

Bancroft Court Hitchin Hertfordshire SG5 1LH

Telephone: 01462 632012 Email: office@mnp.co.uk www.mnp.co.uk

DRAINAGE STRATEGY REPORT

AT

SOHO FARMHOUSE - GYM EXTENSION

REF: 219467 - C - RP005 - P01

JUNE 2021

APPENDIX F

APPENDIX G

- PROPOSED DRAINAGE PLAN

- PROPOSED SURFACE WATER DRAINAGE CALCULATIONS

CONTENTS

1.	INTRODUCTION	2
2.	SITE CONDITIONS	3
	SITE LOCATION & USE	3
	SITE GEOLOGY	4
	SITE HYDROGEOLOGY	5
3.	PROPOSED DEVELOPMENT	7
4.	FLOOD RISK	8
	FLOODING RISK FROM RIVERS & SEAS	9
	FLOODING FROM SURFACE WATER	10
	FLOODING FROM RESERVOIRS	11
5.	SURFACE WATER DRAINAGE DESIGN	12
	EXISTING RUN-OFF RATES	12
	LOCAL CONSTRAINTS & PLANNING POLICIES	12
	CLIMATE CHANGE ALLOWANCES	14
	PROPOSED SURFACE WATER DRAINAGE	15
6.	FOUL WATER DRAINAGE DESIGN	17
7.	SUDS MAINTENANCE AND MANAGEMEMENT	18
8.	RECOMMENDATIONS AND CONCLUSIONS	20
	PENDICES ENDIX A - SOHO FARMHOUSE MASTER PLAN	
	ENDIX B - EXISTING GYM PLAN	
	ENDIX C - BGS BOREHOLE LOG	
	ENDIX D - PROPOSED GYM PLAN ENDIX E - INFILTRATION TEST RESULTS AND CALCULATIONS	
AFFE	LINDIA L - INI IL I RATION TEST RESULTS AND CALCULATIONS	

Report prepared by:

Andrew Quinn BEng (Hons) Project Engineer

1. INTRODUCTION

- 1.1. Mason Navarro Pledge Ltd have been commissioned by Soho House Group to develop a surface & foul water drainage strategy for the proposed extension to the existing gym building at Soho Farmhouse in Great Tew, Oxfordshire.
- 1.2. The purpose of this report is to demonstrate that a viable and sustainable strategy for the management and disposal of surface water runoff with climate change allowances for the development can be achieved whilst simultaneously achieving a viable solution for foul water disposal.
- 1.3. This report has been prepared using the following data/information from various sources including:
 - The Flood Risk and Flood Zone Maps published by the Environment Agency (EA);
 - Geological information published on the British Geological Survey (BGS) website;
 - West Oxfordshire District Council Local Plan 2031, September 2018;
 - Proposed & Existing Plans by 31/44 Architects;
 - GEA Ground Investigation Report Ref J14011 Dated February 2014;
 - Hill Groundworks Infiltration testing results dated 12th February 2021
- 1.4. This report has been prepared by Andrew Quinn BEng (Hons).

2. SITE CONDITIONS

SITE LOCATION & USE

2.1. The 0.0308Ha (308sqm) extension is located within the demise of the Soho Farmhouse hotel & leisure facility. Soho Farmhouse is a hotel & leisure facility located between Great Tew and Enstone, approximately 8 kilometres to the east of Chipping Norton within the northern portion of the West Oxfordshire District, Oxfordshire.

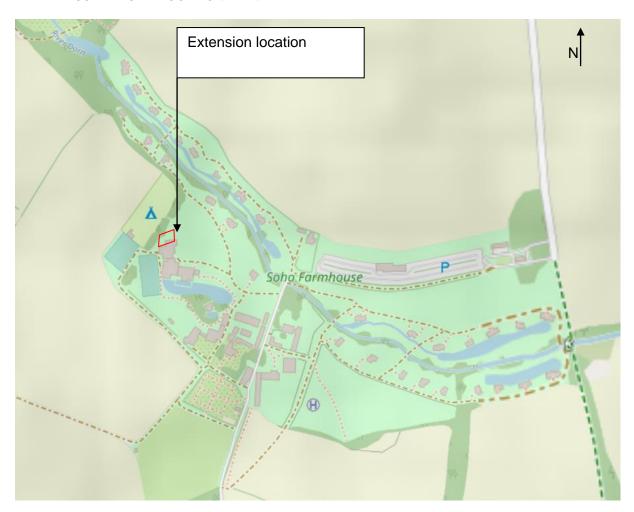


FIGURE 1: SITE LOCATION PLAN

Soho Farmhouse is located off Tracey Lane, Great Tew, Oxfordshire, OX7 4JS. The Gym is located to the east of the complex. Please refer to the overall site plan in Appendix A and Appendix B for an existing plan of the gym.

SITE GEOLOGY

2.2. The conditions at the site are detailed below in Table 1 and are based on the findings noted on the British Geological Survey (BGS) Viewer this is concurrent with the information provided in the GEA Ground Investigation Report. The focus of a study on geology is to examine the potential movement of water through the local geology.

TABLE 1: GEOLOGICAL GROUND CONDITIONS

Formation	Description
Superficial Deposits (Drift Deposits)	In accordance with the BGS viewer there are no superficial deposits within the confines of the site boundary.
Bedrock	Sharp's Hill Formation - Varied sequence of greenish grey, silty, moderately shelly and calcareous mudstones, pale greenish grey shelly marls and fine-grained shelly limestones with marine and freshwater faunas

2.3. GEA's Ground Investigation Report notes "No concentrations of contaminants are above typical 'normal background' concentrations."

SITE HYDROGEOLOGY

2.4. The hydrogeological features of the site are provided in summary in Table 2. Hydrogeological features of the site have been identified from the DEFRA Magic Map application.

TABLE 2: HYDROGEOLOGICAL GROUND CONDITIONS

Map Dataset	Designation	Comment
Groundwater Vulnerability Zone	High (Soluble Rock Risk)	This describes the vulnerability of the underlying groundwater body from activities carried out on the surface.
		High: areas able to easily transmit pollution to groundwater. They are characterised by high-leaching soils and the absence of low-permeability superficial deposits.
Aquifer Maps: Bedrock Deposits Designation	Secondary A (Sharps Hill Formation)	These are Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers.
	Principal (Chipping Norton Formation)	These are layers of rock high intergranular and/or fracture permeability - meaning they usually provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale.
Aquifer Maps: Superficial	Unproductive	This identifies the type of aquifer present in the permeable unconsolidated (loose) deposits.
Deposits Designation		Unproductive: These rocks have negligible significance for water supply or baseflow. They consist of bedrock or superficial deposits with low permeability that naturally offer protection to any aquifers that may be present beneath.
Groundwater Source Protection Zone	None	Defined as the area around a source within which all groundwater recharge is presumed to be discharged at the source. The closer the activity, the greater the risk of contamination.
		No designation means: no groundwater source zone is present.

2.5. A nearby BGS borehole Ref: SP42NW29 (Appendix C), dated August 2018 recorded the resting water level as 15 metres below existing ground level.

- 2.6. The GEA Ground Investigation Report notes "that groundwater was generally encountered as seepages and slow inflows."
- 2.7. Soakage rate testing carried out on the site in accordance with BRE digest 365, indicates that the underlying soils exhibit a reasonable permeability of 1.42×10^{-5} m/s or greater. A copy of the results from the infiltration testing and the calculation of the associated infiltration rate are included as Appendix E.
- 2.8. The location of the infiltration testing is shown in Appendix E and on the proposed drainage plan in Appendix F and it can be seen that one of the test pit locations (pit 3) is located adjacent to the extension
- 2.9. All test pits were undertaken in accordance with the requirements of BRE digest 365.

3. PROPOSED DEVELOPMENT

3.1. The proposal for the site primarily consists of the erection of an extension to the existing gym building to house new plant. The extension extends over an area of 308m^2 .

3.2. Refer to Appendix D for a copy of the Proposed Plan.

4. FLOOD RISK

- 4.1. The NPPF and the SFRA identifies several potential sources of flooding that must be considered when assessing flood risk, these are considered below in the following order:-
 - Flooding from rivers (fluvial flooding)
 - Flooding from the sea (tidal flooding)
 - Flooding from land
 - Flooding from reservoirs, canals, and other artificial sources
- 4.2. The assessment of flood risk in this report is based on the definitions in paragraph 65 of the Planning Practice Guidance, which recognises the following Flood Zones below in Table 3.

TABLE 3: FLOOD ZONE DEFINITIONS

Flood Zone	Annual probability of river or sea flooding
Zone 1 Low Probability	 Land having less than 1 in 1000 annual probability of river or sea flooding (<0.1%)
Zone 2	 Land having between a 1 in 100 and 1 in 1,000 annual probability of river flooding; or
Medium Probability	Land having between a 1 in 200 and 1 in 1,000 annual probability of sea flooding.
Zone 3a	 Land having a 1 in 100 or greater annual probability of river flooding; or
High Probability	 Land having a 1 in 200 or greater annual probability of sea flooding.
	This zone comprises land where water has to flow or be stored in times of flood.
Zone 3b The Functional Floodplain	 Local planning authorities should identify in their Strategic Flood Risk Assessments areas of functional floodplain and its boundaries accordingly, in agreement with the Environment Agency.

FLOODING FROM RIVERS (FLUVIAL FLOODING) & SEA (TIDAL FLOODING)

4.3. The indicative flood maps published by the Environment Agency (EA) identify that the site is located within Flood Zone 1.

