Technical Note

Project: Garstang Business Park Job No: 3396

Subject: Drainage Strategy Amendments

Prepared by: M Fenton Date: 23/08/2019

Approved by: P Graveney Date: 23/08/2019

Introduction

Scott Hughes Design (SHD) has been appointed by Keyworker Homes to carry out design services for a proposed building consisting of retail and residential space. The site is located just off the B6430 in Preston and the nearest postcode is WN8 6SR.

A Flood Risk Assessment (by RSK) and a 'Report to Discharge Drainage Related Planning Conditions' (by Scott Hughes Design) have been created for the site and are available upon request. However, the proposals have now changed, and majority of surrounding car parking areas will be retained. The only changes to the surrounding car parking areas will be to facilitate the new building level.

The new proposals can be summarised as follows:

- A new building will be constructed with an FFL of 18.870. This is higher than the existing building's split-level FFL.
- Localised level changes to the car park will be carried out to facilitate the raised FFL.
- Proposed works to the existing car parking areas will be kept to a minimum to minimise disruption in service.
- Parking areas with no change of level or change of use will not form part of the proposed drainage works as the existing arrangements are acceptable and work well.

This technical note has been created to summarise how these design changes impact the drainage strategy.

Existing Drainage

This section should be read in conjunction with the existing drainage drawings in Appendix A. All drainage catchments and flow rates described in this section only relate to those generated within the proposed site boundary. Catchments upstream/downstream of the site will not be impacted by the proposed works.

The existing site has 3 drainage outfalls which are summarised in the table below:

Table 1: Drainage Outfalls

Outfall Ref	Location	Upstream Catchment
1	Surface water public sewer.	Surface water flows from the parking areas surrounding the existing building. Flows are conveyed into the River Wyre.
2A + 2B	2A Combined sewer overflow into the River Wyre. 2B Combined water public sewer.	The existing buildings foul and surface water flows.
3	River Wyre	The car park and associated access road just south of the site boundary.

The existing drainage catchments are clearly defined, likely owing to the previous phasing associated with the existing development.

Technical Note

Existing Discharge Rates

Using FSR rainfall data for a 15 minute storm, which gives a like for like comparison with the proposed simulations that will be analysed, the following existing discharge rates, based on the revised site boundary, for each outfall can be calculated.

Table 2: FSR Rainfall Intensities

Return Period (1:X)	Rainfall Intensity (mm/hr)	Flow (I/s/ha)
1	26.2	72.7
30	64.0	177.7
100	82.5	229.1

Table 3: Existing Discharge Rates

			Flow (I/s)	
Outfall	Contributing Area (ha)	1:1 Year	1:30 Year	1:100 Year
1	0.170	12.4	30.2	39.0
2A/2B	0.078	5.7	13.9	17.9
3	0.024	1.7	4.3	5.5

Proposed Discharge Rates

As described in the FRA, Lancashire County Council (LCC) would normally follow the Non-statutory technical standards for sustainable drainage systems, which states the following:

"For developments which were previously developed, the peak runoff rate from the development to any drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event must be as close as reasonably practicable to the greenfield runoff rate from the development for the same rainfall event, but should never exceed the rate of discharge from the development prior to re redevelopment for that event."

A proposed flow restriction of 26.6l/s for all return period events was calculated in the FRA, assuming a site boundary of approximately 0.7ha. Now the site boundary has reduced to approximately 0.313ha, the flow restriction will be prorated to <u>11.9l/s</u>.

Proposed Outfall Location

Proposals are to discharge surface water flows from the site into Outfall 1, via an existing sewer. Therefore, comparing the proposed 11.9l/s restriction with Table 3, proposed flows discharging into Outfall 1 will be reduced for all return period events.

Furthermore, as the proposed building roof drainage will be diverted away from the combined sewer, there will be a significant reduction in the frequency that the combined sewer overflow (Outfall 2A) discharges into the River Wyre.

As shown on the 'Proposed Impermeable Area' drawing (Appendix B), a small amount of hard standing area will freely discharge into Outfall 3, via the existing private road drainage network. This is a reduction in impermeable area, and therefore flow, when compared to the existing impermeable area.

Therefore, there will be a reduction in flow to all outfalls for all return periods as a result of the proposed development.

