

Vincentian Presbytery Mill Hill, London

Drainage Strategy and Surface Water Management Plan

April 2021

Document Revision Control

Revisions	Date	Reason for Issue	By	Approved
00	20.04.21	Planning	CB	BL
01	22.04.21	Planning	CB	BL

Contents

1.0 Introduction	4
2.0 Site Information	5
3.0 Drainage Strategy	6
4.0 SuDS Strategy	7
5.0 Conclusion	8
Appendices	
Appendix A – Drawings	9
Appendix B – Foul Flow Calculations	10
Appendix C – Storm Water Calculations	11
Appendix D – SuDS Maintenance Schedules	12

1.0 Introduction

Harley Haddow Ltd were appointed to act as civil engineers for the proposed redevelopment of a church site in Mill Hill, London. The scope comprises demolition of an existing presbytery and construction of a 3 storey building to provide a new presbytery and single storey extension to an existing church. This report will outline the surface water management plan and drainage requirements of the development design proposal and the drainage strategies that are to be employed.

The site comprises an existing church, car park and presbytery and is considered 'Brownfield'. The calculations within this report will assess the existing surface water runoff against the proposed discharge rates and state what attenuation is required.

The site is located in the Mill Hill area of Barnet, London. It is bounded to the west by The Broadway, Flower Lane to the east and residential properties to the south.

2.0 Site Information

2.1 Existing Site

The site area is approximately 2750m² and comprises a church, an asphalt car park and a presbytery. The presbytery contains six bedrooms, and the car park comprises vehicle parking for 34no. vehicles.

The site contains some areas of vegetation and planting but is mainly hardstanding. The church area is 763m², car park area is 1007m² and the presbytery and associated garages is 198m². The western section of the car park is dished so that the levels fall from the outer edge inwards towards gullies located in the central area. Towards the eastern side of the car park the levels generally fall to the north to a gully located at the parking bays. A location plan is shown in Appendix A.

Review of the Thames Water asset map shows existing 375mm foul sewers running down both The Broadway and Flower Lane flowing roughly from north to south. There is an existing 900mm surface water sewer running from north to south down The Broadway.

The site drainage survey found that the foul drainage runs along the rear of the presbytery and into ex. FWMH11 before connecting to the existing foul sewer on Flower Lane. It was noted on the survey that the outgoing pipe from ex. FWMH11 is trapped, with the invert level being +67.73m AOD.

The surface water drainage runs along both gables of the presbytery then west along the front before joining into the main church surface water network. This then continues around the south west of the church where it runs into ex. SWMH4. This manhole was unable to be surveyed due to vegetation, however, it is assumed that this connects into the 900mm surface water sewer that runs along The Broadway to the west of the site.

It was noted in the CCTV survey report that there were numerous grade 4 and 5 defects within the existing drainage network. These comprised displaced joints, holes / broken sections of pipe and fractures. Remedial work such as high-pressure jetting, drain lining and drain repair are recommended.

2.2 Proposed Works

The proposals are to demolish the existing presbytery and associated single story garages. A new replacement presbytery is to be erected comprising 6no. bedroom suites, 1no. guest room, communal living and dining areas, a kitchen, and the construction of a basement.

In addition, a single-story extension of approximately 42m² is to be constructed to the existing church building which will house the offices that are being relocated from the presbytery.

Due to the increase in building footprint of the presbytery and the extension to the church the car park is being reconfigured to provide 30no. spaces, reduced from 34no.

3.0 Drainage Strategy

3.1 Foul Drainage

The proposed development comprises the demolition of the existing building and construction of a new presbytery in its place. As part of the demolition works the existing foul drainage should be abandoned or grubbed up with a new foul drainage system installed in its place.

The pre development peak foul flow from the presbytery was calculated to be 0.042 litres per second. This will increase to 0.047 litres per second following the addition of 1no. guest bedroom. The calculations for this can be found in Appendix B.

Generally, the proposal for the foul drainage is to drain by gravity and then tie into ex. FWMH11 where the existing connection to the main foul sewer on Flower Lane will be utilised. A sump pump will be located in the basement which will take drainage from floor gullies and pop-ups. Specification for the pump will be confirmed at detailed design.

The drainage proposals can be found in Appendix A.

All foul drainage runs are anticipated to be constructed of 100mm and 150mm diameter uPVC pipework with pea gravel surround. All access / manhole construction is anticipated to be constructed of uPVC, polypropylene or precast concrete.

3.2 Surface Water Drainage

The proposal for capturing the surface water drainage from roof areas is a conventional system of guttering and rainwater downpipes connecting to a private underground gravity surface water drain. This will then connect to the surface water network for the church where it will discharge to the 900mm surface water sewer that runs along The Broadway road to the west of the site.

In addition to standard downpipes, a 35m² sedum grass roof is proposed for a section of roof at the south western corner of the proposed presbytery.

The existing surface water discharge for the whole site was calculated to be 21.9 litres per second for a 1 in 2 year event.

The post development impermeable area is as per existing, however, in accordance with Barnet Council guidance the discharge rate is to be reduced by at least 50%. Therefore, a flow control is to be fitted to MHS1 to limit the discharge rate to a maximum of 11 litres per second for up to and including the 1 in 100 year event + 30% allowance for climate change. This is shown in the supporting surface water calculations found in Appendix C.

The surface water system is proposed to run separately from the foul system for their entirety.

4.0 SuDS Strategy

SuDS are a sequence of management practices and control structures designed to drain surface water in a more sustainable fashion than "conventional" techniques. The requirement for SuDS to account for the quantity and quality of surface water is an intrinsic part of the planning process and all new developments.

