

Drainage Strategy Report

Development to rear of Chantry House

- **3 Chapel Lane**
 - Statherm
- **Melton Mowbray**

LE14 4HA

Version 02 Date of Report: 19/04/2021

<u>Schedule</u>

Re: Development to rear of Chantry House, 3 Chapel Lane, Statherm, Melton Mowbray

LE14 4HA

Revision	Status	Author	Reason for Issue	Date of Issue
Draft	First Issue to Client	RNL	For Client to comment	19/04/2021
01	Second Issue to Client	RNL	For Client to comment	22/04/2021
02	Second Issue to Client	RNL	For Client to comment	15/07/2021

List of Contents

- 1.0 Executive Summary
- 2.0 Brief
- 3.0 Introduction
- 4.0 Document examined
- 5.0 Proposed Development
- 6.0 Sustainable Drainage Systems (SuDS) Hierarchy
- 7.0 Sewer Sources
- 8.0 Artificial Water Bodies
- 9.0 Flood Risk Assessment
- 10.0 Surface Area Summary
- 11.0 Exceedance Flood Statement
- 12.0 Drainage Strategy
- 13.0 Surface Water Drainage
- 14.0 Foul Water Drainage
- 15.0 Proposed Drainage
- 16.0 SuDS
- 17.0 Water Quality
- 18.0 Landscaping
- 19.0 Summary
- 20.0 Recommendations

List of Appendices

Appendix A	Site Location
Appendix B	Propose Site Layout
Appendix C	Existing Area (EMDS/20/174.50/010 (revision A))
Appendix D	Proposed Area (EMDS/20/174.50/020 (revision B))
Appendix E	Existing Drains (EMDS/20/174.50/030)
Appendix F	Propose Drains (EMDS/20/174.50/040 (revision C))
Appendix G	Flood Route Plan (EMDS/20/174.50/050 (revision A))

Appendix H	Drainage Strategy Plan (EMDS/20/174.50/060 (revision A))
Appendix I	Developers Enquiry
Appendix J	Flood zone map

List of Calculations

Appendix K	Greenfield Estimation by HR Wallingford
Appendix L	Foul Drainage Hydraulic Calculations
Appendix M	Surface Water Hydraulic Calculations

List of Tables

Table 1	Rural Run-off Calculator Parameters
Table 2	Existing Greenfield Run-off Rates
Table 3	SuDS Hierarchy
Table 4	Soil Classification Guide
Table 5	National Planning Policy Guidance defining Flood Zone 1
Table 6	Extract from National Planning Policy Guidance – Table 3: Flood Risk
Table 7	Manhole/Inspection Chamber Maintenance Schedule
Table 8	Outfall Maintenance Schedule
Table 9	Flap Valve Maintenance Schedule

1.0 Executive Summary

The Planning application has been submitted and approved by the Local Planning Authority for Development to rear of Chantry House, 3 Chapel Lane, Statherm, Melton Mowbray LE14 4HA.

This report in support Planning Conditions:

Condition 7 states that –

No development approved by this planning permission shall take place until such time as a surface water drainage scheme has been submitted to, and approved in writing by, the Local Planning Authority. The scheme shall include, but not be limited to, demonstration that there should be no increase to average or peak flows of surface water run off leading towards the nearby watercourse.

The source controls are -

- The surface water runoff discharge from the roof area to be discharged into the watercourse.
- The private access road to the new development will form as gravel area. The surface water runoff from path will retain within site.
- The landscape area forming surrounding the site to mature tree all will help to retain surface water run-off within site.

The foul flows generated from the new development will be free flow into public sewerage system.

The development site falls within in Flood Zone 1 area with a low probability of flooding.

The surface water runoff will retain the first 5mm of rainfall development site.

Since the new development to be on greenfield site, our aim to achieve 50% betterment surface water runoff rate.

2.0 Brief

- 2.1 East Midlands Drainage Services Ltd have been commissioned by Jared Hather (Proprietor) to undertake the drainage strategy to discharge Planning Conditions 7 in connection with the development to rear of Chantry House, 3 Chapel Lane, Statherm, Melton Mowbray LE14 4HA.
- 2.2 The purpose of this document is to report on the conceptual drainage strategy of the proposed development.

3.0 Introduction

- 3.1 The local lead flood authority (LLFA) is Melton Borough Council.
- 3.2 The site is located within Melton Borough Council (MBC) administrative areas and to comply with Local Plan 2014.
- 3.3 The Local Authority Planning Application no.- 21/00477/FUL.
- 3.4 The site is located off Chapel Lane, Statherm. The Ordnance survey area SK7731SW.
 The national grid reference:
 X (Easting) 477060
 Y (Northing) 331080
- 3.5 The entrance to site can be access side of 3 Chapel Lane, Statherm.
- 3.6 The development site is designated as greenfield land situated land to rear of 3 Chapel Lane, Statherm LE14 4HA.
- 3.7 The drainage strategy report has been prepared by EMD Services Ltd in support of the MBC for a new two storey four bedroom dwelling development to rear of 3 Chapel Lane, Stathern.
- 3.8 A location can be found in Appendix A.
- 3.9 The total development considered to be greenfield site with an approximate area 1957 sq/m (0.1957ha).

3.10 The aim of the report is to provide an overview of the proposed drainage strategy for the development and should be used in conjunction with all other submitted information relating to drainage.

4.0. Document Examined

- 4.1 Proposed site layout plans produced by Martin Spencer (Architect) can be found in Appendix B.
- 4.2 Extent of flood zone map from the Environment Agency can be found in Appendix K.
- 4.3 Developers enquiry and obtain sewer record plan record from by Severn Trent can be found in Appendix I.
- 4.4 Hydraulic calculation supported by HR Wallingford and Causeway Flow can be found in Appendix K, L & M.

5.0 Proposed Development

- 5.1 The new development for a new two storey four bedroom dwelling to rear of 3 Chapel Lane, Stathern.
- 5.2 Existing and proposed breakdown site area can be found in Appendix C & D.

6.0 SuDS Hierarchy

- 6.1 General principles of surface water run-off from new development site.
- 6.2 The DEFRA Sustainable Drainage Systems states that the following options should be considered for disposal of surface water runoff in order of preference:
 - Discharge to ground
 - Discharge to surface water body
 - Discharge to surface water sewer
 - Discharge to combined sewer

To integrate and maximise potential use of SuDS in accordance with the National Planning Policy Guidance (NPPG) SuDS Hierarchy can be found in Table 3.

7.0. <u>Sewer Sources</u>

- 7.1 Severn Trent Water is responsible for the operation and maintenance of public sewers within Stathern and Severn Trent Water asset records will need to be obtained as part of an initial developer enquiry.
- 7.2 Tidal/Coastal.
- 7.3 The site is not coastal and as such is not affected by coastal or tidal flooding.
- 7.4 According to Environment Agency record there is a low probability of surface flooding. For further information this can be found in Appendix J.

8.0. Artificial Water Bodies

- 8.1 Reservoir flooding is extremely unlikely to happen.
- 8.2 There is no risk of flooding from river or sea.

