Tedd	K s	a
	_	

CPS Architecture + Design Limited

7 Middleborough Colchester Essex

Project				Job no.	
97 Longmeadows Harwich				17_861	
Calcs for				Start page no./Revision	
		1			
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
AF	25/03/2020	AF		AF	

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05

Support conditions

Support A Vertically restrained

Rotationally free
Support B Vertically restrained

Rotationally free

Applied loading

Beam loads PL - Dead point load 91.7 kN at 2000 mm

roof - Dead full UDL 3.6 kN/m roof - Imposed full UDL 2.6 kN/m roof - Dead full UDL 1.5 kN/m roof - Imposed full UDL 1.1 kN/m

wall - Dead full UDL 13 kN/m Dead self weight of beam \times 1

Load combinations

Load combination 1 Support A Dead \times 1.40

Imposed × 1.60

 $\text{Dead} \times 1.40$

CPS Architecture + Design Limited

7 Middleborough Colchester Essex

	Project				Job no.	
	97 Longmeadows Harwich				17_861	
b	Calcs for	Start page no./Revision				
		Bea	2			
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	AF	25/03/2020	AF		AF	

Imposed × 1.60

Support B Dead \times 1.40

Imposed × 1.60

Analysis results

Unfactored dead load reaction at support A R_{A Dead} = **109.2** kN

Unfactored imposed load reaction at support A $R_{A_Imposed} = 10 \text{ kN}$

Maximum reaction at support B $R_{B max} = 135.5 \text{ kN}$ $R_{B min} = 135.5 \text{ kN}$

Unfactored dead load reaction at support B $R_{B_Dead} = 85.4 \text{ kN}$ Unfactored imposed load reaction at support B $R_{B_Imposed} = 10 \text{ kN}$

Section details

Section type 2 x UKB 305x127x48 (Tata Steel Advance)

Steel grade \$275

From table 9: Design strength py

Thickness of element max(T, t) = 14.0 mmDesign strength $p_y = 275 \text{ N/mm}^2$ Modulus of elasticity $E = 205000 \text{ N/mm}^2$

Lateral restraint

Span 1 has full lateral restraint

Effective length factors

Effective length factor in major axis $K_x = 1.00$ Effective length factor in minor axis $K_y = 1.00$ Effective length factor for lateral-torsional buckling $K_{LT.A} = 1.00$ $K_{LT.B} = 1.00$

Classification of cross sections - Section 3.5

 $\varepsilon = \sqrt{[275 \text{ N/mm}^2 / p_y]} = 1.00$

Internal compression parts - Table 11

Depth of section d = **265.2** mm

Tekla	Project				Job no.	
Tedds	97 Longmeadows Harwich				17_861	
CPS Architecture + Design Limited	Calcs for				Start page no./Revision	
7 Middleborough	Beam A			3		
Colchester Essex	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	AF	25/03/2020	AF		AF	

d / t = $29.5 \times \varepsilon \le 80 \times \varepsilon$ Class 1 plastic

Outstand flanges - Table 11

Width of section b = B / 2 = 62.7 mm

b / T = $4.5 \times \epsilon$ <= $9 \times \epsilon$ Class 1 plastic

Section is class 1 plastic

Shear capacity - Section 4.2.3

Design shear force $F_V = max(abs(V_{max}), abs(V_{min})) = 168.8 \text{ kN}$

d / t < 70 \times ϵ

Web does not need to be checked for shear buckling

Shear area $A_v = t \times D = 2799 \text{ mm}^2$

Design shear resistance $P_v = 0.6 \times N \times p_y \times A_v = 923.7 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment $M = \max(abs(M_{s1_max}), abs(M_{s1_min})) = 272.4 \text{ kNm}$ Moment capacity low shear - cl.4.2.5.2 $M_c = N \times \min(p_y \times S_{xx}, 1.2 \times p_y \times Z_{xx}) = 390.9 \text{ kNm}$

PASS - Moment capacity exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to dead and imposed loads

Limiting deflection $\delta_{lim} = L_{s1} / 360 = 15 \text{ mm}$

Maximum deflection span 1 $\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 13.399 \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit