

Sustainable Drainage Assessment

Proposed Homes at Lordsgate Lane, Burscough

Client: GRC Developments

Contents

Executive Summary

- 1. Introduction
- 2. Surface Water Drainage
- 3. Managing SUDS
- 4. Summary and Conclusions

Appendices:

- 1. Proposed Site Layouts
- 2. Site Investigations
- 3. Surface Water Runoff Calculations
- 4. Proposed Drainage Layout
- 5. Cellular Storage Volume Calculations

Document Revision History

Revision	Date	Author	Approved
0	10.11.20	KRS	DJR
А	29.6.21	KRS	DJR

N.B - *This report is prepared solely for the benefit of GRC Developments Ltd. It may not be relied on by a third party.*

EXECUTIVE SUMMARY

This Sustainable Drainage Assessment demonstrates that the proposed development would be operated with minimal risk from flooding, would not increase flood risk elsewhere and is compliant with the requirements of the NPPF. The proposed development will considerably reduce the flood risk posed to the site and to off-site locations due to the adoption of a SuDS Strategy.

1.0 INTRODUCTION

1.1 Background

This Sustainable Drainage Assessment has been prepared to support a planning application for the proposed development on Lordsgate Lane, Burscough, L40 7UR

This Sustainable Drainage Assessment sets out an approach to achieve the required reduction using Sustainable Urban Drainage (SuDS) principles. It is recognised that developments that are designed without regards to the surface water runoff are likely to result in increased impact on existing off-site service provision and may leads to an increase in flood risk.

1.2 Purpose

This Sustainable Drainage Assessment complies with the principles of SuDS presented in the new Defra non-statutory technical standards for SuDS¹, and the National Planning Policy Framework (NPPF)². A surface water drainage assessment is presented with reference to the hydrological and hydrogeological context of the development.

The report findings are based upon professional judgement and are summarised below with detailed recommendations provided at the end of the report. The report includes baseline data on: flood risk from the Environment Agency, rainfall data from the Flood Estimation Handbook (FEH) and hydrogeological information from the British Geological Survey (BGS). The assessment will summarise and refer to these datasets in the text.

1.3 What are SuDS?

A sustainable drainage system (SuDS) is designed to replicate, as closely as possible, the natural drainage from the site (before development) to ensure that the flood risk downstream of the Site does not increase as a result of the land being developed. SUDS can also significantly improve the quality of water leaving the site and can enhance the amenity and biodiversity that a site has to offer.

There are a range of SuDS options available to provide effective surface water management that intercept and store excess runoff. When considering these options, the destination of the runoff should be considered using the order of preference outlined the Building Regulations Part H document³:

- An adequate soakaway or some other adequate infiltration system.
- A watercourse.
- A sewer.

1.4 Site Description

The site is a car park to the Lordsgate Lane frontage and a disused parcel of land to the rear with a site area of 2,100m². The proposals are for the erection of 7 houses 7 (see Appendix 1). The existing and proposed impermeable areas are shown in Table 1. The proposed impermeable area is 1,036m².

¹ Department for Environment, Food and Rural Affairs (2015) Non-statutory technical standards for SUDS (March 2015).

² Ministry of Housing, Communities and Local Government (2019) National Planning Policy Framework.

³ HM Government (2010) The building regulations 2010 Part H drainage and waste disposal (2015 edition).

Parameter	Pre-development	Post-development
Existing	235	
Proposed Roof Area		360
Parking/drives		216
Highways		460
Total	235	1,036

Table 1 - Impermeable Areas (m²)

Reference to the BGS online mapping (1:50,000 scale) indicates that superficial deposits underlaying the site consist of the Shirdley Hill Sand Formation. Superficial deposits formed up to 2 million years ago in the Quaternary Period. The bedrock deposits consist of the Helsby Sandstone Formation, sedimentary bedrock formed approximately 242 to 247 million years ago in the Triassic Period.

Site investigations recorded Made Ground at all borehole location which overlays the Shirdley Hill Sand Formation (see Appendix 2). Sand horizons were recorded to the west of the site at borehole locations RWS03 and RWS04 at depths of 1.00 to 2.00m Below Ground Level (mBGL). Groundwater levels were recorded to rise to 0.80m Below Ground Level (mBGL).

2.0 SURFACE WATER DRAINAGE

2.1 Surface Water Management Overview

It is recognised that consideration of flood issues should not be confined to the floodplain. The alteration of natural surface water flow patterns through developments can lead to problems elsewhere in the catchment, particularly flooding downstream. For example, replacing vegetated areas with roofs, roads and other paved areas can increase both the total and the peak flow of surface water runoff from the development site. Changes of land use on previously developed land can also have significant downstream impacts where the existing drainage system may not have sufficient capacity for the additional drainage.

A SuDS Strategy for the site proposals has been developed to manage and reduce the flood risk posed by the surface water runoff from the site. An assessment of the surface water runoff rates has been undertaken, in order to determine the surface water options and attenuation requirements for the site. The assessment considers the impact of the development compared to current conditions. Therefore, the surface water attenuation requirement for the developed site can be determined and reviewed against existing arrangements.

The requirement for managing surface water runoff from developments depends on the predeveloped nature of the site. If it is an undeveloped greenfield site, then the impact of the development will need to be mitigated so that the runoff from the site replicates the natural drainage characteristics of the pre-developed site. In the case of brownfield sites, drainage proposals will be measured against the existing performance of the site, although it is preferable for solutions to provide runoff characteristics that are similar to greenfield behaviour.

The surface water drainage arrangements for any development site should be such that the volumes and peak flow rates of surface water leaving a developed site are no greater than the rates prior to the proposed development unless specific off-site arrangements are made and result in the same net effect.

It should be acknowledged that the satisfactory collection, control and discharge of surface water runoff are now a principle planning and design consideration. This is reflected in recently implemented guidance as well as the new Defra non-statutory technical standards for SuDS.

2.2 Climate change

Projections of future climate change, in the UK, indicate more frequent, short-duration, high intensity rainfall and more frequent periods of long duration rainfall. Guidance included within the NPPF recommends that the effects of climate change are incorporated into a SuDS Strategy. Recommended precautionary sensitivity ranges for peak rainfall intensities and peak river flows are outlined in the associated Planning Practice Guidance to the NPPF⁴.

Table 2 shows the anticipated changes in extreme rainfall intensity in small and urban catchments.

⁴ https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances#high-allowances.

Table 2 - Peak Rainfall Intensity Allowance in Small and Urban Catchment (use 1961 to 1990baseline)

Parameter	2010 to 2039	2040 to 2059	2060 to 2115
Upper end	+10%	+20%	+40%
Central	+5%	+10%	+20%

2.3 Opportunities for Discharge of Surface Water

There are three possible options to discharge the surface water runoff in accordance with requirement H3 of the Building Regulations, this hierarchy is also promoted within the NPPF. Rainwater shall discharge to one of the following, listed in order of priority:

- An adequate soakaway or some other adequate infiltration system; or, where that is not reasonably practicable.
- A watercourse; or where that is not reasonably practicable.
- A sewer.

It is necessary to identify the most appropriate method of controlling and discharging surface water. The design should seek to improve the local runoff profile by using systems that can either attenuate runoff and reduce peak flow rates or positively impact on the existing surface water runoff.

2.3.1 Soakaway/Infiltration System

In determining the future surface runoff from the site, the potential of using infiltration devices has been considered. Groundwater levels were recorded to rise to 0.80mBGL therefore, it will not be possible to discharge the surface water runoff from the site via infiltration devices such as soakaways.

2.3.2 Watercourse

The next option is discharge to a watercourse. There are no watercourses on, or within the vicinity of the site. Therefore, it will not be possible to discharge surface water runoff from the site into a watercourse.

2.3.3 Sewer

In the event that discharge of surface water via infiltration or discharge to a watercourse is deemed unsuitable, then discharge to the public sewers will be possible. All surface water runoff will be managed on site and then discharged to a public sewer. Discharge to the public sewer would be at 3.00 litres/second. A connection to the public sewer will be used at a location/s adjacent to the site. Therefore, it will be possible to discharge to the public sewer.

2.4 Surface Water Runoff Rates

An estimation of surface water runoff is required to permit effective site surface water management and prevent any increase in flood risk to off-site receptors. In accordance with The SuDS Manual, the Greenfield runoff from the site has been calculated using the IoH124 method. This is used as a reference representative of the Greenfield runoff generated within the site. Table 3 shows the QBAR (rural) for the proposed impermeable area is 0.26 litres/second (see Appendix 3).

The Wallingford Procedure has been used to calculate the pre- and post-development surface water runoff rates for a range of return periods, as shown in Table 4 (see Appendix 3).