9.0 Flood Risk Assessment

- 9.1 Since the site less than 5 hectares therefore a Flood Risk Assessment and Flood Plan not required.
- 9.2 According to the EA Flood Map for Planning the development site located in Flood Zone 1 (with a low probability of flooding as defined in the NPPF).
- 9.3 In accordance with (CIRIA C635 Designing for exceedance in urban drainage) the surface water generated has adequate capacity in drainage network will not exceeded during intense rainfall events or incidents of system blockage.

10.0 Surface Area Summary

Existing Area

The development site considered to be greenfield site with an area of 1957 sq/m (0.1957ha). For breakdown area can be found in Appendix C.

Propose Area

The proposed development roof area of 105 sq./m (0.0105 ha). The proposed surface breakdown area can be found in Appendix D.

Greenfield runoff rate

In accordance with the Sustainable Urban Design Systems (SuDS) Manual C753 and CIRIA, 2015 edition, the greenfield runoff from the site has been calculated using the IH124 methodology.

The soil classification can be found in Table 4. The National Planning Policy Framework (NPPF) for flood zone 1 can be found in Table 5. The Extract from National Planning Policy Guidance can be found in Table 6.

Using Causeway Flow simulation latest software version 10.1 (November 2020) for IH124 the surface water discharge for greenfield runoff rainfall intensity rate as follow –

The greenfield run-off rates are based on the parameters provided as follow:

 Table 1 - Rural run-off calculator parameters:

Parameter	Value
Area (ha)	0. 1957
SAAR (mm)	618
Soil Type	4

The roof area being impermeable to be positively drain into watercourse. The calculations presented in Appendix M can be summarised as follow:

 Table 2 - Existing Greenfield Run-off Rates:

Parameter	Value for site (I/s)
Q1 BAR	0.00
Q10 BAR	0.10
Q30 BAR	0.10
Q100 (l/s)	0.10

11.0 Exceedance Flood Route

A review of ordnance survey mapping illustrates that the development site occupies a small plateau approximately 70.660m AOD.

The development site is steeps with approximate distance of 78m from south to north and 40m east to west with an area of 1807 sq/m (0.1957 ha). This can be found in Appendix G.

The development site designed to manage potential exceedance flows are managed within the site without increasing risk to the development or adjacent site.

In accordance with CIRIA C635 the exceedance flows are "flows generated when the capacity of the drainage network is surpassed during intense rainfall events at 1 in 100 year return per period plus 40% climate change.

12.0 Drainage Strategy

Impermeable Area

The roof area comprises of roof area 105.00 sq/m (0.0105ha).

The rainwater pipe (rwp) and waste connections to be finalised at detailed drainage design as part of Building Control submission.

Source Control

The source controls are -

- The surface water runoff from the roof 105 sq/m (0.015a) to be discharged into watercourse to South boundary of the site.
- The grave area of 200 sq/m (0.0220ha).
- The landscape area comprises of hedge, some trees and grassed with an area of 1652 sq/m (0.1652ha).

For information on source control can be found in Appendix H.

13.0 Surface Water Drainage

- 13.1 There is a public surface water some distance away in Main Street. This can be found in Appendix I.
- 13.2 Severn Trent Water is responsible for the operation and maintenance of surface water sewers within Stathern.
- **13.3** The site is designated as greenfield site to be used as new development for single residential plot.
- 13.4 <u>Surface Water Drainage</u>

The proposed surface water drainage runoff of the site can be summarised as follows:

Surface water runoff from the roof to be discharged into the watercourse.

- 13.5 Under no circumstance foul waste must <u>not</u> be allowed to connect into surface water drainage system.
- 13.6 For further detail the surface water drainage strategy can be found in Appendix I.
- 13.7 In the event rainfall the new development will retain the first 5mm of rainfall within development site for sustainable drainage. This has been demonstrated using hydraulics calculations produced. This can be found Appendix M.
- 13.8 Part H of the Building Regulations 2010 recommends that surface water run-off shall discharge to one of the following, listed in order of priority.
 - An adequate soakaway, rainwater harvesting or some other adequate infiltration system,
 - A watercourse,
 - A public surface water sewer.
- 13.9 There is a watercourse to southern boundary of the site which could be utilised to discharge surface water runoff from the development.
- 13.10 Sewers within the site are to be designed in accordance with the latest industry standards. Thus, it is proposed to follow the guidelines of Building Regulations Approved Document H Drainage and Waste Disposal (2002 Edition incorporating 2010 amendments)
- 13.11 The development site area 1957 sq/m2 (0.1957 ha). Within hydraulic calculations, we have allowed 10% urban creep. The proposed rate of discharge to be QBAR, pr = 0.10 lit/sec which can be found in Appendix M.

14.0 Foul Water Drainage

- 14.1 There is a public combined sewer system to North of Chapel Lane, Stathern. his can be found in Appendix I.
- 14.2 Severn Trent Water is responsible for the operation and maintenance of foul water sewers within Stathern.
- 14.3 Foul Water Drainage Strategy.

- 14.4 A new foul water drainage system is to be constructed on site. Foul water effluent generated by the development is to drain into the adopted foul sewer system situated in Chapel Lane at an unrestricted rate.
- 14.5 Propose drainage layout can be found in Appendix F.
- 14.6 Sewers within the site are to be designed in accordance with the latest industry standards. Thus, it is proposed to follow the guidelines of Building Regulations Approved Document H Drainage and Waste Disposal (2002 Edition incorporating 2010 amendments).

15.0 Propose Drainage

- 15.1 The proposed foul and storm can be found in full drainage strategy in Appendix H.
- 15.2 The proposed drainage for Planning purpose only. This is not to be confused with detailed drainage design which will be required separately for Building Regulation Part H 2010.
- 15.3 The proposed drainage manholes should be publicly accessible and for future maintenance purpose.
- **15.4** Demarcation chambers to be provided for foul and storm drainage system.
- 15.5 Upon construction 'As Built' site drainage drawing and schedule to be made available serving building to enable drainage maintenance and future works to be undertaken.
- 15.6 The foul and surface water drainage to remain private and responsibility of the owner/occupier upon construction.
- 15.7 In accordance with The SuDS Manual CIRIA C753 please refer to manhole & inspection chamber maintenance schedule Table 7.
- 15.8 The outfall maintenance schedule can be found in Table 8.
- 15.9 The flap valve maintenance and inspection can be found in Table 9.
- 15.10 The minimum is required access and removing the need for direct man access to sewer manhole.

16.0 <u>Sustainable Drainage Systems (SuDS)</u>

- 16.1 The integration of sustainable underground drainage systems (SuDS) has been taken into consideration to reduce surface water runoff and comply with the National Planning Policy Guidance: Flood risk and coastal change (2014).
- 16.2 The purpose of SuDS to reduce surface water runoff which comply with National Planning Policy Guidance.
- 16.3 The gravel including path and area all will help reduce surface runoff within site.
- 16.4 The SuDS managements consist of soft landscape area of 1652 sq/m.
- 16.5 The benefits SuDS management will minimise likelihood of flooding and improve water quality and bio-diversity.

