

Our Ref: YE9052

28th September 2020

For the attention of Mr Strong, C/O Bucks Recycling

Ref: Bucks Recycling, Building 214 Westcott Venture Park, Aylesbury, Buckinghamshire, HP18 OXB

We thank you for your request to undertake permeability testing at the above mentioned site and take pleasure in enclosing the results of this work. The investigation was undertaken on the 25th September 2020 in accordance with your instruction to proceed. This letter describes the work undertaken, presents the data obtained and discusses the results of the tests.

Geology

An examination of the available British Geological Survey data of the area for the site has been examined and indicates that the site has no superficial drift deposits recorded, and bedrock deposits recorded as the West Walton Formation (mudstone).

Fieldworks

The programme of this investigation included the excavation of four trial pits. The locations of the soakaway tests were selected by the client. A further deeper excavation was carried out to a depth of 8.0-10.0mbgl to check for a change in geology. Upon excavation the geology remained the same with some coarse particles of mudstone present.

During this work, the soils encountered were logged in general accordance with BS 5930: 1990, as amended in 2007, and full descriptions are given on the borehole records, which are also appended to this letter.

Soakaway Tests

During the soakaway tests the water failed to achieve a fall from 75% to 25% of the effective depth of the storage volume in all four trial pits. The results obtained from the soakaway tests are summarised below:

Table 1: Soakaway Test Results

WS	Soakage Area Dimensions (m)	Depth (m)	Soil Description (Base of TP)	Infiltration Rate (m/sec)	Drainage Characteristics
TP01 test1	1.20 x 0.30	1.50	Light brown and mottled grey CLAY.	N/A	Practically Impermeable
TP02 test1	1.20 x 0.30	1.75	Grey and mottled orange CLAY.	N/A	Practically Impermeable
TP03 test1	1.30 x 0.30	1.50	Light brown sandy CLAY. Sand is medium - coarse.	N/A	Practically Impermeable

TP04 test1	1.40 x 0.30	1.80	Grey and mottled orange CLAY.	N/A	Practically Impermeable
---------------	-------------	------	-------------------------------	-----	----------------------------

Discussion

The soils encountered beneath the site were recorded as predominantly CLAY. The soakage rates obtained during the investigation were found to be poor to practically impermeable. Given the data from the test, it is considered that the use of soakaways is not suitable for this site.

References

Building Research Establishment (BRE) Digest 365, Soakaway Design, September 1991.

British Standards Institution (1999) BS5930: Code of practice for site investigations, B.S.I., London.

British Standards Institution (2007), Amendment No 1, BS5930: Code of practice for site investigations, B.S.I., London.

We trust that this information is of interest and should you have any other requirements do not hesitate to contact us.

For and on behalf of

Your Environment

Yours Faithfully,

Nick Hammond

Geo-Environmental Engineer

Enc.

Appendix A: Site Investigation Plan

Appendix B: Trial Pit Logs

Appendix C: Soakaway Test Results

APPENDIX A: Site Investigation Plan

APPENDIX B: Trial Pit Logs

Your	TP Geotechnical	01			Tı	rial Pit Log	TrialPit TP0	1
Project	Hannar E Was	cott Venture Park	Proje	ect No.		Co-ords: -	Sheet 1 Date	
Name:	Hanger 5, wes	cott venture Park	YE9	052		Level:	25/09/20	
ocatio	n: Aylesbury, HP1	8 0XB				Dimensions 1.20 (m):	Scale 1:25	
Client:	Bucks Recyclin	g Ltd			00	(m): 000 000 000 000 000 000 000 000 000 0	Logge NH	d
Water Strike	Samples & Depth Typ	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	100000.00	
Remark	ss:		0.45			Light brown sandy CLAY. Sand is medium to coarse. Light brown sandy, gravelly CLAY. Sand is medium to coarse. Gravel is medium to coarse, angular of fichalk fragments. Light brown and mottled grey CLAY.	arse, um to lint and	3 4 5
Stabilit	r						AG	S

YourG	eotechnica	TP02				Tı	rial Pit Log	TrialPit TP02 Sheet 1	2
Project	Hanger 5	. Wescott \	Venture Park	0.04 (0.000)	ect No.		Co-ords: -	Date	8
Name:	THE RESERVE			YE9	052		Level: Dimensions 1.30	25/09/20 Scale	200000000000000000000000000000000000000
ocation	: Aylesbury	y, HP18 0X	В				(m):	1:25	
Client:	Bucks Re	ecycling Ltd	1				Depth 0 1.75	Logge NH	d
Water		ples & In Situ		Depth (m)	Level (m)	Legend	Stratum Description		
S 00	Depth	Туре	Results	(iii)	tiny	10 to	Brown clayey SAND. Sand is medium to coarse.		
				0.15			Brown and mottled light brown sandy CLAY. Sand	f is	
							medium to coarse.		
				0.80					_
				1000		====	Brown gravelly CLAY. Gravel is medium to coarse of flint and chalk fragments.	, angular	
				1.10			0.44		1
				5335			Grey and mottled orange CLAY.		
									8
									3
				1.75			End of Pit at 1.75m		3
									2 -
									-
									3
									3 -
									4 -
									3
									3
									9
									9
						S AT			5 -
Remark								AG	S

