 17776181 mm⁴

Lateral restraint

Both flanges have lateral restraint at supports only

Consider Combination 6 - 1.35G + 1.5Q + 1.5\(\psi_0\S\) + 1.5\(\psi_0\W\) (Strength)

Classification of cross sections - Section 5.5

 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / \text{fy}]} = 0.81$

Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3)

Width of section c = d = 160.8 mm

 $c/t_w = 20.4 = 25 \times \epsilon \le 72 \times \epsilon$ Class 1

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	ng Structural Des	sign Report	20
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Outstand flanges - Table 5.2 (sheet 2 of 3)

Width of section $c = (b - t_w - 2 \times r)/2 = 88 \text{ mm}$

 $c/t_r = 7 = 8.7 \times \epsilon <= 9 \times \epsilon$ Class 1

Section is class 1

Check design 1020 mm along span

Check shear - Section 6.2.6

Height of web $h_w = h - 2 \times t_f = 181.2 \text{ mm}$ $\eta = 1.000$

 $h_w/t_w = 22.9 = 28.2 \times \epsilon/\eta < 72 \times \epsilon/\eta$

Shear buckling resistance can be ignored

Design shear force V_{y,Ed} = 21.3 kN

Shear area - cl 6.2.6(3) $A_v = \max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \eta \times h_w \times t_w) = 1875 \text{ mm}^2$

Design shear resistance - cl 6.2.6(2) $V_{c,y,Rd} = V_{pl,y,Rd} = A_v \times (f_y / \sqrt{3}) / \gamma_{M0} = 384.2 \text{ kN}$

 $V_{y,Ed} / V_{c,y,Rd} = 0.056$

PASS - Design shear resistance exceeds design shear force

Check bending moment - Section 6.2.5

Design bending moment M_{V,Ed} = 33.2 kNm

Design bending resistance moment - eq 6.13 $M_{c,y,Rd} = M_{pl,y} \times f_y / \gamma_{M0} = 201.4$ kNm

 $M_{V,Ed} / M_{c,V,Rd} = 0.165$

PASS - Design bending resistance moment exceeds design bending moment

Slenderness ratio for lateral torsional buckling

Correction factor - Table 6.6 $k_c = 0.94$

 $C_1 = 1/k_c^2 = 1.132$

Poissons ratio v = 0.3

Shear modulus $G = E / [2 \times (1 + v)] = 80769 \text{ N/mm}^2$ Unrestrained effective length $L = 1.2 \times L_{ml.s1.seg1.T} + 2 \times h = 6532 \text{ mm}$

Elastic critical buckling moment $M_{cr} = C_1 \times \pi^2 \times E \times I_z / L^2 \times \sqrt{(I_w / I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z))} = 193.2 \text{ kNm}$

Slendemess ratio for lateral torsional buckling $\overline{\lambda}_{LT} = \sqrt{(W_{pl,y} \times f_y / M_{cr})} = 1.021$

Limiting slendemess ratio $\bar{\lambda}_{LT,0} = 0.4$

 $\bar{\lambda}_{LT} > \bar{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Check buckling resistance - Section 6.3.2.1

Buckling curve - Table 6.5 b

Imperfection factor - Table 6.3 $\alpha_{LT} = 0.34$ Correction factor for rolled sections $\beta = 0.75$

Modified LTB reduction factor - eq 6.58 $\chi_{LT,mod} = min(\chi_{LT} / f, 1, 1 / \overline{\lambda}_{LT}^2) = 0.706$ Design buckling resistance moment - eq 6.55 $M_{b,y,Rd} = \chi_{LT,mod} \times W_{pl,y} \times f_y / \gamma_{MH} = 142.2 \text{ kNm}$

 $M_{V,Ed} / M_{b,y,Rd} = 0.234$

PASS - Design buckling resistance moment exceeds design bending moment

٦	Project		Job Ref.		
		15 Landor Road	20.052		
	Section		Sheet no.		
	Basem	ent Underpinnir	ng Structural Des	sign Report	21
	Calc. by	by Date Chk'd by Date		Date	Doc No.
	AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Consider Combination 23 - SERVICE (Service)

Check design 2215 mm along span

Check y-y axis deflection - Section 7.2.1

Maximum deflection $\delta_y = 4.5 \text{ mm}$

Allowable deflection δ_{y,Allowable} = Min(L_{m1_51} / 250, 15 mm) = 15 mm

 $\delta_y / \delta_{y,Allowable} = 0.297$

PASS - Allowable deflection exceeds design deflection

11. BB3: UB203x133x30 S355 Span 3.79M

Steel Beam GF BB3		Section	Load	UDL (kN/m2)	Length (m)	Contribution Factor	Calculation	Loads	Units	Position
4500mm		Column reaction GF UB152	Dead(kN/m)	1.9125	4.5	0.5	1.9125 x 4.5 x 0.5	4.30	kN	0.5m from LHS
		Column reaction GF UB152	Live(kN/m)	3.825	4.5	0.5	3.825 x 4.5 x 0.5	8.61	kN	0.5m from LHS
		Ground floor Joist	Dead	0.75	5.1	0.5	0.75 x 5.1 x 0.5	1.91	kN/m	Full UDL
		Ground floor Joist	Live	1.5	5.1	0.5	1.5 x 5.1 x 0.5	3.83	kN/m	Full UDL
	UDL									
	UDL									
		SUM UDL	Dead				Dead UDL =	1.91	kN/m	Full UDL
UC 203x133x30		SUM UDL	Live				Live UDL =	3.83	kN/m	Full UDL

Beam deflection is checked for L/250.

*Design is done for beam span = 4.5m, conservative , so OK $\,$

Beam deflection is checked for L/250.

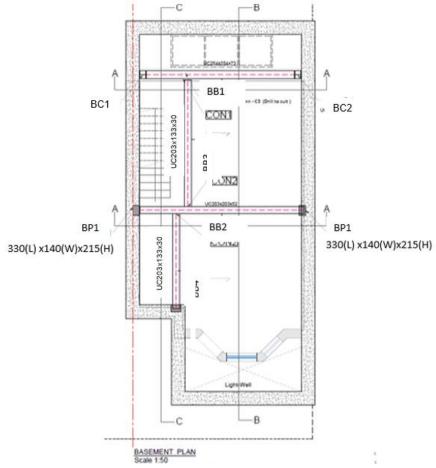


Figure 6: Location of Steel Beams on Plan showing BB3

Project		Job Ref.		
	15 Landor Road	20.052		
Section			Sheet no.	
Basem	nent Underpinnir	ng Structural Des	sign Report	22
Calc. by	lc. by Date Chk'd by Date		Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

STEEL MEMBER ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Tedds calculation version 4.3.04

ANALYSIS

Tedds calculation version 1.0.27

Geometry

Geometry (m) - Steel (EC3) - UB 203x133x30

Span	Length (m)	Section	Start Support	End Support		
1	4.5 UB 203x133x30		Pinned	Pinned		
UB 203x133x30: Area 38 cm², Inertia Major 2896 cm⁴, Inertia Minor 385 cm⁴, Shear area parallel to Minor 13 cm², Shear area parallel to Major = 23 cm²						
Steel (EC3): Density 7850 kg/m³, Youngs 210 kN/mm², Shear 80.8 kN/mm², Thermal 0.000012 °C-1						

Loading

Self weight included

Permanent - Loading (kN/m,kN)

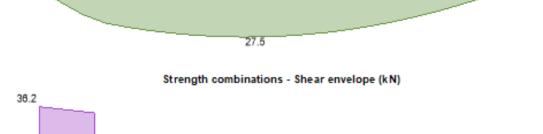
Imposed - Loading (kN/m,kN)

Load combination factors

Load combination	Self Weight	Permanent	Imposed
1.35G + 1.5Q + 1.5RQ (Strength)	1.35	1.35	1.50
1.35G + 1.5Q + 1.5ψ ₀ S (Strength)	1.35	1.35	1.50
1.35G + 1.5ψ ₀ Q + 1.5S (Strength)	1.35	1.35	1.05
$1.35G + 1.5Q + 1.5\psi_0S + 1.5\psi_0W$ (Strength)	1.35	1.35	1.50

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Baser	nent Underpinnir	23		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

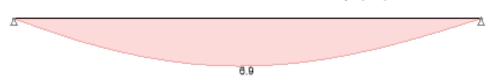
Load combination	Self Weight	Permanent	Imposed
$1.35G + 1.5\psi_0Q + 1.5S + 1.5\psi_0W$ (Strength)	1.35	1.35	1.05
$1.35G + 1.5\psi_0Q + 1.5\psi_0S + 1.5W$ (Strength)	1.35	1.35	1.05
1.0G + 1.5W (Strength)	1.00	1.00	
1.35G + 1.5ψ ₀ Q + 1.5ψ ₀ RQ (Strength)	1.35	1.35	1.05
1.35G + 1.5ψ ₀ Q + 1.5ψ ₀ S (Strength)	1.35	1.35	1.05
1.35 kG + 1.5 Q + 1.5 RQ (Strength)	1.25	1.25	1.50
1.35ξG + 1.5Q + 1.5ψ ₀ S (Strength)	1.25	1.25	1.50
1.35 \(G + 1.5 \(\psi_0 \)Q + 1.5 \(S \) (S treng th)	1.25	1.25	1.05
$1.35G + 1.5\psi_0Q + 1.5\psi_0S + 1.5\psi_0W$ (Strength)	1.35	1.35	1.05
1.35ξG + 1.5Q + 1.5ψ ₀ S + 1.5ψ ₀ W (Strength)	1.25	1.25	1.50
1.35¢G + 1.5ψ ₀ Q + 1.5S + 1.5ψ ₀ W (Strength)	1.25	1.25	1.05
1.35ξG + 1.5 ψ ₀ Q + 1.5 ψ ₀ S + 1.5 W (Strength)	1.25	1.25	1.05
SERVICE LOAD (Service)	1.00	1.00	1.00


Member Loads

Member	Load case	Load Type	Orientation	Description
Member 1	Permanent	UDL	GlobalZ	1.94 kN/m
Member 1	Permanent	Point load	GlobalZ	4.3 kN at 0.54 m
Member 1	Imposed	Point load	GlobalZ	8.61 kN at 0.54 m
Member 1	Imposed	UDL	GlobalZ	3.83 kN/m

Results

Forces


Strength combinations - Moment envelope (kNm)

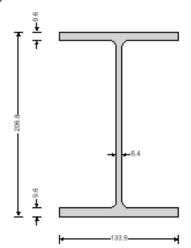
Project		Job Ref.		
-	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	ng Structural Des	sign Report	24
Calc. by	Date	Chk'd by Date		Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Service combinations - Deflection envelope (mm)

Partial factors - Section 6.1

Resistance of cross-sections γ_{M0} = 1 Resistance of members to instability γ_{M1} = 1 Resistance of tensile members to fracture γ_{M2} = 1.1

Member1 design


Section details

Section type UB 203x133x30 (BS 4-1)

Steel grade - EN 10025-2:2004 S355

Nominal thickness of element $t_{nom} = max(t_i, t_n) = 9.6 \text{ mm}$

Nominal yield strength $f_y = 355 \text{ N/mm}^2$ Nominal ultimate tensile strength $f_u = 470 \text{ N/mm}^2$ Modulus of elasticity $E = 210000 \text{ N/mm}^2$

UB 203x133x30 (B84-1) Section depth, h, 206.8 mm

Section breadth, b. 133.9 mm

Mass of section, Mass, 30 kg/m
Plangs thickness, t_p, 6.4 mm
Web frickness, t_p, 6.4 mm
Root radius, r, 7.6 mm
Area of section, A, 3021 mm²
Radius of gyration about y-axis, t_p, 67.061 mm
Radius of gyration about y-axis, t_p, 57.061 mm
Blastic section modulus about y-axis, W_{c,p}, 28.0036 mm²
Elastic section modulus about y-axis, W_{c,p}, 28.0036 mm²
Plastic section modulus about y-axis, W_{c,p}, 31.4365 mm²
Plastic section modulus about y-axis, W_{c,p}, 28.024 mm²
Second moment of area about y-axis, t_p, 28.955684 mm²
Second moment of area about y-axis, t_p, 38.46542 mm²

Lateral restraint

Both flanges have lateral restraint at supports only

Consider Combination 6 - 1.35G + 1.5Q + 1.5\pu_0S + 1.5\pu_0W (Strength)

Classification of cross sections - Section 5.5

 $\epsilon = \sqrt{[235 \text{ N/mm}^2 / f_v]} = 0.81$

Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3)

Width of section c = d = 172.4 mm

 $c/t_w = 26.9 = 33.1 \times \epsilon \le 72 \times \epsilon$ Class 1

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	ng Structural Des	sign Report	25
Calc. by	Date Chk'd by Date			Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Outstand flanges - Table 5.2 (sheet 2 of 3)

Width of section $c = (b - t_w - 2 \times r) / 2 = 56.2 \text{ mm}$

c / t/ = 5.8 = 7.2 × ε <= 9 × ε Class 1

Section is class 1

Check design 1994 mm along span

Check bending moment - Section 6.2.5

Design bending moment M_{y,Ext} = 27.5 kNm

Design bending resistance moment - eq 6.13 $M_{c,v,Rd} = M_{pl,v,Rd} = W_{pl,v} \times f_v / \gamma_{M0} = 111.6 \text{ kNm}$

 $M_{v,Ed} / M_{c,v,Rd} = 0.247$

PASS - Design bending resistance moment exceeds design bending moment

Slenderness ratio for lateral torsional buckling

Correction factor - Table 6.6 k_c = 0.94

 $C_1 = 1 / k_c^2 = 1.132$

Poissons ratio v = 0.3

Shear modulus $G = E / [2 \times (1 + v)] = 80769 \text{ N/mm}^2$ Unrestrained effective length $L = 1.2 \times L_{m1_a1_aug1_T} + 2 \times h = 5814 \text{ mm}$

Elastic critical buckling moment $M_{cr} = C_1 \times \pi^2 \times E \times I_z / L^2 \times \sqrt{(I_w / I_z + L^2 \times G \times I_1 / (\pi^2 \times E \times I_z))} = 56.6 \text{ kNm}$

Slenderness ratio for lateral torsional buckling $\bar{\lambda}_{LT} = \sqrt{(W_{pl,y} \times f_y / M_{cr})} = 1.404$

Limiting slenderness ratio $\bar{\lambda}_{LT,0} = 0.4$

 $\overline{\lambda}_{LT} > \overline{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Check buckling resistance - Section 6.3.2.1

Buckling curve - Table 6.5 b

Imperfection factor - Table 8.3 $\alpha_{LT} = 0.34$ Correction factor for rolled sections $\beta = 0.75$

LTB reduction determination factor $\phi_{LT} = 0.5 \times \left[1 + \alpha_{LT} \times (\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0}) + \beta \times \overline{\lambda}_{LT}^2\right] = 1.410$ LTB reduction factor - eq 6.57 $\chi_{LT} = \min\left(1 / \left[\phi_{LT} + \sqrt{(\phi_{LT}^2 - \beta \times \overline{\lambda}_{LT}^2)}\right], 1, 1 / \overline{\lambda}_{LT}^2\right) = 0.471$ Modification factor $f = \min\left(1 - 0.5 \times (1 - k_c) \times \left[1 - 2 \times (\overline{\lambda}_{LT} - 0.8)^2\right], 1\right) = 0.992$

Modified LTB reduction factor - eq 6.58 $\chi_{LT,mod} = min(\chi_{LT} / f, 1, 1 / \overline{\lambda}_{LT}^2) = 0.475$ Design buckling resistance moment - eq 6.55 $M_{b,y,fid} = \chi_{LT,mod} \times W_{pLy} \times f_y / \gamma_{M1} = 53 \text{ kNm}$

 $M_{y,Ext} / M_{b,y,Pkl} = 0.519$

PASS - Design buckling resistance moment exceeds design bending moment

Consider Combination 23 - SERVICE LOAD (Service)

Check design 2181 mm along span

Check y-y axis deflection - Section 7.2.1

Maximum deflection $\delta_y = 6.9 \text{ mm}$

Allowable deflection $\delta_{y,Allowable} = Min(L_{m1.x1} / 250, 15 mm) = 15 mm$

δ_y / δ_{y,Allowable} = 0.462

PASS - Allowable deflection exceeds design deflection

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	26		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

12. BB4: UB203x133x30 S355 Span 2.75M

Steel Beam GF BB4										
3500mm		Section	Load	UDL (kN/m2)	Length (m)	Contribution Factor	Calculation	Loads	Units	Position
		Ground floor Joist	Dead	0.75	5.1	0.5	0.75 x 5.1 x 0.5	1.91	kN/m	Full UDL
		Ground floor Joist	Live	1.5	5.1	0.5	1.5 x 5.1 x 0.5	3.83	kN/m	Full UDL
	UDL									
	UDL									
		SUM UDL	Dead				Dead UDL =	1.91	kN/m	Full UDL
UC 203x133x30		SUM UDL	Live				Live UDL =	3.83	kN/m	Full UDL

Beam effective length is taken as 1.2 L + 1.2 D to allow for support by bearing on padstone/metal plate.

Beam deflection is checked for L/250.

*Design is done for beam span = 3.5m, conservative, so OK

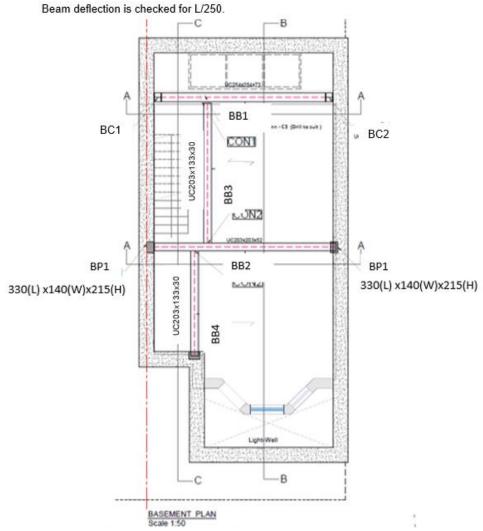
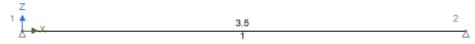


Figure 7: Location of Steel Beams on Plan showing BB4

1				
Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basement Underpinning Structural Design Report				27
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

STEEL MEMBER ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex


Tedds calculation version 4.3.04

ANALYSIS

Tedds calculation version 1.0.27

Geometry

Geometry (m) - Steel (EC3) - UB 203x133x30

Span	Length (m)	Section	Section Start Support	
1	3.5	UB 203x133x30	Pinned	Pinned

UB 203x133x30: Area 38 cm², Inertia Major 2896 cm⁴, Inertia Minor 385 cm⁴, Shear area parallel to Minor 13 cm², Shear area parallel to Major = 23 cm²

Steel (EC3): Density 7850 kg/m³, Youngs 210 kN/mm², Shear 80.8 kN/mm², Thermal 0.000012 °C-1

Loading

Self weight included

Permanent - Loading (kN/m)

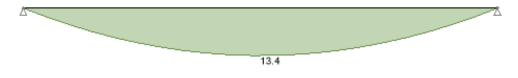
Imposed - Loading (kN/m)

Load combination factors

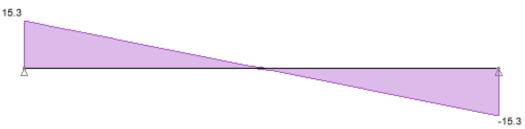
Load combination	Self Weight	Permanent	pəsodul
1.35G + 1.5Q + 1.5RQ (Strength)	1.35	1.35	1.50
1.35G + 1.5Q + 1.5ψ ₀ S (Strength)	1.35	1.35	1.50
1.35G + 1.5ψ ₀ Q + 1.5S (Strength)	1.35	1.35	1.05
1.35G + 1.5Q + 1.5ψ ₀ S + 1.5ψ ₀ W (Strength)	1.35	1.35	1.50
1.35G + 1.5ψ ₀ Q + 1.5S + 1.5ψ ₀ W (Strength)	1.35	1.35	1.05

٦	Project		Job Ref.		
		15 Landor Road	20.052		
	Section		Sheet no.		
	Basem	ent Underpinnir	28		
	Calc. by	Date	Chk'd by	Date	Doc No.
	AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Load combination	Self Weight	Permanent	Imposed
1.35G + 1.5ψ ₀ Q + 1.5ψ ₀ S + 1.5W (Strength)	1.35	1.35	1.05
1.0G + 1.5W (Strength)	1.00	1.00	
1.35G + 1.5ψ ₀ Q + 1.5ψ ₀ RQ (Strength)	1.35	1.35	1.05
1.35G + 1.5ψ ₀ Q + 1.5ψ ₀ S (Strength)	1.35	1.35	1.05
1.35 \(\)G + 1.5 \(\)Q + 1.5 \(\)R \(\)Q (Strength)	1.25	1.25	1.50
1.35ξG + 1.5Q + 1.5ψ ₀ S (Strength)	1.25	1.25	1.50
1.35ξG + 1.5ψ ₀ Q + 1.5S (Strength)	1.25	1.25	1.05
1.35G + 1.5ψ ₀ Q + 1.5ψ ₀ S + 1.5ψ ₀ W (Strength)	1.35	1.35	1.05
1.35ξG + 1.5Q + 1.5ψ ₀ S + 1.5ψ ₀ W (Strength)	1.25	1.25	1.50
1.35ξG + 1.5ψ ₀ Q + 1.5S + 1.5ψ ₀ W (Strength)	1.25	1.25	1.05
1.35ξG + 1.5ψ ₀ Q + 1.5ψ ₀ S + 1.5W (Strength)	1.25	1.25	1.05
SERVICE (Service)	1.00	1.00	1.00


Member Loads

Member	Load case	Load Type	Orientation	Description
Member1	Permanent	UDL	GlobalZ	1.91 kN/m
Member 1	Imposed	UDL	GlobalZ	3.83 kN/m


Results

Forces

Strength combinations - Moment envelope (kNm)

Strength combinations - Shear envelope (kN)

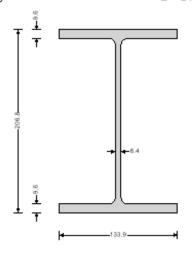
Service combinations - Deflection envelope (mm)

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	29		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Partial factors - Section 6.1

Resistance of cross-sections $\gamma_{M0} = 1$ Resistance of members to instability $\gamma_{M1} = 1$ Resistance of tensile members to fracture $\gamma_{M2} = 1.1$

Member1 design


Section details

Section type UB 203x133x30 (BS4-1)

Steel grade - EN 10025-2:2004 S355

Nominal thickness of element $t_{nom} = max(t_i, t_n) = 9.6 \text{ mm}$

 $\begin{tabular}{lll} Nominal yield strength & f_y = 355 \ N/mm^2 \\ Nominal ultimate tensile strength & f_u = 470 \ N/mm^2 \\ Modulus of elasticity & E = 210000 \ N/mm^2 \\ \end{tabular}$

UB 203x133x30 (BS4-1)

Section depth, h, 206.8 mm

Section beauth, b, 153.9 mm

Mass of section, Mass, 30 kg/m

Flange thebress, t_v, 9.4 mm

Web thickness, t_v, 9.4 mm

Web thickness, t_v, 9.4 mm

Root radius, r, 7.5 mm

Radius of gyration about y-axis, t_v, 87.051 mm

Radius of gyration about y-axis, t_v, 87.051 mm

Radius of gyration about y-axis, t_v, 37.752 mm

Elastic section modulus about y-axis, W_{ebs}, 280036 mm²

Plastic section modulus about y-axis, W_{ebs}, 57454 mm³

Plastic section modulus about y-axis, W_{ebs}, 81224 mm³

Second moment of area about y-axis, 1_x, 28655694 mm⁴

Second moment of area about y-axis, 1_x, 3846542 mm⁴

Lateral restraint

Both flanges have lateral restraint at supports only

Consider Combination 6 - 1.35G + 1.5Q + 1.5\psi_0 S + 1.5\psi_0 W (Strength)

Classification of cross sections - Section 5.5

 $s = \sqrt{[235 \text{ N/mm}^2 / f_v]} = 0.81$

Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3)

Width of section c = d = 172.4 mm

c/t_w = 26.9 = 33.1 × s <= 72 × s Class 1

Outstand flanges - Table 5.2 (sheet 2 of 3)

Width of section $c = (b - t_w - 2 \times r) / 2 = 56.2 \text{ mm}$

c/t/=5.8 = 7.2 × s <= 9 × s Class 1

Section is class 1

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	30		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Check design 1750 mm along span

Check bending moment - Section 6.2.5

Design bending moment M_{v,Ed} = 13.4 kNm

Design bending resistance moment - eq 6.13 $M_{c,y,Rd} = M_{pl,y} \times f_y / \gamma_{M0} = 111.6 \text{ kNm}$

 $M_{y,Ed} / M_{e,y,Rd} = 0.12$

PASS - Design bending resistance moment exceeds design bending moment

Slenderness ratio for lateral torsional buckling

Correction factor - Table 6.6 k_c = 0.94

 $C_1 = 1/k_c^2 = 1.132$

Poissons ratio v = 0.3

Shear modulus $G = E / [2 \times (1 + \nu)] = 80769 \text{ N/mm}^2$ Unrestrained effective length $L = 1.2 \times L_{m1_s1_seg1_T} + 2 \times h = 4614 \text{ mm}$

Elastic critical buckling moment $M_{cr} = C_1 \times \pi^2 \times E \times I_z / L^2 \times \sqrt{\{I_w / I_z + L^2 \times G \times I_1 / (\pi^2 \times E \times I_z)\}} = 75.8 \text{ kNm}$

Slenderness ratio for lateral torsional buckling $\bar{\lambda}_{LT} = \sqrt{(W_{pl,y} \times f_y / M_{cr})} = 1.214$

Limiting slenderness ratio $\bar{\lambda}_{LT,0} = 0.4$

 $\overline{\lambda}_{LT} > \overline{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Check buckling resistance - Section 6.3.2.1

Buckling curve - Table 6.5 b

 $\begin{array}{ll} \text{LTB reduction determination factor} & \phi_{\text{LT}} = 0.5 \times [1 + \alpha_{\text{LT}} \cdot (\ \overline{\lambda}_{\text{LT}} - \ \overline{\lambda}_{\text{LT},0}) + \beta \times \ \overline{\lambda}_{\text{LT}}^2] = 1.191 \\ \text{LTB reduction factor} & \chi_{\text{LT}} = \min(1 / [\phi_{\text{LT}} + \sqrt{(\phi_{\text{LT}}^2 - \beta \times \ \overline{\lambda}_{\text{LT}}^2)}], \ 1, \ 1 / \ \overline{\lambda}_{\text{LT}}^2) = 0.571 \\ \text{Modification factor} & f = \min(1 - 0.5 \times (1 - k_c) \times [1 - 2 \times (\ \overline{\lambda}_{\text{LT}} - 0.8)^2], \ 1) = 0.980 \\ \end{array}$

 $\begin{aligned} &\text{Modified LTB reduction factor - eq 6.58} & \chi_{\text{LT,mod}} = \text{min}(\chi_{\text{LT}} \, / \, \text{f, 1, 1} \, / \, \, \overline{\lambda}_{\text{LT}}^2) = \textbf{0.583} \\ &\text{Design buckling resistance moment - eq 6.55} & M_{\text{b,y,Rd}} = \chi_{\text{LT,mod}} \times W_{\text{pl.y}} \times f_{\text{y}} \, / \, \gamma_{\text{M1}} = \textbf{65 kNm} \end{aligned}$

 $M_{y,Ed} / M_{b,y,Rd} = 0.205$

PASS - Design buckling resistance moment exceeds design bending moment

Consider Combination 23 - SERVICE (Service)

Check design 1750 mm along span

Check y-y axis deflection - Section 7.2.1

Maximum deflection $\delta_v = 2 \text{ mm}$

Allowable deflection $\delta_{y,Allowable} = Min(L_{m1_x1} / 250, 15 mm) = 14 mm$

 $\delta_y / \delta_{y,Allowable} = 0.145$

PASS - Allowable deflection exceeds design deflection

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	31		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

13.	BC1 and BC2:	UC203x203x52 S355	Span 2.4M
-----	--------------	-------------------	-----------

Steel Column GF C1										
2400mm		Section	Load	UDL (kN/m2)	Length (m)	Contribution Factor	Calculation	Loads	Units	Position
		Beam Reaction B1	Dead					103.00	kN	
		Beam Reaction B1	Live					41.50	kN	
	UDL									
	UDL									
		SUM UDL	Dead				Dead UDL =	103.00	kN	
UC 203x203x52		SUM UDL	Live				Live UDL =	41.50	kN	
OC 203A203A32		30W ODE	Live				LIVE ODL -	41.30	KIN	

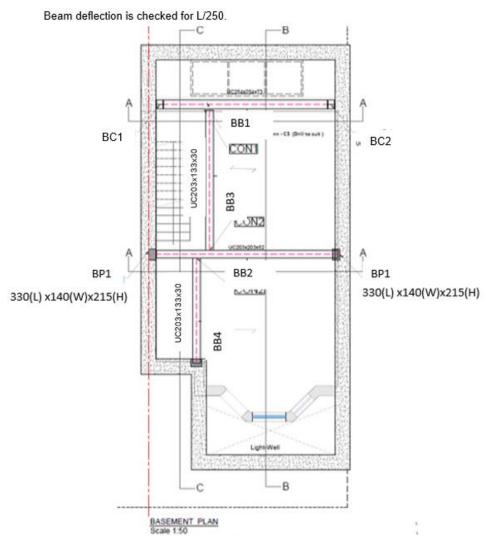
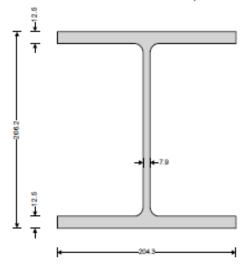


Figure 8: Location of Steel Beams on Plan showing C1

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	nent Underpinnir	32		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0


STEEL COLUMN DESIGN

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Tedds calculation version 1.1.04

Partial factors - Section 6.1

Resistance of cross-sections $\gamma_{M0} = 1$ Resistance of members to instability $\gamma_{M1} = 1$ Resistance of cross-sections in tension to fracture $\gamma_{M2} = 1.1$

UKC 203x203x52 (Tata Steel Advance)
Section depth, h, 206.2 mm
Section breadth, b, 204.3 mm
Mess of Section, Mass, 52 kg/m
Flange thickness, t, 12.5 mm
Web thickness, t, 7.9 mm
Root radius, r, 10.2 mm
Area of section, A, 6528 mm?
Radius of gyration about y-axis, j, 89.072 mm
Radius of gyration about y-axis, W_{sr}, 510069 mm?
Elastic section modulus about y-axis, W_{sr}, 57306 mm?
Plastic section modulus about y-axis, W_{sr}, 567306 mm?
Plastic section modulus about y-axis, W_{sr}, 588157 mm
Second moment of area about y-axis, W_{sr}, 17776181 mm?