17.0 <u>Water Quality Treatment</u>

- 17.1 In accordance with The SuDS Manual (CIRIA C753) 2015, wherever possible good practice, should be considered as follow:
 - Manage surface water run-off close within site,
 - Manage surface water run-off close within site,
 - Minimise impacts from accidental spills,
 - Treat surface water run-off on the surface,
 - Treat surface water run-off to remove a range of contaminants,
- 17.2 A key requirement of any SuDS system is that it protects the receiving water body from the risk of pollution close to the source and can help keep pollutant levels and accumulation rates low. To help maximise the amenity & biodiversity and to keep maintenance activities straightforward and cost-effective.
- 17.3 This can be effectively managed by an appropriate sequence of SuDS components.
- 17.4 The frequent and short duration rainfall events are those that are most loaded with potential contaminants (silts, fines, heavy metals and various organic and inorganic contaminants). Therefore, the first 5-10 mm of rainfall (first flush) should be retained on site.
- 17.5 The proposed development is a combination of runoff from roof water low to medium hazard area.

18.0 Landscaping

- 18.1 The green area mainly to be grassed with hedge at front with an area of 1652 sq/m (0.1652 ha).
- 18.2 The private access to the new development will form gravel area. The gravel area will retain within site.

19.0 Summary

SuDS techniques has been considered to reduce surface water runoff and comply with the National Planning Policy Framework Guidance and in accordance with CIRIA C753.

This report has met and produced in accordance with the SuDS Manual CIRIA C697.

The surface water runoff within the development site to retain the first 5mm of rainfall.

Based on the findings, we would conclude that the most appropriate means of managing surface water run-off from the proposed development would be through a gravity connection from proposed roof into nearby watercourse to southern boundary of the site.

For best management practice and low-level impact to development this will form part of SuDS technique.

20.0 <u>Recommendations</u>

- 20.1 The surface water runoff into the watercourse will require consent to discharge from the Environment Agency
- 20.2 It is advisable to check for any easement.
- 20.3 To check for possible below ground services.
- 20.4 To check for any other site constraint to which we may not be aware of.

APPENDICES

20/174/EMDS Ltd

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

	15/04/21	Propose drainage and manhole schedule updated.	RNL	JH
	12/04/21	Added online storage tank.	RNL	JH
	09/04/21	FFL updated. Added pump main & legend. Manhole schedule updated.	RNL	JH
ΞV	DATE	DESCRIPTION	BY	CHK
TAT	US	FOR PLANNING		o

Appendix G

۱,	14/07/21	Flood route updated due to relocation on Plot layout.	RNL	JH
REV	DATE	DESCRIPTION	BY	CHK
TAT	US	FOR PLANNING		o

Appendix H

ST Classification: UNMARKED

Appendix I

WONDERFUL ON TAP

East Midlands Drainage Services Ltd. Leicester Business Centre 111, Ross Walk Leicester LE4 5HH

FAO: Ras Limbachia

15th December 2020

Severn Trent Water Ltd Leicester Water Centre Gorse Hill Anstey Leicester LE7 7GU

Tel: 024 777 16843

www.stwater.co.uk net.dev.east@severntrent.co.uk

Contact: Asset Protection East (waste water)

Our Ref: 8442005

Dear Sir,

Rear of 3, Chapel Lane, Stathern, Melton Mowbray, Leics. Proposed 1 detached dwelling (477060, 331080)

I refer to your 'Development Enquiry Request' in respect of the above named site. Please find enclosed the sewer records that are included in the fee together with the Supplementary Guidance Notes (SGN) which refer to surface water disposal from development sites.

Protective Strips

There are no public sewers, as shown on the records, located within the proposed development site.

Due to recent change in legislation, there could be sewers, which have transferred over to the Company that are not shown on the statutory sewer records but may be located on your clients land. These sewers will have protective strips that we will not allow to be built over. The sewers could be identified whilst the land is being surveyed. If this is the case, please contact us for further guidance upon discovery.

Please note: there is no guarantee that you will be able to build over or close to any Severn Trent sewers, and where a diversion is required there is no guarantee that you will be able to undertake those works on a self-lay basis. Every approach to build near to or divert our assets has to be assessed on its own merit and the decision of what is or isn't permissible is taken based on the risk to the asset and the wider catchment it serves. It is vital therefore that you contact us at the

WONDERFUL ON TAP

earliest opportunity to discuss the implications of our assets crossing your site. Failure to do so could significantly affect the costs and timescales of your project if it transpires diversionary works need to be carried out by Severn Trent.

Foul Water Drainage

The application has stated the new property will connect into the private drainage system of the adjacent property 3, Chapel Lane which connects to the public 150mm dia public sewer in Chapel Lane.

It is assumed that the connection into the private system can be achieved by gravity and as such the flows will be very low and have negligible impact on the network. Therefore, the connection for the foul flow can be accepted.

Surface Water Drainage

Under the terms of Section H of the Building Regulations 2010, the disposal of surface water by means of soakaways should be considered as the primary method. If this is not practical and no watercourse is available as an alternative, the use of sewerage should be considered. In addition, other sustainable drainage methods should also be explored before a discharge to the public sewerage system is considered.

If ground conditions are not suitable, for soakaways and other SUDs techniques, evidence should be submitted. The evidence should be either percolation test results or by the submission of a statement from the SI consultant (extract or a supplementary letter). This would satisfy the SGN (enclosed).

The proposed surface water run-off from the new impermeable areas of this property are to drain to the watercourse along the southern boundary of the site, therefore there is no need for me to comment on the surface water.

Any flows generated by the site in excess of the permitted discharge rate will have to be attenuated within the development site, as agreed with the LLFA.

Connections

For any new connections including the use, reuse and indirect to the public sewerage system, the developer will need to submit Section 106 application. Our Developer Services department are responsible for handling all such enquiries and applications. To contact them for

WONDERFUL ON TAP

an application form and associated guidance notes please call 0800 707 6600 or download from <u>www.stwater.co.uk</u>

Please quote the above reference number in any future correspondence (including e-mails) with STW Limited. Please send **all correspondence** to the <u>net.dev.east@severntrent.co.uk</u> email inbox address, a response will be made within 15 days.

If you require a VAT receipt for the application fee please email MISCINCOME.NC@SEVERNTRENT.CO.UK quoting the above Reference Number.

Please note that Developer Enquiry responses are only valid for 6 months from the date of this letter.

Yours sincerely,

(Balcer

Keith Baker Senior Evaluation Technician Asset Protection East (wastewater) Asset Strategy & Planning Chief Engineer

