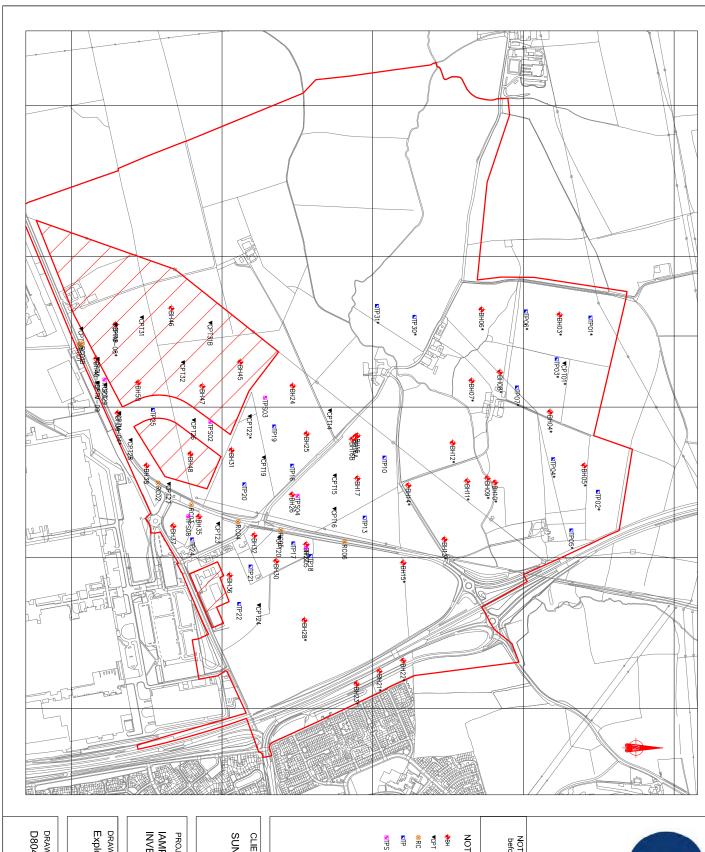


Appendix A: Drawings

Appendix A: Contents

O SYSTRA dwg 21B34-SK001 - Existing ground elevations and contour lines



Appendix B: Ground investigation information

Appendix B: Contents

- O Dunelm GI plan and borehole logs
- O Dunelm GI soakaway tests

Dunelm Geotechnical & Environmental Ltd Foundation House, St. John's Road, Meadowfield Durham, Db/T872
Tel: 0191 378 3151
Fax: 0191 378 3157
e-mail: admin@dunelm.co.uk
web: www.dunelm.co.uk

NOT TO SCALE: Contractor to check all dimensions on site before commencement of any works. No dimensions to be scaled from this drawing. © Copyright Reserved

NOTES

- ♦BH Location of Cable Percussive Borehole
- Location of Cone Penetration Test
- Location of Road Core
- Location of Machine Excavated Trial Pit
- Location of Machine Excavated Soakaway Test

CLIENT:

SUNDERLAND COUNTY COUNCIL

PROJECT TITLE:

IAMP - PRELIMINARY GROUND INVESTIGATION

DRAWING TITLE:

Exploratory Hole Location Plan

DRAWING NUMBER: D8044/02

Borehole BOREHOLE RECORD BH45 GL (m AOD) 35.63 Scale 1:50 Contract No: D8044 Site: IAMP - Preliminary Ground Investigation Easting: 433350.81 Northing: 559060.39 Client: Sunderland City Council Driller: PK/DC Logged By: BC Sheet 1 of 2 Method: Cable Percussive Drilling with Rotary Core Drilling Checked By: BL 02/08/2017 - 17/08/2017 **SAMPLE DETAILS** (Casing) Groundwate STRATA RECORD Depth Level Well/ Legend Description Depth (m) (m AOD) Backfill Insitu Testing Type From-To (m) 0.10 0.10 Dark brown slightly sandy slightly gravelly clayey TOPSOIL. (0.25) ES Gravel is subangular to rounded, fine to coarse of sandstone, 35.38 0.25 D 0.30 limestone, mudstone and coal. В 0.50 - 1.00 Firm brown slightly sandy slightly gravelly CLAY of high plasticity. Gravel is subangular to subrounded, fine to coarse (0.95)of sandstone, mudstone and coal. 1.20 - 1.65 1.20 - 1.65 1.20 34.43 Firm greyish brown slightly sandy slightly gravelly silty CLAY of intermediate plasticity. Gravel is subangular to subrounded, 49 blows fine to coarse of sandstone, limestone and mudstone. BRE 1.70 2.00 - 2.45 2.00 2.00 - 2.45 B D SPT (S) 2 (1.60) Dry N=15 (3,5/4,4,3,4) BRE U 3.00 - 3.45 22 blows D 3.45 BRE 3.70 4.00 - 4.45 4 (1.60) Dry B D SPT (S) 4.00 - 4.45 N=7 (1,2/2,2,1,2) BRE 4.50 U 5.00 - 5.45 16 blows (8.30)D 5.45 BRE 5.70 B D SPT (S) 6.00 - 6.45 6.00 6.00 - 6.45 (1.60) Dry N=9 (3,2/3,2,2,2) BRE 6.50 U 7.00 - 7.45 12 blows 7.00m: Clay of high plasticity. D 7.45 BRE 7.70 8.00 - 8.45 8 (1.60) Dry D SPT (S) 8.00 8.00 - 8.45 N=7 (3,2/2,1,2,2) BRE 8.50 9.00 - 9.45 · 9 (1.60) Dry SPT (S) 9.00 - 9.45 N=9 (2,3/2,2,3,2) BRE 9.50 9.50 9.50 26.13 Firm, greyish brown slightly sandy clayey SILT. Sand is fine to 10.00 - 10.65 ontinued on next she Hole Diameter Ground Water (m) Casing Depths selling / Hard Strata General Remarks Pepth Struck Casing Depth (m) (m) Nater seale (m) Diameter (mm) Diameter (mm) 1. Hand dug inspection pit to 1.20m. Minutes To (m) Time (hr) Depth (m) Vater Leve From (m) Depth (m) 13.20 og last updated 24/01/2018

									E	BORE	HOL	E RE	COR	D			Bore BH		
Contrac	ct No : D80)44				5	Site: IAN	MP -	Prel	iminary	Groun	d Invest	igation			GL (m AOI 35.63 Easting: 433350.81	, s	Scale 1:50 lorthing: 59060.39	
Client: 3	Sunderland	d City C	Cou	ncil								Drille	er: PK/DC	; L	ogged By: BC	Sheet 2 of			
Method:	: Cable Pe	ercussi	ve [Orilli	ng v	vith [Rotary C	ore	Drillii	ng		Che	cked By: E	BL		Dates:	02/08/2017	7 - 17/08/20	017
	SAMPLE	DETA	ILS				ng) water				9	ΤΡΔΤΔ	RECORI	n		Depth	Level		Well/
Туре	Depth From-To (m)		nsitu	Testi	ng		(Casing) Groundwater					Descr	iption			(m)	(m AOD)	Legend	Backfill
UF BRE D	10.00 - 10.64 10.70 10.70	4 blows							coar	se.	sandy sliç	ghtly grav	elly silty (CLAY (Sand is fine to of intermediate e to coarse of	10.70	24.93		
D	11.00 - 11.45	7 blows				-	11			dstone, m				,		10.70			
BRE D B D SPT (S)	11.70 11.90 12.00 - 12.45 12.00 12.00 - 12.45	N=30 (4,5	6/6,7,8	,9)			12 (11.90) D	ry	12.0	Om: Stiff.						(2.00)			
BRE D	12.50						13		plas		avel is su	bangular	to rounde		lly CLAY of low e to coarse of	12.70	22.93		
B D SPT (S) BRE D	13.20 - 13.65 13.20 13.20 - 13.65 13.60 13.70	N=39 (4,4	/6,8,1	0,15)			(12.10) \D		Very	dense li	ght browi	n sandy 0	RAVEL.	Grave	el is angular to	13.60	22.03		
D SPT (S)	13.80 13.89 = 14.99 14.99 = 14.99	N=50+ (8,	,17/40	,10 for	10mn) NI	03/08/2017 (13,80) 3. 14 (13.80) 3.	1700 107.70		angular, fi head).	ne to coa	arse of sa	ndstone.	(Wea	thered	(0.45)			
c	14.70 - 14.90 14.90 - 15.90		100	80	80	1 NI 0	15	vvalei	med subh infill. 14.6 brow	lium grair norizontal	ned SANI , planar, Fracture is a gravel infil	STONE. smooth, i	undulose	es are with lig	n fine to closely spaced, ght brown clay ulating with reddish	E	21.58		
С	15.80 - 15.90 15.90 - 16.30 16.30 - 17.70		90	91	90	3 A	16			6 - 15.77m: 0 - 15.94m:		30 degrees,	olanar and si	mooth.		(3.80)			
С	16.90 - 17.20		100	100	91	1 1	17		16.4 16.4	6m: Fracture 6 - 16.56m:	e is 10 degre Fractures a	ees, planar, re 30 degree	smooth with g s, planar, rou	grey cla ugh with	v infill. grey clay infill.	17.70 E (0.23)			
C C	17.70 - 19.10 18.00 18.20 - 18.40		100	80	62	NA 6	17.70 - 75 % 18	19.10 - Water	Med to m space Med	vel is ang lium stror ledium gr ced, subh lium stror	ular to sund to sund to strought of the strong to strong the strong the strong tension to strong tension the strong tension to strong tension the strong tension to strong tension the strong tension tension the strong tension tension the strong tension tens	ibangular ng, partia NDSTON , planar, s lly weathe	fine to colly weather to colly weather the left was to come the left with the left was the left	coarse ered lig cures a nd clea t grey t	ravelly CLAY. of sandstone. ght brown fine re closely an. ine grained n spaced,	(0.27)	17.93 17.70 17.43		
							19		subh Med to co space 18.8 18.9 slight	norizontal lium stror parse gra ped, subh 12m: Fracture 12 - 18.99m:	, planar, ig to stro ined SAN orizontal es are 20 de Fractures a clay infill. G	smooth a ng, partia IDSTONE , planar, s gree, planar e subhorizo ravel is angu	nd clean. Ily weather E. Fractur Ismooth ar Is smooth with Intal, planar, s	ered, li res are nd clea h black o smooth gular, fin	ght brown fine e closely an.	18.70 (0.40) 19.10	16.93 16.53		
	Ground Wate	er (m)	TCR%	SCR%	RQD%		selling / Hard	Strata		Casing	Depths	Hole D	iameter	Gene	ral Remarks				
Depth Struck Ca (m) 13.20 Log last upd	using Depth (m) Water Le 12.00 3.4	20		er seale (m)	"	om (m) 13.60	To (m)		ne (hr)	Diameter (mm) 200 150 140	Depth (m) 1.60 13.80 13.80	Diameter (mm) 200 150 121	Depth (m) 1.60 13.60 19.10	1. Ha	nd dug inspecti	on pit to 1.2	 0m.		

				Е	ORE	HOL	E RE	COR	D		Bore BH			
Contrac	ct No : D80)44	Site: IAM	IP - Preli	iminary	Ground	l Invest	igation		GL (m AOI 38.56 Easting: 433172.22	D) 8	Scale 1:50 lorthing: 58831.72		
Client:	Sunderland	d City Council	1				Drille	r: RH/DC	Logged By: BC	Sheet 1 of				
Method	: Cable Pe	ercussive Drilling with	n Rotary Co	ore Drilli	ng		Chec	ked By: .	IH	Dates:	10/08/2017	7		
Туре	SAMPLE Depth From-To (m)	Insitu Testing	(Casing) Groundwater			S ⁻	ΓRATA Γ Descri	RECORI ption	0	Depth (m)	Level (m AOD)	Legend	We Bac	
ES ES B D	0.20 0.40 0.50 0.60 - 1.20 0.60	HVP=57 kPa		TOP sand Firm Grav	SOIL. G dstone, m brownish vel is sub	ravel is sundstone, h grey slig angular to	ubangula siltstone htly sand subroun	r to round and coal. ly slightly ded, fine	y slightly clayey led, fine to coarse of gravelly CLAY. to coarse of Occasional rootlets	(0.10) 0.10 (0.40) 0.50	38.46 38.06			
BRE D UT	1.00 1.00 1.20 - 1.65	54 blows	1	grav	orangish elly CLA\ ıbrounde	Y of intern	nediate pl	asticity.	y sandy slightly Gravel is subangular ne, mudstone and	(1.70)				
BRE D B D SPT (S)		N=50+ (25 for 40mm/50 for 50mm)	2 (2.00) Dry	occa	sional co	obbles. Ğ ndstone, n	ravel is s	ubangula	gravelly CLAY with r to rounded, fine to and coal. Cobbles	2.20	36.36			
B BRE D B UT	3.00 3.00 3.00 3.20 - 3.70 3.20 - 3.65	94 blows	3	3.20	m: Clay of lo	ow plasticity.								
U D	3.80 - 4.25 4.25	150 blows	4											
BRE D B D SPT (S)	4.80 4.80 5.00 - 5.50 5.00 5.00 - 5.45	N=31 (5,7/7,7,8,9)	- 5 (4.50) Dry							(5.70)				
BRE D U	5.80 5.80 6.00 - 6.45	135 blows	6		m: Clay of in	ntermediate <u>r</u> m.	lasticity.							
BRE D B D SPT (S)	6.80 6.80 7.00 - 7.50 7.00 7.00 - 7.44	N=50+ (7,9/9,12,15,14 for 60mm	7 (6.00) Dry											
BRE D D D SPT (S)	7.80 7.80 7.90 8.00 8.29 = 9.89	N=50+ (12,13 for 10mm/50 f 5rN 1		to su		r, fine to c			L. Gravel is angular (Weathered	7.90 (0.30)	30.66 30.36		,-	
SPT (C)	8.10 - 8.17 8.20 - 9.60	20mm) N=0 (25 fdr 40mm,0 fdr 30mm/) 100 92 61 4	75 % V	Very SILT plan 8.22 on fr	weak to STONE. ar, smoot - 8.53m: Su acture surfa	weak, pa Fractures th, clean. ubvertical, ste	are clos	ely space th, clean wit	orownish grey ed subhorizontal h light brown discolouration sy siltstone gravel.	(1.87)				
С	9.50 - 9.60 9.60 - 11.10 Ground Wate	TCR%SCR% ROD% FI	10 Chiselling / Hard S	Strate	Carin	C Depths	ontinued or Hole Di	n next shee	General Remarks	E. E. E. E.				
Depth Struck Ca (m)		1	m) To (m)	Time (hr) 00:45 01:00	Diameter (mm) 200 140	Depth (m) 7.50 11.00	Diameter (mm) 200 116	Depth (m) 8.20 30.60	Hand dug inspection No groundwater enc		Om.			
Log last upo	dated 24/01/201	8												

Borehole BOREHOLE RECORD BH46 GL (m AOD) 38.56 Scale 1:50 Contract No: D8044 Site: IAMP - Preliminary Ground Investigation Easting: 433172.22 Northing: 558831.72 Client: Sunderland City Council Driller: RH/DC Logged By: BC Sheet 2 of 4 Method: Cable Percussive Drilling with Rotary Core Drilling Checked By: JH Dates: 10/08/2017 **SAMPLE DETAILS** STRATA RECORD Depth Level Well/ SCR % Legend Depth (m) (m AOD) Backfill Description 유 FI Type N (cu) From-To (m) 10.10 - 10.22 10.07 28.49 Very weak to weak, partially weathered, thinly laminated, brownish dark grey MUDSTONE. Fractures are closely to medium spaced subhorizontal, planar, smooth, undulose, 100 100 97 3 (1.84) 11.10 - 30.60 95 % Water 11.10 - 12.60 11.32 - 11.34m: Subhorizontal, planar, smooth with light grey clay infill. 100 84 95 11.91 26.65 11.88 - 11.91m: Subhorizontal, planar, smooth with light grey clay infill. Very weak to weak, partially weathered, thinly laminated grey 12 С 12.20 - 12.35 MUDSTONE. Fractures are closely spaced subhorizontal, planar, smooth, clean. (Drillers description). 12.60 - 14.10 12.53 - 12.60m: Fractures are frequent, interlock and orientated. 12.93 - 12.95m: 15 degree, planar, smooth with light grey clay infill. 13 100 100 97 С 13.30 - 13.40 3 14 13.96 - 13.98m: 15 degree, planar, smooth with light grey clay infill. 14.10 - 15.60 14.20 - 14.30 С 14.37m: Subhorizontal, stepped, smooth, clean fractures. 100 100 100 14.70 - 14.71m: 20 degree planar, smooth with light grey sandstone gravel infill. 14.86 23.70 Medium strong to strong, unweathered, grey fine grained 15 SANDSTONE. Fractures are closely to medium spaced between 20-30 degrees, planar, smooth, clean. 15.28 - 15.33m: Very weak to weak blue, grey mudstone band. 15.60 - 17.10 15.70 - 16.05 С 16.05 - 16.08m: Subhorizontal planar, smooth with light grey clay infill. 100 100 87 16.58 - 16.62m: Weak blue, grey mudstone band. 17.10 - 18.60 17.10 - 17.27m: Subvertical, planar, smooth, undulose, clean fracture 2 100 100 61 18 18.60 - 20.10 19 100 100 93 19.70 - 19.74m: Weak thinly laminated blue, grey mudstone band. - 20 20.10 - 21.60 inued on next she Hole Diameter Ground Water (m) elling / Hard Strata Casing Depths General Remarks epth Struck Casing Depth (m) (m) 1. Hand dug inspection pit to 1.20m. Water seale Diameter Diameter Vater Lev Minutes To (m) Time (hr) Depth (m) From (m) Depth (m) (mm) (mm) No groundwater encountered. og last updated 24/01/2018

