STRUCTURAL CALCULATIONS

Project: Great Trill Farm – Truss Modifications

Reference: 21/7553

Client: Roland de Hauke

Jon J Oates Ltd Structural Engineers

Woodhouse Farm Hawkchurch Axminster, Devon EX13 5UF

Tel: 01297 678138 Email: jjo.associates@btinternet.com

© 2021

lon Oatos idd	Project		Job Ref.			
Consulting Structural Engineers	Gi	reat Trill Farm –	21/7553			
	Section		Sheet no./rev.			
Jon J Oates Ltd Woodhouse Farm	5	Structural Engine	eering Calculatio	ons		1
Hawkchurch, Axminster	Calc. by	Date	Chk'd by	Date	App'd by	Date
Devon	JC	08/07/2021	JJO	08/07/2021	JJO	08/07/2021

DESIGN REQUIREMENTS

All designs carried out in accordance with the following documents as appropriate:

BS 648:1964	Weights of building materials
BS 6399:1996	Loading for buildings
BS 5977-1:1981	Method of assessment of load for lintels
BS 5628-1:2005	Structural use of unreinforced masonry
BS 5950-1:2000	Structural use of steelwork in buildings
BS 5268-2:2002	Structural use of timber
BS 8110-1:1997	Structural Use of Concrete
BS 8004:1986	Foundations
BS 8002:1994	Earth retaining structures

Other relevant documents also may be specified.

GENERAL NOTES

- These calculations should not be taken by any party to represent an investigation into the whole structure. They are not intended as construction documents and any findings herein should be transferred to the construction drawings, except where specific sketch sheets have been allocated and referenced otherwise.
- These calculations are not to be used for the purpose of ordering materials and should only be used for Building Regulations submissions.
- 3. The calculations have been prepared for and remain the sole property of the Client. They must not be reproduced, defaced, or passed onto any third party or used for any other purpose than originally intended.
- 4. Refer to construction notes and material specifications as set out on engineering drawings.
- 5. Calculations and drawings to be read in conjunction with Architects drawings, any inconsistencies should be reported.
- 6. The design and associated details prepared by Jon J Oates Ltd assume a competent Contractor will be entrusted with the work. No responsibility can be accepted for errors resulting from incorrect interpretation. Jon J Oates Ltd should be consulted in the event of any misunderstanding prior to construction.
- 7. If any site conditions or existing details are found that may affect the structural design, Jon J Oates Ltd are to be notified immediately.
- 8. The project requires the introduction of heavy structural elements such as steel beams or concrete lintels. The builder is to take into consideration the placement of all structural elements, ensuring that the method of lifting and placement is safely carried out. Responsibility for this element lies with the Contractor.
- 9. All construction products should be CE marked in accordance with current legislation.
- 10. Design of temporary works is the responsibility of the contractor. Propping loads can be advised.
- 11. Method statement and risk assessment should be produced by the Contractor, in compliance with relevant health and safety regulations.
- 12. Unless a ground investigation has been undertaken, all allowable bearing pressures are assumed based on typical values for the bearing strata, identified from geological maps or historical records where relevant. All foundations are to be constructed to Local Authority approval.

lon Oatos idd	Project		Job Ref.			
Consulting Structural Engineers	Gi	reat Trill Farm –	Truss Modificati	ions	21/7553	
	Section				Sheet no./rev.	
Jon J Oates Ltd Woodhouse Farm	5	Structural Engine	eering Calculatio	ons		2
Hawkchurch, Axminster	Calc. by	Date	Chk'd by	Date	App'd by	Date
Devon	JC	08/07/2021	JJO	08/07/2021	JJO	08/07/2021

DISPROPORTIONATE COLLAPSE

- 1. The designer has an obligation to put in place measures to reduce the sensitivity of a building to disproportionate collapse, should an accident occur.
- 2. From Building Regulations Approved Document A, Table 11, the consequence class for this structure is consequence class 1. No additional specific measures are required, provided that the construction work is carried out in accordance with Building Regulations, all relevant drawings, and good practice.

SCOPE OF WORK

1. Design of truss modification to increase headroom.

PARTY WALL etc. ACT 1996

If part of the work is adjacent to the boundary, the adjacent neighbours right to support could be affected. The issues associated with Party Wall Act may need to be considered. This may include providing information to the adjoining owner, giving sufficient notice of works in compliance with the Act. If the following list applies to this project then the Party Wall Act will apply:

- Installing a new beam into a shared wall between properties.
- Demolishing, building, or under-pinning an existing shared wall.
- Building a new wall at or on the boundary or junction of two properties.
- Damp-proofing all the way through a party wall.
- Digging foundations that are within 3.0m of a Party Wall, where the new foundations are deeper than the existing ones.
- Where the new foundations are within 6.0m and lower than a 45° line from the bottom of the existing foundations.