Your	l leotechnica	TP03				Tı	rial Pit Log	TrialPit TP03	3
Project	Hangar 6	Wossett \	Venture Park	Proj	ect No.		Co-ords: -	Sheet 1 Date	
Name:	Hanger 5	, wescoll	venture Park	YE9	052		Level:	25/09/20	2,752,751
ocatio	n: Aylesbury	, HP18 0X	B				Dimensions 1.30 (m):	Scale 1:25	
Client:	Bucks Re	cycling Ltd	i				(m): 08 Depth 0 1.50	Logge NH	d
Water	000000	ples & In Situ	CCC2963.TC/	Depth	Level	Legend	Stratum Description	300000	
≥ ∞	Depth	Туре	Results	(m)	(m)	HOWER	Brown clayey SAND. Sand is medium to coarse.		
				0.10			Brown CLAY.		3
						====			
									1
				0.75			Light brown sandy CLAY. Sand is medium to coa	rse.	Ξ
									Ξ
									1 =
									=
				1.50			End of Pit at 1.50m	-	=
									2 -
									=
									35
									=
									=
									3 —
									72
									9 <u>9</u>
									3 E
									_ =
									4 =
									Ξ
									=
									5 —
Remark								AG	S

Your	eotechnica	TP04				Tı	rial Pit Log	TrialPit I	4
Project Name:	Hanger 5	, Wescott	Venture Park	0.19 (0.47 (0.47)	ect No.		Co-ords: - Level:	Date	8
	A - 8750-36-36-36		44	YES	052		Dimensions 1.40	25/09/20 Scale	
Location	n: Aylesbury	y, HP18 0X	(B				(m):	1:25	
Client:	Bucks Re	ecycling Ltd	d				Depth 0	Logge NH	d
Water	Sam	Type	Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
	Бери	Type	results	0.10		12738	Brown clayey SAND. Sand is medium to coar	se.	
				0.10			Light brown CLAY.		2-
						===			3
						P-2-2			1
									3
				1.00		EEE	Grey and mottled orange CLAY.		1 -
									9
									9
				1.80			End of Pit at 1.80m		
							End of Pit at 1.50m		3
									2 -
									1
									3
									1 3
									-
									3 -
									1
									4
									100
									2
									-
									4
8				277		3			5 -
Remark						13		AG	

APPENDIX B: Soakaway Test Results

Soakaway Test

Trial Pit No:	TP1	Test No:	1	Date:	25/09/2020
Length (m):	1.200		Datum Height:	0.00	m agl
Width (m):	0.30		Granular infill:	None	
Depth (m):	1.50		Porosity of infill:	1	(assumed)
Γ	Elapsed time	Water Depth	Elapsed time	Water Depth]
	(minutes)	(m below datum)	(minutes)	(m below datum)	
Γ	0	0.700	30	0.630	1
	1	0.700	35	0.630	
	2	0.690	40	0.630	
	3	0.690	45	0.630	
	4	0.690	50	0.630	
	5	0.690	55	0.630	
	6	0.680	60	0.630	
	7	0.680	80	0.630	
	8	0.680	100	0.630	
	9	0.670	120	0.630	
	10	0.660	140	0.630	
	15	0.660	160	0.630	
	20	0.640	180	0.630	
	25	0.640			

Start water depth for analysis (mbgl)	0.70		
75% effective depth (mbgl):	0.90	Elapsed time (mins):	#N/A
50% effective depth (mbgl):	1.10		
25% effective depth (mbgl):	1.30	Elapsed time (mins):	#N/A
Base of soakage zone (mbgl):	1.50		
Volume outflow between 75% and 25% effec	tive depth (m³):		
Mean surface area of outflow (m2):		1.56	
(side area at 50% effective depth + base are	ea)		
Time for outflow between 75% and 25% effe	ective depth (mins):		

Soil infiltration rate (m/s):	Test incomplete as 25% effective depth not achieved. Unable to reliably determine soil infiltration rate.
Results processed following BRE	365 (2007).