The SuDS proposal for this site involve conveying the surface water run-off from roofs to the proposed outfall via down pipes and gravity surface water drainage. Surface water flows from hardstanding areas will be conveyed via permeable paving.

SuDS proposals for this development have been designed in accordance with the SuDS Manual C753, utilising the Simple Index approach. The Pollution Hazard characteristic has been identified as *Very Low* for residential roofs and *Low* for Residential car park / low traffic roads using Table 26.2 within the SUDS Manual, with pollution indices as shown below.

Land Use	TTS (Total Suspended Solids)	Metals	Hydrocarbons
Residential development, driveways, low traffic roads	0.5	0.4	0.4

Suitable SuDS measures have therefore been chosen utilising the mitigation indices noted within table 26.3. The SuDS measures proposed for the development are permeable paving and a bioretention area, with mitigation indices as shown below.

Type of SUDS Component	TTS (Total Suspended Solids)	Metals	Hydrocarbons
Permeable Paving	0.7	0.6	0.7
Bioretention System	0.8	0.8	0.8

Maintenance of SuDS systems should be carried out in accordance with manufacturer's guidelines and the SuDS Manual C753. A long-term SuDS operation and maintenance strategy for the sedum roof, permeable paving and bioretention system have been proposed within Appendix D. This should be implemented by the client through a suitable maintenance contact or factoring agreement.

5.0 Conclusion

This report and the drawings and calculations contained within the appendices confirm that the design strategy as noted below:

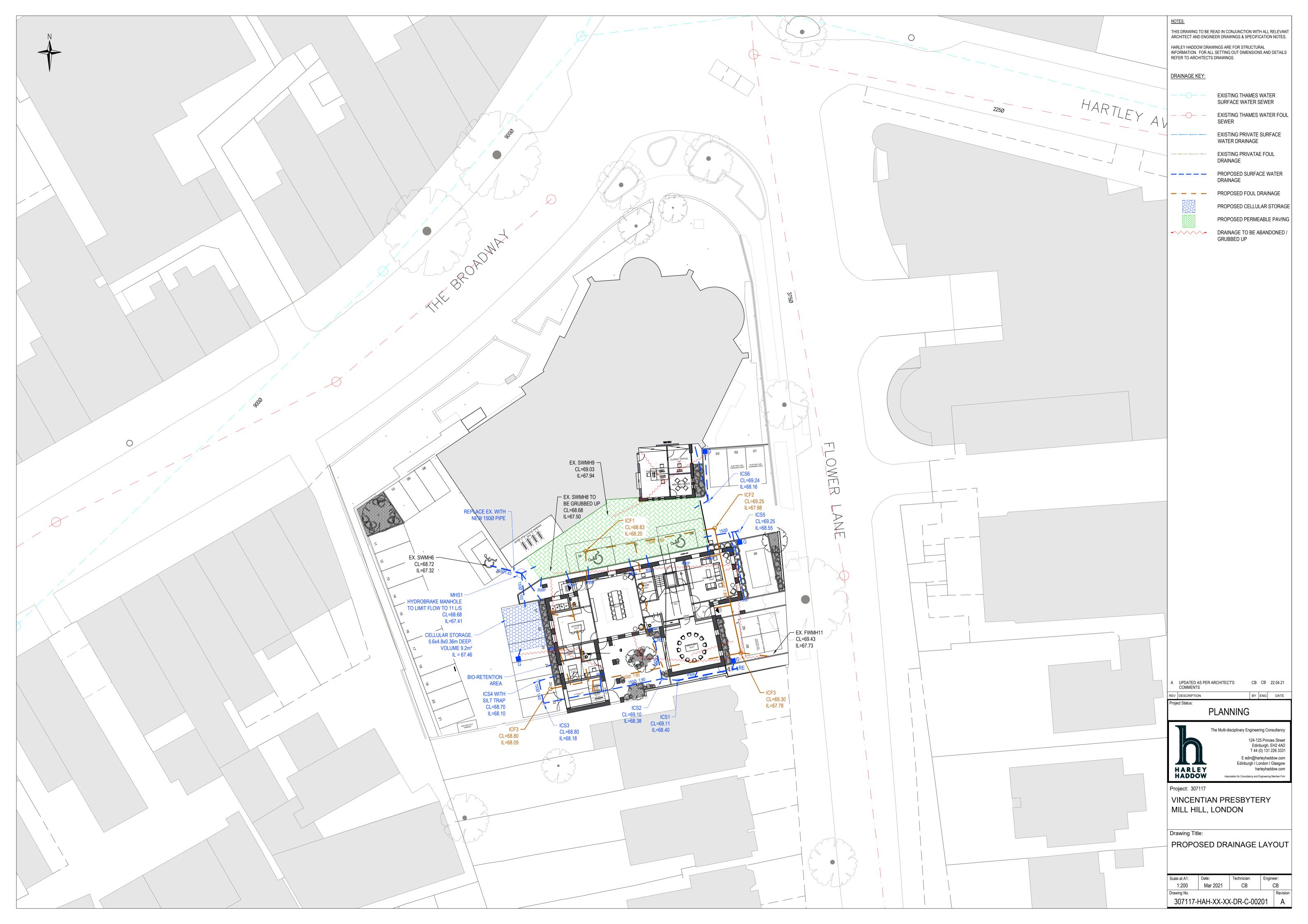
- Detailed levels and drainage designs should remove all lows points subject to surface water ponding where possible and provide adequate surface drainage to remove any potential risk of surface water ponding.
- The surface water volume generated from the proposed works will align with the volume from the existing site as the hard standing area is the same.
- SuDS for the development will be provided through permeable paving, bioretention and a section of sedum roof. Attenuation will be provided via cellular storage and a flow control device to limit discharge to a maximum of 11 litres per second for the 1 in 100 year events including a 30% allowance for climate change
- It is recommended that remedial works are carried to the existing drainage network as there were numerous defects noted in the drainage survey report carried out by UtiliMap in February 2021.