Table 3 - IoH124 Method Runoff Rates

Return Period (years)	Litres/second
QBAR	0.26

Table 4 - Surface Water Runoff Rates

Poturn Poriod (voors)	6 hour Storm Discharge Rates (I/s)		
Return Period (years)	Pre-development	Post-development	
1	2.50	5.10	
30	5.40	11.00	
100	6.90	14.30	
100 +40%	9.66	20.02	

2.5 SuDS and Water Quality

Current guidance promotes sustainable water management through the use of SuDS. SuDS measures should be used to control the surface water runoff from the proposed development site therefore, managing the flood risk to the site and surrounding areas from surface water runoff.

One of the aims of the NPPF is to provide not only flood risk mitigation but also to maximise additional gains such as improvements in runoff quality and provision of amenity and bio-diversity. Systems incorporating these features are often termed SuDS and it is the requirement of NPPF that these are considered as the primary means of collection, control and disposal for storm water as close to source as possible.

A hierarchy of techniques is identified⁵:

- 1. **Prevention** the use of good site design and housekeeping measures on individual sites to prevent runoff and pollution (e.g. minimise areas of hardstanding).
- 2. **Source Control** control of runoff at or very near its source (such as the use of rainwater harvesting, permeable paving, soakaways and/or green roofs).
- 3. **Site Control** management of water from several sub-catchments (including routing water from roofs and car parks to one/several large soakaways for the whole site, swales and/or infiltration trenches).
- 4. **Regional Control** management of runoff from several sites, typically in a detention pond, basins, tanks and/or wetland.

It is generally accepted that the implementation of SuDS as opposed to conventional drainage systems, provides several benefits by:

- reducing peak flows to watercourses or sewers and potentially reducing the risk of flooding downstream;
- reducing the volumes and frequency of water flowing directly to watercourses or sewers from developed sites;

⁵ CIRIA (2004) Report C609, Sustainable Drainage Systems – Hydraulic, Structural and Water Quality advice.

- improving water quality over conventional surface water sewers by removing pollutants from diffuse pollutant sources;
- reducing potable water demand through rainwater harvesting;
- improving amenity through the provision of public open spaces and wildlife habitat; and
- replicating natural drainage patterns, including the recharge of groundwater so that base flows are maintained.

The most appropriate attenuation system will need to satisfy three main characteristics, firstly, provide the required volume of storage, secondly, minimise the loss of developable land and thirdly, where possible provide local amenity.

The application of The SuDS Manual requires that the runoff from sites is not only restricted to meet the Greenfield runoff characteristics but also that SuDS systems are utilised to improve the quality of the runoff prior to outfall to watercourses. The SuDS Manual and Environment Agency guidance applies a sustainability hierarchy to the various types of SuDS systems, this is summarised in Table 5.

Most Sustainable	SuDS Technique	Flood Reduction	Pollution Reduction	Landscape & Wildlife
	Living Roofs	\checkmark	\checkmark	\checkmark
	Basins and Ponds			
↑	 Constructed wetlands 			
	 Balancing ponds 	\checkmark	✓	\checkmark
	- Detention basins			
	- Retention ponds			
	Filter Strips and Swales	\checkmark	✓	\checkmark
	Infiltration Devices	1	1	1
	- Soakaways	•	·	•
	Permeable Surfaces and Filter Drains			
	- Gravelled areas	1	1	
+	 Solid paving blocks 	, i	, i	
	- Permeable paving			
	Tanked Systems			
Least	 Over-sized pipes/tanks 	\checkmark		
Sustainable	- Cellular storage			

Table 5 - Sustainability Hierarchy

Systems at the top of the hierarchy provide a combination of attenuation, treatment and ecology and are deemed the most sustainable options. There are always specific scenarios where systems are more suitable than others and at this stage it is not possible to guide the development towards a particular strategy.

The usual approach is to consider the 'SuDS train' where each of the above options are considered in turn until a suitable solution is found. Thus, source control techniques such as soakaways, rainwater harvesting and/or infiltration trenches, if suitable on a site, are considered preferable to permeable conveyance and passive treatment systems such as tanks or ponds. The various options are considered in outline below.

2.6 Attenuation Storage Volumes

It is proposed that the impermeable area of 1,036m² including the highways will discharge to the public sewer. The principle applied in the design of storage is to limit the discharge rate of surface water runoff from the developed site for events of similar frequency of occurrence to the same peak rate of runoff as that which takes place from a site prior to the proposed development.

QBAR (rural) has been calculated to be 0.26 litres/second. A minimum discharge rate of 3.00 litres/second can be used when the greenfield runoff rate is less than 5.00 litres/second. Therefore, the surface water runoff from the site will be restricted to 3.00 litres/second.

Table 6 shows the volume of storage required for the proposed development estimated using the MicroDrainage Software for the 1 in 100 year event, with a 40% allowance for climate change (increase in peak rainfall) assuming the proposed impermeable areas with 3.00 litres/second used as the limiting discharge rate (see Appendix 5). An attenuation storage volume of 53.20m³ is required. A conservative estimate of 100% runoff from impermeable areas has been used within the calculations.

Flooding will not occur on any part of the site during the 1 in 30 year event, no flooding will occur within any part of the buildings during the 1 in 100 year (+40%) event, all areas drained have been designed to accommodate the 1 in 100 year (+40%) event.

Table 6 - Attenuation Storage Volumes

Return Period (years)	Limiting Discharge Rate (I/s)	Impermeable Area (m ²)	Volume (m ³)
100 +40%	3.00	1,036	53.20

2.7 SuDS Strategy

The objective of this SuDS Strategy is to ensure that a sustainable drainage solution can be achieved which reduces the peak discharge rate to manage and reduce the flood risk posed by the surface water runoff from the site. The SuDS Strategy takes into account the following principles:

- No increase in the volume or runoff rate of surface water runoff from the site.
- No increase in flooding to people or property off-site as a result of the development.
- No surface water flooding of the site.
- The proposals take into account a 40% increase in rainfall intensity due to climate change during the next 100 years which is the lifetime of the development.

In line with adopting a 'management train' it is recommended that water is managed as close to source as possible. This will reduce the size and cost of infrastructure further downstream and also shares the maintenance burden more equitably. It is therefore recommended that the site provides its own attenuation. This will be in the form of:

- Underground cellular/oversized pipe storage with an outfall to the public sewer restricted to 3.00 litres/second.
- Paths around the buildings drain to grassed lawns.
- For larger events in other areas such as landscaped areas, provided that it will not cause damage or prevent access.

The proposed drainage layout is shown in Appendix 4. For all development, both the Building Regulations and NPPF promote a hierarchical approach to surface water management. This approach has been adopted within this SuDS Strategy however, surface water discharge via infiltration methods and to a watercourse will not be possible therefore, discharge of surface water will be to the public sewer at a restricted runoff rate of 3.00 litres/second with attenuation within cellular storage/oversized pipes.

The size of the attenuation storage has been calculated such that the proposed development has the capacity to accommodate the 1 in 100 year rainfall event including a 40% increase in rainfall intensity that is predicted to occur as a result of climate change.

A conservative estimate of 100% runoff from impermeable areas has been used within the calculations. Consequently, all areas drained have been designed to accommodate the 1 in 100 year (+40% climate change) storm event.

The paths around the buildings will be designed to drain to the grassed lawns. The remainder of the site that is not formally drained, i.e. landscaped areas, will be permeable (grass). The majority of rainwater falling on these areas will soak into the ground. Surface water runoff would be directed to the drainage system through drainage gullies located around the perimeter of the buildings and through contouring of the hardstanding areas.

These methods will reduce peak flows, the volume of runoff, and slow down flows and will provide a suitable SuDS solution for this site. The adoption of a SuDS Strategy for the site represents an enhancement from the current conditions as the current surface water runoff from the site is uncontrolled, untreated, unmanaged and unmitigated.

In adopting these principles, it has been demonstrated that a scheme can be developed that does not increase the risk of flooding to adjacent properties and development further downstream.

The greenfield 1 in 100 year 6 hour storm has a volume of 37.00m³, the pre-development 1 in 100 year 6 hour storm has a volume of 53.50m³, the post-development 1 in 100 year 6 hour storm has a volume of 110.00m³. The surface water runoff has been constrained as much as reasonably practical to the greenfield runoff volume.

2.8 Designing for Local Drainage System Failure/Design Exceedance

When considering residual risk it is necessary to make predictions as to the impacts of a storm event that exceeds the design event, or the impact of a failure of the local drainage system. The SuDS Strategy applies a safe and sustainable approach to discharging rainfall runoff from the site and this reduces the risk of flooding however, it is not possible to completely remove the risk. This section is therefore associated with the way the residual risk is managed.