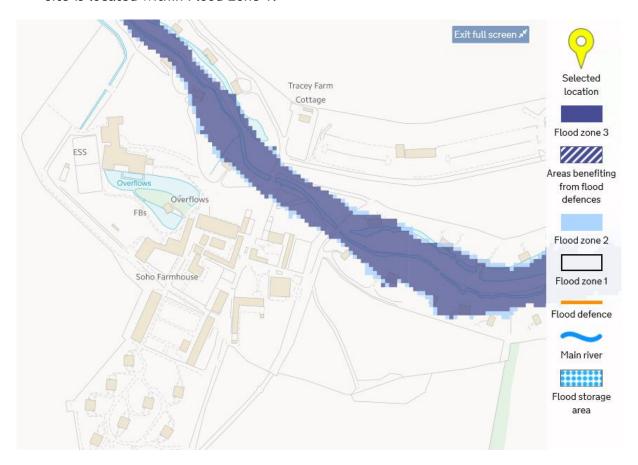


FIGURE 2: ENVIRONMENT AGENCY ONLINE FLOOD MAP EXTRACT

4.4. In summary the site is considered to be at very low risk of flooding from rivers and seas.

FLOODING FROM SURFACE WATER

High Medium Low Very low

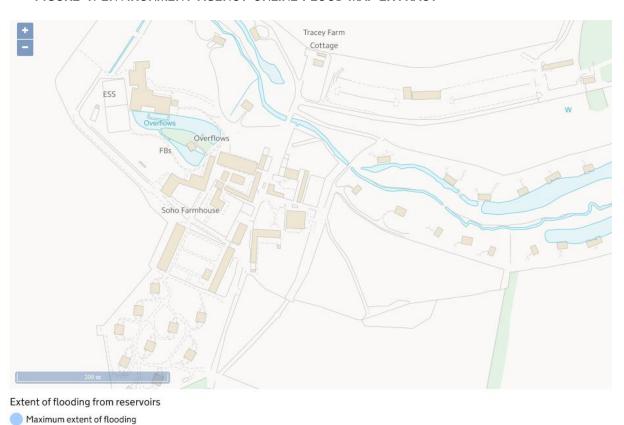
4.5. The EA Risk of Flooding from Surface Water map is published on their website to identify areas potentially at risk of flooding from surface water. This mapping identifies overland flow and surface water flooding which typically arises following periods of intense rainfall, often of short duration, that is unable to soak into the ground or enter drainage systems, it can run quickly off land and result in localised flooding.

Tracey Farm
Cottage

Overflows
FBs
Soho Farmhouse

Extent of flooding from surface water

FIGURE 3: ENVIRONMENT AGENCY ONLINE FLOOD MAP EXTRACT


4.6. In summary the area where the extension is to be sited is deemed at very low risk of flooding from surface water.

FLOODING FROM RESERVOIRS

4.7. The EA Risk of Flooding from Reservoirs Map is published on their website to identify areas potentially at risk of flooding from large reservoirs (>25,000 m³ of water), if they were to fail and release the water they hold. It does not display data for smaller reservoirs.

FIGURE 4: ENVIRONMENT AGENCY ONLINE FLOOD MAP EXTRACT

4.8. The EA Risk of Flooding from Reservoirs Map notes no large reservoirs that may affect the site in a breach event.

SURFACE WATER DRAINAGE DESIGN

EXISTING RUN-OFF RATES

- 5.1. The area where the extension is to be constructed is currently soft landscaping and is therefore classed as greenfield. Refer to the Existing layout Plan in Appendix B.
- 5.2. It is understood that the existing building surface water drains to a soakaway.

LOCAL CONSTRAINTS & PLANNING POLICIES

5.3. In conjunction with The West Oxfordshire Council Local Plan and The Oxfordshire County Council Local Standards and Guidance for Surface Water Drainage on Developments in Oxfordshire, the following policies are applicable to flood risk and drainage.

Policy EH7 of the Local Plan - Flood Risk

"In assessing proposals for a development:

 Sustainable drainage systems to manage run-off and support improvements in water quality and pressures on sewer infrastructure will be integrated into the site design, maximising their habitat value and ensuring their long-term maintenance.

Section 8.60 of the Local Plan - Flood Risk

Development should not result in an increase in surface-water run-off and, where possible, should demonstrate betterment in terms of rate and volumes of surface water.

Surface Water Guidance Document - Local Standard L6

Flow across the site must be diverted away from buildings and main access-egress routes. This flooding should be assessed to ascertain if it is safe for the sites users. All drainage schemes must suitably demonstrate that flooding will not occur to any habitable building for the worst case 1:100yr +40% climate change event.

Surface Water Guidance Document - Local Standard L8

Any infiltration storage features should be capable of half emptying within 24 hours of the rainfall event. This is to ensure capacity for further rainfall events.

Surface Water Guidance Document - Local Standard L13

Prior to discharge into any underground infiltration system, measures should be provided to remove silt, suspended or floating matter.

Surface Water Guidance Document - Local Standard L15

The designs of all elements of the surface water drainage system must be accompanied by a maintenance schedule that sets out how and when each element of the system should be inspected and maintained, who is responsible for the maintenance, and when each element may need replacement. The layout of the development must demonstrate that access for maintenance of all elements is possible.

Surface Water Guidance Document - Local Standard L20

To ensure protection of groundwater quality, there should be at least 1.0m between the maximum recorded groundwater level and the base of the infiltration system. The Environment Agency may have additional requirements.

Surface Water Guidance Document - Local Standard L21

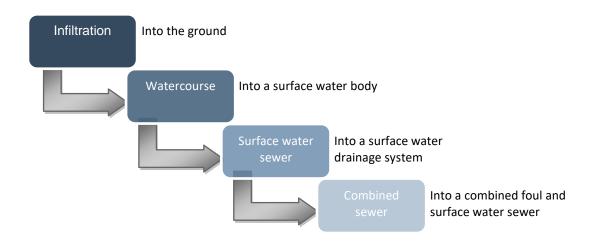
Soakaways and other infiltration SuDS must not be constructed in contaminated ground.

CLIMATE CHANGE ALLOWANCES

5.4. DEFRA recommends an allowance of 20%-40% to be made to account for the increase in rainfall intensity. With reference to the Oxfordshire County Council local standard L6 requires (refer to section 5.5 of this report) an additional 40% for climate change where there is a habitable building. Although the proposal does not comprise of a habitable building a conservative allowance of 40% will be applied.

TABLE 6: PEAK RAINFALL INTENSITY CLIMATE CHANGE ALLOWANCE

Applies across all of	Total potential	Total potential	Total potential
England	change anticipated	change anticipated	change anticipated
	for the '2020s' (2015	for the '2050s' (2040	for the '2080s' (2070
	to 2020)	to 2060)	to 2115)
	to 2039)	to 2069)	to 2113)
Upper End	10%	20%	40%


5.5. The drainage assessment in this report will ensure that any proposals for additional drainage are assessed and mitigated, against flood risk, and incorporate good SuDS practices where possible.

PROPOSED SURFACE WATER DRAINAGE

5.6. The aim of sustainable drainage systems is to dispose of surface water using the following hierarchy where reasonably practicable.

FIGURE 5: SURFACE WATER DISPOSAL HIERARCHY

- 5.7. With reference to Section 5.2, it is understood that the existing building drains to a soakaway.
- 5.8. In line with the surface water disposal hierarchy above this is the most viable and sustainable method of discharging surface water.
- 5.9. As outlined in section 5.1, the developable site is classified as 'Greenfield'. It is proposed that the proposed extension will drain to a new suitably sized soakaway.
- 5.10. Given the underlying geology and hydrogeology and the Infiltration testing carried out on the site, it can be seen that the underlying soils exhibit a permeability of 1.42×10^{-5} m/s and therefore the use of infiltration drainage is viable for the development. A copy of the results from the infiltration testing and the calculation of the associated infiltration rate are included as Appendix E.
- 5.11. 3no. infiltration tests were undertaken at the soakaway location on the site. The rate obtained from the test for pit 1(Pit 1) was used in the drainage calculations to size the proposed soakaway for the extension.
- 5.12. A storage calculation has been run for the extension, where a geo-cellular infiltration tank 4m x 6m by 1.0m deep will provide the required storage prior to discharge via infiltration for all events up to and including the 1 in 100-year event plus a 40% allowance for climate change. Please refer to Appendix G for a copy of the surface water drainage calculations.

5.13. Should the drainage system serving the building become overwhelmed then the exceedance flood flow routes have been shown on the proposed drainage strategy in appendix F, any overland flow will generally run to the low point of the site with the building being set above the surrounding ground level so it is protected, in addition there is a significant area of soft landscaping on the site that will assist in containing any overland flow.

6. FOUL WATER DRAINAGE DESIGN

- 6.1. The foul water from the existing gym area drains to a pump chamber where it is pumped up to the on-site sewerage treatment plant. The location of the existing foul drainage manhole is shown on the proposed drainage layout drawing contained in Appendix F
- 6.2. Any foul drainage generated is to discharge in to the nearby existing below ground system system.
- 6.3. Given the nominal flow anticipated from the extension to the gym area (condensate drainage and plant room gullies) there is no issue with capacity of the existing drainage system serving the site.
- 6.4. Refer to Appendix F for a proposed Drainage General Arrangement drawing.

7. SUDS MAINTENANCE AND MANAGEMENT

7.1. The responsibility for the enacting of this SuDS Maintenance and Management Plan will be the responsibility of the property owner.

CATCHPITS/PIPES/MANHOLES

7.2. All components are to be periodically cleaned of foreign particles and silt accumulation. Components located in un-adopted areas will be maintained by the landowner. Those located in adopted areas will be maintained by the adopting authority.

CONSTRUCTION PHASE

- 7.3. **Sediment** During the construction phase sediment is one of the major sources of construction site pollution.
- 7.4. The effects of erosion on a stockpile will depend on the type of material being stored. Fine sand and topsoil stockpiles will be eroded far more readily than heavy granular materials. Stockpiles should be located away from a watercourse or site drainage system. Protective coverings will help prevent runoff stripping the stockpile.
- 7.5. Sediment controls used during construction include straw bale barriers, geotextile silt fences and sediment basins. The type of sediment control system to be used depends on the catchment area and the site slope.
- 7.6. Plant and wheel washing should take place in designated locations. The area should be tanked and should not be allowed to discharge into a watercourse or infiltrate groundwater, as the wastewater from these devices is highly contaminated with silts, sands and hydrocarbons. The solid waste materials from this process need to be treated as contaminated waste due to the high hydrocarbon content.
- 7.7. Oils & Hydrocarbons The use of oils and hydrocarbons on construction sites creates an inherent risk of leakages and spillages, which could potentially lead to pollution incidents.
- 7.8. Simple measures can be taken to prevent oil and hydrocarbons becoming entrained in surface runoff, such as:
 - appropriate maintenance of machinery and plant
 - drip trays
 - regular checking of machinery and plant for oil leaks
 - correct storage facilities
 - checking for signs of wear and tear on tanks
 - care with specific procedures when refuelling

- designated areas for refuelling
 emergence spill kit located near refuelling area
 regular emptying of bunds
- tanks located in secure areas to stop vandalism