Technical Note

Design Criteria

The proposed surface water drainage system will be designed based on:

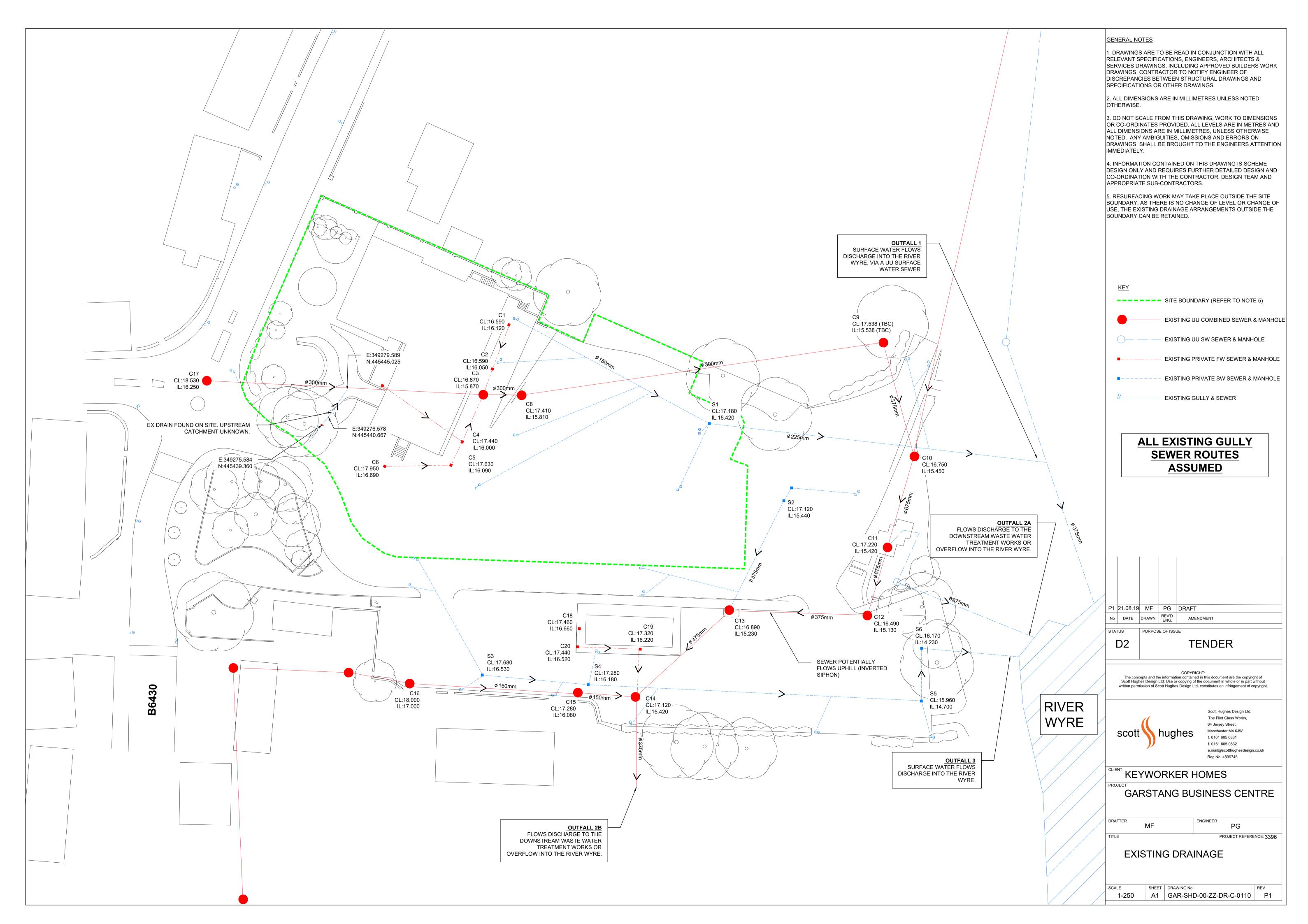
- Discharge restriction of 11.9l/s;
- Surface water flows from the car parking areas will be conveyed through bypass separators to improve the water quality;
- No flooding during a 1:30 year return period event;
- Controlled flooding is acceptable for the 1:100 year return period event with an additional 40% allowance for climate change providing it doesn't put people or property at risk.

Proposed Simulation Results

The proposed surface water simulation results are available in Appendix C. It can be seen all the design criteria described above is adhered to. There is approximately 1.4m³ of flooding for the 1:100 year return period event. This volume of flooding can be considered negligible in a car park.

Conclusion

This technical note has been created to summarise how these design changes impact the proposed drainage strategy.

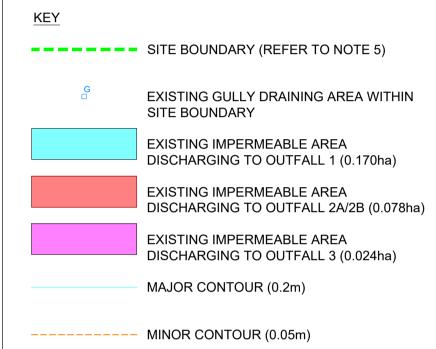

The proposed surface water flow restriction has been reduced proportionally in line with the revised site boundary area. All the design principles set out in the FRA have still been adhered to and the drainage proposals will offer a significant reduction in discharge rates to all existing drainage networks associated with the site.

Bypass separators will be utilised to ensure an improvement in water quality. In addition to this, the existing combined sewer overflow in the River Wyre will operate less frequently as a result of the proposed development.