Reference	Cover Level	Invert Level Upstream	Invert Level Downstream	Purpose	Material	Pipe Shape	Max Size	Min Size	Gradient	Year Laid
SK77311101	71.3499	68.6	67.9	С	VC	С	225	<unk></unk>	87.19	31/12/1899 00:00:00
SK77311102	70.0199	67.9	67.44	С	VC	С	225	<unk></unk>	61.37	31/12/1899 00:00:00
SK77311001	73.79	71.94	71.72	С	VC	С	225	<unk></unk>	122.41	31/12/1899 00:00:00
SK77312001	75.34	74.11	73.81	С	VC	С	150	<unk></unk>	156.2	31/12/1899 00:00:00
SK77312003	73.04	71.25	71.08	С	VC	С	225	<unk></unk>	74.41	31/12/1899 00:00:00
SK77312009	<unk></unk>	<unk></unk>	71.25	S	со	С	375	<unk></unk>	0	31/12/1899 00:00:00
SK77312109	<unk></unk>	<unk></unk>	71.25	S	со	С	375	<unk></unk>	0	31/12/1899 00:00:00
SK77312202	73.3499	69.49	69.12	С	VC	С	225	<unk></unk>	187.43	31/12/1899 00:00:00
SK77312102	72.9	71.08	69.12	С	VC	С	225	<unk></unk>	21.16	31/12/1899 00:00:00
SK77310103	69.79	68.57	67.78	S	со	С	450	<unk></unk>	30.82	31/12/1899 00:00:00
SK77312105	72.7699	71.45	71.25	S	VC	С	225	<unk></unk>	120.95	31/12/1899 00:00:00
SK77310102	68.29	66.33	65.43	С	VC	С	225	<unk></unk>	58.9	31/12/1899 00:00:00
SK77310201	68.69	67.24	66.64	С	VC	С	150	<unk></unk>	81.73	31/12/1899 00:00:00
SK77310205	69.43	67.78	66.42	S	со	С	450	<unk></unk>	33.49	31/12/1899 00:00:00
SK77310105	68.4	66.42	66.02	S	со	С	450	<unk></unk>	67.55	31/12/1899 00:00:00
SK77310204	69.47	67.44	66.33	С	VC	С	225	<unk></unk>	54.66	31/12/1899 00:00:00
SK77312203	73.37	71.76	71.45	S	VC	С	225	<unk></unk>	178.94	31/12/1899 00:00:00
SK77311103	71.0299	69.84	68.57	S	со	С	450	<unk></unk>	53.55	31/12/1899 00:00:00
SK77312103	72.4899	69.12	68.6	С	VC	С	225	<unk></unk>	132.85	31/12/1899 00:00:00
SK77312104	72.2399	71.25	69.84	S	со	С	450	<unk></unk>	47.9	31/12/1899 00:00:00
SK77310101	70.6399	68.78	67.9	С	VC	С	150	<unk></unk>	56.42	31/12/1899 00:00:00
SK77311002	73.7099	71.72	71.25	С	VC	С	225	<unk></unk>	107.34	31/12/1899 00:00:00
SK77312005	74.5299	73.52	<unk></unk>	S	со	С	375	<unk></unk>	0	31/12/1899 00:00:00
<unk></unk>	<unk></unk>	<unk></unk>	<unk></unk>	F	VC	<unk></unk>	<unk></unk>	<unk></unk>	<unk></unk>	29/01/2020

LEGEND

GL							
Landli	inePoint		Step		General Surface Natural Line		Cliff Fill
+	Spot Height	_	Mean High Water		Building Overhead Line	Ancilla	ry
	Emergency Telephone		Traffic Calming		Landform Natural Line	0	Balancing Lagoon
1-	Site Of Heritage	_	Standard Gauge Track		Historic Interest Line	õ	Grease Trap
1	Culvert		Bottom Of Cliff		Landform Manmade Line	۲	Interceptor
Q.	Positioned Nonconiferous Tree		Top Of Cliff	_	Unclassified	Ħ	Screen
	Inland Water	-	Mean Low Water	Landli	neArea	Chamb	ber
	Road side		Path		Other	0	Flushing Chamber
	Overhead Construction		Overhead Construction		Mixed Woodland Fill	Ø	Scalaway
+	Rail	_	Culvert		Nonconiferous Tree Fill		Overflow
φ	Positioned Coniferous Tree	_	Pylon		Coniferous Tree Fill	Conne	ctor
	Boundary Post Or Stone	_	Ridge Or Rock Line	43	Orchard Fill		Server Junctions
	Triangulation Point Or Pillar	_	Narrow Gauge Track		Coppice Or Osiers Fill		SewerLine Connection Node
	Historic Interest	_	Railway Buffer		Scrub Fill	Fitting	
	Landform	1.181.19	Tunnel Edge		Boulders Fill		Blind Shaft
	Tidal Water		Line Of Posts		Rock Fill	\bowtie	Facility Connector
	Structure	_	Drain		Scree Fill	Ð	Head Node
Landli	ineTex	_	Default Line		Rough Grassland Fill		Lamphole
Landli	ineLine	_	Building Outline		Heath Fill	+	Sewerage Air Valve
	Polygon Closing Line		Edge Line		Saltmarsh Fill		Sewerage Chemical Injection Poir
	Property Closing Line		Road Or Track		Marsh Fill		Sewerage Hatch Box
	Bottom Of Slope		Building Division		Reeds Fill	•	Sewerage Pressure Washout
	Top Of Slope	_	Inland water Line	111,	Slope Fill		Vent Column

	Waste Water Outfall	-	Transferred Asset
Contro	ol Valve		\$102
_	Hydrobrake	-	Null STW
-	Penstock	-	Adopted Sewer
_	Severage Isolation Valve		None
T	Sewerage Non Return Valve	-	Highway Drain
Manh	ole		Null Private
	Foul Bifurcation Manhole	-	\$24
•	Combined Bifurcation Manhole	Storag	le
0	Surface Water Bifurcation Manhole	DS	Disposal Site
	Dual Manhole		Off-Line Waste Water Stora
•	Foul Single Manhole		On-Line Waste Water Stora
	Combined Single Manhole	A	Wet Well
0	Surface Water Single Manhole	Waste	Water Process Structure
0	Twin Manhole	519	Sewage Treatment Point
•	Foul Adopted Manhole	\$75	Sewage Treatment Structur
•	Combined Adopted Manhole	SLTP	Sludge Treatment Point
0	Surface Adopted Manhole	SLTS	Sludge Treatment Structure
•	Transferred Manhole	Gravit	y Sewer Pipe
•	Unsurveyed Manhole	_	Foul Gravity Sewer
Opera	tional Site	_	Combined Gravity Sewer
Waste	Water Pump	_	Surface Water Gravity Sewe
-	\$104		S104 Surface Water Gravity
-		_	

Transferred Asset	-	\$104 Combined Gravity Sewer
5102	_	S104 Foul Gravity Sewer
Null STW		Private Surface Water Gravity Sewe
Adopted Sewer	_	Private Combined Gravity Sewer
lone		Private Foul Gravity Sewer
Highway Drain		Surface Water Unsurveyed Pipe
Null Private	_	Combined Unsurveyed Pipe
524		Foul Unsurveyed Pipe
		Transferred Surface Water Sewer
Disposal Site	_	Transferred Combined Sewer
Off-Line Waste Water Storage		Transferred Foul Sewer
On-Line Waste Water Storage		Disposal Pipe
Vet Well		Overflow Pipe
ater Process Structure	=	Culverted Water Course
ewage Treatment Point	_	Waste Internal Site Pipe
wage Treatment Structure	_	Sewer Service Connection
Sludge Treatment Point	_	Gravity Sewer Others
Sludge Treatment Structure	Pressu	re Sewer Pipe
ewer Pipe	-	Surface Water Pressure Sewer
Foul Gravity Sewer	_	Combined Pressure Sewer
combined Gravity Sewer	_	Foul Pressure Server
ourface Water Gravity Sewer		S104 Surface Water Pressure Sewer
5104 Surface Water Gravity Sewer	_	S104 Combined Pressure Sewer

