Condition 11.0

Contents:

- 1. Summary
- 2. SAP Calculation Plot 1
- 3. SAP Calculation Plot 2
- 4. MVHR Details Plot 1
- 5. MVHR Details Plot 2

1. Summary

Condition 11 states:

Notwithstanding any details shown on the approved plans, full details of the PV arrays and ground source heat exchanger, shall be submitted to and approved in writing by the Local Planning Authority. The development shall be constructed in accordance with the details so approved and shall be so retained thereafter.

The detail design process evaluated the performance viability of ground source heating and the installation of PV arrays.

It was established:

Ground source heating was not viable to either Plot 1 or 2.

The installation of PV arrays is only viable to Plot 1. The finished floor level of Plot 2, as required under the planning permission) means the roof of this property is shaded by adjacent properties and trees, preventing adequate daylight/sunlight hitting the south facing roof plane.

With the above in mind, the detail design process focussed on ensuring each of the properties achieves a high degree of energy efficiency. SAP calculations were undertaken at an early stage to ensure the building envelope design and heating systems deliver this outcome. Calculations for each plot follow.

The energy saving approach adopted for each property is:

Design and construction of high thermal performance ground floor, wall and roof. Specification of high-performance double-glazed windows

Installation of high efficiency gas boiler to run underfloor heating and domestic hot water supply.

Installation of 4kw solar arrays to Plot 1 to supplement heat/power supply from mains services Plot 1

Installation of Mechanical ventilation and Heat Recovery system (MVHR).

The SAP calculations conclude an 'A' rated performance will be delivered as a consequence of following the above strategy and each property meets/exceeds the standard required by The Building regulations.

2. SAP Calculation Plot 1

EXPERT ENERGY CONSULTANCY

Unit 6 Sheaf Valley House 134 Archer Road, Millhouses Sheffield, S8 0JZ 0789 421 5012/0114 285 4270 carl@expertenergy.org.uk

Project Information

Building type Detached house

Reference

Date 17 July 2020

Client John Fawthrop Project Syke Lane

Leeds LS14

SAP 2012 worksheet for New dwelling as designed - calculation of energy ratings

1. Overall dwelling dimensions

	Area	Av. Storey	Volume	
	(m²)	height (m)	(m³)	
Groundfloor (1)	124.15	2.46	305.41	(3a)
Firstfloor	117.57	3.59	422.08	(3b)
Total floor area	241.72			(4)
Dwelling volume (m³)			727.49	(5)

2. Ventilation rate

											m³ per h	our
							main + s	seondar	y + othe	er		
NI							heating		40		0.00	(0-)
	er of chim	,					0 + 0 + 0		x 40		0.00	(6a)
	er of oper						0 + 0 + 0		x 20		0.00	(6b)
		mittent fa					5	-	x 10		50.00	(7a)
		sive vents					0		x 10		0.00	(7b)
Numbe	er of fluel	ess gas f	ires				0	2	x 40		0.00	(7c)
											Air chan	ges per hour
Infiltrat	tion due t	o chimne	eys, fans	and flue	S						0.07	(8)
Pressu	ıre test, ı	esult q50	0						5.00			(17)
Airperi	meability	,									0.32	(18)
		s on whic	ch shelte	red							2.00	(19)
Shelte	rfactor										0.85	(20)
		ncorpora	ting shel	ter factor							0.27	(21)
		modified									0.2.	(= ·)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	
\^ <i>(</i> : -											52.50	(22)
Wind F								_				
1.27	1.25	1.23	1.10	1.07	0.95	0.95	0.93	1.00	1.07	1.13	1.18	
											13.13	(22a)
Adjuste	ed infiltra	ition rate	(allowing	g for shel	ter and w	vind spee	ed)					, ,
0.35	0.34	0.33	0.30	0.29	0.26	0.26	0.25	0.27	0.29	0.30	0.32	
	R										3.56	(22b)
		tural vent ange rate		ntermitte	nt extrac	t fans						
0.56	0.56	0.56	0.54	0.54	0.53	0.53	0.53	0.54	0.54	0.55	0.55	(25)
0.00			1 0.0 /								3.00	` '

3. Heat	losses	and hea	t loss pa	aramete	r								
Elemen	t	Gross		enings	Netarea		value	AxU		appa-valu			
Window	ı - Double	area, m² alazed			A, m ²		′m²K I 5 (1.20)	W/K 13.3		J/m²K	kJ/K		(27)
	lled (East	-			11.07	U 1.1	13 (1.20)	10.0	0				(21)
	r Spec								_				
	/ - Double led (Nortl	-			22.40	0 1.1	15 (1.20)	25.6	5				(27)
-	r Spec	11)											
	/ - Double	e-glazed,			27.87	0 1.1	15 (1.20)	31.9	1				(27)
-	lled (Wes	st)											
	r Spec /-Double	hazed			3.60	0 11	15 (1.20)	4.1	2				(27)
	led (Sout	-			3.00	0 1	13 (1.20)	7.1	_				(21)
As Pe	r Spec	•											
	/-Double				14.63	0 1.1	15 (1.20)	16.7	5				(27)
	led (Nortl r Spec	n)											
	roofs ins	sulated b	etween jo	oists	137.39	9	0.17	23.3	6	9.00	1236.5	51	(30)
	ed Roof				000.7/	_	0.40	07.4	0	00.00	4.4005	00	(00)
Walls New V	Vall				233.75)	0.16	37.4	.0	60.00	14025	.00	(29)
Walls					6.07	7	0.17	1.0	3	9.00	54.63		(29)
Dorme					4044	_	0.47	04.4		440.00	40050	5 0	(00)
Ground	floors Id Floor				124.15)	0.17	21.1	1	110.00	13656	.50	(28)
Croun	1001												
Flat roof					10.88	3	0.18	1.9	6	9.00	97.92		(30)
Flatro	of												
Total ar	ea of ext	ernal ele	ments Si	gma A, r	n²						592.4	11	(31)
	neat loss			,							176.6		(33)
	l mass pa		, kJ/m²K	(user-sp	ecified T	MP)					100.0 88.8		(35)
	f thermal bric heat										265.5		(36) (37)
	ion heat		ulated m	onthly							200.0	,	(01)
134.36	133.80	133.26	130.70	130.22	127.99	127.99	127.57	128.85	130.22	131.19	132.20		(38)
Heat tra	nsfer co	efficient,	W/K		,	,		,			,		
399.87	399.31	398.77	396.21	395.73	393.50	393.50	393.08	394.36	395.73	396.70	397.71		
			D) 1444 0	1.6							396.2	20	(39)
	ss param	, ,	, .		4.00	4.00	4.00	4.00	4.04	1.01	4.05		
1.65 HLP (av	1.65	1.65	1.64	1.64	1.63	1.63	1.63	1.63	1.64	1.64	1.65 1.6	3/1	(40)
	r of days	in month	(Table 1	a)							1.0	J *+	(40)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
31	28	31	30	31	30	31	31	30	31	30	31		

	r heatin		y requir	ements							kWh/year 3.06	(4
		•	r usage ir	n litres pe	er day Vd	,average)				106.78	(4
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Hot wate	er usage	in litres	per day f	or each r	nonth							
117.46	113.19	108.92	104.65	100.38	96.11	96.11	100.38	104.65	108.92	113.19	117.46	(4
Energy	content o	of hot wat	ter used									
174.19	152.35	157.21	137.06	131.51	113.49	105.16	120.67	122.12	142.31	155.35	168.70	
Energy of Distribut	content (a tion loss	annual)									1680.13	(4
26.13	22.85	23.58	20.56	19.73	17.02	15.77	18.10	18.32	21.35	23.30	25.30	(4
Hot wate Volume Tempera Energy I	factor ature fact	er loss fa or hot wate	e (iltres) ictor (kW er cylinde	• •	day)						210.00 0.0103 0.8298 0.5400 0.97	(! (! (! (!
30.01	27.11	30.01	29.05	30.01	29.05	30.01	30.01	29.05	30.01	29.05	30.01	(
Net stor	age loss	Я	Л	н	Я	и	11.	и	И			
30.01	27.11	30.01	29.05	30.01	29.05	30.01	30.01	29.05	30.01	29.05	30.01	(!
Primary	loss		,					,	31	J		
23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(!
Total he	at requir	ed for wa	iter heati	ng calcul	ated for	each mo	nth	,				
227.47	200.47	210.49	188.62	184.79	165.04	158.44	173.95	173.67	195.59	206.90	221.97	(6
Output f	rom wate	er heater	for each	month, l	kWh/mor	nth						
227.47	200.47	210.49	188.62	184.79	165.04	158.44	173.95	173.67	195.59	206.90	221.97	((
Heat gai	ins from	water he	ating, kW	/h/month	1						2307.40	(6
100.54	89.15	94.89	86.82	86.35	78.98	77.59	82.74	81.85	89.94	92.90	98.71	(

_		
_	Interna	I Maine
IJ.	IIIILEI II I	ı uanıs

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Metabol	ic gains,	Watts	,		,	,		-,-	,			
183.37	183.37	183.37	183.37	183.37	183.37	183.37	183.37	183.37	183.37	183.37	183.37	(66)
Lighting	gains											
91.19	80.99	65.87	49.87	37.28	31.47	34.00	44.20	59.33	75.33	87.92	93.72	(67)
Appliand	ces gains	6										
610.67	617.01	601.04	567.04	524.13	483.80	456.85	450.52	466.49	500.48	543.39	583.73	(68)
Cooking	gains											
56.39	56.39	56.39	56.39	56.39	56.39	56.39	56.39	56.39	56.39	56.39	56.39	(69)
Pumps a	and fans	gains										
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(70)
Losses	e.g. evap	oration (r	negative	values)	7	7			,			
-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	(71)
Water he	eating ga	ains	Л		,	,	,		,	,	,	
135.13	132.67	127.55	120.58	116.06	109.69	104.28	111.22	113.68	120.89	129.03	132.68	(72)
Totalinte	ernal gai	ns				,	,		,	.1		
954.51	948.18	911.97	855.01	794.98	742.48	712.66	723.45	757.01	814.21	877.85	927.64	(73)
	, and the second				,	,	,		,			
	_				_							
6. Solar	r gains (calculat	ion for J	lanuary		. 0 Fl		. 0 ГГ	C	م مائم م	Caina	
Window	- Double	hazed	argon fil	led (Fast		a & Flux 37019.64) & FF).76		hading .77	Gains 134.1289	1
As Per		, glazca,	argorriii	ica (Lasi	.) 11.0	77 0 13.0-		7.70	O.	.,,	104.1200	,
	- Double	-glazed,	argon fill	ed (Nortl	h) 22.4	100 10.63	3 0).76	0	.77	139.3876	3
	- Double	e-glazed,	argon fil	led (Wes	st) 27.8	370 19.64	1 C).76	0	.77	320.3234	ļ
	- Double	-glazed,	argon fill	ed (Sout	h) 3.60	0046.75	C).76	0	.77	98.4935	;
Window	- Double	-glazed,	argon fill	ed (Nortl	h) 14.6	3010.63	3 0).76	0	.77	91.0375	;
As Per	r Spec Iar gains	lanuar	,								783.37	' (83-1)
	•	, January	,								100.01	(00-1)
Solar ga			0500 :	14	10.17.5	1000 :	000= =	1004= :	1750 65	00= 00	050.00	(00)
783.37		2417.8	3569.4	4477.9	4645.0	4396.1	3695.5	2817.1	1753.05	967.66	650.92	(83)
Total gai		T	1	1	T	V		1	T	T		(0.4)
1737.88	2438.9	3329.8	4424.4	5272.9	5387.4	5108.8	4419.0	3574.1	2567.3	1845.51	1578.56	(84)
Lighting	g calcul	ations										
ا ما ام	David	ا ا	ores e fu	lod/C	Area		g	J V 80		F x Shac		•
Window As Per		e-giazed,	argon fil	iea (East	0.9	x 11.67	C	0.80	0	.70 x 0.8	3 4.88	j
Window	- Double	-glazed,	argon fill	ed (Nortl	h) 0.9	x 22.40	C	0.80	0	.70 x 0.8	3 9.37	•
As Per	•	-dazod	argon fil		·t) 0.0	x 27.87	0	0.80	0	.70 x 0.8	3 11.66	.
As Per		-giazed,	, argorrill	ieu (wes	0.9	X 21.01	Ü	.00	U	. <i>i</i> U X U.8	J 11.00)
	- Double	-glazed,	argon fill	ed (Sout	h) 0.9	x 3.60	C	0.80	0	.70 x 0.8	3 1.51	
, .5 . 01	. 5,555											