As part of the SuDS Strategy it must be demonstrated that the flooding of property would not occur in the event of local drainage system failure and/or design exceedance. It is not economically viable or sustainable to build a drainage system that can accommodate the most extreme events. Consequently, the capacity of the drainage system may be exceeded on rare occasions, with excess water flowing above ground⁶.

The attenuation requirements have been designed to accommodate the 1 in 100 year storm event plus climate change (+40%). The design of the site layout provides an opportunity to manage this local drainage system failure/exceedance flow and ensure that indiscriminate flooding of property does not occur.

⁶ CIRIA (2006) Designing for exceedance in urban drainage – good practice.

An exceedance or blockage event of the system would not affect the proposed buildings because the finished floor level will be raised above the external ground level, ensuring flooding of the buildings will not occur. The gardens and pathways of the properties will rise away from the highways and sewers so that any flows will not enter the property ensuring any exceedance flooding would not affect the buildings. Exceedance flows would be contained within the highways adjacent to the site and within the site and would flow to the lower ground levels where landscaped areas are located and manholes further downstream. It is not considered that there is an increased risk to the properties on the site or located adjacent to the site.

In particular, the landscaped areas will include preferential flow paths that convey water away from the proposed buildings as well as the existing buildings adjacent to the site. Surface water runoff would be directed to the drainage system through drainage gullies located around the perimeter of the buildings and through contouring of the hardstanding areas.

When considering the impacts of a storm event that exceeds the 1 in 100 year (+ 40%) event, there is safety factor for attenuation storage, even under the design event conditions. Consequently, if this event were to be exceeded there is additional capacity with the system in the manholes and pipes to accommodate this. If this freeboard was to be exceeded the consequences would be similar, if not less than for the local drainage system failure. Surface water runoff would be directed to the drainage system through drainage gullies located around the perimeter of the buildings and through contouring of the hardstanding areas. Drainage gullies will provide additional water storage and provide betterment. Consequently, the impact of an exceedance event is not considered to represent any significant flood hazard.

The above manages and mitigates the flood risk from surface water runoff to the proposed properties from surface water runoff generated by the site development and to offsite locations as well the risk from surface water runoff generated offsite.

3.0 Managing SuDS

3.1 Introduction

The SuDS have been designed for easy maintenance to comprise:

- Regular day to day care litter collection, regular gardening to control vegetation growth and checking inlets where water enters the SuDS feature.
- Occasional tasks checking the SuDS feature and removing any silt that builds up in the SuDS feature.
- Remedial Work repairing damage where necessary.

The rate of build-up of silt and debris within a drainage system varies from site to site and is dependent upon individual site characteristics. Therefore, the frequency of actions below should be adopted as a minimum standard for a period of 24 months after development completion. This period will be sufficient to assess the system performance over 2 complete seasonal cycles after which the maintenance activity schedule may be reviewed accordingly.

3.2 Maintenance Responsibility

The underground drainage within the adoptable highway and downstream of the attenuation storage will be adopted by United Utilities. The remaining drainage will be maintained by a management company. The responsibility for the enacting of this SuDS Maintenance Plan is entrusted to the management company. The developer will provide this SuDS Maintenance Plan in addition to an Operation and Maintenance Manual for each management company.

The Operation and Maintenance Manual shall be passed on to subsequent future management companies covered by the document. This will include engineering drawings that detail the design and installation of the SuDS components so that persons undertaking any maintenance works will have a point of reference for the required specification of each of these.

Where applicable, the engineering drawings shall make reference to this SUDS Maintenance Plan. Following construction but prior to the completion of the apartment units, the responsibility for maintenance shall lie with the developer.

3.3 SuDS Scheme Checklist

The following lists the SuDS components and extra features which are found on site.

- Cellular/oversized pipe storage system will accept surface water runoff from access road and roof areas.
- Flows from site will be restricted using a flow control device which allows heavy rainfall to leave the site slowly and make its way through a piped network to the existing public sewers.
- Manholes, inspection chambers and rodding eyes are used on bends or where pipes come together. They allow access and cleaning to the system if necessary.
- Inlet structures such as rainwater down pipes and drainage channels. They should be free from obstruction at all times to allow free flow through the drainage network.

• Below ground drainage pipes convey water into and out of the attenuation system. They should be free from obstruction at all times to allow free flow.

3.4 Sustainable Drainage Maintenance Specification

General Requirements

Table 7 details the general requirements.

Table 7 - General Requirements

General Requirements	
Maintenance activities comprise	
Regular maintenance	Fraguana
Occasional tasks	Frequency
Remedial work	
Generally	
Litter	Monthly
Collect all litter or other debris and remove it from the site at each visit	

- Avoid use of weed-killers and pesticides to prevent chemical pollution.
- Avoid de-icing agents wherever possible.
- Protect all below ground drainage through careful selection and placement of hard and soft landscaping.

Cellular Storage/Oversized Pipes

Cellular storage systems and oversized pipes are designed to provide storage upstream of a flow control device. Table 8 provides details of the maintenance requirements.

Upon completion of the works the appointed maintenance contractor will carry out regular monthly inspections for the first 3 months and thereafter at 6 monthly intervals. The cellular storage SuDS system as specified allows almost the entire volume of the system to be inspected via CCTV. Flushing of the system can be achieved using a jetting system with a 150 bar pump pressure. The jet nozzle should be introduced to the system via the maintenance tunnel. The silt should be flushed to the inspect manhole and removed from there.

Table 8 - C	Cellular	Storage/	Oversized	Pipes
-------------	----------	----------	------------------	--------------

Regular Maintenance	Frequency
 Inspect and identify any area that are not operating correctly. Remove debris from the catchment surface (where it may cause risk to performance). Remove sediment from inlet structures and inspection chambers. Maintain vegetation to designed limits within the vicinity of the below ground tanked system to avoid damage to the system. 	Monthly or as required
Remedial Work	Frequency
Repair physical damage if necessary.	As required

Monitoring	Frequency
 Inspect inlets, outlets and vents to ensure that they are in good condition and operating as designed. 	Annually
 Survey inside of tanks for sediment build up and remove if necessary. 	Every 5 years or as required

Permeable Areas

Permeable areas will be porous to allow rain to percolate through the surface into underlying drainage layers. They must be protected from silt, sand, compost, mulch, etc. Table 9 provides details of the maintenance requirements.

Table 9 - Permeable Surfaces

Regular Maintenance	Frequency
 Cleaning Brush regularly and remove sweepings from all hard surfaces. 	Monthly
Occasional Tasks	Frequency
 Permeable pavements. Brush and vacuum surfaces once a year to prevent silt blockages and enhance design life. 	Annually
Remedial Work	Frequency

Inlet Structures and Inspection Chambers

Inlet structures such as rainwater downpipes, road gullies and channel drains. They should be free from obstruction at all times to allow free flow through the SuDS. Inspection chambers and rodding eyes are used on bends or where pipes come together. They allow access and cleaning to the system if necessary. Table 10 provides details of the maintenance requirements.

Table 10 - Inlet Structures and Inspection Chambers

Regular Maintenance	Frequency
Inlet Structures	
 Inspect rainwater downpipes, channel drains and road gullies, removing obstructions and silt, as necessary. Check there is no physical damage. 	Monthly
• Strim vegetation 1m minimum surrounding structures and keep area free from silt and debris.	
Inspection Chambers and below ground control chambers	
• Remove cover and inspect, ensuring that the water is flowing freely and that the exit route for water is unobstructed. Removed debris and silt.	Annually
Occasional Maintenance	Frequency
 Check topsoil levels are 20mm above edges of chambers to avoid mower damage. 	As required
Remedial Work	Frequency
Repair physical damage if necessary.	As required

Below Ground Drainage Pipes

Below ground drainage pipes convey water to the SuDS system. They should be free from obstruction at all times to allow free flow. Table 11 provides details of the maintenance requirements.

Table 11 - Below Ground Drai	nage Pipes
------------------------------	------------

Regular Maintenance	Frequency
 Inspect and identify any areas that are not operating correctly. If required, take remedial action. Remove debris from the catchment surface (where it may cause risks to performance). Remove sediment from pre-treatment inlet structures and inspection chambers. Maintain vegetation to designed limits within vicinity of below ground drainage pipes and tanks to avoid damage to system. 	Monthly for first 3 months then annually Monthly Annually or as required Annually or as required
Remedial Works	Frequency
Repair physical damage if necessary.	As required
Monitoring	Frequency
 Inspect all inlets, outlets and vents to ensure that they are in good condition and operating as designed. Survey inside of pipe runs for sediment build up and remove if necessary. 	Annually Every 5 years or as required

3.5 Design Life

The design life of the development is likely to exceed the design life of each of the SuDS components listed above. During the routine inspections of any SuDS components it may become apparent that they have reached the end of their functional lifetime. In the interest of sustainability repairs should be the first choice solution where practicable. If this is not the case, then it will be necessary to undertake complete replacement of the component in question.