Column details

Column section UKC 203x203x52

Steel grade \$355

Yield strength $f_y = 355 \text{ N/mm}^2$ Ultimate strength $f_u = 470 \text{ N/mm}^2$ Modulus of elasticity $E = 210 \text{ kN/mm}^2$

Poisson's ratio v = 0.3

Shear modulus $G = E/[2 \times (1 + v)] = 80.8 \text{ kN/mm}^2$

Column geometry

System length for buckling - Major axis $L_y = 2400 \text{ mm}$ System length for buckling - Minor axis $L_z = 2400 \text{ mm}$ The column is not part of a sway frame in the direction of the minor axis The column is part of a sway frame in the direction of the major axis

Column loading

Axial load Net = 210 kN (Compression)

Major axis moment at end 1 - Bottom $M_{V,Ed1} = 118.0 \text{ kNm}$ Major axis moment at end 2 - Top $M_{V,Ed2} = 0.0 \text{ kNm}$

Major axis bending is single curvature

Minor axis moment at end 1 - Bottom Mg,Ed1 = 0.0 kNm

Project					Job Ref.
		15 Landor Road	20.052		
	Section		Sheet no.		
	Basem	ent Underpinnir	33		
	Calc. by	Date	Chk'd by	Date	Doc No.
	AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Minor axis moment at end 2 - Top M_{x,Ed2} = 0.0 kNm

Major axis shear force $V_{y,Ed} = 0 \text{ kN}$ Minor axis shear force $V_{z,Ed} = 0 \text{ kN}$

Buckling length for flexural buckling - Major axis

End restraint factor K_V = 1.000

Buckling length $L_{\sigma_{-}y} = L_y \times K_y = 2400 \text{ mm}$

Buckling length for flexural buckling - Minor axis

End restraint factor Kz = 1.000

Buckling length $L_{\sigma_z} = L_z \times K_z = 2400 \text{ mm}$

Web section classification (Table 5.2)

Coefficient depending on f_y $\epsilon = \sqrt{(235 \text{ N/mm}^2 / f_y)} = 0.814$ Depth between fillets $c_w = h - 2 \times (t_f + r) = 160.8 \text{ mm}$

Ratio of c/t $ratio_w = c_w / t_w = 20.35$

Length of web taken by axial load $I_w = min(N_{Ed} / (f_y \times t_w), c_w) = 74.9 \text{ mm}$

For class 1 & 2 proportion in compression $\alpha = (c_w/2 + l_w/2) / c_w = 0.733$

Limit for class 1 web Limit $_{1w} = (396 \times \epsilon) / (13 \times \alpha - 1) = 37.79$

The web is class 1

Flange section classification (Table 5.2)

Outstand length $c_r = (b - t_w) / 2 - r = 88.0 \text{ mm}$

Ratio of c/t $ratio_f = c_f / t_f = 7.04$

 Limit for class 1 flange
 Limit $_{1f} = 9 \times \epsilon = 7.32$

 Limit for class 2 flange
 Limit $_{2f} = 10 \times \epsilon = 8.14$

 Limit for class 3 flange
 Limit $_{2f} = 14 \times \epsilon = 11.39$

The flange is class 1

Overall section classification

The section is class 1

Resistance of cross section (cl. 6.2)

Compression (cl. 6.2.4)

Design force $N_{Ed} = 210 \text{ kN}$

Design resistance $N_{c,Rd} = N_{p,Rd} = A \times f_y / \gamma_{MD} = 2353 \text{ kN}$

 $N_{Ed} / N_{c,Rd} = 0.089$

PASS - The compression design resistance exceeds the design force

Bending - Major axis (cl. 6.2.5)

Design bending moment $M_{V,Ed} = max(abs(M_{V,Ed1}), abs(M_{V,Ed2})) = 118.0 \text{ kNm}$

Section modulus $W_y = W_{pl,y} = 567.4 \text{ cm}^3$

Design resistance M_{c,y,Rd} = W_y × f_y / γ_{M0} = 201.4 kNm

 $M_{V,Ed} / M_{c,V,Rd} = 0.586$

PASS - The bending design resistance exceeds the design moment

Combined bending and axial force (cl. 6.2.9)

Ratio design axial to design plastic resistance $n = abs(N_{Ed}) / N_{pl,Rd} = 0.089$

Project					Job Ref.
		15 Landor Road	20.052		
	Section		Sheet no.		
	Basem	ent Underpinnir	34		
	Calc. by	Date	Chk'd by	Date	Doc No.
	AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Ratio web area to gross area

 $a = min(0.5, (A - 2 \times b \times t_f) / A) = 0.229$

Bending - Major axis (cl. 6.2.9.1)

 $M_{y,Ed} = max(abs(M_{y,Ed1}), abs(M_{y,Ed2})) = 118.0 \text{ kNm}$ Design bending moment

Plastic design resistance $M_{\text{ply,Rd}} = W_{\text{ply}} \times f_y / \gamma_{M0} = 201.4 \text{ kNm}$

Modified design resistance $M_{N,y,Rd} = M_{N,y,Rd} \times min(1, (1 - n) / (1 - 0.5 \times a)) = 201.4 kNm$

 $M_{y,Ed} / M_{N,y,Rd} = 0.586$

PASS - Bending resistance in presence of axial load exceeds design moment

Buckling resistance (cl. 6.3)

Yield strength for buckling resistance $f_v = 355 \text{ N/mm}^2$

Flexural buckling - Major axis

 $N_{cr,y} = \pi^2 \times E \times I_y / L_{cr,y}^2 = 18923 \text{ kN}$ Elastic critical buckling force $\overline{\lambda}_v = \sqrt{(A \times f_v / N_{\sigma,v})} = 0.353$ Non-dimensional slendemess

Buckling curve (Table 6.2)

Imperfection factor (Table 6.1) $\alpha_{y} = 0.34$

Parameter Φ $\Phi_y = 0.5 \times [1 + \alpha_y \times (\overline{\lambda}_y - 0.2) + \overline{\lambda}_y^2] = 0.588$ $\gamma_y = \min(1.0, 1/[\Phi_y + \sqrt{(\Phi_y^2 - \overline{\lambda}_y^2)}]) = 0.944$ Reduction factor Design buckling resistance

 $N_{b,v,Rd} = \chi_v \times A \times f_v / \gamma_{M1} = 2222.4 \text{ kN}$

 $N_{Ed} / N_{b,v,Rd} = 0.094$

PASS - The flexural buckling resistance exceeds the design axial load

Flexural buckling - Minor axis

Elastic critical buckling force $N_{cr,z} = \pi^2 \times E \times I_z / L_{cr,z}^2 = 6396 \text{ kN}$ Non-dimensional slendemess $\overline{\lambda}_z = \sqrt{(A \times f_y / N_{cr,z})} = 0.607$

Buckling curve (Table 6.2) $\alpha_z = 0.49$ Imperfection factor (Table 6.1)

 $\Phi_z = 0.5 \times [1 + \alpha_z \times (\overline{\lambda}_z - 0.2) + \overline{\lambda}_z^2] = 0.784$ Parameter Φ $\chi_z = \min(1.0, 1/[\Phi_z + \sqrt{(\Phi_z^2 - \overline{\lambda}_z^2)}]) = 0.782$ Reduction factor

 $N_{bz,Rd} = \gamma_z \times A \times f_y / \gamma_{M1} = 1838.9 \text{ kN}$ Design buckling resistance

Ned / Noz.Rd = 0.114

PASS - The flexural buckling resistance exceeds the design axial load

Torsional and torsional-flexural buckling (cl. 6.3.1.4)

Torsional buckling length factor

Effective buckling length $L_{\sigma_{-}T} = K_T \times max(L_y, L_z) = 2400 \text{ mm}$

Distance from shear ctr to centroid along major axis Distance from shear ctr to centroid along minor axis $y_0 = 0.0 \text{ mm}$ $z_0 = 0.0 \, \text{mm}$

 $i_0 = \sqrt{(i_0^2 + i_z^2 + y_0^2 + z_0^2)} = 103.0 \text{ mm}$

 $\beta_T = 1 - (y_0 / i_0)^2 = 1.000$

Elastic critical torsional buckling force $N_{cr,T} = 1/ic^2 \times (G \times I_t + \pi^2 \times E \times I_w / L_{cr,T}^2) = 8068 \text{ kN}$

Elastic critical torsional-flexural buckling force $N_{cr,TF} = N_{cr,V}/(2 \times \beta \tau) \times [1 + N_{cr,T}/N_{cr,y} - \sqrt{(1 - N_{cr,T}/N_{cr,y})^2 + 4 \times (y_0/i_0)^2 \times N_{cr,T}/N_{cr,y}]}$

No. TF = 8068 kN

 $\overline{\lambda}_T = \sqrt{(A \times f_y / min(N_{\sigma,T}, N_{\sigma,TF}))} = 0.540$ Non-dimensional slendemess

Buckling curve (Table 6.2)

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	35		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Imperfection factor (Table 6.1) $\alpha_T = 0.49$

Parameter Φ $\Phi_T = 0.5 \times [1 + \alpha_T \times (\overline{\lambda_T} - 0.2) + \overline{\lambda_T}^2] = 0.729$ Reduction factor $\chi_T = \min(1.0, 1 / [\Phi_T + \sqrt{\Phi_T^2} - \overline{\lambda_T}^2]) = 0.820$ Design buckling resistance $N_{b,T,Rd} = \chi_T \times A \times f_y / \gamma_{M1} = 1930.3 \text{ kN}$

 $N_{Ed} / N_{b,T,Rd} = 0.109$

PASS - The torsional/torsional-flexural buckling resistance exceeds the design axial load

Minimum buckling resistance

Minimum buckling resistance $N_{b,Rd} = min(N_{b,y,Rd}, N_{b,z,Rd}, N_{b,T,Rd}) = 1838.9 \text{ kN}$

 $N_{Ed} / N_{b,Rd} = 0.114$

PASS - The axial load buckling resistance exceeds the design axial load

Buckling resistance moment (cl.6.3.2.1)

Lateral torsional buckling length factor KLT = 1.00

Effective buckling length $L_{\sigma_{\perp}LT} = K_{LT} \times L_z = 2400 \text{ mm}$ End moment factor $\psi = M_{y,Ed2} / M_{y,Ed1} = 0.000$

Moment distribution correction factor (Table 6.6) $k_c = 1/(1.33 - 0.33 \times \psi) = 0.752$

 $C_1 = 1/k_c^2 = 1.769$

Curvature factor $g = \sqrt{[1 - (l_z/l_y)]} = 0.814$

Poissons ratio v = 0.3

Shear modulus $G = E / [2 \times (1 + v)] = 80769 \text{ N/mm}^2$

Elastic critical buckling moment $M_{cr} = C_1 \times \pi^2 \times E \times I_z \times \sqrt{|I_w/I_z + L_{cr} \perp^2} \times G \times I_r /(\pi^2 \times E \times I_z)/(L_{cr} \perp \tau^2 \times g)$

 $M_{cr} = 1609.2 \text{ kNm}$

Slendemess ratio for lateral torsional buckling $\bar{\lambda}_{LT} = \sqrt{W_y \times f_y / M_{cl}} = 0.354$

Limiting slendemess ratio $\bar{\lambda}_{LT,0} = 0.40$ Correction factor for rolled sections $\beta_r = 0.75$ Buckling curve (Table 6.5) b
Imperfection factor (Table 6.1) $\alpha_{LT} = 0.34$

Parameter Φ_{LT} $Φ_{LT} = 0.5 \times [1 + α_{LT} \times (\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0}) + β_r \times \overline{\lambda}_{LT}^2] = 0.539$ Reduction factor $χ_{LT} = min(1.0, 1/\overline{\lambda}_{LT}^2, 1/[Φ_{LT} + \sqrt{(Φ_{LT}^2 - β_r \times \overline{\lambda}_{LT}^2)}]) = 1.000$ Modification factor $f = min(1 - 0.5 \times (1 - k_c) \times [1 - 2 \times (\overline{\lambda}_{LT} - 0.8)^2], 1) = 0.925$

Modified LTB reduction factor - eq 6.58 $\chi_{LT,mod} = min(\chi_{LT}/f, 1, 1/\overline{\lambda}_{LT}^2) = 1.000$ Design buckling resistance moment $M_{b,Rd} = \chi_{LT,mod} \times W_y \times f_y / \gamma_{M1} = 201.4 \text{ kNm}$ Design bending moment $M_{V,Ed} = max(abs(M_{V,Ed1}), abs(M_{V,Ed2})) = 118.0 \text{ kNm}$

 $M_{v,Ed} / M_{b,Rd} = 0.586$

PASS - The design buckling resistance moment exceeds the maximum design moment

Combined bending and axial compression (cl. 6.3.3)

Characteristic resistance to normal force $N_{Rk} = A \times f_y = 2353 \text{ kN}$ Characteristic moment resistance - Major axis $M_{y,Rk} = W_{pl,y} \times f_y = 201.4 \text{ kNm}$ Characteristic moment resistance - Minor axis $M_{z,Rk} = W_{pl,z} \times f_y = 93.8 \text{ kNm}$ Moment distribution factor - Major axis $\psi_y = M_{y,Ed2} / M_{y,Ed1} = 0.000$

Moment factor - Major axis $C_{my} = max(0.4, 0.6 + 0.4 \times \psi_y) = 0.600$

Moment factor - Minor axis C_{rez} = 0.9

Moment distribution factor for LTB $\psi_{LT} = M_{V,Ed2} / M_{V,Ed1} = 0.000$

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	36		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

 $\begin{aligned} &\text{Moment factor for LTB} & &C_{\text{mLT}} = \text{max}(0.4,\,0.6 + 0.4 \times \psi_{\text{LT}}) = 0.600 \\ &\text{Interaction factor } k_{yy} & &k_{yy} = C_{my} \times [1 + \text{min}(0.8,\,\overline{\lambda}_{y} - 0.2) \times \text{Ne}_{\text{d}} / (\gamma_{y} \times \text{Ne}_{\text{N}} / \gamma_{\text{MM}})] = 0.609 \\ &\text{Interaction factor } k_{zy} & &k_{zy} = 1 - \text{min}(0.1,\,0.1 \times \overline{\lambda}_{z}) \times \text{Ne}_{\text{d}} / ((C_{\text{mLT}} - 0.25) \times (\gamma_{z} \times \text{Ne}_{\text{N}} / \gamma_{\text{MM}})) = 0.980 \\ &\text{Interaction factor } k_{zz} & &k_{zz} = C_{mz} \times [1 + \text{min}(1.4,\,2 \times \overline{\lambda}_{z} - 0.6) \times \text{Ne}_{\text{d}} / (\gamma_{z} \times \text{Ne}_{\text{N}} / \gamma_{\text{MM}})] = 0.963 \\ &\text{Interaction factor } k_{yz} & &k_{yz} = 0.6 \times k_{zz} = 0.578 \\ &\text{Section utilisation} & &\text{UR}_{B_{-}1} = \text{Ne}_{\text{d}} / (\gamma_{y} \times \text{Ne}_{\text{N}} / \gamma_{\text{M}}) + k_{yy} \times M_{y,\text{Ed}} / (\gamma_{\text{LT}} \times M_{y,\text{Rk}} / \gamma_{\text{M}}) + k_{yz} \times M_{z,\text{Ed}} / (M_{z,\text{Rk}} / \gamma_{\text{M}}) \\ &&\text{UR}_{B_{-}2} = \text{Ne}_{\text{d}} / (\gamma_{z} \times \text{Ne}_{\text{R}} / \gamma_{\text{M}}) + k_{zy} \times M_{y,\text{Ed}} / (\gamma_{\text{LT}} \times M_{y,\text{Rk}} / \gamma_{\text{M}}) + k_{zz} \times M_{z,\text{Ed}} / (M_{z,\text{Rk}} / \gamma_{\text{M}}) \\ &&\text{UR}_{B_{-}2} = 0.688 \end{aligned}$

14. Connection Design CON1

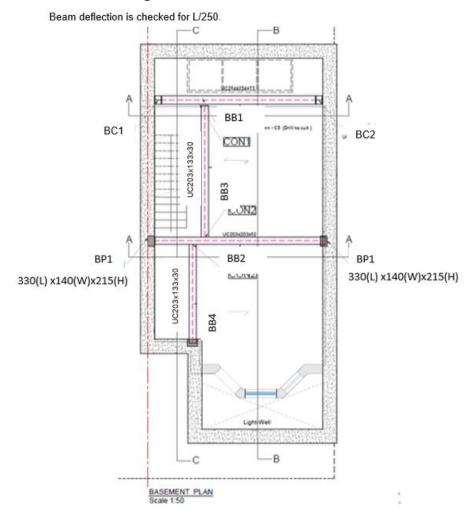
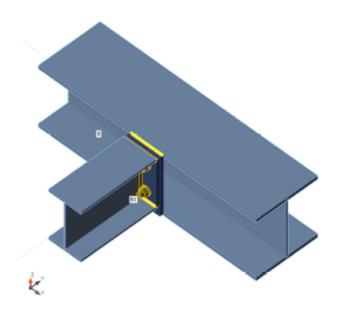


Figure 9: Location of Steel Beams to Beam connection CON1.

Project				Job Ref.		
	15 Landor Road	d, London SW9	9RX	20.052		
Section			Sheet no.			
Basem	ent Underpinnir	ng Structural Des	sign Report	37		
Calc. by	Date	Chk'd by	Date	Doc No.		
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0		

Project item Connection Type C1

Design


Name Connection Type C1

Description

Analysis Stress, strain/ simplified loading

Beams and columns

Name	Crossesection	β – Direction [*]	γ = Pitch [*]	α • Rotation [*]	Offset ex [mm]	Offset ey [mm]	Offset ez [mm]	Forces in
В	1 - CON1(UC 254 x 254 x 73)	0.0	0.0	0,0	0	0	0	Node
B1	2 - CON1(UB 203 x 133 x 30)	-90,0	0,0	0,0	0	0	24	Node

Cross-sections

Name	Material
1 - CON1(UC 254 x 254 x 73)	S 355
2 - CON1(UB 203 x 133 x 30)	S 355

Bolts

Name	Bolt assembly	Diameter [mm]	fu [MPa]	Gross area [mm²]
M20 8,8	M20 8,8	20	800,0	314

Project				Job Ref.	
15 Landor Road, London SW9 9RX 20.052					
Section		Sheet no.			
Basem	nent Underpinnir	ng Structural Des	sign Report	38	
Calc. by	Date	Chk'd by	Date	Doc No.	
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0	

Load effects (equilibrium not required)

Name	Member	N [kN]	Vy [kN]	Vz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]	
LE1	B1	0,0	0.0	-37.0	0.0	0.0	0.0	

Check

Summary

Name	Value	Status
Analysis	100.0%	OK
Plates	0.1 < 5%	OK
Bolts	31.8 < 100%	OK
Welds	35.4 < 100%	ок
Buckling	62.24	

Plates

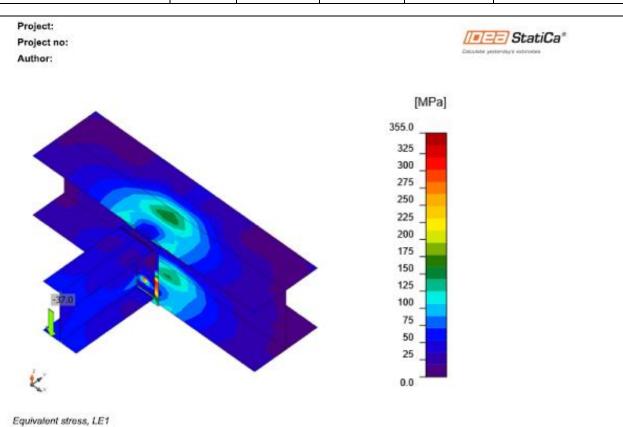
Name	Thickness [mm]	Loads	σ _{Ed} [MPa]	^Е РІ [%]	Status
B-bfl 1	14.2	LE1	176.1	0.0	ок
B-tfl 1	14,2	LE1	193,1	0,0	ок
B-w 1	8,6	LE1	106,7	0,0	ок
B1-bf 1	9,6	LE1	74.2	0.0	ок
B1-tfl 1	9.6	LE1	74.1	0.0	ок
B1-w 1	6.4	LE1	96.5	0.0	ок
SEP1a	15,0	LE1	355,1	0,1	ок
SEP1b	15,0	LE1	138,3	0.0	ок
STIFF1	14.2	LE1	34,8	0.0	ок

Design data

Material	f _y [MPa]	^E lim [%]
S 355	355.0	5.0

Symbol explanation

 $\begin{array}{lll} \epsilon_{PI} & & \text{Strain} \\ \sigma_{Ed} & & \text{Eq. stress} \\ f_y & & \text{Yield strength} \\ \epsilon_{lim} & & \text{Limit of plastic strain} \end{array}$



Project				Job Ref.
	15 Landor Road	d, London SW9	9RX	20.052
Section				Sheet no.
Basem	ent Underpinnir	ng Structural Des	sign Report	39
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Project				Job Ref.
	15 Landor Road	d, London SW9	9RX	20.052
Section				Sheet no.
Basem	ent Underpinnir	ng Structural Des	sign Report	40
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Bolts

	Name	Loads	F _{t,Ed} [kN]	V [kN]	Ut _t [%]	F _{b,Rd} [kN]	Ut _s [%]	Ut _{ts} [%]	Status
2 1	B1	LE1	1.7	10,9	1,2	132,6	11,6	12,5	ок
++	B2	LE1	1.7	10.9	1.2	132.6	11.6	12.5	ок
4 3	В3	LE1	44.8	7.6	31.8	203.4	8.1	30.8	ок
	B4	LE1	44.9	7.6	31.8	203.4	8.1	30.8	ок

Design data

Name	F _{t,Rd}	B _{p,Rd}	F _{v,Rd}
	[kN]	[kN]	[kN]
M20 8,8 - 1	141,1	349,1	94,1

Symbol explanation

F_{t,Rd} Bolt tension resistance EN 1993-1-8 tab. 3.4

F_{t,Ed} Tension force

B_{p,Rd} Punching shear resistance

V Resultant of shear forces Vy, Vz in bolt
F_{v,Rd} Bolt shear resistance EN_1993-1-8 table 3.4
F_{b,Rd} Plate bearing resistance EN 1993-1-8 tab. 3.4