JPA Designer Version 6.03x , SAP Version 9.92

Page 5 of 31

Licensed to The SAP Service

 $[\]hbox{C:$\Users\cstay$\oneDrive\EXPERT\ ENERGY\ SAPS\John\ Fawthrop\John\ Fawthrop\ Fawthrop\John\ Fawthrop\John\ Fawthrop\John\ Fawthrop\John\$

Lighting calculations

Area g FF x Shading Window - Double-glazed, argon filled (North) 0.9 x 14.63 0.80 0.70 x 0.83 6.12

As Per Spec

GL = 33.54 / 241.72 = 0.139

C1 = 0.500C2 = 0.960

EI = 644

7. Mean internal temperature

Temperature during heating periods in the living area, Th1 (°C) Heating system responsiveness										21.00 0.75	()	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau												
16.79	16.82	16.84	16.95	16.97	17.06	17.06	17.08	17.03	16.97	16.93	16.88	
alpha												
2.12	2.12	2.12	2.13	2.13	2.14	2.14	2.14	2.14	2.13	2.13	2.13	
Utilisatio	on factor	for gains	for living	area	,							
0.96	0.92	0.84	0.71	0.55	0.41	0.32	0.37	0.58	0.82	0.93	0.96	(86)
Mean in	ternal ter	mperatur	e in living	area T1								
18.51	18.89	19.46	20.09	20.51	20.74	20.82	20.80	20.58	19.92	19.08	18.43	(87)
Temper	ature du	ring heati	ing perio	ds in rest	of dwelli	ng Th2						
19.57	19.58	19.58	19.58	19.59	19.59	19.59	19.59	19.59	19.59	19.58	19.58	(88)
Utilisatio	on factor	for gains	for rest	of dwellir	ng							
0.95	0.90	0.81	0.67	0.49	0.34	0.22	0.27	0.50	0.78	0.92	0.96	(89)
Mean in	ternal te	mperatur	e in the r	est of dw	elling T2	2						
16.32	16.87	17.67	18.51	19.05	19.31	19.38	19.37	19.15	18.33	17.15	16.22	(90)
Livinga	rea fracti	on (49.88	3/241.72	2)	,	,	<u>, </u>		,		0.2	1 (91)
Mean in	ternal ter	mperatur	e (for the	whole d	welling)							
16.77	17.29	18.04	18.84	19.35	19.60	19.68	19.66	19.45	18.66	17.55	16.68	(92)
Apply a	djustmer	t to the m	nean inte	rnal tem	oerature	, where a	appropria	ite				
16.77	17.29	18.04	18.84	19.35	19.60	19.68	19.66	19.45	18.66	17.55	16.68	(93)

8. Space heating requirement

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisatio	on factor	for gains		,			,	,				
0.93	0.87	0.78	0.64	0.48	0.34	0.23	0.28	0.49	0.75	0.89	0.94	
Useful g	ains	,		,			,	,				
1611.98	2128.9	2601.4	2831.4	2547.5	1816.50	1168.69	1216.81	1761.82	1927.93	1646.77	1481.51	
Monthly	average	external	tempera	ture	,		,	,				
4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20	
Heat los	s rate for	mean in	ternal ter	mperatui	e				•	,		
4987.9	4947.5	4601.9	3936.5	3026.9	1968.06	1211.84	1282.78	2108.1	3190.3	4145.1	4962.0	
Fraction	of month	n for heat	ing									
1.00	1.00	1.00	1.00	1.00	-	-	-	-	1.00	1.00	1.00	
Space h	eating re	quireme	nt for eac	ch month	, kWh/m	onth						
2511.6	1894.08	1488.38	795.66	356.62	-	-	-	-	939.20	1798.78	2589.5	
	ace heat					r) (Octol	ber to Ma	iy)			12373.83	
Space h	eating re	quireme	nt per m²	(kWh/m	²/year)						51.19	

8c. Space cooling requirement - not applicable

9a.	Energy	requirements

9a. Ene	rgy req	uiremen	ts								k\Mb/voor	
Fraction	of heat	from sec	ondary s	ystem					0.1000		kWh/year	(201)
	•	e heat fro		•	s)				0.9000			(202)
		in heating condary h							0.00% 5.00%			(206) (208)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	(200)
		equireme		iviay	Juli	Jui	Aug	Зер	OCI	INOV	Dec	
2511.6		8 1488.38	· ·	356.62				1-	939.20	1709 79	2589.5	(98)
	JL	onthly en	JI		heating	evetem 1	1)		939.20	1730.70	2309.3	(30)
0.00	0.00	0.00	0.00	0.00		_	' <i>)</i> _	1-	0.00	0.00	0.00	(210)
		uel (main			J	<u> </u>	<u> </u>	J	0.00	0.00	0.00	(210)
2511.6		8 1488.38			·	l -	_	1-	939.20	1798 78	2589.5	(211)
	I	onthly en	J		l	svstem 2	<u> </u>	J.	000.20	1730.70	2000.0	(= : :)
0.00	0.00	0.00	0.00	0.00	_	_	- <i>,</i> _	1_	0.00	0.00	0.00	(212)
	1	uel (main			 2)	J.		J	0.00	0.00	0.00	(- · -)
0.00	0.00	0.00	0.00	0.00	-, -]_	_]_	0.00	0.00	0.00	(213)
	l	onthly en			ndarv he	ıatina svs	stem)	J	0.00	0.00	0.00	(= : 0)
0.00	0.00	0.00	0.00	0.00	-	- J	-	_	0.00	0.00	0.00	(214)
		uel (secor		0.00	J	JL		JL	10.00	0.00	0.00	(= : -)
386.41	291.40	_,		54.87	1-	1-	T -	T-	144.49	276.74	398.38	(215)
Waterh					J	JL	J	JL	1		000.00	(- /
		quiremer	nt									
227.47	200.47	210.49	188.62	184.79	165.04	158.44	173.95	173.67	195.59	206.90	221.97	(64)
Efficiend	cy of wat	er heater	•	,	л	,	,	,	,	,	79.30	(216)
88.90	88.74	88.38	87.54	85.77	79.30	79.30	79.30	79.30	87.77	88.64	88.96	(217)
Water h	eating fu	iel	JI.	,	Л	,	Л.		,	Л		
255.86	225.91	238.16	215.47	215.44	208.13	199.79	219.36	219.01	222.83	233.41	249.53	(219)
Annual t	otale		J	,	Л	,	Л.	,	,	Л	kWh/year	
		uel used,	main sy	stem 1							12373.83	(211)
•	-	uel (secor	-								1903.67	(215)
Water h	-										2702.90	(219)
		mps, fan	s and ele	ectric kee	ep-hot						20.00	(220-)
	heating	pump n-assiste	d flue								30.00 45.00	(230c) (230e)
		for the ab		n/vear							75.00	(231)
	-	hting (100		-							644.18	(232)
		eneration										
		000 x 106									3417.826	
		0.0 x 0.0 0.0 x 0.0									0.000 0.000	
1 43 0	.00 x 0.0	JUU X U.U	00 X 0.50	30							3417.826	(233)
Append	ix Q -											(/
		or genera	ated ():								0.000	(236a)
Energ	y used ():									0.000	(237a)
Total de	livered e	energy for	r all uses								14281.74	(238)

10a. Fuel costs using Table 12 prices

process and grants in process	kWh/year	Fuel price p/kWh	£/year	
Space heating - main system 1	12373.826	3.480	430.61	(240)
Space heating - main system 2	0.000	0.000	0.00	(241)
Space heating - secondary system	1903.666	4.230	80.53	(242)
Water heating	1000.000	1.200	00.00	(212)
Water heating cost	2702.90	3.480	94.06	(247)
Mech vent fans cost	0.000	13.190	0.00	(249)
Pump/fan energy cost	75.000	13.190	9.89	(249)
Energy for lighting	644.176	13.190	84.97	(250)
Additional standing charges			120.00	(251)
Electricity generated - PVs	3417.826	13.190	-450.81	(252)
Appendix Q -				` ,
Energy saved or generated ():	0.000	0.000	0.00	(253)
Energy used ():	0.000	0.000	0.00	(254)
Total energy cost			369.24	(255)
11a. SAP rating				
Energy cost deflator			0.42	(256)
Energy cost factor (ECF)			0.54	(257)
SAPvalue			92.45	
SAP rating			92	(258)
SAP band			Α	

12a. Carbon dioxide emissions

	Energy	Emission factor	Emission	S
	kWh/year	kg CO2/kWh	kg CO2/y	ear
Space heating, main system 1	12373.83	0.216	2672.75	(261)
Space heating, main system 2	0.00	0.000	0.00	(262)
Space heating, secondary	1903.67	0.019	36.17	(263)
Waterheating	2702.90	0.216	583.83	(264)
Space and water heating			3292.74	(265)
Electricity for pumps and fans	75.00	0.519	38.93	(267)
Electricity for lighting	644.18	0.519	334.33	(268)
Electricity generated - PVs	-3417.83	0.519	-1773.85	(269)
Electricity generated - µCHP	0.00	0.000	0.00	(269)
Appendix Q -				
Energy saved ():	0.00	0.000	0.00	(270)
Energy used ():	0.00	0.000	0.00	(271)
Total CO2, kg/year			1892.14	(272)
			kg/m²/yea	ar
CO2 emissions per m ²			7.83	(273)
Elvalue			91.16	(273a)
El rating			91	(274)
El band			В	

Calculation of stars for heating and DHW

Main heating energy efficiency
Main heating environmental impact
Water heating energy efficiency
Water heating environmental impact

 $(3.48 / 0.9000) \times (1 + (0.29 \times 0.25)) = 4.1470$, stars = 4 $(0.2160 / 0.9000) \times (1 + (0.29 \times 0.25)) = 0.2574$, stars = 4 3.48 / 0.8516 = 4.0865, stars = 4 0.2160 / 0.8516 = 0.2536, stars = 4

Building type Detached house

Reference

Date 17 July 2020

Client John Fawthrop Project Syke Lane

Leeds LS14

SAP 2012 worksheet for notional dwelling - calculation of target emissions

1	Overall	dwelling	dimensions	:
	Overan	uwellila	ullilelisiolis	,

	Area	Av. Storey	Volume	
	(m²)	height (m)	(m³)	
Ground floor (1)	124.15	2.46	305.41	(3a)
First floor	117.57	3.59	422.08	(3b)
Totalfloorarea	241.72			(4)
Dwelling volume (m³)			727.49	(5)