Borehole BOREHOLE RECORD BH46 GL (m AOD) 38.56 Scale 1:50 Contract No: D8044 Site: IAMP - Preliminary Ground Investigation Easting: 433172.22 Northing: 558831.72 Client: Sunderland City Council Driller: RH/DC Logged By: BC Sheet 3 of 4 Method: Cable Percussive Drilling with Rotary Core Drilling Checked By: JH Dates: 10/08/2017 **SAMPLE DETAILS** STRATA RECORD Depth Level Well/ Legend Depth Description (m) (m AOD) Backfill FI Type N (cu) From-To (m) 18.22 20.34 Very weak, partially weathered, grey MUDSTONE. Fractures are closely spaced between 5 - 20 degree, planar, smooth, (0.51)100 100 90 20.85 17.71 Medium strong to strong, partially weathered, grey fine to medium grained SANDSTONE. Fractures are subhorizontal, planar, smooth, clean. 21.60 - 23.10 22 100 100 67 22.38m: Fractures are subhorizontal, planar, smooth, undulose with grey clay infill. <u>22.59 - 22.88m: Subvertical planar, smo</u>oth, undulose, clean fractures. 23 23.10 - 24.60 100 100 100 24 24.60 - 26.10 25 100 100 2 25.60m: Fractures are subhorizontal, planar, smooth, undulose with light grey clay infill. (9.75) 26 26.10 - 27.60 100 100 0 , 26.89m: Fractures are subhorizontal, planar, smooth with light grey clay infill. 26.96m: Fractures are subhorizontal, planar, rough with grey clay infill. 27 27.20m: Fractures are subhorizontal, planar, smooth with light grey sandstone 27.60 - 29.10 28 100 100 100 29 29.10 - 30.60 100 100 100 30 inued on next she Hole Diameter Chiselling / Hard Strata Casing Depths Ground Water (m) General Remarks epth Struck Casing Depth (m) (m) 1. Hand dug inspection pit to 1.20m. Water seale (m) Diameter (mm) Diameter Minutes To (m) Time (hr) Depth (m) Depth (m) Vater Lev From (m) (mm) No groundwater encountered. og last updated 24/01/2018

								В	ORE	HOLI	E RE	CORI)		Bore		
									, O. (L			J J I I I			BH	46	
Camtua	ct No: D80	.4.4					2:4a. IAN	ID Deal		Crauna	Llovosti	ia atia a		GL (m AOI 38.56	D) s	Scale 1:50	
Contra	Ct NO: D80	44					Site: IAM	iP - Preii	minary	Ground	rinvest	igation		Easting: 433172.22	N : 5	orthing: 58831.72	
Client:	Sunderland	City C	Cour	ncil							Drille	r: RH/DC	Logged By: BC	Sheet 4 of			
Method	: Cable Pe	rcussi	ve [Orilli	ng v	vith I		ore Drillir	ng		Chec	ked By: J	Н	Dates:	10/08/2017	7	
	SAMPLE	DETA	_				ng) water			S	ΓΡΔΤΔ Ε	RECORE	1	Depth	Level		Well/
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater				Descri			(m)	(m AOD)	Legend	Backfill
			-	S	2		<u> </u>										
											d of Donaha	le at 30.60 r		30.60	7.96		
										EIR	or Borello	ie at 30.00 i					
							31										
							32										
							02										
														Ē			
							33										
														=			
							34										
														Ē			
							35										
							36										
							37										
							01										
														Ē			
							38										
														Ē			
							39										
														Ē			
							40										
						딕											
Depth Struck C	Ground Water		Wate	er seale	d _		selling / Hard		Diameter	Depths	Hole Di		General Remarks 1. Hand dug inspectior	nit to 1 20	Om.		•
(m)	asing Depth (m) Water Le	vel Minutes		(m)	1 '''	om (m) 2.20 8.00	To (m) 2.60 8.20	Time (hr) 00:45 01:00	(mm) 200 140	7.50 11.00	(mm) 200 116	8.20 30.60	No groundwater enc	countered.	viII.		
						8.00	8.20	U1:00	140	11.00	116	30.60					
Log last up	dated 24/01/201	8	1		1												

Borehole BOREHOLE RECORD BH47 GL (m AOD) 36.54 Scale 1:50 Contract No: D8044 Site: IAMP - Preliminary Ground Investigation Easting: 433430.80 Northing: 558934.44 Client: Sunderland City Council Driller: PK/DC Logged By: AH Sheet 1 of 3 Method: Cable Percussive Drilling with Rotary Core Drilling Checked By: JH 07/08/2017 - 18/08/2017 **SAMPLE DETAILS** STRATA RECORD Depth Level Well/ Legend Depth Description (m AOD) Backfill Insitu Testing Type From-To (m) 0.10 0.10 MADE GROUND: Brown slightly sandy slightly gravelly clayey ES topsoil. Gravel is subangular to rounded, fine to coarse of 0.30 HVP=25 kPa (0.60)sandstone, mudstone, coal and brick. 0.60 35.94 0.70 0.70 0.70 0.80 - 1.20 0.80 Firm, dark brown mottled grey, slightly sandy slightly gravelly ES CLAY of intermediate plasticity. Gravel is subangular to HVP=66 kPa subrounded, fine to coarse of sandstone, mudstone, siltstone В and coal. BRE 1.20 - 1.65 29 blows 1.20m: Stiff D 1.65 (2.50)BRE 1.90 2 (1.60) Dry 2.00 2.00 - 2.45 D SPT (S) N=14 (2,2/3,3,4,4) BRE 2.50 U 3.00 - 3.45 22 blows 3.10 33.44 Firm, dark brown mottled grey, silty slightly sandy slightly gravelly CLAY of intermediate plasticity. Gravel is subangular D 3.45 to rounded, fine to coarse of sandstone, mudstone and siltstone. BRE 3.70 (1.20)4 (1.60) Dry B D 4.00 - 4.45 4.00 SPT (S) 4.00 - 4.45 4.30 N=12 (1,2/2,3,4,3) 32.24 4.30 Firm thinly laminated greyish brown silty slightly sandy slightly BRE 4.50 gravelly CLAY. Gravel is subangular to subrounded, fine to coarse of sandstone, mudstone and siltstone. UT 5.00 - 5.45 12 blows 5.00m: Clay of low plasticity. D 5.45 BRE 5.70 B D SPT (S) 6.00 - 6.45 6.00 6.00 - 6.45 6 (1.20) Dry (3.70)N=13 (2,3/3,3,3,4) BRE 6.50 7.00 - 7.45 22 blows BRE 7.70 8.00 - 8.45 8 (1.60) Dry 8.00 28.54 Stiff greyish brown silty slightly sandy CLAY of low plasticity. D SPT (S) 8.00 8.00 - 8.45 N=20 (5,5/6,5,5,4) BRE 8.50 (1.50)9.00 - 9.45 18 blows UT D 9.45 9.50 27.04 Firm, slightly sandy slightly gravelly CLAY with frequent BRF 9 70 cobbles. Gravel is subangular to subrounded, fine to coarse of sandstone, mudstone, limestone and coal. Cobbles are of 10 (9.90) Dn selling / Hard Strata Ground Water (m) General Remarks epth Struck Casing Depth (m) (m) Nater seale (m) Diameter (mm) Diameter 1. Hand dug inspection pit to 1.20m. To (m) Vater Lev Minutes Depth (m) Depth (m) From (m) 15.30 og last updated 24/01/2018

								BOREHOLE RECORD Borehole BH47	
Contrac	ct No: D80)44					Site: IAMP	- Preliminary Ground Investigation GL (m AOD) 36.54 Easting: Northing: 433430.80 558934.44	
Client:	Sunderland	d City C	Cou	ncil				Driller: PK/DC Logged By: AH Sheet 2 of 3	
Method :	: Cable Pe	ercussi	ve [Orilli	ing \	with	Rotary Core	e Drilling	
	SAMPLE	DETA	ILS				g) ater		
Туре	Depth From-To (m)	li	nsitu	Test	ting		(Casing) Groundwater	STRATA RECORD Description Depth (m AOD) Degend We Bac	
D SPT (S)	10.00 10.00 - 10.37	N=50+ (5,	9/12,1	11,27 1	for 70n	nm)		Firm, slightly sandy slightly gravelly CLAY with frequent cobbles. Gravel is subangular to subrounded, fine to coarse	
BRE	10.50							of sandstone, mudstone, limestone and coal. Cobbles are of	
U	11.00 - 11.45	56 blows					- 11	sandstone. 10.00m: Very stiff. 11.00m: Clay of low plasticity.	
D	11.45								
BRE	11.70						07/08/2017		
B D SPT (S)	12.00 - 12.45 12.00 12.00 - 12.44	N=50+ (7,	10/12	,14,14	4,10 foi	r	(10.90) Dry 08/08/2017 0800 12 (10.90) Dry (11.90) Dry		
BRE D	12.50 12.70	70mm)							
B D SPT (S)	13.00 - 13.45 13.00 13.00 - 13.38	N=49 (25/	12,11,	,11,15	i)		- 13 (12.90) Dry		
BRE	13.50								
D	13.80								
B D	14.00 - 14.40 14.00						14 (13.90) Dry		+
SPT (S)	14.00 - 14.22	N=50+ (2 ⁻ 60mm)	1,4 for	10mr	m/21,2	9 for			
D	14.80							Very dense yellowish brown sandy GRAVEL. Gravel is	
							15	subangular to angular, fine to coarse of sandstone. (Weathered sandstone, rockhead).	+
SPT (S)	15.20 - 16.70 15.305-36-79 15.305-305-39	N=50+ (25	for 4	kmm/	(50 for	NI	08/08/2017 1760 (15 000 Dry	Weak, partially weathered, light brown fine to medium	
SPT (S)	15.30 - 15.39	45/11990+ (25 for 45mm/50 for				3	08/08/2017 1789 (15/06) 5 Water 08/08/2017/1700 (15.00) Dry (15.00) Dry	ry subhorizontal, planar, smooth and clean. Below 16.62m	
C	15.47 - 15.89 16.10 - 16.29	45mm)	100	72	53		- 16		
C	10.10 - 10.29							16.25 - 16.70m: Subvertical, planar, smooth, clean fracture. 16.40 - 16.62m: Frequent subvertical fractures with brown clay infill.	
С	16.70 - 16.83					40	16.70 - 18.20	(2.75)	
	16.70 - 18.20						60 % Water	er E E E E E E E E E E E E E E E E E E E	
			100	100	100	3		17.50 - 18.00m: Dark red staining.	
С	17.70 - 17.84							17.50 - 16.00m. Dan fed staining.	
							18	18 05 18 49	
	18.20 - 19.70					1	18.20 - 19.70 45 % Water	Weak, partially weathered, orange brown tine, predominantly	
						12	-10 70 TYRIGI	subhorizontal, planar, smooth with dark red staining. 18.05 - 19.05m: Subvertical, undulose fracture with orange staining. (1.00)	
			100	80	20	-	19	19.04 - 19.06m: Dark red brown clay.	
						20		Extremely weak, partially weathered, thinly to thickly bedded red brown MUDSTONE with occasional thin laminae of	
						30		siltstone. Fractures are very closely spaced, subhorizontal,	
	19.70 - 20.70					10	19.70 - 20.70 90 % Water	19.38m: Subvertical, planar, smooth, clean fracture.	
	Ground Wate	er (m)	TCR%	SCR9	% RQD%	FI	iselling / Hard Strat	Continued on next sheet 20.00 16.54 ata Casing Depths Hole Diameter General Remarks	
epth Struck Ca	asing Depth (m) Water Le	evel Minutes		er seale	ed Fr	om (m)		Time (hr) Diameter (mm) Depth (m) Depth (m) (mm) Depth (m) Diameter (mm) Depth (m) Diameter (mm) Depth (m) Diameter (mm) Depth (m) Diameter (mm) Depth (m) D	
15.30	14.90 11.8	20		v-11		10.30 12.80 13.90 14.40 14.90	13.10 (14.20 (14.50 (00:30 200 1.60 200 1.60 01:00 150 15.00 150 15.30 00:45 140 18.00 121 20.70 01:00	
og last upo	dated 24/01/201	8							

								F	ORF	HOLI	F RF	CORI	<u> </u>			Bore	hole	
																ВН	47	
Contro	ct No: D80	11					Sitor IAN	ID Drali	minon	Crouns	Llovoot	iaation			GL (m AOI 36.54	^{D)} s	cale 1:50	
Contrac	EL NO: D80	44				1	Site: IAM	iP - Preii	minary	Ground	ı invesi	igation			Easting: 433430.80	N 5	orthing: 58934.44	
Client: 3	Sunderland	City C	our	ncil							Drille	r: PK/DC	Log	ged By: AH	Sheet 3 of			
Method	: Cable Pe	rcussiv	ve D	Drillii	ng v	vith I		ore Drillin	ng		Chec	ked By: J	Н		Dates:	07/08/2017	7 - 18/08/2	017
	SAMPLE	DETA					ng) water			s	ΓΡΑΤΑ Ε	RECORE)		Depth	Level		Well/
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater				Descri	ption			(m)	(m AOD)	Legend	Backfill
			100	40	10	28		Extr	emely we	ak to wea	ık, partial	nooth, clean ly weathe are subho	red, darl	k grey red	(0.40)			
						NI		smo	oth with o	occasiona	I clay infil	I.		to coarse of	(0.30)	16.14		
								\ mud	stone. (V	Neathere	MUDST	ONE). O	ccásion	al very thin	20.70	15.84		
						ŀ	21				d of Boreho	le at 20.70 r	n					
							22											
						ŀ									E			
															E			
						ŀ	23											
															Ē			
							24								_			
															E			
															E			
						ŀ	25											
						ŀ	26											
															E			
						ŀ	27											
															E			
															Ē			
							28								Ē.			
															E			
															E			
															Ē			
						ŀ	29											
						\dashv	30											
	Ground Wate	er (m)	_				selling / Hard	Strata	Casing	Depths	Hole Di	ameter	General	Remarks				
	using Depth (m) Water Le	vel Minutes	Wate	r seale (m)	1	om (m)	To (m)	Time (hr)	Diameter (mm)	Depth (m)	Diameter (mm)	Depth (m)		dug inspection	on pit to 1.2	0m.		
15.30	14.90				1 1	0.30 2.80 3.90	10.50 13.10 14.20	00:30 01:00 00:45	200 150 140	1.60 15.00 18.00	200 150 121	1.60 15.30 20.70						
					1	4.40 4.90	14.50 15.30	00:20 01:00										
Log last upo	lated 24/01/201	8			1													

