

Geotechnical Survey Report

Issue Date:

October 2020

Risk Address:

15 Sladburys Lane Clacton-on-sea

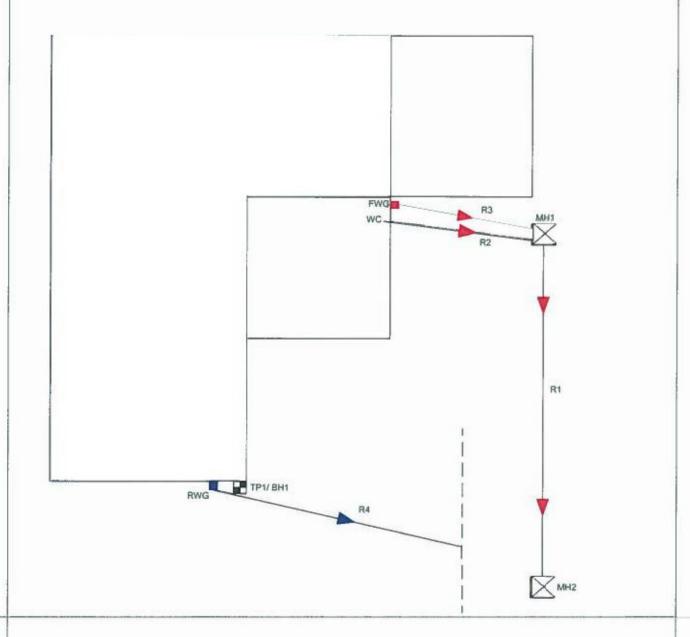
Essex

CO15 6NU

Claim Ref.

107232

Gatehead Business Park Delph New Road


Registered in England No:09166356

Appendix No:

SITE PLAN

Property Address: 15 Stadburys Lane, Clacton-on-sea, Essex, CO15 6NU

Claim Ref: 107232 Survey date: 05/10/2020 Operative: SE3

Scale: Drawn by: NTS

PM.

Gatehead Business Park Delph New Road Oldham OL3 5DE

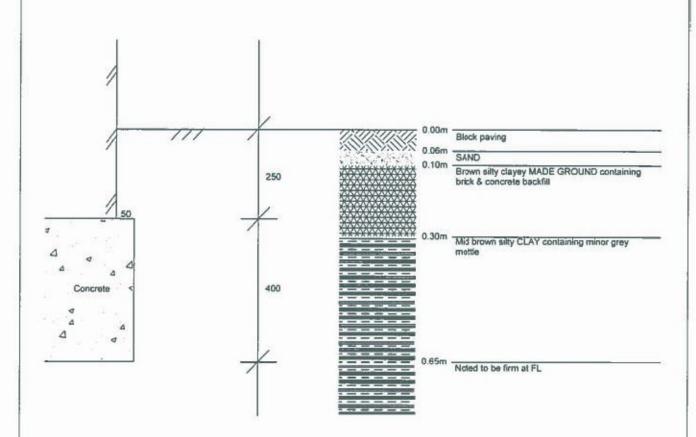
Registered in England No:09166356

Appendix No:

2

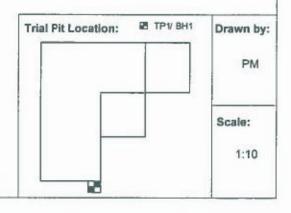
TRIAL PIT 1

Property Address: 15 Sladburys Lane, Clacton-on-sea, Essex, CO15 6NU


Claim Ref:

107232

Survey date:05/10/2020


Operative:

SE3

D1 @ F.L. (0.65m)
V = 72-74kPa
Founding strata:
Firm Mid brown silty CLAY containing minor grey mottle

D= small disturbed sample, B= large bulk sample, U= undisturbed sample, MP= mackintosh proble blow counts, V= shear vane reading (kPa)

Gatehead Business Park Delph New Road Oldham, OL3 5DE Registration No: 09166356

Borehole Log

Borehole No. BH1

Project Name:

107232

Project No. 21380

Site Date:

05/10/2020

Sheet 1 of 1 Hole Type BH

Location:

15 Sladburys Lane, Clacton-on-sea, Essex, CO15 6NU

Scale 1:17 Logged By

Client:

Catalyst Claims Management

00.			Situ Testing	Depth Leg	I I maround !		
0.000	Depth (m)		Type Results		Legend	Stratum Description	
				0.06	3X0X0X	Block paving	
				0.10	300000000	SAND Brown silty dayey MADE GROUND containing brick & co	ncrete backfill
				0.30		Foundation Top - 0.25m (Concrete construct, projecting 50mm with 40	Omm (Nicloness)
				0.30	X	Mid brown silty CLAY containing minor grey mottle	
					X		
					X_X		J
		1 1			X-X3		1
0,6	65	D	14 (0.00-) - 700	1	X-X	Foundation Level . 0.65m Noted to be firm & contain roots from FL to	1.30m
			V (kPa) = 72 V (kPa) = 74			(3),800,62,841,662,941	
1.0	00	D					
1.3			V (kPa) = 70		X		
1			V (kPa) = 74		X		
							1
					-xx-		1
					XX-		
					X	Noted to contain large sand pockats from 1.40m	
1.5	50	D	V (kPa) = 96		XX-	Noted to become firm to stiff at 1.50m	
			V (kPa) = 98		x		- 1
					X		1
					x		
					X		- 1
					x		
2.0	00	D			X		
			V (kPa) = 110 V (kPa) = 112		Z	Noted to become stiff & contain minor claystone pookets at 2.00m	1
	- 1		V (KPB) = 112		xx2		
					xx		- 1
					X		1
					xx		
100	3880				X		Î
2.5	50	D	V (kPa) = 128		-x		
			V (kPa) = 130				
					Z-X-2		
					x-x		
					_ X2		
					X - X -		
3.0	00	D	110717229233633	3.00		End of Borehole at 3,000m	
			V (kPs) = 140			and of burefully as a country	

MP - Mackintosh Probe Test

Key: D - Disturbed Sample V - Insitu Vane Test Remarks: Borehole was closed at 3.00m

Borehole was noted to be dry on completion

Gatehead Business Park

Tel: 0800 870870

Delph New Road

Oldham, OL3 5DE.

Email: Info@catalystclaims.com

Registered in England No. 09166356

Web: www.catalystclaims.com

LABORATORY RESULTS

Property Address:

15 Sladburys Lane, Clacton on Sea, Essex, CO15 6NU

Client Claim Ref:

107232

SA	MPLE DETAILS	ANALY	SIS R	EOJESTED	
Investigation date:	5th October 2020	Moisture Content		PSD	
Sample details:	Bags as received	Liquid Limit		Soil Suction	(Z
Samples received:	9th October 2020	Plastic Limit		Shear Strength	
Schedule recieved;	9th October 2020	Plasticity Index		Contamination	
Samples tested:	9th - 19th October 2020	Root ID	4	Root/Tree DNA	
Results reported:	19th October 2020	Other (please state)			

TEST DE AILS

General

Sample descriptions were written in accordance with BS 5930;1999.

Samples were prepared in accordance with BS 1377; Part 1; 1990, section 7

Samples from this contract will be retained for 1 calender month following the issue of this report unless otherwise notified

Written approval is required from Fastrack Site Investigations Limited to reproduce report in full. The results shown within this report only relate to the samples tested

Moisture Content

Samples were tested in accordance with BS 1377: Part 2: 1990, section 3.2 (Oven drying method)

In accordance with Note 1 to paragraph 3.2.4 of BS 1377 Part 2 1990; these moisture contents have been corrected to give the equivalent moisture content of the fraction passing the 425µm sleve, to enable comparison with the liquid & plastic limits. (If condition of test is 'natural' the retained percentage is an estimated value, if condition is 'washed' the percentage is a measured value).

Samples are dried at 105-110°C unless otherwise stated.

Atterberg Limits

Samples were tested in accordance with BS 1377: Part 2: 1990, section 4.3 (4 drop LL), 4.4 (1 drop LL), 5.3 (PL) and 5.4 (PI). Test results on samples with a sand content, may show less accurate results. If condition of test is 'washed' results relate to the fraction passing the 425µm sieve only.

* Driscoll's rules deem the soil to be desicated where the moisture content is less than the value calculated using driscoll's rule 1 and/or 2

Particle Size Distribution

Samples were tested in accordance with BS 1377: Part 2: 1990 section 9.2 (Wet sieving method)

Undrained Shear Stength

Samples were prepared in accordance with BS 1377: Part 7: 1990 section 8.3 and testing in accordance with BS 1377: Part 7: 1990: section 8.4 (undrained shear strength in triaxial compression without measurement of pore pressure (JUI))

Soil Suction

Samples were prepared and tested based on the BRE digest No.IP4/93 (Corrected). 'A method of determining the state of desiccation in day soils.' (Filter paper method).