2. Ven	tilation i	rate										
							main + s	eonda	ry + othe	r	m³ per ho	our
Numbe	er of chim	neve					0 + 0 + 0		x 40		0.00	(6a)
	er of open						0 + 0 + 0		x 20		0.00	(6b)
	er of inter		ins				4		x 10		40.00	(7a)
	er of pass		_				0		x 10		0.00	(7b)
	er of fluel						0		x 40		0.00	(7c)
											Air chan	noc nor hour
Infiltrat	ion due t	o chimne	we fane	and flue	2						0.05	ges per hour (8)
	ire test, r			and nuc.	3				5.00		0.03	(17)
	neability	•	,						5.00		0.30	(17)
	er of sides		h shelte	red							2.00	(19)
Shelter		on wind		Cu							0.85	(20)
	ion rate ir	corpora	tina shel	ter factor							0.26	(21)
	ion rate n	•	_								0.20	(= .)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	
							,		^-		52.50	(22)
Wind F	actor											
1.27	1.25	1.23	1.10	1.07	0.95	0.95	0.93	1.00	1.07	1.13	1.18	
				,					,		13.13	(22a)
Adjuste	ed infiltra	tion rate	(allowing	for shelf	ter and w	ind spe	ed)					
0.33	0.32	0.32	0.29	0.28	0.25	0.25	0.24	0.26	0.28	0.29	0.30	
											3.40	(22b)
	tion : nat /e air cha		ilation, ir	ntermitte	nt extrac	t fans						
0.55	0.55	0.55	0.54	0.54	0.53	0.53	0.53	0.53	0.54	0.54	0.55	(25)

Page 11 of 31

JPA Designer Version 6.03x , SAP Version 9.92

Licensed to The SAP Service

 $\hbox{C:$\Users\cstay$\oneDrive\EXPERT\ ENERGY\ SAPS\John\ Fawthrop\John\ Fawthrop\ Fawthrop\John\ Fawthrop\John\ Fawthrop\John\ Fawthrop\John\$

Approval of JPA Designer by BRE applies only to the software, data is not subject to quality control procedures, users are themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.

3. Heat Element		and hea	Оре	aramete enings	r Netarea A, m²		value /m²K	A x U W/K				
		area, m² -glazed, En=0.1, s			8.80		33 (1.40)		7			(27)
coat (Ea	r Śpec				44.00		20 (4 40)	44.0	.0			(07)
	, low-E, l orth)	e-glazed, En=0.1, s	soft		11.03	0 1.3	33 (1.40)	14.6	2			(27)
	roofs ins	sulated be	etween jo	oists	137.39	9	0.13	17.8	6			(30)
Walls					249.89	9	0.18	44.9	8			(29)
New W Walls					9.6	7	0.18	1.7	4			(29)
Dorme Ground	floors				124.1	5	0.13	16.1	4			(28)
Groun	dFloor											
Flat roof Flat ro	-				10.88	8	0.13	1.4	1			(30)
		ernal ele	ments Si	gma A, r	n²						592.4	` ,
Fabric h			. l. 1/m21/	/	a a:t: a al T	MD)					162.2	` ,
Effect of		arameter bridges	, KJ/III²K	(user-sp	ecillea i	IVIP)					250.0 29.0	` ,
Total fal											191.8	` '
Ventilati	on heat	loss calc	ulated m	onthly								()
133.15	132.64	132.14	129.80	129.36	127.32	127.32	126.94	128.10	129.36	130.24	131.17	(38)
Heat tra	nsfer co	efficient,	W/K		7	7.		7		,		•
325.02	324.51	324.01	321.67	321.23	319.19	319.19	318.81	319.97	321.23	322.12	323.04	
Heat los	s param	eter (HLI	P), W/m²	K							321.6	67 (39)
1.34	1.34	1.34	1.33	1.33	1.32	1.32	1.32	1.32	1.33	1.33	1.34	
HLP (ave	erage)		,			,	1	,			1.3	33 (40)
Number	of days	in month	(Table 1	a)								
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
31	28	31	30	31	30	31	31	30	31	30	31	

	r heatin		y require	ements							kWh/yea	
	d occupa	•		litroops	vr.dov/\/d	overess					3.06 106.78	(4
	average I					,	1			1		(4
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Hot wate	er usage	in litres p	per day f	or each r	nonth							
117.46	113.19	108.92	104.65	100.38	96.11	96.11	100.38	104.65	108.92	113.19	117.46	(4
Energy	content c	of hot wat	ter used									
174.19	152.35	157.21	137.06	131.51	113.49	105.16	120.67	122.12	142.31	155.35	168.70	
Energy	content (a	annual)									1680.13	(-
Distribut	tion loss											
26.13	22.85	23.58	20.56	19.73	17.02	15.77	18.10	18.32	21.35	23.30	25.30	(-
Cylinde	rvolume,	I					210.00					(-
	cturer's d		cylinder l	oss facto	or (kWh/c	lay)	1.70					(4
•	ature Fac						0.5400					(-
	lost from		er cylinde	er (kWh/c	lay)						0.92	(
	orage los		1		1			1		· · · · · · · · · · · · · · · · · · ·		
28.48	25.73	28.48	27.57	28.48	27.57	28.48	28.48	27.57	28.48	27.57	28.48	(
Net stor	age loss											
28.48	25.73	28.48	27.57	28.48	27.57	28.48	28.48	27.57	28.48	27.57	28.48	(
Primary	loss				,		J.		31	Л	J	
23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26	(:
Total he	at require	ed for wa	ter heati	ng calcul	ated for	each mo	nth					
225.94	199.09	208.96	187.14	183.26	163.56	156.91	172.42	172.19	194.06	205.42	220.44	(
Output f	rom wate	er heater	for each	month, k	«Wh/mor	nth						
225.94	199.09	208.96	187.14	183.26	163.56	156.91	172.42	172.19	194.06	205.42	220.44	(
	•				^	^	•		^		2289.40	(
Heat ga	ins from v	water he	ating, kW	/h/month	า							`
99.32	88.05	93.67	85.63	85.13	77.80	76.36	81.52	80.67	88.72	91.71	97.49	(

_			
^	Intern	121 AS	oinc
J.	men	ıaı uc	มมเอ

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Metabol	ic gains,	Watts									-	
152.81	152.81	152.81	152.81	152.81	152.81	152.81	152.81	152.81	152.81	152.81	152.81	
Lighting gains												
36.48	32.40	26.35	19.95	14.91	12.59	13.60	17.68	23.73	30.13	35.17	37.49	
Appliances gains												
409.15	413.39	402.70	379.92	351.17	324.14	306.09	301.85	312.55	335.32	364.07	391.10	
Cooking	gains											
38.28	38.28	38.28	38.28	38.28	38.28	38.28	38.28	38.28	38.28	38.28	38.28	
Pumps a	and fans	gains										
3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	
Losses	e.g.evap	oration (r	negative	values)								
-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	
Water h	eating ga	ins										
133.49	131.02	125.90	118.94	114.42	108.05	102.64	109.57	112.04	119.24	127.38	131.03	
Total int	ernal gai	ns										
650.96	648.66	626.79	590.65	552.34	516.63	494.18	500.94	520.15	556.54	598.47	631.46	

6. Solar gains (calculation for January)

or colar game (carcalation for carrain)				
•	Area & Flux	g & FF	Shading	Gains
Window - Double-glazed, air-filled, low-E,	0.9 x 8.800 19.64	0.63 x 0.70	0.77	52.8204
En=0.1, soft coat (East)				
As Per Spec				
Window - Double-glazed, air-filled, low-E,	0.9 x 11.030 10.63	0.63 x 0.70	0.77	35.8442
En=0.1, soft coat (North)				
As Per Spec				

Lighting calculations

_ig.i.i.ig va.va.ia.i.o.i.o	Area	a	FF x Shading	
Maria De la la la la Caguada E		g	•	
Window - Double-glazed, air-filled, low-E,	0.9 x 8.80	0.80	0.70×0.83 3.68	
En=0.1, soft coat (East)				
As Per Spec				
Window - Double-glazed, air-filled, low-E,	0.9 x 11.03	0.80	0.70 x 0.83 4.61	
En=0.1, soft coat (North)				
As Per Spec				

Area g FF x Shading

7	. 1	Иean	internal	temperature

Temper	rature dui system r	ring heat	ing perio	ds in the l	iving are	a, Th1 (°	C)				21.00 1.00	(/
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau	.,	,		, -	,	,			JL			
51.65	51.73	51.81	52.18	52.26	52.59	52.59	52.65	52.46	52.26	52.11	51.96	
alpha			,			,	,	,	,			
4.44	4.45	4.45	4.48	4.48	4.51	4.51	4.51	4.50	4.48	4.47	4.46	
Utilisati	on factor	for gains	for living	area								
1.00	1.00	0.99	0.97	0.90	0.76	0.60	0.69	0.92	0.99	1.00	1.00	(86)
Mean in	ternal ter	nperatur	e in living	area T1		7			,	•		
19.32	19.50	19.83	20.27	20.66	20.90	20.97	20.95	20.73	20.21	19.68	19.29	(87)
Temper	ature du	ring heat	ing perio	ds in rest	of dwelli	ng Th2						
19.81	19.81	19.81	19.82	19.82	19.82	19.82	19.83	19.82	19.82	19.82	19.81	(88)
Utilisati	on factor	for gains	for rest	of dwellir	ng							
1.00	1.00	0.99	0.96	0.86	0.66	0.45	0.54	0.86	0.99	1.00	1.00	(89)
Mean in	ternal te	mperatui	re in the r	est of dw	elling T2	2						
17.56	17.83	18.30	18.94	19.48	19.76	19.82	19.81	19.59	18.87	18.10	17.52	(90)
_	rea fracti	•		,							0.21	(91)
Mean in	ternal ter	mperatur	e (for the	whole d	welling)	10						
17.93	18.17	18.61	19.22	19.73	19.99	20.05	20.04	19.82	19.14	18.43	17.89	(92)
Apply a	djustmen	t to the m	nean inte	rnal tem	perature	, where a	ppropria	ite				
17.93	18.17	18.61	19.22	19.73	19.99	20.05	20.04	19.82	19.14	18.43	17.89	(93)

8. Space heating requirement

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Utilisatio	n factor	for gains								,	
1.00	1.00	0.99	0.96	0.86	0.67	0.48	0.57	0.86	0.98	1.00	1.00
Usefulgains											
958.47	1232.02	1562.09	1908.79	1988.01	1582.40	1078.51	1113.64	1405.07	1226.55	977.36	887.13
Monthly average external temperature											
4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20
Heat los	s rate for	mean in	ternal ter	mperatur	е						
4428.9	4306.9	3925.2	3318.2	2578.1	1721.39	1102.53	1161.29	1831.34	2744.0	3648.2	4422.5
Fraction	of month	n for heat	ing								
1.00	1.00	1.00	1.00	1.00	-	-	-	-	1.00	1.00	1.00
Space h	eating re	quireme	nt for eac	ch month	, kWh/m	onth					
2582.0	2066.3	1758.14	1014.80	439.03	-	-	-	-	1129.00	1922.97	2630.3
Total space heating requirement per year (kWh/year) (October to May) 13542.51											
Total space heating requirement per year (kWh/year) (October to May) 13542.51 (Space heating requirement per m² (kWh/m²/year) 56.03 (