Appendix A Drawings

Notes:

- Notes: 1. Do not scale from this drawing other than for planning purposes. 2. All dimensions to be verified prior to the commencement of any work or the production of any shop drawings. 3. Matthew Loyd Architects (MLA) shall be notified in writing of any discrepancies. 4. Survey and boundaries indicative only. 5. Proposals are subject to utilities surveys and specialist consultants' input & coordination. 6. Any areas indicated are approximate and indicative only. 7. Where an Item is covered by drawings in different scales the larger cale drawings in different scales the larger cale drawings in different scales the larger cale drawings in specifications. 9. Where MLA services on a project do not include for site inspections and work surveys, MLA do not warrent that as built issue drawings are a complete and accurate record of what has been built.

KEY APPLICATION BOUNDARY


OWNERSHIP BOUNDARY

PLANNING

VP	001	P01
Reference:	Dwg. No:	Rev.
EXISTING	ATION PLAN	
MILL HILL	IAN PRESBYTERY	
Apr-21	1:1250 @ A3	ASp

NOTES: THIS DRAWING TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECT AND ENGINEER DRAWINGS & SPECIFICATION NOTES. HARLEY HADDOW DRAWINGS ARE FOR STRUCTURAL INFORMATION. FOR ALL SETTING OUT DIMENSIONS AND DETAILS REFER TO ARCHITECTS DRAWINGS.
DRAINAGE KEY: PROPOSED BELOW GROUND FOUL DRAINAGE PROPOSED FOUL BASEMENT DRAINAGE I FLOOR GULLY PROPOSED BELOW GROUND SURFACE WATER DRAINAGE PROPOSED SURFACE WATER BASEMENT DRAINAGE
A UPDATED AS PER ARCHITECT'S CB XX 22.04.21 COMMENTS
REV DESCRIPTION BY ENG DATE Project Status:
The Multi-disciplinary Engineering Consultancy 124-125 Princes Street Edinburgh, EH2 4AD T 44 (0) 131 226 3331 E edin@harleyhaddow.com Edinburgh I London I Glasgow harleyhaddow.com Edinburgh I London I Glasgow harleyhaddow.com Project: 307117 VINCENTIAN PRESBYTERY MILL HILL, LONDON
Drawing Title:
BASEMENT DRAINAGE LAYOUT
Scale at A1: Date: Technician: Engineer: 1:50 Mar 2021 CB CB
Drawing No. 307117-HAH-XX-B1-DR-C-00202 A

Appendix B Foul Flow Calculations

Contract/pro	ject:		Vincentian Presbytery, Mill Hill, London					
Job Ref:		3	07117	Part of structure/e	element		Foul F	low Calcs
Calc sheet n	o:		1 of 1	Drawing Ref:		-		
Calculations	by:		СВ	Checked By:			Date:	

Ref:	Calculations	Output:
	Pre Development Discharge	
	The existing arrangement comprises a presbytery with 6no. bedrooms. As per Flows and Loads 4, assume a PE of 8 with flows of 150 litres per person per day for a standard residential dwelling.	
	Average foul flow:	
	8 x 150 = 1200 I / day 1200 / 86400 (24hrs/60mins/60secs) = 0.014 I / sec	
	Average foul flow =	0.014 I / sec
	Peak Foul Discharge	
	Peak foul discharge = average foul discharge x 3	
	0.014 x 3 = 0.042 I/sec	
	Peak foul flow =	<u>0.042</u> <u>1 / sec</u>
	Post Development Discharge	
	The proposed development comprises the demolition of the existing presbytery and the erection of a new, 7 bedroom presbytery built in its place. As per Flows and Loads 4, assume a PE of 9 with flows of 150 litres per person per day for a standard residential dwelling.	
	Average foul flow:	
	9 x 150 = 1350 I / day 1350 / 86400 (24hrs/60mins/60secs) = 0.016 I / sec	
	Average foul flow =	<u>0.016</u> <u> / sec</u>
	Peak Foul Discharge	
	Peak foul discharge = average foul discharge x 3	
	0.016 x 3 = 0.047 I/sec	
	Peak foul flow =	<u>0.047</u> <u> / sec</u>

Appendix C Storm Water Calculations

Contract/proj	ect:		Vincentian Presbytery, Mill Hill, London				
Job Ref:		307117	Part of structure/e	lement	S	urface	Water Calcs
Calc sheet no	o:	1 of 1	Drawing Ref:				
Calculations	by:	CB	Checked By:			Date:	

Ref:	Calculations	Output:
	Pre Development Surface Water Discharge	
	The site is currently brownfield and comprises a church, car park and presbytery.	
	Assume 40mm/hr intensity rainfall	
	Site hard standing = 0.2 Ha = 1970 m^2	
	40 x 1970 / 3600 (60mins/60secs) = 21.9 l/sec	
	Pre Development Discharge =	<u>21.9 l/sec</u>
	Post Development Surface Water Discharge	
	The post development impermeable area is as per the existing arrangement. In accordance with Barnet Council guidance, the discharge rate from the redeveloped Presbytery will be reduced by at least 50%.	
	This will be achieved by using a flow control device and installing cellular storage below an area of the car park.	
	Full microdrainage calculations are included within Appendix C.	
	Post Development Discharge (from redeveloped presbytery) =	<u>11.0</u> <u>l/sec</u>