When undertaking maintenance, repairs or replacement, all engineering drawings used in the design, construction and installation of the SuDS components should be referred to for construction and specification details. This will help to ensure satisfactory performance of each of the SuDS components.

3.6 Spillage – Emergency Action

Most spillages on development are of compounds that do not pose a serious risk to the environment if they enter the drainage in a slow and controlled manner with time available for natural breakdown in a treatment system. Therefore, small spillages of oil, milk or other known organic substances should be removed where possible using soak mats as recommended by the Environment Agency, with residual spillage allowed to bioremediate in the drainage system.

In the event of a serious spillage, either by volume or of unknown or toxic compounds, then isolate the spillage with soil, turf or fabric and block outlet pipes from chamber(s) downstream of the spillage with a bung(s). (A bung for blocking pipes may be made by wrapping soil or turf in a plastic sheet or closely woven fabric.)

Contact the Environment Agency immediately. Tel: 03708 506 506.

4.0 SUMMARY AND CONCLUSIONS

4.1 Introduction

This report presents a Sustainable Drainage Assessment for the proposed development on Lordsgate Lane, Burscough, L40 7UR.

4.2 SuDS Strategy

The SuDS Strategy ensures that a sustainable drainage solution can be achieved which reduces the peak discharge rate to manage and reduce the flood risk posed by the surface water runoff from the site. The SuDS Strategy takes into account the following principles:

- No increase in the volume or runoff rate of surface water runoff from the site.
- No increase in flooding to people or property off-site as a result of the development.
- No surface water flooding of the site.
- The proposals take into account a 40% increase in rainfall intensity due to climate change during the next 100 years which is the lifetime of the development.

In line with adopting a 'management train' it is recommended that water is managed as close to source as possible. This will reduce the size and cost of infrastructure further downstream and also shares the maintenance burden more equitably. It is therefore recommended that the site provides its own attenuation. This will be in the form of:

- Underground cellular/oversized pipe storage with an outfall to the public sewers restricted to 3.00 litres/second.
- Paths around the buildings drain to grassed lawns.
- For larger events in other areas such as landscaped areas, provided that it will not cause damage or prevent access.

For all development, both the Building Regulations and NPPF promote a hierarchical approach to surface water management. This approach has been adopted within this SuDS Strategy however, surface water discharge via infiltration methods and to a watercourse will not be possible therefore, discharge of surface water will be to the public sewer at a restricted runoff rate of 3.00 litres/second with attenuation within cellular storage/oversized pipes.

The size of the attenuation storage has been calculated such that the proposed development has the capacity to accommodate the 1 in 100 year rainfall event including a 40% increase in rainfall intensity that is predicted to occur as a result of climate change.

A conservative estimate of 100% runoff from impermeable areas has been used within the calculations. Consequently, all areas drained have been designed to accommodate the 1 in 100 year (+40% climate change) storm event.

The paths around the buildings will be designed to drain to the grassed lawns. The remainder of the site that is not formally drained, i.e. landscaped areas, will be permeable (grass). The majority of rainwater falling on these areas will soak into the ground. Surface water runoff would be directed to the drainage system through drainage gullies located around the perimeter of the buildings and through contouring of the hardstanding areas.

These methods will reduce peak flows, the volume of runoff, and slow down flows and will provide a suitable SuDS solution for this site. The adoption of a SuDS Strategy for the site represents an enhancement from the current conditions as the current surface water runoff from the site is uncontrolled, untreated, unmanaged and unmitigated.

In adopting these principles, it has been demonstrated that a scheme can be developed that does not increase the risk of flooding to adjacent properties and development further downstream.

5.1 Conclusion

This Sustainable Drainage Assessment demonstrates that the proposed development would be operated with minimal risk from flooding, would not increase flood risk elsewhere and is compliant with the requirements of the NPPF. The proposed development will considerably reduce the flood risk posed to the site and to off-site locations due to the adoption of a SuDS Strategy.

Exploratory Hole Key Sheet

SAMPLES:		
Undisturbed:		
U	Driven tube sample	
	Thin wall driven tube sample	
	Pushed thin wall tube sample Pushed histori sample	
. L	Liner sample (from windowless or similar sampler), full recovery unless otherwise stated	t i i i i i i i i i i i i i i i i i i i
CBR	CBR mould sample	
BLK	Block sample	
CS	Core sample (from rotary core) taken for laboratory testing	
Disturbed:		
D	Small sample	
B	Bulk sample	
AMAL	Amalgamated sample	
Environmental:		
ES	Environmental soil sample	
EW	Environmental water sample	
Comments		
Comments.	Sample reference numbers are assigned to every sample taken. A sample reference of	'NR' indicates that an attempt was made
	to take a tube sample; however, there was no recovery. Sample recovery is given as a	percentage.
TESTS:		
SDT S or SDT C	Standard Danatration Test, onen also (S) er selid sons (C)	
SFI SUISFI C		
	The Standard Penetration Test is defined in BS EN ISO 22476-3 (2005). The increment	tal blow counts are given
	in the Field Records column; each increment is 75mm unless stated otherwise and any	penetration under self
	weight in mm (SW) is noted. Where the full 300mm test drive is achieved the total number drive is presented as N = ** in the Results column. Where the test drive blows reach 50	ber of blows for the test
	increment) the total blow count beyond the seating drive is given (without the N = prefix)	
	, , , <u>, , , , , , , , , , , , , , , , </u>	
	IN SITU UBR In situ vane shear strength, neak (n) and remoulded (r), kPa	
HV	Hand vane shear strength, peak (p) and remoulded (r), k Pa	
PP	Pocket penetrometer test, converted to shear strength, kPa	
KFH, KRH, KPI	Variable head permeability tests (KFH = falling head test, KRH = rising head test, KPI =	packer test), permeability value
	Test results provided in Results column	
	·····	
DRILLING RECORDS:		
The mechanical indiana (TCI	RECEIPER & It's are defined in RC 5020, 2015 and RC EN ICO 20575 1 (2006)	
	C/SCR/RQD & II) are defined in BS 5950. 2015 and BS EN ISO 22575-1 (2000)	
SCR	Iotal Core Recovery, %	
RQD	Rock Quality Designation. %	
If	Fracture spacing, mm. Minimum, typical and maximum spacings are presented.	
NI	Non intact is used where the core is fragmented.	
CRE	Core recovered (length in m) in the following run	
AZCL	Assessed zone of core loss	
NR	Not recovered	
GROUNDWATER.		
	Groundwater strike	
	Groundwater level after standing period	
INSTRUMENTATION:		EXPLORATORY HOLE TYPE:
Details of installations are given	ven on the Record. Legend column shows installed instrument depths including slotted	CP Cable percussion
pipe section or tip depth, res	ponse zone filter material type and layers of backfill. The type of instrument installed is	DP Dynamic probe
indicated by a code adjacent	to the Legend column at the base of the instrument.	DCP Dynamic cone penetrometer
SD	Standning	HA Hand auger
SPIE	Standpipe piezometer	OP Observation pit/trench
PPIE	Pneumatic piezometer	PC Pavement core
EPIE	Electronic piezometer	RC Rotary core
HPIE GMP	Hydraulic plezometer	SH Shaft
	ous monitoring standpipe	SNC Sonic (resonance)
ICE	Biaxial inclinometer	TP Trial pit/trench
ICM	Inclinometer tubing for use with probe	TRAV Traverse
SLIP	Slip indicator	windowiess (dynamic) sample
ESET	Electronic settlement cell/gauge	
ETM	Magnetic extensometer settlement point	
ETR	Rod extensometer	
	Project: Lordsgate Lane, Burscough	Reference
	Project No: 830	KEY SHEET
AUD	Client: GRC Developments Ltd	Chaot 1 of 1
		Sileer 1 01 1

Scale:

1:50

Redstart

Dynamic Sample Log	
--------------------	--

Bore	orehole formation details:																	
Type	: F 3 (rom: 0.00	To: 5.45	Start 16-0	: date:)9-20	End date: 16-09-20	Crew:	Plant: Premier Compact 110	Logger: t PS	Logged: 16-09-20	Remarks:	marks:						
kfill/ al'n	ter- ke	end	Level	Depth				Stratum D		n				Samples	& In Situ Te	n Situ Testing		
Bacl	Wat	Leg	Level	(thick- ness)				Stratum D	escription			Water	Casing	Depth	Type & No	Results		
	×		34.88 34.20	0.02 (0.68) 0.70	ASPI (MAD Grey/ occas (SUB Firm (SHIF	HALT. DE GROUI /red/black sional ang -BASE) orangish b RDLEY HII	ND) GRAVE ular col rown C L SAN	EL to BOULDER norete, sandstor CLAY. Rare fine ID FORMATION	RS of whc ne and lin rounded I)	ble and brok nestone gravel of q	Dry	1.00	1.00 - 1.45 1.30	S	N=8 (1,1/1,2,2,3)			
				(2.00)								-		1.40	ES			
											-	Dry	1.00	2.00 - 2.45	S	N=16 (2,2/3,4,4,5)		
			32.20	2.70	Firm quart (SHIF	orangish b zite. RDLEY HII	rown s _L SAN	lightly fine sand	y CLAY. I)	Rare fine r	ounded gravel of -	Dry	1.00	3.00 - 3.45	S	N=11 (1,2/2,3,3,3)		
	SP			(1.90)							-	Dry	1.00	4.00 - 4.45	s	N=11 (2,2/2,3,3,3)		
			30.30	4.60 (0.85)	Stiff c (SHIF	orangish bi RDLEY HII	own C L SAN	LAY. Rare fine ID FORMATION	rounded (gravel of qu	Jartzite.	- - - - Dry	1.00	5.00 - 5.45	S	N=16 (2,3/4,4,4,4)		
	-		29.45	5.45		Dynamic s	ample	ends at 5.45 m(Terminati	on reason: 1	Farget depth)							
											-	-						
											-	-						
											-	-						
												-						
											-							
											-							
												Water	Casing	Depth	Type & No	Results		
Grou Stru	ck: F	ater e Rose to	ntries: b: Casir	ng: Se	aled:	Diameter From:	& casi to:	ng: [Dia: Casing:	Depth re l From	lated rema to: Rer	rks: narks		R	run details: From: to:	Duratic	on: Recovery:		
AGS Log i	Notes abbre All de	: For expl viations se pths and r	anation of syn we Key Sheet. educed levels	nbols and are in mete	ers.	Project: Project No Client:	Lord 830 GRC	sgate Lane, Bui Developments	rscough				E	xploratory po	sition refere	ence: 502		
Scale	e:		1:50					•								Sheet 1 of 1		

Dynamic Sample Log

D	yr	nar	nic	S	an	nple	Lc	og							Re	dstart		
Bore Type WLS	ehole 9: F 3 F	form from: 0.00	ation de To: 5.45	Start 16-0	date: 9-20	End date: 16-09-20	Crew:	Plant: Premier Compact 110	Logger: PS	Logged: 16-09-20	Remarks:					Location details: mE: 343017.00 mN: 410512.00 mAOD: 35.80 Grid: Method:		
kfill/ tal'n	ter- ike	Jend	Level	Depth (thick-				Stratum D	escription	1				Samples	Samples & In Situ Testing			
	SP SP		Level 34.80 34.00 33.30 32.80 32.80 32.25 32.00 31.80 31.00 30.95 30.35	Depth (thick-ness) (1.00) (0.80) 1.80 (0.70) 2.50 (0.50) 3.00 (0.50) 3.50 3.55 3.80 4.00 (0.80) 4.85 (0.60) 5.45	Dark brick Occae (MAL Soft (SHII Soft (SHII Dens (SHII Dens (SHII Dens (SHII Soft (SHII Dens (SHII Soft (SHII Soft (SHII Soft (SHII Soft (SHII Soft (SHII Dens (SHII Soft (SHII Soft (SHII Dens (SHII Soft (SHII Dens (SHII Soft (SHII Dens (SHII Soft (SHII Soft (SHII	bluish grey Y RDLEY HII ium dense RDLEY HII ium dense RDLEY HII orangish b RDLEY HII orangish b RDLEY HII se orangish RDLEY HII se orangish RDLEY HII orangish b RDLEY HII orangish b RDLEY HII orangish b RDLEY HII orangish b RDLEY HII orangish b RDLEY HII	ck sligh and as is . VD) orangis _L SAN L SAN	Stratum Du sty gravelly sligh sh/clinker with ra- sh brown slightly ID FORMATION ining orangish brown iD FORMATION ining orangish brown iD FORMATION ining orangish brown iD FORMATION ining sandy CLAY. ID FORMATION in slightly gravelly ID FORMATION in stat 5.45 m (i)	silty fine silty fine) (ity sandy re coal. F (ity sandy re coal. F (ity sandy re coal. F (ity sandy) (ity fine) (ity fine) (ity fine to) (ity fine to)	to medium depth, slig slightly silt silty fine to coarse SA on reason:	avel of angular es of whole brick. n SAND. htly fine sandy y fine to coarse coarse SAND. coarse SAND. Coarse SAND.	Water Dry Dry Dry Dry	Casing 1.00 1.00 1.00 1.00	Samples (Depth 1.00 - 1.45 2.00 - 2.45 3.00 - 3.45 4.00 - 4.45 5.00 - 5.45	& In Situ Te	Results Results N=11 (3,3/3,2,3,3) N=5 (0,0/0,1,2,2) N=16 (2,2/3,4,4,5) N=33 (5,5/6,9,8,10) N=23 (4,4/5,6,6,6)		
Gro	undw lick: F	vater e	entries: o: Casir	ng: Se	aled:	Diameter From:	& casi to:	ng: E Dia: Casing:	Depth rel From	ated rema to: Re	rks: narks	Water	Casing	Depth Run details: From: to:	Type & No Duratio	Results n: Recovery:		
AG Log Scal	Note abbr All d issue e:	s: For exp eviations s epths and	blanation of syr see Key Sheet. reduced levels DRAFT 1:50	nbols and are in mete	ers.	Project: Project No Client:	Lord 830 GRC	sgate Lane, Bur	ate Lane, Burscough levelopments Ltd						Exploratory position reference: RWS03 Sheet 1 of 1			

D	yn	ar	nic	S	amp	le	Lo	g							Re	dstart		
Bore Type WLS	hole	form	ation de To: 4.95	etails: Start 16-0	date: End 9-20 16-(date:)9-20	Crew:	Plant: Premier Compa	Logger:	Logged: 16-09-20	Remarks:					Location details: mE: 342988.00		
								110								mN: 410501.00 mAOD: 35.50 Grid: Method:		
ickfill/ stal'n	'ater- trike	gend	Level	Depth (thick-				Stratum I	Descriptior	n				Samples &	& In Situ Te	Testing		
Ba	≥ ∞	е —	35.30	ness) 0.20	Brownish ceramic a (MADE G	grey s nd con ROUN	lightly s icrete f D)	sandy slightly ragments. Occ	gravelly Cl casional ro	LAY. Grave bots and ra	el of angular brick, re coal.	Water	Casing	Depth 0.20	Type & No ES	Results		
			34.70	(0.60) 0.80	Firm brow of coal. (MADE G	/n/grey ROUN	D)	y sandy CLAY	Occasion	al roots an	nd rare fine gravel-							
	×			(1.20)	fine round (SHIRDLE	led gra EY HIL	L SANI	quartzite. D FORMATIO	N)	Signity Sa		Dry	1.00	1.00 - 1.45	B	N=7 (1,1/1,2,2,2)		
0 0			33.50	2.00	Medium d	lonso	rangie	h brown grave	lly slightly	silty fine to		Dry	1.00	2.00 - 2.45	s	N=8 (1,1/1,2,3,2)		
		× × × × × × × × ×			(SHIRDLE	EY HIL	L SANI	D FORMATIO	N)	sity line to		-						
		× × × × × × × ×		(2.05)								Dry	1.00	3.00 - 3.45	S	N=15 (3,3/4,4,4,3)		
	SP	× × × × × ×		(2.95)						4.00	0 m: becoming dense	Dry	1.00	4.00 - 4.45	S	N=35 (5,6/8,8,9,10)		
•		× × × × · × ×										Dry	1.00	4.50 - 4.95	s	N=45 (6,7/8,12,12,13)		
••••• •••		<u></u>	30.55	4.95	Dynamic	c sampl	e ends	at 4.95 m (Ter further	mination re drilling)	eason: Wet	sands preventing [–]	-						
											-	-						
											-	-						
												-						
											-							
											- - -	-						
											-	-						
												-						
<u></u>			mária -		P'-	n o.t	0		Dorth			Water	Casing	Depth	Type & No	Results		
Stru	ck: F	Rose to	ent ries: o: Casin	ng: Se	aled: Fro	meter &	∝ casir to: D	ig: iia: Casing:	From	to: Rei	ir ks: marks		F	From: to:	Duratio	n: Recovery:		
AGS	Note abbr All de	s: For exp eviations s epths and r	lanation of syn ee Key Sheet. reduced levels	nbols and are in mete	rs. Proje	ect: ect No:	Lords 830	sgate Lane, Bu	irscough				E	Exploratory pos		nce: 504		
Scale	9: 9:	·	1:50		Clier	nt:	GRC	Development	s Ltd							Sheet 1 of 1		