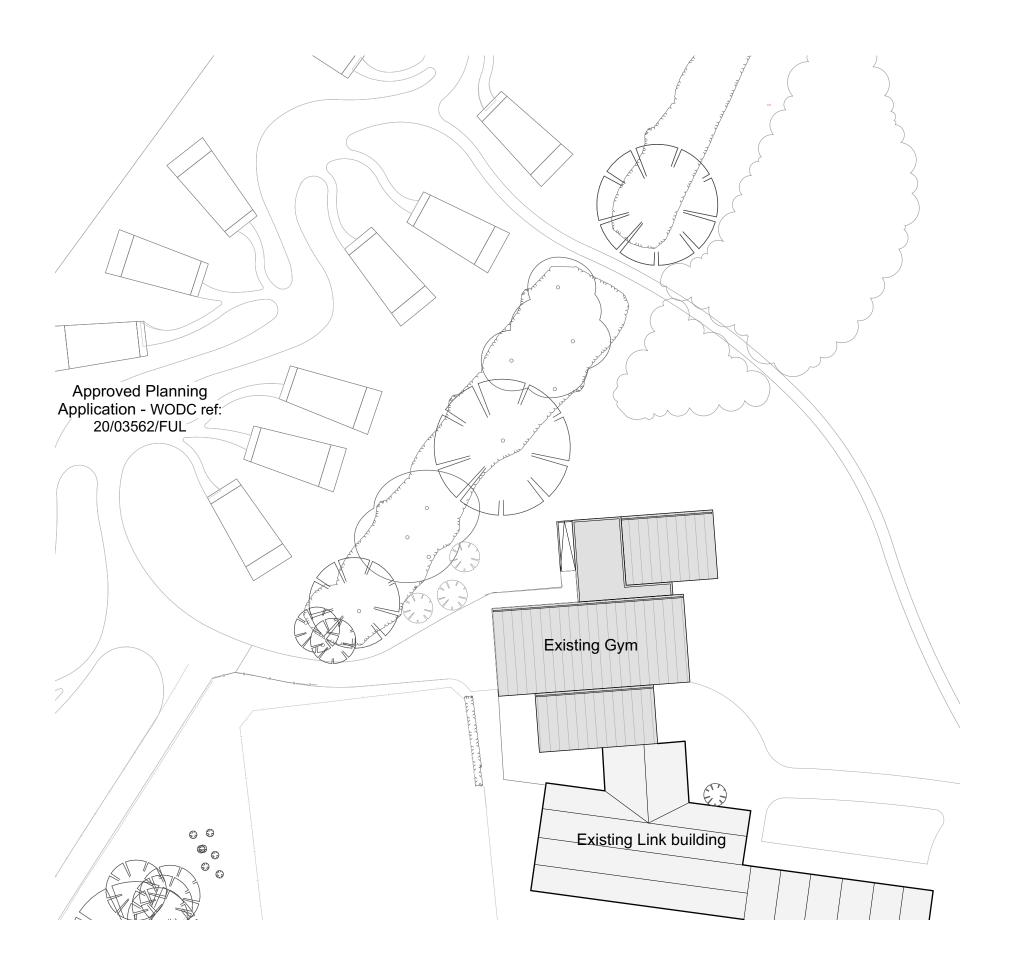
8. RECOMMENDATIONS AND CONCLUSIONS

- 8.1. The proposal for the site primarily consists of the extension to the existing gym building to provide extra flexible studio space and to house storage and plant facilities.
- 8.2. Conditions at the site are based on the findings noted on the British Geological Survey (BGS) Viewer, where the site is underlain by no superficial deposits, a Sharp's Hill formation and Chipping Norton Limestone bedrock.
- 8.3. The proposed site is not located in a groundwater source protection zone. It is located within a 'Secondary A' & 'Principal' aquifer designation for bedrock deposits and a 'Unproductive' designation for superficial deposits. The site is also located over a high (soluble rock risk) groundwater vulnerability zone.
- 8.4. The proposed development site is located within Flood Zone 1. The EA published flood risk from surface water map shows that there is a very low risk of flood, and the site is outside the maximum extent area in the event of a breach of any reservoirs.
- 8.5. Oxfordshire County Council local standard L6 requires an additional 40% for climate change where there is a habitable building. Although the proposal does not comprise of a habitable building a conservative allowance of 40% will be applied.
- 8.6. The existing site consists of soft landscaping with the new building extending over an area of 308m².
- 8.7. It is understood that the existing gym building currently drains to a soakaway.
- 8.8. In line with the surface water disposal hierarchy the most viable method to suit the proposed extension is to provide a new soakaway picking up the additional roof area.
- 8.9. Infiltration testing undertaken at the site confirms the underlying soils exhibit a permeability of 1.42×10^{-5} m/s and therefore the use of infiltration drainage is viable for the development.
- 8.10. Foul water flows that are generated from the proposed development are to drain via gravity below ground and connect in to the existing foul water network next to the existing gym building.
- 8.11. The responsibility for the enacting of this SuDS Maintenance and Management Plan will be the responsibility of the property owner.

APPENDICES

APPENDIX A

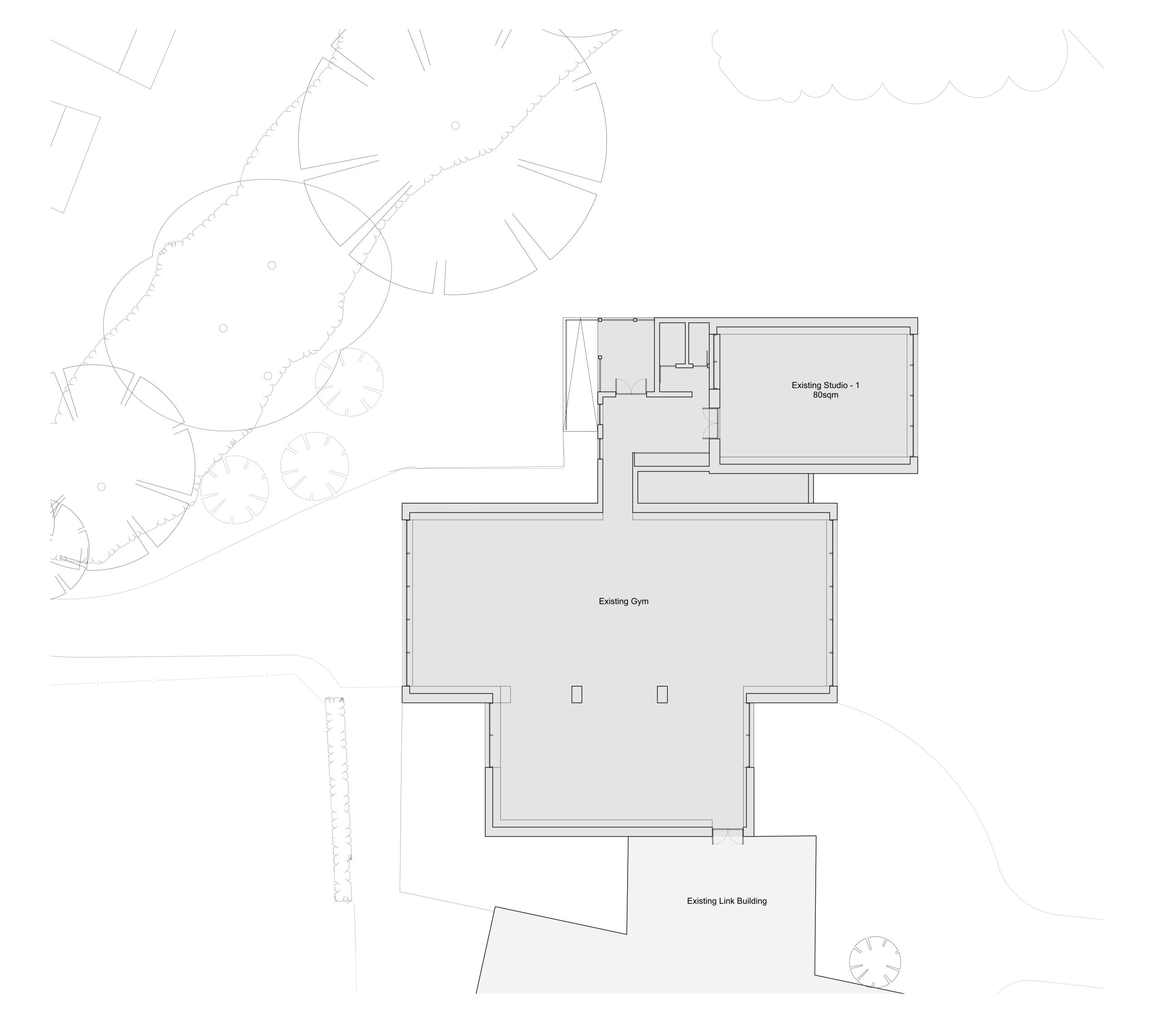
Soho Farmhouse Master Plan



APPENDIX B

Existing Gym Plan

Client Soho House Group


Project Soho Farmhouse - Gym

Date 03/06/2021 Drawn Checked JF SD Scale / Format 1:500 / A3 Drawing name Existing Site Plan

44/2015/PL 000

© 31/44 Architects

Do not scale from this drawing.
All dimensions to be verified on site.
This drawing is to be read in conjunction with all consultants information.
Any discrepancies to be reported immediately to the Architect.