Borehole BOREHOLE RECORD BH48 GL (m AOD) 35.44 Scale 1:50 Contract No: D8044 Site: IAMP - Preliminary Ground Investigation Easting: 433655.60 Northing: 558895.29 Client: Sunderland City Council Driller: PK/DC Logged By: BC Sheet 1 of 3 Method: Cable Percussive Drilling with Rotary Core Drilling Checked By: JH 08/08/2017 - 18/08/2017 **SAMPLE DETAILS** (Casing) Groundwate STRATA RECORD Depth Level Well/ Legend Depth Description (m) (m AOD) Backfill Insitu Testing Type From-To (m) 0.10 0.10 Dark brown slightly sandy slightly gravelly clayey TOPSOIL. ES Gravel is subangular to rounded, fine to coarse of sandstone, (0.50)0.40 0.50 0.50 0.60 - 1.20 0.60 0.70 limestone, mudstone, siltstone and coal. HVP=26 kPa 0.50 34.94 Firm, brown mottled light brown, slightly sandy slightly gravelly CLAY of high plasticity. Gravel is subangular to subrounded, B BRE fine to coarse of sandstone, mudstone and coal. (0.80)HVP=68 kPa U 1.20 - 1.65 29 blows 1.30 34.14 Firm brown, mottled light grey, slightly sandy slightly gravelly CLAY of intermediate plasticity. Gravel is subangular to D 1.65 rounded, fine to coarse of sandstone, mudstone and coal. 1.90 2.00 - 2.45 2.00 2.00 - 2.45 BRE 2 (1.60) Dry 2.00m: Stiff D SPT (S) N=17 (2.3/3.4.5.5) (2.15)BRE U 3.00 - 3.45 15 blows D 31.99 3.45 3.45 Firm, thinly laminated, greyish brown, slightly sandy slightly gravelly CLAY. Gravel is subrounded to rounded, fine to BRE 3.70 coarse of sandstone, mudstone and coal. 4.00 - 4.45 4 (1.60) Dry B D SPT(S) 4.00 - 4.45 N=9 (1,2/2,2,2,3) BRE 4.50 UT 5.00 - 5.45 9 blows 5.00m: Clay of intermediate plasticity. D 5.45 BRE 5.70 B D SPT (S) 6.00 - 6.45 6.00 6.00 - 6.45 6 (1.60) Dry N=10 (2,2/2,2,3,3) 08/08/2017 1700 (1.60) Dry 09/08/2017 0800 (1.60) 2.10 BRE 6.50 7.00 - 7.45 12 blows (7.35)D 7.45 BRE 7.70 8.00 - 8.45 8 (1.60) Dry 8.00m: Clay of high plasticity. 8.00 8.00 - 8.45 D SPT (S) N=9 (2,2/2,2,2,3) BRE 8.50 9.00 - 9.45 10 blows UT D 9.45 BRE 9 70 ontinued on next she Hole Diameter selling / Hard Strata Casing Depths Ground Water (m) General Remarks epth Struck Casing Depth (m) (m) Nater seale (m) Diameter (mm) Diameter (mm) 1. Hand dug inspection pit to 1.20m. To (m) Time (hr) Depth (m) Vater Lev Minutes Depth (m) From (m) 18.00 og last updated 24/01/2018

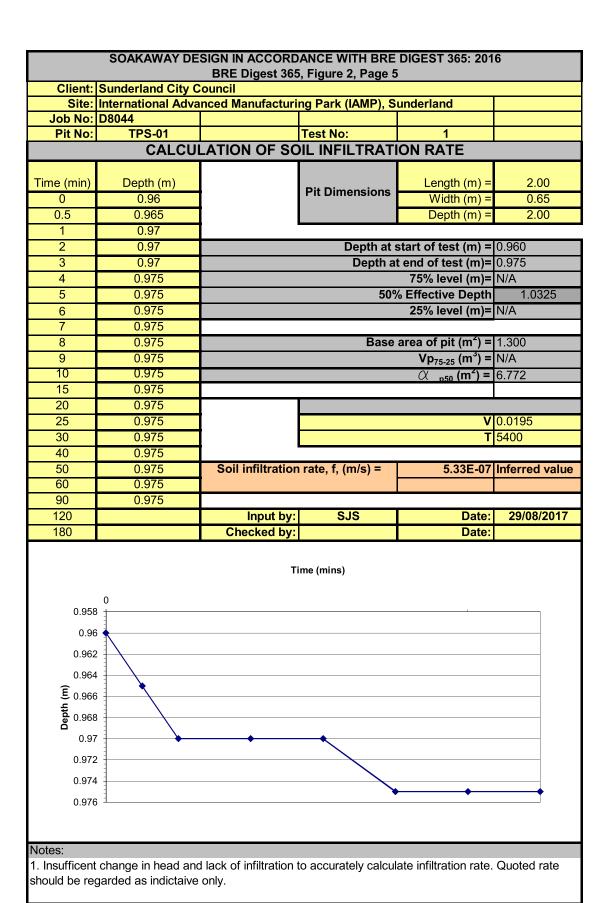
								BORE	HOL	E RE	COR	D		Bore BH		
Contrac	ct No: D80)44			:	Site: IAN	/IP - Pr	eliminary	Ground	d Invest	igation		GL (m AOI 35.44 Easting: 433655.60	N	Scale 1:50 lorthing: 58895.29	
Client: S	Sunderland	d City C	Counc		1					Drille	r: PK/DC	Logged By: BC	Sheet 2 of	3		
Method:	Cable Pe			ling	with		ore Dri	lling		Chec	ked By:	JH	Dates:	08/08/2017	7 - 18/08/20	017
Туре	Depth From-To (m)		ILS nsitu Te	sting		(Casing) Groundwater			S	TRATA I Descr		D	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D SPT (S) BRE	10.00 10.00 - 10.45 10.50	N=10 (1,2	1/2,2,3,3)				gr		Y. Gravel	is subrou	unded to	ghtly sandy slightly rounded, fine to l.				
D B UF	10.90 11.00 - 11.65 11.00 - 11.65	4 blows			-	11		oft, thinly la asticity.	minated s	lightly sa	ndy silty (CLAY of intermediate	10.80	24.64		
BRE D B D SPT (S) BRE	11.70 11.80 12.00 - 12.45 12.00 12.00 - 12.45 12.50	N=22 (3,4	/4,5,6,7)			12 (11.90) Dr	y su					y CLAY. Gravel is sandstone, mudstone	11.80	23.64		
U	13.00 - 13.45	60 blows				13	1	3.00m: Clay of	low plasticity	<u>. </u>						
D	13.45												E			
BRE B D	13.70 14.00 - 14.45 14.00					14 (12.40) Dr	у									
SPT (S) BRE	14.00 - 14.45 14.50	N=29 (4,5	5/7,8,8,6)													
B D SPT (S) BRE	15.20 - 15.65 15.20 15.20 - 15.64 15.70	N=50+ (6, 70mm)	,8/13,14,1	I,12 for	[15 (12.40) Dr	у						(6.20)			
U	16.00 - 16.45	72 blows				16							-			
D	16.45												E			
BRE B D SPT (S)	16.70 17.00 - 17.45 17.00 17.00 - 17.20	N=50+ (9,	,16 for 55r	nm/50)		17 (12.40) Dr	у									
BRE B	17.50 18.00 - 18.30					18 (12.40) D 1							18.00	17.44		
D SPT (S) D	18.00 18.00 - 18.14 18.30	N=50+ (1: 55mm)	5,10 for 15	mm/50	for	(12.40) 4.7	70 VE SL (V	bangular to /eathered \$	o angular, SANDSTO	fine to co DNE).	parse of s		(0.50)			
C C	18.80 - 28.50 18.50 - 20.00		100 8		NI 0 12 % FI	- 09/98/29/17/17 (12-40) 18.50 - 80 % 19	20.00 Water Clouds Clou	earse graine osely space ay infill. 8.83 - 18.85m: own clay infill. 8.90 - 19.01m: erry weak to ained SAN terlocking f	ed SANDS ed, subhor Fractures are weak, pa DSTONE, ractures. ng to stror	STONE. rizontal, p e subhorizor e 60 degree rtially we. Frequel ng, partial continued or	Fractures planar, sm ntal, planar, s s, steeped, s athered, l nt randon lly weather n next shee	wred, brown fine to a revery closely to mooth with localised smooth, undulose with light smooth and clean. brown fine to coarse ally orientated ered, light brown fine	18:58 (0.79) (0.79) (0.15) (0.33) (0.33) (0.16) 19.93	16.94 16.15 16.00 15.67 15.51		
Depth Struck Ca		1	Water se	aled _E	Chi rom (m)	selling / Hard To (m)	Strata Time (hr	Diameter	Depths Depth (m)	Diameter	Depth (m)	General Remarks 1. Hand dug inspection	n pit to 1.20	0m.		
(m) 18.00	(m) Water Le	20	* (m)		14.90 17.10 18.00	15.10 17.20 18.30	00:20 00:20 01:00	(mm) 200 150 140	1.60 11.50 22.50	(mm) 200 150 121	10.00 18.50 23.50		,			
Log last upd	lated 24/01/201	8	1													

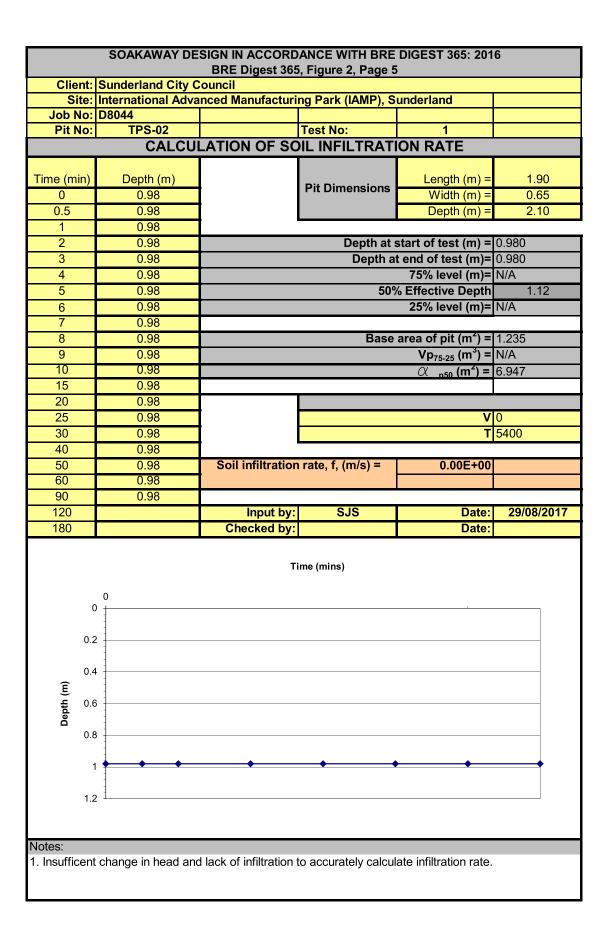
									F	BORE	HOL	F RF	COR	ח				Bore	hole	
											IIOL							ВН	48	
Contra	ict No: D80)44					Site:	IAMP -	- Prel	iminary	Groun	d Invest	igation				GL (m AOI 35.44 Easting: 433655.60	, s	Scale 1:50 lorthing: 58895.29	
Client:	Sunderland	d City C	Cou	ncil								Drille	er: PK/DC	;	Logged By: B	3C	Sheet 3 of		36693.29	
	d: Cable Pe				ng v	with	Rota	ry Core	Drilli	ng		Che	cked By:	JH			Dates:	08/08/2017	7 - 18/08/20	017
	SAMPLI	DETA	ILS					ater			_			_						
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI		(Casing) Groundwater					iption	ט			Depth (m)	Level (m AOD)	Legend	Well/ Backfill
С	20.95 - 21.10		100	85	44	NI 5		20.00 - 21.30 50 % Water	Wea coar clos clay 19.8	se graine ely space infill. 2 - 19.93m: lium stron	ium strored SAND ed, subho Fractures a	ng, partial STONE. rizontal, _l re subvertice ng, partia	ly weathe Fractures planar, sn ol. planar, sm lly weathe	s are nooth	orown fine to very closely to with localised and clear reddish brown ares are mediu	d <u>n.</u>	(0.49) = 20.42 = (0.10) = 20.52 = (0.61)	15.02 14.92		
С	21.30 - 22.50 21.50 - 21.60		100	83	56	4	- 22	21.30 - 22.50 60 % Water	Wea fine orier Med coar 20.7 21.0 21.0	to medium ntated into lium stron rse graine 6 - 20.88m: 1m: Fracture 6 - 21.11m:	ium strorm graine erlocking to stroed SAND Fracture is essubhori.	ng, partial d SANDS fractures ng, partia STONE. 35 degrees, contal, plana 25 degrees,	ly weathe TONE. F i. Ily weather planar, smo r, smooth with	ered, in requirements of the second s	reddish browr ent randomly brown fine to	n rey	21.13 (0.10) 21.23	14.31 14.21		
	22.50 - 23.50		90	90	62	A	- 23	22.50 - 23.50 90 % Water	disce Firm Wea SILT subh 21.7 infill. 22.5	olouration or h brown slak to med STONE. horizontal 6 -21.79m: F	isurface of lightly sa lium stroi Fracture , planar, racture is s	fracture. ndy CLA\ ng, partial es are clo smooth a ubhorizontai	/. ly weathe sely to me nd clean. f, planar, smo	ered, q edium ooth wii	greyish brown n spaced, th reddish brown o	clay	(2.27)			
							- 24 - 25 - 26 - 27 - 28				Fracture is	subhorizonta			ith brown clay infil.	u.		11.94		
Depth Struck	Ground Water Le		Wate	er seale	ed .		1	/ Hard Strat		Casing	Depths	Hole D	iameter		eral Remarks		nit to 1 2	Om.	ı	
(m) 18.00	(m) Water Le	evel Minutes	rrall	(m)		om (m) 14.90 17.10 18.00	15	5.10 (7.20 (me (hr) 00:20 00:20 01:00	200 150 140	Depth (m) 1.60 11.50 22.50	200 150 121	Depth (m) 10.00 18.50 23.50	1. H	and dug inspe	SCHOR	ι ριι ιΟ 1.2	UIII.		
Log last up	odated 24/01/201	8																		

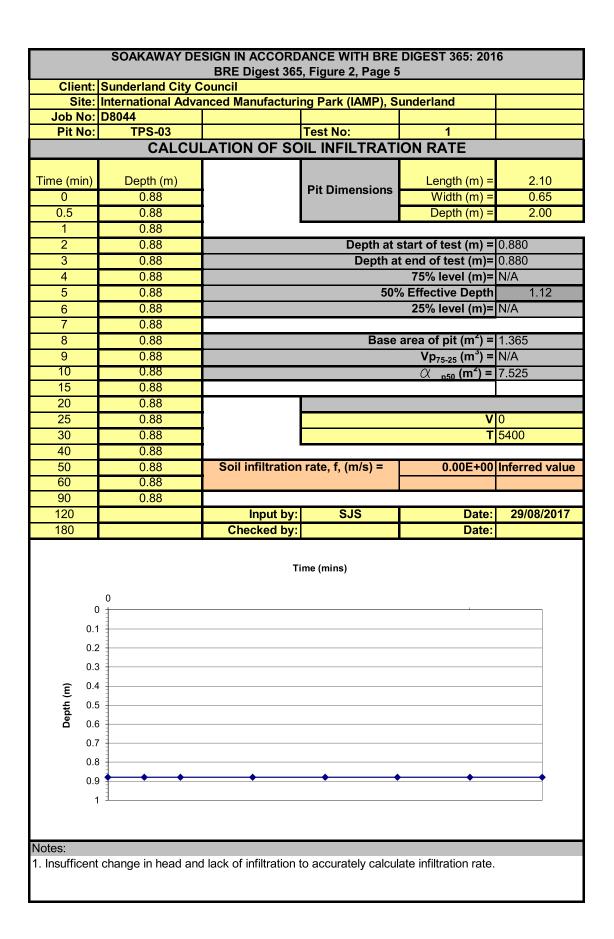
									В	ORE	HOL	E RE	COR	D		Bore BH			
Contra	ct No: D80)44				5	Site: IAN	ИР - I	Prelir	minary	Ground	l Invest	igation		GL (m AOI 39.21 Easting: 433226.03	N	Scale 1:50 lorthing: 58647.01		
Client:	Sunderland	d City	Cou	ncil								Drille	er: RH/DC	Logged By: BC	Sheet 1 of		00011.01		
Method	: Cable Pe	ercussi	ive I	Drilli	ng v	with F	Rotary C	ore D	Orillin	g		Chec	cked By:	JH	Dates:	11/08/2017	7 - 24/08/20)17	
Туре	SAMPLI Depth			Testi	ing		(Casing) Groundwater				S	TRATA I Descr	RECOR iption	D	Depth (m)	Level (m AOD)	Legend		ell/ ckfill
D ES B D	0.20 0.20 0.20 0.50 - 1.20 0.50	HVP=24	kPa						Grave sands Firm I	el is sub stone, m brown m	angular to udstone a ottled ligi	subrour and coal. nt grey sl	ightly sar	ly clayey TOPSOIL. to coarse of ady slightly gravelly subangular to	(0.30)	38.91			
BRE D B D SPT (S)	0.50 0.70 1.00 1.00 1.20 - 1.60 1.20 1.20 - 1.65	HVP=65 N=10 (2,2		,3)			1 Dry							siltstone and coal.	(1.45)				
BRE U	1.75 2.20 - 2.45	100 blow	s				2		plasti	city. Gra		angular t		y CLAY of high nded, fine to coarse		37.46			
D BRE D B D	2.50 2.70 2.90 3.00 - 3.50 3.00						3 (2.90) Dr	y							(1.55)				
SPT (S) BRE	3.00 - 3.45	N=12 (2,2	2/3,3,3	,3)					subar		subroun			ravelly CLAY. Gravel is e of sandstone,	3.30	35.91			
UF	4.20 - 4.70	100 blow	s				4												
B SPT (S) BRE BRE	4.70 - 5.20 4.70 - 4.91 4.75 5.20	N=50+ (3	3,3/50 1	for 60n	nm)		(4.60) Dr	у							(2.70)				
B D SPT (S) BRE	5.75 - 6.25 5.75 5.75 - 6.20 6.20	N=42 (5,	5/8,10,	10,14)			(5.70) Dr <u>i</u>	y T	Very of angul weath	dense g lar to sul nered m	oangular, udstone,	fine to co	oarse of r rockhead	<u></u>	6.00	33.21 32.71			
887 (S)	6:75 6:75 6:75 6:75 6:75 6:75 6:75	N <u>N</u> 564 (1 (10,13/16 ,21,13,8)	3			NI 40	(6.70) D.7 7	ð) Dry	angul (drille Stiff d to sub (drille	lar to sul ers descr dark grey bangular ers descr	pangular, iption). slightly s	fine to co	parse of r	nvelly CLAY. Gravel is mudstone and coal. AY. Gravel is angular e and sandstone.	(0.20) 6.70 (6.7\$) (6.7\$) (6.7\$) (6.88) (0.82)	32.51 32.46 32.33			
	8.00 - 9.50					12 A	8	1	Extrei Fracti plana Very v space	ures are ir, smoot weak da ed, subh	extremel h, clean.	y closely ne SAND planar, si	spaced, STONE. mooth, cl		7.70	31.51			
С	9.00 - 9.12		96	84	0		9	2	8.55 - Extre	8.65m: 40 mely we	-60 degree, ak dark g	stepped, sm	ooth, clean STONE v		8.60	30.61			
	9.50 - 11.00		TCR9	SCR%	RQD%		10		Fracti	ures are ir, smoot	very clos h, clean.	ely to clo	n next shee	of mudstone. ced, subhorizontal	9.30	29.91			
Depth Struck C	Ground Wat	1	Wat	er seale	ed -		elling / Hard		(hr)	Diameter	Depths		Depth (m)	General Remarks 1. Hand dug inspection	n pit to 1 2)m.			-
(m)	(m) Water Li		15	(m)	-	4.90 6.70	To (m) 5.10 7.00	00: 01:	:30	(mm) 150 140	Depth (m) 6.70 11.00	(mm) 150 121	6.85 30.30	2. No groundwater end					
Log last up	dated 24/01/20	18																	