Ut_t Utilization in tension
Ut_s Utilization in shear

Ut_{ts} Utilization in tension and shear EN 1993-1-8 table 3.4

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	nent Underpinnir	41		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Welds (Plastic redistribution)

ltem	Edge	Throat th, [mm]	Length [mm]	Loads	σ _{w,Ed} [MPa]	ε _{ΡΙ} [%]	σ⊥ [MPa]	τ [MPa]	τ⊥ [MPa]	Ut [%]	Ut _c [%]	Status
SEP1a	B-tfl 1	4 4.3	134	LE1	141.0	0.0	33.8	-20.3	76.4	32.4	22.4	ОК
SEP1a	B-bfl 1	4 4.3	134	LE1	135.8	0.0	-17.0	24.0	74.0	31.2	21.3	OK
SEP1b	B1-bfl 1	4 4.3⊾	134	LE1	57.3	0.0	48.8	0.2	17.4	13.8	9.7	ОК
		⊿ 4.3 ⊾	134	LE1	19.6	0.0	-7.4	- 7.5	7.3	4.5	3.3	ОК
SEP1b	B1-tfl 1	4 4.3 ▶	134	LE1	38.0	0.0	-20.1	-7.0	17.3	8.7	6.8	ОК
		4 4.3 ▶	134	LE1	39.1	0.0	-30.2	0.2	14.3	9.0	7.0	ОК
SEP1b	B1-w 1	4 4.3⊾	193	LE1	154.1	0.0	76.5	-18.0	75.1	35.4	13.0	ОК
		4 4.3⊾	193	LE1	153.0	0.0	73.9	17.3	-75.4	35.1	13.0	ОК
B-bfl 1	STIFF1	4 4.3 ▶	110	LE1	91.8	0.0	-35.0	34.2	-35.0	21.1	9.5	ОК
		4 4.3⊾	110	LE1	91.8	0.0	-35.0	-34.2	35.0	21.1	9.5	ОК
B - w 1	STIFF1	4 4.3 ▶	200	LE1	96.6	0.0	-22.4	-49.4	22.4	22.2	11.3	ОК
		⊿ 4.3⊾	200	LE1	96.6	0.0	-22.4	49.4	22.4	22.2	11.3	ОК
B -tfl 1	STIFF1	4 4.3⊾	110	LE1	98.5	0.0	38.8	35.0	38.8	22.6	10.4	ОК
		4 4,3 ▶	110	LE1	98.5	0.0	38.8	-35.0	-38.8	22.6	10.4	ок

Design data

	β _w	σ _{w,Rd}	0.9 σ
	[-]	[MPa]	[MPa]
S 355	0.90	435.6	352.8

Symbol explanation

 ϵ_{PI} Strain

σ_{w,Ed} Equivalent stress

 $\sigma_{
m w,Rd}$ Equivalent stress resistance

σ_⊥ Perpendicular stress

 $\begin{array}{ll} \tau_{||} & \text{Shear stress parallel to weld axis} \\ \tau_{\perp} & \text{Shear stress perpendicular to weld axis} \\ 0.9 \ \sigma & \text{Perpendicular stress resistance - 0.9 fu/yM2} \\ \beta_{w} & \text{Corelation factor EN 1993-1-8 tab. 4.1} \\ \end{array}$

β_w Corelation for Ut Utilization

Utc Weld capacity utilization

Buckling

Loads	Shape	Factor [-]
LE1	1	62.24
	2	70,09
	3	85,98
	4	98.14
	5	124.18
	6	127.11

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	ng Structural Des	sign Report	42
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Code settings

ltem	Value	Unit	Reference
Умо	1.00	-	EN 1993-1-1: 6.1
YM1	1,00	-	EN 1993-1-1: 6.1
YM2	1,25	-	EN 1993-1-1: 6,1
Умз	1.25	-	EN 1993-1-8: 2.2
Yc	1,50	-	EN 1992-1-1: 2.4.2.4
YInst	1,20	-	ETAG 001-C: 3.2.1
Joint coefficient βj	0.67	-	EN 1993-1-8: 6.2.5
Effective area - influence of mesh size	0.10	-	
Friction coefficient - concrete	0.25	-	EN 1993-1-8
Friction coefficient in slip-resistance	0,30	-	EN 1993-1-8 tab 3,7
Limit plastic strain	0,05	-	EN 1993-1-5
Weld stress evaluation	Plastic redistribution		
Detailing	No		
Distance between bolts [d]	2,20	-	EN 1993-1-8: tab 3,3
Distance between bolts and edge [d]	1,20	-	EN 1993-1-8: tab 3,3
Concrete breakout resistance	Yes		ETAG 001-C
Use calculated ob in bearing check.	Yes		EN 1993-1-8: tab 3.4
Cracked concrete	Yes		
Local deformation check	No		
Local deformation limit	0.03	-	CIDECT DG 1, 3 - 1.1
Geometrical nonlinearity (GMNA)	Yes		Large deformations for hollow sections

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	43		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

15. Connection Design CON2

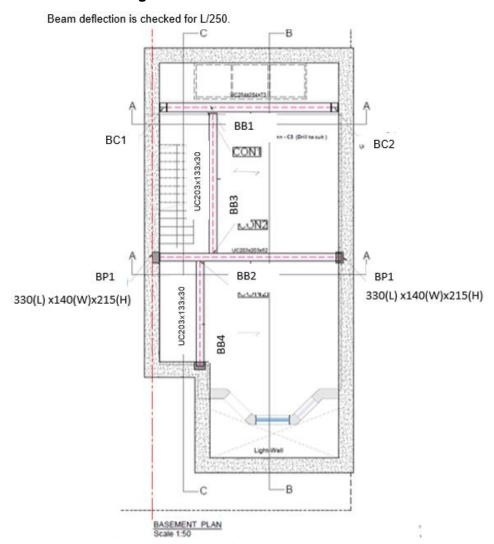


Figure 10: Location of Steel Beams to Beam connection CON2.

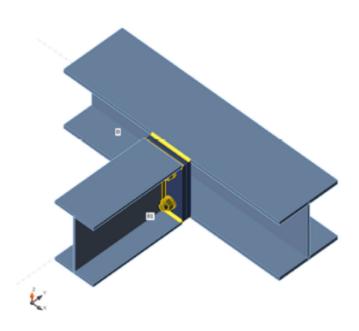
Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	44		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Project: Project no:

Author:

AJ

Project item Connection type C2


Design

Name Connection type C2
Description 15 Landor Road

Analysis Stress, strain/ simplified loading

Beams and columns

Name	Cross-section	β – Direction [°]	γ = Pitch [°]	α = Rotation [*]	Offset ex [mm]	Offset ey [mm]	Offset ez [mm]	Forces in
В	1 - CON1(UC 203 x 203 x 52)	0.0	0.0	0,0	0	0	0	Node
В1	2 - CON1(UB 203 x 133 x 30)	-90.0	0.0	0.0	0	0	0	Node

Cross-sections

Name	Material
1 - CON1(UC 203 x 203 x 52)	S 355
2 - CON1(UB 203 x 133 x 30)	S 355

Bolts

Name	Bolt assembly	Diameter [mm]	fu [MPa]	Gross area [mm²]
M20 8.8	M20 8.8	20	800.0	314

Project		Job Ref.			
	15 Landor Road	20.052			
Section			Sheet no.		
Basem	nent Underpinnir	ng Structural Des	sign Report	45	
Calc. by	Date	Doc No.			
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0	

Project:

Project no:

Author:

Load effects (equilibrium not required)

Name	Member	N [kN]	Vy [kN]	Vz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]	
LE1	B1	0.0	0,0	-37,0	0,0	0,0	0.0	

Check

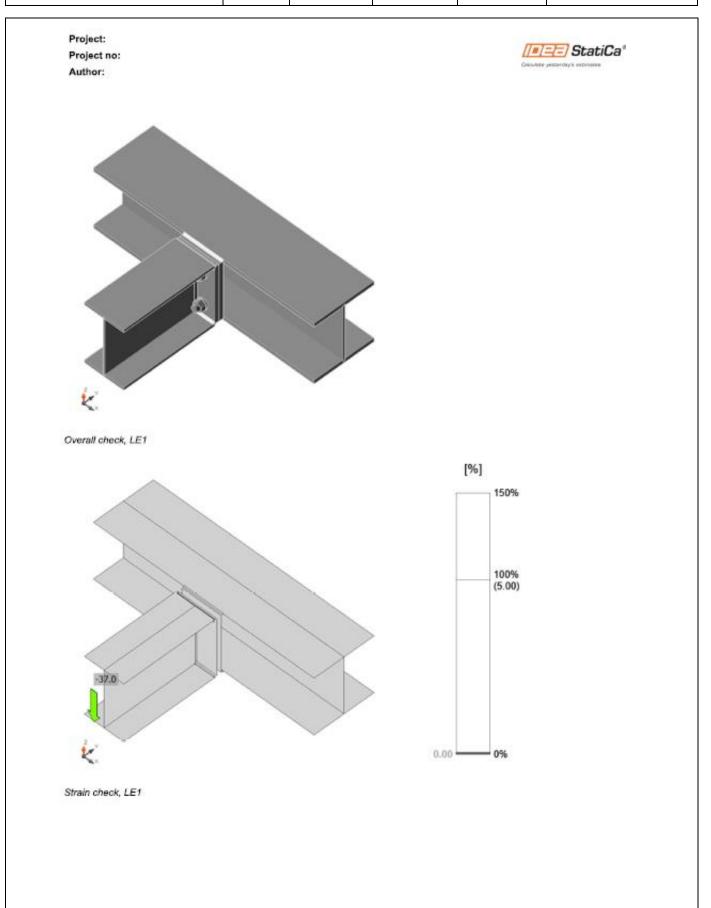
Summary

Name	Value	Status
Analysis	100.0%	OK
Plates	0.0 < 5%	OK
Bolts	22.9 < 100%	ОК
Welds	42.5 < 100%	ОК
Buckling	64.99	

Plates

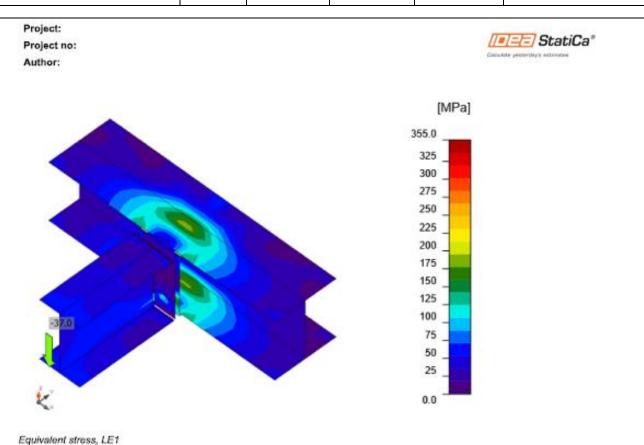
Name	Thickness [mm]	Loads	σ _{Ed} [MPa]	ε _{Ρ(} [%]	Status
B-bfl 1	12,5	LE1	227,5	0,0	ок
B-tf 1	12,5	LE1	233,9	0,0	ок
B-w 1	7.9	LE1	130,1	0.0	ок
B1-bfl 1	9.6	LE1	71.2	0.0	ок
B1-tfl 1	9.6	LE1	71.1	0.0	ок
B1-w 1	6.4	LE1	81.1	0.0	ок
SEP1a	15.0	LE1	239.4	0.0	ок
SEP1b	15.0	LE1	94.4	0.0	ок
STIFF1	12.5	LE1	42.7	0.0	ок

Design data


Material	f _y [MPa]	ε _{lim} [%]
S 355	355.0	5.0

Symbol explanation

 $\begin{array}{lll} \epsilon_{PI} & Strain \\ & & \\ \sigma_{Ed} & Eq. \, stress \\ & \\ f_y & Yield \, strength \\ & \\ \epsilon_{lim} & Limit \, of \, plastic \, strain \end{array}$



Project				Job Ref.	
	15 Landor Road	d, London SW9	9RX	20.052	
Section			Sheet no.		
Basem	ent Underpinnir	sign Report	46		
Calc. by	Date	Chk'd by	Date	Doc No.	
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0	

Project				Job Ref.	
	15 Landor Road	d, London SW9	9RX	20.052	
Section			Sheet no.		
Basem	ent Underpinnir	sign Report	47		
Calc. by	Date	Chk'd by	Date	Doc No.	
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0	

Bolts

	Name	Loads	F _{t,Ed} [kN]	V [kN]	Ut _t [%]	F _{b,Rd} [kN]	Ut _s [%]	Ut _{ts} [%]	Status
2 4	B1	LE1	2,1	10,1	1,5	132,6	10,7	11,8	ок
+ +	B2	LE1	2.1	10.1	1.5	132.6	10.7	11.8	ок
4 3	В3	LE1	27.6	8.4	19.5	134.0	9.0	22.9	ок
1 1	B4	LE1	27.5	8.4	19.5	134.0	9.0	22.9	ок

Design data

Name	F _{t,Rd}	B _{p,Rd}	F _{v,Rd}
	[kN]	[kN]	[kN]
M20 8.8 - 1	141.1	349,1	94.1

Symbol explanation

F_{t,Rd} Bolt tension resistance EN 1993-1-8 tab. 3.4

F_{t,Ed} Tension force

B_{p,Rd} Punching shear resistance

V Resultant of shear forces Vy, Vz in bolt
F_{v,Rd} Bolt shear resistance EN_1993-1-8 table 3.4
F_{b,Rd} Plate bearing resistance EN 1993-1-8 tab, 3.4

Ut_t Utilization in tension
Ut_s Utilization in shear

Ut_{bs} Utilization in tension and shear EN 1993-1-8 table 3.4

Project		Job Ref.			
	15 Landor Road	20.052			
Section			Sheet no.		
Basem	ent Underpinnir	ng Structural Des	sign Report	48	
Calc. by	Date	Chk'd by	Date	Doc No.	
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0	

Welds (Plastic redistribution)

ltem	Edge	Throat th, [mm]	Length [mm]	Loads	σ _{w,Ed} [MPa]	ε _{ΡΙ} [%]	σ⊥ [MPa]	τ [MPa]	τ⊥ [MPa]	Ut [%]	Ut _c [%]	Status
SEP1a	B-tfl 1	4 4.3	134	LE1	185.2	0.0	55.4	22.5	99.5	42.5	23.0	OK
SEP1a	B-bfl 1	4 4.3	134	LE1	178.4	0.0	-64.0	23.5	93.2	41.0	23,4	OK
SEP1b	B1-bfl 1	4 4.3 ▶	134	LE1	45.9	0.0	40.8	0.2	12.1	11.6	8.1	ОК
		4 4.3 ▶	134	LE1	16.4	0.0	- 7.0	7.0	5.0	3.8	2.5	ОК
SEP1b	B1-tfl 1	4 4.3 ▶	134	LE1	39.8	0.0	-22.6	5.0	18.2	9.1	7.3	OK
		⊿ 4.3 ⊾	134	LE1	36.6	0.0	27.2	0.3	14.1	8.4	6.2	ОК
SEP1b	B1-w 1	4 4.3 ▶	193	LE1	111.0	0.0	52.7	-20.7	52.5	25,5	10.3	OK
		⊿ 4.3⊾	193	LE1	109.8	0.0	51.9	19.9	-52.2	25,2	10.3	ОК
B-bfl 1	STIFF1	⊿ 4.3 ⊾	88	LE1	100.3	0.0	-38.4	37.2	-38.4	23.0	11.1	ОК
		4 4.3⊾	88	LE1	100.3	0.0	-38.4	-37.2	38.4	23.0	11.1	ОК
B - w 1	STIFF1	4 4.3 ▶	161	LE1	108.3	0.0	28.2	-53.4	28.2	24.9	13.2	ОК
		⊿ 4.3 ⊾	161	LE1	108.3	0.0	-28.3	53.4	28.2	24.9	13.2	OK
B-tfl 1	STIFF1	⊿ 4.3 ⊾	88	LE1	102.4	0.0	39.8	37.3	39.8	23,5	11.4	ОК
		⊿ 4.3⊾	88	LE1	102.4	0.0	39.8	-37.3	39.8	23,5	11.4	ОК

Design data

	β. H		σ _{w,Rd} [MPa]	0.9 σ [MPa]
S 355		0.90	435,6	352.8

Symbol explanation

ε_{PI} Strain

σ_{w,Ed} Equivalent stress

σ_{w,Rd} Equivalent stress resistance

σ_⊥ Perpendicular stress

 $\begin{array}{lll} T_{||} & \text{Shear stress parallel to weld axis} \\ T_{\perp} & \text{Shear stress perpendicular to weld axis} \\ 0.9 \ \sigma & \text{Perpendicular stress resistance = 0.9 fu/yM2} \\ \beta_{W} & \text{Corelation factor EN 1993-1-8 tab. 4.1} \\ \end{array}$

Ut Utilization

Utc Weld capacity utilization

Buckling

Loads	Shape	Factor [-]
LE1	1	64.99
	2	72,70
	3	90,63
	4	103,64
	5	132.15
	6	136.12

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	49		
Calc. by Date Chk'd by Date		Doc No.		
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Code settings

ltem	Value	Unit	Reference
Умо	1,00	-	EN 1993-1-1: 6.1
YM1	1,00	-	EN 1993-1-1: 6,1
YM2	1.25	-	EN 1993-1-1: 6.1
Умз	1.25	-	EN 1993-1-8: 2.2
Yc	1.50	-	EN 1992-1-1: 2.4.2.4
YInst	1,20	-	ETAG 001-C: 3.2.1
Joint coefficient βj	0.67	-	EN 1993-1-8: 6.2.5
Effective area - influence of mesh size	0.10	-	
Friction coefficient - concrete	0.25	-	EN 1993-1-8
Friction coefficient in slip-resistance	0.30	-	EN 1993-1-8 tab 3.7
Limit plastic strain	0,05	-	EN 1993-1-5
Weld stress evaluation	Plastic redistribution		
Detailing	No		
Distance between bolts [d]	2.20	-	EN 1993-1-8: tab 3.3
Distance between bolts and edge [d]	1.20	-	EN 1993-1-8: tab 3.3
Concrete breakout resistance	Yes		ETAG 001-C
Use calculated ab in bearing check,	Yes		EN 1993-1-8: tab 3.4
Cracked concrete	Yes		
Local deformation check	No		
Local deformation limit	0,03	-	CIDECT DG 1, 3 - 1,1
Geometrical nonlinearity (GMNA)	Yes		Large deformations for hollow sections

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	50		
Calc. by Date Chk'd by Date			Doc No.	
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

16. Connection Design CON3

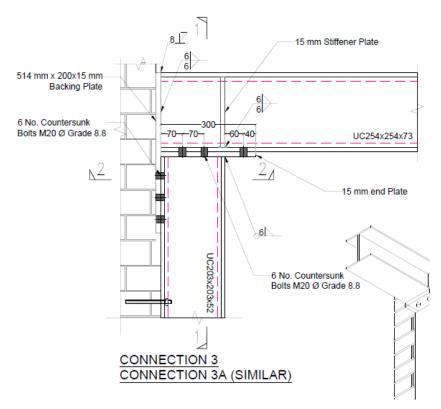


Figure 11: Location of Steel Beams to Column connection CON3.

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	51		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Project item Con N3

Design

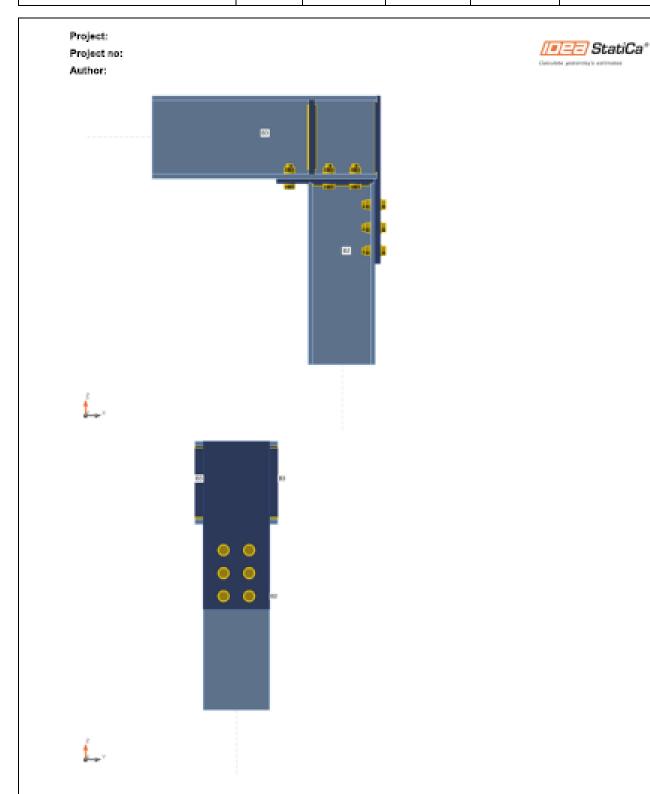
Name Con N3

Description

Analysis Stress, strain/ loads in equilibrium

Beams and columns

Name	Cross-section	β – Direction [*]	γ = Pitch [*]	α • Rotation [*]	Offset ex [mm]	Offset ey [mm]	Offset ez [mm]	Forces in
B2	3 - UC 203 x 203 x 52	0.0	90.0	0.0	0	0	0	Position
B3	2 - UC 254 x 254 x 73	180,0	0,0	0,0	-108	0	0	Position



	Project		Job Ref.		
15 Landor Road, London SW9 9RX					20.052
Section					Sheet no.
Basement Underpinning Structural Design Report					52
	Calc. by	Date	Chk'd by	Date	Doc No.
	AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Project				Job Ref.
15 Landor Road, London SW9 9RX				20.052
Section		Sheet no.		
Basem	nent Underpinnir	53		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Cross-sections

Name	Material
3 • UC 203 x 203 x 52	\$ 355
2 • UC 254 x 254 x 73	S 355

Project				Job Ref.
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	54		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Cross-sections

Name	Material	Drawing
3 • UC 203 x 203 x 52	8 355	907 204
2 • UC 254 x 254 x 73	S 355	755 255 255

Bolts

Name	Bolt assembly	Diameter [mm]	fu [MPs]	Gross area [mm²]
M20 8.6	M20 8,8	20	800,0	314

Load effects (forces in equilibrium)

Name	Member	N [kN]	Vy [kN]	Vz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
LE3	B2	-210.0	0.0	0.0	0.0	-118.0	0.0
	B3	0.0	0.0	-210.0	0.0	118.0	0.0

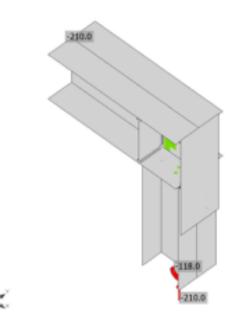
Check

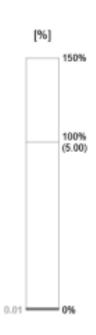
Summary

Name	Value	Status
Analysis	100,0%	OK
Plates	0,0 < 5%	OK
Bolts	56,9 < 100%	OK
Welds	99,5 < 100%	OK
Buck j ing	9,86	

Project			Job Ref.			
	15 Landor Road	d, London SW9	9RX	20.052		
Section		Sheet no.				
Basem	nent Underpinnir	ng Structural Des	sign Report	55		
Calc. by	Date	Chk'd by	Date	Doc No.		
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0		

Plates

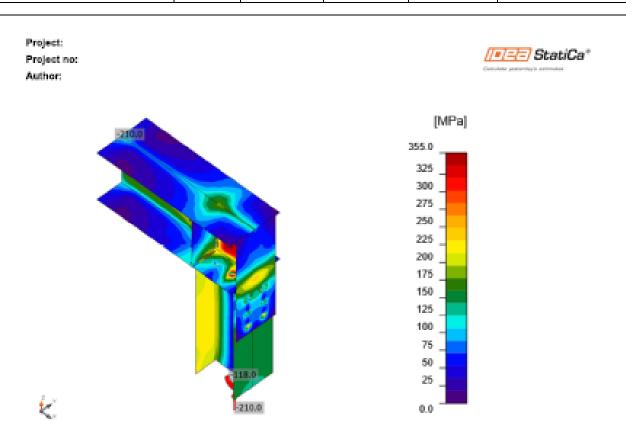

Name	Thickness [mm]	Loads	σ _{Ed} [MPa]	ε _{Р[} [%]	Status
B2-bf 1	12.5	LE3	248.1	0.0	OK
B2+f1 1	12.5	LE3	305.0	0.0	OK
B2•w 1	7.9	LE3	230.0	0.0	OK
B3-bfl 1	14.2	LE3	317.7	0.0	OK
B3 -t1 1	14,2	LE3	193,9	0,0	OK
B3-w 1	8,6	LE3	343,5	0,0	OK
EP1	15,0	LE3	268,1	0,0	OK
SPL1	15,0	LE3	257,6	0,0	OK
ST I FF1a	15,0	LE3	212.6	0,0	OK
STJFF1b	15,0	LE3	212,6	0,0	OK


Design data

Material	f _y [MPa]	4im [%]	
S 355	365,0	5,0	

Symbol explanation

 ϵ_{Pl} Strain σ_{Ed} Eq. stress f_y Yield strength ϵ_{Pm} Limit of plastic strain



Strain check, LE3

Project				Job Ref.
	15 Landor Road	d, London SW9	9RX	20.052
Section				Sheet no.
Basem	ent Underpinnir	ng Structural Des	sign Report	56
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Equivalent stress, LE3

Bolts

	Name	Grade	Loads	F _{t,Ed} [kN]	V [kN]	Ut _t [%]	F _{b,Fod} [kN]	Ut, [%]	Ut _{ts} [%]	Status
	B1	M20 8.8 1	LE3	13.0	46.5	9.2	238.3	49.4	56.0	OK.
	B2	M20 8.8 1	LE3	1,0	46.9	0.7	198,6	49.8	50.3	OK
325	B3	M20 8.8 1	LE3	10.3	48.7	7.3	178.2	51,7	56.9	OK
PFI	B4	M20 8.8 - 1	LE3	13,0	46.5	9.2	238.3	49.4	56.0	OK
	B5	M20 8.8 - 1	LE3	1,0	46.9	0.7	198,6	49,8	50,3	OK
	B6	M20 8.8 - 1	LE3	10,2	48.6	7.3	178.2	51,7	56.9	OK
	B7	M20 8.8 - 2	LE3	69.3	5,1	49.1	278.3	5.4	40.5	OK
# 7	B8	M20 8.8 - 2	LE3	69.1	5,1	49.0	278.3	5.4	40.4	OK
10 8	B9	M20 8.8 - 2	LE3	6,4	2,7	4.5	278.3	2,9	6.1	OK
	B10	M20 8.8 - 2	LE3	6.4	2,7	4.6	278.3	2,9	6.1	OK
42 41	B11	M20 8.8 - 2	LE3	2.8	9,1	2.0	278.3	9,7	11.1	OK
	B12	M20 8 8 - 2	LE3	2.9	9.1	2.1	278.3	9.6	11,1	ок

Design data

Name	F _{L,RM} [kN]	B _{p,Rd} [kN]	F _{v,Rd} [kN]
M20 8.8 - 1	141.1	290,9	94.1
M20 8.6 - 2	141.1	330,5	94.1

Project				Job Ref.	
	15 Landor Road	d, London SW9	9RX	20.052	
Section			Sheet no.		
Basem	ent Underpinnir	ng Structural Des	sign Report	57	
Calc. by	Date	Chk'd by	Date	Doc No.	
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0	

Project:

Project no:

Author:

Detailed result for B3

Tension resistance check (EN 1993-1-8 tab 3.4)

$$F_{t,Rd} = \frac{k_0 f_{t0} A_v}{\gamma_{M1}} = 141.1 \text{ kN } \ge F_t = 10.3 \text{ kN}$$

where:

 $k_2 = 0.90$ — Factor

 $f_{ab} = 800.0 \, \mathrm{MPa}^-$ —Ultimate tensile strength of the bolt

 $A_s = 245 \, \mathrm{mm}^2$ — Tensile stress area of the bolt

 $\gamma_{M2} = 1.25$ — Safety factor

Punching resistance check (EN 1993-1-8 tab 3.4)

$$B_{p,Rd} = rac{0.6\pi d_{m}t_{p}f_{c}}{\gamma_{max}} = -290.9 \quad \mathrm{kN} \quad \geq \quad F_{t} = -10.3 \quad \mathrm{kN}$$

where:

 $d_{\rm m}=32~{
m mm}$ — The mean of the across points and across flats dimensions of the bolt head or the nut, whichever

is smaller

 $t_{\rm p}=13~{\rm mm}$ — Thickness

 $f_u = 490.0 \text{ MPa}$ — Ultimate strength

 $\gamma_{M2} = 1.25$ — Safety factor

Shear resistance check (EN 1993-1-8 tab 3.4)

$$F_{v,Rd} = \frac{\rho_{v0v}f_{v0}A}{\gamma_{00}} =$$
 94.1 kN $\geq V =$ 48.7 kN

where:

 $\beta_p = 1.00$ — Reducing factor

 $lpha_o = 0.60$ — Reducing factor

 $f_{ub} = 800.0 \, \mathrm{MPa} \, \, - \mathrm{Ultimate}$ tensile strength of the bolt

 $A=245 \, \mathrm{mm}^2$ — Tensile stress area of the bolt

 $\gamma_{M2} = 1.25$ — Safety factor

Bearing resistance check (EN 1993-1-8 tab 3.4)

$$F_{b,Rd} = rac{k_1 \alpha_b f_b dt}{\gamma_{N2}} = 178.2 \text{ kN } \ge V = 48.7 \text{ kN}$$

where:

 $k_1=2.50$ — Factor for edge distance and bolt spacing perpendicular to the direction of load transfer

 $\alpha_h = 0.61$ — Factor

 $f_u = 490.0 \text{ MPa}$ — Ultimate strength

d = 20 mm - Nominal diameter of the fastener

t= 15 mm - Thickness

 $\gamma_{M2} = 1.25$ — Safety factor

Project				Job Ref.	
	15 Landor Road	d, London SW9	9RX	20.052	
Section			Sheet no.		
Basem	ent Underpinnir	ng Structural Des	sign Report	58	
Calc. by	Date	Chk'd by	Date	Doc No.	
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0	

Interaction of tension and shear (EN 1993-1-8 tab 3.4)

$$U_{tbs} = \frac{F_{r,bd}}{F_{r,bd}} + \frac{F_{t,bd}}{1.4F_{t,bd}} = -58.9 - \%$$

Utilization in tension

$$U_{tt} = \frac{F_{t,td}}{\min(F_{t,td};B_{s,td})} = 7.3$$
 %

Utilization in shear

$$U_{ts} = \frac{V_{ts}}{\min(F_{s,M};F_{b,M})} = -51.7$$
 %

Symbol explanation

F_{URd} Bolt tension resistance EN 1993-1-8 tab. 3-4

F_{t,Ed} Tension force

B_{p,Rd} Punching shear resistance

V Resultant of shear forces Vy, Vz in bolt

F_{N/bd} Bolt shear resistance EN_1993-1-6 table 3.4

F_{b,Rd} Plate bearing resistance EN 1993-1-6 tab, 3.4

Ut_t Utilization in tension
Ut_s Utilization in shear

Ut_{ts} Utilization in tension and shear EN 1993-1-8 table 3.4

Project				Job Ref.			
	15 Landor Road	d, London SW9	9RX	20.052			
Section			Sheet no.				
Basen	nent Underpinnir	ng Structural Des	sign Report	59			
Calc. by	Date	Chk'd by	Date	Doc No.			
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0			

Welds (Plastic redistribution)

Bern	Edge	Throat th, [mm]	Length [mm]	Loads	σ _{w,Ed} [MPa]	е _{рі} [%]	σ⊥ [MPa]	"ji [MPa]	τ⊥ [MPa]	Ut [%]	Ut _o [%]	Status
EP1	B2-bf 1	.44.3⊾	200	LE3	430.8	2,2	156.8	0.2	231.6	98.9	96.7	OK
		44,3 ⊾	200	LE3	433.5	3.8	237.2	-6.4	209.4	99.5	99.5	OK
EP1	B2-tfl 1	.44.3⊾.	200	LE3	102.7	0.0	76.6	39.4	2.4	23.6	18.7	OK
		.44,3⊾	200	LE3	157.9	0.0	89.2	48,4	57.5	36.2	30,0	OK
EP1	B2-w 1	.44.3⊾	194	LE3	429.6	1.6	208.0	61.8	208.0	98.6	39.2	OK
		.44,3⊾	194	LE3	429.6	1.6	208.0	61.9	208.0	98.6	39.2	OK
SPL1	B3-w 1	.44.3	240	LE3	428.5	1,0	3,5	247.4	3.5	98.4	98.3	OK
SPL1	B3 tfl 1	.44.3	204	LE3	97.9	0.0	65.4	30.2	29.2	22.5	12.9	OK
SPL1	B3-bf 1	.44.3	204	LE3	170.9	0.0	124.0	-34.7	58.4	39,2	29.6	OK
B3-tfl 1	STIFF1a	.44.3⊾.	110	LE3	209.9	0.0	-24.6	-113.3	40.7	48.2	15.5	ок
		.44,3⊾	110	LE3	227.7	0.0	71.4	112.0	55.2	52.3	20.7	OK
B3-w 1	STJFF1a	.44.3⊾.	200	LE3	210.4	0.0	26.2	118,9	19.8	48,3	37.4	OK
		.44.3⊾	200	LE3	202.4	0.0	-6.9	116.6	0.6	46.5	37.0	OK
B3-bf 1	STIFF1a	.44.3⊾	110	LE3	426.9	0.1	197.3	106.2	191.0	98,0	77.4	OK
		.44.3⊾	110	LE3	354.8	0.0	150.4	97.0	158.2	81.5	55.5	OK
B3-#11	STIFF16	.44,3⊾	110	LE3	227.5	0.0	71.3	111.9	55.1	52.2	20.7	OK
		.44,3⊾	110	LE3	209.7	0.0	24.5	113,2	40.7	48,2	15.5	OK
B3-w 1	STIFF16	.44.3⊾	200	LE3	202.1	0.0	-6.8	116.6	0.4	46.4	37.0	OK
		.44,3⊾	200	LE3	210,2	0.0	26,3	-118,7	20,0	48,2	37,3	OK
B3-bfl 1	STIFF1b	44.3 ⊾	110	LE3	352.9	0.0	149.4	-96.9	157.1	81.0	55.4	OK
		.44.3⊾	110	LE3	426.9	0.0	197.0	106.8	190.8	98.0	77.4	OK

Design data

	β _w	σ _{w,Rd}	0,9 σ
	[-]	[MPs]	[MPa]
S 355	0,90	435.6	352,8

Symbol explanation

έρ₁ Strain

σ_{w.Ed} Equivalent stress

σ_{w,Rid} Equivalent stress resistance

σ_⊥ Perpendicular stress

T_{||} Shear stress parallel to weld axis
 T_{||} Shear stress perpendicular to weld axis
 0.9 σ Perpendicular stress resistance = 0.9°fu/yM2
 β_w Corelation factor EN 1993-1-8 tab. 4.1

Ut Utilization

Uto Weld capacity utilization

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	60		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Project:

Project not

Author:

Detailed result for EP1 B2-bfl 1

Weld resistance check (EN 1993-1-8 4.5.3.2)

$$\begin{split} \sigma_{w,Rd} &= f_{\rm w}/(\beta_w \gamma_{M2}) = & \ \ \, 435.6 \quad {\rm MPe} \ \ \, \geq \ \, \sigma_{w,Rd} = [\sigma_\perp^2 + 3(\tau_\perp^2 + \tau_\parallel^2)]^{0.5} = \ \ \, 433.5 \quad {\rm MPe} \\ \sigma_{\perp,Rd} &= 0.9 f_{\rm w}/\gamma_{M2} = & \ \, 352.8 \quad {\rm MPe} \ \, \geq \ \, |\sigma_\perp| = & \ \, 237.2 \quad {\rm MPe} \end{split}$$

where:

 $f_{\rm u} = 490.0 \, {\rm MPa} \, - {\rm Ultimate strength}$

 $eta_{w} = 0.90$ — appropriate correlation factor taken from Table 4.1

 $\gamma_{M2} = 1.25$ — Safety factor

Stress utilization

$$U_t = \max(\frac{\sigma_{\mathbf{v},\mathrm{Bd}}}{\sigma_{\mathbf{v},\mathrm{Bd}}};\frac{|\sigma_{\perp}|}{\sigma_{\perp,\mathrm{Bd}}}) = -99.5$$
 %

Buckling

Loads	Shape	Factor [•]
LE3	1	9.86
	2	10.20
	3	14.10
	4	17.34
	5	17.44
	6	17.85

Project		Job Ref.		
15 Landor Road, London SW9 9RX				20.052
Section		Sheet no.		
Basem	ent Underpinnir	61		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Bill of material

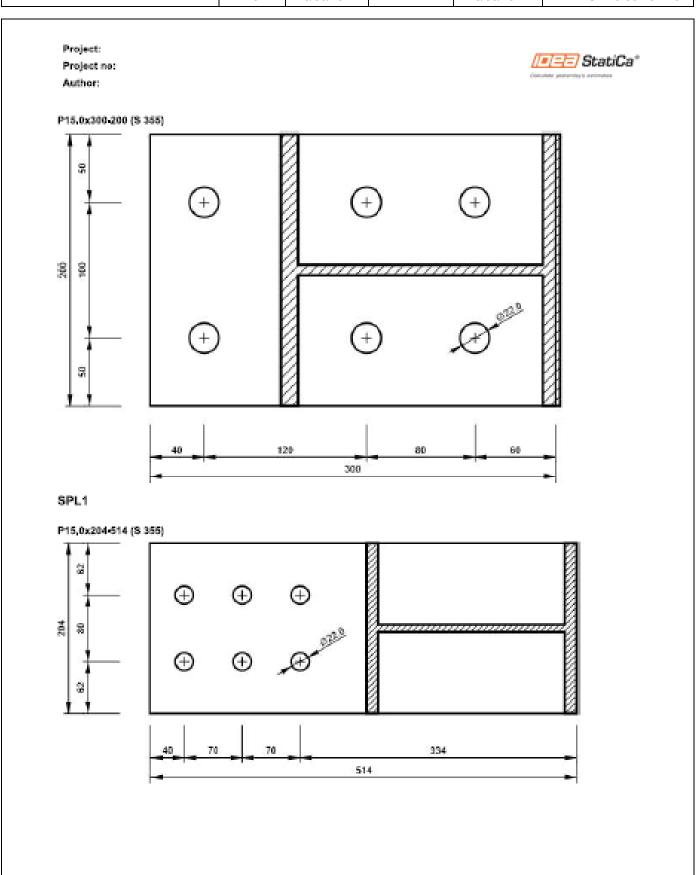
Manufacturing operations

Name	Plates [mm]	Shape	Nr.	Welds [mm]	Length [mm]	Bolts	Nr.
EP1	P15.0x200,0-300,0 (8 355)	<pre>+ + + +</pre>	1	Double fillet: a = 4,3	593,7	M20 8,8	6
SPL1	P15.0x514.0-204.3 (S 355)	##	1			M20 8.8	6
STIFF1	P15.0x123.0-225.7 (S 355)		2	Double filet: a = 4,3	841,8		

Welds

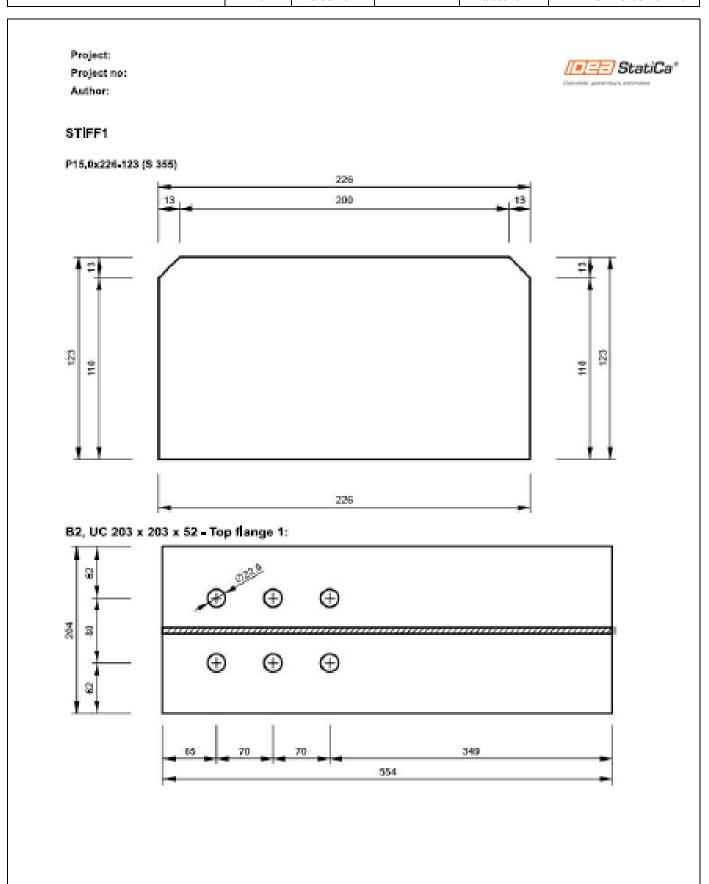
Туре	Material	Throat thickness [mm]	Leg size [mm]	Length [mm]
Double fillet	8 355	4,3	6.1	1435.5
Fillet	S 355	4.3	6.1	444.2
Fillet	8 355	4,3	6,1	204,3

Bolts


Name	Grip length [mm]	Count
M20 8.8	27	6
M20 8.8	29	6

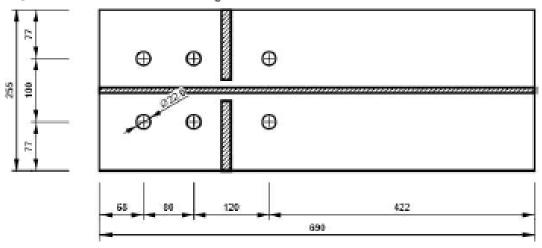
Drawing

EP1



Project					Job Ref.
15 Landor Road, London SW9 9RX					20.052
Section				Sheet no.	
Basement Underpinning Structural Design Report					62
С	Calc. by	Date	Chk'd by	Date	Doc No.
	AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

	Project		Job Ref.		
		15 Landor Road	20.052		
Section					Sheet no.
	Basem	ent Underpinnir	63		
	Calc. by	Date	Chk'd by	Date	Doc No.
	AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0



Project				Job Ref.
15 Landor Road, London SW9 9RX				20.052
Section				Sheet no.
Basem	ent Underpinnir	64		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

B3, UC 254 x 254 x 73 - Bottom flange 1:

Code settings

ltem	Value	Unit	Reference
Үм о	1.00	-	EN 1993-1-1: 6.1
YM1	1,00	-	EN 1993-1-1: 6,1
YM2	1.25	-	EN 1993-1-1: 6,1
YMS	1.25	-	EN 1993-1-8: 2.2
Yc	1.50	-	EN 1992-1-1: 2.4.2.4
Yinst	1.20	-	ETAG 001-C: 3.2.1
Joint coefficient βj	0.67	-	EN 1993-1-8: 6-2-5
Effective area - influence of mesh size	0.10	-	
Friction coefficient - concrete	0.25	-	EN 1993-1-8
Friction coefficient in slip-resistance	0.30	-	EN 1993-1-8 tab 3.7
Limit plastic strain	0.05		EN 1993-1-5
Weld stress evaluation	Plastic redistribution		
Detailing	No		
Distance between bolts [d]	2.20	-	EN 1993-1-8: tab 3-3
Distance between bolts and edge [d]	1.20	-	EN 1993-1-8: tab 3.3
Concrete breakout resistance	Yes		ETAG 001-C
Use calculated ab in bearing check.	Yes		EN 1993-1-8; tab 3.4
Cracked concrete	Yes		
Local deformation check	No		
Local deformation limit	0.03	-	CIDECT DG 1, 3 • 1.1
Geometrical nonlinearity (GMNA)	Yes		Large deformations for hollow sections

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	nent Underpinnir	65		
Calc. by Date Chk'd by Date				Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

17. Connection Design connection CON4: Base Plate and Anchor Bolts

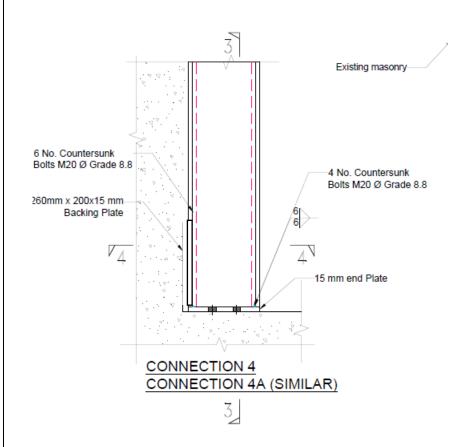


Figure 12: Location of Steel Base Plate and Anchor Bolts

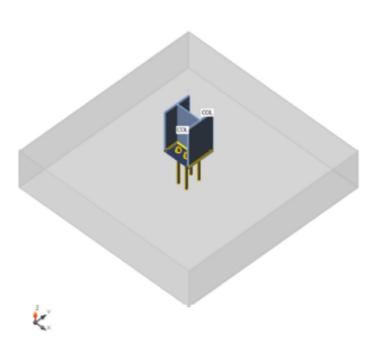
Project				Job Ref.
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	66		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Project:

Project no:

Author:

Project item Base plate


Design

Name Base plate
Description 15 Landoor Road

Analysis Stress, strain/ simplified loading

Beams and columns

Name	Cross-section	β – Direction [*]	Y = Pitch [°]	α • Rotation [*]	Offset ex [mm]	Offset ey [mm]	Offset ez [mm]	Forces in
COL	1 - CON1(UC 203 x 203 x 52)	0.0	-90.0	0,0	0	0	0	Node

Cross-sections

Name	Materia
1 - CON1(UC 203 x 203 x 52)	S 355

Anchors

Name	Bolt assembly	Diameter [mm]	fu [MPa]	Gross area [mm²]	
M20 8,8	M20 8,8	20	800,0	314	

	Project				Job Ref.
15 Landor Road, London SW9 9RX					20.052
Section					Sheet no.
Basement Underpinning Structural Design Report					67
	Calc. by	Date	Chk'd by	Date	Doc No.
	AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Load effects (equilibrium not required)

Name	Member	N [kN]	Vy [kN]	Vz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]	
LE1	COL	-210.0	0.0	0.0	0,0	0.0	0.0	

Foundation block

Item	Value	Unit
CB 1		
Dimensions	1404 x 1406	mm
Depth	300	mm
Anchor	M20 8.8	
Anchoring length	250	mm
Shear force transfer	Friction	

Check

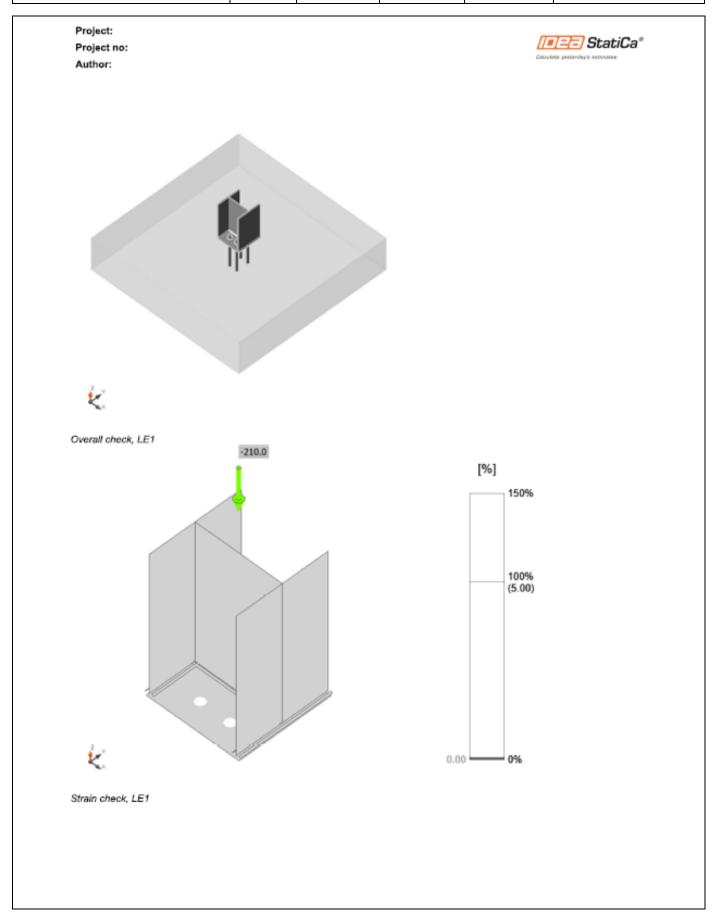
Summary

Name	Value	Status
Analysis	100.0%	ок
Plates	0.0 < 5%	OK
Anchors	0.0 < 100%	OK
Welds	23.9 < 100%	OK
Concrete block	25.4 < 100%	OK
Shear	0.0 < 100%	ОК
Buckling	57.64	

Plates

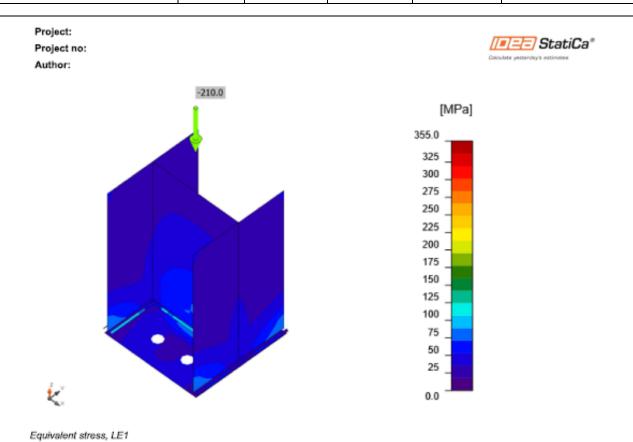
Name	Thickness [mm]	Loads	σ _{Ed} [MPa]	ε _{ΡΙ} [%]	Status
COL-bfl 1	12.5	LE1	80.6	0.0	ок
COL-tfl 1	12,5	LE1	80,6	0,0	ок
COL-w 1	7.9	LE1	72.1	0,0	ок
BP1	15.0	LE1	87.8	0.0	ок

Design data


Material	f _y [MPa]	ε _{lim} [%]	
S 355	355.0	5.0	

Symbol explanation

 $\begin{array}{lll} \epsilon_{PI} & & \text{Strain} \\ \sigma_{Ed} & & \text{Eq. stress} \\ \text{f_y} & & \text{Yield strength} \\ \epsilon_{lim} & & \text{Limit of plastic strain} \end{array}$



	Project				Job Ref.
15 Landor Road, London SW9 9RX				20.052	
Section				Sheet no.	
Basement Underpinning Structural Design Report					68
	Calc. by	Date	Chk'd by	Date	Doc No.
	AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

	Project				Job Ref.
15 Landor Road, London SW9 9RX			20.052		
Section				Sheet no.	
	Basem	ent Underpinnir	69		
	Calc. by	Date	Chk'd by	Date	Doc No.
	AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Anchors

	Name	Loads	F _{t,Ed} [kN]	V [kN]	N _{rdc} [kN]	N _{rdp} [kN]	Ut _t [%]	F _{b,Rd} [kN]	Ut _s [%]	Ut _{ts} [%]	V _{Rd,cp} [kN]	V _{Rd,c} [kN]	Status
	A1	LE1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ок
¥ 4	A2	LE1	0,0	0,0	0.0	0.0	0,0	0,0	0.0	0.0	0,0	0,0	ок
4 4	A3	LE1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ок
	A4	LE1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ок

Design data

Name	F _{t,Rd} [kN]	B _{p,Rd} [kN]	F _{v,Rd} [kN]	V _{rds} [kN]	S _{tf} [MN/m]
M20 8.8 - 1	120.0	349.1	120,6	0.0	412

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	ng Structural Des	sign Report	70
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Symbol explanation

F_{t.Rd} Bolt tension resistance EN 1993-1-8 tab. 3.4

F_{t,Ed} Tension force

B_{p.Rd} Punching shear resistance

Resultant of shear forces Vy, Vz in bolt
 F_{v,Rd} Bolt shear resistance EN_1993-1-8 table 3,4

V_{rds} Characteristic anchor resistance ETAG 001 Annex C (5.2.3.2)

S_{tf} Anchor longitudinal stiffness

F_{b,Rd} Plate bearing resistance EN 1993-1-8 tab. 3.4

N_{rd,c} Concrete breakout resistance

N_{rd,p} Pull-out resistance
Ut_t Utilization in tension
Ut_s Utilization in shear

Ut_{ls} Utilization in tension and shear EN 1993-1-8 table 3.4

V_{rd,cp} Concrete pry-out failure ETAG 001 Annex C (5.2.3.3)

V_{rd,c} Concrete edge failure ETAG 001 Annex C (5.2.3.4)

C_{pf} Concrete pry-out failure ETAG 001 Annex C (5.2.3.3)

C_{ef} Concrete edge failure ETAG 001 Annex C (5.2.3.4)

Welds (Plastic redistribution)

ltern	Edge	Throat th, [mm]	Length [mm]	Loads	σ _{w,Ed} [MPa]	ε _{ΡΙ} [%]	σ⊥ [MPa]	T [MPa]	τ⊥ [MPa]	Ut [%]	Ut _c [%]	Status
BP1	COL-bfl 1	⊿ 4.3 ⊾	204	LE1	103.8	0.0	- 51.7	32.6	-4 0.5	23.8	20.1	ок
		⊿ 4.3⊾	204	LE1	55.9	0.0	- 4.9	29.5	12.8	12.8	10.4	ок
BP1	COL-tfl 1	⊿ 4.3 ⊾	204	LE1	55.9	0.0	- 4.9	29.5	-12.8	12.8	10.4	ок
		⊿ 4.3 ⊾	204	LE1	103.8	0.0	-51.7	-32.6	40.5	23.8	20.1	ок
BP1	COL-w 1	⊿ 4.3⊾	194	LE1	104.2	0.0	-51.9	-2.2	-52.1	23.9	19.1	ок
		⊿ 4.3⊾	194	LE1	104.2	0.0	-52.2	2.4	52.0	23.9	19.1	ок

Design data

	β _w	σ _{w,Rd}	0,9 σ
	[-]	[MPa]	[MPa]
S 355	0.90	435.6	352.8

Project			Job Ref.		
	15 Landor Road	20.052			
Section		Sheet no.			
Basen	nent Underpinnir	ng Structural De	sign Report	71	
Calc. by	Date	Chk'd by	Date	Doc No.	
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0	