9a. Ene	rgy requ	uiremen	ts									
No soco	ndonika	oting ou	otom ool	ootod							kWh/year	
	ondary he of space				s)				1.0000			(202)
	cy of mai				,			9	3.50%			(206)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Spaceh	eating re	quireme	nt			7	,	,	,			
2582.0	2066.3	1758.14	1014.80	439.03	-	-	_	-	1129.00	1922.97	2630.3	(98)
Append	ix Q - mo	nthly en	ergy save	ed (main	heating	system 1	1)					
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(210)
Space h	eating fu	el (main	heating	system 1)	7						
2761.5	2209.9	1880.37	1085.34	469.55	-	-	-	-	1207.49	2056.7	2813.2	(211)
Append	ix Q - mo	nthly en	ergy save	ed (main	heating	system 2	2)	,	л			
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(212)
Space h	eating fu	el (main	heating	system 2	2)	J	J	л	Л			
0.00	0.00	0.00	0.00	0.00	-	-	_	-	0.00	0.00	0.00	(213)
Append	ix Q - mo	nthly en	ergy save	ed (seco	ndary he	ating sys	stem)	7	,			
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(214)
Spaceh	eating fu	el (secor	ndary)	,		,		,				
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(215)
Water h	_			,				,				
Waterh	eating red	quiremer	nt									
225.94	199.09	208.96	187.14	183.26	163.56	156.91	172.42	172.19	194.06	205.42	220.44	(64)
Efficiend	cy of wate	er heater									79.80	(216)
89.53	89.45	89.23	88.65	87.06	79.80	79.80	79.80	79.80	88.75	89.34	89.57	(217)
Water h	eating fu	el										
252.35	222.58	234.18	211.10	210.49	204.97	196.63	216.07	215.78	218.65	229.93	246.11	(219)
Annualt	totals										kWh/year	
	eating fu	iel used,	main sys	stem 1							14483.97	(211)
Spaceh	eating fu	el (secor	ndary)								0.00	(215)
	eating fu										2658.83	(219)
	ty for pur heating		s and ele	ectric kee	p-not						30.00	(230
	Healing		-l £l								30.00	(2300

10a. Does not apply

Energy used ():

Appendix Q -

boiler with a fan-assisted flue

Energy saved or generated ():

Total delivered energy for all uses

Total electricity for the above, kWh/year

Energy saving/generation technologies

Electricity for lighting (100.00% fixed LEL)

11a. Does not apply

45.00

75.00

0.000

0.000

17861.98

644.18

(230e)

(231)

(232)

(236a)

(237a)

(238)

12a. Carbon dioxide emissions

	Energy kWh/year	Emission factor kg CO2/kWh	Emission kg CO2/ye	
Space heating, main system 1	14483.97	0.216	3128.54	(261)
Space heating, main system 2	0.00	0.000	0.00	(262)
Space heating, secondary	0.00	0.519	0.00	(263)
Waterheating	2658.83	0.216	574.31	(264)
Space and water heating			3702.85	(265)
Electricity for pumps and fans	75.00	0.519	38.93	(267)
Electricity for lighting	644.18	0.519	334.33	(268)
Electricity generated - PVs	0.00	0.519	0.00	(269)
Electricity generated - µCHP	0.00	0.000	0.00	(269)
Appendix Q -				
Energy saved ():	0.00	0.000	0.00	(270)
Energy used ():	0.00	0.000	0.00	(271)
Total CO2, kg/year			4076.10	(272)
			kg/m²/yea	ır
Emissions per m ² for space and water heating			15.32	(272a)
Emissions per m ² for lighting			1.38	(272b)
Emissions per m ² for pumps and fans			0.16	(272c)
Target Carbon Dioxide Emission Rate (TER)			16.86	(273)

 $= (15.3187 \times 1.00) + 1.3831 + 0.1610$

Building type Detached house

Reference

Date 17 July 2020

Client John Fawthrop Project Syke Lane

Leeds LS14

SAP 2012 worksheet for New dwelling as designed - calculation of dwelling emissions

7	INVOVAL	AWAIIINA	aimar	ったいへわた
	Overan	dwelling	CHILLIE !	เรเบบเร

	Area	Av. Storey	Volume	
	(m²)	height (m)	(m³)	
Ground floor (1)	124.15	2.46	305.41	(3a)
First floor	117.57	3.59	422.08	(3b)
Totalfloorarea	241.72			(4)
Dwelling volume (m³)			727.49	(5)

2. Ven	2. Ventilation rate											
											m³ per ho	ur
								eonda	ry + othe	r		
							heating					(-)
	er of chim	,					0 + 0 + 0		x 40		0.00	(6a)
	er of open						0 + 0 + 0		x 20		0.00	(6b)
	er of inter		_				5		x 10		50.00	(7a)
	er of pass						0		x 10		0.00	(7b)
Numbe	er of fluele	ess gas fi	res				0		x 40		0.00	(7c)
Air changes												es per hour
Infiltrat	ion due t	o chimne	ys, fans	and flues	3						0.07	(8)
	ire test, r		•						5.00			(17)
	Air permeability											
	er of sides		h shelter	ed							2.00	(18) (19)
Shelte	rfactor										0.85	(20)
Infiltrat	ion rate ir	ncorpora	tina shelt	er factor							0.27	(21)
	tion rate n	•	_									()
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	
							1		,		52.50	(22)
Wind F	actor											
1.27	1.25	1.23	1.10	1.07	0.95	0.95	0.93	1.00	1.07	1.13	1.18	
											13.13	(22a)
	ed infiltra		(allowing	for shelt	er and w	ind spe	ed)	-ir				
0.35	0.34	0.33	0.30	0.29	0.26	0.26	0.25	0.27	0.29	0.30	0.32	
											3.56	(22b)
Ventilation : natural ventilation, intermittent extract fans Effective air change rate												
0.56	0.56	0.56	0.54	0.54	0.53	0.53	0.53	0.54	0.54	0.55	0.55	(25)

Page 19 of 31

JPA Designer Version 6.03x , SAP Version 9.92

Licensed to The SAP Service

 $\hbox{C:$\Users\cstay$\oneDrive\EXPERT\ ENERGY\ SAPS\John\ Fawthrop\John\ Fawthrop\ Fawthrop\John\ Fawthrop\John\ Fawthrop\John\ Fawthrop\John\$

Approval of JPA Designer by BRE applies only to the software, data is not subject to quality control procedures, users are themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.

3. Heat losses and heat loss parameter													
Elemen		Gross	Оре	enings	Netare		value	AxU		appa-value			
Window	/ - Double	area, m²			A, m ² 3.60		′m²K I 5 (1.20)	W/K 4.1		J/m²K	kJ/K		(27)
	lled (Sout	-			3.00	U 1.1	13 (1.20)	4.1	2				(27)
As Pe	r Spec	•											
	/-Double	-			27.87	0 1.1	15 (1.20)	31.9	1				(27)
-	lled (Wes r Spec	st)											
	/ - Double	e-glazed,			22.40	0 1.1	5 (1.20)	25.6	5				(27)
-	led (Norti	h)											
	r Spec /-Double	-alazed			11.67	0 11	IE (1 20)	13.3	6				(27)
	lled (East	-			11.07	0 1.1	15 (1.20)	13.3	0				(21)
As Pe	r Spec	•											
	/-Double				14.63	0 1.1	15 (1.20)	16.7	5				(27)
	led (Nortl r Spec	n)											
	roofs ins	sulated be	etween jo	oists	137.39	9	0.17	23.3	6	9.00	1236.5	51	(30)
	ed Roof		·										
Walls New V	N/all				233.7	5	0.16	37.4	.0	60.00	14025	.00	(29)
Walls	van				6.07	7	0.17	1.0	3	9.00	54.63		(29)
Dorme													
Ground					124.1	5	0.17	21.1	1	110.00	13656	.50	(28)
Groun	d Floor												
Flat roo	fs				10.88	3	0.18	1.9	6	9.00	97.92		(30)
Flatro	of												
Total ar	ea of ext	ernal ele	ments Si	ama A. r	n²						592.4	11	(31)
	neat loss			J , .							176.6		(33)
	l mass pa		, kJ/m²K	(user-sp	ecified T	MP)					100.0		(35)
	f thermal										88.8		(36)
	bric heat ion heat		ulated m	onthly							265.5	01	(37)
134.36	7	133.26		130.22	127.99	127.99	127.57	128.85	130.22	131.19	132.20		(38)
	nsfer co		JL										` ,
399.87	399.31	398.77	396.21	395.73	393.50	393.50	393.08	394.36	395.73	396.70	397.71		
			,		,	,		,			396.2	20	(39)
	ss param	, ,	, .		nr	nr	1	nr	1		1	i.	
1.65	1.65	1.65	1.64	1.64	1.63	1.63	1.63	1.63	1.64	1.64	1.65		(40)
HLP (av	erage) r of days	in month	(Table 1	a)							1.6	54	(40)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
31	28	31	30	31	30	31	31	30	31	30	31		
<u>.</u>		10.		L	1	<u>. </u>	ı • ·	1	L .		ı		

4. Wate	er heating	g energ	y require	ements							kWh/year
Assume	ed occupa	ancy, N									3.06
Annual	average l	not water	r usage ir	n litres pe	er day Vd	,average)				106.78
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Hot wate	er usage	in litres	per day f	or each r	nonth	,			,		
117.46	113.19	108.92	104.65	100.38	96.11	96.11	100.38	104.65	108.92	113.19	117.46
Energy content of hot water used											
174.19	152.35	157.21	137.06	131.51	113.49	105.16	120.67	122.12	142.31	155.35	168.70
٠.	content (a	annual)									1680.13
Distribu	tion loss										
26.13	22.85	23.58	20.56	19.73	17.02	15.77	18.10	18.32	21.35	23.30	25.30
Hot wate	er storage	e volume	(litres)								210.00
Hot wate	er cylinde	er loss fa	ctor (kW	h/day)							0.0103
Hot water cylinder loss factor (kWh/day) Volume factor 0.0103 0.8298											
Tempera	ature fact	or									0.5400
Energy	lost from	hot wate	er cylinde	r (kWh/c	day)						0.97
0,	orage los		•	`	• ,						
30.01	27.11	30.01	29.05	30.01	29.05	30.01	30.01	29.05	30.01	29.05	30.01
Net stor	age loss		,				,	,		Л	
30.01	27.11	30.01	29.05	30.01	29.05	30.01	30.01	29.05	30.01	29.05	30.01
Primary	loss		,	н			,	,		Л	
23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26
Total he	at require	ed for wa	ter heatii	ng calcul	ated for	each mo	nth	,	,		
227.47	200.47	210.49	188.62	184.79	165.04	158.44	173.95	173.67	195.59	206.90	221.97
Output from water heater for each month, kWh/month											
227.47	200.47	210.49	188.62	184.79	165.04	158.44	173.95	173.67	195.59	206.90	221.97
			^		^		•	^	^		2307.40
Heat ga	ins from v	water he	ating, kW	/h/month	า						
			J,								

5. Internal gains

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Metabolic gains, Watts											
152.81	152.81	152.81	152.81	152.81	152.81	152.81	152.81	152.81	152.81	152.81	152.81
Lighting gains											
36.48	32.40	26.35	19.95	14.91	12.59	13.60	17.68	23.73	30.13	35.17	37.49
Appliand	ces gains	;									
409.15	413.39	402.70	379.92	351.17	324.14	306.09	301.85	312.55	335.32	364.07	391.10
Cooking	gains										
38.28	38.28	38.28	38.28	38.28	38.28	38.28	38.28	38.28	38.28	38.28	38.28
Pumps a	and fans	gains									
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Losses	e.g. evap	oration (r	negative	values)							
-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	-122.25	-122.25
Water heating gains											
135.13	132.67	127.55	120.58	116.06	109.69	104.28	111.22	113.68	120.89	129.03	132.68
Total internal gains											
649.60	647.30	625.43	589.29	550.98	515.27	492.82	499.58	518.80	555.18	597.11	630.11