٦

Γ

MD)	KRS Environmental	3 Princes Square, Princes Street, Montgomery Powys, SY15 6PZ Tel: 01686 668957 Mob: 07857 264 376	Job No. Sheet no.	1	
	www.krsenvironmental.com	email: keelan@krsenvironmental.com	Date	05/10/20	
MasterDrain	Project Lordgate Lane		Ву	Checked	Reviewed
HT 11.0	Title IoH 124 Runoff Calculations				

Hydrological Data:-

FSR Hydrology	7:-	
Location	= BURSCOUGH	Grid reference = SD4310
M5-60 (mm)	= 19.2	r = 0.36
Soil runoff	= 0.30	SAAR (mm/yr) = 925
WRAP	= 2	Area = England & Wales
Hydrological	area = 10	Hydrological zone = 8

Soil classification for WRAP type 2

Very permeable soils with shallow ground water; i)

```
Permeable soils over rock or fragipan, commonly on slopes in western Britain
ii)
associated with smaller areas of less permeable wet soils; (fragipan - a natural
subsurface horizon having a higher bulk density than the solum above. Seemingly cemented
when dry but showing moderate to weak brittleness when moist. The layer is low in organic
matter, mottled and slowly or very slowly permeable to water. It is found in profiles of
either cultivated or virgin soils but not in calcareous material).
iii) Moderately permeable soils, some with slowly permeable subsoils.
```

Design data:-

 $Area = 0.001036 \ \mathrm{Km}^2$ - 0.104 Ha -1036 m²

Calculation method: -

Runoff is calculated from:-

 $Q_{BAR(rural)} = 0.00108 \text{ AREA}^{0.89} \text{ . SAAR}^{1.17} \text{ . SOIL}^{2.17}$

where

AREA = Site area in Km² SAAR = Standard Average Annual Rainfall (mm/yr) SOIL = Soil value derived from Winter Rainfall Acceptance Potential $Q_{BAR(rural)} = Runoff (cumecs)$

Q_{BAR(rural)} is then multiplied by a growth factor - GC(T) - for different storm return periods derived from EA publication W5-074/A.

Calculated data: -

For areas less than 50Ha, a modified calculation which multiplies the 50Ha runoff value by the ratio of the site area to 50Ha is used Reducing factor used for these calculations is 0.002

Mean Annual Peak Flow $Q_{BAR(rural)} = 0.26 \ 1/s$

	KRS Enviro	nmental	3 Princes 3 Montgome Powys, SY Tel: 01686	Square, Princes Stre ry 15 6PZ 668957 Mob [.] 0785	et, 57 264 376				Job No. Sheet no.	2	
	www.krsenvironm	ental.com	email: kee	lan@krsenvironment	al.com	Date	05/10/20				
MasterDrain	Project Lordgate Lane	Ву	Checked	Reviewed							
	Title IoH 124 Runoff Calc										
Values for	C Q _{BAR(rural)}										
	Ret. per.	m³/hr	l/s	l/s/ha		Ret. per.	m³/hr	1/s	1/s/	ha	
	lyr	0.800	0.222	2.146		100yr+20%	2.373	0.659	6.363		
	2yr	0.876	0.243	2.348		100yr+30%	2.571	0.714	6.893		
	5yr	1.140	0.317	3.055		100yr+40%	2.769	0.769	7.424		
	10yr	1.300	0.361	3.485		200yr	2.260	0.628	6.060		
	30yr	1.582	0.439	4.242		200yr + 30%	2.938	0.816	7.878		
	50yr	1.742	0.484	4.671		500yr	2.571	0.714	6.893		
	100yr	1.978	0.549	5.303		1000yr	2.863	0.795	7.676		
Growth facto	ors -										
	lyr	2yr	5yr	10yr	30yr	50yr	100yr	200yr	500yr	1000yr	
	0.85	0.93	1.21	1.38	1.68	1.85	2.10	2.40	2.73	3.04	
		The abov	<i>r</i> e is base	d on the Ir	nstitut	e of Hydrolo	gy Report	124			

to which you are referred for further details (see Sect 7).

Note that the 200 and above year growth curves were taken from W5-074.

	KPS Environmontal				3 Princes Square, Princes Street, Montgomery					Job No.			
	NR5		onmer	ital	Powys, SY15 6PZ				Sheet no. 1				
		Limite	ed.		Tel: 01 email: l	686 668957 keelan@krse	Mob: 0785 environmenta	7 264 376 al.com		Date	03/11/20		
MastorDrain	Project ordonate		nemai.com							Ву	Checked	Reviewed	
HY 11.0	Title	Lane								-			
	Surface Wa	ater Runo	off Calcs										
Data:-													
Hydrology	(FSR) :-												
Location =	BURSCOUGH				WRAP		=	2					
Long refer	ence = 343	410			Grid	refere	nce = S	SD4310					
M5-60 (mm)	= 19.2				SAAR	(mm/yr) = 9	25					
r Hyd area	= 0.36				Hvd	70 0 0	. 0= = 8	30					
Hydrograph	= Summ	er			Area	= Engla	and & W	, Iales					
1 9 1						2							
		_											
Site values	used in des	ign:-	100 1	_	01 i		.		400				
Total site Pre-dev ar	area	= 0.2	2100 ha	a	Clima Post-	te chai dev ar	nge iac aa drai	ned =	: 40% : 0 103	16 ha			
Imperm run	off factor	= 100)8)8	a	Perm	runoff	factor	: =	: 20%				
1					-								
Pre-develo	pment												
Area to so	akaways	= 0.0	0000 ha	a	Area	to oth	er SUDS	s =	0.000	0 ha			
Perv. area	to SUDS	= 0.0	0000 ha	a	Pre-d	ev flo	w to di	rain =	0.00	1/s			
Area to so	opment akaways	= 0.0	0000 h	a	Area	to oth	er SUDS	. =	0.000	0 ha			
Perv. area	to SUDS	= 0.0	0000 h	a	Post-	dev fl	ow to d	, lrain =	0.00	1/s			
Calculations	:-												
- · · · -			•	104 1									
Revised Po	st-dev Impe	rm. are	a = 0	.104 ha 104 ha	1								
Equiv. Pos	t-dev Perm.	area	= 0	.021 ha	1								
Total Pre-	dev equiv.	area ha	a = 0	.061 ha	- a								
Total Post	-dev equiv.	area ł	na = 0	.125 ha	a								
100 yr 6 h	our mean in	tensity	y = 10	.48mm/1	nr								
Results:-													
Pre-dev pe	akflow runo	ff (1/s	s) (m³/	s)									
R.P.	15 30	60	120	240	360	480	600	Max	CCF	Fina	1 R.	Ρ.	
1 1	19.2 12.9	8.1	5.2	3.2	2.5	2.0	1.7	19.2	N/A	19.2	1		
30 4	46.5 30.8	19.6	12.1	1.3	5.4	4.3	3.6	46.5	N/A N/A	46.5	100)	
100 6	50.2 40.3	25.7	13.0	9.5	0.9	5.0	4./	00.2	N/A	00.2	100)	
Post-dev p	eakflow run	off (1/	′s)										
R.P.	15 30	60	120	240	360	480	600	Max	CCF	Fina	1 R.	Ρ.	
1 3	39.4 26.6	16.7	10.6	6.7	5.1	4.1	3.5	39.4	40	55.2	1	L	
30 9	95.6 63.3	40.2	24.8	14.9	11.0	8.9	7.5	95.6	40	133.8	30)	
100	123./ 82./	52.8	32.0	19.4	14.3	11.4	9.6	123.7	40	1/3.1	100)	
100 year 6	hour (x Cl	imate (Change	Factor	r) stor	m give	s:-						
	P	re-dev	runof	f volur	ne m³ =	= 38.2m	13						
	P	ost-dev	7 rain	fall vo	olume	= 110	. 0m ³		0 3				
	P 1	ost-dev	7 volu S howe	me m³	(excess	above	SUDS)	= 110.	. Um '				
	L L	re-dev	volum	e to d	rain at	. 0]/a	= 0.0	m ³					
	P	ost-dev	volu	me to d	drain a	t 0 1/	s = 0.	0 m ³					
	P	ost-dev	/ stora	age vol	lume =	= 110.0	m ³						

 $Q_{BAR(rural)} = 0.530$ l/s or 2.525 l/s/ha or 0.001 cumecs - from IoH 124.