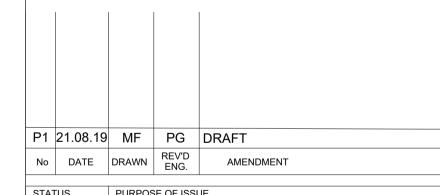
Overall, the proposed drainage strategy offers a significant improvement when compared to the existing scenario, following guidance from Lancashire County Council.

Appendix A – Existing Drainage Drawings

GENERAL NOTES


1. DRAWINGS ARE TO BE READ IN CONJUNCTION WITH ALL RELEVANT SPECIFICATIONS, ENGINEERS, ARCHITECTS & SERVICES DRAWINGS, INCLUDING APPROVED BUILDERS WORK DRAWINGS. CONTRACTOR TO NOTIFY ENGINEER OF DISCREPANCIES BETWEEN STRUCTURAL DRAWINGS AND SPECIFICATIONS OR OTHER DRAWINGS.

2. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED


3. DO NOT SCALE FROM THIS DRAWING, WORK TO DIMENSIONS OR CO-ORDINATES PROVIDED. ALL LEVELS ARE IN METRES AND ALL DIMENSIONS ARE IN MILLIMETRES, UNLESS OTHERWISE NOTED. ANY AMBIGUITIES, OMISSIONS AND ERRORS ON DRAWINGS, SHALL BE BROUGHT TO THE ENGINEERS ATTENTION

4. INFORMATION CONTAINED ON THIS DRAWING IS SCHEME DESIGN ONLY AND REQUIRES FURTHER DETAILED DESIGN AND CO-ORDINATION WITH THE CONTRACTOR, DESIGN TEAM AND APPROPRIATE SUB-CONTRACTORS.

5. RESURFACING WORK MAY TAKE PLACE OUTSIDE THE SITE BOUNDARY. AS THERE IS NO CHANGE OF LEVEL OR CHANGE OF USE, THE EXISTING DRAINAGE ARRANGEMENTS OUTSIDE THE BOUNDARY CAN BE RETAINED.

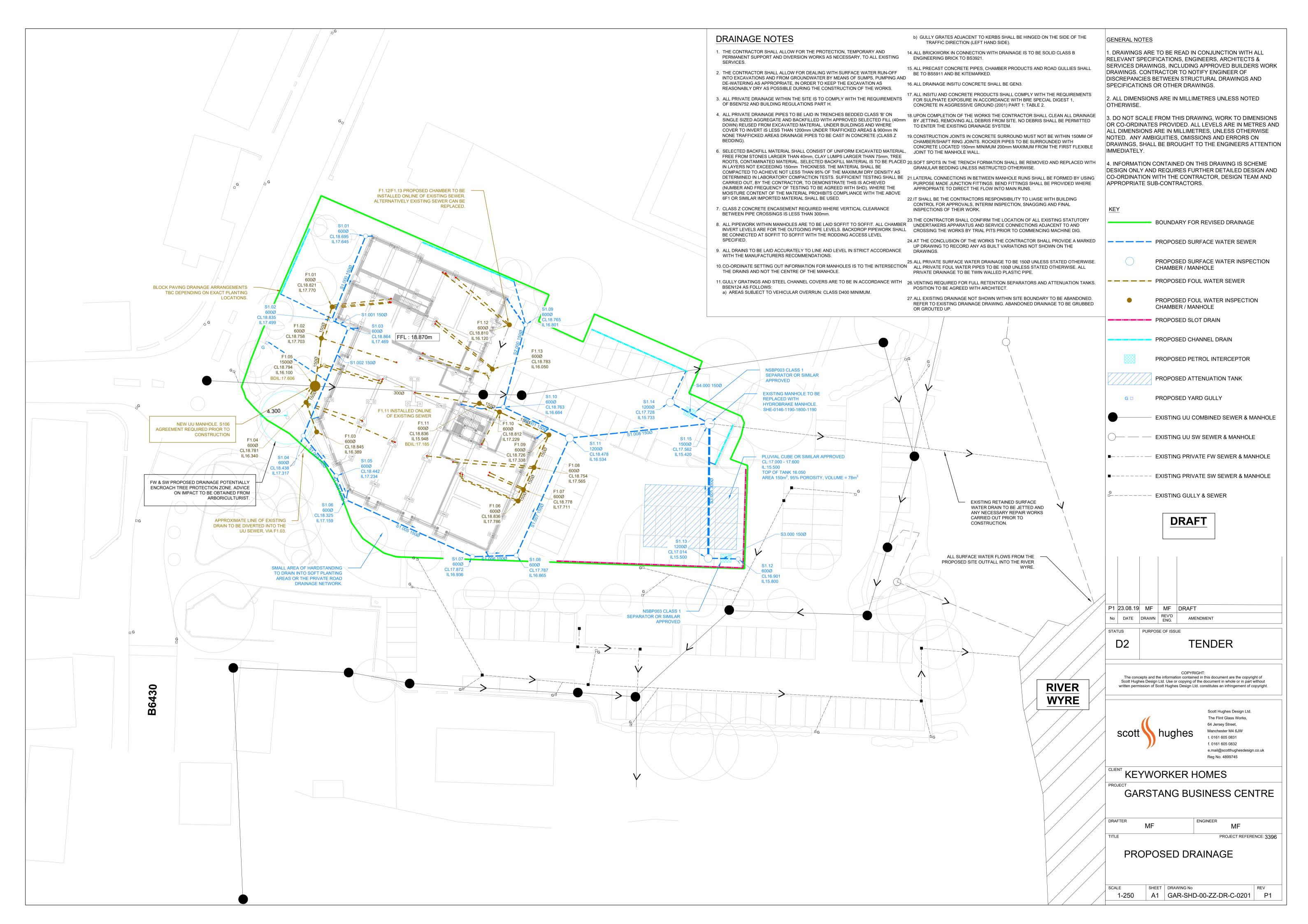
TENDER

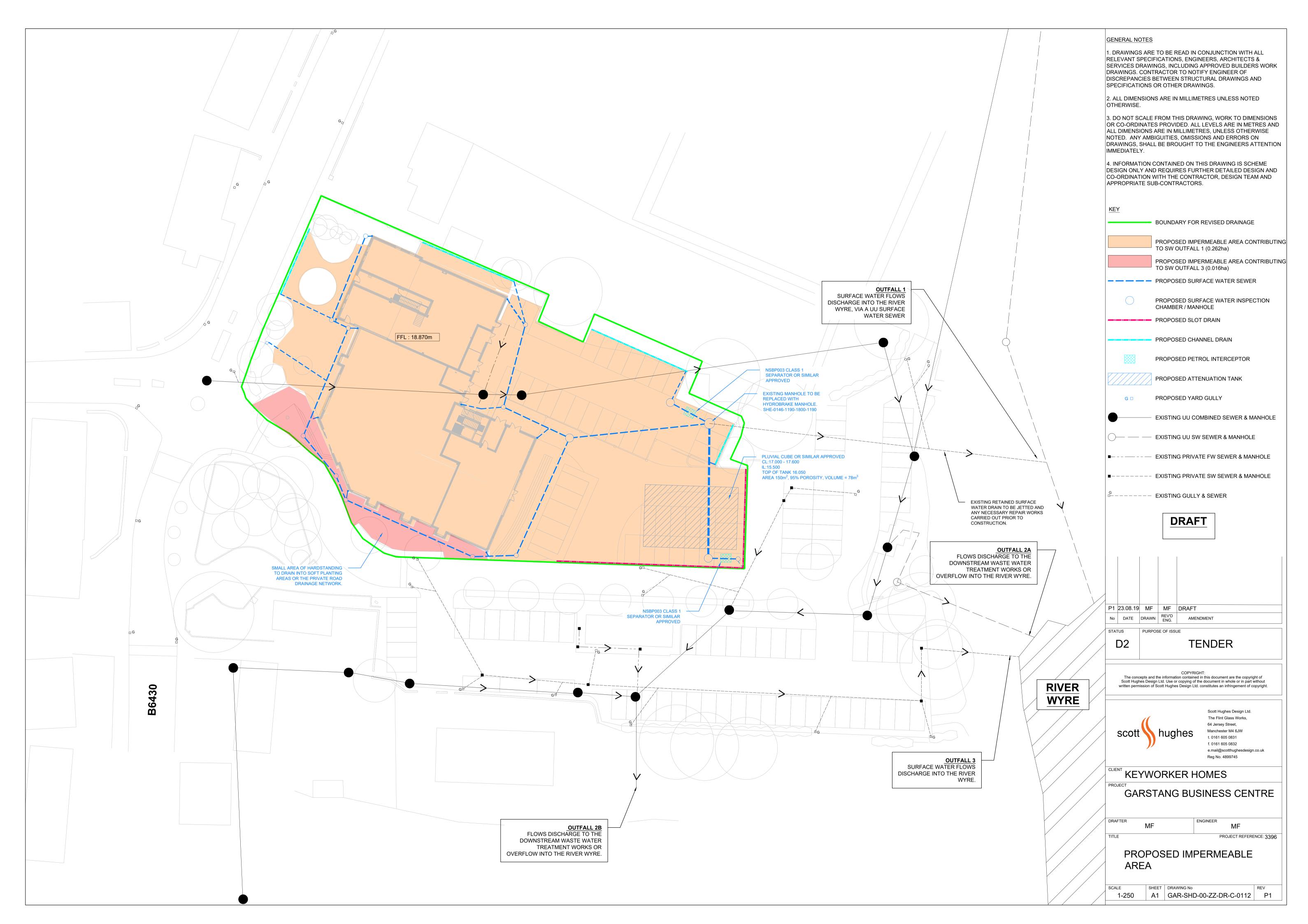
COPYRIGHT:
The concepts and the information contained in this document are the copyright of Scott Hughes Design Ltd. Use or copying of the document in whole or in part without written permission of Scott Hughes Design Ltd. constitutes an infringement of copyright.