124-125	Haddo	W										Pa	ge O
	5 Prin	ces S	tree	t									
Edinbu	rgh												
EH2 4AI	D											M	licro
Date 01	1/01/0	001			De	Designed by CraigB							
File D	rainag	e Net	work	.MDX	Ch	lecked	by						
Innovy	ze				Ne	etwork	202	0.1					
		STOR	M SEI	WER DESI	IGN by	the M	lodif	ied R	ation	al M	letho	<u>d</u>	
			Desi	ign Crit	ceria f	for DR	RAINA	GE NE	TWORK	.SWS	5		
		Pipe	Size	s DRAINAG	E NETWO	RK Man	hole	Sizes	DRAINA	GE N	ETWORK	Ĩ	
				FSR Rain	nfall Mo	del -	Engla	nd and	Wales				
		Retu	ırn Pe	eriod (yea		100				~ 1 .		PIMP	. ,
					(mm) 20. io R 0.							hange ((%) 30 (m) 0.200
	М	aximum	1 Rain	fall (mm/							-	-	(m) 0.200
Maximu				ration (m				sign De	epth fo	or Op	otimisa	ation	(m) 1.200
				age (l/s/							2	- ·	/s) 0.75
	V	olumet	ric R	Runoff Coe	eff. 0	.750	Mi	in Slop	e for	Opti	misat:	ion (1:	:X) 500
				De	signed t	with Le	evel S	Soffits	5				
		Ne	≥twor	k Desig	n Tabl	e for	DRA	INAGE	NETWO	ORK.	SWS		
PN	Length (m)	Fall (m)	Slop (1:X	e I.Area		Bas		k (mm)	HYD SECT		Secti	on Typ	e Auto Design
	. ,		•			110							-
	3.068 3.093				5.00 0.00			0.600			-	Condui	-
	3.093 9.589				0.00			0.600				Condui Condui	
	4.391				0.00			0.600				Condui	
	4.598	0.046	100.	0 0.009	5.00			0.600		150	Pipe/	Condui	t 🔒
Z.UUT		0 204	60	7 0 0 1 1	0 00						-		<u>ـ</u>
		0.304			0.00		0.0	0.600	0	150	Pipe/	Condui	t 🔒
	5.066				0.00 0.00		0.0		0	150	Pipe/		t 🔒
	5.066 5.073	0.422	12. 507.	0 0.000 3 0.011	0.00		0.0 0.0	0.600 0.600	0	150 150 150	Pipe/ Pipe/ Pipe/	Condui Condui Condui	t 🔒 t 🔒 t 🔒
2.002	5.066 5.073	0.422	12. 507.	0 0.000 3 0.011	0.00		0.0 0.0	0.600 0.600	0	150 150 150	Pipe/ Pipe/ Pipe/	Condui Condui	t 🔒 t 🔒 t 🔒
2.002 3.000 3.001	5.066 5.073	0.422 0.010 0.044	12. 507. 99.	0 0.000 3 0.011 3 0.000	0.00		0.0 0.0 0.0 0.0	0.600 0.600		150 150 150 150	Pipe/ Pipe/ Pipe/ Pipe/	Condui Condui Condui	t 🔒 t 🖶 t 🖶
2.002 3.000 3.001	5.066 5.073 4.368	0.422 0.010 0.044	12. 507. 99.	0 0.000 3 0.011 3 0.000 1 0.000	0.00 5.00 0.00		0.0 0.0 0.0 0.0	0.600 0.600 0.600 0.600 0.600		150 150 150 150	Pipe/ Pipe/ Pipe/ Pipe/	Condui Condui Condui Condui	t 🔒 t 🖶 t 🖶
2.002 3.000 3.001	5.066 5.073 4.368 4.096	0.422 0.010 0.044 0.095	12. 507. 99. 43.	0 0.000 3 0.011 3 0.000 1 0.000 <u>N</u> US/IL E	0.00 5.00 0.00 0.00 etwork : I.Area	Resul	0.0 0.0 0.0 0.0 0.0 1ts 1	0.600 0.600 0.600 0.600 0.600 <u>Fable</u> Foul	0 0 0 0 0	150 150 150 150	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel	Condui Condui Condui Condui Condui	t
2.002 3.000 3.001 1.004	5.066 5.073 4.368 4.096	0.422 0.010 0.044 0.095	12. 507. 99. 43.	0 0.000 3 0.011 3 0.000 1 0.000 <u>N</u>	0.00 5.00 0.00 0.00 etwork	Resul	0.0 0.0 0.0 0.0 0.0 1ts 1	0.600 0.600 0.600 0.600 0.600		150 150 150 150	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/	Condui Condui Condui Condui Condui	t
2.002 3.000 3.001 1.004	5.066 5.073 4.368 4.096 7 Ra: (mm/	0.422 0.010 0.044 0.095	12. 507. 99. 43. F.C. nins)	0 0.000 3 0.011 3 0.000 1 0.000 <u>N</u> US/IL E	0.00 5.00 0.00 0.00 etwork : I.Area	Resu ΣB Flow	0.0 0.0 0.0 0.0 0.0 1ts 1	0.600 0.600 0.600 0.600 0.600 <u>Cable</u> Foul (l/s)	0 0 0 Add F (1/s	150 150 150 150	Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s)	Condui Condui Condui Condui Condui	t
2.002 3.000 3.001 1.004 PN 1.0 1.0	5.066 5.073 4.368 4.096 7 Ra: (mm/ 00 50 01 50	0.422 0.010 0.044 0.095 in " hr) (n .00	12. 507. 99. 43. r.C. nins) 5.03 5.08	0 0.000 3 0.011 3 0.000 1 0.000 <u>Ν</u> US/IL Σ (m) 68.180 68.103	0.00 5.00 0.00 <u>etwork</u> 1.Area (ha) 0.026 0.026	Resu ΣB Flow	0.0 0.0 0.0 0.0 <u>0.0</u> <u>1ts 1</u> ase (1/s) 0.0 0.0	0.600 0.600 0.600 0.600 0.600 <u>Table</u> Foul (1/s) 0.0 0.0	0 0 0 Add F (1/s	150 150 150 150 150 *low s) 1.1 1.1	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.60 1.00	Condui Condui Condui Condui Condui Cap (1/s) 28.3 17.8	t 6 t 7 t 7 t 7 t 7 t 7 t 7 t 7 t 7 t 7 t 7
2.002 3.000 3.001 1.004 PN 1.0 1.0 1.0	5.066 5.073 4.368 4.096 7 Ra: (mm/ 00 50 01 50 02 50	0.422 0.010 0.044 0.095 in " hr) (n .00 .00	12. 507. 99. 43. r.C. nins) 5.03 5.08 5.24	0 0.000 3 0.011 3 0.000 1 0.000 <u>N</u> US/IL E (m) 68.180 68.103 68.072	0.00 5.00 0.00 <u>etwork</u> I.Area (ha) 0.026 0.026 0.026	Resu. E B Flow	0.0 0.0 0.0 0.0 1ts 1 ase (1/s) 0.0 0.0 0.0	0.600 0.600 0.600 0.600 0.600 <u>Table</u> Foul (1/s) 0.0 0.0 0.0	0 0 0 Add F (1/s	150 150 150 150 150 Clow s) 1.1 1.1 1.1	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.60 1.00 1.00	Condui Condui Condui Condui Condui Cap (1/s) 28.3 17.8 17.8	t t t t t flow (l/s) 4.6 4.6 4.6
2.002 3.000 3.001 1.004 PN 1.0 1.0	5.066 5.073 4.368 4.096 7 Ra: (mm/ 00 50 01 50 02 50	0.422 0.010 0.044 0.095 in " hr) (n .00	12. 507. 99. 43. r.C. nins) 5.03 5.08 5.24	0 0.000 3 0.011 3 0.000 1 0.000 <u>Ν</u> US/IL Σ (m) 68.180 68.103	0.00 5.00 0.00 <u>etwork</u> 1.Area (ha) 0.026 0.026	Resu. E B Flow	0.0 0.0 0.0 0.0 <u>0.0</u> <u>1ts 1</u> ase (1/s) 0.0 0.0	0.600 0.600 0.600 0.600 0.600 <u>Table</u> Foul (1/s) 0.0 0.0	0 0 0 Add F (1/s	150 150 150 150 150 *low s) 1.1 1.1	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.60 1.00	Condui Condui Condui Condui Condui Cap (1/s) 28.3 17.8	t 6 t 7 t 7 t 7 t 7 t 7 t 7 t 7 t 7 t 7 t 7
