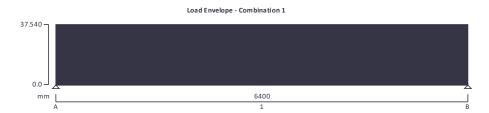
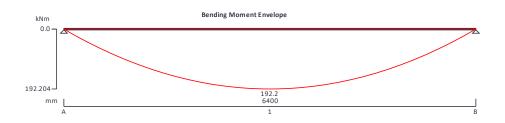
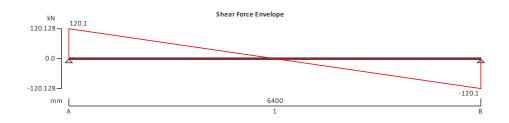
	Te	9	(a
	Tec	dds	5	
٠. ـ ـ ١. : ١ ـ ـ ١.			-	_ :

CPS Architecture + Design Limited


7 Middleborough Colchester Essex


	Project				Job no.	
97 Longmeadows Harwich				17_861		
Calcs for				Start page no./Revision		
Beam B						1
ſ	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	AF	25/03/2020	AF		AF	


STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05

Support conditions

Support A Vertically restrained Rotationally free

Support B Vertically restrained

Rotationally free

Applied loading

Beam loads floor - Dead full UDL 0.8 kN/m

floor - Imposed full UDL 2.4 kN/m

roof - Dead full UDL 3.6 kN/m

roof - Imposed full UDL 2.6 kN/m

roof - Dead full UDL 1.5 kN/m

roof - Imposed full UDL 1.1 kN/m

wall - Dead full UDL 13 kN/m

Dead self weight of beam \times 1

Load combinations

Load combination 1 Support A Dead \times 1.40

Imposed \times 1.60

CPS Architecture + Design Limited

7 Middleborough
Colchester
Essex

	Project				Job no.	
97 Longmeadows Harwich				17_861		
	Calcs for				Start page no./Revision	
Beam B				2		
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	AF	25/03/2020	AF		AF	

Dead × 1.40

Imposed × 1.60

Support B Dead \times 1.40

Imposed × 1.60

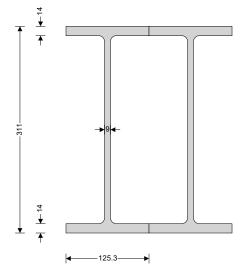
 $R_{B min} = 120.1 kN$

Analysis results

Unfactored dead load reaction at support A $R_{A_Dead} = 63.5 \text{ kN}$ Unfactored imposed load reaction at support A $R_{A_Imposed} = 19.5 \text{ kN}$

Maximum reaction at support B R_{B max} = **120.1** kN

Unfactored dead load reaction at support B $R_{B_Dead} = 63.5 \text{ kN}$ Unfactored imposed load reaction at support B $R_{B_Imposed} = 19.5 \text{ kN}$


Section details

Section type 2 x UKB 305x127x48 (Tata Steel Advance)

Steel grade \$275

From table 9: Design strength py

Thickness of element max(T, t) = 14.0 mmDesign strength $p_y = 275 \text{ N/mm}^2$ Modulus of elasticity $E = 205000 \text{ N/mm}^2$

Lateral restraint

Span 1 has full lateral restraint

Effective length factors

Effective length factor in major axis $K_x = 1.00$ Effective length factor in minor axis $K_y = 1.00$ Effective length factor for lateral-torsional buckling $K_{LT.A} = 1.00$ $K_{LT.B} = 1.00$

Classification of cross sections - Section 3.5

 $\varepsilon = \sqrt{[275 \text{ N/mm}^2 / p_y]} = 1.00$

Tekla	Project				Job no.	
Tedds	97 Longmeadows Harwich				17_861	
CPS Architecture + Design Limited	Calcs for				Start page no./Revision	
7 Middleborough		Bea	m B		;	3
Colchester Essex	Calcs by AF	Calcs date 25/03/2020	Checked by AF	Checked date	Approved by AF	Approved date

Internal compression parts - Table 11

Depth of section d = **265.2** mm

 $d/t = 29.5 \times ε \le 80 \times ε$ Class 1 plastic

Outstand flanges - Table 11

Width of section b = B / 2 = 62.7 mm

b / T = $4.5 \times \varepsilon$ <= $9 \times \varepsilon$ Class 1 plastic

Section is class 1 plastic

Shear capacity - Section 4.2.3

Design shear force $F_v = max(abs(V_{max}), abs(V_{min})) = 120.1 \text{ kN}$

 $d/t < 70 \times \varepsilon$

Web does not need to be checked for shear buckling

Shear area $A_v = t \times D = 2799 \text{ mm}^2$

Design shear resistance $P_v = 0.6 \times N \times p_y \times A_v = 923.7 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment $M = max(abs(M_{s1_max}), abs(M_{s1_min})) = 192.2 \text{ kNm}$ Moment capacity low shear - cl.4.2.5.2 $M_c = N \times min(p_y \times S_{xx}, 1.2 \times p_y \times Z_{xx}) = 390.9 \text{ kNm}$

PASS - Moment capacity exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to dead and imposed loads

Limiting deflection $\delta_{\text{lim}} = L_{s1} / 360 = 17.778 \text{ mm}$

Maximum deflection span 1 δ = max(abs(δ_{max}), abs(δ_{min})) = **14.437** mm

PASS - Maximum deflection does not exceed deflection limit