Symbol explanation

ε_{Pl} Strain

σ_{w,Ed} Equivalent stress

σ_{w,Rd} Equivalent stress resistance

σ⊥ Perpendicular stress

T_{||} Shear stress parallel to weld axis

 $τ_{\perp}$ Shear stress perpendicular to weld axis 0.9 σ Perpendicular stress resistance – 0.9*fu/γM2 $β_W$ Corelation factor EN 1993-1-8 tab. 4.1

Ut Utilization

Utc Weld capacity utilization

Concrete block

ltem	Loads	c [mm]	A _{eff} [mm ²]	σ [MPa]	k _j [-]	F _{jd} (MPa)	Ut [%]	Status
CB 1	LE1	28	24650	8.5	3.00	33.5	25.4	OK

Symbol explanation

c Bearing width
A_{eff} Effective area

σ Average stress in concrete

k_j Concentration factor

F_{jd} The ultimate bearing strength of the concrete block

Ut Utilization

Shear in contact plane

Name	Loads	V _y [kN]	V _z [kN]	V _{Rd,y} [kN]	V _{Rd,z} [kN]	V _{c,Rd} [kN]	Ut [%]	Status
BP1	LE1	0.0	0.0	52.5	52.5	0.0	0.0	ок

Symbol explanation

 V_y Shear force in base plate Vy V_z Shear force in base plate Vz

V_{Rd,y} Shear resistance V_{Rd,z} Shear resistance

V_{c,Rd} Concrete bearing resistance

Ut Utilization

Project			Job Ref.		
	15 Landor Road	20.052			
Section		Sheet no.			
Basem	ent Underpinnir	ng Structural Des	sign Report	72	
Calc. by	Date	Chk'd by	Date	Doc No.	
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0	

Project:	
Project no:	
Author:	

Buckling

Loads	Shape	Factor [-]
LE1	1	57.64
	2	64.65
	3	82.02
	4	93,00
	5	103.58
	6	129,89

Code settings

ltem	Value	Unit	Reference
YMO	1,00	-	EN 1993-1-1: 6,1
YM1	1.00	-	EN 1993-1-1: 6.1
YM2	1.25	-	EN 1993-1-1: 6.1
Умз	1,25	-	EN 1993-1-8: 2.2
Yc	1,50	-	EN 1992-1-1: 2.4.2.4
YInst	1.20	-	ETAG 001-C: 3.2.1
Joint coefficient βj	0.67	-	EN 1993-1-8: 6.2.5
Effective area - influence of mesh size	0.10	-	
Friction coefficient - concrete	0,25	-	EN 1993-1-8
Friction coefficient in slip-resistance	0.30	-	EN 1993-1-8 tab 3.7
Limit plastic strain	0.05	-	EN 1993-1-5
Weld stress evaluation	Plastic redistribution		
Detailing	No		
Distance between bolts [d]	2,20	-	EN 1993-1-8: tab 3.3
Distance between bolts and edge [d]	1.20	-	EN 1993-1-8: tab 3.3
Concrete breakout resistance	Yes		ETAG 001-C
Use calculated ob in bearing check,	Yes		EN 1993-1-8: tab 3,4
Cracked concrete	Yes		
Local deformation check	No		
Local deformation limit	0.03	-	CIDECT DG 1, 3 - 1.1
Geometrical nonlinearity (GMNA)	Yes		Large deformations for hollow sections

Project		Job Ref.		
15 Landor Road, London SW9 9RX				20.052
Section				Sheet no.
Basem	nent Underpinnir	73		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

18. Padstone BP1 Design Beam deflection is checked for L/250. BB1 BC1 BC2 CON UC203×133×30 EUN2 BB2 BP1 UC203×133×30 330(L) x140(W)x215(H) 330(L) x140(W)x215(H) 884 BASEMENT PLAN Scale 1:50

Figure 13: Location of Steel Beams on Plan showing Padstone BP1

Project		Job Ref.			
15 Landor Road, London SW9 9RX				20.052	
Section				Sheet no.	
Basem	ent Underpinnir	74			
Calc. by	Date	Chk'd by	Date	Doc No.	
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0	

MASONRY BEARING DESIGN TO B\$5628-1:2005

TEDDS calculation version 1.0.06

Masonry details

Masonry type Clay or calcium silicate bricks

Compressive strength of unit punt = 5.0 N/mm²

Mortar designation iii

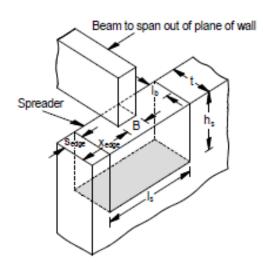
Category of masonry units

Category II

Category of construction control

Partial safety factor for material strength

Thickness of load bearing leaf


Effective thickness of masonry wall

Height of masonry wall

Effective height of masonry wall

Category II

Normal $\gamma_m = 3.5$ t = 140 mm $t_{\text{eff}} = 260 \text{ mm}$ $t_{\text{eff}} = 1000 \text{ mm}$ Effective height of masonry wall $t_{\text{eff}} = 1000 \text{ mm}$

Bearing details

Beam spanning out of plane of wall

Width of bearing B = 200 mm
Length of bearing I_0 = 140 mm
Edge distance x_{edge} = 50 mm

Compressive strength from Table 2 BS5628:Part 1 - Clay or calcium silicate bricks

Mortar designation Mortar = "iii"

Brick compressive strength $p_{unit} = 5.0 \text{ N/mm}^2$ Characteristic compressive strength $f_k = 2.50 \text{ N/mm}^2$

Loading details

Characteristic concentrated dead load $G_k = 27 \text{ kN}$ Characteristic concentrated imposed load $G_k = 0 \text{ kN}$

Project		Job Ref.		
15 Landor Road, London SW9 9RX				20.052
Section				Sheet no.
Basem	ent Underpinnir	75		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Design concentrated load $F = (G_k \times 1.4) + (Q_k \times 1.6) = 38.1 \text{ kN}$

Characteristic distributed dead load $g_k = 0.0 \text{ kN/m}$ Characteristic distributed imposed load $q_k = 0.0 \text{ kN/m}$

Design distributed load $f = (g_k \times 1.4) + (q_k \times 1.6) = 0.0 \text{ kN/m}$

Masonry bearing type

Bearing type Type 1
Bearing safety factor ytem = 1.25

Check design bearing without a spreader

Design bearing stress $f_{ca} = F / (B \times I_b) + f / t = 1.360 \text{ N/mm}^2$ Allowable bearing stress $f_{cp} = \gamma_{boar} \times f_k / \gamma_m = 0.893 \text{ N/mm}^2$

FAIL - Design bearing stress exceeds allowable bearing stress, use a spreader

Spreader details

Length of spreader $l_8 = 330 \text{ mm}$ Depth of spreader $h_8 = 215 \text{ mm}$

Edge distance $s_{\text{edge}} = \max(0 \text{ mm}, x_{\text{edge}} - (I_8 - B) / 2) = 0 \text{ mm}$

Spreader bearing type

Bearing type Type 3
Bearing safety factor $\gamma_{\text{tear}} = 2.00$

Check design bearing with a spreader

Loading acts eccentrically within middle third - triangular stress distribution

Eccentricity of load $e = ((l_s - B)/2) - x_{edge} = 15 \text{ mm}$

Maximum bearing stress $f_{oa} = F \times (1 + (6 \times e / I_s)) / (I_s \times t) + f / t = 1.049 \text{ N/mm}^2$

Allowable bearing stress $f_{cp} = \gamma_{bear} \times f_k / \gamma_m = 1.429 \text{ N/mm}^2$

PASS - Allowable bearing stress exceeds design bearing stress

Check design bearing at 0.4 × h below the bearing level

Slendemess ratio h_{ef} / t_{ef} = 3.85 Eccentricity at top of wall e_x = 0.0 mm

From BS5628:1 Table 7

Capacity reduction factor β = 0.99 Length of bearing distributed at 0.4 × h I_d = 650 mm

Maximum bearing stress $f_{oa} = F / (I_d \times t) + f / t = 0.418 \text{ N/mm}^2$ Allowable bearing stress $f_{op} = \beta \times f_K / \gamma_m = 0.707 \text{ N/mm}^2$

PASS - Allowable bearing stress at 0.4 × h below bearing level exceeds design bearing stress

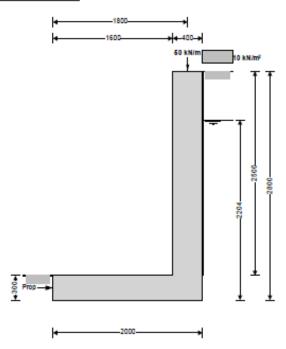
Project		Job Ref.		
15 Landor Road, London SW9 9RX				20.052
Section		Sheet no.		
Basem	nent Underpinnir	76		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

19. Design of Underpins and Slab

19.1 Underpin Design inc Slab & Wall Stability (Side wall and party wall)

Loads are based on the self weight of the wall only as this weight gives the most onerous load case becasuse the weight of the wall will act to restore any destabilizing moment and we do not want to overstimate this beneficial restoring moment. As such, any loads on the rear wall or flank wall coming from beams supported on the wall are ignored. At the same time, it is important not to underestimate these loads as the vertical load on the wall will affect the bearing pressure under the wall. So these loads are considered when checking bearing and ingored when checking sliding and overturning.

Load on Retaining wall (Side wall /Party wall)


Walls				
Ground floor wall load	2.8 x 0.26 x 18	=	13.1	kN/m
First floor wall load	2.8 x 0.26 x 18	=	13.1	kN/m
Second floor wall load	2.8 x 0.26 x 18	=	13.1	kN/m
Timber Floors (Ground floo	r)			
Dead Load Ground floor (0.	75kN/m²) 0.75 x 2.55	=	1.9	kN/m
Live Load Ground floor (1.5	dN/m²) 1.5 x 2.55	=	3.8	kN/m
Pitched Roof				
Dead Load (0.75kN/m²)	0.75 x 2.55	=	1.9	kN/m
Live Load (1.0kN/m²)	1.5 x 2.55	=	2.6	kN/m
Total Load on wall		=	49.5	kN/m
(Basement wall Load not a	ided)			

Project		Job Ref.		
15 Landor Road, London SW9 9RX				20.052
Section		Sheet no.		
Basem	ent Underpinnir	77		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Wall details

Retaining wall type Cantilever propped at base

Height of retaining wall stem hatem = 2500 mm

Thickness of wall stem twell = 400 mm

Length of toe I_{toe} = 1600 mm

Length of heel I_{toe} = 0 mm

Overall length of base | base = line + line + twall = 2000 mm

Thickness of base $t_{base} = 300 \text{ mm}$ Depth of downstand $d_{ds} = 0 \text{ mm}$ Position of downstand $l_{ds} = 1000 \text{ mm}$ Thickness of downstand $t_{ds} = 300 \text{ mm}$

Height of retaining wall hwall = hstem + tbase + das = 2800 mm

Depth of cover in front of wall $d_{cover} = 0 \text{ mm}$ Depth of unplanned excavation $d_{exc} = 0 \text{ mm}$ Height of ground water behind wall $h_{water} = 2204 \text{ mm}$

Height of saturated fill above base heat = max(hwater - thouse - das, 0 mm) = 1904 mm

Density of wall construction $\gamma_{\text{wal}} = 23.6 \text{ kN/m}^3$ Density of base construction $\gamma_{\text{base}} = 23.6 \text{ kN/m}^3$ Angle of rear face of wall $\alpha = 90.0 \text{ deg}$ Angle of soil surface behind wall $\beta = 0.0 \text{ deg}$

Effective height at virtual back of wall her = h_{wal} + h_{reel} × tan(β) = 2800 mm

Retained material details

Mobilisation factor M = 1.5

Project				Job Ref.
15 Landor Road, London SW9 9RX				20.052
Section				Sheet no.
Basement Underpinning Structural Design Report				78
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

 $\begin{tabular}{lll} Moist density of retained material & $\gamma_m = 18.0 \ kN/m^3$ \\ Saturated density of retained material & $\gamma_s = 21.0 \ kN/m^3$ \\ Design shear strength & $\phi' = 24.2 \ deg$ \\ Angle of wall friction & $\delta = 0.0 \ deg$ \\ \end{tabular}$

Base material details

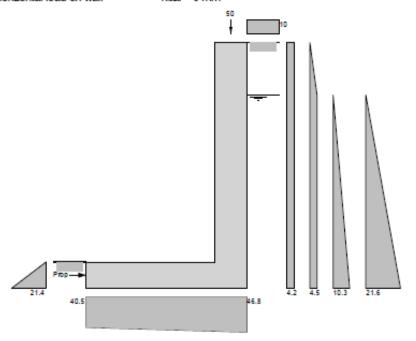
Moist density $\gamma_{mb} = 18.0 \text{ kN/m}^3$ Design shear strength $\phi_b = 24.2 \text{ deg}$ Design base friction $\delta_b = 18.6 \text{ deg}$ Allowable bearing pressure $\delta_b = 8.6 \text{ kN/m}^2$

Using Coulomb theory

Active pressure coefficient for retained material

$$K_a = \sin(\alpha + \phi')^2 / \left(\sin(\alpha)^2 \times \sin(\alpha - \delta) \times \left[1 + \sqrt{\sin(\phi' + \delta)} \times \sin(\phi' - \beta) / \left(\sin(\alpha - \delta) \times \sin(\alpha + \beta)\right)\right)\right]^2 \right) = 0.419$$

Passive pressure coefficient for base material


$$K_p = \sin(90 - \psi_b)^2 / (\sin(90 - \delta_b) \times [1 - \sqrt{(\sin(\psi_b + \delta_b) \times \sin(\psi_b) / (\sin(90 + \delta_b)))}]^2) = 4.187$$

At-rest pressure

At-rest pressure for retained material $K_0 = 1 - \sin(\phi') = 0.590$

Loading details

Surcharge load on plan Surcharge = 10.0 kN/m^2 Applied vertical dead load on wall W_{lve} = 49.5 kN/mApplied vertical live load on wall W_{lve} = 0.0 kN/mPosition of applied vertical load on wall I_{load} = 1800 mmApplied horizontal dead load on wall F_{dead} = 0.0 kN/mApplied horizontal live load on wall F_{lve} = 0.0 kN/mHeight of applied horizontal load on wall hoad = 0 mm

Project				Job Ref.
15 Landor Road, London SW9 9RX				20.052
Section				Sheet no.
Basement Underpinning Structural Design Report				79
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Loads shown in kN/m, pressures shown in kN/m²

Vertical forces on wall

Horizontal forces on wall

Surcharge $F_{sur} = K_a \times Surcharge \times h_{eff} = 11.7 \text{ kN/m}$ Moist backfill above water table $F_{m_a} = 0.5 \times K_a \times \gamma_m \times (h_{eff} - h_{water})^2 = 1.3 \text{ kN/m}$ Moist backfill below water table $F_{m_b} = K_a \times \gamma_m \times (h_{eff} - h_{water}) \times h_{water} = 9.9 \text{ kN/m}$ Saturated backfill $F_s = 0.5 \times K_a \times (\gamma_{s-} \gamma_{water}) \times h_{water}^2 = 11.4 \text{ kN/m}$ Water $F_{water} = 0.5 \times h_{water}^2 \times \gamma_{water} = 23.8 \text{ kN/m}$

Total horizontal load Ftotal = Fsur + Fm_b + Fs + Fwater = 58.2 kN/m

Calculate propping force

Passive resistance of soil in front of wall $F_p = 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + t_{base} + d_{ds} - d_{esc})^2 \times \gamma_{mb} = 3.2 \text{ kN/m}$

Propping force $F_{prop} = max(F_{total} - F_p - (W_{total}) \times tan(\delta_b), 0 \text{ kN/m})$

F₀₀₀ = 25.6 kWm

Overturning moments

Surcharge $M_{sur} = F_{sur} \times (h_{eff} - 2 \times d_{ds}) / 2 = 16.4 \text{ kNm/m}$

Moist backfill above water table $M_{m_a} = F_{m_a} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{da}) / 3 = 3.2 \text{ kNm/m}$

Moist backfill below water table $M_{\text{m_b}} = F_{\text{m_b}} \times (h_{\text{water}} - 2 \times d_{\text{ds}}) / 2 = 10.9 \text{ kNm/m}$ Saturated backfill $M_{\text{s}} = F_{\text{s}} \times (h_{\text{water}} - 3 \times d_{\text{ds}}) / 3 = 8.4 \text{ kNm/m}$

Water Mwater = Fwater × (hwater - 3 × dds) / 3 = 17.5 kNm/m

Total overturning moment $M_{bt} = M_{bur} + M_{m_b} + M_{m_b} + M_{s} + M_{water} = 56.4 \text{ kNm/m}$

Restoring moments

Wall stem $M_{\text{has}} = W_{\text{has}} \times (|_{\text{loe}} + t_{\text{has}} / 2) = 42.5 \text{ kNm/m}$ Wall base $M_{\text{base}} = W_{\text{base}} \times |_{\text{base}} / 2 = 14.2 \text{ kNm/m}$

Design vertical load M_V = W_V × I_{load} = 89.1 kNm/m

Total restoring moment Mrest = Mwai + Mbase + Mv = 145.7 kNm/m

Check bearing pressure

Total moment for bearing M_{total} = M_{rest} - M_{ot} = 89.4 kNm/m

Total vertical reaction $R = W_{total} = 87.3 \text{ k/Vm}$ Distance to reaction $x_{bar} = M_{total} / R = 1024 \text{ mm}$ Eccentricity of reaction $e = abs((l_{base} / 2) - x_{bar}) = 24 \text{ mm}$

Reaction acts within middle third of base

Bearing pressure at toe $p_{be} = (R / l_{base}) - (6 \times R \times e / l_{base}^2) = 40.5 \text{ kN/m}^2$ Bearing pressure at heel $p_{bee} = (R / l_{base}) + (6 \times R \times e / l_{base}^2) = 46.8 \text{ kN/m}^2$

PASS - Maximum bearing pressure is less than allowable bearing pressure

Project		Job Ref.		
15 Landor Road, London SW9 9RX			20.052	
Section		Sheet no.		
Basement Underpinning Structural Design Report				80
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Ultimate limit state load factors

Dead load factor $\gamma = 1.4$ Live load factor $\gamma = 1.6$ Earth and water pressure factor $\gamma = 1.4$

Factored vertical forces on wall

Factored horizontal at-rest forces on wall

Surcharge $F_{\text{sur_d}} = \gamma_{\text{CL}} \times K_0 \times \text{Surcharge} \times \text{her} = 26.4 \text{ kN/m}$ Moist backfill above water table $F_{\text{m_lb_d}} = \gamma_{\text{Ce}} \times 0.5 \times K_0 \times \gamma_{\text{m}} \times (\text{her} - \text{hwater})^2 = 2.6 \text{ kN/m}$ Moist backfill below water table $F_{\text{m_lb_d}} = \gamma_{\text{Ce}} \times K_0 \times \gamma_{\text{m}} \times (\text{her} - \text{h_water}) \times \text{hwater} = 19.5 \text{ kN/m}$ Saturated backfill $F_{\text{sur_d}} = \gamma_{\text{Ce}} \times 0.5 \times K_0 \times (\gamma_{\text{S-}} \gamma_{\text{water}}) \times \text{hwater}^2 = 22.5 \text{ kN/m}$ Water $F_{\text{water_d}} = \gamma_{\text{Ce}} \times 0.5 \times \text{hwater}^2 \times \gamma_{\text{water}} = 33.4 \text{ kN/m}$

Total horizontal load Foots = Four + Fm_ot + Fm_ot + Fm_ot + Fweter = 104.4 kN/m

Calculate propping force

Passive resistance of soil in front of wall $F_{p,f} = \gamma_{f,e} \times 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = 4.5 \text{ kN/m}$

Propping force $F_{prop_J} = max(F_{total_J} - F_{p_J} - (W_{total_J}) \times tan(\delta_b), 0 kN/m)$

 $F_{prop_f} = 58.8 \text{ kN/m}$

Factored overturning moments

Surcharge $M_{\text{burg}} = F_{\text{surg}} \times (h_{\text{eff}} - 2 \times d_{ds}) / 2 = 37 \text{ kNm/m}$

Moist backfill above water table $M_{\text{m.a.f}} = F_{\text{m.a.f}} \times (h_{\text{eff}} + 2 \times h_{\text{water}} - 3 \times d_{\text{ds}}) / 3 = 6.3 \text{ kNm/m}$

Moist backfill below water table $M_{\text{m_b}} = F_{\text{m_b}} \times (h_{\text{water}} - 2 \times d_{\text{ds}}) / 2 = 21.5 \text{ kNm/m}$ Saturated backfill $M_{\text{b}} = F_{\text{b}} \times (h_{\text{water}} - 3 \times d_{\text{ds}}) / 3 = 16.5 \text{ kNm/m}$ Water $M_{\text{water}} = F_{\text{water}} \times (h_{\text{water}} - 3 \times d_{\text{ds}}) / 3 = 24.5 \text{ kNm/m}$

Total overturning moment $M_{old} = M_{old} + M_{mlo} + M_{mlo} + M_{old} + M_{older} = 105.9 kNm/m$

Restoring moments

Wall stem $M_{\text{Mail}}f = W_{\text{Mail}}f \times (\text{loe} + t_{\text{Mail}}/2) = 59.5 \text{ kNm/m}$ Wall base $M_{\text{base}}f = W_{\text{base}}f \times \text{losse}/2 = 19.8 \text{ kNm/m}$ Design vertical load $M_{\text{V}}f = W_{\text{V}}f \times \text{losd} = 124.7 \text{ kNm/m}$

Total restoring moment Mrest_r = Mwal_r + Mosse_r + Mi_r = 204 kNm/m

Factored bearing pressure

Total moment for bearing Motal_r = Mest_r - Mot_r = 98.2 kNm/m

Total vertical reaction $R_r = W_{total_f} = 122.2 \text{ kN/m}$ Distance to reaction $x_{bar_f} = M_{total_f} / R_r = 803 \text{ mm}$ Eccentricity of reaction $er = abs((base / 2) - x_{bar_f}) = 197 \text{ mm}$

Reaction acts within middle third of base

Bearing pressure at toe $p_{toe_f} = (R_f / l_{base}) + (6 \times R_f \times e_f / l_{base}^2) = 97.1 \text{ kNVm}^2$

Project				Job Ref.
15 Landor Road, London SW9 9RX				20.052
Section				Sheet no.
Basement Underpinning Structural Design Report				81
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Bearing pressure at heel $p_{heel_f} = (R_f / l_{base}) - (6 \times R_f \times e_f / l_{base}^2) = 25.1 \text{ kN/m}^2$

Rate of change of base reaction $rate = (p_{los_{-}f} - p_{host_{-}f}) / I_{base} = 36.01 \text{ kN/m}^2/m$

Bearing pressure at stem / toe pwm_toe_f = max(pioe_f - (rate × loo), 0 kN/m²) = 39.5 kN/m²

Bearing pressure at mid stem $p_{\text{stern_mid_f}} = \max(p_{\text{toe_f}} - (\text{rate} \times (l_{\text{toe}} + t_{\text{well}} / 2)), 0 \text{ kN/m}^2) = 32.3 \text{ kN/m}^2$ Bearing pressure at stem / heel $p_{\text{stern_mid_f}} = \max(p_{\text{toe_f}} - (\text{rate} \times (l_{\text{toe}} + t_{\text{well}})), 0 \text{ kN/m}^2) = 25.1 \text{ kN/m}^2$

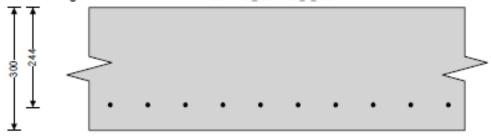
Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Characteristic strength of concrete $f_{eu} = 30 \text{ N/mm}^2$ Characteristic strength of reinforcement $f_v = 500 \text{ N/mm}^2$

Base details

Minimum area of reinforcement k = 0.13 %Cover to reinforcement in toe $c_{tot} = 50 \text{ mm}$


Calculate shear for toe design

Shear from bearing pressure $V_{loe_bear} = (p_{loe_f} + p_{aterr_loe_f}) \times l_{loe} / 2 = 109.3 \text{ kN/m}$ Shear from weight of base $V_{loe_wt_beare} = \gamma_{f_d} \times \gamma_{base} \times l_{loe} \times t_{base} = 15.9 \text{ kN/m}$ Total shear for toe design $V_{loe_bear} - V_{loe_wt_beare} = 93.4 \text{ kN/m}$

Calculate moment for toe design

Moment from bearing pressure $M_{\text{loe_bear}} = (2 \times p_{\text{toe_f}} + p_{\text{atem_mid_f}}) \times (l_{\text{toe}} + t_{\text{wel}} / 2)^2 / 6 = 122.3 \text{ kNm/m}$ Moment from weight of base $M_{\text{loe_wt_base}} = (\gamma_{\text{f_d}} \times \gamma_{\text{base}} \times t_{\text{base}} \times (l_{\text{loe}} + t_{\text{wel}} / 2)^2 / 2) = 16.1 \text{ kNm/m}$

Total moment for toe design Moe = Moe, bear - Mice, wt, base = 106.2 kNm/m

←100→

Check toe in bending

Width of toe b = 1000 mm/m

Depth of reinforcement $d_{los} = t_{base} - c_{los} - (\phi_{los}/2) = 244.0 \text{ mm}$ Constant $K_{los} = M_{los}/(b \times d_{los}^2 \times f_{co}) = 0.059$

Compression reinforcement is not required

Lever arm $z_{100} = min(0.5 + \sqrt{(0.25 - (min(K_{100}, 0.225) / 0.9)), 0.95)} \times d_{100}$

z_{loe} = 227 mm

Area of tension reinforcement required $A_{a_toe_des} = M_{toe} / (0.87 \times f_y \times z_{toe}) = 1078 \text{ mm}^2/\text{m}$

Minimum area of tension reinforcement $A_{a, to a, min} = k \times b \times t_{base} = 390 \text{ mm}^2/\text{m}$

Area of tension reinforcement required $A_{a_toe_req} = Max(A_{a_toe_des}, A_{a_toe_min}) = 1078 \text{ mm}^2/\text{m}$

Reinforcement provided 12 mm dia.bars @ 100 mm centres

Area of reinforcement provided As_tos_prov = 1131 mm²/m

٦	Project				Job Ref.
	15 Landor Road, London SW9 9RX				20.052
	Section		Sheet no.		
	Basement Underpinning Structural Design Report				82
	Calc. by	Date	Chk'd by	Date	Doc No.
	AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress $v_{toe} = V_{toe} / (b \times d_{toe}) = 0.383 \text{ N/mm}^2$

Allowable shear stress $v_{adm} = min(0.8 \times \sqrt{f_{ext}/1 \text{ N/mm}^2}), 5) \times 1 \text{ N/mm}^2 = 4.382 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

From BS8110:Part 1:1997 - Table 3.8

Design concrete shear stress v_{c_toe} = 0.588 N/mm²

Vtoe < Vc_toe - No shear reinforcement required

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Characteristic strength of concrete $f_{cu} = 30 \text{ N/mm}^2$ Characteristic strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Wall details