Test results on samples with a sand or silt content, may show less accurate results. Deviation to standard procedure - Polythene bags are not used from weighing filter papers.

Email: info@catalystclaims.com

LABORATORY RESULTS

15 Sladburys Lane, Clacton on Sea, Essex, CO15 6NU

4		Corr				4		Soit	Condition	HOLE	I .	100				- 11 3	
nth n)	MC (%)	MC (%)	LL. (%)	PL	PI	Class	% Retained (425µm)	Suction (kPa)					Soil	Description	1		
5	28.9	28.9	82	36	(%)	CV	0		Natural	Brown sil	ty sandy	CLAY					
0	37,1	37,1	83	36	47	CV	0	and the second district of the	Natural	Brown sil							
0	22,1	22,1	72	31	41	CV	0	229,94	Natural	Brown sit							
0	37.2	37.2	82	38	44	MV	0		Natural	Brown sit							
0	36.3	36.3	86	37	49	CV	0		Natural Natural	Brown sil		CLAY					
	30.6	33.6						1760.23	Traine as		7 0-1						
			ed Moister	re Conten	i (%)	ō	Liquid Lura										
			Lime (%) 10 (Driscol			-	Pt. + 2% (0 — Soil Suction		40 2)			t-line	0.6		x 1.00m	0	.50m
				Mo	Isture C		— Sol Sucto		100	8 1		Litte Litte	2.50	0m	3,00m		.30m
000			10 (Driscol	Mo	Isture C		— 5of Sucto (%)	(kPa)	Contract Con	8 -		2.00m	2,5	Upper	3,00m	9m	
00.00	1		10 (Driscol	Мо	40		— 5of Sucto (%)	(kPa)	Contract Con	76 80			int.med	0m	3,00m Plasticity Range V. High		
	1		10 (Driscol	Mo	40		— 5of Sucto (%)	(kPa)	Contract Con	3	Low P	2.00m	2,5	Upper	3,00m	9m	
0.00	1		10 (Driscol	Mo	disture 0	6	— 5of Sucto (%)	80	Contract Con	97.	Low P	Plasticity	int.med	Upper l	3,00m Plasticity Range V. High	ge Extr. Hi	
900 050			10 (Driscol	Mo	disture 0		— 5of Sucto (%)	80	Contract Con	3	Low P	Plasticity	int.med	Upper l	3,00m Plasticity Range V. High	ge Extr. Hi	
0.00			10 (Driscol	Mo	disture 0	6	— 5of Sucto (%)	80 ©	Contract Con	60 70	Low P	Plasticity	int.med	Upper I High	3,00m Plasticity Range V. High	ge Extr. Hi	
100 000			10 (Driscol	Mo 1853	disture 0	1.71	— 5of Sucto (%)	80 ©	Contract Con	60 70	Low P	Plasticity	int.med	Upper I High	3,00m Plasticity Ran V. High	ge Extr. Hi	
100 050 001			20	Mo 1853	disture 0	1.71	— 5of Sucto (%)	80 ©	Contract Con	60 70	Low P	Plasticity	int.med	Upper I High	3,00m Plasticity Ran	ge Extr. Hi	
100 050 001			20	Mo 1853	disture 0	1.71	- Sol Surbo (%) 0	80 ©	Contract Con	Jolly Index (%) 60 70	Low P	Plasticity	int.med	Upper I High	3,00m Plasticity Ran V. High	ge Extr. Hi	
000 050 001 051			20	Mo 1853	disture 0	1.71	- Sol Surbo (%) 0	80 E	Contract Con	Jolly Index (%) 60 70	Low P	Plasticity	int.med	Upper I High	3,00m Plasticity Ran V. High	ge Extr. Hi	
100 050 001			20	Mo 1853	disture 0	1.71	Sol Surbo (%) 0	80 E	Contract Con	Plasticity Index (%) 60 70	Low P	Plasticity	int.med	Upper I High	3,00m Plasticity Ran V. High	ge Extr. Hi	
000 050 001 051			20	Mo 1853	disture 0	1.71	50f Surbo (7%) 0	80 G	Contract Con	Jolly Index (%) 60 70	Low P	Plasticity	int.med	Upper I High	3,00m Plasticity Ran V. High	ge Extr. Hi	
000 no not not			20	Mo 1853	disture 0	1.71	50f Surbo (7%) 0	80 E	Contract Con	Plasticity Index (%) 60 70	Low P	Plasticity	int.med	Upper I High	3,00m Plasticity Ran V. High	ge Extr. Hi	
000 050 001 051			20	Mo 1853	disture 0	1.71	50f Suction (7%) 0	80 C	Contract Con	Plasticity Index (%) 60 70	Low P	Plasticity	int.med	Upper I High	3,00m Plasticity Ran V. High	ge Extr. Hi	
200 050 000 000			20	Mo 1853	disture 0	1.71	50f Surbo (7%) 0	80 C	Contract Con	Plaeticity index (%) 20 30 40 50 60 70	Low P	Plasticity	int.med	Upper I High	3,00m Plasticity Ran V. High	ge Extr. Hi	
250 200 150 100 050 000			20	Mo 1853	disture 0	1.71	50f Suction (7%) 0	80 C	Contract Con	Plaeticity Index (%) 30 40 50 60 70	Low P	Plasticity CL)	int.med	Upper I High	3,00m Plasticity Ran V. High	ge Extr. Hi	
250 200 150 100 050 000		Lied	20	IBS.	disture 0	1.71	506 Sucho (%) 0	80 C	Contract Con	Plaeticity index (%) 20 30 40 50 60 70	Low P	Plasticity	Intrined GI	Upper High CH NeH	3,00m Plasticity Ran V. High	ga Extr. H	igh
200 200 001 001 000 000 000		Lied	20 20	I I I I I I I I I I I I I I I I I I I	225 54	300	506 Sucho (%) 0	80 G	100	Plasticity Index (%) 60 70	Low P	AL.	Intrined GI	Upper High	3,00m Plasticity Ran V. High	ga Extr. H	