Scott Hughes Design Ltd. The Flint Glass Works, 64 Jersey Street, Manchester M4 6JW t. 0161 605 0831 f. 0161 605 0832 e.mail@scotthughesdesign.co.uk Reg No. 4899745

KEYWORKER HOMES

GARSTANG BUSINESS CENTRE


PROJECT REFERENCE: 3396


EXISTING CONTRIBUTING AREAS

A1 GAR-SHD-00-ZZ-DR-C-0111 P1

Appendix C – Surface Water Simulation Results

Appendix B – Proposed Drainage Drawings

Scott Hughes Design Ltd

The Flint Glass Works

64 Jersey Street

M1, M30, M100+40%

Manchester M4 6JW

Date 23/08/2019

File Pro Drainage Network.MDX

Micro Drainage

Network 2018.1

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for SW

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E.	Ba Flow		k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
												_
1.000	14.557			0.014	5.00				0		Pipe/Conduit	0
1.001	2.979		99.3	0.024	0.00		0.0	0.600	0	150	Pipe/Conduit	₩
1.002	18.772	0.153	123.0	0.014	0.00		0.0	0.600	0	150	Pipe/Conduit	₩
1.003	8.324	0.083	100.0	0.010	0.00		0.0	0.600	0	150	Pipe/Conduit	<u> </u>
1.004	4.127	0.075	55.1	0.000	0.00		0.0	0.600	0	150	Pipe/Conduit	6
1.005	22.328	0.223	100.1	0.023	0.00		0.0	0.600	0	150	Pipe/Conduit	ĕ
1.006	7.045	0.070	100.0	0.000	0.00		0.0	0.600	0	150	Pipe/Conduit	ĕ
1.007	20.713	0.331	62.6	0.000	0.00		0.0	0.600	0	150	-	Š
												•
2.000	13.702	0.137	100.0	0.021	5.00		0.0	0.600	0	150	Pipe/Conduit	ð
2.001	11.746	0.129	90.7	0.028	0.00		0.0	0.600	0	150	Pipe/Conduit	ĕ
												_
1.008	22.612	1.052	21.5	0.000	0.00		0.0	0.600	0	150	Pipe/Conduit	€
												_
3.000	4.604	0.150	30.6	0.076	5.00		0.0	0.600	0	150	Pipe/Conduit	0
3.001	21.647	0.080	270.6	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	ĕ
											•	•
4.000	7.142	0.238	30.0	0.054	5.00		0.0	0.600	0	150	Pipe/Conduit	0
											-	•
1.009	8.521	0.046	185.2	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	a
												-

Network Results Table

PN	Rain (mm/hr)	T.C.	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
1 000	E0 00	E 0.4	17 645	0 014	0 0	0 0	0.0	1 00	17 0	1 0
1.000	50.00		17.645	0.014	0.0	0.0		1.00	17.8	1.9
1.001	50.00		17.499	0.038	0.0	0.0	0.0	1.01	17.8	5.1
1.002	50.00	5.64	17.469	0.052	0.0	0.0	0.0	0.90	16.0	7.0
1.003	50.00	5.77	17.317	0.062	0.0	0.0	0.0	1.00	17.8	8.4
1.004	50.00	5.83	17.234	0.062	0.0	0.0	0.0	1.36	24.0	8.4
1.005	50.00	6.20	17.159	0.085	0.0	0.0	0.0	1.00	17.7	11.5
1.006	50.00	6.31	16.936	0.085	0.0	0.0	0.0	1.00	17.8	11.5
1.007	50.00	6.58	16.865	0.085	0.0	0.0	0.0	1.27	22.5	11.5
2.000	50.00	5.23	16.801	0.021	0.0	0.0	0.0	1.00	17.8	2.8
2.001	50.00	5.41	16.664	0.049	0.0	0.0	0.0	1.06	18.7	6.6
1.008	50.00	6.76	16.534	0.134	0.0	0.0	0.0	2.18	38.6	18.1
3.000	50.00	5.04	15.800	0.076	0.0	0.0	0.0	1.83	32.3	10.3
3.001	50.00	5.42	15.500	0.076	0.0	0.0	0.0	0.95	67.2	10.3
4.000	50.00	5.06	15.733	0.054	0.0	0.0	0.0	1.84	32.6	7.3
1.009	50.00	6.90	15.420	0.264	0.0	0.0	0.0	0.96	38.1	35.7