6 Osborn Street
London
E1 6TD
United Kingdom
+44 (0)20 3735 7820
London@
3144architects.com

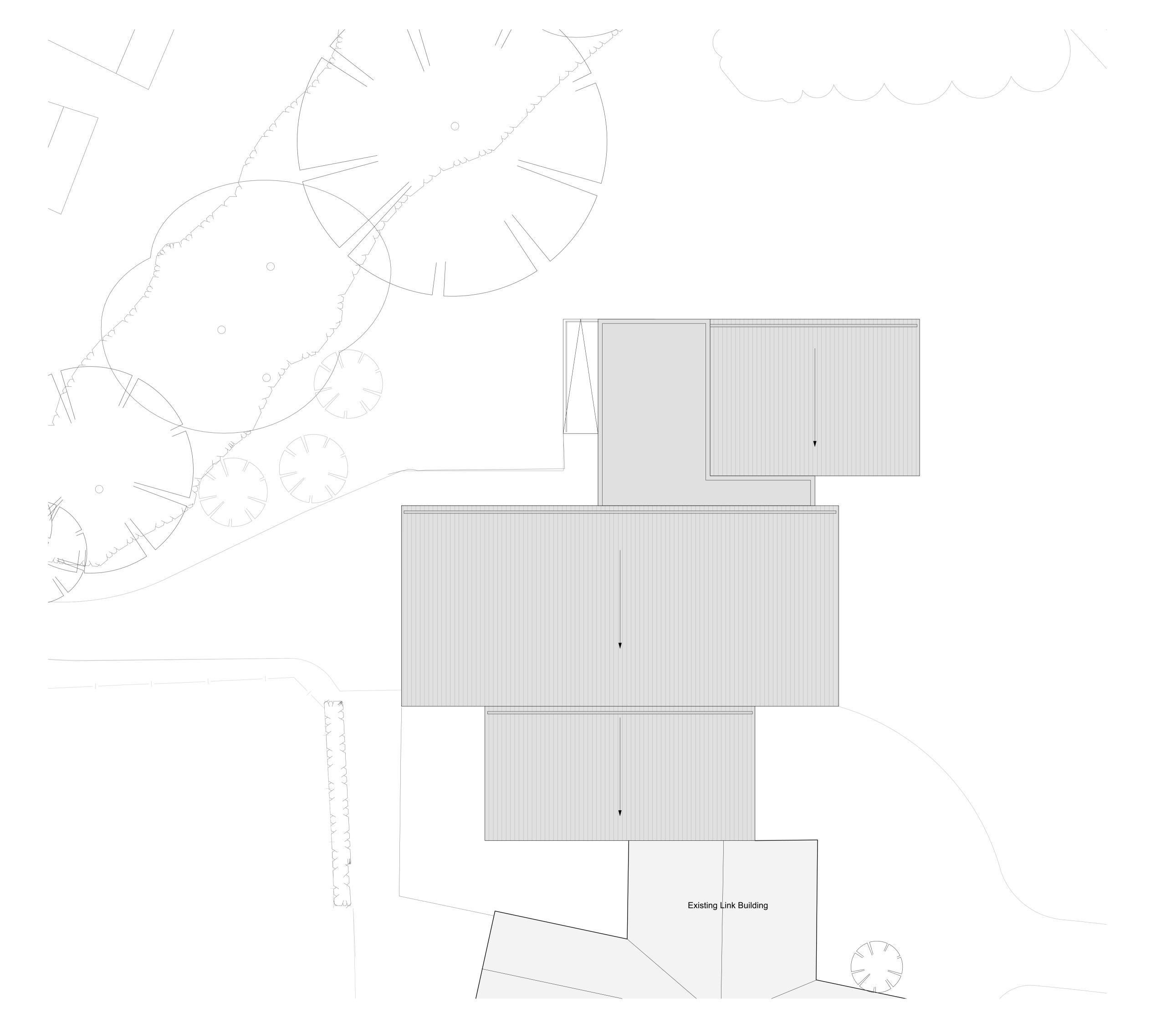
Drawn Checked JF SD

Scale / Format 1:100 / A1 1:200 / A3

Client Soho House Group Project Soho Farmhouse - Gym

Soho Farmhouse - Gy Date 03/06/2021

Drawing name
Existing Plan - Ground Floor


Plan - Ground Floor

Drawing number 44/2015/PL 001

Rev. Date Description Drawn / Che © 31/44 Architects

Do not scale from this drawing.
All dimensions to be verified on site.
This drawing is to be read in conjunction with all consultants information.
Any discrepancies to be reported immediately to the Architect.

Drawing may be scaled for planning purposes.

6 Osborn Street London E1 6TD United Kingdom +44 (0)20 3735 7820 London@ 3144architects.com

^{Client} Soho House Group

Project Soho Farmhouse - Gym Date 03/06/2021

Drawn Checked JF SD Scale / Format 1:100 / A1 1:200 / A3 Drawing name
Existing Plan - Roof

Drawing number 44/2015/PL 002

Rev. Date © 31/44 Architects

Do not scale from this drawing.
All dimensions to be verified on site.
This drawing is to be read in conjunction with all consultants information.
Any discrepancies to be reported immediately to the Architect.

Drawing may be scaled for planning purposes.

APPENDIX C

BGS Borehole Log

ENVIRONMENT AGENCY

Form WR – 38	Ref: sp401 271 soho farmhouse, great tew (c	earter pumps) log 2737	Agency No.
--------------	---	------------------------	------------

BOREHOLE RECORD

A. SITE DETAILS

Borehole drilled for:	Carlton Tarrant, (Carter Pumps Ltd	l.		
Location:	Soho Farmhouse	, Great Tew, Chi	pping Norton, Oxon, OX	K7 4NS	
N.G.R.: British Geological Survey	SP401 271	British Geold	ngical Survey		Britis
Ground Level (if known):	SURFACE				
Drilling Company:	W.B. & A.D. MOF	RGAN LTD., PRE	STEIGNE, POWYS. L	D8 2UF	
Date of Drilling:	Commenced:	16/7/18	Completed:	13/8/18	

B. CONSTRUCTION DETAILS

British Geological	Borehole datum (if not ground (Point from which all measurem	/	ROUND are taker		ge of chambe	er, etc.)		British Geol	ogical Survey	
	Borehole drilled diameter			450	mm from	Surface	to	75	m/depth	
					mm from		to		m/depth	
					mm from		to		m/depth	
	Casing material: u.P.V.C.	diamete	er	300	mm from	Surface	to	75	m/depth	
	and type (e.g. plain steel, plastic s	lotted)								
	British Geological Survey	ain diamete	er	300	mm from	Surface	to	38	m/depth diss	Geological Survey
	Slot	ed diamete	er	300	mm from	38	to	72.5	m/depth	
	PI	ain diamete	er	300	mm from	72.5	to	75	m/depth	
	Grouting details:			10m	to surface					
	Water struck at:			-	m (depth be	elow datum –	mbd)			
British Geological	Rest water level on completion	n:	British Geol	ogical Survey 15	m (depth be	elow datum	mbd)	British Geol	ogical Survey	
	Estimated blowout yield:		100	2,000+	Gallons per	r hour				

C. STRATA LOG

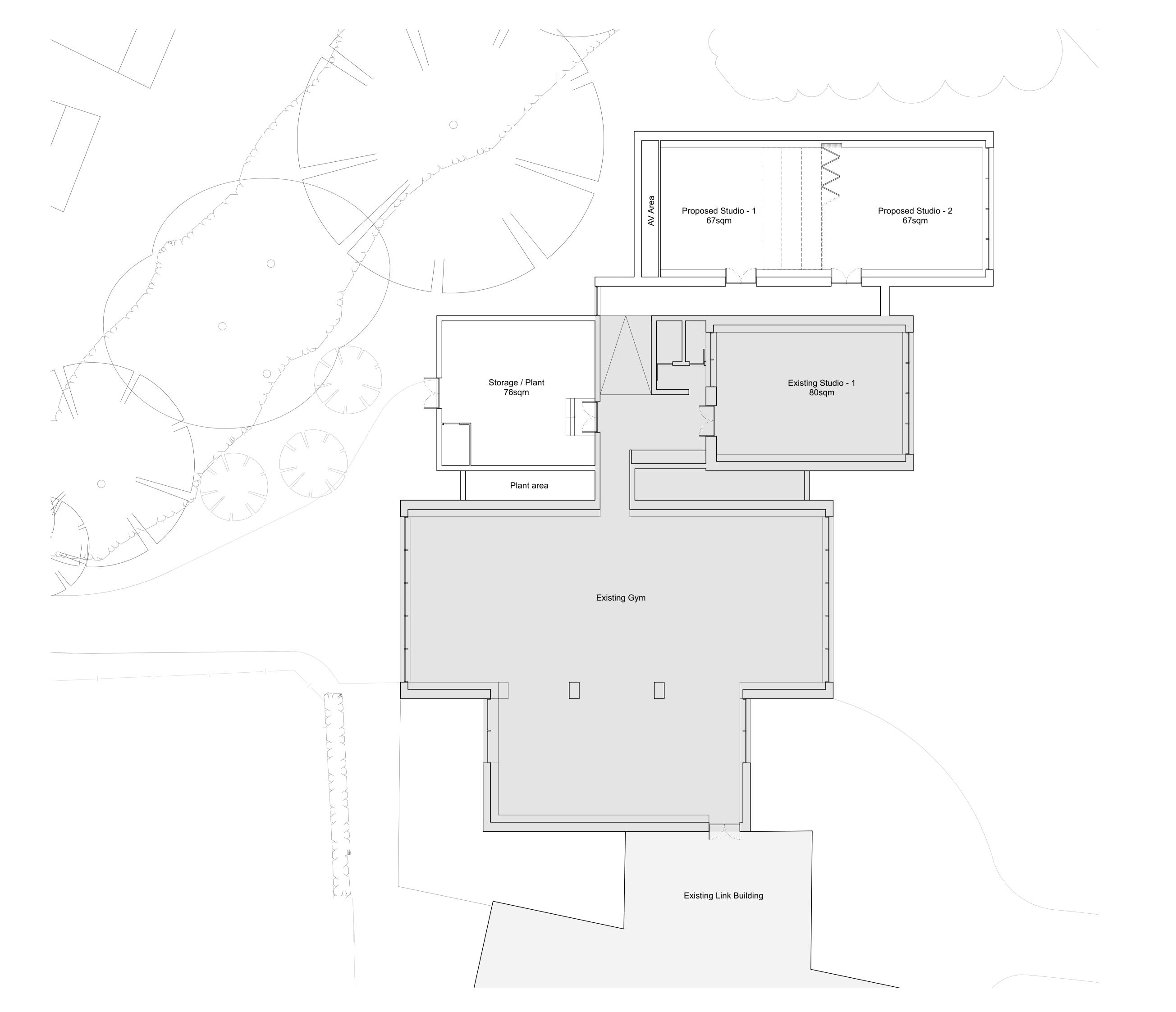
	Description of Strata			Thickness (m)	Depth (m)
itish Geological	Weathered limestone Grey clays Yellow limestone Grey clays Grey gritty clay Grey clays Yellow limestone Grey clays Yellow limestone Grey clays Yellow limestone Grey clays Yellow limestone Grey clays	British Geold British Geological Survey .	gical Survey	1 4 1 2 3 1 5 1 1 10 2 7 7 7 6 2 22	1 5 British 6 8 111 12 17 18 19 29 31 British Geologogy Survey 45 51 53 75
	Other Comments (e.g. gas encountered, saline water	intercepted, etc.)	Mud flush	h drilled	
	Gravel Pack Quantity:	8,750kg British Geold	Temp Ste	eel Casing:	1.5m x 500mm British
	Cement:	1,350kg	Depth an	nd Diameter	1.5III X 500IIIIII
	Rig & Crew:	Klemm 709, R. Mills, J. Scott			3.00