Richardson's Botanical Identifications

Vegetation surveys TreeBuilding investigations Plant laxonomy

Catalyst Claims Management Ltd. **Gatehead Business Park Delph New Road** OLDHAM OL3 5DE

05/11/2020

Dr lan B K Richardson BSc, MSc PhD MRSB FLS James Richardson BSc (Hons Biology)

Enterprise House 49-51 Whiteknights Road Reading **RG6 7BB**

5000-21380 Your ref

Our ref:

80/8614

Dear Sirs

15 Sladburys Lane, Clacton-on-Sea CO15 6NU

The samples you sent in relation to the above have been examined. Their structures were referable as follows:

BH1, F.L-1.0m

Examined root: QUERCUS (Oak). 4 no.

Alive, recently".

3 no.

Sections of either twig, stem or sucker only - NOT roots. Although

examined in our laboratory, they were not identifiable. Unfortunately all with insufficient cells for identification.

Click here for more information: QUERCUS

I trust this is of help. Please call us if you have any queries, our invoice is enclosed.

Yours faithfully

Based mainly on the (odine test for starch. Starch is present in some cells of a living woody root, but is more or less rapidly broken down by soil micro-organisms on death of the root, sometimes before decay is evident. This result need not reflect the state of the

* * Try out our web site on www.botanical.net * *

Appendix No:

4

Catalyst

Gatehead Business Park, Delph New Road, Oldham. OL3 5DE. Registered in England No: 09166356 Email: info@catalystclaims.com Web: www.catalystclaims.com

DRAINAGE SURVEY

Property Address:

15 Sladburys Lane, Clacton-on-sea, Essex, CO15 6NU

Claim Ref:

107232

Survey date: 05/10/2020

Operative:

SE3

Following your recent instruction we attended the above property and carried out a cctv camera survey and hydraulic testing of the drainage, in accordance with procedures detailed in the WRc Drain Repair Book.