		MATE	RIALS	CATEGORIES
		-	- NONE	W - WEIR
	\$104 Fc	AC	- ASBESTOS CEME	C - CASCADE
	Private	BR	- BRICK	DB - DAMBOARD
	D.1	CC	- CONCRETE BOX CULVERT	SE - SIDE ENTRY
_	Private	CI	- CAST IRON	FV - FLAP VALVE
_	Private	CO	- CONCRETE	BD - BACK DROP
	Surface	CSB	CONCRETE SEGMENTS (BOLTED)	S - SIPHON
_		CSU	- CONCRETE SEGMENTS (UNBOLTED)	D - HIGHWAY DRAIN
	Foul Va	DI	- DUCTILE IRON	S104 - SECTION 104
_	Combi	GRP	- GLASS REINFORCED PLASTIC	
	C104 G	MAC	- MASONRY IN REGULAR COURSES	SHAPE
	2104.24	MAR	- MASONRY RANDOMLY COURSED	C - CIRCULAR
-	\$104 Cc	PE	- POLYETHLENE	E - EGG SHAPED
	\$104 Fc	PF	- PITCH	0 - OTHER
		PP	- POLYPROPYLENE	R - RECTANGLE
	Private	PSC	- PLASTIC STEEL COMPOSITE	S - SQUARE
_	Private	PVC	- POLYVINYL CHLORIDE	T - TRAPEZOIDAL
	Private	RPM	- REINFORCED PLASTIC MATRIX	U - UNKNOWN
		SI	- SPUN (GREY) IRON	
-	Surface	ST	- STEEL	PURPOSE
_	Combi	U	- UNKNOWN	C - COMBINED
	Equil Ca	VC	- VITRIFIED CLAY	E - FINAL EFFLUENT
	rourse	XXX	- OTHER	F - FOUL
	Private			L - SLUDGE
_	Private			S - SURFACE WATER
	Private			Ņ
	\$104 SL			W DE
-	\$104 Cr			Y
	\$104 Fc			8
	Surface			

Severn Trent Water Limited Asset Data Management PO Box 5344 Coventry CV3 9FT Telephone: 0345 601 6616

SEWER RECORD (Tabular)

O/S Map Scale: 1:1,250

This map is centred upon:

X: 477139.82 **Y:** 331123.53

Date of Issue: 15-12-20 Disclaimer Statement:

1 Do not scale off this Map.

2 This plan and any information supplied with it is furnished as a general guide, is only valid at the date of issue and no warranty as to its correctness is given or implied. In particular this plan and any information shown on it must not be relied upon in the event of any development or works (including but not limited to excavations) in the vicinity of SEVERN TRENT WATER assets or for the purposes of determining the suitability of a point of connection to the sewerage or distribution systems.

3 On 1 October 2011 most private sewers and private lateral drains in Severn Trent Water's sewerage area, which were connected to a public sewer as at 1 July 2011, transferred to the ownership of Severn Trent Water and became public sewers and public lateral drains. A further transfer takes place on 1 October 2012, Private pumping stations, which form part of these sewers or lateral drains, will transfer to ownership of Severn Trent Water on or before 1 October 2016. Severn Trent Water does not possess complete records of these assets. These assets may not be displayed on the map.

4 Reproduction by permission of Ordnance Survey on behalf of HMSO. Crown Copyright and database right 2004. All rights reserved.

5 Ordnance Survey licence number: 100031673

6 Document users other than SEVERN TRENT WATER business users are advised that this document is provided for reference purpose only and is subject to copyright, therefore, no further copies should be made from it.

SUPPLEMENTARY GUIDANCE NOTES RELATING TO DISPOSAL OF SURFACE WATER

Introduction

The purpose of this guidance note is to provide advice to applicants when completing the surface water drainage design for a new development, both for Greenfield and Brownfield sites. This does not affect foul drainage disposal which should be discussed with Severn Trent as early as possible to ensure additional flows can be accommodated without undue delay to the development.

Lead Local Flood Authority (LLFA) Consultation

Since April 2015, the LLFA have assumed the role of being a statutory consultee in the planning process for developments of 10 dwellings or more; or equivalent non-residential and/or mixed development. The LLFAs role is vital to ensure that surface water disposal on new development is adequately assessed so that the local planning authority can satisfy themselves that drainage proposals are satisfactory and to make sure, through the use of planning conditions or planning obligations, that there are clear arrangements in place for future maintenance of sustainable drainage systems (SuDS) over the lifetime of the development. This will also ensure surface water disposal aligns with local planning policies, flood risk strategies and national policies, such as the National Planning Policy Framework (NPPF).

It is strongly recommend that the LLFA are involved in early pre-application discussions when the development of a site is initially being considered. Pre-application discussions will help to ensure that SuDS are appropriately considered ahead of or as part of preliminary development layouts, and that they are fully integrated into the final development layout. Whilst Severn Trent are willing to advise on sewerage availability this does to negate the planning requirement relating to adequacy of SuDS on new development.

SuDS Hierarchy

Severn Trent is fully supportive of the fundamental SuDS principle that priority should be given to managing surface water as close to source as possible. In accordance with national standards and guidance a sequential series of checks should be undertaken to ensure the relevant SuDS features are being proposed whereby (in order of priority) rainwater re-use, infiltration to ground and controlled discharge to a water body are properly considered ahead of any <u>controlled</u> connection to a culverted watercourse/other drainage system or public surface water sewer.

A controlled connection to a public combined/foul sewer would only be considered under rare exceptional circumstances where all other options have been completely exhausted. Acceptance of surface water into a combined sewer is not only unsustainable because of the need to convey/treat rainwater but is also takes away existing capacity which could constraint the connection of foul flows on future development. It is also possible that connection of additional surface water flows will require capacity upgrades to the existing sewerage system which may delay development.

Connection to a Public Sewer

Whilst Severn Trent will be able to provide advice on potential public surface water sewer connection options, it is essential that a developer contacts the LLFA as early as possible to discuss surface water disposal as they will be able to provide guidance on surface water flood risk policy which may influence SuDS requirements. It is strongly recommended that LLFA discussions take place <u>before</u> contacting Severn Trent. Where the outcome of LLFA discussions concludes that a controlled discharge to the public sewerage system is the only viable option then Severn Trent would be pleased to discuss sewer connection options, satisfied that the LLFA have been consulted in line with their surface water management role and in their capacity as statutory consultee.

Evidence must be provided to demonstrate why the sequential SuDS checks have concluded that a connection to the public sewer is required. This must include a Site Investigation Report including percolation test data/graphs/calculations/results together with relevant correspondence with the LLFA.

Design Standards

Surface water disposal design should consider the interactions between the adoptable sewer design criteria based on a 30 year design storm (outlined in 'Sewers For Adoption') and the "Non-statutory technical standards for SuDS" requirement to restrict discharge from a site up to and including the 1 in 100 year critical storm event plus an allowance for climate change as required by the LLFA.

For Greenfield development, the peak runoff rate should never exceed the peak pre-development run-off rates/volumes for the same rainfall event irrespective of the design storm duration consistent with the national non-statutory technical standards. For developments which were previously developed (Brownfield), the peak runoff rate must be as close as reasonably practicable to the greenfield runoff rate from the development for the same rainfall event, but should never exceed the rate of discharge from the development prior to redevelopment again for the same rainfall event. This requirement to remove pre-development surface water discharges to the sewerage system will help remove capacity constraints and aid future development.