APPENDIX D

Proposed Gym Plan

Client Soho House Group

Project Soho Farmhouse - Gym


Date 03/06/2021

Drawn Checked JF SD Scale / Format 1:500 / A3 Drawing name Proposed Site Plan

44/2015/PL 100

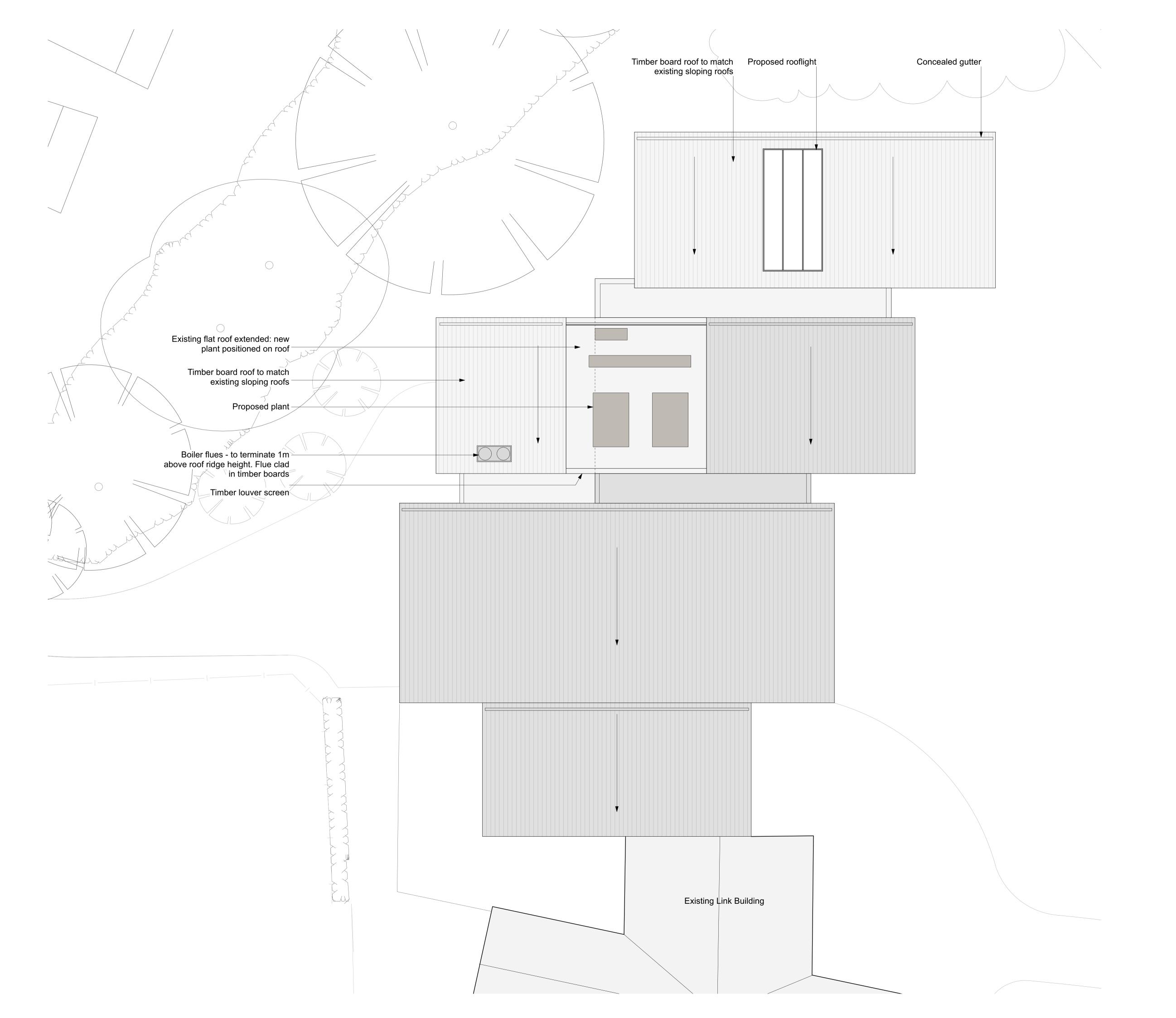
© 31/44 Architects

Do not scale from this drawing.
All dimensions to be verified on site.
This drawing is to be read in conjunction with all consultants information.
Any discrepancies to be reported immediately to the Architect.

6 Osborn Street London E1 6TD United Kingdom +44 (0)20 3735 7820

^{Client} Soho House Group ^{Project} Soho Farmhouse - Gym

Date 03/06/2021


Drawn Checked JF SD Scale / Format 1:100 / A1 1:200 / A3 Drawing name Proposed Plan - Ground Floor

Drawing number 44/2015/PL 101

© 31/44 Architects

Do not scale from this drawing.
All dimensions to be verified on site.
This drawing is to be read in conjunction with all consultants information.
Any discrepancies to be reported immediately to the Architect.

Drawing may be scaled for planning purposes.

6 Osborn Street London E1 6TD United Kingdom +44 (0)20 3735 7820

^{Client} Soho House Group

Project Soho Farmhouse - Gym

Date 03/06/2021

Drawn Checked JF SD Scale / Format 1:100 / A1 1:200 / A3 Drawing name Proposed Plan - Roof Floor

Drawing number 44/2015/PL 102

© 31/44 Architects

Do not scale from this drawing.
All dimensions to be verified on site.
This drawing is to be read in conjunction with all consultants information.
Any discrepancies to be reported immediately to the Architect.

Drawing may be scaled for planning purposes.

APPENDIX E

Infiltration Test Results and Calculations

Soho Farmhouse Farm Camp Soakage Rate Calculations

In accordance with BRE Digest 365, 3 No soakage rate tests were undertaken at the site in three separate locations by Hill Groundworks

For each of the test locations the infiltration rate can be calculated as follows:

Pit 1

Using a 1000mm x 300mm x 300mm pit the worst time to drain with the 75% to 25% (150mm) being recorded as taking 148mins

Referring to BRE Digest 365, the infiltration rate can be calculated as follows:

Lower trail pit size 1.0m long x 0.3m wide x 0.3m deep.

Effective depth taken as 0.3m

Volume outgoing between 75% and 25% effective depth:

$$V_{p75-25} = 1 \times 0.3 \times 0.15 = 0.045 \text{ m}^3$$

The mean surface area through which the outflow occurs, taken to be the pit sides to 50% effective depth and including the base of the pit:

$$a_{p50} = (0.3x0.15x2) + (0.3x0.15x2) + 1x0.3$$

 $a_{p50} = 0.48m^2$

The worst drain down time for the outflow between 75% and 25% effective depth tp75-25 was 148 minutes and therefore the soil infiltration rate can be calculated as follows;

Soil Infiltration Rate

$$f = \frac{V_{p75-25}}{a_{p50 \times} t_{p75-25}}$$

$$f = \frac{0.045}{0.48 \times 148 \times 60} = \frac{1.056 \times 10^{-5} \text{ m/s or } 0.038 \text{ m/hour}}{0.48 \times 148 \times 60}$$

Pit 2

Using a 1000mm x 300mm x 300mm pit the worst time to drain with the 75% to 25% (150mm) being recorded as taking 130mins

Referring to BRE Digest 365, the infiltration rate can be calculated as follows:

Lower trail pit size 1.0m long x 0.3m wide x 0.3m deep.

Effective depth taken as 0.3m

Volume outgoing between 75% and 25% effective depth:

$$V_{p75-25} = 1 \times 0.3 \times 0.15 = 0.045 \text{ m}^3$$

The mean surface area through which the outflow occurs, taken to be the pit sides to 50% effective depth and including the base of the pit:

$$a_{p50} = (0.3x0.15x2) + (0.3x0.15x2) + 1x0.3$$

 $a_{p50} = 0.48\text{m}^2$

The worst drain down time for the outflow between 75% and 25% effective depth tp75-25 was 130 minutes and therefore the soil infiltration rate can be calculated as follows;

Soil Infiltration Rate

$$f = \frac{V_{p75-25}}{a_{p50 \times} t_{p75-25}}$$

$$f = \frac{0.045}{0.48 \times 130 \times 60} = \frac{1.2 \times 10^{-5} \text{ m/s or } 0.043 \text{ m/hour}}{0.48 \times 130 \times 60}$$

Pit 3

Using a 1000mm x 300mm x 300mm pit the worst time to drain with the 75% to 25% (150mm) being recorded as taking 117mins

Referring to BRE Digest 365, the infiltration rate can be calculated as follows:

Lower trail pit size 1.0m long x 0.3m wide x 0.3m deep.

Effective depth taken as 0.3m

Volume outgoing between 75% and 25% effective depth:

$$V_{p75-25} = 1 \times 0.3 \times 0.15 = 0.045 \text{ m}^3$$

The mean surface area through which the outflow occurs, taken to be the pit sides to 50% effective depth and including the base of the pit:

$$a_{p50} = (0.3x0.15x2) + (0.3x0.15x2) + 1x0.3$$

 $a_{p50} = 0.48\text{m}^2$

The worst drain down time for the outflow between 75% and 25% effective depth tp75-25 was 117 minutes and therefore the soil infiltration rate can be calculated as follows;

Soil Infiltration Rate

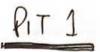
$$f = V_{p75-25}$$

$$a_{p50 \times} t_{p75-25}$$

$$f = 0.045 = 1.42 \times 10^{-5} \text{ m/s or } 0.051 \text{ m/hour}$$

$$0.48 \times 117 \times 60$$

Pit 1 and Pit 2 were located within the Farm Camp Field and therefore the lowest rate obtained for these tests of 1.056×10^{-5} m/s has been used in the Microdrainage calculations to size the proposed soakaways for each unit.


The calculations show that a 2mx3mx0.5mdeep soakaway can easily accommodate the run off for all events up to an including the 1in 100-year storm event including 40% climate climate change storm event.