6. Solar gains (calculation for January)

Window - Double-glazed, argon filled (South) Area & Flux g & FF Shading Gains As Per Spec 0.76 0.77 98.4935 As Per Spec 27.870 19.64 0.76 0.77 320.3234 As Per Spec Window - Double-glazed, argon filled (North) 22.400 10.63 0.76 0.77 139.3876 As Per Spec Window - Double-glazed, argon filled (East) 11.670 19.64 0.76 0.77 134.1289 As Per Spec Window - Double-glazed, argon filled (North) 14.630 10.63 0.76 0.77 91.0375 As Per Spec	or come game (careamanem for carrain)				
As Per Spec Window - Double-glazed, argon filled (West) 27.87019.64 0.76 0.77 320.3234 As Per Spec Window - Double-glazed, argon filled (North) 22.40010.63 0.76 0.77 139.3876 As Per Spec Window - Double-glazed, argon filled (East) 11.67019.64 0.76 0.77 134.1289 As Per Spec Window - Double-glazed, argon filled (North) 14.63010.63 0.76 0.77 91.0375		Area & Flux	g & FF	Shading	Gains
As Per Spec Window - Double-glazed, argon filled (North) 22.400 10.63 0.76 0.77 139.3876 As Per Spec Window - Double-glazed, argon filled (East) 11.670 19.64 0.76 0.77 134.1289 As Per Spec Window - Double-glazed, argon filled (North) 14.630 10.63 0.76 0.77 91.0375	• • • • • • • • • • • • • • • • • • • •	3.60046.75	0.76	0.77	98.4935
As Per Spec Window - Double-glazed, argon filled (East) 11.670 19.64 0.76 0.77 134.1289 As Per Spec Window - Double-glazed, argon filled (North) 14.630 10.63 0.76 0.77 91.0375	, ,	27.87019.64	0.76	0.77	320.3234
As Per Spec Window - Double-glazed, argon filled (North) 14.630 10.63 0.76 0.77 91.0375	, ,	22.40010.63	0.76	0.77	139.3876
	, ,	11.67019.64	0.76	0.77	134.1289
	0 , 0 , ,	14.63010.63	0.76	0.77	91.0375

Lighting calculations

	Area	g	FF x Shading	
Window - Double-glazed, argon filled (South) As Per Spec	0.9 x 3.60	0.80	0.70 x 0.83	1.51
Window - Double-glazed, argon filled (West) As Per Spec	0.9 x 27.87	0.80	0.70 x 0.83	11.66
Window - Double-glazed, argon filled (North) As Per Spec	0.9 x 22.40	0.80	0.70 x 0.83	9.37
Window - Double-glazed, argon filled (East) As Per Spec	0.9 x 11.67	0.80	0.70 x 0.83	4.88
Window - Double-glazed, argon filled (North) As Per Spec	0.9 x 14.63	0.80	0.70 x 0.83	6.12

	n interna	•		da in tha l	ii ina ara	o Th1/9	C)				24.00
	rature dur g system r	•	.	usininei	ivingare	a, mi (v	C)				21.00 0.75
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
tau			J.					,			
16.79	16.82	16.84	16.95	16.97	17.06	17.06	17.08	17.03	16.97	16.93	16.88
alpha								,			
2.12	2.12	2.12	2.13	2.13	2.14	2.14	2.14	2.14	2.13	2.13	2.13
Utilisat	ion factor	for gains	for living	area	,				,	,	
0.97	0.93	0.86	0.73	0.57	0.43	0.33	0.39	0.61	0.85	0.95	0.98
Mean ir	nternal ter	nperatur	e in livinç	area T1	^						
18.38	18.78	19.38	20.04	20.49	20.73	20.82	20.79	20.55	19.85	18.97	18.30
Tempe	rature du	ring heati	ing perio	ds in rest	of dwelli	ng Th2		•			
19.57	19.58	19.58	19.58	19.59	19.59	19.59	19.59	19.59	19.59	19.58	19.58
Utilisat	ion factor	for gains	for rest	of dwellin	ng						
0.96	0.92	0.84	0.69	0.51	0.35	0.23	0.28	0.53	0.81	0.94	0.97
Mean ir	nternal ter	mperatur	re in the r	est of dw	elling T2	2					
16.14	16.71	17.56	18.45	19.02	19.30	19.38	19.36	19.13	18.24	16.99	16.03
_	area fracti	`		,							0.21
	nternal ter		`	1	,	1		10		10	
16.60	17.14	17.93	18.78	19.32	19.59	19.68	19.66	19.42	18.57	17.40	16.50
	adjustmen	it to the m	nean inte	rnal temp	perature,	, where a	ppropria	te			
16.60	17.14	17.93	18.78	19.32	19.59	19.68	19.66	19.42	18.57	17.40	16.50
8 Sna	ce heatin	na reavii	rement								
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	ion factor			Iviay	Juli	Jul	7 tug	ССР	001	1400	DCO
0.95	0.89	0.80	0.66	0.50	0.35	0.24	0.29	0.52	0.78	0.92	0.96
Useful		0.00	0.00	0.00	0.00	0.24	0.20	0.02	0.70	0.02	0.50
	97 1912.69	2444 7	2742.9	2508.0	1802 50	1164.05	1208 70	1720 46	1798 21	1433 07	1225.40
	y average				1002.00	1101.00	1200.70	1720.10	1700.21	1 100.07	1220.10
4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20
	ss rate for					10.00	10.40	14.10	10.00	7.10	7.20
4918.7	1	,	3913.2	3017.2		1210.75	1280 80	2007.8	3154.7	4086.5	4893.1
				0017.2	1004.00	1210.70	1200.08	12031.0	J 1 J 4. 1	-1000.0	TUJU. 1
	11() [[[[[[]]]]]		9		1	1		1	1.00	4.00	1.00
Fractio		1 00	1.00	1 00	I -	II '	_	II -		1 (1(1)	
Fractio 1.00	1.00	1.00	1.00	1.00	- k\//h/m	onth	-	_	1.00	1.00	1.00
Fractio 1.00 Space	1.00 heating re	quireme	ent for ea	ch month	- n, kWh/m _	onth	_	-			
Fractio 1.00 Space 2650.0	1.00 heating re	equireme 1572.74	ent for ead 842.59	ch month 378.79	-	_	-	_		1910.50	

8c. Space cooling requirement - not applicable

9a.	Ener	gу	requi	reme	nts
-----	------	----	-------	------	-----

Ju. Liici	gy requ	in ciricin									kWh/year	
Fraction Fraction Efficiency Efficiency	of space y of mair	heat fro heating	om main g system	system(s)			9	0.1000 0.9000 0.00% 5.00%		·	(201) (202) (206) (208)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space he	eating red	quireme	nt		,	,	JI.	Л	,			
2650.0	1999.26	1572.74	842.59	378.79	-	_	-	-	1009.20	1910.50	2728.8	(98)
Appendix	x Q - mo	nthly en	ergy save	ed (main	heating	system 2	1)	Л	,			
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(210)
Space he	eating fu	el (main	heating	system 1)		JL		JI.			
2650.0	1999.26	1572.74	842.59	378.79	-	-	-	-	1009.20	1910.50	2728.8	(211)
Appendix][heating	system 2	2)				JL	` ,
	0.00	0.00	0.00	0.00	<u> </u>)) -	1-	0.00	0.00	0.00	(212)
Space he					<u>2)</u>	J		J	0.00	0.00	0.00	` ,
	0.00	0.00	0.00	0.00	-, -	1_	1_	1_	0.00	0.00	0.00	(213)
Appendix			<u> </u>		l ndary he	ating sys	stem)		0.00	0.00	0.00	(210)
	0.00	0.00	0.00	0.00]_	1-	0.00	0.00	0.00	(214)
Spacehe]	0.00	J			<u></u>	0.00	0.00	0.00	(217)
407.68		241.96	129.63	58.28				1-	155.26	293.92	419.81	(215)
Water he		241.90	129.03	36.26	<u> </u>]-	_		155.20	293.92	419.01	(213)
Waterhe		uiremer	nt									
		210.49	188.62	184.79	165.04	158.44	173.95	173.67	195.59	206.90	221.97	(64)
Efficience				104.75	100.04	150.44	170.00	175.07	133.33	200.50	79.30	(216)
	88.80	88.45	87.64	85.92	79.30	79.30	79.30	79.30	87.90	88.71	89.00	(217)
Water he			07.04	05.92	7 9.50	7 9.50	79.50	7 9.50	07.30	00.7 1	09.00	(217)
	225.76	237.96	215.21	215.06	208.13	199.79	219.36	219.01	222.52	233.23	249.39	(219)
255.71	223.70	237.90	213.21	215.00	200.13	199.79	219.30	219.01	222.52	233.23	249.39	(213)
Annual to											kWh/year	
Space he				stem 1							13091.83	(211)
Space he Water he		`	idary)								2014.13 2701.12	(215) (219)
Electricity			s and ele	ctric kee	n-hot						2701.12	(219)
	heating p		o ana oro	ouro noc	, priot						30.00	(230c)
	ith a fan		d flue								45.00	(230e)
Total ele	ctricity fo	or the ab	ove, kWł	n/year							75.00	(231)
Electricity											644.18	(232)
Energys											2447.000	
			88.070 x 00 x 0.50								3417.826 0.000	
			00 x 0.50								0.000	
1 43 0.0	00 X 0.0	00 x 0.0	00 X 0.50	50							3417.826	(233)
Appendix	x Q -											(/
	saved o	•	ated ():								0.000	(236a)
Energy	used ():	:									0.000	(237a)
Total deli	ivered er	nergy for	all uses								15108.43	(238)

10a. Does not apply

11a. Does not apply

12a. Carbon dioxide emissions

	Energy kWh/year	Emission factor kg CO2/kWh	kg CO2/year	
Space heating, main system 1	13091.83	0.216	2827.83	(261)
Space heating, main system 2	0.00	0.000	0.00	(262)
Space heating, secondary	2014.13	0.019	38.27	(263)
Waterheating	2701.12	0.216	583.44	(264)
Space and water heating			3449.55	(265)
Electricity for pumps and fans	75.00	0.519	38.93	(267)
Electricity for lighting	644.18	0.519	334.33	(268)
Electricity generated - PVs	-3417.83	0.519	-1773.85	(269)
Electricity generated - µCHP	0.00	0.000	0.00	(269)
Appendix Q -				
Energy saved ():	0.00	0.000	0.00	(270)
Energy used ():	0.00	0.000	0.00	(271)
Total CO2, kg/year			2048.95	(272)
			kg/m²/year	

Dwelling Carbon Dioxide Emission Rate (DER) 8.48 (273)

Building type Detached house

Reference

Date 17 July 2020

Client John Fawthrop Project Syke Lane

Leeds LS14

REGULATION COMPLIANCE REPORT - Approved Document L1A, 2012 Edition, England

assessed by program JPA Designer version 6.04a1, printed on 20/07/2020 at 10:35:21

New dwelling as designed

1 TER and DER

Fuel for main heating system: Gas (mains) (fuel factor = 1.00)

Target Carbon Dioxide Emission Rate TER = 16.86

Dwelling Carbon Dioxide Emission Rate DER = 8.48

OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE)

Dwelling Fabric Energy Efficiency (DFEE)

TFEE = 70.8

DFEE = 63.1

OK

OK

2a Thermal bridging

Thermal bridging calculated using default y-value of 0.15

2b Fabric U-values

<u>Element</u>	<u>Average</u>	<u>Highest</u>	
Wall	0.16 (max. 0.30)	0.17 (max. 0.70)	OK
Floor	0.17 (max. 0.25)	0.17 (max. 0.70)	OK
Roof	0.17 (max. 0.20)	0.18 (max. 0.35)	OK
Openings	1.20 (max. 2.00)	1.20 (max. 3.30)	OK

3 Air permeability

Air permeability at 50 pascals: 5.00 OK Maximum: 10.00

4 Heating efficiency

Main heating system:

Boiler and underfloor heating, mains gas

Vaillant Ecotec Plus

Source of efficiency: from boiler database

Vaillant Ecotec Plus 630

Efficiency: 89.0% SEDBUK2009

Minimum: 88.0%

Secondary heating system:

Room heater systems - Solid fuel

Closed room heater

Efficiency: 65.00% Minimum: 65.00%

imum: 65.00% OK

Page 26 of 31

JPA Designer Version 6.03x , SAP Version 9.92

Licensed to The SAP Service
C:\Users\cstay\OneDrive\EXPERT ENERGY SAPS\John Fawthrop\John Fawthrop.Jdp

Approval of JPA Designer by BRE applies only to the software, data is not subject to quality control procedures, users are themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.

5 Cylinder insulation Hot water storage				
	eylinder loss factor (kWh/day)	1.79		
Permitted by		2.30	OK	
Primary pipework insulated	Yes		OK	
6 Controls				
(Also refer to "Domestic Building Se	ervices Compliance Guide" by the DC	CLG)		
Space heating controls	Time and temperature zone c	ontrol	OK	
	Cylinderstat - Yes		OK	
	Independent timer for DHW -	Yes	OK	
Boiler Interlock	Yes		OK	
7 Low energy lights				
	Percentage of fixed lights with	n low-energy fittings: 100.0%		
	Minimum: 75.0%		OK	
8 Mechanical ventilation				
	Not applicable			
9 Summertime temperature				
Overheating risk (East Pennines):			OK	
	Slig	ght	OK	
Based on:				
Thermal mass parameter:	100.00			
Overshading:	Average or unknown (20-60 %	Average or unknown (20-60 % sky blocked)		
Orientation : East				
Ventilation rate :	8.00			
Blinds/curtains :				
None with blinds/shutters closed	100.00% of daylight hours			
10 Key features				
Low-carbon	or renewable for secondary heating fu	uel.		
Wood logs				
Photovoltaid	array			

Building type Detached house

Reference

Date 17 July 2020

Client John Fawthrop Project Syke Lane

Leeds LS14

SAP 2012 input data Printed on 20 Jul 2020 at 10:35 AM

Syke Lane

Syke Lane Leeds LS14

Located in: England
Region: East Pennines

Postcode: LS14

UPRN:

Date of assessment: 2018-12-10 Date of certificate: 2020-07-20

Assessment type: New dwelling as designed

Tenure: Unknown
Transaction type: New dwelling
Related party disclosure: No related party

PCDF revision number: 462

Property description

Dwelling type: Detached house

Ground floor (1) $area = 124.15m^2$ storey height = 2.46m First floor $area = 117.57m^2$ storey height = 3.59m

Living area: 49.88 (fraction 0.206)

Front of dwelling faces: East

Doors

Windows

Window area = 3.60 U = 1.20 - Double-glazed, argon filled (South)

Overshading: Average or unknown (20-60 % sky blocked)

Window area = 27.87 U = 1.20 - Double-glazed, argon filled (West)

Overshading: Average or unknown (20-60 % sky blocked)

Window area = 22.40 U = 1.20 - Double-glazed, argon filled (North)

Overshading: Average or unknown (20-60 % sky blocked)

Window area = 11.67 U = 1.20 - Double-glazed, argon filled (East)

Overshading: Average or unknown (20-60 % sky blocked)

Window area = 14.63 U = 1.20 - Double-glazed, argon filled (North)

Overshading: Average or unknown (20-60 % sky blocked)

Rooflights

Opaque Elements

JPA Designer Version 6.03x, SAP Version 9.92

Licensed to The SAP Service

Page 28 of 31

 $\hbox{C:} \verb|Users\cstay| One Drive \verb|EXPERTENERGYSAPS| John Fawthrop| John Fawthrop| John Fawthrop| Apple One Drive \verb|EXPERTENERGYSAPS| Apple One Drive One Driv$

Approval of JPA Designer by BRE applies only to the software, data is not subject to quality control procedures, users are themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.

Building type Detached house

Reference

Date 17 July 2020

Client John Fawthrop Project Syke Lane

Leeds LS14

SAP 2012 input data Printed on 20 Jul 2020 at 10:35 AM

Syke Lane

U = 0.17, k = 9.0Pitched Roof Roofs area = 137.39U = 0.16, k = 60.0Walls area = 233.75New Wall Walls area = 6.07U = 0.17, k = 9.0Dormer wall Ground floors area = 124.15U = 0.17, k = 110.0**Ground Floor**

U = 0.18, k = 9.0Roofs area = 10.88Flat roof

NOT Accredited Construction Details (y = 0.1500) Thermal bridges:

Thermal mass: User defined - 100.00

Pressure test: Yes (q50 - 5.00): measured in this dwelling: Yes Ventilation: Natural ventilation with intermittent extract fans

Approved Installer: No

From database:

462 Database revision: Riaid Duct type:

Wet room count: 3 (ex. kitchens)

Number of chimneys: 0 Number of open flues: 0 Number of intermittent fans: 5 Number of passive stacks: 0 Number of sides sheltered: 2.00 Measured/design q50: 5.00

Main heating system: Central heating systems with radiators or underfloor heating

> Gas boilers (including LPG) 1998 or later Condensing with automatic ignition

Index: 10324

Eff 79.30% / 90.00% Vaillant Ecotec Plus 630 Underfloor, pipes in screed above insulation

Pump in heated space: No

Boiler has load or weather compensator: No

Boiler Interlock: Yes

Design flow temperature: Unknown Central heating pump 2013 or later

Gas (mains)

Main heating controls: Time and temperature zone control

Boiler has load No

compensator:

Page 29 of 31

JPA Designer Version 6.03x , SAP Version 9.92

Licensed to The SAP Service

C:\Users\cstay\OneDrive\EXPERT ENERGY SAPS\John Fawthrop\John Fawthrop.Jdp

Building type Detached house

Reference

Date 17 July 2020

John Fawthrop Syke Lane Client Project

Leeds LS14

SAP 2012 input data Printed on 20 Jul 2020 at 10:35 AM

Syke Lane

Boiler has weather No

compensator:

Boiler has emhanced load No

compensator:

Boiler interlock: Yes

Secondary heating system: Room heater systems

Solid fuel

Closed room heater

Wood logs

Solid fuel room heater is HETAS approved: Yes

Water heating: Hot water storage tank

> Cylinder volume: 210.00 Insulation type: Factory Insulation thickness: 100.00 Cylinder heater: Boiler feed Cylinder in heated space: Yes

Insulated primary: Yes Cylinder thermostat: Yes

Separate timer for domestic hot water: Yes

Solar panel: no

Water use <= 125 Yes

litres/person/day:

Low energy lights: 100.0% of fixed lighting outlets

Total fixed lighting outlets: 100

Electricity tariff: Standard tariff Photovoltaics 1: Peak kW: 4.00 45 degrees

South

None or very little (<20 % sky blocked)

Photovoltaics 2: Peak kW: 0.00

Heavy (>80 % sky blocked)

Photovoltaics 3: Peak kW: 0.00

Heavy (>80 % sky blocked)

JPA Designer Version 6.03x , SAP Version 9.92

Licensed to The SAP Service

C:\Users\cstay\OneDrive\EXPERT ENERGY SAPS\John Fawthrop\John Fawthrop.Jdp

Approval of JPA Designer by BRE applies only to the software, data is not subject to quality control procedures, users are themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.

Page 30 of 31

Building type Detached house

Reference

Date 17 July 2020

Client John Fawthrop Project Syke Lane

Leeds LS14

SAP 2012 input data Printed on 20 Jul 2020 at 10:35 AM

Syke Lane

Conservatory: No Fixed air conditioning: No Smoke Control Area: No

Additional allowable electricity generation:

0.00kg/m²/year

3. SAP Calculation Plot 2

BASIC COMPLIANCE REPORT Calculation Type: New Build (As Designed)

Property Reference	20183 Gas	Issued on Date	02/10/2020					
Assessment	20183 Plot 2	Pro	p Type Ref					
Reference								
Property	Plot 2, 27 Syke Lane, Ligh	tcliffe, Calder	dale, HX3 8SY					
SAP Rating		88 B	DER	12.52	TER	16.91		
Environmental		87 B	% DER <ter< th=""><th></th><th colspan="4">25.98</th></ter<>		25.98			
CO ₂ Emissions (t/y	ear)	3.36	DFEE	70.00	TFEE	73.02		
General Requirem	ents Compliance	Pass	% DFEE <tfee< th=""><th></th><th colspan="4">4.15</th></tfee<>		4.15			
Assessor Details	Mr. William Simpson, Quadra will.simpson@quadrantai.co	Assessor ID	H077-0001					
Client								

SUMARY FOR INPUT DATA FOR New Build (As Designed)

Criterion 1 – Achieving the TER and TFEE rate

1a TER and DER

Fuel for main heating Mains gas Fuel factor 1.00 (mains gas) Target Carbon Dioxide Emission Rate (TER) 16.91 $kgCO_2/m^2$ Dwelling Carbon Dioxide Emission Rate (DER) 12.52 $kgCO_2/m^2$ **Pass** -4.39 (-26.0%) $kgCO_2/m^2$

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 73.02 kWh/m²/yr Dwelling Fabric Energy Efficiency (DFEE) 70.00 kWh/m²/yr -3.0 (-4.1%)

kWh/m²/yr **Pass**

Criterion 2 - Limits on design flexibility

Limiting Fabric Standards

2 Fabric U-values

Element	Average	Highest	
External wall	0.27 (max. 0.30)	0.27 (max. 0.70)	Pass
Floor	0.11 (max. 0.25)	0.11 (max. 0.70)	Pass
Roof	0.14 (max. 0.20)	0.18 (max. 0.35)	Pass
Openings	1.60 (max. 2.00)	1.60 (max. 3.30)	Pass

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

3 Air permeability

Air permeability at 50 pascals 4.00 (design value) Maximum 10.0 Pass

Limiting System Efficiencies

4 Heating efficiency

Main heating system Boiler system with radiators or underfloor - Mains gas

> Data from database Ideal LOGIC+ HEAT H30

Efficiency: 89.5% SEDBUK2009

Minimum: 88.0%

Regs Region: England **Elmhurst Energy Systems** SAP2012 Calculator (Design System) version 4.14r10

Pass

BASIC COMPLIANCE REPORT Calculation Type: New Build (As Designed)

Secondary heating system	Room heaters - Wood Logs		Pass		
	Closed room heater				
	Efficiency: 65%				
	Minimum: 65%]		
5 Cylinder insulation					
Hot water storage	Nominal cylinder loss: 2.01 kWh/day		Pass		
	Permitted by DBSCG 2.30]		
Primary pipework insulated	Yes		Pass		
6 Controls					
Space heating controls	Time and temperature zone control		Pass		
Hot water controls	Cylinderstat		Pass		
	Independent timer for DHW		Pass		
Boiler interlock	Yes		Pass		
7 Low energy lights					
Percentage of fixed lights with low-energy	100	7 %			
fittings	100				
Minimum	75	%	Pass		
8 Mechanical ventilation		_			
Continuous supply and extract system					
Specific fan power	1.35		1		
Maximum	1.5		Pass		
MVHR efficiency	89	7 %			
Minimum	70] %	Pass		
Criterion 3 – Limiting the effects of heat gains in sur	mmer				
9 Summertime temperature					
Overheating risk (East Pennines)	Not significant		Pass		
Based on:	Not significant		1 033		
Overshading	Average		1		
Windows facing North	31.24 m², No overhang]		
Windows facing East	19.49 m², No overhang				
Windows facing South	10.56 m ² , No overhang				
Windows facing West	11.48 m², No overhang				
Air change rate					
Blinds/curtains	None		j		
Criterion 4 – Building performance consistent with	DER and DFEE rate				
Air permeability and pressure testing 3 Air permeability					
	4.00 (decime value)		1		
Air permeability at 50 pascals	4.00 (design value)]][
Maximum	10.0		Pass		
10 Key features		7			
Floor U-value	0.11	☐ W/m²K			
Secondary heating (wood logs)	N/A				
Secondary heating fuel:	wood logs				
Photovoltaic array	4.00	kW			

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.14r10

BASIC COMPLIANCE REPORT Calculation Type: New Build (As Designed)

This report has not been submitted through the Elmhurst Energy members' portal, therefore results are subject to change when the dwelling is completed.

Property Reference	20183 Gas						Issu	ed on Dat	e 02/10)/2020
Assessment	20183 Plot 2	Prop Type Ref								
Reference										
Property	Plot 2, 27 Sy	ke Lane, Lig	htcliffe, Calder	dale, HX3 8SY						
SAP Rating			88 B	DER		12.52	Т	ER	1	.6.91
Environmental	87 B	% DER <ter< td=""><td></td><td></td><td></td><td>25.98</td><td></td><td></td></ter<>				25.98				
CO₂ Emissions (t/year	3.36	DFEE		70.00	T	FEE	7	3.02		
General Requirement	ts Compliance		Pass	% DFEE <tfee< td=""><td></td><td></td><td></td><td>4.15</td><td></td><td></td></tfee<>				4.15		
	Mr. William Sim vill.simpson@q			Inpsectors, Tel:	01522	719288,	А	ssessor ID	H077	'-0001
Client										
SUMMARY FOR INPUT	Γ DATA FOR: N	ew Build (As	s Designed)							
Orientation		East]					
Property Tenure		Unknown			j					
Transaction Type		New dwellin	ng		j					
Terrain Type		Suburban			ĺ					
1.0 Property Type		House, Deta	ached		j					
2.0 Number of Storeys		2			j					
3.0 Date Built		2020			j					
4.0 Sheltered Sides		2			ĺ					
5.0 Sunlight/Shade		Average or u	unknown		j					
6.0 Measurements		G	round Floor:	Heat Loss Perimet 61.72 m	er	Internal	Floor <i>A</i> .68 m²	Area Av	erage Store	y Height
		T	1st Storey:	57.02 m	1 2	120.	.97 m²		2.52 m 3.20 m	
7.0 Living Area		23.30	1st Storey:	57.02 m	m²	120.	.97 m²			
7.0 Living Area 8.0 Thermal Mass Param	neter	Simple calcu	1st Storey: ulation - Medium		m²	120.	97 m²			
	neter		-		m²		97 m²			
8.0 Thermal Mass Param Thermal Mass 9.0 External Walls Description	Туре	Simple calcu 250.00	-]	²K U-V (W/	/alue /m²K)	Gross Area (m²)	3.20 m Nett Area (m²)	
8.0 Thermal Mass Param Thermal Mass 9.0 External Walls Description External Wall Stone	Type Cavity Wal	Simple calcu 250.00	-]	² K U-V (W/	/alue /m²K) .27	(m²) 387.71	3.20 m Nett Area (m²) 341.88	
8.0 Thermal Mass Param Thermal Mass 9.0 External Walls Description External Wall Stone External Wall Zinc	Туре	Simple calcu 250.00	-]	² K U-V (W/	/alue /m²K)	(m²)	3.20 m Nett Area (m²)	
8.0 Thermal Mass Param Thermal Mass 9.0 External Walls Description External Wall Stone	Type Cavity Wal	Simple calcu 250.00	-]	² K U-V (W/ 0. 0. U-V	/alue /m²K) .27 .25	(m²) 387.71	3.20 m Nett Area (m²) 341.88	
8.0 Thermal Mass Param Thermal Mass 9.0 External Walls Description External Wall Stone External Wall Zinc 10.0 External Roofs	Type Cavity Wal Cavity Wal	Simple calcu 250.00	-]	² K U-V (W/ 0. 0. 0. U-V (W/	/alue /m²K) .27 .25	(m²) 387.71 48.87 Gross Area	3.20 m Nett Area (m²) 341.88 21.93	
8.0 Thermal Mass Param Thermal Mass 9.0 External Walls Description External Wall Stone External Wall Zinc 10.0 External Roofs Description Slope Roof Insulated slope/Ceiling	Type Cavity Wal Cavity Wal Type External Sle	Simple calcu 250.00	-]	² K U-V (W/ 0. 0. 0. U-V (W/ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	/alue /m²K) .27 .25 /alue /m²K) .13	(m²) 387.71 48.87 Gross Area (m²) 138.38 30.68	3.20 m Nett Area (m²) 341.88 21.93 Nett Area (m²) 135.70 30.68	
8.0 Thermal Mass Param Thermal Mass 9.0 External Walls Description External Wall Stone External Wall Zinc 10.0 External Roofs Description Slope Roof Insulated slope/Ceiling Flat Roof	Type Cavity Wal Cavity Wal Type External Sleet	Simple calcu 250.00	-]	² K U-V (W/ 0. 0. U-V (W/ 0. 0. 0.	/alue /m²K) .27 .25 /alue /m²K) .13 .14	(m²) 387.71 48.87 Gross Area (m²) 138.38 30.68 17.86	3.20 m Nett Area (m²) 341.88 21.93 Nett Area (m²) 135.70 30.68 17.86	
8.0 Thermal Mass Param Thermal Mass 9.0 External Walls Description External Wall Stone External Wall Zinc 10.0 External Roofs Description Slope Roof Insulated slope/Ceiling	Type Cavity Wal Cavity Wal Type External Sle	Simple calcu 250.00	-]	² K U-V (W/ 0. 0. U-V (W/ 0. 0. 0.	/alue /m²K) .27 .25 /alue /m²K) .13	(m²) 387.71 48.87 Gross Area (m²) 138.38 30.68	3.20 m Nett Area (m²) 341.88 21.93 Nett Area (m²) 135.70 30.68	
8.0 Thermal Mass Param Thermal Mass 9.0 External Walls Description External Wall Stone External Wall Zinc 10.0 External Roofs Description Slope Roof Insulated slope/Ceiling Flat Roof	Type Cavity Wal Cavity Wal Type External Sleet	Simple calcu 250.00	-]	² K U-V (W/ 0. 0. U-V (W/ 0. 0. 0.	/alue /m²K) .27 .25 /alue /m²K) .13 .14	(m²) 387.71 48.87 Gross Area (m²) 138.38 30.68 17.86	3.20 m Nett Area (m²) 341.88 21.93 Nett Area (m²) 135.70 30.68 17.86	

12.0 Opening Types

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.14r10

Description	Data S	Source	Туре	Glazing		Glazing Gap	Argon Filled	G-val		rame Type	Frame Factor	U Value (W/m²K)
Glazing/Doors	Manu ^r r	facture	e Window	Double Low-E	Hard 0.2			0.72	2		0.70	1.60
Velux	•	facture	e Roof Window	Double Low-E	Hard 0.2			0.72	2		0.70	1.60
13.0 Openings												
Name	Opening Typ	е	Location	Orientation	Curtain Type	Overhang Ratio	Wide Overhang	Width (m)	Height (m)	Count	Area (m²)	Curtain Closed
East	Window		[2] External Wall Zinc	East	None	0.00					7.66	
East	Window		[1] External Wall Stone	East	None	0.00					11.83	
East	Roof Window	/	[1] Slope Roof	East	None						0.40	
North	Window		[2] External Wall Zind	North	None	0.00					13.63	
North	Window		[1] External Wall Stone	North	None	0.00					17.61	
North	Roof Window		[1] Slope Roof	North	None						0.48	
West	Roof Window		[1] Slope Roof	West	None						1.80	
West	Window		[2] External Wall Zind		None	0.00					5.65	
West	Window		[1] External Wall									
			Stone	West	None	0.00					5.83	
South	Window		[1] External Wall Stone	South	None	0.00					10.56	
14.0 Conservator	у		None									
15.0 Draught Pro	ofing		100				%					
16.0 Draught Lob	•		No				, ,					
17.0 Thermal Bri	-		Calculate Bri	dges								
17.1 List of Bridge			_									
Source Type		Bridge		de e e e e e e la Presenta		Length	Psi	Imported				
Table K1 - Appr Independently		E2 Oth E3 Sill	ner lintels (including o	ther steel lintels	5)	37.55 37.55	0.300 0.015	Yes Yes	CBA D	ataile		
Independently		E4 Jam	ah.			94.36	0.010	Yes	CBA D			
Table K1 - Appr			ound floor (normal)			61.72	0.160	Yes	CDA D	etalis		
Independently			ermediate floor withir	a dwelling		57.02	0.000	Yes	CBA D	etails		
Table K1 - Appr	roved		cony within a dwelling	_	า	3.20	0.000	No	05/15	ctano		
Table K1 - Appr			ives (insulation at raft	er level)		30.66	0.040	No				
Table K1 - Appr			able (insulation at raft			21.50	0.040	No				
Table K1 - Defa			at roof with parapet	,		21.75	0.560	No				
Independently			orner (normal)			55.20	0.062	No	CBA D	etails		
Independently	assessed	E17 Co	orner (inverted – inter	nal area greate	r than	33.76	-0.106	No	CBA D			
Table K1 - Defa			al area) ad of roof window			2.90	0.080	Yes				
Table K1 - Defa			of roof window			2.90	0.060	Yes				
Table K1 - Defa			nb of roof window			9.80	0.080	Yes				
Table K1 - Defa			ge (vaulted ceiling)			22.08	0.080	No				
Table K1 - Defa			t ceiling			11.00	0.060	No				
Y-value			0.052				W/m²K					
18.0 Pressure Tes	sting		Yes	<u> </u>								
Designed AP ₅	_		4.00				m³/(h.m²)	\ @ 5N Da	9			
Property Test			7.00				/ (11.111	, - 50 10	4			
As Built AP ₅₀	.cu :						m³/(h.m²)) @ 50 Pa	a			
			L				/ (11.111	, - 50 10	-			
19.0 Mechanical												
Summer Ove	_											
Windows	open in hot w	eathe	er Windows	s fully open								

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.14r10

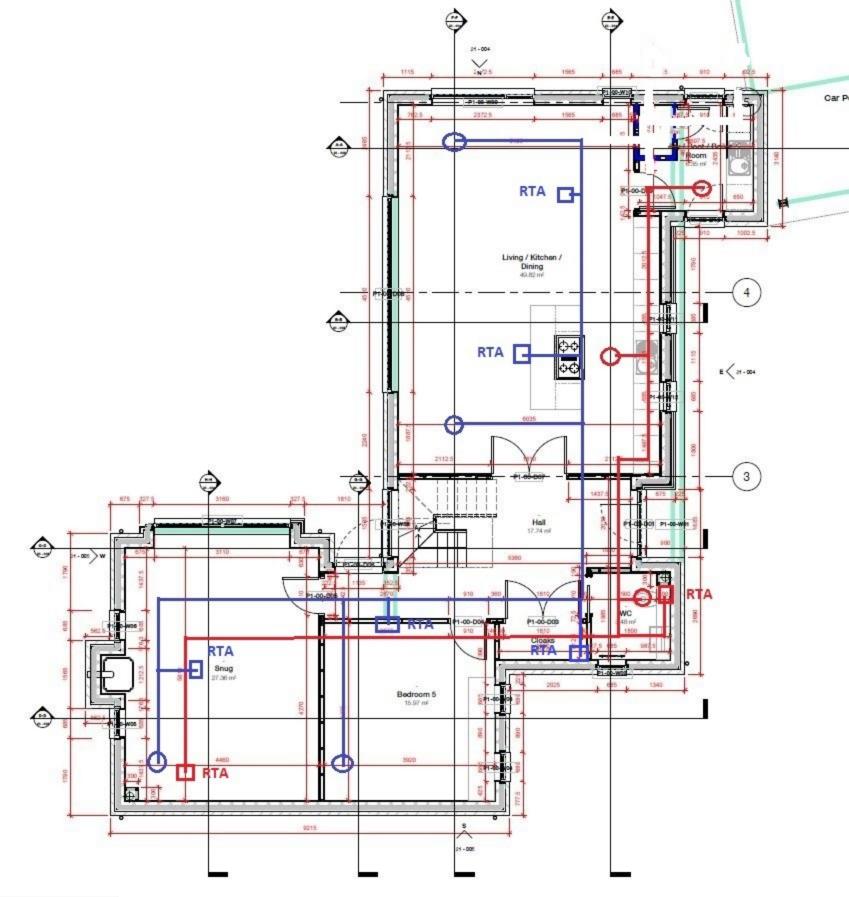
Cross ventilation possible	Yes				
Night Ventilation	No				
Air change rate	8.00				
Mechanical Ventilation					
Mechanical Ventilation System Preser	nt Yes				
Approved Installation	Yes				
Mechanical Ventilation data Type	Database				
Туре	Balanced m	nechanical vent	ilation with hea	at	
	recovery				
MV Reference Number	500201				
Configuration	6				
MVHR Duct Insulated	Yes				
Manufacturer SFP	1.35				
Duct Type	Rigid				
MVHR Efficiency	89.00				
Wet Rooms	6				
20.0 Fans, Open Fireplaces, Flues					
	MHS	SHS	Other	Total	
Number of Chimneys	0	0	0	0	
Number of open flues Number of intermittent fans	0	0	0	0	
Number of mermittent rans Number of passive vents				0	
Number of flueless gas fires				0	
21.0 Fixed Cooling System	No				
22.0 Lighting					
Internal					
Total number of light fittings	43			7	
Total number of L.E.L. fittings	43]	
Percentage of L.E.L. fittings	100.00				
External					
External lights fitted	Yes			7	
Light and motion sensor	Yes			1	
22.0 Florenista. Touitt	Standard			-' -	
23.0 Electricity Tariff	Standard				
24.0 Main Heating 1	Database				
Percentage of Heat	100			%	
Database Ref. No.	18035				
Fuel Type	Mains gas				
Main Heating	BGB				
SAP Code	102				
In Winter	90.5				
In Summer	79.8				
Controls	CBI Time and to	emperature zor	ne control		
PCDF Controls	0				
Delayed Start Stat	No				
Sap Code	2110			7	
Boiler Compensator	Ideal Boilers, Id	leal, PRT3		<u> </u>	
Flue Type	Balanced			<u> </u>	
	-			-	

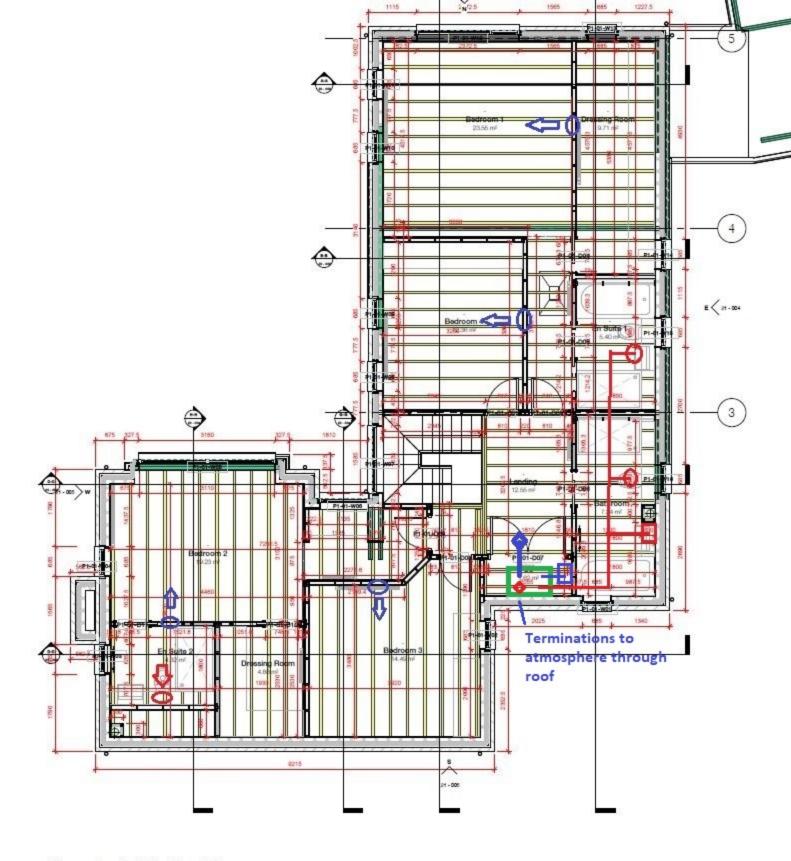
4.00 Sc	outh	30°	None Or Little	e Yes
32.0 Photovoltaic Unit PV Cells kWp O	One Dwelling rientation	Elevation	Overshading	Connected to Dwelling
31.0 Thermal Store	None			
Pipes insulation		d primary pipeworl	<	
Cylinder Volume	210.00			L
Insulation Thickness	80 mm			
Insulation Type	Foam			
Independent Time Control	Yes			
Cylinder In Heated Space	Yes			
Cylinder Stat	Yes			
29.0 Hot Water Cylinder	Hot Water Cy	linder		
SAP Code	901			
Water use <= 125 litres/person/day	Yes			
Solar Panel	No			
Waste Water Heat Recovery Storage System	No			
Waste Water Heat Recovery Instantaneous System 2	No			
Waste Water Heat Recovery Instantaneous System 1	No			
Flue Gas Heat Recovery System	No			
Water Heating	Main Heating	; 1		
28.0 Water Heating	HWP From m	ain heating 1		
Smoke Control Area	Unknown			
HETAS Approved System	Yes			
SAP Code	633			
SHS efficiency	65.00			%
Description		WM Closed room h		
Secondary Heating	SAP table			
27.0 Secondary Heating	RWM			
Community Heating	None			
25.0 Main Heating 2	None			
Flow Temperature	Unknown			
Underfloor Heating	Yes - Pipes in	Concrete		
Heat Emitter	Radiators and	d Underfloor		
Is MHS Pumped	Pump in heat	ed space		
Fan Assisted Flue	Yes			

Recommendations

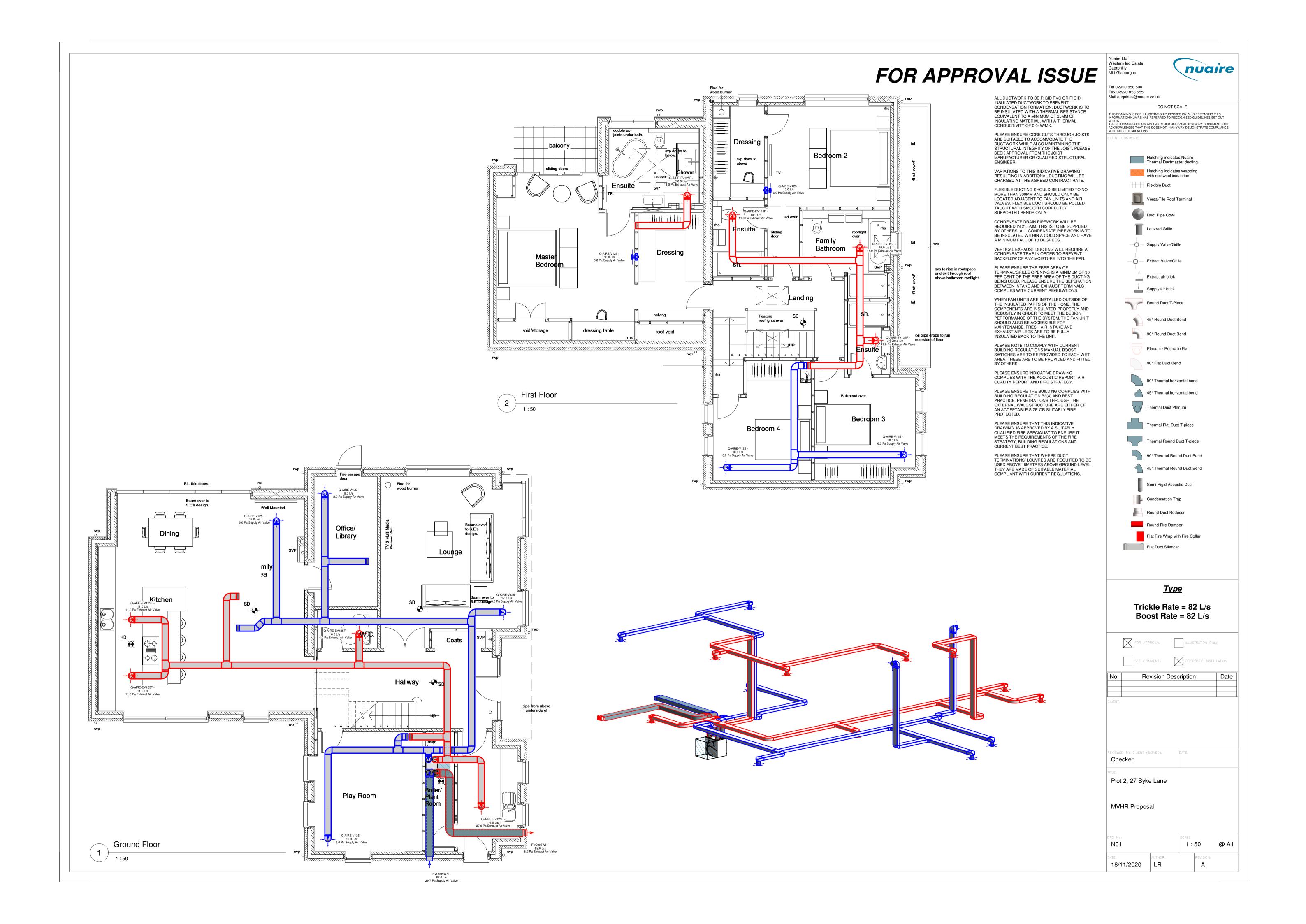
Lower cost measures

None


Further measures to achieve even higher standards


None

4. MVHR Details Plot 1



Plot 1 - Detailed First Floor Plan

5. MVHR Details Plot 2