To establish the pre-development run-off rates a detailed existing drainage survey will be required indicating pipe locations including sizes and levels, impermeable area connectivity to each pipe and topographical information to support existing drainage assumptions. Photographs of the existing buildings and surface features should be provided and where necessary a CCTV sewer survey should be provided to support the drainage survey to demonstrate connectivity.

In line with 'Sewers for Adoption', the drainage system must be designed so that, unless an area is designated to hold and/or convey water as part of the design, flooding does not occur on any part of the site for a 1 in 30 year rainfall event. For higher storm return periods the drainage system must be designed so that, unless an area is designated to hold and/or convey water as part of the design, flooding does not occur during a 1 in 100 year rainfall event in any part of: a building (including a basement); or in any utility plant susceptible to water (e.g. pumping station, electricity substation, water booster station) within the development.

Small Developments

Whilst developments of fewer than 10 dwellings (or their equivalent) are excluded from the post April 2015 planning requirements the underlying principles regarding sustainable surface water management are still valid. The collective impacts of surface water discharges from smaller developments can have an adverse impact on flood risk, especially in smaller rural catchments where smaller sewerage systems are more susceptible to increases in surface water inflow. On small developments infiltration to ground and peak flow attenuation must be considered to mitigate flood risk in the community but where a sewer connection is envisaged then the developer is recommended to discuss surface water disposal options with Severn Trent as early as possible.

Contact

For further assistance please contact our Asset Protection teams via: <u>net.dev.west@severntrent.co.uk</u> (Birmingham & Black Country, Staffordshire, Shropshire, Worcestershire, Gloucestershire, Herefordshire, Powys) <u>net.dev.east@severntrent.co.uk</u>

(Derbyshire, Leicestershire, Nottinghamshire, Warwickshire, Coventry)

Appendix J

Flood map for planning

Your reference Chapel Lane Location (easting/northing) 477060/331131

Created **27 Feb 2020 14:15**

Your selected location is in flood zone 1, an area with a low probability of flooding.

This means:

- you don't need to do a flood risk assessment if your development is smaller than 1 hectare and not affected by other sources of flooding
- you may need to do a flood risk assessment if your development is larger than 1 hectare or affected by other sources of flooding or in an area with critical drainage problems

Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

The Open Government Licence sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

© Environment Agency copyright and / or database rights 2018. All rights reserved. © Crown Copyright and database right 2018. Ordnance Survey licence number 100024198.

Appendix K

 Calculated by:
 Rasik Limbachia

 Site name:
 EMDS/20174

 Site location:
 Statherm

 This is an estimation of the greenfield runoff rates that are used to meet normal best

practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be

the basis for setting consents for the drainage of surface water runoff from sites.

Runoff estimation approach

IH124

Site characteristics

Total site area (ha):

0.1957

Calculate from SPR and SAAR

2.0 l/s/ha.

Notes

(1) Is Q_{BAR} < 2.0 I/s/ha?

Methodology

Q_{BAR} estimation method: SPR estimation method:

method: Calculate from SOIL type

Soil characteristics

	Default	Edited	
SOIL type:	4	4	
HOST class:	N/A	N/A	
SPR/SPRHOST:	0.47	0.47	

Hydrological characteristics

	Default	Edited
SAAR (mm):	618	618
Hydrological region:	4	4
Growth curve factor 1 year:	0.83	0.83
Growth curve factor 30 years:	2	2
Growth curve factor 100 years:	2.57	2.57
Growth curve factor 200 years:	3.04	3.04

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at

(3) Is SPR/SPRHOST ≤ 0.3 ?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates

	Default	Edited
Q _{BAR} (I/s):	0.82	0.82
1 in 1 year (l/s):	0.68	0.68
1 in 30 years (l/s):	1.63	1.63
1 in 100 year (l/s):	2.1	2.1
1 in 200 years (l/s):	2.48	2.48

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details

Latitude:	52.87186° N
Longitude:	0.85624° W
Reference:	3576023822
Date:	April 08 2021 10:18

Appendix L

			EM D	rainage	Servi	ces L	td	File: EM	IDS20174_Sti	rathem Fo	Page 1		
CAUS	EVA	63	1111	SLEI DUS	11 11	Cent	ie	Rasik Li	mbachia	UIK			
				ster	IN			09/04/2	0021				
			Leice	3101				05/04/2	.021				
							<u>Design</u>	Settings					
		Free	quency	of use	(kDU)	0.1	10	N	/linimum Velo	ocity (m/s)	1.00		
	Flow	per dwe	lling p	er day (l/day)	40	00		Conne	ction Type	Level S	offits	
		Do	mestic	Flow (l/	/s/ha)	20	00.0	Minimu	m Backdrop I	Height (m)	0.200		
		Ind	ustrial	Flow (l/	/s/ha)	0.0	D	Pre	ferred Cover	Depth (m)	1.200		
			Additi	onal Flo	w (%)	0		Includ	e Intermedia	te Ground	\checkmark		
					<u> </u>	Priva	te Drain	Manhole	Туре				
		Max	Width	(mm)	Dian	neter	(mm)	Max W	Vidth (mm)	Diameter	' (mm)		
				370			450		500		450		
				450			450		900		450		
						>	900 Lin	k+900 mm	1				
		Ma	x Dep	th (m)	Dian	neter	(mm)	Max D	epth (m) D	Diameter (r	nm)		
				1.500			1050		99.999	1	200		
							<u>N</u>	odes					
		Nan	ne	Dwelli	ngs	Cov	er N	Manhole	Easting	Northing	Depth		
						Lev (m	el)	Туре	(m)	(m)	(m)		
		Ex F1				71.5	85 Pri	vate Drain	-20.246	60.109	1.776		
		Pump	main		1	71.3	00 Pri	vate Drain	20.239	60.306	0.985		
							<u>Links</u>	(Results)					
	-	Vel	Сар	Flow	U	5	DS	Σ Area	Σ Dwellings	Σ Units	Σ Add	Pro	Pro
Name	Pro Vel	-		(1/-)	Den	oth	Depth	(ha)	(ha)	(ha)	Inflow	Depth	Velocity
Name	Pro Vel @ 1/3 Q	(m/s)	(I/s)	(I/S)									
Name	Pro Vel @ 1/3 Q (m/s)	(m/s)	(I/s)	(I/S)	(m	I)	(m)				(ha)	(mm)	(m/s)