HILL GROUNDWERKS

SOHO FARMHOUSE, DX74JS - TENT FIELD NEW CARINS PROJECT

BRE365 Permeability Test Result Form

HILL GROUNDY TERKS

Date 12-02-21

HILL SPHEIGHT VO

Dimensions o	of hole Low	nee Hou Per Hou	1000 mm le	ong x 300 mm	n wide w	300-1	WAT
Test 1 (10.	02.21)		Test 2 (16.	02.21)		Test 3 (11.	02.21)
Time (minutes)	Depth (mm below GL)		Time (minutes)	Depth (mm below GL)		Time (minutes)	Depth (mm below GL)
258 MINS	540 mm	(SAME	307 mies	540mm	(SAME)	308 mins	540 mm
258×60 960	= 16.12 Vp		367 ×60 966 =	19.18 Vp		308 × 60 =	19.25 Vp
94 MINS	300mm 900		132 mins	300 mm	(Same)	148 MINS	300 mm
	TIMED FOR	TH	T mail	TIMED FOR MIDDLE	` ′	124 m	TIMED FOR
	TOP 75 ROW & BOTTOM 75 RM IGNORAD PL TEST TIME	se.		150 mm FOR TEST			MIDDLE ZO
80 94 mins			80 132 MINS	x 60 Secs		80 148 MIN	x 60 SECS
150	mm		15	O MM			O mm
= 37.	6 Vp		= 52.8	P Vp.		= 59	2 Vp
	489	ł			æ		74
		ŀ					
		-					
		-					

HILL WATERWORKS

OLINDATEDUS PIT 2

Date 12.02.21

HILL GROUNDWERKS

SOHO FARMHOUSE, OX74JS - TENT FIELD NEW CABIN PROJECT

BRE365 Permeability Test Result Form

Project

NO RAIN - DAMP Weather conditions during test VERY WET - STONEY WITH CLAY POCKETS Description of Soil Excavated 540 mm & WATEL LEVEL FILLED INTO NO. G.W. DETECTED mm below Ground level Ground water level recorded LOWER HOLE 1000 mm long x 300 mm wide x 300 mm deep EXCAVATED PIT. Dimensions of hole (1000 LITRES) UPPER HOLE 1000 W n x 1000 u n x 1500 m DEEP Test 1 (10. 02.21) Test 3 (11.02.21) (10.02.21) Test 2 Time Depth Depth Depth Time (mm below (minutes) (mm below (mm below (minutes) (minutes) GL) GL) GL) SAME) 288 MINE 540mm 330 540 SAME) 320 540 320×60 288×60 330 × 60 = 18 Vp = 20.6 Vp = 20 Vp 960 960 LOWER 300 am DEPTH (SAME) (SAME) 300 mm 300 mm 112 MINS 118 MINE 130 mins TEST TIMED FOR TIMED FOR 150 mm DEPTH.
THE TOP 75 mm AND
BOTTOM 75 mm 300 mm MIDDLE ×300m 150 mm ON ¥ 1000 THE TEST INGNORED FOR THE TEST TIME LENGTH 00 112 mins x 60 SFCS 80 118 MAIS x 60 SECS 130 mins x 60 SFCS 150 mm 150 mm 150mm 44.8 VD 47.2 Vp 52 Vp PIT SIZE VOLUME = (1500 LARS) 1.59M3 -1.0 M3 (1000 LITERS) POURED INTO HOLE 1500 mm DEER, LESS 540 = 960 mm LEVEL OF WATTER IN THE PIT. ON FIRST TEST AND SUBSFOUENT TESTS Hill Groundworks & Waterworks Ltd
The Wychwood, Lyneham, Oxfordshire, OX7 600
01993 830514/ who immediately
sent Cores 20065-30 Account No. 4200653 HILLWATERWORKS Transput HILL GROUNDWONS HILL GROUNDVERKS HILL SERVICES

HILL GROUNDVIERKS

BRE365 Permeability Test Result Form

PIT 3

Date .12.02.21

Dimensions of	hole Lowel H	ore (and www le	ong x 500 mn	n wide x	500 mm des	vel 540 mm To LEVEL FILLS ep. EXCAVATED ep. (1000 LIT
Test 1 (16	. 02.21)	Test 2 (10	0.02.21)		Test 3 (11.	02.21)
lime (minutes)	Depth (mm below GL)	Time (minutes)	Depth (mm below GL)		Time (minutes)	Depth (mm below GL)
220 MINS		248 mms	540	(SAME)	218 mm	540
220×60 960	= 13.75 Vp	248×60 960	= 15.5 Vp		218×60 960	= 13.6 Vp
90 mils	300m 904MBS + TIMED FOR (SAME	1 1 (1,100)	300 m Times Fol	+ (SAMB)	115 mms	300 m
	150 mm DEPTH.		MIDDLE 150 mm FOL	Catural		TIMED FOR
	THE TOP 75 mm		TEST TIM	WG.		MIDDLE ZONE
	IGNORED FOR TEST TIME					TIMING
00 90 MIN	s x 60 Secs	0 117mir	6 x 60 Secs		8 115 MI	NS X 60 SECS
1	50 mm	11	50mm		14	50 mm
=	VP	=	VP		=	Vp.

Document Title:-

Soil Infiltration Test for Soakaways to BRE365

1. Locate site of proposed soakaway

2. Excavate hole to dimensions given

It should be possible to construct a suitably dimensioned pit with a backhoe loader or miniexcavator.

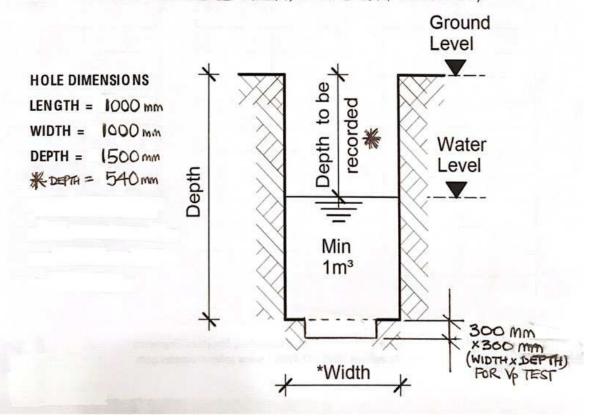
3. Record Size

Measure actual size of excavated hole

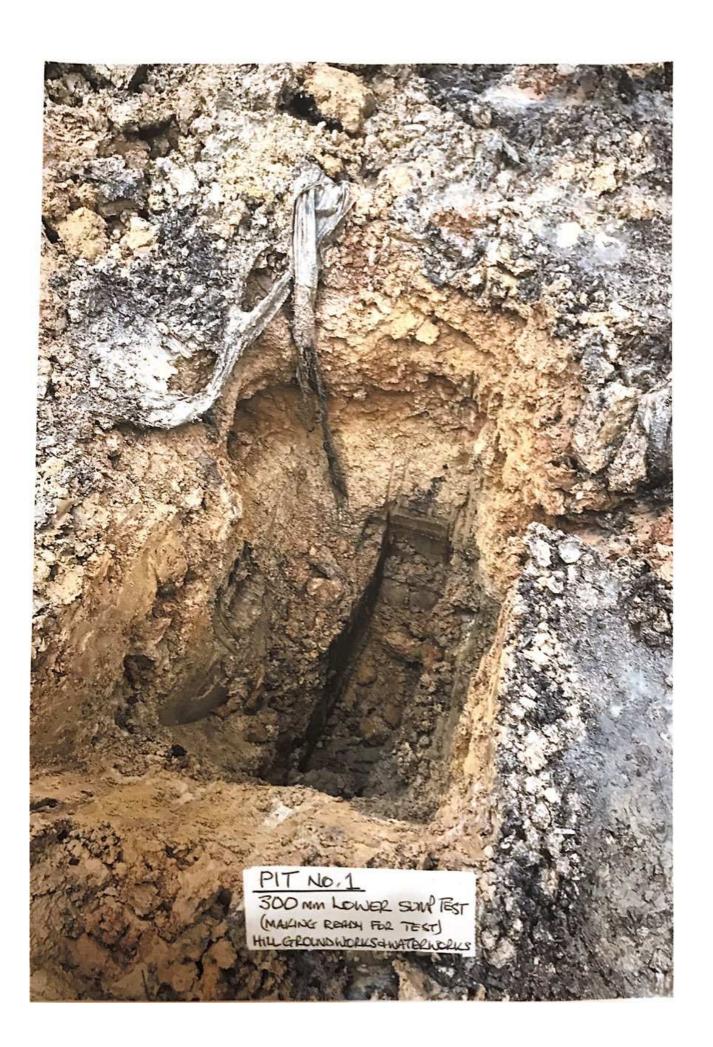
4. Pour in min 1m3 water (Instantaneously)

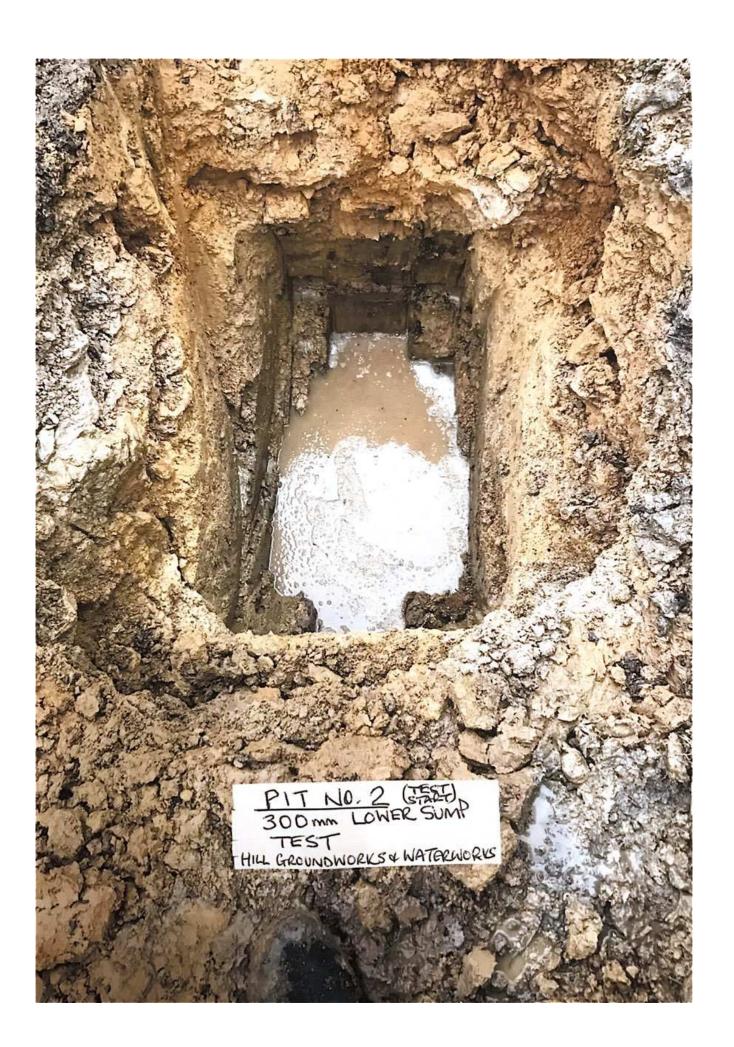
Use Water bowser, with a large outlet pipe, or excavator scoop or large container.