Borehole BOREHOLE RECORD BH49 GL (m AOD) 39.21 Scale 1:50 Contract No: D8044 Site: IAMP - Preliminary Ground Investigation Easting: 433226.03 Northing: 558647.01 Client: Sunderland City Council Driller: RH/DC Logged By: BC Sheet 2 of 4 Method: Cable Percussive Drilling with Rotary Core Drilling Checked By: JH 11/08/2017 - 24/08/2017 **SAMPLE DETAILS** STRATA RECORD Depth Level Well/ SCR % Legend Depth (m AOD) Backfill Description 유 FI Type N (cu) From-To (m) 9.95 - 10.10m: Subvertical planar, smooth, clean fracture. 10.05 - 10.30m: Weak grey mudstone. С 10.30 - 10.45 100 100 53 10.70 - 10.80m: Subvertical planar, smooth, clean fracture (3.30) 100 83 83 11.00 - 11.30 11.12 - 11.15m: Subvertical planar, smooth, clean fracture 11.24 - 11.27m: Subvertical undulating, smooth, clean fracture. 11.30 - 12.80 11.40 - 11.45m: Subhorizontal planar, smooth fracture. 11.40 - 11.50m: Subvertical undulating, smooth, clean fracture. С 11.83 - 11.93 100 100 80 12 12.50 - 12.90 12.55 - 12.80 26.61 12.55m: Medium strong. Weak, partially weathered, orange brown medium grained 12.80 - 14.30 40 SANDSTONE. Fractures are closely spaced, subhorizontal 13 planar, smooth. 12.94 - 13.00m: Subvertical planar, smooth, clean fracture 100 96 80 С 13.90 14 14.30 - 15.80 (3.40)20 С 14.80 - 15.00 100 96 93 15 15.55 - 15.60m: Subrounded to rounded, medium to coarse of grout. 15.80 - 17.00 15.90 - 16.00 С - 16.00 23.21 Very weak, partially weathered, thinly bedded, dark grey MUDSTONE. Fractures are extremely closely to very closely 100 83 28 20 spaced, planar with clay infill. 16.00 - 16.10m: Subvertical planar, smooth, clean fracture. NI (1.50) 17.00 - 17.80 87 66 22 12 21.71 17.45 - 17.55m: Subvertical planar, smooth, clean, fracture. Very weak, partially weathered black carbonated MUDSTONE. Fractures are very closely spaced, 17.80 - 19.00 subhorizontal planar, smooth, clean. 18 100 86 13 18.20 - 18.35m: Subvertical undulating, smooth, fracture. 20 (1.90) 18.75 - 18.95m: Subvertical, stepped, smooth, clean, fracture 19.00 - 20.80 19 19.15 - 19.30m: Subvertical planar, smooth, clean fracture. 100 93 90 19.81 19.40 Weak, partially weathered dark grey SILTSTONE with bands of fine to medium sandstone. Fractures are closely to medium spaced, subhorizontal planar, smooth, clean. - 20 inued on next she Hole Diameter Ground Water (m) elling / Hard Strata Casing Depths General Remarks epth Struck Casing Depth (m) (m) Water seale Diameter Diameter 1. Hand dug inspection pit to 1.20m. Minutes To (m) Time (hr) Vater Leve From (m) Depth (m) Depth (m) (mm) (mm) No groundwater encountered. og last updated 24/01/2018

Borehole BOREHOLE RECORD BH49 GL (m AOD) 39.21 Scale 1:50 Contract No: D8044 Site: IAMP - Preliminary Ground Investigation Easting: 433226.03 Northing: 558647.01 Client: Sunderland City Council Driller: RH/DC Logged By: BC Sheet 3 of 4 Method: Cable Percussive Drilling with Rotary Core Drilling Checked By: JH Dates: 11/08/2017 - 24/08/2017 **SAMPLE DETAILS** STRATA RECORD Depth Level Well/ Legend Depth Description (m AOD) Backfill 10R FI Type N (cu) From-To (m) 20.30 - 20.45: Dark grey fine to medium sandstone. (2.05) 20.70 - 20.80m: Dark grey fine to medium sandstone. 20.80 - 22.30 21.22 - 21.36m: Subvertical undulating, smooth, clean fracture. 100 100 83 21.45 17.76 Weak, partially weathered dark grey fine to medium SANDSTONE. Fractures are closely to medium spaced, subhorizontal planar, smooth, clean. 22 (1.15) 6 22.30 - 23.80 16.61 Weak, partially weathered thinly bedded dark grey SILSTONE. Fractures are closely to medium spaced, subhorizontal planar, 100 93 73 smooth, clean. 23 22.90 - 23.00m: Subvertical stepped, smooth, clean fracture. 23.20 - 23.50m: Subvertical undulating, smooth, clean fracture. (1.35)23.80 - 24.80 23.95 15.26 24 Weak, partially weathered dark grey SILSTONE. Fractures are 75 70 very closely to closely spaced, planar, smooth. 15 24.55m: Subvertical planar, smooth, clean fracture. 24.80 - 26.30 25 86 96 96 25.80 - 26.00m: Subvertical planar, smooth, clean fracture 26 12 (4.30)26.30 - 27.80 26.30 - 26.45m: Subvertical planar, smooth, clean fracture. 26.58 - 26.62m: Subvertical planar, smooth, clean fracture 100 100 73 27.80 - 29.30 28 10.96 Very weak, partially weathered dark grey MUDSTONE. 100 100 53 Fractures are very closely to closely spaced 28.90 - 29.50m: Subvertical planar, smooth, clean fracture. - 29 15 (2.05)29.30 - 30.30 100 85 30 30 nued on next s Hole Diameter Casing Depths Ground Water (m) Chiselling / Hard Strata General Remarks epth Struck Casing Depth (m) (m) 1. Hand dug inspection pit to 1.20m. Water seale (m) Diameter Diameter Minutes To (m) Time (hr) Depth (m) Depth (m) From (m) (mm) (mm) No groundwater encountered. og last updated 24/01/2018

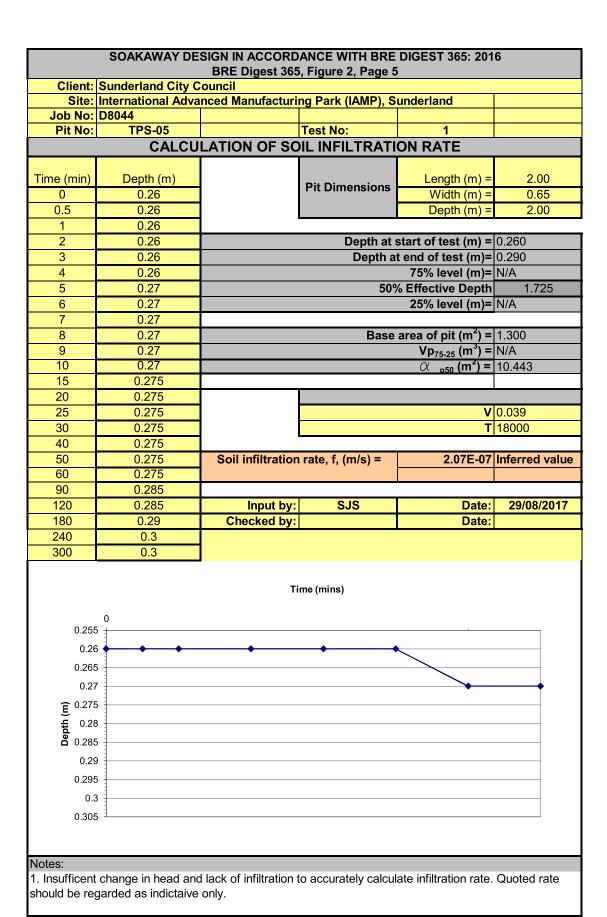

								Е	ORE	HOLI	E RE	CORI)		Bore		
			_		_										BH	49	
	. 1 N						N	4D D 1		0				GL (m AOI 39.21	D) {	Scale 1:50	
Contra	ct No : D80	144				3	oite: IAN	/IP - Preli	minary	Ground	invest	igation		Easting: 433226.03	۱ 5 5	lorthing: 58647.01	
Client:	Sunderland	City C	Cour	ncil							Drille	er: RH/DC	Logged By: BC	Sheet 4 of			
Method	: Cable Pe	rcussi	ve [- Orilliı	ng v	vith F	Rotary C	ore Drilli	ng		Chec	cked By: J	н	Dates:	11/08/2017	' - 24/08/20)17
	SAMPLE	DETA	ILS				g) rater			0.7		DECODE					
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater			3	Descr	RECORE iption	,	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
								30.1	8 - 30.24m:	Subvertical p	<i>lanar, smoo</i> d of Boreho	oth, clean frac ole at 30.30 r	cture. m	30.30	8.91		
														Ē			
							31										
							32										
							02										
														Ē			
							33										
														Ē			
														Ē			
							34							E			
														Ē			
														Ē			
							35							<u> </u>			
														Ē			
														E			
							36							<u> </u>			
														Ē			
														E			
							37										
														Ē			
														E			
														Ē			
							38							E			
														Ē			
														Ē			
							39										
														Ē			
														Ē			
														Ē			
						<u> </u>	40										
	Ground Wate	or (m)			·	Chi	selling / Hard	Strata	Casino) Depths	Hole D	iameter	Gonoral Pomarks				
Depth Struck Ca	asing Depth (m) Water Le		Wate	er sealed	d Fr	om (m)	To (m)	Time (hr)	Diameter (mm)	Depths (m)	Diameter (mm)	Depth (m)	General Remarks 1. Hand dug inspect	ion pit to 1.2	0m.		
(111)	(11)			(111)		4.90 6.70	5.10 7.00	00:30 01:00	150 140	6.70 11.00	150 121	6.85 30.30	2. No groundwater e	encountered.			
						-											
																	ĺ
Log last upo	dated 24/01/201	8	1		1												

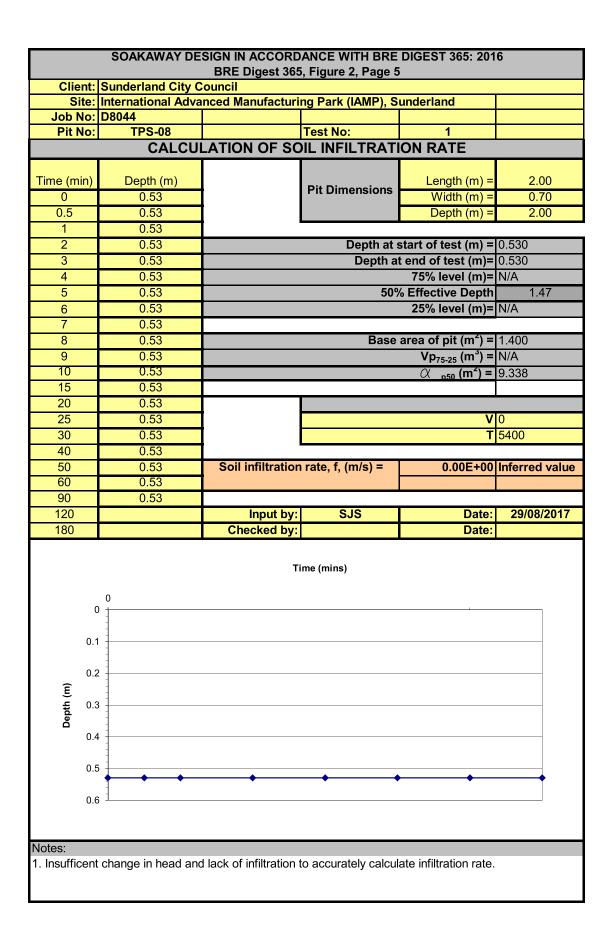

Borehole BOREHOLE RECORD BH50 GL (m AOD) 38.09 Scale 1:50 Contract No: D8044 Site: IAMP - Preliminary Ground Investigation Easting: 433419.38 Northing: 558721.55 Client: Sunderland City Council Driller: CT/DC Logged By: BC Sheet 1 of 4 Method: Cable Percussive Drilling with Rotary Core Drilling Checked By: JH 24/08/2017 - 25/08/2017 **SAMPLE DETAILS** (Casing) Groundwate STRATA RECORD Depth Level Well/ Legend Depth (m) (m AOD) Backfill Description Insitu Testing Type From-To (m) 0.00 - 0.30 Brown slightly sandy slightly gravelly clayey TOPSOIL. Gravel (0.35)is subangular to rounded, fine to coarse of sandstone, 0.35 0.40 - 0.90 0.50 mudstone, siltstone and coal. 0.35 37 74 D B ES Firm brown mottled light grey slightly sandy slightly gravelly CLAY. Gravel is subangular to rounded, fine to coarse of (0.75)BRE 0.75 sandstone, mudstone and coal. ES 1.00 1.10 36.99 Firm dark brown mottled dark grey slightly sandy, slightly gravelly CLAY of intermediate plasticity. Gravel is subangular B D SPT (S) 1.20 - 1.70 1.20 1.20 - 1.65 Dry N=11 (2,2/2,3,3,3) to subrounded, fine to coarse of sandstone, siltstone, mudstone and coal. BRE 1.75 (2.00) 2.20 - 2.65 76 blows 2.20m: Stiff. 2.70 2.75 BRE 3.10 34.99 B D SPT (S) 3.20 3.20 3.20 - 3.65 Stiff greyish brown silty slightly sandy CLAY of low plasticity. (3.10) Dry Sand is fine to medium. 3.20-4.70m: Silt bands noted. N=17 (4.4/4.4.4.5) BRE 3.75 57 blows U 4.20 - 4.65 4.20m: Firm silt of low plasticity. D 4.70 (3.30)BRE 4.90 B D 5.20 - 5.70 (4.50) Dry 5.20 5.20 - 5.65 SPT (S) N=11 (1,3/3,2,2,4) BRE 5.90 U 6.20 - 6.50 100 blows 6.40 31.69 Stiff brownish grey slightly sandy, slightly gravelly CLAY. D 6.60 Gravel is subangular to subrounded, fine to coarse of sandstone, mudstone and coal. BRE 6.90 7.20 - 7.70 (4.50) Dry D SPT (S) 7.20 7.20 - 7.46 N=50+ (5,7/26,24 for 40mm) BRE 7.90 7.90m: Very soft band noted U 8.20 - 8.70 100 blows (4.20)8.70 - 9.20 8.70 8.70 - 9.14 8.90 B D SPT (S) BRE (4.50) Dry N=50+ (6,7/8,11,16,15 for 70mm) 9.70 - 10.20 (4.50) Dry D SPT (S) 9.70 9.70 - 10.15 N=42 (6,9/9,10,10,13) ontinued on next she Hole Diameter Casing Depths Ground Water (m) elling / Hard Strata General Remarks epth Struck Casing Depth (m) (m) Vater seale (m) Diameter (mm) Diameter 1. Hand dug inspection pit to 1.20m. To (m) Time (hr) Depth (m) Minutes From (m) Depth (m) Vater Lev 00:20 01:00 9.10 10.85 og last updated 24/01/2018