Free Flowing Outfall Details for SW

Outfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	I.	Level	(mm)	(mm)
							(m)		

1.009 EX SEWER 17.174 15.374 0.000 300 0

Simulation Criteria for SW

Volumetric Runoff Coeff 0.750 Manhole Headloss Coeff (Global) 0.500 Inlet Coefficient 0.800
Areal Reduction Factor 1.000 Foul Sewage per hectare (1/s) 0.000 Flow per Person per Day (1/per/day) 0.000
Hot Start Level (mm) 0 MADD Factor * 10m³/ha Storage 2.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 18.240 Cv (Summer) 0.750 Return Period (years) 2 Ratio R 0.320 Cv (Winter) 0.840 Region England and Wales Profile Type Summer Storm Duration (mins) 30

©1982-2018 Innovyze

Scott Hughes Design Ltd		Page 2
The Flint Glass Works	GARSTANG	
64 Jersey Street	M1, M30, M100+40%	
Manchester M4 6JW	SW SIMULATION RESULTS	Micro
Date 23/08/2019	Designed by MF	Drainage
File Pro Drainage Network.MDX	Checked by	Dialilade
Micro Drainage	Network 2018 1	

Online Controls for SW

Hydro-Brake® Optimum Manhole: S1.15, DS/PN: 1.009, Volume (m³): 5.7

Unit Reference	MD-SHE-0146-1190-1800-1190	Sump Available Yes
Design Head (m)	1.800	Diameter (mm) 146
Design Flow (1/s)	11.9	Invert Level (m) 15.420
Flush-Flo™	Calculated	Minimum Outlet Pipe Diameter (mm) 225
Objective	Minimise upstream storage	Suggested Manhole Diameter (mm) 1500
Application	Surface	

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.800	11.9	Kick-Flo®	1.100	9.4
	Flush-Flo™	0.525	11.9	Mean Flow over Head Range	_	10.4

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow $(1/s)$	Depth (m)	Flow $(1/s)$	Depth (m)	Flow (1/s)	Depth (m) F	(1/s)	Depth (m) F	low (1/s)	Depth (m)	Flow $(1/s)$
-		_		_				-		_	
0.100	5.3	0.600	11.9	1.600	11.2	2.600	14.1	5.000	19.3	7.500	23.5
0.200	10.3	0.800	11.5	1.800	11.9	3.000	15.1	5.500	20.2	8.000	24.2
0.300	11.3	1.000	10.4	2.000	12.5	3.500	16.3	6.000	21.1	8.500	24.9
0.400	11.7	1.200	9.8	2.200	13.1	4.000	17.4	6.500	21.9	9.000	25.6
0.500	11.9	1.400	10.6	2.400	13.6	4.500	18.4	7.000	22.7	9.500	26.3

Scott Hughes Design Ltd		Page 3
The Flint Glass Works	GARSTANG	
64 Jersey Street	M1, M30, M100+40%	
Manchester M4 6JW	SW SIMULATION RESULTS	Micro Micro
Date 23/08/2019	Designed by MF	Drainage
File Pro Drainage Network.MDX	Checked by	Dialiage
Micro Drainage	Network 2018.1	<u> </u>

Storage Structures for SW

Tank or Pond Manhole: S1.13, DS/PN: 3.001

Invert Level (m) 15.500

 Depth (m)
 Area (m²)
 Depth (m)
 Area (m²)
 Depth (m)
 Area (m²)

 0.000
 142.5
 0.550
 142.5
 0.551
 0.0

©1982-2018 Innovyze

Scott Hughes Design Ltd		Page 4
The Flint Glass Works	GARSTANG	
64 Jersey Street	M1, M30, M100+40%	
Manchester M4 6JW	SW SIMULATION RESULTS	Micro
Date 23/08/2019	Designed by MF	
File Pro Drainage Network.MDX	Checked by	Drainage
Micro Drainage	Network 2018.1	-

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for SW

Simulation Criteria

Areal Reduction Factor 1.000 Manhole Headloss Coeff (Global) 0.500 MADD Factor * 10m³/ha Storage 2.000

Hot Start (mins) 0 Foul Sewage per hectare (1/s) 0.000 Inlet Coefficient 0.800

Hot Start Level (mm) 0 Additional Flow - % of Total Flow 0.000 Flow per Person per Day (1/per/day) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 18.240 Cv (Summer) 0.750 Region England and Wales Ratio R 0.320 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status ON
Analysis Timestep 2.5 Second Increment (Extended) Inertia Status ON
DTS Status OFF

Profile(s)
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440
Return Period(s) (years)
Climate Change (%)
Summer and Winter
1, 30, 100
0, 0, 40