Post-dev 5mm imperm volume = 5.2 m^3 Post-dev 5mm perm volume = 5.3 m^3

The rainfall rates are calculated using the location specific values above in accordance with the Wallingford procedure.

	3 Princes Square, Princes Street, Montagery		Job No.			
	Limited	Powys, SY15 6PZ	Sheet no.	2		
	www.krsenvironmental.com	email: keelan@krsenvironmental.com	Date	03/11/20		
MasterDrain	Project Lordsgate Lane		Ву	Checked	Reviewed	
HY 11.0	Title Surface Water Runoff Calcs					
		to ourmon/	-			
Use the data	below for the SUR1 form	ta summary.				
Site areas:-						
Total si	te area =	0.2100 ha ;2100.0 m²	[3A]			
Pre-dev	velopment impermeable area =	0.0235 ha [3B]				
Pre-dev	/elopment permeable area =	0.1865 ha				
Post-de Post-de	evelopment impermeable area =	0.1036 na [3C] 0.1064 ha				
1 001 00		0.1004 Hu				
Peak runoff:-						
Pre-dev	velopment 1 year storm (15min) =	19.2 l/s [6A]				
Pre-dev Post de	velopment 100 year storm (15min) =	60.2 I/S [6C] 30.4 I/c [6R]				
Post-de	evelopment 100 year storm (15min) =	123 67 l/s [6D]				
	·····,	[0-]				
Greenfield ru	noff:-					
Q _{BAR(rura}	= 0.530 1/s or 2.525 1/s/ha	or 0.001 cumecs - from IoH 12	<u>'</u> 4.			
Climate ch	ange factor:-					
Ĺ	CF = 40%					
Volumes:-						
E	Pre-development 100 yr/6hr sto	rm [12A]= 53.5m ³				
E	Post-development 100 yr/6hr sto	rm (add. volume with no SUDS) [12B]] = 110.0	m ³	
E	Post-development 100 yr/6hr stop	rm (add. volume with SUDS)		= 110.0 = 56.4m	m ³	
F	ost development add. predicted	VOILLINE (NO SODS) [120]		- 50.41		
You may al	so require					
-	ata relating to the infiltration	on test calculations (if appl	icable)		
E	vidence to show runoff reduction	on (if applicable)				
I	nformation on calculation method	ods (if applicable see next s	heet)			
Note	tumbens is small burchets with	to to the				
N N	1000 100	0 copy of SUR1				
-	· · · · · · · · · · · · · · · · · · ·					

HY 11.0

KRS Environmental Limited.

www.krsenvironmental.com

Project Lordsgate Lane MasterDrain

> Title Surface Water Runoff Calcs

> > Definitions and methods

Hydrology

The hydrological constants are derived from the Wallingford maps. They are used to calculate location specific rainfall figures.

Site values and factors

Areas of the site should be entered in hectares (10000 m²). If the Pre-development site is a green field, this box is blank.

Climate Change Factor is initially set at 20% - this may be changed as required.

Greenfield runoff is calculated using the method described in IoH 124.

Runoff factors

The impermeable runoff factor is initially set at 98%

The permeable runoff factor is initially set at 20%

Note: the CCF and the runoff factors may be changed by the user to suit the development The areas draining to soakaways and other SUDS are entered in the appropriate box (in hectares)

Calculations

The post-development area is reduced by subtracting the areas that drain to soakaways or other SUDS, to give a revised figure.

All areas are then multiplied by the appropriate runoff factor to give an equivalent area with 100% runoff. These are then summated.

This gives a total pre-development equivalent area, and a similar figure for the post-development area.

The 'Post-dev volume to drain (no SUDS)' gives the total runoff to drain if no SUDS were used.

Results

The pre- and post-development areas are subjected to 1,30 and 100 year return period storms with a duration of 15 to 600 minutes.

The Revised Post-dev Imperm. area is the area (in ha) that is not going to SUDS x impervious runoff factor.

The runoff rates are calculated for the chosen hydrograph (Summer or Winter) as I/s. Figures in red indicate m³/s The peak value is measured, multiplied by the CCF and the total maximum rate is shown.

The pre- and post-development volumes for a 100 year / 6 hour storm are calculated from the area under the hydrograph curve.

Post-dev volume (i.e. excess above SUDS) is that volume produced by the drained area that does not go to SUDS. Qbar(rural) is calculated in accordance with the procedure laid down in IoH 124

KRS Environmental Ltd								Page 1	
3 Princes Square			Lord	.sgate 1	Lane				
Princes Street, Monto	gomery								
Powys, Shrewsbury, S	Y15 6PZ							Micco	
Date $25/06/2021$			Desi	aned h	v Emma Se	aripant			
	o CDCV		Chag	und hu	Veeler (Zon-Joon	⊢	Drainad	10
File Cellular Storage	e.skca		Chec	ked by	Reelan a		L		
Innovyze			Sour	ce Con	trol 2020).1			
			1.0			- · ·	(
Summary of	of Resul	ts i	or Il	00 year	Return	Period	(+40%)	-	
	TT - 7	6 D	1	1					
	наі	I Dra	in Tir	ne : 15/	minutes.				
Storm	Max 1	Max	м	ax	Max	Max	Max	Status	
Event	Level D	epth	Infilt	ration	Control S	Outflow	Volume		
	(m)	(m)	(1	/s)	(1/s)	(l/s)	(m³)		
15	24 050 0	FFO		0 0	2 0	2 0	01 F	0. 77	
15 min Summer	34.052 0 34 215 0	.552 715		0.0	3.U २.N	3.U २.०	31.5 40 9	O K	
60 min Summer	34.352 0	.852		0.0	3.0	3.0 R N	48 6	0 K	
120 min Summer	34 426 0	926		0.0	3.U 3.O	2.U 2.U	-0.0 52 0	0 K	
	34 422 0	022 022		0.0	3.0	3.0	50 E	0 K	
240 min Summer	34.422 0	.922		0.0	3.0	3.0	JZ.0 E1 E	O K	
240 min Summer	34.403 0	. 903		0.0	3.0	3.0	51.5	U K	
360 min Summer	34.357 0	.857		0.0	3.0	3.0	48.8	ΟK	
480 min Summer	34.309 0	.809		0.0	3.0	3.0	46.1	ΟK	
600 min Summer	34.262 0	.762		0.0	3.0	3.0	43.4	0 K	
720 min Summer	34.214 0	.714		0.0	3.0	3.0	40.7	O K	
960 min Summer	34.107 0	.607		0.0	3.0	3.0	34.6	O K	
1440 min Summer	33.912 0	.412		0.0	3.0	3.0	23.5	O K	
2160 min Summer	33.738 0	.238		0.0	3.0	3.0	13.6	ΟK	
2880 min Summer	33.652 0	.152		0.0	2.8	2.8	8.7	ОК	
4320 min Summer	33.594 0	.094		0.0	2.3	2.3	5.4	ОК	
5760 min Summer	33.575 0	.075		0.0	1.8	1.8	4.3	ОК	
7200 min Summer	33.565 0	065		0.0	1.5	1.5	3.7	ОК	
8640 min Summer	33.559 0	.059		0.0	1.3	1.3	3.4	0 K	
10080 min Summer	33 555 0	055		0.0	1 2	1 2	3.1	O K	
15 min Winter	34 052 0	552		0.0	3 0	3 0	31 5	0 K	
	51.002 0	.002		0.0	0.0	5.0	01.0	0 10	
	Storm	F	Rain	Flooded	Discharge	a Time-Pe	ak		
	Event	(m	m/hr)	Volume	Volume	(mins)		
				(m³)	(m³)				
1 6	min Cum	or 10	0 520	0 0	~~ ^~ /		1.8		
15	min Cum	er 12	J.JJU 6 1.C1	0.0	33.6	,	33 TO		
30	min Summe	er Q	1 222	0.0	44.)	33 60		
60	min Summe	C 13	4.00J	0.0	50.8		02		
120	min Summe	er 3	3.500	0.0	69.6	_ (.20		
180	min Summe	er 2	4.804	0.0	11.4	e 1	.56		
240	min Summe	er 1	9.910	0.0	82.8	s 1	.88		
360	min Summe	er 1	4.554	0.0	90.8	3 2	254		
480	min Summe	er 1	1.651	0.0	96.9) 3	324		
600	min Summe	er	9.797	0.0	101.8	3	392		
720	min Summe	er	8.499	0.0	106.0) 4	62		
960	min Summe	er	6.786	0.0	112.9) 5	598		
1440	min Summe	er	4.933	0.0	123.1	. 8	34		
2160	min Summe	er	3.579	0.0	134.0) 11	68		
2880	min Summe	er .	2.847	0.0	142.1	. 15	500		
4320	min Summe	er	2.059	0.0	154.1	. 22	204		
5760	min Summe	er	1.634	0.0	163.1	. 29	936		
7200	min Summe	er	1.365	0.0	170.3	36	572		
8640	min Summe	er	1.178	0.0	176.4	43	868		
10080	min Summe	er	1.040	0.0	181.7	51	.12		
15	min Winte	er 12	9.530	0.0	33.6	5	18		