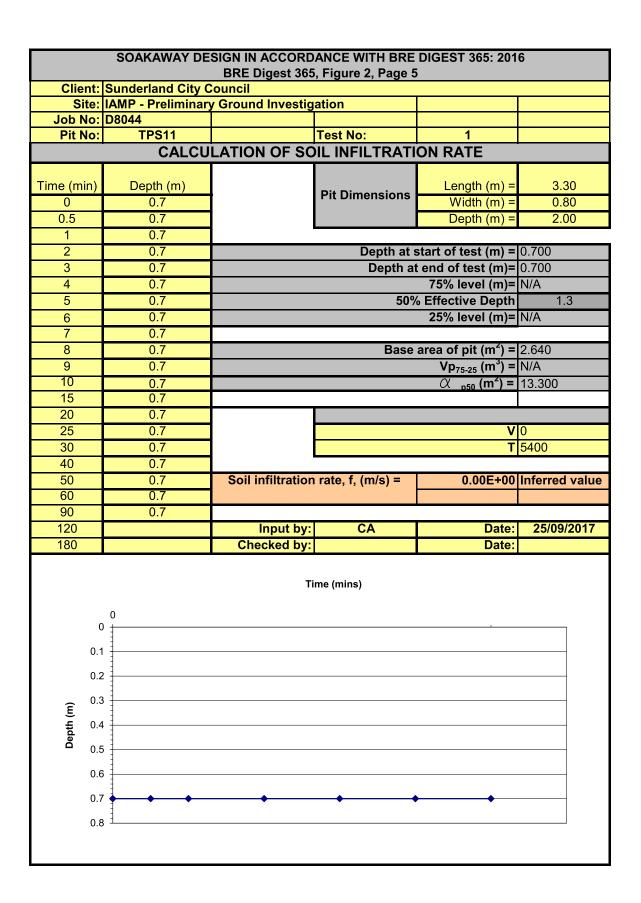

										В	BORE	HOL	E F	RE	COR	D					Bore BH			
Contrac	ct No: D80)44				:	Site	: IAM	P -	Preli	minary	Grour	nd Inv	/esti	gation					GL (m AOI 38.09 Easting: 433419.38		Scale 1:50 lorthing: 58721.55		
Client:	Sunderland	City C	Cour	ncil										Orille	r: CT/DC)	Logg	ed By: B	C	Sheet 2 of				
Method	: Cable Pe	ercussi	ve [Drilli	ng v	vith	Rota	ary Co	re [Orillir	ng		(Chec	ked By: ،	JH	•			Dates:	24/08/2017	7 - 25/08/2	017	
Туре	SAMPLE Depth			Testi	na			(Casing) Groundwater				;			RECOR ption	RD.				Depth (m)	Level (m AOD)	Legend		/ell/ ckfill
.,,,,	From-To (m)									Grav	brownish vel is sub dstone, m	angular	to sub	roun										
D SPT (S)	18:68 - 14:48 10.70 10.70 - 10.91	N=50+ (7,11/9,2 3,18 for 20mm)				NI 18 6	· 11	10.60 - 19 80 % W (4.50)	/ater	suba SAN Wea	dense re angular, f IDSTONI ik, partial	ine to co E). Ily weath	parse onered,	of sar	ndstone. ish browi	. (W /n S	eathere	ONE.		18:68 (0.35) 10.95 (0.06)	27.49 27.14 27.08			
	11.40 - 12.40	,				28				grair spac	ik, partial ned SAN ced, subh weak, p	DSTON norizonta	E. Frac al plana	cture: ar, sn	s are ver nooth, cl	ry c lear	losely to า.	closely		(0.39) 11.40	26.69			
С	12.20 - 12.40 12.40 - 13.90		100	40	0		· 12			inter suba	bedded I angular, o ar, smoo	MUDŠTo closely to	ONE a	nd S	ILTSTON	NE.	Fractur	es are						
	12.40 - 13.90		100	9	0	7	13																	
С	13.20 - 13.40		100	100	95																			
С	13.90 - 15.40 14.00 - 14.15					20	- 14																	
c	14.85 - 15.15 15.20 - 15.40		100	93	86	4	- 15													(6.00)				
С	15.40 - 16.35 16.00 - 16.10		46	43	43	AZC L	- 16	15.40 - 19 100 % W												_				
	16.35 - 17.85		100	100	70	6	- 17													(2.35)	20.69			
	17.85 - 19.35					20	- 18				emely we tures are								E.					
			96	70	6	2 2 2 3 6 Ni	10		Ţ	18.0	5m: Subver	tical, plana	r, clean f	<u>fractu</u> re	9.					(2.35)				
	19.35 - 20.85						19	19.35 - 2	2.35															
						A 40 NI		95 % W	/ater	Very	weak, p	artially v					IUDSTO	DNE.		19.75	18.34			
Depth Struck Ca (m)	Ground Water Leasing Depth Water Le	wel Minutes	Wate	SCR% er seale (m)	110	FI Chi	Т	g / Hard S To (m) 9.10 10.85	Strata Time 00: 01:	:20	Casing Diameter (mm) 200 140	Depth (m 4.50 15.00	H	ole Di	Depth (m) 10.60 31.20	Ge		Remarks ug inspe		pit to 1.20	Om.			

Borehole BOREHOLE RECORD BH50 GL (m AOD) 38.09 Scale 1:50 Contract No: D8044 Site: IAMP - Preliminary Ground Investigation Easting: 433419.38 Northing: 558721.55 Client: Sunderland City Council Driller: CT/DC Logged By: BC Sheet 3 of 4 Method: Cable Percussive Drilling with Rotary Core Drilling Checked By: JH 24/08/2017 - 25/08/2017 **SAMPLE DETAILS** STRATA RECORD Depth Level Well/ SCR % RQD % Legend Depth (m AOD) Backfill Description 유 FI Type N (cu) From-To (m) Fractures are very closely to subhorizontal, planar, smooth, clean. (drillers description). 90 46 0 20.30 - 20.35m: Medium strong dark grey fine to medium sandstone 20.66 - 20.76m: Weak dark grey siltstone (1.95)40 20.85 - 22.35 21 21.00 - 21.15m: Subvertical planar, smooth fracture 100 100 33 21.50 - 21.70m: Subvertical undulating, smooth, rough, clean fracture. 21.70 16.39 Weak, partially weathered, dark grey MUDSTONE. Fractures (0.30)are subhorizontal planar, smooth, clean. 21.75 - 21.90m: Subvertical undulating, smooth, clean fracture. Weak to medium strong, partially weathered, dark grey SILTSTONE with bands of sandstone. Fractures are very - 22.00 16.09 22 22.35 - 23.85 22.35 - 23.85 100 % Water closely to closely subhorizontal planar, clean. 12 100 73 73 22.95 - 23.10m: Subvertical planar, smooth, clean fracture. 23 (3.15)23.85 - 25.35 95 % Water 23.85 - 25.35 24 95 53 100 - 25 25.15 12.94 Extremely weak, partially weathered, dark grey MUDSTONE. 25.35 - 26.85 25.35 - 26.85 100 % Water Fractures are very closely subhorizontal, planar, smooth, (0.65) 25.80 12.29 Very weak, partially weathered, dark grey SILTSTONE. 100 73 66 12 26 Fractures are closely subhorizontal, planar, smooth, clean. (0.90)26.60 - 26.75m: Subvertical planar, smooth, clean fracture. 26.70 11.39 Extremely weak, partially weathered, dark grey MUDSTONE. 26.85 - 28.20 26.85 - 31.20 100 % Water Fractures are very closely subhorizontal, planar, smooth, 26 88 88 30 28 (2.90)28.20 - 29.70 28.20 - 28.70m; Subvertical planar, smooth, tight, clean fracture. NI 100 46 10 15 40 - 29 29.00 - 29.25m: Subvertical undulating, smooth, clean fracture 29.32 - 29.42m: Medium strong dark grey sandstone. 29.60 8 49 Weak dark grey SILTSTONE with occasional thin beds of 29 70 - 31 20 mudstone. Fractures are closely subhorizontal planar, smooth, 30 inued on next she Hole Diameter Ground Water (m) elling / Hard Strata Casing Depths General Remarks epth Struck Casing Depth (m) (m) Water seale Diameter Diameter 1. Hand dug inspection pit to 1.20m. Minutes To (m) Time (hr) Vater Lev From (m) Depth (m) Depth (m) (mm) (mm) og last updated 24/01/2018

								Е	ORE	HOL	E RE	CORI	D		Bore		
														GL (m AOI	BH		
Contrac	ct No: D80	44				5	Site: IAM	1P - Preli	iminary	Ground	l Invest	igation		38.09		Scale 1:50 lorthing:	
Client	Sunderland	l City C	`0r	aoil							Drillo	r: CT/DC	Logged By: BC	Easting: 433419.38 Sheet 4 of		58721.55	
	: Cable Pe				na v	vith F	Rotary Co	ore Drillin	าต		_	ked By: J		Dates:	24/08/2017	7 - 25/08/2	017
	SAMPLE								.5								
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater			S ⁻	TRATA F Descri	RECORI)	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
								29.7	0 - 29.85m:	Subvertical u	indulating, s	mooth, clear	n fracture.				
			100	50	50									(1.60)			
						ŀ	31							31.20	6.89		
										En	d of Boreho	le at 31.20	m	E	0.09		
						ŀ	32							E			
														E			
						ŀ	33										
														E			
														E			
						-	34										
						ŀ											
														E			
														E			
							35										
						į											
														Ē			
						ŀ	36							E			
														E			
						Ē								E			
														Ē			
							37										
														E			
														Ē			
						Ē	38							E			
														E			
														E			
														Ē			
							39							E			
						į											
						ŀ								Ė			
						\exists	40							E			
	Ground Wate	er (m)				Chis	selling / Hard	Strata	Casing	Depths	Hole Di	ameter	General Remarks	Ē.			
Depth Struck Ca (m)	nsing Depth (m) Water Le	vel Minutes	Wate	r seale (m)	1 '''	om (m)	To (m)	Time (hr)	Diameter (mm)	Depth (m)	Diameter (mm)	Depth (m)	1. Hand dug inspection	pit to 1.20	Om.		
					1	9.00 0.70	9.10 10.85	00:20 01:00	200 140	4.50 15.00	200 116	10.60 31.20					
Log last upo	lated 24/01/201	8															







Cliant	Sunderland City C		i, Figure 2, Page 5	<u> </u>	
	International Adva		ng Park (IAMP) S	underland	
Job No:			ing rank (izivii), o	underiand	
Pit No:	TPS-04		Test No:	1	
		LATION OF SC		ON RATE	
ime (min)	Depth (m)		Pit Dimensions	Length (m) =	2.00
0	0.95		Pit Dimensions	Width (m) =	0.65
0.5	0.95			Depth (m) =	2.00
1	0.955	,			
2	0.955			start of test (m) =	
3	0.955		Depth a	t end of test (m)=	
4	0.955			75% level (m)=	
5	0.96		50%	6 Effective Depth	
6	0.96			25% level (m)=	N/A
7	0.96				1 000
8	0.96		Base	area of pit (m²) =	
9	0.96			$Vp_{75-25} (m^3) =$	
10 15	0.96 0.96			$\alpha_{p50} (m^2) =$	6.839
20	0.96				
25	0.96	·		V	0.013
30	0.96	•			5400
40	0.96			•	0400
50	0.96	Soil infiltration	rate, f, (m/s) =	3.52E-07	Inferred valu
60	0.96		, (,	0.022 0.	
90	0.96				
120		Input by:	SJS	Date:	29/08/2017
180		Checked by:		Date:	
0.948 0.95		Ті	me (mins)		
0.952					
(E) 0.954 Debty 0.956	1	•		<u> </u>	
Debt 0.956	3	•	•		
0.958]				
0.96					
0.902					_

1. Insufficent change in head and lack of infiltration to accurately calculate infiltration rate. Quoted rate should be regarded as indictaive only.

Appendix C: Regulatory Information

Appendix C: Contents

- Sunderland City Council policies WWE2 WWE5
- NE_LLFA_SuDS_Local_Standards_July_2020

- 11.6 Significant weight is given to the wider environmental, social and economic benefits of renewable and low carbon energy generation and particularly, decentralised energy generation schemes. The impact on neighbouring residents and other sensitive receptors is also a significant consideration, but will vary, depending on the size, scale, location and type of technology proposed. Any potential cumulative impact of schemes within the area, including within and outside the city, will also be considered.
- 11.7 The A&D Plan will identify locations suitable for wind energy development if appropriate.
- 11.8 Applications for wind turbine installations will need to include details of associated infrastructure and connectivity, such as new access roads and overhead power lines, so that the council can fully assess the proposal.

Policy

WWE2 Flood risk and coastal management

- 1. To reduce flood risk and ensure appropriate coastal management, development:
 - i. should follow the sequential approach to determining the suitability of land for development, directing new development to areas at the lowest risk of flooding and where necessary applying the exception test, as outlined in national planning policy;
 - ii. will be required to demonstrate, where necessary, through an appropriate Flood Risk Assessment (FRA) that development will not increase flood risk on site or elsewhere, and if possible reduce the risk of flooding;
 - iii. will be required to include or contribute to flood mitigation, compensation and/or protection measures, where necessary, to manage flood risk associated with or caused by the development;
 - iv. should comply with the Water
 Framework Directive by contributing
 to the Northumbria River Basin
 Management Plan;
 - v. will maintain linear coastal flood defences north from Hendon Sea Wall to Seaburn, and managed coastal retreat on the Heritage Coast and north of Seaburn;

- vi. which would adversely affect the quantity of surface or groundwater flow or ability to abstract water must demonstrate that no significant adverse impact would occur, or mitigation can be put in place to minimise this impact; and
- vii. of additional river flood defences must demonstrate that the proposal represents the most sustainable response to a particular threat.
- 11.9 Flooding is a key factor in determining the scale and location of development in Sunderland. It is important that inappropriate development is avoided in areas currently at risk from flooding, or likely to be at risk as a result of climate change, or in areas where development is likely to increase flooding elsewhere. Inappropriate development in areas at risk of flooding should be avoided by directing development away from areas at highest risk, but where it is necessary, without increasing flood risk elsewhere. The National Planning Practice Guidance (NPPG), together with the council's latest Strategic Flood Risk Assessment (SFRA), Preliminary Flood Risk Assessment (PFRA) and latest Local Flood Risk Management Strategy (LFRMS) provides guidance in this respect. The SFRA provides a framework for the overall appraisal and management of risk. It allows the identification of land with the lowest probability of flooding that would be appropriate to the type of development or land use proposed.
- 11.10 Development should be directed towards locations which are at lowest risk from flooding. Where necessary, the applicant will be required to demonstrate that they have followed the sequential test.
- 11.11 Developers must consider flood risk from all sources as part of a SFRA and ensure they are utilising the most appropriate and up-to-date information in assessing the risk of flooding from all sources to the development site.

 Discussions should be held with the Lead Local Flood Authority when considering measures to mitigate flooding from different flood sources within development proposals. Conditions or planning obligations will be used as appropriate to secure flood risk mitigation measures.
- 11.12 Sunderland falls within the Northumbria River Basin Management Plan (RBMP) which provides cross-boundary guidance on good

practice and measures for improvement. Drawn up by the Environment Agency, RBMPs aim to provide integrated management of surface and groundwater bodies across individual regions.

- 11.13 Built development can lead to increased surface water run-off; therefore new development is encouraged to incorporate mitigation techniques in its design, such as source control (interception) Sustainable Drainage Systems (SuDS) and attenuation SuDS. Where appropriate, SuDS should be used as part of the linked Green Infrastructure Network to provide multiple functions and benefits to landscape quality, recreation and biodiversity. This can be achieved through habitat creation, new open spaces and good design. SuDS should be designed to help cope with intense rainfall events as well as day-today rainfall events and to overcome any deterioration in water quality status. In determining the suitability of SuDS for individual development sites, developers should seek advice from the Lead Local Flood Authority.
- 11.14 In line with the Sunderland Corporation Act 1972 and Shoreline Management Plan, coastal flood defences will be maintained (termed "holding the line") at Hendon Beach, the Port of Sunderland, Sunderland Harbour, Roker and Seaburn Beaches. 'Managed retreat' (which monitors the coastline's natural processes but with no active intervention) will be undertaken along the Heritage Coast to the south of Hendon as well as at South Bents and Whitburn Cliffs.
- 11.15 This policy should be read alongside the Marine Management Organisation's North East Inshore and Offshore Plans.