2.002 3.000 3.001 1.004 PN 1.0 1.0 1.0	5.066 5.073 4.368 4.096 7 Ra: (mm/ 00 50 01 50 02 50 03 50	0.422 0.010 0.044 0.095 in " hr) (n .00 .00	12. 507. 99. 43. r.C. nins) 5.03 5.08 5.24 5.27	0 0.000 3 0.011 3 0.000 1 0.000 <u>N</u> US/IL E (m) 68.180 68.103 68.072	0.00 5.00 0.00 <u>etwork</u> I.Area (ha) 0.026 0.026 0.026	Resu. EB Flow	0.0 0.0 0.0 0.0 1ts 1 ase (1/s) 0.0 0.0 0.0	0.600 0.600 0.600 0.600 <u>Table</u> Foul (1/s) 0.0 0.0 0.0 0.0	0 0 0 Add F (1/s	150 150 150 150 150 Clow s) 1.1 1.1 1.1	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.60 1.00 2.53	Condui Condui Condui Condui Condui Cap (1/s) 28.3 17.8 17.8	t t t t t flow (l/s) 4.6 4.6 4.6
2.002 3.000 3.001 1.004 PN 1.0 1.0 1.0 1.0	5.066 5.073 4.368 4.096 7 Ra: 7 (mm/ 00 50 01 50 02 50 03 50 00 50	0.422 0.010 0.044 0.095 in " hr) (n .00 .00 .00	12. 507. 99. 43. r.C. nins) 5.03 5.08 5.24 5.27 5.08	0 0.000 3 0.011 3 0.000 1 0.000 <u>N</u> US/IL E (m) 68.180 68.103 68.072 67.976	0.00 5.00 0.00 <u>etwork</u> I.Area (ha) 0.026 0.026 0.026 0.026	Resu. EB Flow	0.0 0.0 0.0 0.0 1ts 1 ase (1/s) 0.0 0.0 0.0 0.0	0.600 0.600 0.600 0.600 <u>Table</u> Foul (1/s) 0.0 0.0 0.0 0.0	0 0 0 Add F (1/s	150 150 150 150 150 150 1.1 1.1 1.1 1.1 1.1	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.60 1.00 2.53 1.00	Condui Condui Condui Condui Condui 28.3 17.8 17.8 17.8 44.7	t t t t t flow (l/s) 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6
2.002 3.000 3.001 1.004 PN 1.0 1.0 1.0 1.0 2.0	5.066 5.073 4.368 4.096 7 Ra: (mm/ 00 50 01 50 02 50 03 50 00 50 01 50	0.422 0.010 0.044 0.095 in " hr) (n .00 .00 .00	12. 507. 99. 43. r.C. nins) 5.03 5.08 5.24 5.27 5.08 5.33	0 0.000 3 0.011 3 0.000 1 0.000 <u>N</u> US/IL 22 (m) 68.180 68.103 68.072 67.976 68.550	0.00 5.00 0.00 <u>etwork</u> : I.Area (ha) 0.026 0.026 0.026 0.026 0.026	Resu. E B Flow	0.0 0.0 0.0 0.0 1ts 1 (1/s) 0.0 0.0 0.0 0.0	0.600 0.600 0.600 0.600 <u>Table</u> Foul (1/s) 0.0 0.0 0.0 0.0 0.0	0 0 0 Add F (1/s	150 150 150 150 150 Clow s) 1.1 1.1 1.1 1.1 0.4	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.60 1.00 2.53 1.00	Condui Condui Condui Condui Condui 28.3 17.8 17.8 44.7 17.8	t t t t t t t t t t t t t t
2.002 3.000 3.001 1.004 PN 1.0 1.0 1.0 1.0 2.0 2.0 2.0	5.066 5.073 4.368 4.096 7 Ra: (mm/ 00 50 01 50 03 50 00 50 01 50 01 50 02 50	0.422 0.010 0.044 0.095 in " hr) (n .00 .00 .00 .00 .00 .00	12. 507. 99. 43. F.C. nins) 5.03 5.08 5.24 5.27 5.08 5.27 5.08 5.33 5.35	0 0.000 3 0.011 3 0.000 1 0.000 M US/IL E (m) 68.180 68.103 68.072 67.976 68.550 68.504 68.200	0.00 5.00 0.00 etwork I.Area (ha) 0.026 0.025 0.053 0.053 0.053	Resu. E B Flow	0.0 0.0 0.0 0.0 1ts 1 ase (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.600 0.600 0.600 0.600 <u>Table</u> Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 Add F (1/:	150 150 150 150 150 150 1.1 1.1 1.1 1.1 1.1 0.4 2.2 2.2	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.60 1.00 2.53 1.00 1.27 2.92	Condui Condui Condui Condui Condui 28.3 17.8 17.8 17.8 44.7 17.8 22.5 51.7	t t t t t t t t t t t t t t
2.002 3.000 3.001 1.004 PN 1.0 1.0 1.0 1.0 2.0 2.0	5.066 5.073 4.368 4.096 7 Ra: (mm/ 00 50 01 50 02 50 01 50 01 50 01 50 02 50 01 50 02 50	0.422 0.010 0.044 0.095 in " hr) (n .00 .00 .00 .00	12. 507. 99. 43. r.c. nins) 5.03 5.08 5.24 5.27 5.08 5.27 5.08 5.33 5.35 5.19	0 0.000 3 0.011 3 0.000 1 0.000 <u>N</u> US/IL E (m) 68.180 68.103 68.072 67.976 68.550 68.550 68.504	0.00 5.00 0.00 <u>etwork</u> I.Area (ha) 0.026 0.026 0.026 0.026 0.026 0.026	Resu. E B Flow	0.0 0.0 0.0 0.0 1ts 1 ase (1/s) 0.0 0.0 0.0 0.0 0.0 0.0	0.600 0.600 0.600 0.600 <u>Table</u> Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 Add F (1/:	150 150 150 150 150 150 1.1 1.1 1.1 1.1 1.1 0.4 2.2 2.2	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.60 1.00 2.53 1.00 1.27 2.92 0.44	Condui Condui Condui Condui Condui 28.3 17.8 17.8 44.7 17.8 22.5	t t t t t t t t t t t t t t
2.002 3.000 3.001 1.004 PN 1.0 1.0 1.0 1.0 2.0 2.0 2.0 3.0	5.066 5.073 4.368 4.096 7 Ra: (mm/ 00 50 01 50 01 50 01 50 01 50 01 50 01 50 01 50 01 50	0.422 0.010 0.044 0.095 in " hr) (n .00 .00 .00 .00 .00 .00 .00	12. 507. 99. 43. F.C. nins) 5.03 5.08 5.24 5.27 5.08 5.27 5.08 5.33 5.35 5.19 5.26	0 0.000 3 0.011 3 0.000 1 0.000 N US/IL 22 (m) 68.180 68.103 68.072 67.976 68.550 68.550 68.504 68.200 67.660	0.00 5.00 0.00 etwork I.Area (ha) 0.026 0.025 0.053 0.053 0.051 0.	Resu. ΣB Flow	0.0 0.0 0.0 0.0 1ts 1 ase (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.600 0.600 0.600 0.600 <u>Table</u> Foul (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 Add F (1/:	150 150 150 150 150 150 1.1 1.1 1.1 1.1 1.1 0.4 2.2 2.2 0.4	Pipe/ Pipe/ Pipe/ Pipe/ Pipe/ Vel (m/s) 1.60 1.00 2.53 1.00 1.27 2.92 0.44 1.01	Condui Condui Condui Condui Condui Condui 28.3 17.8 17.8 44.7 17.8 22.5 51.7 7.8	t t t t t t t t t t t t t t

