| Description of ground strata: Mixture of Sand, gravel with boulders, clay at base, medium permeability The overall depth of the test holes dug were: (state in metres/millimetres) Test Hole 1 I metre I confirm that the water table did not rise to within 1 metre of the invert of the proposed land Irrigation scheme. The weather conditions on the day were: The results of the percolation tests were: Seconds Test Hole 1 Test Hole 2 Time in Seconds Vp Time in Seconds Vp Time in Seconds Test 1 7:00 +150 4 7 Test 1 8,000 +150 5 8 Test 2 8:400 +150 5 6 Test 2 8:400 +150 5 9 Test 3 9:00 +150 60 Test 3 8:900 +150 5 9 Trial Hole 1 - Average Vp Seconds Ve Trial Hole 1 - Average Vp Trial Hole 1 - Average Vp Trial Hole 1 - Average Vp Seconds Ve Trial Hole 1 - Average Vp Ho | Desc | continued assert | | | | | | | | |--|---|--|--|--|------------------|--|--|---|--| | The overall depth of the test holes dug were: (state in metres/millimetres) Test Hole 1 1 metre metr | _ a | Mixture | strata: | fand, | grav | el with | boul | ders a | ay | | Test Hole 1 I metre I metre I confirm that the water table did not rise to within 1 metre of the invert of the proposed land Irrigation scheme. The weather conditions on the day were: The results of the percolation tests were: Time in Seconds Test Hole 1 Test Hole 2 Time in Seconds Test 1 \neq 100 \neq 150 \neq \neq Time in Seconds Test 2 \neq 400 \neq 150 \neq \neq Test 1 \neq 200 \neq 150 \neq 3 \neq 3 \neq 3 \neq 3 \neq 3 \neq 4 \neq 5 \neq 5 \neq 5 \neq 4 \neq 5 \neq 5 \neq 5 \neq 5 \neq 5 \neq 5 \neq 6 \neq 6 \neq 7 Trial Hole 1 – Average Vp \neq 5 \neq 7 Trial Hole 1 – Average Vp \neq 5 \neq 7 \neq 7 Trial Hole 1 – Average Vp \neq 5 \neq 7 \neq 8 \neq 8 \neq 9 | | - base, | med | un p | seme | ability | | | | | Test Hole 1 I metre I metre I confirm that the water table did not rise to within 1 metre of the invert of the proposed land Irrigation scheme. The weather conditions on the day were: The results of the percolation tests were: Time in Seconds Test Hole 1 Test Hole 2 Time in Seconds Test 1 \neq 100 \neq 150 \neq \neq Time in Seconds Test 2 \neq 400 \neq 150 \neq \neq Test 1 \neq 200 \neq 150 \neq 3 \neq 3 \neq 3 \neq 3 \neq 3 \neq 4 \neq 5 \neq 5 \neq 5 \neq 4 \neq 5 \neq 5 \neq 5 \neq 5 \neq 5 \neq 5 \neq 6 \neq 6 \neq 7 Trial Hole 1 – Average Vp \neq 5 \neq 7 Trial Hole 1 – Average Vp \neq 5 \neq 7 \neq 7 Trial Hole 1 – Average Vp \neq 5 \neq 7 \neq 8 \neq 8 \neq 9 | | | | | | | | | | | Test Hole 1 I metre I metre I confirm that the water table did not rise to within 1 metre of the invert of the proposed land Irrigation scheme. The weather conditions on the day were: The results of the percolation tests were: Time in Seconds Test Hole 1 Test Hole 2 Time in Seconds Test 1 \neq 100 \neq 150 \neq \neq Time in Seconds Test 2 \neq 400 \neq 150 \neq \neq Test 1 \neq 200 \neq 150 \neq 3 \neq 3 \neq 3 \neq 3 \neq 3 \neq 4 \neq 5 \neq 5 \neq 5 \neq 4 \neq 5 \neq 5 \neq 5 \neq 5 \neq 5 \neq 5 \neq 6 \neq 6 \neq 7 Trial Hole 1 – Average Vp \neq 5 \neq 7 Trial Hole 1 – Average Vp \neq 5 \neq 7 \neq 7 Trial Hole 1 – Average Vp \neq 5 \neq 7 \neq 8 \neq 8 \neq 9 | The o | verall depth of th | o tool b | | | | | | | | I metre I confirm that the water table did not rise to within 1 metre of the invert of the proposed land Irrigation scheme. The weather conditions on the day were: The results of the percolation tests were: | | Tes | st Hole | oles dug v | vere: (stat | le in metres/n | nillimetres) | | | | I confirm that the water table did not rise to within 1 metre of the invert of the proposed land Irrigation scheme. The weather conditions on the day were: The results of the percolation tests were: Test