Policy

WWE3 Water management

Development must consider the effect on flood risk, on-site and off-site, commensurate with the scale and impact. Development must:

 be accompanied by a Flood Risk Assessment (where appropriate), to demonstrate that the development, including the access, will be safe, without increasing or exacerbating flood risk elsewhere and where possible will reduce flood risk overall;

- 2. demonstrate that they pass the Sequential Test and if necessary the Exceptions Test in flood Zones 2 and 3;
- 3. discharge at greenfield runoff rates for the 1 in 1 and 1 in 100 flood events plus the relevant climate change allowance for greenfield and brownfield sites in accordance with the latest Local Flood Risk Management Strategy;
- incorporate a Sustainable Drainage System (SuDS) to manage surface water drainage.
 Where SuDS are provided, arrangements must be put in place for their whole life management and maintenance;
- 5. separate, minimise and control surface water runoff by discharging in the following order:
 - i. to an infiltration or soak away system;
 - ii. to a watercourse (open or closed);
 - iii. to a surface water sewer; then
 - iv. to a combined sewer.

However, if sites are within 250m of a tidal estuary or the sea, surface water can be discharged directly);

- ensure adequate protection where sites may be susceptible to over land flood flows (as shown in the Strategic Flood Risk Assessment) or lie within a Surface Water Risk Area (as shown on the Environment Agency flood maps):
- 7. incorporate allowance for climate change in accordance with the latest Environment Agency Guidance;
- 8. make developer contributions, where needed, to ensure that the drainage infrastructure can cope with the capacity needed to support proposed new development;
- demonstrate control of the quality of surface water runoff during construction and for the lifetime of the development. For all developments the management of water should be an intrinsic part of the overall development; and
- 10. not have a detrimental impact on the city's water resources, including the Magnesian Limestone Aquifer and its ground source protection zones. Development along the River Wear and coast should take account of the Northumbria River Basin Management Plan, to deliver continuing improvements in water quality.

- 11.16 Flooding from sewers is increasingly recognised as an issue in areas that are not necessarily at risk from fluvial flooding whereby rainfall events, sometimes away from the area concerned, cause major surface water run-off to enter the sewerage system.
- 11.17 This policy seeks to minimise the risk that future development locations could be flooded from sewers or add to an existing risk by ensuring that surface water run-off entering the sewer system is kept to an absolute minimum. Other benefits of such an approach will include a much reduced risk to water quality.
- 11.18 To help adapt to expected climate change, the policy provides the broad framework for addressing the increased risk of flooding including a requirement for sustainable drainage systems.
- 11.19 Where appropriate, SuDS should contribute to the provision of green infrastructure whilst retaining acceptable levels of useable amenity space.
- 11.20 In order to protect the Magnesian Limestone Aquifer and its ground source protection zones, the use of deep infiltration SUDS and other infiltration SuDS will not be supported where they are likely to have an adverse impact on drinking water supply. Ground investigations would need to be considered on a case by case basis and should be guided by the Environment Agency's approach to groundwater protection.

Policy

WWE4 Water quality

The quantity and quality of surface and groundwater bodies and quality of bathing water shall be protected and where possible enhanced in accordance with the Northumbria River Basin Management Plan.

- 1. Water quality assessments will be required for:
 - i. any physical modifications to a watercourse; and
 - ii. any development which could indirectly, adversely affect water bodies.
- 2. Development that discharges water into a watercourse will be required to incorporate appropriate water pollution control measures.

- 3. Development that incorporates infiltration based SuDS will be required to incorporate appropriate water pollution control measures.
- 4. Development adjacent to, over or in, a main river or ordinary watercourse should consider opportunities to improve the river environment and water quality by:
 - naturalising watercourse channels;
 - ii. improving the biodiversity and ecological connectivity of watercourses;
 - iii. safeguarding and enlarging river buffers with appropriate habitat; and
 - iv. mitigating diffuse agricultural and urban pollution.
- 11.21 This policy seeks to minimise the impact of development on the quality of surface water and the Magnesian Limestone Aquifer and its ground source protection zones.
- 11.22 The potential to pollute our groundwater aguifers is significant. Intense rainfall can cause localised flooding and erosion, and storm sewage overflows are known to affect water quality, environmental quality and affect important wildlife sites. Furthermore, old mine workings within the city have the potential to release heavy metals into the groundwater aquifers, and in areas along the coast, over-pumping of the aquifer has resulted in saline intrusions. Increased use of fertilizers in the catchment by the agricultural industry is also resulting in increasing nitrite concentrations, and landfill sites also present a high risk to groundwater.
- 11.23 The Environment Agency and the Coal Authority recommend a hydrogeological risk assessment is provided on the impact of development on the existing minewater 'blocks' (in terms of flood risk and water quality) as identified by the Coal Authority. Further advice should be sought with the local planning authority.
- 11.24 The council, in conjunction with the Environment Agency and the sewerage undertaker, will seek to resist development that threatens water quality and quantity, and will generally encourage initiatives that result in an improvement of water quality and the capacity of surface waters to support wildlife. The WFD became part of UK law in 2003 with the primary objectives of achieving good

ecological status in water bodies, and providing protection for drinking water sources and protected sites (Habitats Directive Sites and Sites of Special Scientific Interest). These requirements are reflected in the Environment Agency's Northumbria River Basin Management Plan, which covers the city area.

- 11.25 Early engagement with the local planning authority, the LLFA, Environment Agency and relevant water and sewerage companies can help to establish if water quality is likely to be a significant planning concern and, if it is, to clarify what assessment will be needed to support the application. Applicants should provide sufficient information for the council to be able to identify the likely impacts on water quality. The information supplied should be proportionate to the nature and scale of the development proposed and the level of concern about water quality.
- 11.26 Water quality at the designated bathing water sites at Roker and Seaburn is assessed by the Environment Agency. From May to September, weekly assessments measure current water quality, and at a number of sites daily pollution risk forecasts are issued. Both beaches have been rated as excellent for 2015, 2016 and 2017.

Policy

WWE5 Disposal of foul water

- Development should utilise the following drainage hierarchy:
 - i. connection to a public sewer;
 - ii. package sewage treatment plant (which can be offered to the Sewerage Undertaker for adoption); then
 - iii. septic tank.
- 2. Development involving the use of non-main methods of drainage in areas where public sewerage exists or the use of Cess Pits will not be permitted.
- 3. Development of new or extensions/ improvements to existing waste water, sludge or sewage treatment works, will normally be supported unless the adverse impact of the development significantly outweighs the need for greater capacity.

11.27 For further information regarding the drainage hierarchy and use of non-main methods of drainage advice should be sought from Northumbria Water.

Policy

WWE6 Waste management

Development that encourages and supports the minimisation of waste production, and the re-use and recovery of waste materials including, for example, re-cycling, composting and Energy from Waste will normally be supported. Proposals for waste management facilities to deal with waste arisings will be encouraged based upon the following principles:

- managing waste through the waste hierarchy in sequential order. Sites for the disposal of waste will only be permitted where it meets a need which cannot be met by treatment higher in the waste hierarchy;
- 2. promoting the opportunities for on-site management of waste where it arises and encouraging co-location of waste developments that can use each other's waste materials;
- ensuring that sufficient capacity is located within the city to accommodate forecast waste arisings of all types during the Plan period, reducing the reliance on other authority areas;
- 4. supporting delivery of the South Tyne and Wear Joint Municipal Waste Management Strategy;
- 5. facilitating the development of recycling facilities across the city including civic amenity sites and small recycling 'bring' banks to ensure there is sufficient capacity and access for the deposit of municipal waste for re-use, recycling and disposal;
- facilitating the development of a network of small scale local waste management facilities in accessible locations, and effective methods of waste management such as suitable facilities to separate or store different types of waste, including materials that are required to be separated for kerbside collection schemes;
- 7. ensuring new waste developments are located and designed to avoid unacceptable adverse impacts on landscape, wildlife, heritage assets and amenity;
- 8. working collaboratively with neighbouring local authorities with responsibilities for waste and other local authorities where waste import/export relationships exist. This will ensure a co-operative cross boundary approach to waste management is established and maintained; and

North-East Lead Local Flood Authorities Sustainable Drainage Local Standards

Durham County Council
Gateshead City Council
Newcastle City Council
North Tyneside Council
Northumberland County Council
South Tyneside Council
Sunderland City Council

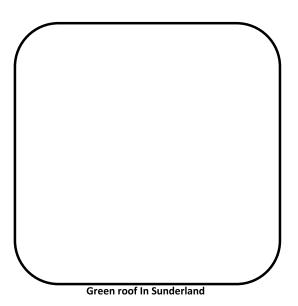
Version	Date	Author(s)	Comment
Draft	October 2019	Ian Dalgleish (SCC)	For LLFA review
For comment	November 2019	Brian Weatherall (DCC)	
		Peter Burrows (GC)	
		Jimmy Young (GC)	
		Darren Varley (NeCC)	
		Venus Sanchez (NeCC)	
		James Hitching (NoCC)	
		Helen Parkin (NoCC)	
		Andy Burnett (NTC)	
		Michelle Hogg (STC)	
		Amy Ridgeon(STC)	
		Paul Armin (SCC)	
		Ian Dalgleish (SCC)	
Post comment	May 2020	Helen Parkin (NoCC)	Updated post
			comment period
			Feb 2020
Final Issue	July 2020	Helen Parkin (NoCC)	Final editing and
			formatting

The North-East Lead Local Flood Authorities (NE LLFA) consist of Durham, Gateshead, Newcastle, Northumberland, North Tyneside, South Tyneside and Sunderland. Contact details for each Lead Local Flood Authority are as below. Please contact the Local Authority directly if you cannot contact the persons named below.

Local Authority	Email
Durham	ns_drainage@durham.gov.uk
Gateshead	suds@gateshead.gov.uk
Newcastle	flood.management@newcastle.gov.uk
Northumberland	llfa@northumberland.gov.uk
North Tyneside	Andrew.Burnett@northtyneside.gov.uk
South Tyneside	developmentservices@southtyneside.gov.uk
Sunderland	LLFA@sunderland.gov.uk

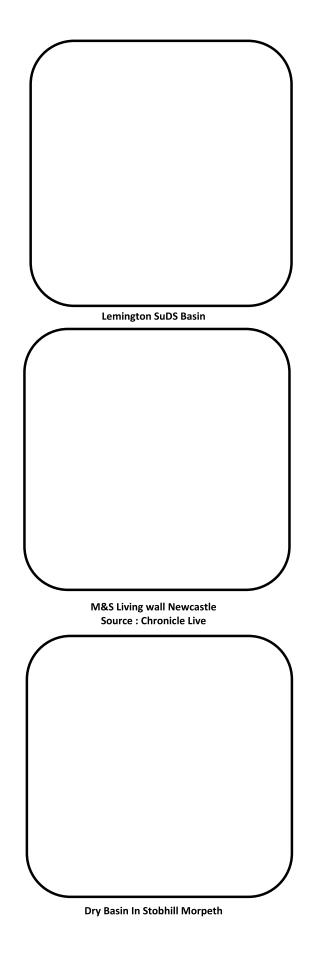
Glossary

LLFA	Lead Local Flood Authority
NE LLFA	North-East Lead Local Flood Authorities
FWMA	Flood and Water Management Act 2010
SuDS	Sustainable Drainage Systems
NPPF	National Planning Policy Framework
CIRIA	Construction Industry Research and Information Association
LASOO	Local Authority SuDS Officer Organisation
FEH	Flood Estimation Handbook
IOH	Institute of Hydrology

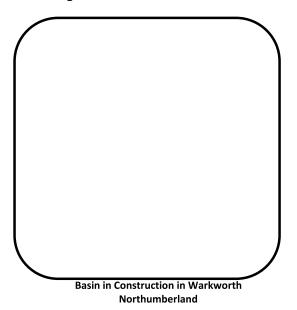

Introduction

Lead Local Flood Authorities were created by the Flood and Water Management Act with responsibility to manage flooding from surface water, groundwater and ordinary watercourses. The accepted NE LLFA definition of SuDS is:

The means of managing rainwater (including snow and other precipitation) by mimicking natural drainage with the aim of reducing damage from flooding, improving water quality, protecting and improving the environment, providing amenity and ensuring the stability and durability of drainage systems.


The NPPF (163-165) states that SuDS are required on major developments and LLFAs are statutory consultees for surface water management under the Town and Country Planning Act (TCPA) 2015. Typically, the approach of the NE LLFA toward drainage design will follow the NPPF, Planning Practice Guidance - Flood Risk and Coastal Change, Non-Statutory Technical Standards for Sustainable Drainage and the FWMA. Best practice guidance will be used to supplement the above documents such as the CIRIA SuDS Manual (C753 at time of writing, LASOO guidance, BS8582:2013, and C532, C648 and C768). All NE LLFAs will have a Local Flood Risk Management Strategy, Strategic Flood Risk Assessment and requirements in relation to flood risk, water quality, biodiversity and amenity within a Local Plan or Core Strategy. Some NE LLFAs have other drainage or SuDS guidance and adoption documents. There may also be specific drainage requirements in planning validation checklists required before an application will be validated.

This guidance provides the approach the NE LLFA will take on some key questions often asked through the planning process by developers with the aim to improve the submission of flood risk assessments, drainage strategies and SuDS design and promote consistency and best practice within the NE LLFA area. It does not attempt to answer all questions on drainage design and pre-application consultation with a NE LLFA is always recommended. This guidance has been developed considering feedback from developers and their consultants, the Tees Valley Combined Authority (TVCA) local standards for sustainable drainage and in consultation with Northumbrian Water and the Environment Agency.


Planning pre-application consultations, NE LLFA SuDS adoption and Highway Authority SuDS adoption

All the NE LLFAs are agreed that consultation with the LLFA during the preapplication stage is the only way of ensuring SuDS are best incorporated development. In addition, some authorities offer a separate pre-application priority charged service relating to SuDS and some NE LLFAs adopt SuDS either via an estate rent charge or Community Infrastructure Levy (CIL). It is important to note that the adoption of development SuDS by the NE LLFA which this guidance refers to is separate to requirements of the Highway Authorities relating to highway drainage. Some Highway Authorities adopt SuDS too. To ensure the best design and any chance of adoption pre-application consultation must be undertaken. From 1st April 2020 Northumbrian Water may adopt forms of SuDS considered sewers in line with Design and Construction Guidance March 2020.

The North- East LLFA Local Standards

The NE LLFA Local Standards are set out below with reference to the Non-Statutory Technical Standards for Sustainable Drainage in brackets.

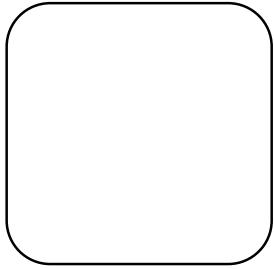
Peak Flow Control (S2 & S3)

Local Standard 1 – Equivalent Greenfield Run-Off (GFRO) discharge rates should be provided for new development at all sites (Greenfield and Brownfield).

The only limitation on the lowest restricted run-off rate for smaller sites may be the smallest orifice sized flow control as accepted by Northumbrian Water (i.e. 100mm unprotected and 50mm protected – See Design and Construction Guidance).

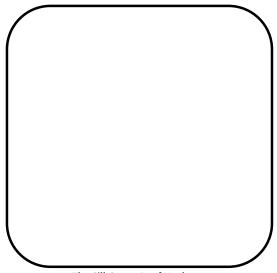
Local Standard 2 – The NNE LLFA accept either FEH or IOH124 methods for calculating GFRO rates.

Use of FEH (particularly FEH2013 data) is preferred. See https://fehweb.ceh.ac.uk/. However the LLFAs will accept the FSR


method. For some sites the LLFA may ask for the 2013 FEH method to be used.

Local Standard 3 – For calculating GFRO rate the whole site area minus significant areas of public open space should be used.

Enclosed areas such as gardens may be included in the GFRO rate for the site. You can use tools such as at the UK SuDS website to determine GFRO rates. https://www.uksuds.com/


Volume Control (S4-S6)

Local Standard 4 – The NNE LLFA will set allowable discharge rates following Local Standards 1-3, unless the permissible discharge rate Northumbrian Water will allow to sewer is below GFRO rates.