Node	Invert Level (m)	Manhole Construction	Pipe Size	Pipe Material	Manhole Condition	Type of Cover	Size of Cave
MH1	0.60	Concrete	100mm	Clay	GOOD	Paved Infill	640x480mm
					50.5		
lydra	ulic Testing Su	mmary:					
Run	From	То	Result	Remarks			
1							-
2							
3				178		- Name of the second	
4							
5					Kuranan Kuranan		2000
6							
Servic	eability:						
1	Is the system failing blockage)	to discharge normal	household flow	s to the sewer sy	stem? (i.e. red	currance of	Yes
2	Is there evidence of I	eakage occuring (in	filtration or exfil	tration)?			Yes
3	Is there intermittent s	storm-water flooding	?				Undetermined
4	Has a hydraulic leaka	age test failed?		V 100 - 100 - 1			N/A
5	Do observed defects	make the drain unse	erviceable?				Yes
Comm	ents:						1000000

Run	Grade	Recommended action
1	В	Line run from MH1 to MH2
2	A	None required
3	A	None required
4	В	Replace gully & 4m of pipe
5		
6		

:eN xibnaggA

4

Catalyst

Gatehead Business Park, Delph New Road, Oldham. OL3 5DE. Registered in England No: 09166356 Email: info@catalystclaims.com Web: www.catalystclaims.com

DRAINAGE SURVEY

Property Address:

15 Sladburys Lane, Clacton-on-sea, Essex, CO15 6NU

Client Claim Ref:

107232

Run	From	To	Pipe Diameter	Pipe Materials	Duty	Direction	Ownership
1	MH1	MH2	100mm	Clay	Foul	Downstream	Private
2	MH1	WC	100mm	Clay	Foul	Upstream	Private
3	MH1	FWG	100mm	Clay	Foul	Upstream	Private
4	RWG	Main run	100mm	Clay	Storm	Downstream	Private
5							
6					0.00		

Grade Guidelines:

Grade A Condition grade A: Structurally sound with no leakage evident. Slight crack/defects permitted.

Grade B Condition grade B: Cracks and/or fractures observed but pipe provides sufficient arching support.

Some leakage may be evident.

Grade C Condition grade C:Structurally unsound with insufficient arching support. Total collapse/blockage likely in the future.

	d C	in the i	and the same of the same of						
nspe	ection	n Report:							
Run	m	Code	Grade	Observations	Water (%)	Clock	Remarks		
1	0.00	SS		Start Survey	0		Displacements throughout run		
	1.50	JD(M)		Joint displaced medium					
	9.00	MHF		Finish node: Manhole	0		Enters MH2		
	9.00	SF	В	Finish Survey			101012		
2	0.00	SS		Start Survey	0				
	2.00	REM		General remark			Enters WC		
	2.00	SF	A	Finish Survey	0				
3	0.00	SS		Start Survey	0				
	1.00	REM		General remark			Enters FWG		
	1.00	SF	А	Finish Survey	0				
4	0.00	SS		Start Survey	0				
	0.50	JD(M)		Joint displaced medium					
	1.50	JD(M)		Joint displaced medium					
	2.00	JD(M)		Joint displaced medium					
	3.50	JD(M)		Joint displaced medium					
	5.00	JN		Junction		-	Drops into main run travelling right		
_	8.00	SF	В	Finish Survey	0		Continues beyond 8m		
						(1			
-	-			8 8 V 1					
			9	V		-			

Email: info@catalystclaims.com

Web; www.catalystclaims.com

PHOTOS

Property Address:

15 Sladburys Lane, Clacton-on-sea, Essex, CO15 6NU

Claim Ref:

107232

Survey date: 05/10/2020

Operative:

Section:

SE3

1

Photo 1 (Showing the front of the property)

Photo 2 (Showing TP1 before excavation)

Photo 3 (Showing TP1 during excavation)

Photo 4 (Showing TP1/BH1 on completion)

Email: info@catalystclaims.com

Web: www.catalystclaims.com

PHOTOS

Property Address:

15 Sladburys Lane, Clacton-on-sea, Essex, CO15 6NU

Claim Ref:

107232

Survey date: 05/10/2020

Operative:

Section:

SE3

Photo 5 (Showing damage in run 1 at 1.50m)

Photo 6 (Showing damage in run 4 at 0.50m)

Email: info@catalystclaims.com

Web: www,catalystclaims.com

Section:

1

PHOTOS

Property Address: Claim Ref:

15 Sladburys Lane, Clacton-on-sea, Essex, CO15 6NU

Survey date: 05/10/2020

Operative:

SE3

Photo 7 (Showing damage in run 4 at 1.5m)

Photo 8 (Showing damage in run 4 at 2.00m)

Email: info@catalystclaims.com

Web; www.catalystclaims.com

PHOTOS

Property Address:

Claim Ref:

15 Sladburys Lane, Clacton-on-sea, Essex, CO15 6NU

107232

Survey date: 05/10/2020

Operative:

Section:

SE3

Photo 9 (Showing damage in run 4 at 3.5m)