Job Title: Fodder Barn at Stone.		Date: 12-4-20	Sheet No.1			
Loadings:	Dead	Super	Total			
Floored truss:						
tiles and battens	0.6 kN/m2					
rafters	0.1 kN/m2	0.75kN/m ²				
services	0.1 kN/m2					
floor joists	0.15kN/m2	1.5 kN/m2				
board and finish	0.3 kN/m2					
plasterboard	0.3 kN/m2					
Total	1.55kN/m2	2.25kN/m2	2.1 kN/m2			
External wall:						
Int. skin 215mm block	3.87kN/m2					
Ext. skin 100mm block	1.8 kN/m2					
render	0.3 kN/m2					
plaster	0.3 kN/m2					
Total	6.27kN/m2					
Steel beam over Grd. Floor openings: Span 4.5m						

Use 203 x 133 x 30kg UB as calculation attached.

Padstone design:

Try Travis Perkins Supreme 50N/mm2 padstone 380mm x 215mm wide.

Design load = 33.44kN; Shear perimeter = 400mm; vc = 0.8N/mm2

Depth of padstone required = $33440/400 \times 0.8 = 105 \text{mm}$

Use 380mm long x 215mm wide x 140mm thick mass concrete Travis Perkins Supreme padstone each end of beam. Note: Beams to have minimum of 200mm bearing on to padstone at each end.

Load from floored truss = $1.55 \times 2.5 = 3.88 \text{kN/m}$ Dead = $2.25 \times 2.5 = 5.63 \text{kN/m}$ Super

Check wall loading:

Check 215mm internal skin of cavity block pier x 900mm wide x 2.3m high.

eff.thickness = 215mm; Slenderness ratio = 11; B = 0.97; Ym = 3.5

Walls/piers of less than 0.2m2 to multiply allowable compress stress by (0.7 + 1.5A) = 0.99

Loading: Beams = 44.14kN; Factored = 66.88kN

Int. skin of pier = $3.87 \times 0.9 \times 2.3 = 8.01 \text{kN} \times 1.4 = 11.22 \text{kN}$

Total = 52.15kN = 78.10kN

Ext. skin of pier = $1.8 \times 0.9 \times 2.3 = 3.73 \text{kN} \times 1.4 = 5.22 \text{kN}$

Total = 55.88kN = 83.32kN

Actual compress. stress on int. skin of wall = $78100 \times 3.5/900 \times 215 = 1.4 \text{N/mm2}$

Try 7N/mm2 block in type 3 mortar fc = 6.4N/mm2

Allowable comp. stress = $6.4 \times 0.97 \times 0.99 = 6.1 \text{N/mm2} > 1.4 \text{N/mm2}$

Cavity wall to be constructed with 215mm internal skin of 7N/mm2 block in type 3 mortar.

Check footing under 900mm pier i.e. 600mm wide x 225mm deep acting over 1.15m length. Ground pressure = $55.88/0.6 \times 1.15 = 81$ kN/m2

Soil at bearing level to be proven suitable.

Site: Fodder Barn, Stone.

Job:

Job number:

ProSteel 7.05c 570123

Made by BLR Page 1 File copy

Span: 4.5 m.

33,44

33.44

Fodder Barn.ps5 Printed 13 Apr 2020 12:09

Factored reactions:

Beam: Beams over Grd. Floor openings

Ream: Reams over Gra. Floor openings					107 107	**************************************
Load name U D o.w. U D Floored roof truss dead load U L Floored roof truss super load	Loading w1 0.3 3.88 5.63	Start x1 0 0 0 Unfactore	Loading w2	L L	R1comp 0.68 8.73 12.67 22.07 9.41 12.67	R2comp 0.68 8.73 12.67 22.07 9.41 12.67

Total load: 44.15/66.87 kN Unfactored/Factored

Load types: U: UDL D: Dead; L: Live (positions in m. from R1)

Maximum B.M. (factored) = 37.61 kNm at 2.25 m. from R1

Maximum S.F. (factored) = 33.43 kN at 0.00 m. from R1

Live load deflection = 30.1 x 108/El at 2.25 m. from R1 (E in N/mm², I in cm⁴)

Total deflection = 52.4 x 108/El at 2.25 m. from R1

Beam calculation to BS5950-1:2000 using S275 steel

SECTION SIZE: 203 x 133 x 30 UB S275 (compact)

D=206.8 mm B=133.9 mm t=6.4 mm T=9.6 mm I_x =2,900 cm⁴ r_y =3.17 cm S_x =314 cm³ x=21.5

Shear

Shear capacity = $0.6 p_y$ t.D = 0.6 x 275 x 6.4 x 206.8/1000 = 218 kN (>=33.4) OK

Bending

Maximum moment = 37.61 kNm at 2.25 m. from R1

Moment capacity, $M_c = p_v.S_x = 275 \times 314/1000 = 86.35 \text{ kNm OK}$

Lateral-torsional buckling

Beam is laterally restrained at supports only

Restraint condition at R1 and R2: Compression flange laterally restrained. Nominal torsional restraint. Both flanges free to rotate on plan (1.0L) [BS5950 Table 13]

Effective length = 1.0L

Bending strength, $p_b = 136.4 \text{ N/mm}^2$

Maximum moment within segment, $M_x = 37.61 \text{ kNm}$

Equivalent uniform moment factor, $m_{LT} = 0.925$ ($M_2 = 28.2$, $M_3 = 37.6$, $M_4 = 28.2$)

Equivalent uniform moment = 0.925 x 37.61 = 34.79 kNm

Buckling resistance moment, $M_b = p_b.S_x = 136.4 \times 314/1000 = 42.83 \text{ kNm OK}$

Site: Fodder Barn, Stone.

Job:

Job number:

ProSteel 7.05c 570123

Made by BLR Page 2 File copy

Fodder Barn.ps5 Printed 13 Apr 2020 12:09

Web capacity

Check unstiffened web capacity with load of 33.44 kN

C1 = 60.5 kN; C2 = 1.76 kN/mm; C4 = 261; K = $min\{0.5+(a_e/1.4d),1.0\}$; $p_{w} = 275N/mm^2$ (for derivation of C factors see Steelwork Design Guide to BS5950-1:2000 6th ed.)

Minimum required stiff bearing length, $b_1 = 0$ mm: $a_e = 0$ mm; K = 0.500

Bearing capacity, $P_w = C1 + b_1.C2 = 60.5 \text{ kN} <<<$

Buckling capacity, $P_x = K/(C4.P_w) = 0.500/(261 \times 60.5) = 62.9 \text{ kN}$

Deflection

LL deflection = $30.06 \times 1e8/205,000 \times 2,900 = 5.1 \text{ mm}$ (L/890) OK TL deflection = $52.37 \times 1e8/205,000 \times 2,900 = 8.8 \text{ mm}$ (L/511)