Ion Oates itd	Project		Job Ref.			
Consulting Structural Engineers	G	reat Trill Farm –	21/7553			
	Section		Sheet no./rev.			
Woodhouse Farm		Structural Engine	3			
Hawkchurch, Axminster	Calc. by	Date	Chk'd by	Date	App'd by	Date
Devon	JC	08/07/2021	JJO	08/07/2021	JJO	08/07/2021

LOADING

Pitched Roof - Slates (38.5 Degrees)		
Roof pitch	38.5	degrees
Slates	0.35	kN/m ²
Treated battens	0.02	kN/m ²
Underlayment	0.01	kN/m ²
Insulation	0.05	kN/m ²
Timber joists	0.15	kN/m ²
Ceiling & services	0.15	kN/m ²
Total dead load on plan	0.93	kN/m ²
Uniform imposed load	0.75	kN/m ²
Imposed reduction factor	0.72	
Imposed load	0.54	kN/m ²

DESIGN SUMMARY

Truss loading

Purlins/ridge support 1.5m rafters Truss centres = 3.35mLoad at purlin/ridge: $1.5 \times 3.35 = 5.0m^2$ roof load **5.0m² roof:** $5.0 \times 0.93 = 4.65$ kN DL $5.0 \times 0.54 = 2.70$ kN IL

Existing truss analysis

 Rafters

 Axial = 27.6 kN

 Shear = 5.4 kN

 Bending = 3.0 kNm

 King post

 Axial = 12.4 kN (tension)

 Webs

 Axial = 9.8 kN

 Tie

 Axial = 20.7 kN (tension)

 Shear = 0.1 kN

 Bending = 0.4 kNm

 Spread = 1.4mm

Proposed truss analysis 1 – new tie bolted to sides Rafters Axial = 27.6 kN 42.4 kN Shear = 5.4 kN 17.6 kN

Bending = 3.0 kNm 23.3 kN King post

lon Oates itd	Project		Job Ref.			
Consulting Structural Engineers	Gr	eat Trill Farm –	21/7553			
	Section		Sheet no./rev.			
Woodhouse Farm	S	Structural Engine	eering Calculatio	ons		4
Hawkchurch, Axminster	Calc. by	Date	Chk'd by	Date	App'd by	Date
Devon	JC	08/07/2021	JJO	08/07/2021	JJO	08/07/2021

Axial = 12.4 kN (tension) 26.7 kN (tension)

Webs

Axial = 9.8 kN 23.7 kN

Raised Tie

Axial = 40.5 kN (tension) Shear = 13.3 kN Bending = 6.4 kNm **Spread = 1.4mm 81.5mm**

Spread too great - improve rafter stiffness

Flitch rafter

Try 250x10thk flitch plates either side (S275) See CADS analysis for flitch check MR = 25 Equivalent area = 145250 mm² Equivalent $I_{xx} = 77406 \text{ cm}^4$ Refer to TSD analysis, improved rafter spread = 16.9mm – reasonable over span Provide 250x10thk flitch plates either side of new tie position Max allowable moment for timber beam = 10 kNm

<u>Joints</u> Loads as previous See CADS analysis, provide min 4M16 bolts for new tie

CADS & TEKLA STRUCTURAL DESIGNER CALCULATIONS

Flitch check

Calculations for timber flitched beam - type3 in accordance with BS5268:Pt 2:2002

Assumptions:

1. This calculation assumes a single line of bolts. These bolts should be placed along the centreline for shallow beams or staggered alternately depth/4 above and below in deeper beams.

2. The load transfer is always perpendicular to the grain.

Beam general details Length of beam	L	=	3 m	Steel Thick	l plate details mess of plate	b	= 10 mm
Length of bearing	l b	=	150 mm	Dept	h of plate	d	= 250 mm
Beam location	b	=	single	Stee	l grade	S _{cs}	= 275
No. of timber pieces Load duration	np I ^{dur}	=	= 1 Medium				
Timber details Timber type			Tim	be	= Planed All Round		
Softwood Depth of timber Width of timber Strength class			d b S _{cr}		= 270 mm = 75 mm = C30		