Hole 1 Test Hole 2 Time in Seconds Test 1 7 100 +150 47 Test 1 8 700 +150 58 Test 2 8 400 +150 56 Test 2 8 900 +150 59 Test 3 900 +150 60 Test 3 8 900 +150 59 Trial Hole 1 - Average V _p 54 · 3 Trial Hole 1 - Average V _p 54 · 3 Trial Hole 1 - Average V _p 55 · 5 See this averaged V _p figure in the following formula P x V _p x 0.25 = A Alculating the drainage field area Key P = no of people serve the tank A = floor area of the dra | | | | | | | | The second second | | | The weather conditions on the day were: The results of the percolation tests were: Successful Test Hole 1 Test Hole 2 Time in Seconds Test 1 7100 +150 | | | | | | | 1 me | tre | | | Test Hole 1 Test Hole 1 Test Hole 2 Time in Seconds Test 1 7 100 +150 | | | | | | | | | | | Test Hole 1 Time in Seconds V _p Time in Seconds V _p Test 1 | The we | eather conditions | on the | day were: | Dry | , Overe | ast, 10 | o°c | | | Time in Seconds Test 1 7 100 +150 | THE TES | suits of the perco | plation t | ests were: | _SUC | cesstu | | | | | Seconds Test 1 7 100 +150 | S. C. State Land | | st Hole | 1 | DECIMAL DATE | MAN MANAGEMENT | Name and Address of the Owner, where which | | | | Test 2 8 400 ÷150 56 Test 2 8 400 ÷150 59 Test 3 900 ÷150 60 Test 3 8 900 ÷150 59 Trial Hole 1 – Average V _p 54 · 3 Trial Hole 1 – Average V _p 54 · 3 Trial Hole 1 – Average V _p 56 · 5 Ise this averaged V _p figure in the following formula P x V _p x 0.25 = A Alculating the drainage field area X V _p X 0.25 = A Y = no of people serve the tank A = floor area of the drainage field area A = floor area of the drainage field area | | Time in | | Name and Address of the Owner, where which is the Owner, where the Owner, which is the Owner, where the Owner, which is Ow | V | COLUMN TWO IS NOT THE OWNER, NAMED IN | 7004 | | The second secon | | Test 3 9 0 0 ÷150 6 0 Test 3 8 9 0 0 ÷150 5 9 Trial Hole 1 – Average V _p 5 4 · 3 Trial Hole 1 – Average V _p 5 8 · 3 Ese this averaged V _p figure in the following formula P x V _p x 0.25 = A Alculating the drainage field area Exercise A P = no of people serve the tank A = floor area of the drainage o | | Seconds | | | V _p | | | | Vp | | Trial Hole 1 – Average V _p 5 4 · 3 Trial Hole 1 – Average V _p 5 8 · 3 verage V _p of Test Holes 1 & 2 5 6 · 5 se this averaged V _p figure in the following formula P x V _p x 0.25 = A alculating the drainage field area X V _p X 0.25 = A P = no of people serve the tank A = floor area of the drainage field area A = floor area of the drainage field are | CONTRACTOR OF THE PARTY | Seconds
7100 | | 4 | + 7 | | Seconds
8100 | s +150 | | | Average V _p of Test Holes 1 & 2 See this averaged V _p figure in the following formula P x V _p x 0.25 = A Alculating the drainage field area Key | Test 2 | Seconds
7100
8400 | ÷150 | - 4
- 5 | F 7
6 | Test 2 | 8 4 0 0 |) +150
) +150 | 58 | | Ise this averaged V _p figure in the following formula P x V _p x 0.25 = A A | Test 2
Test 3 | Seconds
7100
8400
9000 | ÷150 | 4
5
6 | 6 | Test 2
Test 3 | \$ 400
8 9 0 |) +150
) +150
) +150
) +150 | 58
59
59 | | alculating the drainage field area X V _p X 0.25 A P = no of people serve the tank A = floor area of the dra | Test 2
Test 3 | Seconds
7100
8400
9000 | ÷150 | 4
5
6 | 6 | Test 2
Test 3 | \$ 400
8 9 0 |) +150
) +150
) +150
) +150 | 58
59
59 | | alculating the drainage field area X V _p X 0.25 = A P = no of people served the tank A = floor area of the drainage field area Key P = no of people served the tank A = floor area of the drainage field area Key P = no of people served the tank A = floor area of the drainage field area Key P = no of people served the tank A = floor area of the drainage field area Key P = no of people served the tank A = floor area of the drainage field area P = no of people served the tank A = floor area of the drainage field area Key P = no of people served the tank A = floor area of the drainage field area Contract | Test 2