Minimum area of reinforcement k = 0.13 %Cover to reinforcement in stem $c_{wil} = 50 \text{ mm}$ Cover to reinforcement in wall $c_{wil} = 50 \text{ mm}$

Factored horizontal at-rest forces on stem

Surcharge $F_{a_nu_f} = \gamma_{f_i} \times K_0 \times \text{Surcharge} \times (h_{eff} - t_{base} - d_{ds}) = 23.6 \text{ kN/m}$ Moist backfill above water table $F_{a_nu_f} = 0.5 \times \gamma_{f_e} \times K_0 \times \gamma_m \times (h_{eff} - t_{base} - d_{ds} - h_{set})^2 = 2.6 \text{ kN/m}$ Moist backfill below water table $F_{a_nu_f} = \gamma_{f_e} \times K_0 \times \gamma_m \times (h_{eff} - t_{base} - d_{ds} - h_{set}) \times h_{set} = 16.9 \text{ kN/m}$

Saturated backfill $F_{a_aa_bf} = 0.5 \times \gamma_{f_aa} \times K_0 \times (\gamma_{a} - \gamma_{water}) \times h_{aaf}^2 = 16.8 \text{ kN/m}$ Water $F_{a_awater,f} = 0.5 \times \gamma_{f_aa} \times \gamma_{water} \times h_{aaf}^2 = 24.9 \text{ kN/m}$

Calculate shear for stem design

Shear at base of stem $V_{stem} = F_{a_i, a_i, f_j} + F_{a_i, m_i, b_i, f_j} + F_{b_i, a_i, f_j} + F_{b_i$

Calculate moment for stem design

Surcharge $M_{8.5 \text{str}} = F_{8.5 \text{str}} f \times (h_{8 \text{term}} + t_{base}) / 2 = 33 \text{ kNm/m}$

Moist backfill above water table $M_{b_m,a} = F_{b_m,a,f} \times (2 \times h_{set} + h_{ef} - d_{ds} + t_{base} / 2) / 3 = 5.9 \text{ kNm/m}$

Moist backfill below water table $M_{b_m_b} = F_{b_m_b_f} \times h_{bat} / 2 = 16.1 \text{ kNm/m}$ Saturated backfill $M_{b_b} = F_{b_m_b_f} \times h_{bat} / 3 = 10.6 \text{ kNm/m}$ Water $M_{b_water} = F_{b_water_f} \times h_{bat} / 3 = 15.8 \text{ kNm/m}$

Total moment for stem design $M_{blam} = M_{b_abl} + M_{b_am_b} + M_{b_am_b} + M_{b_amble} = 81.5 \text{ kNm/m}$

Project				Job Ref.
15 Landor Road, London SW9 9RX				20.052
Section				Sheet no.
Basement Underpinning Structural Design Report				83
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Check wall stem in bending

Width of wall stem b = 1000 mm/m

Depth of reinforcement $d_{stern} = t_{set} - c_{stern} - (t_{stern}/2) = 342.0 \text{ mm}$ Constant $K_{stern} = M_{stern}/(b \times d_{stern}^2 \times f_{cs}) = 0.023$

Compression reinforcement is not required

Lever arm $z_{\text{stem}} = \min(0.5 + \sqrt{0.25} - (\min(K_{\text{stem}}, 0.225) / 0.9)), 0.95) \times d_{\text{stem}}$

 $z_{stem} = 325 \text{ mm}$

Area of tension reinforcement required As_sten_des = Metern / (0.87 × fy × zsten) = 577 mm²/m

Minimum area of tension reinforcement $A_{u,stem,min} = k \times b \times t_{wal} = 520 \text{ mm}^2/\text{m}$

Area of tension reinforcement required $A_{a_stam_req} = Max(A_{a_stam_des}, A_{a_stam_min}) = 577 \text{ mm}^2/\text{m}$

Reinforcement provided 16 mm dia.bars @ 200 mm centres

Area of reinforcement provided As_stem_prov = 1005 mm²/m

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress v_{stem} = V_{stem} / (b × d_{stem}) = 0.076 N/mm²

Allowable shear stress v_{edm} = min(0.8 × \((f_{cu} / 1 N/mm²), 5) × 1 N/mm² = 4.382 N/mm²

PASS - Design shear stress is less than maximum shear stress

From BS8110:Part 1:1997 - Table 3.8

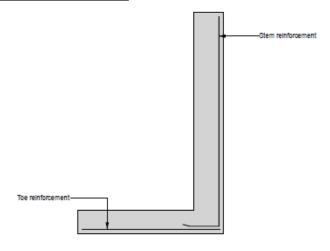
Design concrete shear stress $v_{c.stern} = 0.464 \text{ N/mm}^2$

v_{stum} < v_{c_stum} - No shear reinforcement required

Check retaining wall deflection

Basic span/effective depth ratio ratio_{bis} = 7

Design service stress $f_a = 2 \times f_y \times A_{a_stem_prov} / (3 \times A_{a_stem_prov}) = 191.2 \text{ N/mm}^2$


Modification factor $factor_{tens} = min(0.55 + (477 \text{ N/mm}^2 - f_s)/(120 \times (0.9 \text{ N/mm}^2 + (M_{stem}/(b \times d_{stem}^2)))), 2) = 2.00$

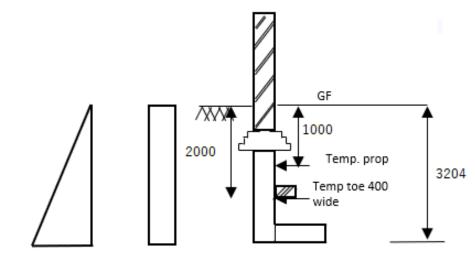
Maximum span/effective depth ratio ratio_{max} = ratio_{bas} × factor_{ens} = 14.00

Actual span/effective depth ratio rations = h_{stem} / d_{stem} = 7.31

PASS - Span to depth ratio is acceptable

Indicative retaining wall reinforcement diagram

Toe bars - 12 mm dia.@ 100 mm centres - (1131 mm²/m) Stem bars - 16 mm dia.@ 200 mm centres - (1005 mm²/m)



Project				Job Ref.
15 Landor Road, London SW9 9RX			20.052	
Section			Sheet no.	
Basement Underpinning Structural Design Report				84
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Sliding between brick wall and concrete basement check (Temporary condition)

Consider underpinning to basement with Temp. prop at 1.0m Below GL (neglect water as borehole sample did not encounter any)

Geometry Basement underpinning

Soil pressure Ka 7 H Surcharge Pressure Ka H

Sliding between brick wall and concrete basement check (Temporary condition)

Consider underpinning to basement with Temp. prop at 1.0m Below GL (neglect water as borehole sample did not encounter any)

Shear at prop level - assume pinned at base

Base Shear Load due to soil + Surcharge = $K_a \gamma H (H/2) (H/3)$ + $K_a Q_s H H/2$ = 45.0 kN/m

Load in prop = 20.4 kN/m

Base Load = $K_a \gamma H (H/2)$ + $K_a Q_S H$ - Load in prop = 16.9 kN/m

Wall Load (GF wall+ 1st floor wall+ 2nd floor wall+basement wall) = 73.9 kN/m

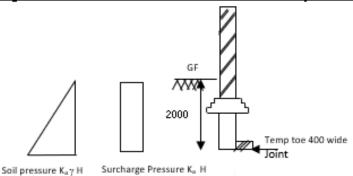
(Wall Load is based on the self weight of the wall only as this weight gives the most

onerous load case)

Friction Load = 36.9 kN/m

FOS sliding = 2.2 OK for shear load

Check bending moment in underpin at joint


Bending moment at the base = Load in prob x dist from joir $K_a \gamma H(H/2).(H/3) - K_a Q_s H.($ = 7.2 kN-m/m

Line of thrust 'e' = 0.2 OK line of thrust lies within underpin

Project				Job Ref.
15 Landor Road, London SW9 9RX			20.052	
Section				Sheet no.
Basem	nent Underpinnir	85		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Sliding between brick wall and concrete basement check (before the prop install)

Shear at Joint level -

Shear Load due to soil + Surcharge = $K_a \gamma (H/2)$ + $K_a Q_S H H/2$ = 13.8 kN/m

Wall Load (GF wall+ 1" floor wall + 2" floor wall+basement wall) = 62.3 kN/m

(Wall Load is based on the self weight of the wall only as this weight gives the most onerous load case)

Friction Load = 31.2 kN/m

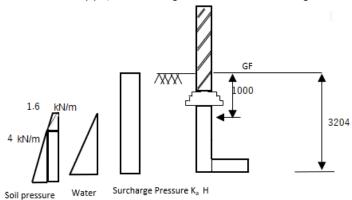
FOS sliding = 2.26 OK for shear load

Check bending moment in underpin at joint

OT Bending moment at the Joint = $K_a \gamma H(H/2) \cdot (H/3) + K_a Q_S H \cdot (H/2) = 13.2 \text{ kN-m/m}$

Restoring Moment (eccentricity of load CG of temp Toe) = 12.5 kN-m/m

Net OT moment = 0.7 kN-m/m


Eccentricity 'e' = 11.8 mm OK, by inspection

Project				Job Ref.
15 Landor Road, London SW9 9RX			20.052	
Section				Sheet no.
Basement Underpinning Structural Design Report				86
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Check final case underpinning

Allow for burst water main pipe, therefore design for 1.0m water table below ground level.

Total lateral load on wall = 51.4 kN/m

Say free BM = 20.6 kN-m/m

Axial load = 73.9 kN/m

Eccentricity of load 'e' = 278.6 mm (Need to reinforce the underpin)

Design Base slab for uplift

 Slab span
 =
 9.45 m

 Basement Slab Thickness
 =
 0.30 m

 Concrete Density
 =
 25.00 kN/m³

 Ground water level
 =
 1.00 m

 Basement slab width
 =
 1.00 m

Dead weight of slab = 7.50 kN/m Uplift pressure (Ground water pressure assumed) = 9.81 kN/m² Uplift UDL of slab = 9.81 kN/m

Hogging moment due to uplift = $2.31 \times 9.45^{2} / 8$ = 25.8 kN-m/m

Grade of steel, Fy = 500.0 Mpa

Effective depth of slab , d = 242.0 mm

Area of steel required Ast, (at the top face of slab) = $25.79 \times 10^6 / (0.783 \times 1000 \times 242 \times 500)$

= 0.2722 mm2/m Minimum steel required , Ast min = 314.6 mm2/m

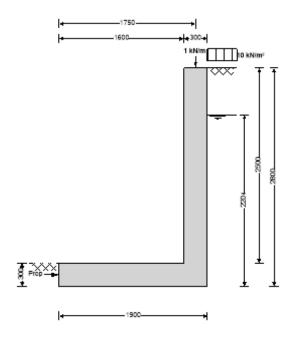
Provide mesh A393 at Top of slab

Project				Job Ref.
15 Landor Road, London SW9 9RX			20.052	
Section			Sheet no.	
Basement Underpinning Structural Design Report				87
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

19.2 Design Front and back Slab & Wall

Load on Retaining wall (back and front)

Glass Rooflight


(Basement wall Load not added)

Project				Job Ref.
15 Landor Road, London SW9 9RX			20.052	
Section				Sheet no.
Basement Underpinning Structural Design Report				88
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.08

I_{beel} = 0 mm

Wall details

Length of heel

Retaining wall type Cantilever propped at base

Height of retaining wall stem \$h_{\rm stem} = 2500 \ mm\$ Thickness of wall stem \$t_{\rm wal} = 300 \ mm\$ Length of toe $l_{\rm los} = 1600 \ mm$

Overall length of base $I_{base} = I_{tos} + I_{heat} + t_{wal} = 1900 \text{ mm}$ Thickness of base $t_{base} = 300 \text{ mm}$

Depth of downstand $d_{\rm ds} = 0 \text{ mm}$ Position of downstand $I_{\rm ds} = 1600 \text{ mm}$ Thickness of downstand $t_{\rm ds} = 300 \text{ mm}$

Height of retaining wall $h_{wal} = h_{stem} + t_{base} + d_{ds} = 2800 \text{ mm}$

Depth of cover in front of wall $d_{\rm cover} = 0 \; \text{mm}$ Depth of unplanned excavation $d_{\rm exc} = 0 \; \text{mm}$ Height of ground water behind wall $h_{\rm water} = 2204 \; \text{mm}$

Height of saturated fill above base $h_{sat} = max(h_{water} - t_{base} - d_{ds}, 0 mm) = 1904 mm$

Density of wall construction $\gamma_{\rm wall} = 23.6 \ kN/m^3$ Density of base construction $\gamma_{\rm base} = 23.6 \ kN/m^3$ Angle of rear face of wall $\alpha = 90.0 \ deg$ Angle of soil surface behind wall $\beta = 0.0 \ deg$

Effective height at virtual back of wall $h_{\rm eff} = h_{\rm wal} + I_{\rm heel} \times \tan(\beta) = 2800 \ \text{mm}$

Retained material details

Mobilisation factor M = 1.5

	Project				Job Ref.
	15 Landor Road, London SW9 9RX			20.052	
	Section			Sheet no.	
Basement Underpinning Structural Design Report				89	
	Calc. by	Date	Chk'd by	Date	Doc No.
	AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

 $\begin{array}{ll} \text{Moist density of retained material} & \gamma_m = 18.0 \text{ kN/m}^3 \\ \text{Saturated density of retained material} & \gamma_x = 21.0 \text{ kN/m}^3 \\ \text{Design shear strength} & \phi' = 24.2 \text{ deg} \\ \text{Angle of wall friction} & \delta = 0.0 \text{ deg} \\ \end{array}$

Base material details

 $\begin{array}{ll} \mbox{Moist density} & \gamma_{mb} = 18.0 \ \mbox{kN/m}^3 \\ \mbox{Design shear strength} & \phi'_b = 24.2 \ \mbox{deg} \\ \mbox{Design base friction} & \delta_b = 18.6 \ \mbox{deg} \\ \mbox{Allowable bearing pressure} & P_{bearing} = 85 \ \mbox{kN/m}^2 \end{array}$

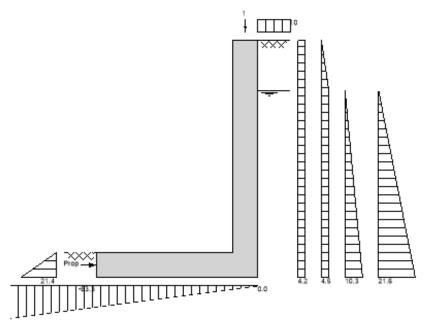
Using Coulomb theory

Active pressure coefficient for retained material

 $K_{\alpha} = \sin(\alpha + \phi')^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta) \times [1 + \sqrt{(\sin(\phi' + \delta) \times \sin(\phi' - \beta) / (\sin(\alpha - \delta) \times \sin(\alpha + \beta)))}]^2) = 0.419$

Passive pressure coefficient for base material

 $K_p = \sin(90 - \phi_b)^2 / (\sin(90 - \delta_b) \times [1 - \sqrt{(\sin(\phi_b + \delta_b) \times \sin(\phi_b) / (\sin(90 + \delta_b)))}]^2) = 4.187$


At-rest pressure

At-rest pressure for retained material $K_0 = 1 - \sin(\phi') = 0.590$

Loading details

Surcharge load on plan Surcharge = 10.0 kN/m²

Applied vertical dead load on wall $W_{\rm dead} = 1.0 \ kN/m$ Applied vertical live load on wall $W_{\rm live} = 0.0 \ kN/m$ Position of applied vertical load on wall $I_{\rm bad} = 1750 \ mm$ Applied horizontal dead load on wall $F_{\rm dead} = 0.0 \ kN/m$ Applied horizontal live load on wall $F_{\rm bin} = 0.0 \ kN/m$ Height of applied horizontal load on wall $h_{\rm bad} = 0 \ mm$

Project		Job Ref.		
15 Landor Road, London SW9 9RX			20.052	
Section				Sheet no.
Basement Underpinning Structural Design Report				90
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Loads shown in kN/m, pressures shown in kN/m²

Vertical forces on wall

Wallstem $w_{wall} = h_{slam} \times t_{wall} \times \gamma_{wall} = 17.7 \text{ kN/m}$ Wall base $w_{base} = I_{base} \times t_{base} \times \gamma_{base} = 13.5 \text{ kN/m}$

Applied vertical load $W_v = W_{dead} + W_{live} = 1 \text{ kN/m}$

Total vertical load $W_{101al} = W_{wall} + W_{base} + W_v = 32.2 \text{ kN/m}$

Horizontal forces on wall

Surcharge $F_{sur} = K_a \times Surcharge \times h_{eff} = 11.7 \text{ kN/m}$ Moist backfill above water table $F_{m_a} = 0.5 \times K_a \times \gamma_m \times (h_{eff} - h_{water})^2 = 1.3 \text{ kN/m}$ Moist backfill below water table $F_{m_ab} = K_a \times \gamma_m \times (h_{eff} - h_{water}) \times h_{water} = 9.9 \text{ kN/m}$ Saturated backfill $F_s = 0.5 \times K_a \times (\gamma_s - \gamma_{water}) \times h_{water}^2 = 11.4 \text{ kN/m}$

 $F_{water} = 0.5 \times h_{water}^2 \times \gamma_{water} = 23.8 \text{ kN/m}$ Water

Total horizontal load $F_{lotal} = F_{sur} + F_{m_a} + F_{m_b} + F_s + F_{water} = 58.2 \text{ kN/m}$

Calculate propping force

Passive resistance of soil in front of wall $F_{\rm p} = 0.5 \times K_{\rm p} \times \cos(\delta_{\rm b}) \times (d_{\rm cover} + t_{\rm base} + d_{\rm dx} - d_{\rm exc})^2 \times \gamma_{\rm mb} = 3.2 \; kN/m$

Propping force $F_{\text{prop}} = \text{max}(F_{\text{total}} - F_p - (W_{\text{total}}) \times \text{tan}(\delta_b), 0 \text{ kN/m})$

 $F_{prop} = 44.1 \text{ kN/m}$

Overturning moments

Surcharge $M_{sur} = F_{sur} \times (h_{eff} - 2 \times d_{ds}) / 2 = 16.4 \text{ kN m/m}$

Moist backfill above water table $M_{m,a} = F_{m,a} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) / 3 = 3.2 \text{ kNm/m}$

Moist backfill below water table $M_{m_b} = F_{m_b} \times (h_{walsir} - 2 \times d_{dx}) / 2 = 10.9 \text{ kNm/m}$ Saturated backfill $M_s = F_s \times (h_{water} - 3 \times d_{ds}) / 3 = 8.4 \text{ kNm/m}$

 $M_{water} = F_{water} \times (h_{water} - 3 \times d_{dx}) / 3 = 17.5 \text{ kNm/m}$ Water Total overturning moment $M_{ol} = M_{sur} + M_{m_a} + M_{m_b} + M_s + M_{water} = 56.4 \text{ kN m/m}$

Restoring moments

Wallstem $M_{wal} = w_{wal} \times (I_{los} + t_{wall} / 2) = 31 \text{ kNm/m}$ $M_{base} = W_{base} \times I_{base} / 2 = 12.8 \text{ kNm/m}$ Wall base

Design vertical load $M_v = W_v \times I_{\text{bad}} = 1.8 \text{ kNm/m}$

Total restoring moment $M_{max} = M_{wal} + M_{base} + M_v = 45.5 \text{ kNm/m}$

Check bearing pressure

Total moment for bearing $M_{total} = M_{rest} - M_{ct} = -10.9 \text{ kN m/m}$

Total vertical reaction $R = W_{total} = 32.2 \text{ kN/m}$ Distance to reaction $x_{\text{bar}} = M_{\text{lotal}} / R = -338 \text{ mm}$ Eccentricity of reaction e = abs((I_{baxe} / 2) - x_{bar}) = 1288 mm

WARNING - Beyond scope of calculation

Bearing pressure at toe $p_{toe} = R / (1.5 \times x_{bar}) = -63.3 \text{ kN/m}^2$ $p_{heel} = 0 \text{ kN/m}^2 = 0 \text{ kN/m}^2$ Bearing pressure at heel

PASS - Maximum bearing pressure is less than allowable bearing pressure

Project				Job Ref.
	15 Landor Road, London SW9 9RX		20.052	
Section				Sheet no.
Basement Underpinning Structural Design Report				91
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Ultimate limit state load factors

Dead load factor $\gamma_{\text{L}d} = 1.4$ Live load factor $\gamma_{\text{L}l} = 1.6$ Earth and water pressure factor $\gamma_{\text{L}d} = 1.4$

Factored vertical forces on wall

Wall stem $\begin{aligned} & w_{wall_f} = \gamma_{f_d} \times h_{atam} \times t_{wall} \times \gamma_{wall} = 24.8 \text{ kN/m} \\ & Wall base \\ & W_{base_f} = \gamma_{f_d} \times l_{base} \times \gamma_{base} \times \gamma_{base} = 18.8 \text{ kN/m} \\ & \text{Applied vertical load} \\ & W_{v_f} = \gamma_{f_d} \times W_{dead} + \gamma_{f_l} \times W_{live} = 1.4 \text{ kN/m} \\ & \text{Total vertical load} \\ & W_{total_f} = w_{wal_f} + w_{base_f} + W_{v_f} = 45 \text{ kN/m} \end{aligned}$

Factored horizontal at-rest forces on wall

 $\begin{aligned} &\text{Surcharge} & &F_{\text{sur_of}} = \gamma_{f,l} \times \text{K}_0 \times \text{Surcharge} \times \text{h}_{\text{eff}} = 26.4 \text{ kN/m} \\ &\text{Moist backfill above water table} & &F_{\text{m_su_of}} = \gamma_{f,n} \times 0.5 \times \text{K}_0 \times \gamma_{\text{m}} \times (\text{h}_{\text{eff}} - \text{h}_{\text{water}})^2 = 2.6 \text{ kN/m} \\ &\text{Moist backfill below water table} & &F_{\text{m_su_of}} = \gamma_{f,n} \times \text{K}_0 \times \gamma_{\text{m}} \times (\text{h}_{\text{eff}} - \text{h}_{\text{water}})^2 = 2.6 \text{ kN/m} \\ &\text{Saturated backfill} & &F_{\text{su_of}} = \gamma_{f,n} \times 0.5 \times \text{K}_0 \times (\gamma_{\text{s}^*} \cdot \gamma_{\text{water}}) \times \text{h}_{\text{water}}^2 = 22.5 \text{ kN/m} \\ &\text{Water} & &F_{\text{water}} = \gamma_{f,n} \times 0.5 \times \text{h}_{\text{water}}^2 \times \gamma_{\text{water}} = 33.4 \text{ kN/m} \end{aligned}$

Total horizontal load $F_{total,f} = F_{aur_{-}f} + F_{m_{-}a_{-}f} + F_{m_{-}b_{-}f} + F_{s_{-}f} + F_{water_{-}f} = 104.4 \text{ kN/m}$

Calculate propping force

Passive resistance of soil in front of wall $F_{p,f} = \gamma_{f,a} \times 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + t_{base} + d_{dx} - d_{exc})^2 \times \gamma_{mb} = 4.5 \text{ kN/m}$

Propping force $F_{prop,f} = max(F_{total_f} - F_{p_f} - (W_{total_f}) \times tan(\delta_b), 0 \text{ kN/m})$

 $F_{prop.f} = 84.8 \text{ kN/m}$

Factored overturning moments

Surcharge $M_{sur_{-}f} = F_{sur_{-}f} \times (h_{stf} - 2 \times d_{dx}) / 2 = 37 \text{ kNm/m}$

Moist backfill above water table $M_{m,a_{-}f} = F_{m,a_{-}f} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{dx}) / 3 = 6.3 \text{ kNm/m}$ Moist backfill below water table $M_{m,b_{-}f} = F_{m,b_{-}f} \times (h_{water} - 2 \times d_{dx}) / 2 = 21.5 \text{ kNm/m}$

Saturated backfill $M_{x,f} = F_{x,f} \times (h_{water} - 2 \times d_{dx}) / 2 = 21.5 \text{ kNm/m}$ Water $M_{x,f} = F_{x,f} \times (h_{water} - 3 \times d_{dx}) / 3 = 16.5 \text{ kNm/m}$ Water $M_{water,f} = F_{water,f} \times (h_{water} - 3 \times d_{dx}) / 3 = 24.5 \text{ kNm/m}$

Total overturning moment $M_{ol,f} = M_{sur,f} + M_{m,a,f} + M_{m,b,f} + M_{suf,f} + M_{waler,f} = 105.9 \text{ kNm/m}$

Restoring moments

 $\begin{aligned} \text{Wall stem} & \qquad \qquad M_{\text{wal}_f} = w_{\text{wal}_f} \times \left(I_{\text{los}} + t_{\text{wal}} / 2\right) = 43.4 \text{ kNm/m} \\ \text{Wall base} & \qquad \qquad M_{\text{base}_f} = w_{\text{base}_f} \times I_{\text{base}} / 2 = 17.9 \text{ kNm/m} \end{aligned}$

Design vertical load $M_{v_{\rm e}f}$ = $W_{v_{\rm e}f}$ × $I_{\rm bad}$ = 2.5 kNm/m

Total restoring moment $M_{mai_{-f}} = M_{wai_{-f}} + M_{base_{-f}} + M_{v_{-f}} = 63.7 \text{ kNm/m}$

Factored bearing pressure

Total moment for bearing $M_{lotal_i} = M_{mat_i} - M_{ol_i} = -42.2 \text{ kN m/m}$

 $\begin{array}{ll} \text{Total vertical reaction} & \text{R}_{\text{f}} = \text{W}_{\text{total},\text{f}} = 45.0 \text{ kN/m} \\ \\ \text{Distance to reaction} & \text{x}_{\text{bar},\text{f}} = \text{M}_{\text{total},\text{f}} / \text{R}_{\text{f}} = -937 \text{ mm} \\ \\ \text{Eccentricity of reaction} & \text{e}_{\text{f}} = \text{abs}((\text{I}_{\text{base},\text{f}}/2) - \text{x}_{\text{bar},\text{f}}) = 1887 \text{ mm} \\ \end{array}$

WARNING - Beyond scope of calculation

Bearing pressure at toe $p_{los_{-}f} = R_f / (1.5 \times x_{bar,f}) = -32 \text{ kN/m}^2$

	Project			Job Ref.	
	15 Landor Road, London SW9 9RX			20.052	
	Section			Sheet no.	
Basement Underpinning Structural Design Report				92	
	Calc. by	Date	Chk'd by	Date	Doc No.
	AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Bearing pressure at stem / toe $p_{\text{stem_loe_f}} = \max(p_{\text{loe_f}} - (\text{rate} \times I_{\text{loe}}), 0 \text{ kN/m}^2) = 0 \text{ kN/m}^2$