Jon J Oates Itd	Project					Job Ref.		
Consulting Structural Engineers		Great Trill Farm -	- Truss M	odificati	ions		2	21/7553
Jon J Oates I td	Section					Sheet no./rev	ν.	
Woodhouse Farm		Structural Engin	neering C	alculatio	ons			5
Hawkchurch, Axminster	Calc. by	Date	Chk'd by	_	Date		App'd by	Date
Devon	JC	08/07/2021	JJ	0	08/	/07/2021	JJO	08/07/2021
Service class		s = Co	vered & h	neated /	unhe	ated		
		class						
Loading & Analysis								
Load Description Type	Α	В	С		Gk	Qk		
Point	1.5	_	-	3′	1.0	0.0		
Maximum span bending moment		М	= 23.2	5 kNm				
Maximum design shear force		F	= 15.5	6 kN				
		VC						
Timber stresses from BS 5268 tab	ole 8 to 15	b	- 11 N	l/mm ²				
Shear parallel to grain		b parg	- 12	M/mm^2				
Compression perpendicular to grain		parg	- 27	N/mm2				
Moon modulus of electicity		perg ⊏	- 122	00 N/mr	m ²			
Minimum modulus of electicity		⊏ _{mean}	= 123		.2			
Minimum modulus of elasticity		⊏ _{min}	= 620	J IN/IIIII	-			
Modification factor K2 for timber								
Bending parallel to grain		K _{2ben}	= 1					
Compression perpendicular to grain		K _{2per}	= 1					
Shear parallel to grain		K _{2shr}	= 1					
Mean & min modulus of elasticity		K _{2mod}	= 1					
Section properties								
Modulus of elasticity of timber (modi	fied)							
		E	= E _{min}	*K 2mod				
			= 820	0*1 2 NI/ma ma	.2			
Modulus of elasticity of steel		E	= 820	000 N/n	nm ²			
Modular ratio		st M	= E /E	Ξ				
		r	= 205	000/820	00			
Equivalent area of the section		E	= 25	0*h *d) . /b*d	N		
Equivalent area of the section		E _A	= (III _r - (25*	2 D U S S 2*10*28)+(b u 50)+(7) (5*270)		
			= (23	2 10 20 250 mm	ייייייייייייייייייייייייייייייייייייי	5 270)		
Inertia of timber about X-axis		l t	= b*d ³	/12				
			= 75*(270) ³ /1	2			
Modified Lof steel about X-axis		I	= 1230 $= m^{*2}$	018750 2*h *d ³	mm⁴ /12			
		s	- 25*2	- S S S 2*10*(24	, 1 <u>–</u> 50)3/1 <i>1</i>	2		
			= 651	041666	.667 n	nm ⁴		
Total of inertia about X-axis in equiv	alent timbe	r I	- 1-1					
		xx	- 111 t s - (10	ر.\8\2	(6 51*	10 ⁸)		
			= (1.2)	060500	mm ⁴	10)		
Distance to edge of steel plate		Ys	$= (d_s/2)$	<u>2)</u>				
			= (250)/2) mm				
Distance to edge of timber		Y.	= 125 = (d/2)				
		t	= (270)/2)				
Extreme fibro is timbor section		\checkmark	= 135 - V	mm				
		c	- 1 _t - 135	mm				
Distance from centroid to steel edge			- 155					

Jon J Oates Itd		Job Ref.				
Consulting Structural Engineers	(Great Trill Farm -	- Truss Modifi	cations	2	1/7553
	Section		Sheet no./rev.			
Jon J Oates Ltd		Structural Engir		6		
Hawkchurch. Axminster	Calc. by	Date	Chk'd by	Date	App'd by	Date
Devon	JC	08/07/2021	JJO	08/07/2021	JJO	08/07/2021
	<u> </u>					
		Y	= Y			
			= 125 mm			
Section modulus to top edge of timb	er	7				
		Z _c	$= I / Y _{xx} c$			
			= (7.741*1	0°)/135		
			= 5755761	1.401 11111		
Permissible timber stress						
Bending stress		σ _d	= K _{2ben} *K3	3*K7*K8*b		
			= 1*1.25*1	.012*1*11		
Chaos atraca			= 13.91 N/	/mm ²		
Shear stress		τ d	$= \kappa_{2shr} \kappa_3$			
			$= 1^{1.25^{1}}$	l^1.2 m²		
Compression perpendicular to grain		σ	= K *K3	*K8*K4*c		
		ad	^{2per} = 1*1 25*1	perg		
			= 3.375 N/	/mm ²		
Permissible steel plate stresses (a	as per BS 449	,part:2,Table 2)	- 190 N/m	m ²		
		bp				
Allowable bearing stress		σ_{ds}	= 210 N/M	im²		
Shear stress of steel		τ	= 125 N/m	1m ²		
Applied bending stresses in timber		G	= M*10 ⁶ /7			
		ť	- 23 25*1(c 16/5733782		
			= 4.055 N/	/mm ²		
Applied bending stress in steel		σ	= σ,*m,*Y	/Y		
		3	= 4.055*25	5*125/135		
			= 93.864 N	N/mm ²		
Applied bending stress in timber with	nin permissible	stress. Section is	is sate.			
			Salo.			
Check for deflection (including sh	ear deflection	n as required by	clause 2.10.	7)		
Deflection inclusive of shear		D max	= Dmax			
Limiting deflection		סבו	= 3.115 m	M DAN*103		
			$= 0.003^{\circ}3^{\circ}$	·10 ³		
Section is safe			- 511111			
	- I					
Check for shear stresses (no hoto Permissible shear force on timber	in permitted)	τ	– 2*≁ *h*d	/(3*1000)		
		ťр	$= 2 t_{d} b d$	(3 1000)		
			= 20.25 kM	N		
Shear capacity of timber alone is gre	eater than appl	ied shear force.	Section is safe	e.		
Timber bearing stress on support		G	= (F *1	1000)/(L*b)		
		ິba_T	(15,5%	*1000)/(150*75)		
			= (13.5) = 1.378	N/mm ²		
Permissible bearing		σ	= K_*K	(3*K8*K4*c		
		au	= 1*1.25 [°]	*1*1*2.7		
			= 3.375	N/mm ²		
Rearing stress is loss than normissi	hle timber etres	Section is act	0			
bearing succes is less than perifissi		53. OCULIULI IS SAL	σ.			