Client:	Bucks Recycling	TP1
Site:	Bucks Recycling, Westcott Venture Park	10-1

Soakaway Test

Trial Pit No:	TP2	Test No:	1	Date:	25/09/2020
Length (m):	1.300		Datum Height:	0.00	m agl
Width (m):	0.30		Granular infill:	None	
Depth (m):	1.75		Porosity of infill:	1	(assumed)
Γ	Elapsed time	Water Depth	Elapsed time	Water Depth]
9	(minutes)	(m below datum)	(minutes)	(m below datum)	
	0	0.820	30	0.840	1
	1	0.820	35	0.840	
	2	0.820	40	0.840	
	3	0.820	45	0.840	
	4	0.820	50	0.840	
	5	0.830	55	0.850	
	6	0.830	60	0.850	
	7	0.830	80	0.850	
	8	0.830	100	0.850	
	9	0.830	120	0.850	
	10	0.830	140	0.850	
	15	0.830	160	0.850	
	20	0.830	180	0.850	
	25	0.840	231107.0		

Start water depth for analysis (mbgl)	0.82		
75% effective depth (mbgl):	1.05	Elapsed time (mins):	#N/A
50% effective depth (mbgl):	1.29		
25% effective depth (mbgl):	1.52	Elapsed time (mins):	#N/A
Base of soakage zone (mbgl):	1.75		
Volume outflow between 75% and 25% effective for the control of th	tive depth (m³):		
Mean surface area of outflow (m2):		1.86	
(side area at 50% effective depth + base are	ea)		
Time for outflow between 75% and 25% effe	ective depth (mins):		

tive depth not determine soil		Soil infiltration rate (m/s):	
	narks Results processed following BRE 365 (2007).		

Client:	Bucks Recycling	TP2
Site:	Bucks Recycling, Westcott Venture Park	IFZ

Soakaway Test

Trial Pit No:	TP3	Test No:	1	Date:	25/09/2020
Length (m):	1.300		Datum Height:	0.00	m agl
Width (m):	0.30		Granular infill:	None	
Depth (m):	1.50		Porosity of infill:	1	(assumed)
	Elapsed time	Water Depth	Elapsed time	Water Depth	1
2	(minutes)	(m below datum)	(minutes)	(m below datum)	
	0	0.450	30	0.470	1
	1	0.450	35	0.480	
	2	0.450	40	0.480	
	3	0.450	45	0.480	
	4	0.460	50	0.480	
	5	0.460	55	0.480	
	6	0.460	60	0.490	
	7	0.460	80	0.490	
	8	0.460	100	0.490	
	9	0.470	120	0.490	
	10	0.470	140	0.490	
	15	0.470	160	0.490	
	20	0.470	180	0.500	
	25	0.470			

Start water depth for analysis (mbgl)	0.45		
75% effective depth (mbgl):	0.71	Elapsed time (mins):	#N/A
50% effective depth (mbgl):	0.98		
25% effective depth (mbgl):	1.24	Elapsed time (mins):	#N/A
Base of soakage zone (mbgl):	1.50		
Volume outflow between 75% and 25% effec	tive depth (m³):		
Mean surface area of outflow (m2):		2.05	
(side area at 50% effective depth + base are	ea)		
Time for outflow between 75% and 25% effe	ective depth (mins):		

	Soil infiltration rate (m/s):	Test incomplete as 25% effective depth not achieved. Unable to reliably determine soil infiltration rate.
Remarks Results processed following BRE 365 (2007).		

Client:	Bucks Recycling	TP3
Site:	Bucks Recycling, Westcott Venture Park	115

Soakaway Test

Trial Pit No:	TP4	Test No:	1	Date:	25/09/2020
Length (m):	1.400		Datum Height:	0.00	m agl
Width (m):	0.30		Granular infill:	None	
Depth (m):	1.80		Porosity of infill:	1	(assumed)
	Elapsed time	Water Depth	Elapsed time	Water Depth]
8	(minutes)	(m below datum)	(minutes)	(m below datum)	
	0	0.820	30	0.830	1
	1	0.820	35	0.840	
	2	0.820	40	0.840	
	3	0.820	45	0.840	
	4	0.820	50	0.840	
	5	0.820	55	0.840	
	6	0.820	60	0.840	
	7	0.820	80	0.840	
	8	0.820	100	0.840	
	9	0.820	120	0.850	
	10	0.820	140	0.850	
	15	0.830	160	0.850	
	20	0.830	180	0.850	
	10 <u>2</u> 2				1

Start water depth for analysis (mbgl)	0.82		
75% effective depth (mbgl):	1.07	Elapsed time (mins):	#N/A
50% effective depth (mbgl):	1.31		
25% effective depth (mbgl):	1.56	Elapsed time (mins):	#N/A
Base of soakage zone (mbgl):	1.80		
Volume outflow between 75% and 25% effec	tive depth (m³):		
Mean surface area of outflow (m2):		2.09	
(side area at 50% effective depth + base are	ea)		
Time for outflow between 75% and 25% effe	ective depth (mins):		

	Soil infiltration rate (m/s):	Test incomplete as 25% effective depth not achieved. Unable to reliably determine soil infiltration rate.
Remarks Results processed following BRE 365 (2007).		

Client:	Bucks Recycling	TP4
Site:	Bucks Recycling, Westcott Venture Park	1174