Harley Haddow		Page 1
124-125 Princes Street		
Edinburgh		
EH2 4AD		Micro
Date 01/01/0001	Designed by CraigB	Drainage
File Drainage Network.MDX	Checked by	Brainacje
Innovyze	Network 2020.1	
Free Flowing Outfall	Details for DRAINAGE NETWORK.SWS	-
Outfall Outfall C Pipe Number Name	. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m)	
1.004 6	68.720 67.317 67.317 0 0	
Simulation Crite	ria for DRAINAGE NETWORK.SWS	
Areal Reduction Factor 1 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (l/s) (Number of Input Hydrogr Number of Online Cont	0 Flow per Person per Day (l/per/da 0.500 Run Time (min	ge 5.000 nt 0.800 y) 0.000 s) 60
Synthet	ic Rainfall Details	
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R	FSR Profile Type Sum 100 Cv (Summer) 0.7 nd and Wales Cv (Winter) 0.3 20.700 Storm Duration (mins) 0.438	750
©198	32-2020 Innovyze	

-	1					P	age 2
124-125 Princ		t					2
Edinburgh							
EH2 4AD							licco
Date 01/01/00	01		Designe	d by Crai	aB		Aicro
File Drainage		MDY	Checked by)rainaqo
	Network	• MDA	Network 2020.1				<u> </u>
Innovyze			Network	2020.1			
	Onl	ine Contro	ols for DF	RAINAGE NE	ETWORK.SWS	2	
Hydro-Br	ake® Opt	imum Manho	ole: MHS1,	DS/PN: 2	L.004, Vol	ume (m³):	1.6
		Un	it Referenc	e MD-SHE-01	149-1100-12	00-1100	
			ign Head (m			1.200	
		Desig	n Flow (l/s		Cal	11.0 culated	
			Flush-Flo		e upstream :		
			Applicatio			Surface	
			mp Availabl	e		Yes	
			iameter (mm			149	
	Mini		rt Level (m	,		67.412	
		tlet Pipe D d Manhole D				225 1200	
		Control 1	Points	Head (m)	Flow (l/s)		
	Des	sign Point (Calculated)	1.200	11.0		
			Flush-Flo™		11.0		
		an Flow over	Kick-Flo®		9.0 9.5		
Hydro-Brake O invalidated							
Depth (m) Fl		-		-		-	
0.100 0.200	5.4 10.4	1.200 1.400	11.0 11.8	3.000 3.500	17.0 18.3	7.000 7.500	25.5 26.4
0.200	10.4	1.400	11.8	4.000	18.3	8.000	20.4
0.400	11.0	1.800	13.3	4.500	20.6	8.500	28.0
0.500	10.8	2.000	14.0	5.000	21.7	9.000	28.8
0.600	10.5	2.200	14.7	5.500	22.7	9.500	29.5
		2 100	15.3	6.000	22 71		
0.800	9.1	2.400			23.7		
		2.400	15.9	6.500	24.6		
0.800	9.1						
0.800	9.1						
0.800	9.1						
0.800	9.1						
0.800	9.1	2.600		6.500			