Ion Oatos itd	Project		Job Ref.			
Consulting Structural Engineers	G	reat Trill Farm –	Truss Modificat	ions	21/7553	
lon Ootoo td	Section				Sheet no./rev.	
Jon J Oates Ltd Woodhouse Farm		Structural Engine	eering Calculatio	ons		7
Hawkchurch, Axminster	Calc. by	Date	Chk'd by	Date	App'd by	Date
Devon	JC	08/07/2021	JJO	08/07/2021	JJO	08/07/2021

Section is adequate - Passes all checks Provide 250x10thk plates either side of rafter

Truss Analyses

Timber Beams TB 1.1/2/#14-1.1/2/#1

Ion I Oates itd	Project		Job Ref.			
Consulting Structural Engineers	G	reat Trill Farm –	21/7553			
lon Optor td	Section		Sheet no./rev.			
Woodhouse Farm		Structural Engine	eering Calculation	ons		8
Hawkchurch, Axminster	Calc. by	Date	Chk'd by	Date	App'd by	Date
Devon	JC	08/07/2021	JJO	08/07/2021	JJO	08/07/2021

Major

Combination: 1 Combination. Maior Shear for TB 1.1/2/#14-1.1/2/#15

Jon J Oates Ltd	Project			- 4:	Job Ref.	4/7550
Consulting Structural Engineers	Conting	Great Trill Farm -	Chaoting (rov	1/7553		
Jon J Oates Ltd	Section	Structural Engin	eering Calcula	ations	Sheet no./rev.	12
Woodhouse Farm	Calc by	Date		Date	App'd by	Date
Devon	JC	08/07/2021	JJO	08/07/2021	JJO	08/07/2021
Bending Moment Diagram, First-order linear, Streng Major	Strength Factors Combin th Factors	nation: 1 Combine	ation. Maior N	Noment for TB 1/C	//1-2/C/1	4

Jon J Oates Ltd Consulting Structural Engineers Jon J Oates Ltd Woodhouse Farm Hawkchurch, Axminster Devon	Project Great Trill Farm – Truss Modifications Jon J Oates Ltd Section Woodhouse Farm Calc. by Date Devon JC 08/07/2021 JJO							
Todacase: 4 Services Maior Deflection for TB 1/C/1-2/C/1 I ondcase: 5 Imposed Maior Deflection for TB 1/C/1-2/C/1 TB 1/C/1-Base/C/1								

Jon J Oates Ltd	Project		Job Ref.							
Consulting Structural Engineers	G	Great Trill Farm –	21/7553							
Jon J Oates I td	Section		Sheet no./rev.							
Woodhouse Farm		Structural Engin	15							
Hawkchurch, Axminster	Calc. by	Date	Chk'd by	Date	App'd by	Date				
Devon	JC	08/07/2021	JJO	08/07/2021	JJO	08/07/2021				
		TB	1/C/1-Base/C/	1						
Bending Moment Diagram, First-order linear, S Major	Strength Factors									
,										
-										
						4				
Combination: 1 Combination, Maior Moment for TB 1/C/1-Base/C/1										
Shear Force Diagram, First-order linear, Streng	th Factors									

Combination: 1 Combination, Maior Moment for TB /%20-1/C/1

Shear Force Diagram, First-order linear, Strength Factors