Bearing pressure at mid stem $p_{\text{stem_mid_f}} = \max(p_{\text{los_f}} - (\text{rate} \times (I_{\text{los}} + t_{\text{sail}} / 2)), 0 \text{ kN/m}^2) = 0 \text{ kN/m}^2$ Bearing pressure at stem / heel $p_{\text{stem_heaf_f}} = \max(p_{\text{los_f}} - (\text{rate} \times (I_{\text{los}} + t_{\text{sail}})), 0 \text{ kN/m}^2) = 0 \text{ kN/m}^2$

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Characteristic strength of concrete $f_{cu} = 30 \text{ N/mm}^2$ Characteristic strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum area of reinforcement k = 0.13 %Cover to reinforcement in toe $c_{loo} = 50 \text{ mm}$

Calculate shear for toe design

Shear from weight of base $V_{los_{-}wt_{-}base} = \gamma_{\ell_{-}d} \times \gamma_{base} \times I_{los} \times t_{base} = 15.9 \text{ kN/m}$

Total shear for toe design $V_{loe} = V_{loe \text{ wt base}} = 15.9 \text{ kN/m}$

Calculate moment for toe design

Moment from weight of base $M_{low,wl_base} = (\gamma_{l,d} \times \gamma_{base} \times (l_{low} + t_{wal}/2)^2/2) = 15.2 \text{ kNm/m}$

Total moment for toe design M_{loe} = M_{loe, wt. base} = 15.2 kNm/m

-100-

Check toe in bending

Width of toe b = 1000 mm/m

Depth of reinforcement $\begin{aligned} d_{los} &= t_{base} - c_{los} - (\varphi_{los} / 2) = 244.0 \text{ mm} \\ \text{Constant} \end{aligned}$ $\begin{aligned} K_{los} &= M_{los} / \left(b \times d_{los}^2 \times f_{cu}\right) = 0.008 \end{aligned}$

Compression reinforcement is not required

Lever arm $z_{\text{loe}} = \min(0.5 + \sqrt{(0.25 - (\min(K_{\text{loe}}, 0.225) / 0.9)), 0.95)} \times d_{\text{loe}}$

z_{ioe} = 232 mm

Area of tension reinforcement required $A_{x_los_dex} = M_{los} / (0.87 \times f_y \times z_{los}) = 151 \text{ mm}^2/\text{m}$

Minimum area of tension reinforcement $A_{a_los_min} = k \times b \times t_{lasse} = 390 \text{ mm}^2/\text{m}$

Area of tension reinforcement required $A_{u_lou_mq} = Max(A_{u_lou_dex}, A_{u_lou_min}) = 390 \text{ mm}^2/\text{m}$

Reinforcement provided 12 mm dia.bars @ 100 mm centres

Area of reinforcement provided A_{x_los_prov} = 1131 mm²/m

PASS - Painforcement or

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress $v_{loe} = V_{loe} / (b \times d_{loe}) = 0.065 \text{ N/mm}^2$

Allowable shear stress $v_{adm} = min(0.8 \times \sqrt{(f_{cu}/1 \text{ N/mm}^2)}, 5) \times 1 \text{ N/mm}^2 = 4.382 \text{ N/mm}^2$

	Project			Job Ref.	
15 Landor Road, London SW9 9RX			20.052		
	Section			Sheet no.	
	Basement Underpinning Structural Design Report				93
	Calc. by	Date	Chk'd by	Date	Doc No.
	AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

PASS - Design shear stress is less than maximum shear stress

From B\$8110:Part 1:1997 - Table 3.8

Design concrete shear stress

v_{toe} < v_{c, toe} - No shear reinforcement required

Design of reinforced concrete retaining wall stem (B\$ 8002:1994)

Material properties

Characteristic strength of concrete $f_{cu} = 30 \text{ N/mm}^2$ Characteristic strength of reinforcement $f_v = 500 \text{ N/mm}^2$

Wall details

Factored horizontal at-rest forces on stem

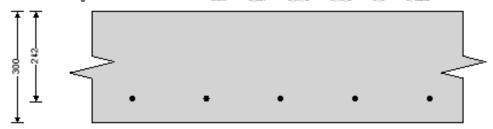
Surcharge $F_{x,mx,f} = \gamma_{f,i} \times K_0 \times \text{Surcharge} \times (h_{eff} - t_{tasse} - d_{ds}) = 26 \text{ kN/m}$ Moist backfill above water table $F_{x,m,a,f} = 0.5 \times \gamma_{f,a} \times K_0 \times \gamma_m \times (h_{eff} - t_{tasse} - d_{ds} - h_{sst})^2 = 31.2 \text{ kN/m}$ Moist backfill below water table $F_{x,m,b,f} = \gamma_{f,a} \times K_0 \times \gamma_m \times (h_{eff} - t_{tasse} - d_{ds} - h_{sst}) \times h_{sst} = 21.3 \text{ kN/m}$

v_{c toe} = 0.588 N/mm²

Saturated backfill $F_{x,x,f} = 0.5 \times \gamma_{f,n} \times K_0 \times (\gamma_{x^-} \gamma_{outler}) \times h_{sat}{}^2 = 2.3 \text{ kN/m}$ Water $F_{x,matter,f} = 0.5 \times \gamma_{f,n} \times \gamma_{outler} \times h_{sat}{}^2 = 3.4 \text{ kN/m}$

Calculate shear for stem design

Shear at base of stem $V_{stem} = F_{x,m,g,f} + F_{x,m,b,f} + F_{x,x,f} + F_{x,water,f} - F_{prop,f} = 2.2 \text{ kN/m}$


Calculate moment for stem design

Surcharge $M_{x,sur} = F_{x,sur,f} \times (h_{stern} + t_{basen}) / 2 = 39.6 \text{ kNm/m}$

Moist backfill above water table $M_{x_i,m,n} = F_{x_i,m,n,f} \times (2 \times h_{sot} + h_{inf} - d_{dx} + t_{base} / 2) / 3 = 47.9 \text{ kNm/m}$

Moist backfill below water table $M_{x_{...m_.b}} = F_{x_{..m_.b_.f}} \times h_{sat} / 2 = 7.5 \text{ kNm/m}$ Saturated backfill $M_{x_{...x}} = F_{x_{...x_.f}} \times h_{sat} / 3 = 0.5 \text{ kNm/m}$ Water $M_{x_{...m_ab_.e}} = F_{x_{...m_ab_.e_.f}} \times h_{sat} / 3 = 0.8 \text{ kNm/m}$

Total moment for stem design $M_{starr} = M_{s,star} + M_{s,m,s} + M_{s,m,b} + M_{s,s} + M_{s,water} = 96.3 kNm/m$

200____

Check wall stem in bending

Width of wall stem b = 1000 mm/m

Depth of rein forcement $d_{stem} = t_{net} - c_{stem} - (\varphi_{stem} / 2) = 242.0 \text{ mm}$ $Constant \qquad K_{stem} = M_{stem} / (b \times d_{stem}^2 \times f_{cu}) = 0.055$

Compression reinforcement is not required

Project				Job Ref.
15 Landor Road, London SW9 9RX			20.052	
Section			Sheet no.	
Basement Underpinning Structural Design Report				94
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Depth of reinforcement $d_{stem} = t_{wal} - c_{stem} - (\phi_{stem} / 2) = 242.0 \text{ mm}$ Constant $K_{stem} = M_{stem} / (b \times d_{stem}^2 \times f_{cu}) = 0.046$

Compression reinforcement is not required

Lever arm $z_{xtem} = min(0.5 + \sqrt{(0.25 - (min(K_{xtem}, 0.225) / 0.9)), 0.95)} \times d_{xtem}$

z_{stem} = 229 mm

Area of tension reinforcement required $A_{s_stam_dax} = M_{stam} / (0.87 \times f_y \times z_{stam}) = 819 \text{ mm}^2/\text{m}$

Minimum area of tension reinforcement $A_{a \text{ stem min}} = k \times b \times t_{wal} = 390 \text{ mm}^2/\text{m}$

Area of tension reinforcement required $A_{a_stam_ruq} = Max(A_{a_stam_dux}, A_{a_stum_min}) = 819 \text{ mm}^2/\text{m}$

Reinforcement provided 16 mm dia.bars @ 150 mm centres

Area of reinforcement provided A_{s_stem_prov} = 1340 mm²/m

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress $v_{xlem} = V_{xlem} / (b \times d_{xlem}) = 0.000 \text{ N/mm}^2$

Allowable shear stress $v_{adm} = min(0.8 \times \sqrt{(f_{cu}/1 \text{ N/mm}^2)}, 5) \times 1 \text{ N/mm}^2 = 4.382 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

From B \$8110: Part 1:1997 - Table 3.8

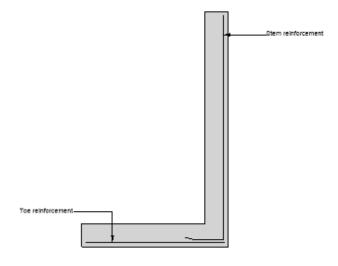
Design concrete shear stress $v_{c_stem} = 0.625 \text{ N/mm}^2$

 $v_{stem} < v_{c_{-atem}}$ - No shear reinforcement required

Check retaining wall deflection

Basic span/effective depth ratio ratio_{bas} = 7

Design service stress $f_s = 2 \times f_y \times A_{u,slam,mq} / (3 \times A_{u,slam,prov}) = 203.6 \text{ N/mm}^2$


Modification factor $factor_{tens} = min(0.55 + (477 \text{ N/mm}^2 - f_s)/(120 \times (0.9 \text{ N/mm}^2 + (M_{stern}^2)))), 2) = 1.54$

Maximum span/effective depth ratio ratio_{max} = ratio_{tax} × factor_{tanx} = 10.81

Actual span/effective depth ratio ratio_{act} = h_{stem} / d_{stem} = 10.33

PASS - Span to depth ratio is acceptable

Indicative retaining wall reinforcement diagram

Toe bars - 12 mm dia.@ 100 mm centres - (1131 mm²/m) Stem bars - 16 mm dia.@ 200 mm centres - (1005 mm²/m)

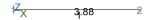
Project				Job Ref.
15 Landor Road, London SW9 9RX				20.052
Section			Sheet no.	
Basement Underpinning Structural Design Report				95
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

20. Design steel beams B4 and B5 supporting Chimney Breast.

Chimney brick work load

Chimney brickwork width	=	1.5	m
Chinmeybrickwork depth	=	0.4	m
Chimney brickwork height (first floor + Second floor) = 2.55 +2.55	=	5.1	m
Unit weight brickwork	=	18.0	kN/m ³
Reduced weight brickwork 30%	=	12.6	kN/m ³
Dead load of chimney brickwork	=	38.6	kN
UDL on UC beam for 1.5m width	=	25.7	kN/m
Beam Span (Max of B4 and B5)	=	3.88	m

Steel member analysis & design (EN1993-1-1:2005)


In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex Tedds calculation version 4.3.04

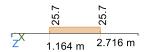
Analysis

Tedds calculation version 1.0.27

Geometry

Geometry (m) - Steel (EC3) - UC 203x203x46

Spa	Length	Section	Start Support	End Support
1	3.88	UC 203x203x46	Pinned	Pinned


UC 203x203x46: Area 59 cm², Inertia Major 4568 cm⁴, Inertia Minor 1548 cm⁴, Shear area parallel to Minor 15 cm², Shear area parallel to Major = 40 cm²

Steel (EC3): Density 7850 kg/m³, Youngs 210 kN/mm², Shear 80.8 kN/mm², Thermal 0.000012 °C⁻¹

Loading

Self weight included

Permanent - Loading (kN/m)

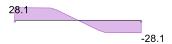
Load combination factors

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	96		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Load combination	Self	Permane	Imposed
STRENGTH DESIGN (Strength)	1.	1.	1.


Member Loads

Member	Load case	Load Type	Orientat	Description
Member1	Permanent	UDL	GlobalZ	25.7 kN/m at 1.164 m to 2.716 m


Results

Forces

Strength combinations - Moment envelope (kNm)

Strength combinations - Shear envelope (kN)

;

Partial factors - Section 6.1

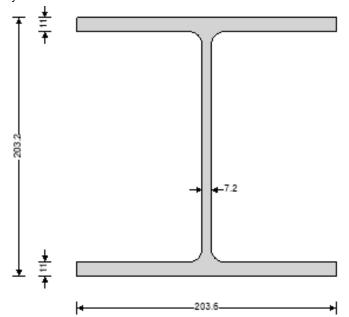
 $\begin{array}{ll} \text{Resistance of cross-sections;} & \gamma_{\text{M0}} = 1 \\ \text{Resistance of members to instability;} & \gamma_{\text{M1}} = 1 \\ \text{Resistance of tensile members to fracture;} & \gamma_{\text{M2}} = 1.1 \end{array}$

Library item: Partial factors out

Member1 design Section details

Section type; UC 203x203x46 (BS4-1)

Steel grade - EN 10025-2:2004; S355


Nominal thickness of element; $t_{nom} = max(t_f, t_w) = 11 \text{ mm}$

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	97		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Nominal yield strength; $f_y = 355 \text{ N/mm}^2$ Nominal ultimate tensile strength; $f_u = 470 \text{ N/mm}^2$ Modulus of elasticity; $E = 210000 \text{ N/mm}^2$

Library item: Section details out

UC 203x203x46 (B\$4-1) Section depth, h, 203.2 mm Section breadth, b, 203.6 mm Mass of section, Mass, 46.1 kg/m Flange thickness, t, 11 mm Web thickness, t_x, 7.2 mm Root radius, r, 10.2 mm Area of section, A, 5873 mm2 Radius of gyration about y-axis, I_, 88.19 mm Radius of gyration about z-axis, I,, 51.343 mm Elastic section modulus about y-axis, W_{el.s}, 449588 mm³ Elastic section modulus about z-axis, W_{al.z}, 152083 mm³ Plastic section modulus about y-axis, $W_{\rm pl.p.}$, 497439 mm $^{\rm 3}$ Plastic section modulus about z-axis, W_{m.}, 230864 mm³ Second moment of area about y-axis, I_, 45678168 mm⁴ Second moment of area about z-axis, I, 15482057 mm⁴

Lateral restraint

Both flanges have lateral restraint at supports only

Classification of cross sections - Section 5.5

 $\epsilon = \sqrt{[235 \text{ N/mm}^2 / f_y]} = \textbf{0.81}$

Library item: Class heading out

Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section; c = d = 160.8 mm

c / t_w = 22.3 = 27.4 × ϵ <= 72 × ϵ ; Class 1

Library item: Int bend class out

Outstand flanges - Table 5.2 (sheet 2 of 3)

Width of section; $c = (b - t_w - 2 \times r) / 2 = 88 \text{ mm}$

c / $t_f = 8 = 9.8 \times \varepsilon \le 10 \times \varepsilon$; Class 2

Library item: Out flange class out

Section is class 2

Check design at start of span Check shear - Section 6.2.6

Height of web; $\begin{aligned} h_w = h - 2 \times t_f = \textbf{181.2} \text{ mm}; & \eta = \textbf{1} \\ h_w / t_w = 25.2 = 30.9 \times \epsilon / \eta < 72 \times \epsilon / \eta \end{aligned}$

Shear buckling resistance can be ignored Library item: Shear slenderness out

Design shear force; $V_{y,Ed} = 28.1 \text{ kN}$

Shear area - cl 6.2.6(3); $A_{v} = \max(A - 2 \times b \times t_{f} + (t_{w} + 2 \times r) \times t_{f}, \eta \times h_{w} \times t_{w}) = 1698 \text{ mm}^{2}$

Design shear resistance - cl 6.2.6(2); $V_{c,y,Rd} = V_{pl,y,Rd} = A_v \times (f_y / \sqrt{3}) / \gamma_{M0} = 347.9 \text{ kN}$

 $V_{y,Ed} / V_{c,y,Rd} =$ **0.081**

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	98		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

PASS - Design shear resistance exceeds design shear force

Library item: Shear resistance out Check design 1940 mm along span Check bending moment - Section 6.2.5

Design bending moment; $M_{y,Ed} = 42.9 \text{ kNm}$

Design bending resistance moment - eq 6.13; $M_{c,y,Rd} = M_{pl,y,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 176.6 \text{ kNm}$

 $M_{y,Ed} / M_{c,y,Rd} = 0.243$

PASS - Design bending resistance moment exceeds design bending moment

Library item: Bending resistance out

Slenderness ratio for lateral torsional buckling

Correction factor - Table 6.6; $k_c = 0.94$

 $C_1 = 1 / k_c^2 = 1.132$

Poissons ratio; v = 0.3

Shear modulus; $G = E / [2 \times (1 + v)] = 80769 \text{ N/mm}^2$

Unrestrained effective length; $L = 1.2 \times L_{m1_s1_seg1_T} + 2 \times h = 5062 \text{ mm}$

Elastic critical buckling moment; $M_{cr} = C_1 \times \pi^2 \times E \times I_z / L^2 \times \sqrt{(I_W / I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z))} = 217.3$

kNm

Slenderness ratio for lateral torsional buckling; $\overline{\lambda}_{LT} = \sqrt{(W_{pl.y} \times f_y / M_{cr})} = 0.901$

Limiting slenderness ratio; $\overline{\lambda}_{LT,0} = 0.4$

 $\overline{\lambda}_{LT} > \overline{\lambda}_{LT,0}$ - Lateral torsional buckling cannot be ignored

Library item: Bending LTB slenderness out Check buckling resistance - Section 6.3.2.1

Buckling curve - Table 6.5; b

Imperfection factor - Table 6.3; $\alpha_{LT} = 0.34$ Correction factor for rolled sections; $\beta = 0.75$

LTB reduction determination factor; $\phi_{\text{LT}} = 0.5 \times [1 + \alpha_{\text{LT}} \times (\overline{\lambda}_{\text{LT}} - \overline{\lambda}_{\text{LT},0}) + \beta \times \overline{\lambda}_{\text{LT}}^2] = \textbf{0.890}$ LTB reduction factor - eq 6.57; $\chi_{\text{LT}} = \min(1/[\phi_{\text{LT}} + \sqrt{(\phi_{\text{LT}}^2 - \beta \times \overline{\lambda}_{\text{LT}}^2)}], 1, 1/\overline{\lambda}_{\text{LT}}^2) = \textbf{0.759}$

Modification factor; $f = \min(1 - 0.5 \times (1 - k_c) \times [1 - 2 \times (\overline{\lambda}_{LT} - 0.8)^2], 1) = \mathbf{0.971}$

Modified LTB reduction factor - eq 6.58; $\chi_{LT,mod} = min(\chi_{LT}/f, 1, 1/\overline{\lambda}_{LT}^2) = 0.782$

Design buckling resistance moment - eq 6.55; $M_{b,y,Rd} = \chi_{LT,mod} \times W_{pl.y} \times f_y \, / \, \gamma_{M1} = \textbf{138.1 kNm}$

 $M_{y,Ed} / M_{b,y,Rd} = 0.311$

PASS - Design buckling resistance moment exceeds design bending moment

Library item: Bending buckling out Check design 1940 mm along span Check y-y axis deflection - Section 7.2.1

Maximum deflection; $\delta_y = 6.9 \text{ mm}$

Allowable deflection; $\delta_{y,Allowable} = L_{m1_s1} / 360 = 10.8 \text{ mm}$

 $\delta_y / \delta_{y,Allowable} = 0.639$

PASS - Allowable deflection exceeds design deflection

Library item: Deflection out

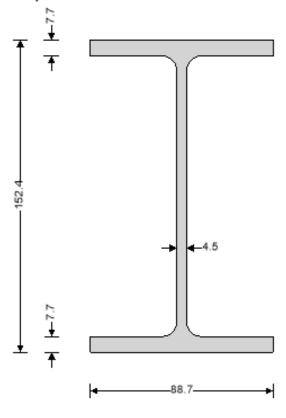
Project		Job Ref.		
15 Landor Road, London SW9 9RX				20.052
Section		Sheet no.		
Basem	ent Underpinnir	99		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

21. Design steel column C3.

steel column design

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Tedds calculation version 1.1.04


Library item: Calc title Partial factors - Section 6.1

Resistance of cross-sections; $\gamma_{M0} = 1$

Resistance of members to instability; $\gamma_{M1} = 1$

Resistance of cross-sections in tension to fracture; $\gamma_{M2} = 1.1$

Library item: Partial factors Library item: Partial factors

UB 152x89x16 (BS4-1) Section depth, h, 152.4 mm

Section breadth, b, 88.7 mm

Mass of section, Mass, 16 kg/m
Flange thickness, t_p, 7.7 mm
Web thickness, t_w, 4.5 mm
Root radius, r, 7.6 mm
Area of section, A, 2032 mm²
Radius of gyration about y-axis, i_y, 64.074 mm
Radius of gyration about z-axis, i_g, 21.016 mm
Elastic section modulus about y-axis, W_{el.y}, 109483 mm³
Elastic section modulus about z-axis, W_{el.y}, 20237 mm³
Plastic section modulus about y-axis, W_{gl.y}, 123256 mm³
Plastic section modulus about z-axis, W_{gl.y}, 31180 mm³
Second moment of area about y-axis, I_y, 8342621 mm⁴
Second moment of area about z-axis, I_y, 897506 mm⁴

Column details

Column section UB 152x89x16

Steel grade \$355

Project		Job Ref.		
	15 Landor Road	20.052		
Section			Sheet no.	
Basem	ent Underpinnir	sign Report	100	
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Column details

Column section UB 152x89x16

Steel grade \$355

 $f_y = f_{y_basic} = 355.0 \text{ N/mm}^2$; _tmp.fy = $f_y = 355.0 \text{ N/mm}^2$; _tmp.fyReduced = $f_y = 355.0 \text{ N/mm}^2$

Yield strength $f_y = 355 \text{ N/mm}^2$ Ultimate strength $f_u = 470 \text{ N/mm}^2$ $E = E_{SEC3} = 210 \text{ kN/mm}^2$; v = 0.3 = 0.3Modulus of elasticity $E = 210 \text{ kN/mm}^2$

Poisson's ratio v = 0.3

Shear modulus $G = E / [2 \times (1 + v)] = 80.8 \text{ kN/mm}^2$

Column geometry

System length for buckling - Major axis $L_y = 2550 \text{ mm}$ System length for buckling - Minor axis $L_z = 2550 \text{ mm}$

The column is not part of a sway frame in the direction of the minor axis

The column is not part of a sway frame in the direction of the major axis

Column loading

Axial load $N_{Ed} = 56 \text{ kN (Compression)}$

Major axis moment at end 1 - Bottom $M_{y,Ed1} = 0.0 \text{ kNm}$ Major axis moment at end 2 - Top $M_{y,Ed2} = 0.0 \text{ kNm}$

Minor axis moment at end 1 - Bottom $M_{z,Ed1} = 0.0 \text{ kNm}$ Minor axis moment at end 2 - Top $M_{z,Ed2} = 0.0 \text{ kNm}$

Major axis shear force $V_{y,Ed} = \mathbf{0} \text{ kN}$ Minor axis shear force $V_{z,Ed} = \mathbf{0} \text{ kN}$

Library item - Column details

Buckling length for flexural buckling - Major axis

End restraint factor; $K_y = 1.000$

Buckling length; $L_{cr_y} = L_y \times K_y = 2550 \text{ mm}$

Library item - Buckling length factor y

Buckling length for flexural buckling - Minor axis

End restraint factor; $K_z = 1.000$

Buckling length; $L_{cr_z} = L_z \times K_z = 2550 \text{ mm}$

Library item - Buckling length factor z Web section classification (Table 5.2)

 $f_y = _tmp.fy = 355 \text{ N/mm}^2$

Coefficient depending on f_y ; $\varepsilon = \sqrt{(235 \text{ N/mm}^2 / f_y)} = \textbf{0.814}$

Depth between fillets; $c_w = h - 2 \times (t_f + r) = 121.8 \text{ mm}$

Ratio of c/t; $ratio_w = c_w / t_w = 27.07$

Length of web taken by axial load; $I_w = min(N_{Ed} / (f_y \times t_w), c_w) = 35.1 \text{ mm}$ For class 1 & 2 proportion in compression; $\alpha = (c_w/2 + I_w/2) / c_w = 0.644$

Limit_{1w} = if(α >0.5,(396 × ϵ) / (13 × α - 1), 36 × ϵ / α) = **43.71**

Limit for class 1 web; Limit_{1w} = $(396 \times \epsilon) / (13 \times \alpha - 1) =$;**43.71**

The web is class 1

Library item - Web class 1 I/PFC

Flange section classification (Table 5.2)

 $c_f = if(type=="l",(b - t_w) / 2 - r, b - t_w - r) = 34.5 mm$

Project		Job Ref.		
	15 Landor Road	20.052		
Section			Sheet no.	
Basem	ent Underpinnir	sign Report	101	
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Outstand length; $c_f = (b - t_w) / 2 - r = ;34.5; mm$

Ratio of c/t; ratio_f = $c_f / t_f = 4.48$

Limit for class 1 flange; Limit_{1f} = $9 \times \epsilon$ = **7.32** Limit for class 2 flange; Limit_{2f} = $10 \times \epsilon$ = **8.14** Limit for class 3 flange; Limit_{3f} = $14 \times \epsilon$ = **11.39**

Class_f = if(ratio_f <= $9 \times \epsilon$, 1, if(ratio_f <= $10 \times \epsilon$, 2, if(ratio_f <= $14 \times \epsilon$, 3, 4))) = 1

The flange is class 1

Library item - Flange class I/PFC Overall section classification

Class = max(Classw, Classf) = 1

The section is class 1

Library item - Overall class

Resistance of cross section (cl. 6.2)

Library item - CS title

Compression (cl. 6.2.4)

Design force; $N_{Ed} = 56 \text{ kN}$

 $f_y = _tmp.fy = 355 \text{ N/mm}^2$

Design resistance; $N_{c,Rd} = N_{pl,Rd} = A \times f_y / \gamma_{M0} = 721 \text{ kN}$

 $N_{Ed} / N_{c,Rd} = 0.078$

PASS - The compression design resistance exceeds the design force

Library item - CS comp resistance

Buckling resistance (cl. 6.3)

 $f_y = max(_tmp.fyReduced, \, 0.001 \, \, N/mm^2) = \textbf{355} \, \, N/mm^2$

Yield strength for buckling resistance; $f_y = 355 \text{ N/mm}^2$

Library item - Buck resistance title

Flexural buckling - Major axis

Elastic critical buckling force; $N_{cr,y} = \pi^2 \times E \times I_y / L_{cr_y}^2 = 2659 \text{ kN}$

Non-dimensional slenderness; $\overline{\lambda}_y = \sqrt{(A \times f_y / N_{cr,y})} = 0.521$

Buckling curve (Table 6.2); a

 α_y = Select(_scd.FBucklingCurveY,"a₀", 0.13, "a", 0.21, "b", 0.34, "c", 0.49, "d", 0.76) = **0.21**

Imperfection factor (Table 6.1); $\alpha_y = 0.21$

Parameter $\Phi; \Phi_y = 0.5 \times [1 + \alpha_y \times (\bar{\lambda}_y - 0.2) + \bar{\lambda}_y^2] = 0.669$