Harley Haddow		Page 3
124-125 Princes Street		
Edinburgh		
EH2 4AD		Micco
Date 01/01/0001	Designed by CraigB	
File Drainage Network.MDX	Checked by	Drainage
Innovyze	Network 2020.1	
Storage Structur	res for DRAINAGE NETWORK.SWS	
Porous Car Park Manho	le: Porous Paving 2, DS/PN: 2.002	2
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	C F
Membrane Percolation		
Max Percolation	n (1/s) 39.7 Slope (1:X)	70.0
Safety	Factor 2.0 Depression Storage (mm)	
	prosity 0.30 Evaporation (mm/day) rel (m) 68.200 Membrane Depth (mm)	
THIVELT DEV		
Cellular Storage Ma	anhole: Storage 2, DS/PN: 3.001	
_		
	rt Level (m) 67.456 Safety Factor 2.0 Base (m/hr) 0.00000 Porosity 0.95	
Infiltration Coefficient		
Depth (m) Area (m ²) Inf. Are	ea (m ²) Depth (m) Area (m ²) Inf. Area	(m²)
0.000 26.9	26.9 0.500 0.0	35.2
0.400 26.9	35.2	
©198	32-2020 Innovyze	

	ey Haddow 25 Princes St	reet						Pa	ige 4
	ourgh	LIEEL							
	2								
EH2 4	01/01/0001					<u> </u>		N	licro
				Designe	-	craige	3	D	rainage
	Drainage Net	vork.MDX		Checked					
Innov	vyze			Network	c 2020	.1			
	Hot : Manhole Headlos: Foul Sewage po Number Numb	Reduction Fa Hot Start (m Start Level s Coeff (Glo	<u>Sim</u> actor 1 nins) (mm) Obal) 0 (l/s) 0 ydrogra e Contr	NETWORK ulation .000 A 0 .500 Flo .000 phs 0 Nu ols 1 Nu	<u>Criteri</u> ddition MADD w per P umber of umber of	<u>a</u> al Flo Facto Person f Stora f Time/	w - % of To r * 10m³/ha Inlet Coe per Day (1, age Structu 'Area Diagr	otal Flow a Storage ffiecient /per/day) res 2 ams 0	0.000 5.000 0.800
	P	ainfall Mod	el on Engl		FSR Wales (Rat Cv (Sun	tio R 0.438 mmer) 0.750 nter) 0.840)	
	Durat		DTS DVE Inertia	Status Status Status			240, 360,	ON OFF OFF and Winter	
		lod(s) (year ate Change (100 30	
PN	US/MH Name	Storm		Climate Change		t (X) harge	First (Y Flood) First (Z Overflow	•
				2		-		CAST TO	. <u>A</u> CC.
1.000		30 Winter	100		100/15				
1.001	ICS4 Bio-Retention 1	1 30 Winter	100 100	+30% +30%	100/15	Summe	r		
	Bio-Retention 2		100	+30%					
2.000	ICSS	5 15 Winter	100	+30%	100/15	Summe	r		
	Porous Paving 1		100						
2.002	Porous Paving 2 Storage 1	2 15 Winter 30 Winter	100 100		100/15	Summe	r		
3.000	2	2 30 Winter	100		100/15				
L.004	2	30 Winter	100		100/15				
	US/MH PN Name		l Dej	arged Fl oth V n)		Flow / Cap.	I Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)
	.000	ICS3 68.41 ICS4 68.40		0.084 0.156	0.000	0.71			12.4 12.3