Elba Park SuDS Sunderland

Whenever there is a proposed discharge to sewer it will be expected that formal agreement for a discharge rate to sewer will be provided by Northumbrian Water. You should contact Northumbrian Water Developer Services via their website to make a pre planning enquiry or email development enquiries@nwl.co.uk. It is expected any pre planning enquiry response will be included in submitted documents to LLFAs. Outline planning

The Sill Green Roof Hexham

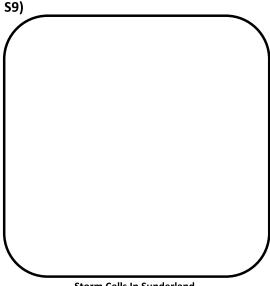
applications will need to provide a Pre Development Enquiry.

Local Standard 5 – Urban creep allowances to be applied up to 10% for residential developments and 0% for commercial developments.

Unless a site has a design life of less than 100 years or the current site is 100% impermeable an allowance of 10% for urban creep should be supplied to calculations. PIMP factors (impermeable area as a % of total area) can be set up to 110% to model this. See LASOO guidance for further details.

https://www.susdrain.org/files/resources/o ther-

guidance/lasoo non statutory suds techni cal standards guidance 2016 .pdf

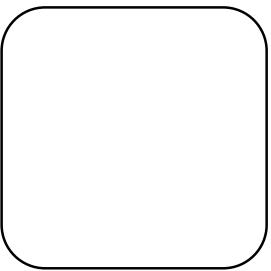

Local Standard 6 - The NE LLFA will accept a single Qbar discharge rate from site or rates no more than the 1 in 1 and 1 in 100vear GFRO in accordance with Defra Standards.

For both greenfield and brownfield sites, the LLFA will accept equivalent greenfield runoff rates. At some sites use of a complex control with managed flooding on site may

be the most appropriate way to deliver development. In other areas of known flood risk developers will only be allowed to discharge at Qbar. Please contact your LLFA during pre-application to confirm requirements.

If discharge is through existing sewerage networks connected to other offsite drainage GFRO restrictions Northumbrian Water restrictions) will apply.

Flood risk within the development (S7 -



Storm Cells In Sunderland

Local Standard 7 - The NNE LLFA accepts direct free (unrestricted) discharge to estuarine waters or the sea.

Discharges will still need to be treated for water quality and source control provided. Any designed network will be required to show that it can convey water freely and safely to the estuarine waters. A section of any new outfall will be required to show details including high water levels. The developer may also require consultation with the Environment Agency.

Local Standard 8 – Storm events should be checked as a minimum between 15 minutes and 360 minutes.

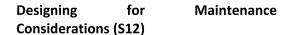
Swales in Witton Gilber Durham

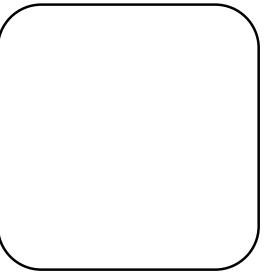
It is expected that as a minimum all events from a 15-minute storm to the 360-minute (6 hour) storm will be assessed to ensure the volume of water leaving the developed site is not greater than the existing GFRO. This would apply to the 1 year and 100-year + 40% climate change storm event. Attenuation drain down times will be checked for half empty in 24 hours for larger catchments and modelling times extended where required.

Local Standard 9 - Climate change allowances to be applied are 40% on the extreme event modelling (100 year return period)

This is equal to the current upper end requirement as noted by the Environment Agency.

https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances.

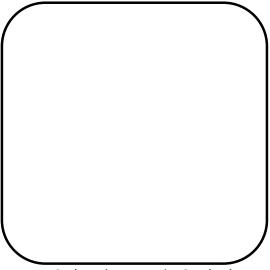

Structural Integrity (S10-S11)


Local Standard 10 - 300mm free board is required in SuDS design

300mm freeboard should be provided or 300mm between top level of water during the 1 in 100 year +40% climate change storm event and finished floor level must be shown and exceedance routes should be checked.

Local Standard 11 – 1D or 2D modelling may be required for ordinary watercourses within or adjacent to new developments.

The developer should contact the LLFA to ensure the approach and modelling package they use is appropriate

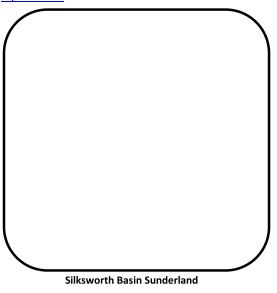

Permeable paving in Gateshead

Local Standard 12 – Overland flow modelling for surface water flood routes or other reasons may be required as part of formal submissions.

Sites where surface water overland flow routes are present, are located on sloping sites or are in are location of known surface water flood risk will be required to submit detail on overland flow management. The LLFA may request overland flow modelling. This is required to show surface water flow routes will be managed. The type of modelling package required should be confirmed with the LLFA. Indicative overland flow routes can viewed online https://flood-warning-

<u>information.service.gov.uk/long-term-flood-risk/map</u>

Construction (S13-S14)



Swales under construction Gateshead

Local Standard 13 – To assess the risk of tide locking a combined tidal and surface water event must be assessed where the development is in or directly adjacent to flood zone 2 or 3.

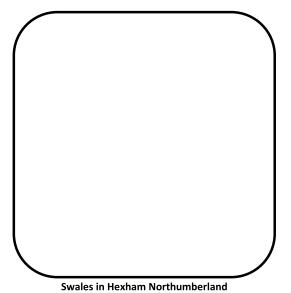
The key risk to be assessed is whether the outfall is surcharged affecting site drainage. For example, a 1 in 100-year tidal level and a 1 in 10-year surface water flow or a 1 in 200-year tidal level and a 1 in 5-year surface water flow could be assessed. The drainage network of the development should still be assessed to show that it can convey flow up to the 1 in 100 year plus 40% rainfall event. A similar requirement may apply to discharges to watercourses where outfalls may be surcharged. Coastal design sea level

data can be found <u>as Environment Agency</u> Open Data.

Local Standard 14 – SuDS design should meet the latest CIRIA SuDS Manual, Sewers for Adoption, British Standards and other best practice guidance.

A formal pre-application check should be made with local authorities to determine where there may be any change allowed from this standard based on site specific requirements. See also:

https://www.susdrain.org/resources/ http://sfa.wrcplc.co.uk/home.aspx https://www.bsigroup.com/en-GB/


&

Other Local Standards (S15-S22)

Local Standard 15 – A site specific maintenance plan will be required to detail how SuDS will be maintained and who will maintain them.

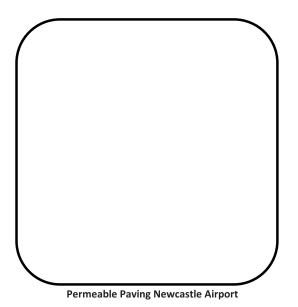
This plan should include consideration of practicalities such as access routes. Some LLFAs may allow this to be conditioned or a final plan to be conditioned. Check with the LLFA during formal pre-application discussions. Management and maintenance company details will need to be supplied prior to occupation.

Local Standard 16 - A construction plan is required to show surface run off, any water receptors and an outline of mitigation measures.

This is to manage risk to development sites when the surface of the site is stripped or on larger sites as the wider site is developed. Some LLFAs may allow this to be conditioned or a final plan to be conditioned. Check with the LLFA during formal pre-application discussions. These standards add further detail to the approach provided in the Non-Statutory Technical Standards for Sustainable Drainage and are intended to clarify the local approach.

Local Standard 17- The NNE LLFA consider SuDS to be on the surface "green SuDS" that show multifunctional benefit (including quantity control, water quality, biodiversity and amenity) and mimic natural drainage in line with the NPPF and FWMA definitions

Consideration of landscaping and ecology should be an integral part of the selection and design process for SuDS. Local Planning Authorities will ensure that liaison between drainage, landscape and ecology teams will occur through pre planning enquiry to support these applications. It will be expected that landscaping and ecology details will be referred to and described on drainage layouts and where required supported by additional plans before planning approval. Other drainage solutions such as tanked storage will be considered only on a site by site basis. A viability assessment will be required if multifunctional benefit vegetated SuDS are not proposed



Local Standard 18 – The NNE LLFA typically follow LASOO guidance for FRA and Drainage Strategy requirements at Outline and Full planning permission

Some LLFAs have further defined requirements. Please contact them during formal pre-application to obtain further information. The LASOO guidance can be found at:

https://www.susdrain.org/files/resources/o ther-

guidance/lasoo non statutory suds techni cal standards guidance 2016 .pdf

Local Standard 19 – Infiltration testing is required at all sites before planning

approval.

While it is accepted at most sites full infiltration will not be possible partial infiltration (10⁻⁶ ms⁻¹ to 10⁻⁸ ms⁻¹) may be achievable. Infiltration tests should be undertaken as part of site investigations including falling head tests (in line with DG365) at all sites. A minimum of 2 representative tests of 6 hours at likely discharge locations should be provided and the results submitted. Should tests be favourable for full infiltration further testing in specific locations for infiltration should be undertaken. The only exceptions are sites where ground contamination is present, there are proven concerns over ground stability (i.e. coal mining reports), or groundwater levels are measured within 1m of the surface. Copies of DG365 may be obtained at

https://www.brebookshop.com/details.jsp? id=327631

Local Standard 20 - Source control interception (retaining 5mm rainfall on site) should be applied for the

impermeable area of all sites using the CIRIA SuDS manual method.

Where source control interception is not possible for all impermeable areas as evidenced through site investigation and infiltration testing every reasonable effort should be made to provide as much source control across the site as possible using features like permeable paving. See the SuDS Manual section 24. The developer may use site infiltration results and SuDS design evidencing infiltration and/or evaporation to demonstrate provision of source control by volume. Infiltration tests results, risk of subsidence, ground contamination and measured high ground water levels can all be used to determine whether full interception can be provided at a site.

Local Standard 21- SuDS can be used as open space outside of the area wetted by a 1-year return storm.

SuDS should be designed to be accessible and useable spaces outside of frequent storm extents both for amenity and wildlife with appropriate health and safety assessments considered. Gradients of 1 in 5 are preferred for useable amenity space.

Local Standard 22 - Water quality information should be assessed using criteria in the current CIRIA SuDS manual.

The approach of the developer should be explained within submitted documents in terms of pollutant loading and removal. Where required consideration should be given to treatment volumes, velocities, depths and retention times of water being treated. Each design should be assessed against treatment stages and the simple indices method of the SuDS Manual. See the SuDS Manual section 26.

Appendix D: Drainage model details – trunk sewer system

Appendix D: Contents

- MicroDrainage model network details
- MicroDrainage model results for 1, 30 and 100-year conditions
- O SYSTRA dwg 21B34-SYS-HDG-Z0-CH-01 Proposed Drainage Layout

Systra Ltd		Page 1
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 1yrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Dialilade
Micro Drainage	Network 2020.1	,

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for 01 Site Entrance

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and Wales

Return Period (years) 1 PIMP (%) 100
M5-60 (mm) 18.300 Add Flow / Climate Change (%) 0
Ratio R 0.350 Minimum Backdrop Height (m) 0.200
Maximum Rainfall (mm/hr) 100 Maximum Backdrop Height (m) 1.500
Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200
Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00
Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Time Area Diagram for 01 Site Entrance

Time Area (mins) (ha) (mins) (ha) (ha) 4-8 0.200

Total Area Contributing (ha) = 0.465

Total Pipe Volume $(m^3) = 17.272$

Network Design Table for 01 Site Entrance

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ise	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
S1.000	27.893	0.300	93.0	0.058	5.00		0.0	0.600	0	300	Pipe/Conduit	ð
S1.001	30.942	0.300	103.1	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	ō
S1.002	30.936	0.200	154.7	0.076	0.00		0.0	0.600	0	300	Pipe/Conduit	•
S2.000	37.219	0.220	169.2	0.034	5.00		0.0	0.600	0	225	Pipe/Conduit	•
S1.003	23.700	0.140	169.3	0.108	0.00		0.0	0.600	0	300	Pipe/Conduit	₫
s3.000	17.978	0.090	200.0	0.105	5.00		0.0	0.600	0	300	Pipe/Conduit	0

Network Results Table

PN	Rain (mm/hr)	T.C.	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
	(,	(()	(/		(-, -,	(-, -,	(, - ,	(-, -,	(-, -,
S1.000	45.82	5.29	36.000	0.058	0.0	0.0	0.0	1.63	115.3	7.2
S1.001	44.62	5.62	35.700	0.058	0.0	0.0	0.0	1.55	109.4	7.2
S1.002	43.26	6.03	35.400	0.134	0.0	0.0	0.0	1.26	89.2	15.7
S2.000	44.62	5.62	36.000	0.034	0.0	0.0	0.0	1.00	39.9	4.2
S1.003	42.23	6.35	35.200	0.277	0.0	0.0	0.0	1.21	85.2	31.6
S3.000	45.87	5.27	34.200	0.105	0.0	0.0	0.0	1.11	78.3	13.1

Systra Ltd		Page 2
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 1yrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Dialilade
Micro Drainage	Network 2020.1	'

Network Design Table for 01 Site Entrance

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)		k (mm)	HYD SECT		Section Type	Auto Design
s3.001	25.028	0.119	210.0	0.043	0.00	0.0	0.600	0	300	Pipe/Conduit	•
S1.005	5.653 30.216 9.009	0.044	686.7	0.000	0.00 0.00 0.00	0.0	0.600 0.600 0.600	0	375	Pipe/Conduit Pipe/Conduit Pipe/Conduit	ĕ

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	ΣΕ	Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
s3.001	44.49	5.66	34.110	0.148		0.0	0.0	0.0	1.08	76.4	17.9
S1.004	42.02	6.42	33.991	0.465		0.0	0.0	0.0	1.38	97.5	53.0
S1.005	39.94	7.16	33.872	0.465		0.0	0.0	0.0	0.68	75.5	53.0
S1.006	39.66	7.27	33.828	0.465		0.0	0.0	0.0	1.42	156.4	53.0

Systra Ltd		Page 3
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 1yrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	nialilade
Micro Drainage	Network 2020.1	<u>'</u>

Manhole Schedules for 01 Site Entrance

MH Name	MH CL (m)	MH Depth (m)		MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	38.300	2.300	Open	Manhole	1200	S1.000	36.000	300				
S2		2.300	-	Manhole	1200	S1.001	35.700		S1.000	35.700	300	
s3	37.700	2.300	Open	Manhole	1200	S1.002	35.400	300	S1.001	35.400	300	
S4	37.500	1.500	Open	Manhole	1200	s2.000	36.000	225				
S5	37.500	2.300	Open	Manhole	1200	s1.003	35.200	300	S1.002	35.200	300	
									S2.000	35.780	225	505
S6	35.800	1.600	Open	Manhole	1200	s3.000	34.200	300				
s7	35.800	1.690	Open	Manhole	1200	s3.001	34.110	300	s3.000	34.110	300	
S8	37.500	3.509	Open	Manhole	1200	S1.004	33.991	300	S1.003	35.060	300	1069
									S3.001	33.991	300	
S9	36.750	2.878	Open	Manhole	1350	s1.005	33.872	375	S1.004	33.947	300	
S10	36.000	2.172	Open	Manhole	1350	S1.006	33.828	375	S1.005	33.828	375	
S	36.000	2.227	Open	Manhole	0		OUTFALL		S1.006	33.773	375	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S1	433384.111	558941.192	433384.111	558941.192	Required	
S2	433372.767	558966.674	433372.767	558966.674	Required	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
S3	433360.003	558994.861	433360.003	558994.861	Required	1
S4	433313.095	559007.905	433313.095	559007.905	Required	
S5	433347.121	559022.988	433347.121	559022.988	Required	
S6	433410.016	559041.610	433410.016	559041.610	Required	-0
S7	433392.039	559041.875	433392.039	559041.875	Required	
S8	433368.978	559032.149	433368.978	559032.149	Required	
S9	433371.333	559027.010	433371.333	559027.010	Required	

Systra Ltd		Page 4
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Dialilacie
Micro Drainage	Network 2020.1	<u>'</u>

Manhole Schedules for 01 Site Entrance

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S10	433383.499	558999.352	433383.499	558999.352	Required	•
S	433382.272	558990.427			No Entry	4

Systra Ltd		Page 5
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 1yrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	niamade
Micro Drainage	Network 2020.1	'

Area Summary for 01 Site Entrance

Pipe Number	PIMP Type	PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
1.000	User	_	100	0.058	0.058	0.058
1.001	-	-	100	0.000	0.000	0.000
1.002	User	-	100	0.076	0.076	0.076
2.000	User	_	100	0.034	0.034	0.034
1.003	User	_	100	0.073	0.073	0.073
	User	-	100	0.035	0.035	0.108
3.000	User	-	100	0.105	0.105	0.105
3.001	User	-	100	0.043	0.043	0.043
1.004	User	-	100	0.030	0.030	0.030
	User	_	100	0.010	0.010	0.040
1.005	-	-	100	0.000	0.000	0.000
1.006	-	-	100	0.000	0.000	0.000
				Total	Total	Total
				0.465	0.465	0.465