©1982-2020 Innovyze

KRS Environmental Ltd								
3 Princes Square		Lord	lsgate	Lane				
Princes Street, M	lontgomery							
Powys, Shrewsbury	, SY15 6PZ						Micro	
Date 25/06/2021		Desi	gned b	y Emma Se	erjeant			
File cellular sto	rage.SRCX	Chec	cked by	Keelan S	Serjeant		Didilio	JUC
Innovyze		Sour	ce Con	trol 2020).1			
Summa	ry of Result	s for 10)0 year	Return 1	Period	(+40%)		
Storm	Max Ma	ax M	lax tration	Max Control 5	Max	Max	Status	
Evenc	(m) (r	n) (1	/s)	(1/s)	(1/s)	(m ³)		
	(/ (-			(_/ -/	(_/ _/	()		
30 min Wir	nter 34.216 0.7	716	0.0	3.0	3.0	40.8	0 K	
60 min Wir	nter 34.354 0.8	354	0.0	3.0	3.0	48.7	OK	
120 MIN WI 180 min Wir	11er 34.433 0.3	933	0.0	3.0	3.0	52 9	OK	
2.40 min Wir	nter 34.400 0 0	900	0.0	3.0	3.0	51.3	O K	
360 min Wir	nter 34.336 0.8	336	0.0	3.0	3.0	47.7	0 K	
480 min Wir	nter 34.265 0.	765	0.0	3.0	3.0	43.6	ОК	
600 min Wir	nter 34.189 0.0	589	0.0	3.0	3.0	39.3	O K	
720 min Wir	nter 34.099 0.5	599	0.0	3.0	3.0	34.2	O K	
960 min Wir	nter 33.934 0.4	434	0.0	3.0	3.0	24.7	O K	
1440 min Wir	nter 33.726 0.2	226	0.0	3.0	3.0	12.9	O K	
2160 min Wir	nter 33.607 0.1	107	0.0	2.5	2.5	6.1	ОК	
2880 min Wir	nter 33.584 0.0)84	0.0	2.1	2.1	4.8	OK	
4320 min Wir 5760 min Wir	nter 33.564 U.(J64)55	0.0	1.5	1.5	3.6	OK	
7200 min Wir	nter 33 549 0 (149	0.0	1 0	1.2	2.8	O K O K	
8640 min Wir	nter 33.545 0.0	045	0.0	0.9	0.9	2.6	ОК	
10080 min Wir	nter 33.542 0.0	042	0.0	0.8	0.8	2.4	ОК	
	Storm	Pain	Flooded	Discharge	Time-De	ak		
	Event	(mm/hr)	Volume	Volume	(mins)	aĸ		
			(m³)	(m³)				
	30 min Winter	86.161	0.0	44.7	1	32		
	60 min Winter	54.663	0.0	56.8	3	60		
	120 min Winter	33.500	0.0	69.6	5 1	16		
	180 min Winter	24.804	0.0) 77.4	1	70		
	240 min Winter	19.910	0.0	82.8	3 1	92		
	360 min Winter	14.554	0.0	90.8	3 2	70		
	480 min Winter	11.651	0.0	96.9) 3	48		
	600 min Winter	9.797	0.0	101.8	3 4	24		
	960 min Winter	- 8.499 - 6.786	0.0) 112 C	, 4) 6	94 10		
	1440 min Winter	- 4.933	0.0	, 123.3) 123.1	, ט א	±0 2.6		
	2160 min Winter	<u>-</u> <u>-</u> .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0) 134.0	. 0.) 11	28		
	2880 min Winter	2.847	0.0	142.1	. 14	72		
	4320 min Winter	2.059	0.0	154.1	. 21	88		
	5760 min Winter	1.634	0.0	163.1	. 29	36		
	7200 min Winter	1.365	0.0	170.3	3 36	56		
	8640 min Winter	1.178	0.0	176.4	42	96		
1	UUSU min Winter	£ 1.040	0.0	181.7	51	12		
	(0	01982-20	20 Inn	ovvze				

KRS Environmental Ltd		Page 3
3 Princes Square	Lordsgate Lane	
Princes Street, Montgomery		
Powys, Shrewsbury, SY15 6PZ		Micro
Date 25/06/2021	Designed by Emma Serjeant	Dcainago
File cellular storage.SRCX	Checked by Keelan Serjeant	Diamage
Innovyze	Source Control 2020.1	
Ra	infall Details	

	Rainfall Model		FSR	Winter Storms Yes
Return	Period (years)		100	Cv (Summer) 1.000
	Region	England	and Wales	Cv (Winter) 1.000
	M5-60 (mm)		19.300	Shortest Storm (mins) 15
	Ratio R		0.372	Longest Storm (mins) 10080
	Summer Storms		Yes	Climate Change % +40

Time Area Diagram

Total Area (ha) 0.104

Time	(mins)	Area
From:	To:	(ha)

0 4 0.104

©1982-2020 Innovyze

KRS Environmental Ltd				Page 4				
3 Princes Square	Lordsga	te Lane						
Princes Street, Montgomery								
Powys, Shrewsbury, SY15 6PZ				Micco				
Date 25/06/2021	Designe	d by Emma	. Serieant					
File cellular storage SPCY	Drainage							
File Cellular Storage.SRCA		T DY KEELS	an Serjean					
Innovyze	Source	Control 2	2020.1					
	Model De	tails						
Storage is Unline Cover Level (m) 35.000								
Cellu	lar Storac	ge Struct	ure					
In Infiltration Coefficie Infiltration Coefficie	vert Level nt Base (m/h nt Side (m/h	(m) 33.500 nr) 0.00000 nr) 0.00000) Safety Fact) Porosi)	cor 2.0 ity 0.95				
Depth (m) Area (m²) Inf.	Area (m²) Do	epth (m) Ai	rea (m²) Inf	. Area (m²)				
0.000 60.0	60.0	1.010	0.0	92.0				
1.000 60.0	92.0							
Induce Duce			Control					
нуаго-вгак	e® Optimum	I OULIIOW	Control					
Ur	it Referenc	e MD-SHE-0	082-3000-100	0-3000				
Des	ign Head (m	1)		1.000				
Desig	n Flow (l/s	;)		3.0				
	Flush-Flo	TM	Calc	ulated				
	Objectiv	re Minimis	e upstream s	torage				
	Applicatio	n	S	urface				
Su	mp Availabl	e		Yes				
Ι	iameter (mm	1)		82				
Inve	ert Level (m	1)		33.500				
Minimum Outlet Pipe I	iameter (mm	1)		100				
Suggested Manhole I	iameter (mm	ı)		1200				
Control	Deinte	Head (m)	E_{1}					
Control	Points	Head (m)	FIOW (I/S)					
Design Point	(Calculated)	1.000	3.0					
	Flush-Flo ^r	™ 0.297	3.0					
	Kick-Flo@	B 0.623	2.4					
Mean Flow ove	r Head Range	e –	2.6					
The budgelesies coloulations have			ad/Diachause	walationahin fan th.				
The hydrological calculations have	e been based	I ON THE HE	ad/Discharge	relationship for the				
Hydro-Brake® Optimum as specified.	Should an	other type	of control	device other than a				
Hydro-Brake Optimum® be utilised t	then these s	storage rou	ting calcula	tions will be				
invalidated								
Depth (m) Flow (l/s) Depth (m) F	low (l/s) D	epth (m) Fl	low (l/s) De	pth (m) Flow (l/s)				
0.100 2.4 1.200	3.3	3.000	5.0	7.4				
0.200 2.9 1.400	3.5	3.500	5.4	7.500 7.7				
0.300 3.0 1.600	3.7	4.000	5.7	8.000 7.9				
0.400 2.9 1.800	3.9	4.500	6.0	8.500 8.2				
0.500 2.8 2.000	4.1	5.000	6.3	9.000 8.4				
0.600 2.5 2.200	4.3	5.500	6.6	9.500 8.6				
0.800 2.7 2.400	4.5	6.000	6.9					
1.000 3.0 2.600	4.7	6.500	7.2					
<u>ه</u> ۱	982-2020	Tnnouvero						
(C)	- 202-2020	тшолдзе						