ppendix M										
CAUSEWAY 🚱	EM Drain Leicester 111 Ross Leicester	age Servic Business Walk	ces Ltd Centre	File: 2 Netw Rasik 09/04	20174-St ork: Stor Limbach 1/2021	:ratham.p rm Netwo nia	ofd ork	Page 1 Version Updated	2 1 15/07/2021	
			Desi	<u>ign Setting</u>	<u>S</u>					
Rainfall Methodol Return Period (ye Additional Flow FSR Reg M5-60 (n Rati Time of Entry (m Nam Outfa Pr S5 Pr S4 Pr S1 Pr S2 Pr S3	ogy FSR ars) 100 (%) 0 (ion Engl 1m) 20.0 o-R 0.40 CV 0.75 ins) 5.00 e Area (ha) all 0.000 0.003 0.003 0.003 0.003	and and W 00 0 0 T of E (mins) 5.00 5.00 5.00 5.00 5.00 5.00	Vales Cover Level (m) 70.400 70.510 70.510 70.510 70.510 70.510	Maximum Enfo Nodes Diameter (mm) 150 1200 600 450 450 450	r Time of Maxin M Vlinimun Prefe Include orce bes r Easti (m 0 -20.2 0 40.1 0 40.4 0 -9.0 0 19.7 0 40.5	f Concent mum Rain inimum V Con n Backdrc erred Cov e Interme it practice ing Nor 1) (223 5 123 10 10 10 10 10 10 10 10 10 10 10 10 10 1	ration (r nfall (mn /elocity (nection ¹ op Heigh rer Depth diate Gro e design (e design (9.866 9.862 9.600 0.244 9.819 0.156	mins) 30. n/hr) 50. (m/s) 1.0 Type Levential (m) 0.2 h(m) 1.2 $ound \checkmark$ rules \checkmark Depth (m) 0.900 0.970 0.805 0.400 0.495 0.560	00 0 rel Soffits 00 00	
			Link	ks (Results))					
Name	Vel Ca (m/s) (l/	ip Flow (s) (l/s)	US Depth	DS Depth	Σ Area (ha)	Σ Add Inflow	Pro Depth	Pro Velocity		
1.003 1.002	0.186 7 0.120 4	.4 1.6 .8 1.6	(m) 0.745 0.580	(m) 0.675 0.745	0.012	(1/S) 0.0 0.0	(mm) 72 90	0.149 0.109		
1.000 2.000	0.214 3	.9 0.4 .8 0.4	0.250 0.410	0.345 0.655	0.003 0.003	0.0 0.0	48 33	0.084 0.140		

Simulation Settings

0.345 0.655 0.006

1.001 0.161 2.8 0.8

55

0.0

0.138

Rainfall Methodology	FSR	Drain Down Time (mins)	240
FSR Region	England and Wales	Additional Storage (m³/ha)	0.0
M5-60 (mm)	20.000	Check Discharge Rate(s)	\checkmark
Ratio-R	0.400	1 year (l/s)	0.0
Summer CV	0.750	10 year (l/s)	0.1
Winter CV	0.840	30 year (l/s)	0.1
Analysis Speed	Normal	100 year (l/s)	0.1
Skip Steady State	х	Check Discharge Volume	2.0

15 30 60 12	Storm I 0 180 24	Durations 0 360 480	0 600 720	960
Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)	
1	0	0	0	
10	0	0	0	
30	0	0	0	
100	0	0	0	
100	40	0	0	

Flow+ v10.1 Copyright © 1988-2021 Causeway Technologies Ltd

Post Development Discharge Rate

Site Makeup	Greenfield	Growth Factor 30 year	1.95
Greenfield Method	IH124	Growth Factor 100 year	2.48
Positively Drained Area (ha)	0.011	Betterment (%)	10
SAAR (mm)	572	QBar	2.0
Soil Index	4	Q 1 year (I/s)	0.0
SPR	0.47	Q 10 year (l/s)	0.1
Region	4	Q 30 year (l/s)	0.1
Growth Factor 1 year	0.85	Q 100 year (I/s)	0.1
Growth Factor 10 year	1.49		

Page 3 Version 2 Updated 15/07/2021

Results for 1 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	Outfall	25	69.525	0.025	1.0	0.0000	0.0000	ОК
30 minute winter	Pr S5	25	69.609	0.069	1.1	0.0783	0.0000	ОК
30 minute summer	Pr S4	21	69.789	0.084	1.3	0.0239	0.0000	ОК
15 minute winter	Pr S1	12	70.154	0.044	0.4	0.0069	0.0000	ОК
30 minute summer	Pr S2	20	70.062	0.047	0.7	0.0074	0.0000	ОК
15 minute winter	Pr S3	11	69.982	0.032	0.4	0.0052	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
30 minute winter	Pr S5	1.003	Outfall	1.0	0.165	0.134	0.0159	1.0
30 minute summer	Pr S4	1.002	Pr S5	1.1	0.102	0.223	0.2609	
15 minute winter	Pr S1	1.000	Pr S2	0.3	0.079	0.184	0.0480	
30 minute summer	Pr S2	1.001	Pr S4	0.6	0.086	0.208	0.1115	
15 minute winter	Pr S3	2.000	Pr S4	0.4	0.109	0.102	0.0398	

EM Drainage Services Ltd	
Leicester Business Centre	
111 Ross Walk	
Leicester	

Page 4 Version 2 Updated 15/07/2021

Results for 10 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	Outfall	16	69.537	0.037	2.1	0.0000	0.0000	ОК
15 minute winter	Pr S5	16	69.636	0.096	2.4	0.1088	0.0000	ОК
15 minute winter	Pr S4	13	69.834	0.129	2.8	0.0364	0.0000	ОК
15 minute winter	Pr S1	11	70.175	0.065	0.8	0.0104	0.0000	ОК
15 minute winter	Pr S2	12	70.087	0.072	1.5	0.0115	0.0000	ОК
15 minute winter	Pr S3	11	69.997	0.047	0.8	0.0074	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	Pr S5	1.003	Outfall	1.5	0.216	0.286	0.0255	1.5
15 minute winter	Pr S4	1.002	Pr S5	2.4	0.132	0.505	0.4556	
15 minute winter	Pr S1	1.000	Pr S2	0.7	0.094	0.391	0.0850	
15 minute winter	Pr S2	1.001	Pr S4	1.3	0.112	0.469	0.1830	
15 minute winter	Pr S3	2.000	Pr S4	0.8	0.117	0.209	0.0666	

EM Drainage Services Ltd	F
Leicester Business Centre	Ν
111 Ross Walk	R
Leicester	0

Page 5 Version 2 Updated 15/07/2021

Results for 30 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	Outfall	15	69.543	0.043	2.9	0.0000	0.0000	ОК
15 minute winter	Pr S5	15	69.650	0.110	3.2	0.1249	0.0000	ОК
15 minute winter	Pr S4	13	69.855	0.150	3.6	0.0424	0.0000	ОК
15 minute winter	Pr S1	11	70.185	0.075	1.0	0.0120	0.0000	ОК
15 minute winter	Pr S2	12	70.100	0.085	1.9	0.0135	0.0000	ОК
15 minute winter	Pr S3	11	70.003	0.053	1.0	0.0084	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	Pr S5	1.003	Outfall	1.8	0.241	0.390	0.0308	1.9
15 minute winter	Pr S4	1.002	Pr S5	3.2	0.143	0.664	0.5558	
15 minute winter	Pr S1	1.000	Pr S2	0.9	0.099	0.499	0.1030	
15 minute winter	Pr S2	1.001	Pr S4	1.7	0.120	0.609	0.2099	
15 minute winter	Pr S3	2.000	Pr S4	1.0	0.122	0.262	0.0759	