					Water	Surcharged	Flooded				Pipe	
	US/MH			US/CL	Level	Depth	Volume	Flow /	Maximum	Discharge	Flow	
PN	Name	Event	:	(m)	(m)	(m)	(m³)	Cap.	Vol (m³)	Vol (m³)	(1/s)	Status
1 000	S1 01	15 minute 1 year	Winter T+0%	18 695	17 677	-0.118	0.000	0.10	0.008	0.769	1.6	OK
		15 minute 1 year				-0.086	0.000	0.37	0.048	2.088	4.0	OK
		15 minute 1 year				-0.087	0.000	0.36		2.857	5.4	OK
		15 minute 1 year				-0.083	0.000	0.41		3.406	6.4	OK
		15 minute 1 year				-0.087	0.000	0.37	0.046	3.406	6.4	OK
		15 minute 1 year				-0.074	0.000	0.51	0.038	4.670	8.5	OK
1.006	S1.07	15 minute 1 year	Winter I+0%	17.872	17.017	-0.069	0.000	0.56	0.062	4.670	8.5	OK
1.007	S1.08	15 minute 1 year	Winter I+0%	17.787	16.932	-0.084	0.000	0.41	0.047	4.670	8.6	OK
2.000	S1.09	15 minute 1 year	Winter I+0%	18.765	16.840	-0.111	0.000	0.15	0.010	1.154	2.5	OK
2.001	S1.10	15 minute 1 year	Winter I+0%	18.763	16.722	-0.092	0.000	0.31	0.043	2.692	5.2	OK
1.008	S1.11	15 minute 1 year	Winter I+0%	18.478	16.598	-0.087	0.000	0.37	0.112	7.362	13.4	OK
3.000	S1.12	15 minute 1 year	Winter I+0%	16.901	15.863	-0.087	0.000	0.37	0.016	4.175	8.9	OK
3.001	S1.13	30 minute 1 year	Winter I+0%	17.014	15.552	-0.247	0.000	0.05	7.521	1.711	2.9	OK
4.000	S1.14	15 minute 1 year	Winter I+0%	17.728	15.782	-0.101	0.000	0.23	0.049	2.967	6.3	OK
1.009	S1.15	15 minute 1 year	Winter I+0%	17.562	15.650	0.005	0.000	0.35	1.372	11.465	10.6	SURCHARGED

Scott Hughes Design Ltd	Page 5	
The Flint Glass Works	GARSTANG	
64 Jersey Street	M1, M30, M100+40%	
Manchester M4 6JW	SW SIMULATION RESULTS	Micro
Date 23/08/2019	Designed by MF	Drainage
File Pro Drainage Network.MDX	Checked by	Dialiacie
Micro Drainage	Network 2018 1	-

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for SW

Simulation Criteria

Areal Reduction Factor 1.000 Manhole Headloss Coeff (Global) 0.500 MADD Factor * 10m³/ha Storage 2.000

Hot Start (mins) 0 Foul Sewage per hectare (1/s) 0.000 Inlet Coefficient 0.800

Hot Start Level (mm) 0 Additional Flow - % of Total Flow 0.000 Flow per Person per Day (1/per/day) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 18.240 Cv (Summer) 0.750 Region England and Wales Ratio R 0.320 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status ON
Analysis Timestep 2.5 Second Increment (Extended) Inertia Status ON
DTS Status OFF

Profile(s)
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440
Return Period(s) (years)
Climate Change (%)
Summer and Winter
1, 30, 100
0, 0, 40

							Water	Surcharged	Flooded				Pipe	
	US/MH					US/CL	Level	Depth	Volume	Flow /	Maximum	Discharge	Flow	
PN	Name		Event			(m)	(m)	(m)	(m³)	Cap.	Vol (m³)	Vol (m³)	(1/s)	Status
1.000	S1.01	15 minute 3	30 vear	Winter	T+0%	18.695	17.742	-0.053	0.000	0.24	0.026	1.880	3.9	OK
		15 minute 3	-					0.078	0.000	0.93	0.273			SURCHARGED
		15 minute 3	-					0.093	0.000	0.90	0.109	6.984		SURCHARGED
		15 minute 3	-					0.134	0.000	0.97	0.385	8.327		SURCHARGED
1.004	S1.05	15 minute 3	30 year	Winter	I+0%	18.442	17.524	0.141	0.000	0.88	0.217	8.327	15.2	SURCHARGED
1.005	S1.06	15 minute 3	30 year	Winter	I+0%	18.325	17.469	0.160	0.000	1.20	0.149	11.415	20.2	SURCHARGED
1.006	S1.07	15 minute 3	30 year	Winter	I+0%	17.872	17.135	0.049	0.000	1.34	0.261	11.415	20.3	SURCHARGED
1.007	S1.08	15 minute 3	30 year	Winter	I+0%	17.787	16.981	-0.034	0.000	0.96	0.086	11.415	20.3	OK
2.000	S1.09	15 minute 3	30 year	Winter	I+0%	18.765	16.864	-0.087	0.000	0.37	0.017	2.821	6.0	OK
2.001	S1.10	15 minute 3	30 year	Winter	I+0%	18.763	16.773	-0.041	0.000	0.86	0.087	6.581	14.6	OK
1.008	S1.11	15 minute 3	30 year	Winter	I+0%	18.478	16.674	-0.011	0.000	0.89	0.306	17.996	32.5	OK
3.000	S1.12	15 minute 3	30 year	Winter	I+0%	16.901	15.912	-0.038	0.000	0.90	0.030	10.207	21.8	OK
3.001	S1.13	60 minute 3	30 year	Winter	I+0%	17.014	15.712	-0.088	0.000	0.17	30.400	12.960	10.1	OK
4.000	S1.14	15 minute 3	30 year	Summer	I+0%	17.728	15.930	0.047	0.000	0.54	0.217	6.475	14.9	SURCHARGED
1.009	S1.15	15 minute 3	30 year	Summer	I+0%	17.562	15.864	0.219	0.000	0.39	2.419	25.801	11.8	SURCHARGED