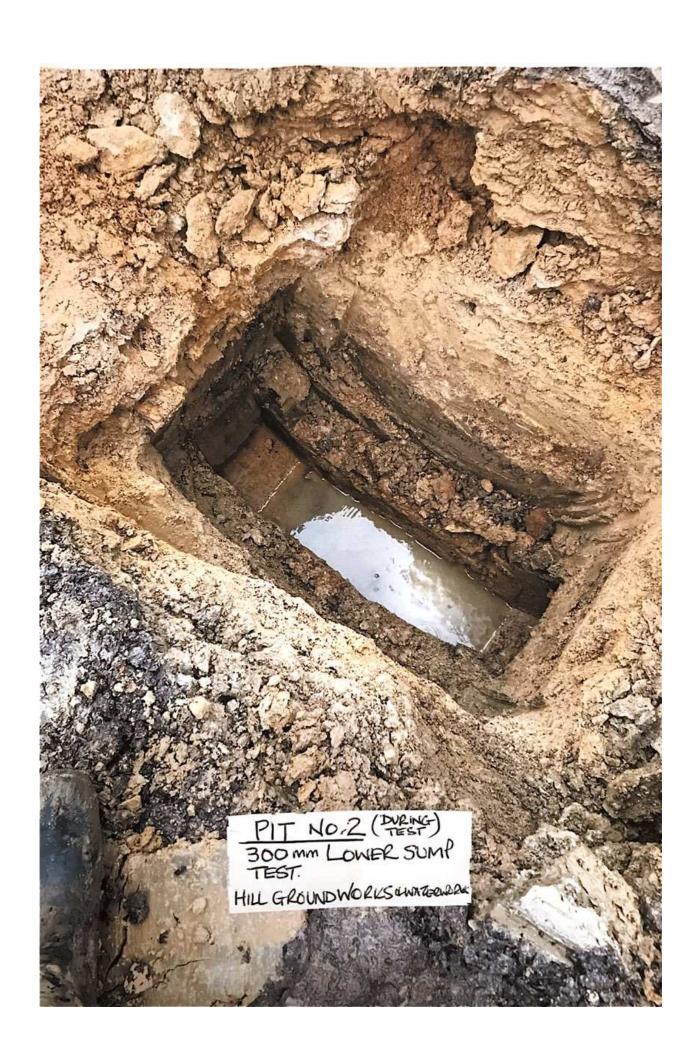
5. Record Time & Depth

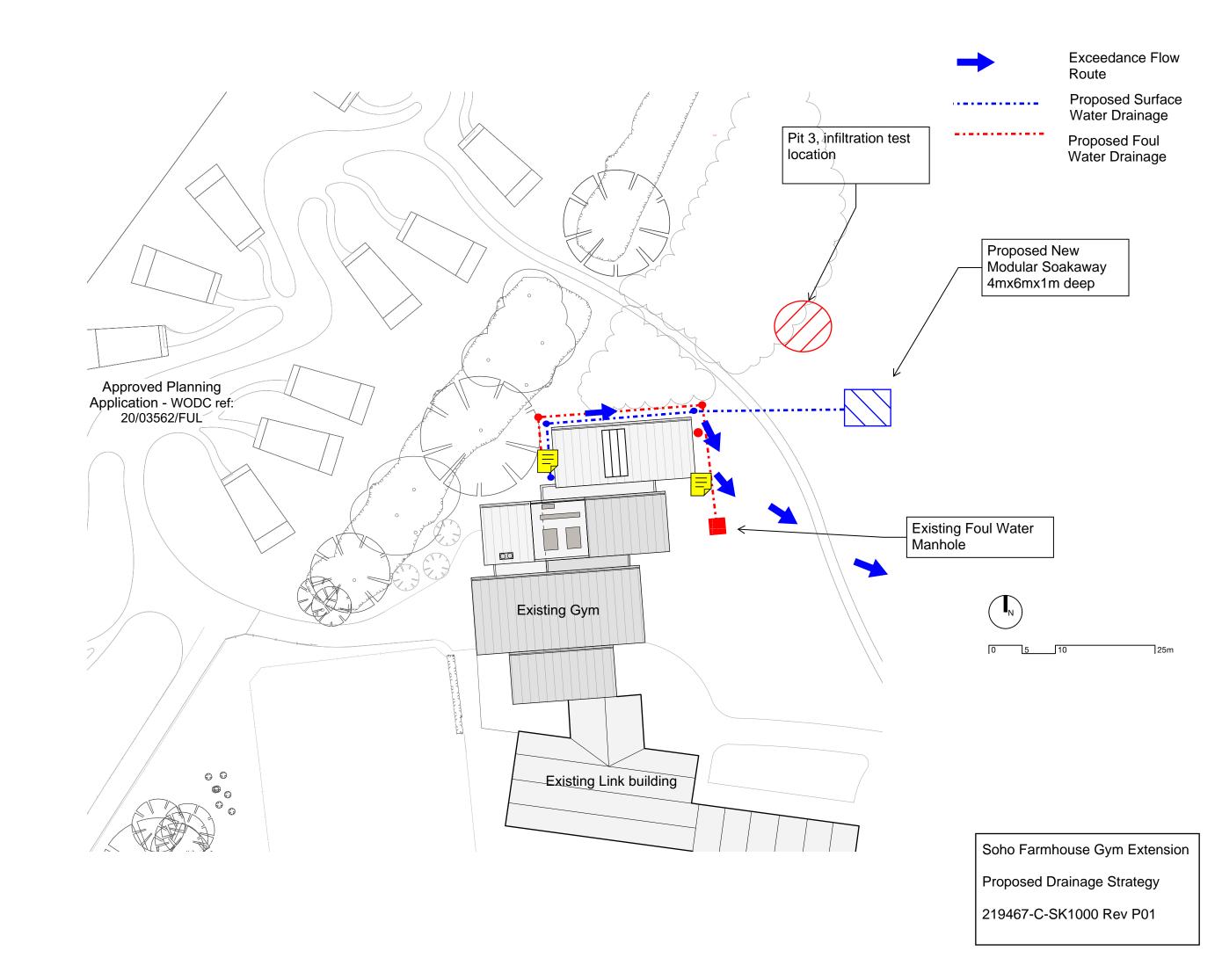

Give dimension from water level to ground level. Keep hole covered when unattended.

6. Repeat test twice


When hole is empty repeat test, on same day or consecutive days depending on flow.


7. Excavate a further metre below to find ground water and record depth found.


* EXCAVATED TO 2500 MM AT ALL 3NG TRIAL PITS (1.243)
NO INGRESS OR SIGN OF WATER.
THE 3 NO. EXCAVATED HOLES FOUND ALL VERY SODDEN
AND ON THE STONE AREA, IT WAS VERY CRUMBLEY.



APPENDIX F

Proposed Drainage Plan

APPENDIX G

Proposed Surface water Drainage Calculations

Mason Navarro Pledge		Page 1
Bancroft Court		
Hitchin		
Hertfordshire, SG5 1LH		Micro
Date 11/06/2021 10:31	Designed by Richard James	Brainage
File Gym Extension Soakaway.SRCX	Checked by	pramaye
Innovyze	Source Control 2020 1	

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 695 minutes.