Reduction factor; $\chi_y = \text{min}(1.0,\,1\,/\,[\Phi_y + \sqrt{(\Phi_y^2 - \,\overline{\lambda}_y^2)}]) = \textbf{0.918}$

Design buckling resistance; $N_{b,y,Rd} = \chi_y \times A \times f_y / \gamma_{M1} = 662.0 \text{ kN}$

 $N_{Ed} / N_{b,y,Rd} = 0.085$

PASS - The flexural buckling resistance exceeds the design axial load

Library item - Flexural buckling y

Flexural buckling - Minor axis

Elastic critical buckling force; $N_{cr,z} = \pi^2 \times E \times I_z / L_{cr_z}^2 =$ 286 kN

Non-dimensional slenderness; $\overline{\lambda}_z = \sqrt{(A \times f_y / N_{cr,z})} = 1.588$

Buckling curve (Table 6.2); **b**

 α_z = Select(_scd.FBucklingCurveZ,"a₀", 0.13, "a", 0.21, "b", 0.34, "c", 0.49, "d", 0.76) = **0.34**

Imperfection factor (Table 6.1); $\alpha_z = 0.34$

Parameter Φ ; $\Phi_z = 0.5 \times [1 + \alpha_z \times (\overline{\lambda}_z - 0.2) + \overline{\lambda}_z^2] = 1.997$

 $\text{Reduction factor;} \qquad \chi_z = \text{min}(1.0,\,1\,/\,[\Phi_z + \sqrt{(\Phi_z^2\,-\,\overline{\lambda}_z^2)}]) = \textbf{0.312}$

Design buckling resistance; $N_{b,z,Rd} = \chi_z \times A \times f_y / \gamma_{M1} = 224.9 \text{ kN}$

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	102		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

 $N_{Ed} / N_{b,z,Rd} = 0.249$

PASS - The flexural buckling resistance exceeds the design axial load

Library item - Flexural buckling z

Torsional and torsional-flexural buckling (cl. 6.3.1.4)

Torsional buckling length factor; $K_T = 1.00$

Effective buckling length; $L_{cr_T} = K_T \times max(L_y, L_z) = 2550 \text{ mm}$

e = if(type=="C",[(b - $t_w/2$)² × (h - t_f)² × t_f] / (4 × t_y), 0 mm) = **0.0** mm

; ;

 $y_0 = if(type=="C",e - t_w/2 + getvar("y_s", 0 mm), 0 mm) = 0.0 mm$

Distance from shear ctr to centroid along major axis; $y_0 = ; \mathbf{0.0}; \text{ mm}$

 $z_0 = 0 \text{ mm}$

Distance from shear ctr to centroid along minor axis; $z_0 = 0.0$ mm

 $i_0 = \sqrt{(i_y^2 + i_z^2 + y_0^2 + z_0^2)} = 67.4 \text{ mm}$

 $\beta_T = 1 - (y_0 / i_0)^2 = 1.000$

Elastic critical torsional buckling force; $N_{cr,T} = 1 / i_0^2 \times (G \times I_t + \pi^2 \times E \times I_w / L_{cr_T}^2) = 962 \text{ kN}$

Elastic critical torsional-flexural buckling force; $N_{\text{cr},TF} = N_{\text{cr},y}/(2\times\beta\tau)\times[1+N_{\text{cr},T}/N_{\text{cr},y}-\sqrt{[(1-N_{\text{cr},T}/N_{\text{cr},y})^2+4\times(y_0/i_0)^2\times N_{\text{cr},T}/N_{\text{cr},y}]]}$

 $N_{cr,TF} = 962 \text{ kN}$

Non-dimensional slenderness; $\overline{\lambda}_T = \sqrt{(A \times f_y / min(N_{cr,T}, N_{cr,TF}))} = \mathbf{0.866}$

Buckling curve (Table 6.2);

 α_T = Select(_scd.TBucklingCurve,"a₀", 0.13, "a", 0.21, "b", 0.34, "c", 0.49, "d", 0.76) = **0.34**

Imperfection factor (Table 6.1); $\alpha T = 0.34$

Parameter Φ ; $\Phi_T = 0.5 \times [1 + \alpha_T \times (\overline{\lambda}_T - 0.2) + \overline{\lambda}_T^2] = 0.988$

Reduction factor; $\chi_T = \min(1.0, 1 / [\Phi_T + \sqrt{(\Phi_T^2 - \overline{\lambda}_T^2)}]) = 0.683$

Design buckling resistance; $N_{b,T,Rd} = \chi_T \times A \times f_y / \gamma_{M1} = 492.6 \text{ kN}$

 $N_{Ed} / N_{b,T,Rd} = 0.114$

PASS - The torsional/torsional-flexural buckling resistance exceeds the design axial load

Library item - Tor/tor-flex buckling

Minimum buckling resistance

Minimum buckling resistance; $N_{b,Rd} = min(N_{b,y,Rd}, N_{b,z,Rd}, N_{b,T,Rd}) = 224.9 \text{ kN}$

 $N_{Ed} / N_{b,Rd} = 0.249$

PASS - The axial load buckling resistance exceeds the design axial load

Library item - Min buck resist I/PFC

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	103		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

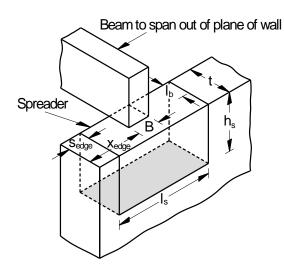
22. Design padstone P3 and P4.

MASONRY BEARING DESIGN TO BS5628-1:2005

TEDDS calculation version 1.0.06

Masonry details

Masonry type; Clay or calcium silicate bricks


Compressive strength of unit; punit = 5.0 N/mm2

Mortar designation; iii

Category of masonry units; Category II

Category of construction control; Normal

Partial safety factor for material strength; gm = 3.5Thickness of load bearing leaf; t = 110 mmEffective thickness of masonry wall; t = 250 mmHeight of masonry wall; t = 2550 mmEffective height of masonry wall; t = 2550 mm

Bearing details

Beam spanning out of plane of wall

Width of bearing; B = 200 mmLength of bearing; Ib = 110 mmEdge distance; xedge = 200 mm

Compressive strength from Table 2 BS5628:Part 1 - Clay or calcium silicate bricks

Mortar designation; Mortar = "iii"

Brick compressive strength; punit = 5.0 N/mm2Characteristic compressive strength; fk = 2.50 N/mm2

Loading details

Characteristic concentrated dead load; Gk = 21 kN

Project			Job Ref.	
Fioject	15 Landor Road	20.052		
Section				Sheet no.
Basen	nent Underpinnir	104		
Calc. by	Date Chk'd by Date		Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Characteristic concentrated imposed load; Qk = 0 kN

Design concentrated load; $F = (Gk \times 1.4) + (Qk \times 1.6) = 29.4 \text{ kN}$

Characteristic distributed dead load; gk = 0.0 kN/mCharacteristic distributed imposed load; qk = 0.0 kN/m

Design distributed load; $f = (gk \times 1.4) + (qk \times 1.6) = 0.0 \text{ kN/m}$

Masonry bearing type

Bearing type; Type 2
Bearing safety factor; gbear = 1.50

Check design bearing without a spreader

Design bearing stress; $fca = F/(B \times lb) + f/t = 1.336 \text{ N/mm2}$ Allowable bearing stress; $fcp = gbear \times fk/gm = 1.071 \text{ N/mm2}$

FAIL - Design bearing stress exceeds allowable bearing stress, use a spreader

Spreader details

Length of spreader; Is = 600 mmDepth of spreader; hs = 215 mm

Edge distance; sedge = max(0 mm, xedge - (ls - B)/2) = 0 mm

Spreader bearing type

Bearing type; Type 3
Bearing safety factor; gbear = 2.00

Check design bearing with a spreader Loading acts at midpoint of spreader

Design bearing stress; $fca = F/(ls \times t) + f/t = 0.445 \text{ N/mm2}$ Allowable bearing stress; $fcp = gbear \times fk/gm = 1.429 \text{ N/mm2}$

PASS - Allowable bearing stress exceeds design bearing stress

Check design bearing at 0.4 × h below the bearing level

Slenderness ratio; hef / tef = 10.20Eccentricity at top of wall; ex = 0.0 mm

From BS5628:1 Table 7

Capacity reduction factor; b = 0.99Length of bearing distributed at $0.4 \times h$; Id = 1420 mm

Maximum bearing stress; $fca = F / (Id \times t) + f / t = 0.188 \text{ N/mm2}$ Allowable bearing stress; $fcp = b \times fk / gm = 0.707 \text{ N/mm2}$

PASS - Allowable bearing stress at 0.4 'h below bearing level exceeds design bearing stress

Project	Project			Job Ref.
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	nent Underpinnir	105		
Calc. by	Calc. by Date Chk'd by Date		Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

23. Design Connection CON4

Project data

Project name

Project number

Author

Description

Date 3/16/2021 Design code EN

Material

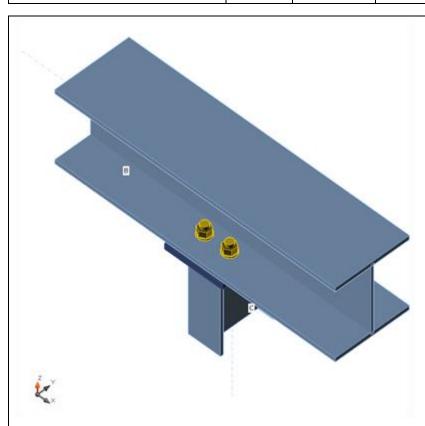
Steel S 355

Project item connection

Design

Name connection

Description


Analysis Stress, strain/ simplified loading

Beams and columns

Name	Cross-section	β – Direction [°]	γ - Pitch [°]	α - Rotation [°]	Offset ex [mm]	Offset ey [mm]	Offset ez [mm]	Forces in
С	1 - UB 152 x 89 x 16	0.0	90.0	90.0	100	0	0	Node
В	2 - UC 203 x 203 x 46	0.0	0.0	0.0	0	0	0	Node

Project		Job Ref.			
	15 Landor Road	20.052			
Section				Sheet no.	
Basement Underpinning Structural Design Report				106	
Calc. by	Calc. by Date Chk'd by Date		Date	Doc No.	
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0	

Cross-sections

Name	Material
1 - UB 152 x 89 x 16	S 355
2 - UC 203 x 203 x 46	S 355

Bolts

Name	Bolt assembly	Diameter [mm]	fu [MPa]	Gross area [mm ²]
M20 8.8	M20 8.8	20	800.0	314

Load effects (equilibrium not required)

Name	Member	N [kN]	Vy [kN]	Vz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
LE1	В	0.0	0.0	-56.0		0.0	0.0
	В	0.0	0.0	0.0	0.0	0.0	0.0

Check

Summary

Name	Value	Status
Analysis	100.0%	OK

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	107		
Calc. by	Calc. by Date Chk'd by Date		Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Plates	0.0 < 5%	OK
Bolts	1.1 < 100%	OK
Welds	24.5 < 100%	OK
Buckling	33.00	

Plates

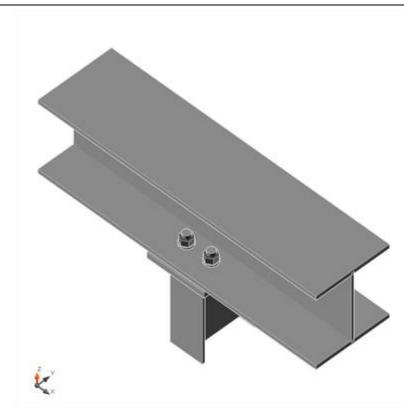
Name	Thickness [mm]	Loads	σ _{Ed} [MPa]	ε _{Pl} [%]	Status
C-bfl 1	7.7	LE1	48.1	0.0	OK
C-tfl 1	7.7	LE1	48.0	0.0	OK
C-w 1	4.5	LE1	124.7	0.0	OK
B-bfl 1	11.0	LE1	72.8	0.0	OK
B-tfl 1	11.0	LE1	73.2	0.0	OK
B-w 1	7.2	LE1	85.0	0.0	OK
EP1	15.0	LE1	71.3	0.0	OK

Design data

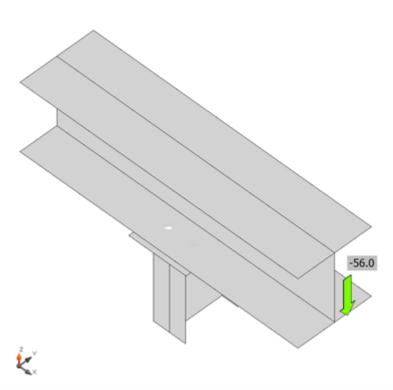
Material	f _y [MPa]	ε _{lim} [%]
S 355	355.0	5.0

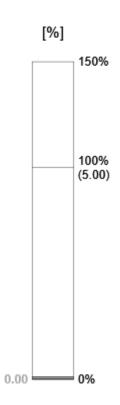
Symbol explanation

 $\epsilon_{Pl} \quad Strain$

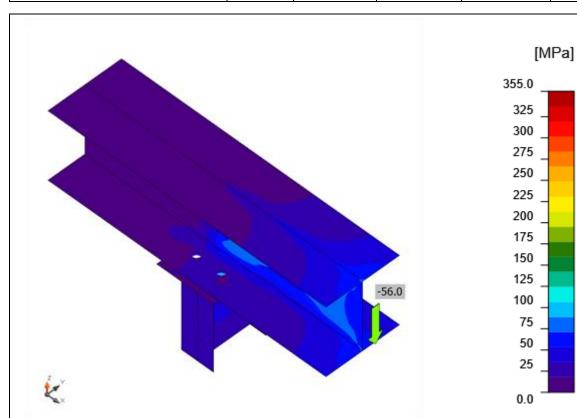

 $\sigma_{\text{Ed}}\quad \text{Eq. stress}$

fy Yield strength


ε_{lim} Limit of plastic strain


Project				Job Ref.
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	ng Structural Des	sign Report	108
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Overall check, LE1 Error! Bookmark not defined.



Strain check, LE1 Error! Bookmark not defined.

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	ng Structural Des	sign Report	109
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Equivalent stress, LE1 Error! Bookmark not defined.

Bolts

	Name	Loads	F _{t,Ed} [kN]	V [kN]	Ut _t [%]	F _{b,Rd} [kN]	Ut _s [%]	Ut _{ts} [%]	Status
	B1	LE1	0.1	1.0	0.1	215.6	1.1	1.1	OK
2 1	B2	LE1	0.1	1.0	0.0	215.6	1.1	1.1	OK
+ +	В3	LE1	0.1	1.0	0.1	215.6	1.1	1.1	OK
4 4	B4	LE1	0.1	1.0	0.1	215.6	1.1	1.1	ОК

Design data

Name	F _{t,Rd}	B _{p,Rd}	F _{v,Rd}
	[kN]	[kN]	[kN]
M20 8.8 - 1	141.1	256.0	94.1

Symbol explanation

F_{t,Rd} Bolt tension resistance EN 1993-1-8 tab. 3.4

F_{t,Ed} Tension force

B_{p,Rd} Punching shear resistance

V Resultant of shear forces Vy, Vz in bolt $F_{v,Rd}$ Bolt shear resistance EN_1993-1-8 table 3.4

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	nent Underpinnir	ng Structural Des	sign Report	110
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

F_{b,Rd} Plate bearing resistance EN 1993-1-8 tab. 3.4

Ut_t Utilization in tension Ut_s Utilization in shear

Ut_{ts} Utilization in tension and shear EN 1993-1-8 table 3.4

Welds (Plastic redistribution)

Item	Edge	Throat th. [mm]	Length [mm]	Loads	σ _{w,Ed} [MPa]	ε _{Pl} [%]	σ⊥ [MPa]	т _{іі} [MPa]	τ <u>⊥</u> [MPa]	Ut [%]	Ut。 [%]	Status
EP1	C-bfl 1	⊿ 4.3 ▶	89	LE1	78.7	0.0	-30.1	34.3	-24.3	18.1	7.2	OK
		4 4.3 ▶	89	LE1	55.3	0.0	-14.7	23.1	20.3	12.7	7.8	OK
EP1	C-tfl 1	⊿ 4.3 ▶	89	LE1	54.9	0.0	-14.7	-22.9	-20.3	12.6	7.6	OK
		4 4.3 ▶	89	LE1	78.2	0.0	-29.7	34.1	24.1	18.0	7.1	OK
EP1	C-w 1	⊿ 4.3 ▶	145	LE1	106.9	0.0	-50.1	-21.4	-50.1	24.5	13.6	OK
		4 4.3 ▶	145	LE1	106.8	0.0	-50.1	21.4	50.1	24.5	13.6	OK

Design data

	β _w	σ _{w,Rd}	0.9 σ
	[-]	[MPa]	[MPa]
S 355	0.90	435.6	352.8

Symbol explanation

 $\epsilon_{\text{Pl}} \qquad \text{Strain}$

 $\sigma_{w,\text{Ed}}$ Equivalent stress

 $\sigma_{\text{w,Rd}}$ Equivalent stress resistance

 $\sigma_{\perp} \qquad \text{Perpendicular stress}$

 τ_{\parallel} Shear stress parallel to weld axis

 τ_{\perp} Shear stress perpendicular to weld axis

 $0.9 \ \sigma$ Perpendicular stress resistance - $0.9 \text{*fu/}\gamma\text{M2}$

β_w Corelation factor EN 1993-1-8 tab. 4.1

Ut Utilization

Utc Weld capacity utilization

Buckling

Loads	Shape	Factor [-]
LE1	1	33.00
	2	39.66
	3	47.51
	4	55.15
	5	62.31
	6	63.31

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	ng Structural Des	sign Report	111
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

Code settings

Item	Value	Unit	Reference
ү мо	1.00	-	EN 1993-1-1: 6.1
ү м1	1.00	-	EN 1993-1-1: 6.1
ү м2	1.25	-	EN 1993-1-1: 6.1
У мз	1.25	-	EN 1993-1-8: 2.2
Ус	1.50	-	EN 1992-1-1: 2.4.2.4
γinst	1.20	-	ETAG 001-C: 3.2.1
Joint coefficient βj	0.67	-	EN 1993-1-8: 6.2.5
Effective area - influence of mesh size	0.10	-	
Friction coefficient - concrete	0.25	-	EN 1993-1-8
Friction coefficient in slip-resistance	0.30	-	EN 1993-1-8 tab 3.7
Limit plastic strain	0.05	-	EN 1993-1-5
Weld stress evaluation	Plastic redistribution		
Detailing	No		
Distance between bolts [d]	2.20	-	EN 1993-1-8: tab 3.3
Distance between bolts and edge [d]	1.20	-	EN 1993-1-8: tab 3.3
Concrete breakout resistance	Yes		ETAG 001-C
Use calculated αb in bearing check.	Yes		EN 1993-1-8: tab 3.4
Cracked concrete	Yes		
Local deformation check	No		
Local deformation limit	0.03	-	CIDECT DG 1, 3 - 1.1
Geometrical nonlinearity (GMNA)	Yes		Large deformations for hollow sections

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnir	ng Structural Des	sign Report	112
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

24. Designer's risk assessment

24.1 Health and safety

- 1. All work will be carried out in accordance with the relevant health and safety legislation including the Construction (Design and Management) Regulations 2007, the Health and Safety at Work Act 1974 and the Management of Health and Safety at Work Regulations 1999.
- 2. To comply with the above, detailed risk assessments and method statements will be developed by the main contractor for all site activities prior to commencing the works. This will include but not be limited to measures for protecting the public, local environment and surrounding areas.
- 3. As vehicles arrive, unload, and leave the site they will be supervised by banksmen. During loading/unloading vehicles, barriers will be erected across the pavement to prevent access by pedestrians, which will be supervised by banksmen. At all other times, the public/pedestrians will have right of way along the pathways that surround the site. The construction site entrance will be kept closed and closely monitored to prevent unauthorized access.

24.2 Noise control

- 1. All noisy work on site will be carried out in accordance with guidance provided by RBKC. It is intended that site hours will be Monday to Friday 8am to 6pm, Saturday 8am to 1pm, Sunday and public holidays no working.
- The site hoarding will assist in acting as a noise barrier. All machinery, tools and equipment will
 be well maintained and silenced where possible for items such as compressors, generators, and
 power tools. Stationary noise sources will be shielded with acoustic barriers were considered
 necessary.
- 3. In all cases, the best practicable means of minimising noise will be used, and the guidance given in British Standard BS 5228: Parts 1, and 2 (1984) and Part 4 (1986) entitled 'Noise control on construction and open sites' will be used where practical.
- 4. In the event that a complaint or concern is raised, an immediate review will be completed to remove the problem wherever possible and to establish what levels of noise have been emitted from the site.
- 5. These actions may include reducing the operating hours, re-siting the equipment, changing the method of working or providing temporary barriers.

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	nent Underpinnir	ng Structural Des	sign Report	113
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

24.3 Party Wall Matters

1. The Party Wall etc Act 1996 provides owners of buildings with certain rights and obligations to adjoining owners for work in relation to party walls or similar structures. Therefore, the requirements of the act will be adhered to which will require party wall agreements with all adjoining owners prior to the works commencing. This may include the Highways Department of the city council.

24.4 Strategy for waste Disposal and management

A waste management strategy for the project will be implemented to ensure that:

- The site is kept clean and tidy.
- The collection of waste is from a central point.
- There is segregation of waste on site.
- The removal of waste products from site is minimised by recycling and re-use of excess materials wherever possible.
- Waste is disposed of legally at licensed tips and/or designated sites.
- Disruption to traffic in the surrounding area is minimised.

Prior to the works commencing the removal of waste will be covered by a site waste management plan developed by the contractors in line with this CMS, which will follow the requirements of the Environment Agency under S.34 of the Environmental Protection Act 1990 and the guidelines contained in the statutory guidance, Waste Management, The Duty of Care, A Code of Practice, 1996. This will be developed further in strict accordance with this strategy once a main contractor has been appointed for the project.

Project		Job Ref.		
	15 Landor Road	20.052		
Section		Sheet no.		
Basem	ent Underpinnin	114		
Calc. by	Date	Chk'd by	Date	Doc No.
AJ	10/03/2021	FM	10/03/2021	REP-ST-20-052-01 A0

25. Outline Method Statement for the Basement Construction

Please refer to the structural drawings and Report – REP-ST-20-052-01-R1

26. Appendix 01: Designer's risk assessment form

Prepared by: – Eng A Jaiswal (BEng MSc) Checked by: F. Maida BSc MSc CEng MIStructE

Designers Risk Assessment

15 Landor Road, London SW9 9RX March, 2021

Rev Date		Comment
A0	10-03-2021	-

Beta Design Consultants

www.betadc.co.uk info@betadc.co.uk

Contact: +44 20 3687 3904

Great West House E4, Great West Road, TW8 9DF, London, United Kingdom

© Beta Design Consultants, Registered in England (No. 6921466, VAT No. 978 6872 35)

Designers Risk Assessment 15 Landor Road, London SW9 9RX March, 2021

Prepared by: – Eng A Jaiswal (BEng MSc)

Checked by: F. Maida BSc MSc CEng MIStructE

web: www.betadc.co.uk

PROJECT RISK REGISTER	JOB No. [Comments]	PROJECT: Harwell		SHEET No. 1 of	REVISION 0
	STAGE: CONSTRUCTION	PREPARED BY: AJ	APPROVED BY: FM	DATE: 19/11/2020	

Hazard	Location	Who is at Risk	Consequence	Risk before Mitigation	Mitigation measures	Residual Risk info / Notes	Residual Risk
Substrate	Beam & Slab	Occupants of the building	The FRP system not working according to the design intent	Н	Surface preparation to manufacturer or Structural Engineer's recommendations Substrate to be inspected before the application Surface must be free from any contamination		L
CONCRETING							
Operatives coming in contact with concrete	Beams and slabs	Site operative	Sensitisation of skin & development of dermatitis	Н	Long sleeves and rubberised gloves to be worn by pump man. Ensure all operatives have been briefed on the COSHH assessment and follow the manufacturer's recommendation.		L
			Damage to eyes and skin from concrete splashes	Н	Eye protection to be worn at all times. Ensure sufficient eye washout facilities are available and close to the working area. Ensure there are sufficient hygiene/washing facilities available nearby.		L
Cube Making	Beam& Slab		Error in cube making could result in strengthening being condemned unnecessarily	Н	Ensure person undertaking test has been trained to carry out sampling and cube making.	Error may still occur / Process to be monitored	L

[Comments]

Risk Level: Risk = severity x likelihood

⁽M) MEDIUMInjury or damage is very unlikely to be severe, but minor injury could occur from time to time

Designers Risk Assessment 15 Landor Road, London SW9 9RX March, 2021

Prepared by: – Eng A Jaiswal (BEng MSc)

Checked by: F. Maida BSc MSc CEng MIStructE

web: www.betadc.co.uk **OCCUPATIONAL HEALTH & WELFARE** Site operative Exposure could Н Ensure COSHH assessments on site and Incorrect disposal M Use of hazardous Beams & Slab relevant PPE is provided. lead to a health materials surface preparation hazard. Beams & Slab Site operative Hearing protection to be provided as per Noise Excessive noise in L noise assessment for machine & usage to surface preparation the workplace could cause be monitored. hearing loss to Persons in or near (within 2m) to wear ear employees protection Ear protection zone marked Н Vibration Beams & Slab Site operative Excessive Low vibration and noise tools and L surface preparation exposure to equipment will be used where possible Equipment certificated vibration Operators to take frequent short breaks equipment causes Hand-Wear working gloves or anti vibration gloves Arm Vibration Synd rome Flying debris Injury due to flying Before grinding make sure no one will be Beams & Slab Site operative Н affected by flying objects surface preparation objects Operative involved to wear appropriate PPE (googles additional to mandatory PPE) Reinforcement Site operative Cage dropped Н Lifting of **Beams** Lift Plan to be in place before commencing causing damage. Reinforcement cage any lift. Major injury or Fatality could occur. Slabs and beam Site operative Injury due cuts, Н Plastic mushroom cap to the ends of the Dowels and rebar projecting from trip and fall dowels/rebar surface

[Comments]

Risk Level: Risk = severity x likelihood

(H) HIGHUnacceptable likelihood that injury or damage will be severe - further management controls are essential

(M) MEDIUMInjury or damage is very unlikely to be severe, but minor injury could occur from time to time

(L) LOWThe risk of injury is well controlled and harm is likely to be minor if it occurs

Designers Risk Assessment 15 Landor Road, London SW9 9RX March, 2021

Prepared by: – Eng A Jaiswal (BEng MSc)

Checked by: F. Maida BSc MSc CEng MIStructE

web: www.betadc.co.uk

Working at Height						
Work at Height	Beams	Site operative	Major injury or fatality	Н	Provide temporary platform	L

[Comments]

Risk Level: Risk = severity x likelihood

(H) HIGHUnacceptable likelihood that injury or damage will be severe – further management controls are essential

(M) MEDIUMInjury or damage is very unlikely to be severe, but minor injury could occur from time to time

(L) LOWThe risk of injury is well controlled and harm is likely to be minor if it occurs