Harley Haddow		Page 5
124-125 Princes Street		
Edinburgh		
EH2 4AD		Micro
Date 01/01/0001	Designed by CraigB	Drainage
File Drainage Network.MDX	Checked by	Diamage
Innovyze	Network 2020.1	

Summary of Critical Results by Maximum Level (Rank 1) for DRAINAGE <u>NETWORK.SWS</u>

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)			Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)
1.002	Bio-Retention 1	68.222	0.000	0.000	0.85			15.1
1.003	Bio-Retention 2	68.126	0.000	0.000	0.46			15.0
2.000	ICS5	68.867	0.167	0.000	0.39			5.3
2.001	Porous Paving 1	68.654	0.000	0.000	1.27			28.5
2.002	Porous Paving 2	68.350	0.000	0.000	0.71		6	28.9
3.000	Storage 1	68.395	0.585	0.000	0.57			5.1
3.001	Storage 2	68.392	0.786	0.000	0.80		26	10.5
1.004	MHS1	68.390	0.828	0.000	0.57			11.0

US/MH		Level
Name	Status	Exceeded
TCS3	SUDCHADCED	
Porous Paving 1	SURCHARGED*	
Porous Paving 2	SURCHARGED*	
Storage 1	FLOOD RISK	
Storage 2	FLOOD RISK	
MHS1	FLOOD RISK	
	Name ICS3 ICS4 Bio-Retention 1 Bio-Retention 2 ICS5 Porous Paving 1 Porous Paving 2 Storage 1 Storage 2	NameStatusICS3SURCHARGEDICS4FLOOD RISKBio-Retention 1SURCHARGED*Bio-Retention 2SURCHARGEDICS5SURCHARGEDPorous Paving 1SURCHARGED*Porous Paving 2SURCHARGED*Storage 1FLOOD RISKStorage 2FLOOD RISK

©1982-2020 Innovyze

Appendix D SuDS Maintenance Schedules

Maintenance Schedule	Required Action	Typical Frequency
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations - pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment
	Stabilise and mow contributing and adjacent areas	As required
Occasional maintenance	Removal of weeds or management using glyphosate applied directly into the weeds by an applicator rather than spraying	As required - once per year on less frequently used pavements
	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50mm of the level of the paving	As required
Remedial Actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material	As required
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)
	Initial inspection	Monthly for three months after installation
Monitoring	Inspect for evidence of poor operation and/ or weed growth - if required, take remedial action	Three-monthly, 48h after large storms, in fix six months
	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually

Permeable Pavement

Bioretention System

Maintenance Schedule	Required Action	Typical Frequency
	Inspect infiltration surfaces for silting and ponding, record de-watering time of the facility and assess standing water levels in under (if appropriate) to determine if maintenance is necessary	Quarterly
Regular inspections	Check operation of underdrains by inspection of flows after rain	Annually
	Assess plants for disease infection, poor growth, invasive species etc and replace as necessary	Quarterly
	Inspect inlets and outlets for blockage	Quarterly
Regular maintenance	Remove litter and surface debris and weeds	Quarterly (or more frequently for tidiness or aesthetic reasons)
	Replace any plants, to maintain planting density	As required
	Remove sediment, litter and debris build- up from around inlets or from forebays	Quarterly to biannually
	Infill any holes or scour in the filter medium, improve erosion protection if required	As required
Occasional maintenance	Repair minor accumulations of silt by raking away surface mulch, scarifying surface of medium and replacing mulch	As required
Remedial actions	Remove and replace filter medium and vegetation above	As required but likely to be > 20 years

Sedum Roof

Maintenance schedule	Required action	Typical frequency
Regular inspections	Inspect all the components including soil substrate, vegetation, drains, irrigation systems (if applicable), membranes and roof structure for proper operation, integrity of water proofing and structural stability	Annually and after severe storms
	Inspect soil substrate for evidence of erosion channels and identify any sediment sources	Annually and after severe storms
	Inspect drain inlets to insure unrestricted runoff from the drainage layer to the conveyance or roof drain system	Annually and after severe storms
	Inspect underside of roof for evidence of leakage	Annually and after severe storms
Regular maintenance	Remove debris and litter to prevent clogging of inlet drains and interference with plant growth	Six monthly and annually or as required
	During establishment (i.e. year one), replace dead plants as required	Monthly (but usually responsibility of manufacturer)
	Post establishment, replace dead plants as required (where >5% of coverage)	Annually (in autumn)
	Remove fallen leaves and debris from deciduous plant foliage	Six monthly or as required
	Remove nuisance and invasive vegetation, including weeds	Six monthly or as required
	Mow grasses, prune shrubs and manage other planting (if appropriate), as required - clippings should be removed and not allowed to accumulate	Six monthly or as required
Remedial actions	If erosion channels are evident, these should be stabilised with extra soil substrate similar to the original material, and sources or erosion damage should be identified and controlled	As required
	If drain inlet has settled, cracked or moved, investigate and repair as appropriate	As required

The Multi-disciplinary Engineering Consultancy

Edinburgh | London | Glasgow

Contact 124-125 Princes St Edinburgh, EH2 4AD enquiries@harleyhaddow.com