Scott Hughes Design Ltd	Page 6	
The Flint Glass Works	GARSTANG	
64 Jersey Street	M1, M30, M100+40%	
Manchester M4 6JW	SW SIMULATION RESULTS	Micro
Date 23/08/2019	Designed by MF	Drainage
File Pro Drainage Network.MDX	Checked by	Dialiacie
Micro Drainage	Network 2018.1	<u>'</u>

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for SW

Simulation Criteria

Areal Reduction Factor 1.000 Manhole Headloss Coeff (Global) 0.500 MADD Factor * 10m³/ha Storage 2.000

Hot Start (mins) 0 Foul Sewage per hectare (1/s) 0.000 Inlet Coefficient 0.800

Hot Start Level (mm) 0 Additional Flow - % of Total Flow 0.000 Flow per Person per Day (1/per/day) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 18.240 Cv (Summer) 0.750 Region England and Wales Ratio R 0.320 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status ON
Analysis Timestep 2.5 Second Increment (Extended) Inertia Status ON
DTS Status OFF

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 40

	TTG /24TT		TTG /GT		Surcharged		T1 /	W a i	Dischaus	Pipe	
	US/MH		US/CL		-				Discharge	Flow	
PN	Name	Event	(m)	(m)	(m)	(m³)	Cap.	Vol (m³)	Vol (m³)	(1/s)	Status
1.000	S1.01	15 minute 100 year Winter I+4	0% 18.695	18.695	0.900	0.456	0.53	0.749	3.396	8.6	FLOOD
1.001	S1.02	15 minute 100 year Summer I+4	0% 18.835	18.710	1.061	0.000	1.14	0.588	8.229	12.4	FLOOD RISK
1.002	S1.03	15 minute 100 year Summer I+4	0% 18.864	18.677	1.057	0.000	1.12	0.382	11.260	16.8	FLOOD RISK
1.003	S1.04	15 minute 100 year Winter I+4	0% 18.438	18.439	0.972	0.855	1.41	1.491	15.036	21.8	FLOOD
1.004	S1.05	15 minute 100 year Summer I+4	0% 18.442	18.380	0.997	0.000	1.21	0.459	13.425	20.8	FLOOD RISK
1.005	S1.06	15 minute 100 year Winter I+4	0% 18.325	18.325	1.017	0.067	1.53	0.458	20.613	25.7	FLOOD
1.006	S1.07	15 minute 100 year Winter I+4	0% 17.872	17.866	0.780	0.000	1.68	0.646	20.613	25.5	FLOOD RISK
1.007	S1.08	15 minute 100 year Winter I+4	0% 17.787	17.702	0.687	0.000	1.22	0.349	20.613	25.8	FLOOD RISK
2.000	S1.09	15 minute 100 year Winter I+4	0% 18.765	17.517	0.566	0.000	0.55	0.201	5.093	9.0	SURCHARGED
2.001	S1.10	15 minute 100 year Winter I+4	0% 18.763	17.472	0.658	0.000	1.32	0.459	11.884	22.3	SURCHARGED
1.008	S1.11	15 minute 100 year Winter I+4	0% 18.478	17.291	0.607	0.000	1.16	1.392	32.497	42.2	SURCHARGED
3.000	S1.12	15 minute 100 year Winter I+4	0% 16.901	16.192	0.242	0.000	1.60	0.109	18.432	38.9	SURCHARGED
3.001	S1.13	120 minute 100 year Winter I+4	0% 17.014	16.025	0.226	0.000	0.21	75.508	36.239	12.6	SURCHARGED
4.000	S1.14	15 minute 100 year Winter I+4	0% 17.728	16.121	0.238	0.000	0.99	0.434	13.096	27.5	SURCHARGED
1.009	S1.15	120 minute 100 year Winter I+4	0% 17.562	16.024	0.379	0.000	0.39	2.761	138.744	11.9	SURCHARGED