EM Drainage Services Ltd
Leicester Business Centre
111 Ross Walk
Leicester

Page 6 Version 2 Updated 15/07/2021

Results for 100 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	Outfall	14	69.551	0.051	4.0	0.0000	0.0000	OK
15 minute winter	Pr S5	14	69.669	0.129	4.4	0.1455	0.0000	ОК
15 minute winter	Pr S4	12	69.885	0.180	4.8	0.0509	0.0000	ОК
15 minute winter	Pr S1	11	70.199	0.089	1.3	0.0142	0.0000	ОК
15 minute winter	Pr S2	12	70.118	0.103	2.5	0.0164	0.0000	ОК
15 minute winter	Pr S3	11	70.011	0.061	1.3	0.0096	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	Pr S5	1.003	Outfall	2.5	0.272	0.545	0.0377	2.5
15 minute winter	Pr S4	1.002	Pr S5	4.4	0.157	0.914	0.6876	
15 minute winter	Pr S1	1.000	Pr S2	1.2	0.105	0.658	0.1287	
15 minute winter	Pr S2	1.001	Pr S4	2.3	0.139	0.813	0.2304	
15 minute winter	Pr S3	2.000	Pr S4	1.3	0.125	0.342	0.0813	

Page 7 Version 2 Updated 15/07/2021

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	Outfall	13	69.559	0.059	5.4	0.0000	0.0000	ОК
15 minute winter	Pr S5	13	69.687	0.147	5.7	0.1663	0.0000	ОК
15 minute winter	Pr S4	12	69.925	0.220	6.4	0.0624	0.0000	ОК
15 minute winter	Pr S1	13	70.235	0.125	1.9	0.0198	0.0000	ОК
15 minute winter	Pr S2	13	70.194	0.179	3.5	0.0285	0.0000	SURCHARGED
15 minute winter	Pr S3	11	70.024	0.074	1.9	0.0117	0.0000	ОК
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/C	ap Lin Vol (k Discharge m ³) Vol (m ³)

15 minute winter	Pr S5	1.003	Outfall	3.5	0.302	0.725	0.0447	3.5
15 minute winter	Pr S4	1.002	Pr S5	5.7	0.171	1.185	0.8145	
15 minute winter	Pr S1	1.000	Pr S2	1.6	0.112	0.868	0.1805	
15 minute winter	Pr S2	1.001	Pr S4	2.7	0.155	0.944	0.2658	
15 minute winter	Pr S3	2.000	Pr S4	1.8	0.140	0.485	0.0879	

SuDS Hierarchy

Component	Recommendations
Rainwater Harvesting	Advantage Unpredictable rainfall. Rainfall is hard to predict, and sometimes little, or no rainfall can limit the supply of rainwater to be recycled supplying for domes- tic purpose.
	Disadvantage Initial high cost would very high. Regular maintenance. Storage limits. Roof may seep chemical, dirt, moss growth.
Bioretention	Advantage Can reduce volume and rate of runoff. Can be planned as landscaping features. Highly effective in removing urban pollutants.
	Disadvantage Requires landscaping and management. Susceptible to clogging if sur- rounding landscape is not managed. The landscape area 1652 sq/m is not enough area.
Filter Drains	Advantage Removes Toxic Materials and Disease Organisms. Reduces Soil Erosion.
	Disadvantage Expensive to maintain. Require regular maintenance. Can Contaminate Bod- ies of Water.

Soil Classification Guide

Soil classification	Typical range for coefficient of permeability K (ms)	Typical range of CBR values
heavy clay	10 ⁻¹⁰ to 10 ⁻⁸	2 to 5
silty clay	10 ⁻⁹ to 10 ⁻⁸	3 to 6
sandy clay	10 ⁻⁹ to 10 ⁻⁶	5 to 20
poorly graded sand	5 x 10 ⁻⁷ to 5 x 10 ⁻⁶	10 to 40
well graded sand	5 x 10 ⁻⁶ to 10 ⁻⁴	10 to 40
well graded sandy gravel	10 ⁻⁵ to 10 ⁻³	30 to 80

Table 5

National Planning Policy Guidance defining Flood Zone 1

Guidance as having a 'Low Probability' of flooding.

Flood Zone	Definition
Zone 1 – Low Probability	Land having a less than 1 in 1,000 annual probability of river or sea flooding. (shown as 'clear' on the Flood Map – all land outside Zones 2 and 3)

Extract from National Planning Policy Guidance: Flood Risk

Vulnerability and Flood Zone 'Compatibility'

Flood	Flood Risk Vulnerability Classification				
Zone	Essential in- frastructure	Highly vul- nerable	More vul- nerable	Less vul- nerable	Water com- patible
Zone 1	\checkmark	\checkmark	~	\checkmark	\checkmark
Zone 2	~	Exception test re- quired	~	~	~
Zone 3a †	Exception test required †	×	Exception test re- quired	~	~
Zone 3b *	Exception test required *	×	×	×	√ *

KEY:

- ✓ DEVELOPMENT IS APPROPRIATE
- ★ DEVELOPMENT SHOULD NOT BE PERMITTED

Manhole/Inspection Chamber Maintenance Schedule

Schedule	Features	Required Action	Frequency	Ву
Occasional Maintenance	Foul & surface water drainage	Remove silt and leaf build up from gullies, chambers and gutters etc.	Annually	The Owner/ Occupier
	Demarcation chamber	Remove silt/sediment from the chamber	Quarterly	The Owner/ Occupier
Remedial Action	Foul & Surface Water drainage	Remove and dispose oil or fuel (petrol/diesel) residues using safe standard practices	As required	The Owner/ Occupier
	Demarcation chamber	Remove and dispose of con- taminate oil or fuel (petrol /die- sel) residues using safe stand- ard practices	As required	The Owner/ Occupier
Monitoring	Foul & Surface Water Drainage	Check for any wear and tear.	Monthly	The Owner/ Occupier
	Foul & Surface Water Drainage	Check gullies, chambers	Annually	The Owner/ Occupier
	Demarcation chamber	Inspect of contaminates	Annually	The Owner/ Occupier

Outfall Maintenance Schedule

Schedule	Features	Required Action	Frequency	Ву
Occasional Maintenance	SW Outfall	Remove silt/sediment from the chamber	Quarterly	The Owner/ Occupier
Remedial Action	SW Outfall	Remove and dispose of con- taminate oil or fuel (petrol /die- sel) residues using safe stand- ard practices	As required	The Owner/ Occupier
Monitoring	SW Outfall	Check for any wear and tear.	Monthly	The Owner/ Occupier
	SW Outfall	Access to concrete chamber	Quarterly	The Owner/ Occupier

Flap Valve Maintenance Schedule

Schedule	Features	Required Action	Fre- quency	Ву
Maintenance	Flap valve	Regular inspection and mainte- nance are particularly important to ensure the effective long-term op- eration of surface water drainage, sewers and sustainable drainage systems (SuDS).	Regular	The Owner/ Occupier
Inspection	Flap valve	Inspections should be carried out at frequent and regular intervals. The frequency will depend upon the location and the environment and should be based on local knowledge. Action is only required in the event of a blockage or sus- pected blockage.	3-6 months	The Owner/ Occupier
Monitoring	Flap valve	Flap valve require no routine maintenance although inspections should be carried out at regular in- tervals.	Regular	The Owner/ Occupier