(m) (m) (1/s) (m³) 15 min Summer 142.159 0.409 0.2 9.3 0 K 30 min Summer 142.283 0.533 0.2 12.2 0 K 60 min Summer 142.2405 0.655 0.3 14.9 0 K 120 min Summer 142.514 0.764 0.3 17.4 0 K 180 min Summer 142.564 0.814 0.3 18.6 0 K 240 min Summer 142.588 0.838 0.3 19.1 0 K 360 min Summer 142.606 0.856 0.3 19.5 0 K 480 min Summer 142.603 0.853 0.3 19.4 0 K 600 min Summer 142.592 0.842 0.3 19.2 0 K 720 min Summer 142.556 0.806 0.3 18.4 0 K		Storm Event	Max Level	Max Depth	Max Infiltration	Max Volume	Status
15 min Summer 142.159 0.409 0.2 9.3 0 K 30 min Summer 142.283 0.533 0.2 12.2 0 K 60 min Summer 142.405 0.655 0.3 14.9 0 K 120 min Summer 142.514 0.764 0.3 17.4 0 K 180 min Summer 142.564 0.814 0.3 18.6 0 K 240 min Summer 142.588 0.838 0.3 19.1 0 K 360 min Summer 142.606 0.856 0.3 19.5 0 K 480 min Summer 142.603 0.853 0.3 19.4 0 K 600 min Summer 142.592 0.842 0.3 19.2 0 K 720 min Summer 142.581 0.831 0.3 18.9 0 K 960 min Summer 142.556 0.806 0.3 18.4 0 K		Lvene		_			
30 min Summer 142.283 0.533 0.2 12.2 0 K 60 min Summer 142.405 0.655 0.3 14.9 0 K 120 min Summer 142.514 0.764 0.3 17.4 0 K 180 min Summer 142.564 0.814 0.3 18.6 0 K 240 min Summer 142.588 0.838 0.3 19.1 0 K 360 min Summer 142.606 0.856 0.3 19.5 0 K 480 min Summer 142.603 0.853 0.3 19.4 0 K 600 min Summer 142.592 0.842 0.3 19.2 0 K 720 min Summer 142.581 0.831 0.3 18.9 0 K 960 min Summer 142.556 0.806 0.3 18.4 0 K			()	(111)	(1/5)	(111)	
60 min Summer 142.405 0.655 0.3 14.9 0 K 120 min Summer 142.514 0.764 0.3 17.4 0 K 180 min Summer 142.564 0.814 0.3 18.6 0 K 240 min Summer 142.588 0.838 0.3 19.1 0 K 360 min Summer 142.606 0.856 0.3 19.5 0 K 480 min Summer 142.603 0.853 0.3 19.4 0 K 600 min Summer 142.592 0.842 0.3 19.2 0 K 720 min Summer 142.581 0.831 0.3 18.9 0 K 960 min Summer 142.556 0.806 0.3 18.4 0 K	15	min Summer	142.159	0.409	0.2	9.3	ОК
120 min Summer 142.514 0.764 0.3 17.4 0 K 180 min Summer 142.564 0.814 0.3 18.6 0 K 240 min Summer 142.588 0.838 0.3 19.1 0 K 360 min Summer 142.606 0.856 0.3 19.5 0 K 480 min Summer 142.603 0.853 0.3 19.4 0 K 600 min Summer 142.592 0.842 0.3 19.2 0 K 720 min Summer 142.581 0.831 0.3 18.9 0 K 960 min Summer 142.556 0.806 0.3 18.4 0 K	30	min Summer	142.283	0.533	0.2	12.2	ОК
180 min Summer 142.564 0.814 0.3 18.6 0 K 240 min Summer 142.588 0.838 0.3 19.1 0 K 360 min Summer 142.606 0.856 0.3 19.5 0 K 480 min Summer 142.603 0.853 0.3 19.4 0 K 600 min Summer 142.592 0.842 0.3 19.2 0 K 720 min Summer 142.581 0.831 0.3 18.9 0 K 960 min Summer 142.556 0.806 0.3 18.4 0 K	60	min Summer	142.405	0.655	0.3	14.9	ОК
240 min Summer 142.588 0.838 0.3 19.1 0 K 360 min Summer 142.606 0.856 0.3 19.5 0 K 480 min Summer 142.603 0.853 0.3 19.4 0 K 600 min Summer 142.592 0.842 0.3 19.2 0 K 720 min Summer 142.581 0.831 0.3 18.9 0 K 960 min Summer 142.556 0.806 0.3 18.4 0 K	120	min Summer	142.514	0.764	0.3	17.4	ОК
360 min Summer 142.606 0.856 0.3 19.5 0 K 480 min Summer 142.603 0.853 0.3 19.4 0 K 600 min Summer 142.592 0.842 0.3 19.2 0 K 720 min Summer 142.581 0.831 0.3 18.9 0 K 960 min Summer 142.556 0.806 0.3 18.4 0 K	180	min Summer	142.564	0.814	0.3	18.6	ОК
480 min Summer 142.603 0.853 0.3 19.4 0 K 600 min Summer 142.592 0.842 0.3 19.2 0 K 720 min Summer 142.581 0.831 0.3 18.9 0 K 960 min Summer 142.556 0.806 0.3 18.4 0 K	240	min Summer	142.588	0.838	0.3	19.1	ОК
600 min Summer 142.592 0.842 0.3 19.2 0 K 720 min Summer 142.581 0.831 0.3 18.9 0 K 960 min Summer 142.556 0.806 0.3 18.4 0 K	360	min Summer	142.606	0.856	0.3	19.5	ОК
720 min Summer 142.581 0.831 0.3 18.9 O K 960 min Summer 142.556 0.806 0.3 18.4 O K	480	min Summer	142.603	0.853	0.3	19.4	O K
960 min Summer 142.556 0.806 0.3 18.4 O K	600	min Summer	142.592	0.842	0.3	19.2	O K
	720	min Summer	142.581	0.831	0.3	18.9	O K
	960	min Summer	142.556	0.806	0.3	18.4	O K
1440 min Summer 142.505 0.755 0.3 17.2 O K	1440	min Summer	142.505	0.755	0.3	17.2	O K
2160 min Summer 142.435 0.685 0.3 15.6 O K	2160	min Summer	142.435	0.685	0.3	15.6	O K
2880 min Summer 142.372 0.622 0.3 14.2 O K	2880	min Summer	142.372	0.622	0.3	14.2	O K
4320 min Summer 142.262 0.512 0.2 11.7 O K	4320	min Summer	142.262	0.512	0.2	11.7	O K
5760 min Summer 142.168 0.418 0.2 9.5 O K	5760	min Summer	142.168	0.418	0.2	9.5	O K
7200 min Summer 142.090 0.340 0.2 7.7 O K	7200	min Summer		0.340	0.2	7.7	O K
8640 min Summer 142.023 0.273 0.2 6.2 O K	8640	min Summer	142.023	0.273	0.2	6.2	O K
10080 min Summer 141.968 0.218 0.2 5.0 O K	10080	min Summer	141.968	0.218	0.2	5.0	O K
15 min Winter 142.209 0.459 0.2 10.5 O K	15	min Winter	142.209	0.459	0.2	10.5	O K
30 min Winter 142.349 0.599 0.3 13.7 O K	30	min Winter	142.349	0.599	0.3	13.7	O K
60 min Winter 142.487 0.737 0.3 16.8 O K	60	min Winter	142.487	0.737	0.3	16.8	O K
120 min Winter 142.613 0.863 0.3 19.7 O K	120	min Winter	142.613	0.863	0.3	19.7	O K
180 min Winter 142.673 0.923 0.3 21.0 O K	180	min Winter	142.673	0.923	0.3	21.0	O K
240 min Winter 142.704 0.954 0.3 21.7 O K	240	min Winter	142.704	0.954	0.3	21.7	O K
360 min Winter 142.730 0.980 0.3 22.4 O K	360	min Winter		0.980	0.3	22.4	O K
480 min Winter 142.735 0.985 0.3 22.4 O K	480	min Winter	142.735	0.985	0.3	22.4	O K
600 min Winter 142.726 0.976 0.3 22.3 O K	600	min Winter	142.726	0.976	0.3	22.3	O K
720 min Winter 142.711 0.961 0.3 21.9 O K	720	min Winter	142.711	0.961	0.3	21.9	O K
960 min Winter 142.681 0.931 0.3 21.2 O K	960	min Winter	142.681	0.931	0.3	21.2	O K
1440 min Winter 142.615 0.865 0.3 19.7 O K	1440	min Winter	142.615	0.865	0.3	19.7	O K
2160 min Winter 142.515 0.765 0.3 17.4 O K				0.765			O K
2880 min Winter 142.423 0.673 0.3 15.3 O K	2880	min Winter					O K
4320 min Winter 142.264 0.514 0.2 11.7 O K	4320	min Winter	142.264	0.514	0.2	11.7	O K

	Stor Even		Rain	Flooded Volume	Time-Peak
			(,	(m³)	(/
				ν ,	
15	min	Summer	138.153	0.0	26
30	min	Summer	90.705	0.0	41
60	min	Summer	56.713	0.0	70
120	min	Summer	34.246	0.0	128
180	min	Summer	25.149	0.0	186
240	min	Summer	20.078	0.0	246
360	\min	Summer	14.585	0.0	362
480	\min	Summer	11.622	0.0	480
600	min	Summer	9.738	0.0	528
720	\min	Summer	8.424	0.0	590
960	min	Summer	6.697	0.0	716
1440	min	Summer	4.839	0.0	986
2160	min	Summer	3.490	0.0	1396
2880	min	Summer	2.766	0.0	1816
4320	min	Summer	1.989	0.0	2600
5760	min	Summer	1.573	0.0	3360
7200	min	Summer	1.311	0.0	4112
8640	min	Summer	1.129	0.0	4840
10080	min	Summer	0.994	0.0	5552
15	min	Winter	138.153	0.0	26
30	min	Winter	90.705	0.0	40
60	min	Winter	56.713	0.0	68
120	min	Winter	34.246	0.0	126
180	min	Winter	25.149	0.0	184
240	min	Winter	20.078	0.0	240
360	min	Winter	14.585	0.0	354
480	min	Winter	11.622	0.0	466
		Winter	9.738	0.0	572
720	min	Winter	8.424	0.0	668
960	min	Winter	6.697	0.0	754
1440	min	Winter	4.839	0.0	1062
2160	min	Winter	3.490	0.0	1516
2880		Winter	2.766	0.0	1956
4320	min	Winter	1.989	0.0	2772

Mason Navarro Pledge		Page 2
Bancroft Court		The same transmission residency
Hitchin		
Hertfordshire, SG5 1LH		Micro
Date 11/06/2021 10:31	Designed by Richard James	
File Gym Extension Soakaway.SRCX	Checked by	Drainage
Innovvze	Source Control 2020 1	

Summary of Results for 100 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
5760	min	Winter	142.134	0.384	0.2	8.8	ОК
7200	min	Winter	142.028	0.278	0.2	6.3	O K
8640	min	Winter	141.942	0.192	0.2	4.4	O K
10080	min	Winter	141.874	0.124	0.2	2.8	O K

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)	
5760	min	Winter	1.573	0.0	3576
7200	min	Winter	1.311	0.0	4320
8640	min	Winter	1.129	0.0	5016
0080	min	Winter	0.994	0.0	5656

Mason Navarro Pledge		Page 3
Bancroft Court		
Hitchin		and the second
Hertfordshire, SG5 1LH		Micro
Date 11/06/2021 10:31	Designed by Richard James	Boisona
File Gym Extension Soakaway.SRCX	Checked by	cranage
Innovyze	Source Control 2020.1	•

Rainfall Details

Rainfall Model FSR Ratio R 0.400 Cv (Winter) 0.840 Return Period (years) 100 Summer Storms Yes Shortest Storm (mins) 15 Region England and Wales Winter Storms Yes Longest Storm (mins) 10080 M5-60 (mm) 20.000 Cv (Summer) 0.750 Climate Change % +40

Time Area Diagram

Total Area (ha) 0.037

							(mins) To:	
0	4	0.012	4	8	0.012	8	12	0.012

Mason Navarro Pledge		Page 4
Bancroft Court		
Hitchin		1000
Hertfordshire, SG5 1LH		Micro
Date 11/06/2021 10:31	Designed by Richard James	Designage
File Gym Extension Soakaway.SRCX	Checked by	man age
Innovyze	Source Control 2020.1	•

Model Details

Storage is Online Cover Level (m) 143.500

Cellular Storage Structure

Invert Level (m) 141.750 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.05112 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.05112

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) O.000 24.0 24.0 1.000 24.0 1.100 1.100 0.0 44.0