Test 3
Trial | Seconds
7100
8400
9000
Hole 1 – Average | ÷150
÷150
e V _p | 4
5
6 | 6 0 . 3 | Test 2 Test 3 Trial | \$ 400
8 9 0 |) +150
) +150
) +150
) +150 | 58
59
59 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Test 2 Test 3 Trial Average | Seconds 7100 8400 9000 Hole 1 – Average | ÷150
÷150
e V _p | 5 6 54 | 6 0 . 3 | Test 2 Test 3 Trial | Seconds
8700
8900
890
Hole 1 – Av |) +150
) +150
) +150
) +150 | 58
59
59 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Test 2 Test 3 Trial Average | Seconds 7100 8400 9000 Hole 1 – Average | ÷150
÷150
e V _p | 5 6 54 | 6 0 . 3 | Test 2 Test 3 Trial | Seconds
8700
8900
890
Hole 1 – Av |) +150
) +150
) +150
) +150 | 58
59
59 | | A = floor area of the dr | Test 2 Test 3 Trial Average | Seconds 7100 8400 9000 Hole 1 - Average V _p of Test Holes | ÷150
÷150
e V _p | 5
6
5 4 | 6 0 . 3 | Test 2 Test 3 Trial | Seconds
8700
8900
890
Hole 1 – Av | 9 +150
9 +150
9 +150
9 +150
rerage Vp | 58
59
59 | | A - nool area of the di | Test 2 Test 3 Trial Average | Seconds 7100 8400 9000 Hole 1 - Average V _p of Test Holes averaged V _p figur | ÷150
÷150
e V _p
1 & 2
re in the | 5
6
5 4 | 5 6 | Test 2 Test 3 Trial P x V _p x 0.25 | Seconds
8700
8900
8900
Hole 1 – Av | +150
+150
+150
+150
rerage Vp | 58
59
59
58-7 | | | Test 2 Test 3 Trial Everage Se this | Seconds FIOO SHOO GHOO Hole 1 - Average V _p of Test Holes averaged V _p figure ing the drainag X V _p | ÷150
÷150
e V _p
1 & 2
re in the | 5 4 5 4 see following area 0.25 | 5 6
g formula | Test 2 Test 3 Trial Trial P x V _p x 0.25 | Seconds
8700
8900
8900
Hole 1 – Av | +150 +150 +150 +150 | 58
59
59
58-7 | | | Test 2 Test 3 Trial Average Use this | Seconds FIOO SHOO GHOO Hole 1 - Average V _p of Test Holes averaged V _p figure ing the drainag X V _p | ÷150
÷150
e V _p
1 & 2
re in the | 5 4 5 4 see following area 0.25 | 5 6
g formula | Test 2 Test 3 Trial Trial P x V _p x 0.25 | Seconds
8700
8900
8900
Hole 1 – Av | Key P = no of pet the tank A = floor are | 58
59
59
58-7 | | | Test 2 Test 3 Trial Average Use this | Seconds FIOO SHOO GHOO Hole 1 - Average V _p of Test Holes averaged V _p figure ing the drainag X V _p | ÷150
÷150
e V _p
1 & 2
re in the | 5 4 5 4 see following area 0.25 | 5 6
g formula | Test 2 Test 3 Trial Trial P x V _p x 0.25 | Seconds
8700
8900
8900
Hole 1 – Av | Key P = no of pet the tank A = floor are | 58
59
59
58-7 | | | Test 2 Test 3 Trial Average Use this | Seconds FIOO SHOO GHOO Hole 1 - Average V _p of Test Holes averaged V _p figure ing the drainag X V _p | ÷150
÷150
e V _p
1 & 2
re in the | 5 4 5 4 see following area 0.25 | 5 6
g formula | Test 2 Test 3 Trial Trial P x V _p x 0.25 | Seconds
8700
8900
8900
Hole 1 – Av | Key P = no of pet the tank A = floor are | 58
59
59
58-7 | | | Test 2 Test 3 Trial Average se this | Seconds FIOO SHOO GHOO Hole 1 - Average V _p of Test Holes averaged V _p figure ing the drainag X V _p | ÷150
÷150
e V _p
1 & 2
re in the | 5 4 5 4 see following area 0.25 | 5 6
g formula | Test 2 Test 3 Trial Trial P x V _p x 0.25 | Seconds
8700
8900
8900
Hole 1 – Av | Key P = no of pet the tank A = floor are | 58
59
59
58-7 | | ÷ | TW | rainage field le | | | | | |--------|------------|---|---------|--------|------------|---------| | - | 10.4 | = 377 | m | | | | | | | | _ | | | | | gned: | | | Date: | +/04/2 | _ Tel No: | | | dress: | C L. VCO F | BIRCHES, I | DEN- U. | GOFEN | enan III | MIDIOEC | | | , ILVER C | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | ORECIV | (0/10/ 22/ |