Free Flowing Outfall Details for 01 Site Entrance

Outfall	Outfall	C. Level	I. Level	Min	D,L	W
Pipe Number	Name	(m)	(m)	I. Level	(mm)	(mm)
				(m)		
S1.006	S	36.000	33.773	0.000	0	0

Simulation Criteria for 01 Site Entrance

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow	0.000
Areal Reduction Factor	1.000	MADD Factor * 10m3/ha Storage	0.000
Hot Start (mins)	0	Inlet Coeffiecient	0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day)	0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins)	60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins)	1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Pro	file Type	Summer
Return Period (years)	1	Cv	(Summer)	0.750
Region	England and Wales	Cv	(Winter)	0.840
M5-60 (mm)	18.300	Storm Duration	on (mins)	30
Ratio R	0.350			

Systra Ltd		Page 6
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Dialilade
Micro Drainage	Network 2020.1	,

Online Controls for 01 Site Entrance

Pump Manhole: S10, DS/PN: S1.006, Volume (m³): 6.3

Invert Level (m) 33.828

Depth (m)	Flow (1/s)								
0.100	1.5000	0.700	1.5000	1.300	1.5000	1.900	1.5000	2.500	1.5000
0.200	1.5000		1.5000		1.5000	2.000	1.5000		1.5000
0.300	1.5000	0.900	1.5000	1.500	1.5000	2.100	1.5000	2.700	1.5000
0.400	1.5000	1.000	1.5000	1.600	1.5000	2.200	1.5000	2.800	1.5000
0.500	1.5000	1.100	1.5000	1.700	1.5000	2.300	1.5000	2.900	1.5000
0.600	1.5000	1.200	1.5000	1.800	1.5000	2.400	1.5000	3.000	1.5000

Systra Ltd		Page 7
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 1yrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	niamade
Micro Drainage	Network 2020.1	

Storage Structures for 01 Site Entrance

Tank or Pond Manhole: S10, DS/PN: S1.006

Invert Level (m) 33.828

Depth (m)	Area (m²)								
0.000	300.0	2.400	0.0	4.800	0.0	7.200	0.0	9.600	0.0
0.400	300.0		0.0	5.200	0.0	7.600	0.0		0.0
0.800	300.0		0.0	5.600	0.0	8.000	0.0	10.000	0.0
1.200	300.0		0.0		0.0	8.400	0.0		
1.201	0.0		0.0	6.400	0.0	8.800	0.0		
2.000	0.0	4.400	0.0	6.800	0.0	9.200	0.0		

Volume Summary (Static)

Length Calculations based on Centre-Centre

Pipe	USMH	Total
Number	Name	Volume (m³)
S1.000	S1	0.000
S1.001	S2	0.000
S1.002	S3	0.000
S2.000	S4	0.000
S1.003	S5	0.000
s3.000	S6	0.000
S3.001	s7	0.000
S1.004	S8	0.000
S1.005	S9	0.000
S1.006	S10	0.000
Total		0.000

Volume Summary (Static)

Length Calculations based on True Length

Pipe	USMH	Total
Number	Name	Volume (m³)
S1.000	S1	0.000
S1.001	S2	0.000
S1.002	s3	0.000
S2.000	S4	0.000
S1.003	S5	0.000
S3.000	S6	0.000
S3.001	s7	0.000
S1.004	S8	0.000
S1.005	S9	0.000
S1.006	S10	0.000
Total		0.000

Systra Ltd		Page 8
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Diamage
Micro Drainage	Network 2020.1	<u>'</u>

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 01 Site Entrance

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 0.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 18.300 Cv (Summer) 0.750 Region England and Wales Ratio R 0.350 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 10.0 DVD Status ON Analysis Timestep Fine Inertia Status ON DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440 Return Period(s) (years) 1 Climate Change (%)

PN	US/MH Name	Storm			First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)
S1.000	S1	15 Winter	1	+0%					36.051	-0.249	0.000
S1.001	S2	15 Winter	1	+0%					35.752	-0.248	0.000
S1.002	S3	15 Winter	1	+0%					35.486	-0.214	0.000
S2.000	S4	15 Winter	1	+0%					36.050	-0.175	0.000
S1.003	S5	15 Winter	1	+0%					35.330	-0.170	0.000
S3.000	S6	15 Winter	1	+0%					34.289	-0.211	0.000
S3.001	s7	15 Winter	1	+0%					34.230	-0.180	0.000
S1.004	S8	15 Winter	1	+0%					34.198	-0.093	0.000
S1.005	S9	15 Winter	1	+0%					34.126	-0.121	0.000
S1.006	S10	720 Winter	1	+0%					34.033	-0.171	0.000

				Half Drain	Pipe		
	US/MH	Flow /	Overflow	Time	Flow		Level
PN	Name	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.000	S1	0.07			7.0	OK	
S1.001	S2	0.07			7.0	OK	
S1.002	S3	0.18			14.7	OK	
S2.000	S4	0.11			4.2	OK	
S1.003	S5	0.39			29.5	OK	
S3.000	S6	0.19			12.6	OK	
S3.001	s7	0.24			16.5	OK	
S1.004	S8	0.81			49.9	OK	
S1.005	S9	0.79			49.4	OK	
S1.006	S10	0.01			1.5	OK	

Systra Ltd F							
Innovation Court	Envision						
121 Edmund Street	Surface Water Design						
Birmingham B3 2HJ	1 in 30yrs	Micro					
Date 16/07/2021	Designed by GP	Drainage					
File Drainage Networks v3.MDX	Checked by TD	niamade					
Micro Drainage	Network 2020.1	,					

Summary of Critical Results by Maximum Level (Rank 1) for 01 Site Entrance

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 0.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 18.300 Cv (Summer) 0.750 Region England and Wales Ratio R 0.350 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 10.0 DVD Status ON Analysis Timestep Fine Inertia Status ON DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440 Return Period(s) (years) 30 Climate Change (%)

PN	US/MH Name	Storm		Climate Change	First () Surchar	• • • • • •	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)
S1.000	S1	15 Winter	30	+0%					36.082	-0.218	0.000
S1.001	S2	15 Winter	30	+0%					35.784	-0.216	0.000
S1.002	S3	15 Winter	30	+0%					35.553	-0.147	0.000
S2.000	S4	15 Winter	30	+0%					36.080	-0.145	0.000
S1.003	S5	15 Winter	30	+0%					35.500	0.000	0.000
S3.000	S6	15 Winter	30	+0%	30/15 Sur	ımmer			34.814	0.314	0.000
S3.001	s7	15 Winter	30	+0%	30/15 Sur	ımmer			34.722	0.312	0.000
S1.004	S8	15 Winter	30	+0%	30/15 Sur	ımmer			34.624	0.333	0.000
S1.005	S9	720 Winter	30	+0%	30/15 Sur	ımmer			34.361	0.114	0.000
S1.006	S10	720 Winter	30	+0%	30/120 Win	nter			34.360	0.157	0.000

				Half Drain	Pipe		
	US/MH	Flow /	Overflow	Time	Flow		Level
PN	Name	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
01 000	0.1	0.16			15 1	077	
S1.000	S1	0.16			17.1	OK	
S1.001	S2	0.17			17.1	OK	
S1.002	s3	0.48			39.2	OK	
S2.000	S4	0.27			10.2	OK	
S1.003	S5	1.02			77.5	OK	
S3.000	S6	0.44			29.7	SURCHARGED	
S3.001	S7	0.60			41.2	SURCHARGED	
S1.004	S8	2.10			128.9	SURCHARGED	
S1.005	S9	0.20			12.4	SURCHARGED	
S1.006	S10	0.01			1.5	SURCHARGED	

Systra Ltd							
Innovation Court	Envision						
121 Edmund Street	Surface Water Design						
Birmingham B3 2HJ	1 in 100yrs+40% CC	Micro					
Date 16/07/2021	Designed by GP	Drainage					
File Drainage Networks v3.MDX	Checked by TD	Diamark.					
Micro Drainage	Network 2020.1						

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 0.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 18.300 Cv (Summer) 0.750 Region England and Wales Ratio R 0.350 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 10.0 DVD Status ON Analysis Timestep Fine Inertia Status ON DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440 Return Period(s) (years) 100 Climate Change (%)

											Water	Surcharged	Flooded
	US/MH			Return	Climate	First ()	X) I	First (Y)	First (Z)	Overflow	Level	Depth	Volume
PN	Name	S	torm	Period	Change	Surchar	ge	Flood	Overflow	Act.	(m)	(m)	(m³)
S1.000	S1	15	Winter	100	+40%						36.113	-0.187	0.000
S1.001	S2	15	Winter	100	+40%	100/15 Wir	nter				36.005	0.005	0.000
S1.002	s3	15	Winter	100	+40%	100/15 Sur	mmer				35.946	0.246	0.000
S2.000	S4	15	Winter	100	+40%						36.112	-0.113	0.000
S1.003	S5	15	Winter	100	+40%	100/15 Sur	mmer				35.834	0.334	0.000
s3.000	S6	15	Winter	100	+40%	100/15 Sur	mmer				35.645	1.145	0.000
S3.001	s7	15	Winter	100	+40%	100/15 Sur	mmer				35.560	1.149	0.000
S1.004	S8	15	Winter	100	+40%	100/15 Sur	mmer				35.428	1.137	0.000
S1.005	S9	1440	Winter	100	+40%	100/15 Sur	mmer				34.954	0.707	0.000
S1.006	S10	1440	Winter	100	+40%	100/30 Sur	mmer				34.953	0.750	0.000

DM	•	•	Overflow	Half Drain Time	Pipe Flow	Q to to to	Level
PN	Name	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.000	S1	0.30			31.0	OK	
S1.001	S2	0.36			36.1	SURCHARGED	
S1.002	S3	0.82			66.7	SURCHARGED	
S2.000	S4	0.49			18.4	OK	
S1.003	S5	1.76			133.5	SURCHARGED	
S3.000	S6	0.77			51.9	SURCHARGED	
S3.001	s7	1.05			71.6	SURCHARGED	
S1.004	S8	3.53			216.6	SURCHARGED	
S1.005	S9	0.21			13.2	SURCHARGED	
S1.006	S10	0.01			1.5	SURCHARGED	

Systra Ltd	Page 11	
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Dialilacie
Micro Drainage	Network 2020.1	<u>'</u>

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for 02 HW & CarPark

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and Wales

Return Period (years) 1 PIMP (%) 100
M5-60 (mm) 18.300 Add Flow / Climate Change (%) 0
Ratio R 0.350 Minimum Backdrop Height (m) 0.200
Maximum Rainfall (mm/hr) 100 Maximum Backdrop Height (m) 1.500
Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200
Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00
Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Time Area Diagram for 02 HW & CarPark

						Time					
(mins)	(ha)										
0-4	2.067	4-8	1.496	8-12	0.644	12-16	0.325	16-20	0.240	20-24	0.017

Total Area Contributing (ha) = 4.789

Total Pipe Volume $(m^3) = 327.689$

Network Design Table for 02 HW & CarPark

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ise	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
4 000	C4 400	0 1 5 7	410 0	0 050	F 00		0 0	0 (00		450	Disa (Garada) t	
4.000	64.400			0.050	5.00		0.0	0.600	0	450	Pipe/Conduit	ð
4.001	39.380	0.096	411.2	0.077	0.00		0.0	0.600	0	450	Pipe/Conduit	₩
4.002	45.516	0.111	409.6	0.050	0.00		0.0	0.600	0	450	Pipe/Conduit	₩
4.003	48.072	0.111	433.8	0.053	0.00		0.0	0.600	0	450	Pipe/Conduit	ĕ
4.004	48.079	0.124	388.6	0.055	0.00		0.0	0.600	0	450	Pipe/Conduit	ĕ
4.005	23.578	0.058	410.0	0.180	0.00		0.0	0.600	0	450	Pipe/Conduit	ĕ
4.006	46.503	0.113	410.0	0.030	0.00		0.0	0.600	0	450	Pipe/Conduit	<u>-</u>
4.007	43.491	0.106	410.0	0.057	0.00		0.0	0.600	0	450	Pipe/Conduit	-
4.008	58.136	0.142	410.0	0.039	0.00		0.0	0.600	0	450	Pipe/Conduit	<u>-</u>

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(l/s)	(1/s)
4.000	43.10	6.08	34.805	0.050	0.0	0.0	0.0	1.00	158.7	5.9
4.001	41.11	6.73	34.648	0.128	0.0	0.0	0.0	1.00	158.5	14.2
4.002	39.06	7.49	34.552	0.178	0.0	0.0	0.0	1.00	158.8	18.8
4.003	37.09	8.32	34.441	0.231	0.0	0.0	0.0	0.97	154.2	23.2
4.004	35.43	9.10	34.330	0.285	0.0	0.0	0.0	1.03	163.0	27.4
4.005	34.65	9.50	34.207	0.465	0.0	0.0	0.0	1.00	158.7	43.6
4.006	33.24	10.27	34.149	0.495	0.0	0.0	0.0	1.00	158.7	44.6
4.007	32.03	11.00	34.036	0.552	0.0	0.0	0.0	1.00	158.7	47.9
4.008	30.56	11.97	33.930	0.591	0.0	0.0	0.0	1.00	158.7	48.9

Systra Ltd		Page 12
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Drainage
Micro Drainage	Network 2020.1	

Network Design Table for 02 HW & CarPark

PN	Length		Slope (1:X)	I.Area	T.E.	Base	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto
	(m)	(m)	(I:A)	(ha)	(mins)	Flow (1/s)	(mm)	SECI	(11411)		Design
4.009	24.475	0.049	499.0	0.000	0.00	0.0	0.600	0	900	Pipe/Conduit	0
5.000	29.482	0.087	338.9	0.016	5.00	0.0	0.600	0	450	Pipe/Conduit	ð
5.001	37.556	0.091	412.5	0.109	0.00	0.0	0.600	0	450	Pipe/Conduit	ĕ
5.002	49.713	0.122	407.6	0.037	0.00	0.0	0.600	0	450	Pipe/Conduit	ď
5.003	50.054	0.122	410.4	0.057	0.00	0.0	0.600	0	450	Pipe/Conduit	ĕ
5.004	50.256	0.123	409.9	0.059	0.00	0.0	0.600	0	450	Pipe/Conduit	ď
5.005	49.795	0.121	410.6	0.059	0.00	0.0	0.600	0	450	Pipe/Conduit	ď
5.006	50.654	0.123	411.2	0.053	0.00	0.0	0.600	0	450	Pipe/Conduit	ď
5.007	49.440	0.121	409.6	0.056	0.00	0.0	0.600	0	450	Pipe/Conduit	ď
5.008	27.953	0.066	424.2	0.050	0.00	0.0	0.600	0	450	Pipe/Conduit	ď
5.009	11.106	0.032	342.5	0.047	0.00	0.0	0.600	0	450	Pipe/Conduit	ď
5.010	43.366	0.106	410.0	0.060	0.00	0.0	0.600	0	450	Pipe/Conduit	ď
5.011	45.037	0.110	410.0	0.031	0.00	0.0	0.600	0	450	Pipe/Conduit	ď
5.012	44.973	0.110	410.0	0.052	0.00	0.0	0.600	0	450	Pipe/Conduit	ď
5.013	44.958	0.110	410.0	0.054	0.00	0.0	0.600	0	450	Pipe/Conduit	ď
5.014	42.323	0.103	410.0	0.056	0.00	0.0	0.600	0	450	Pipe/Conduit	ď
5.015	42.323	0.103	410.0	0.133	0.00	0.0	0.600	0	450	Pipe/Conduit	ĕ
5.016	49.956	0.122	409.6	0.091	0.00	0.0	0.600	0	450	Pipe/Conduit	ĕ
5.017	35.685	0.087	410.4	0.061	0.00	0.0	0.600	0	450	Pipe/Conduit	ď
5.018	50.024	0.122	410.2	0.067	0.00	0.0	0.600	0	450	Pipe/Conduit	ĕ
5.019	49.991	0.122	409.9	0.094	0.00	0.0	0.600	0	450	Pipe/Conduit	ĕ
5.020	28.007	0.068	410.0	0.051	0.00	0.0	0.600	0	450	Pipe/Conduit	ĕ

Network Results Table

PN	Rain (mm/hr)	T.C.	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
4.009	30.18	12.26	33.343	0.591	0.0	0.0	0.0	1.40	888.0	48.9
5.000 5.001	45.23 43.10	5.45 6.08	35.928 35.841	0.016 0.126	0.0	0.0	0.0		174.7 158.2	2.0 14.7
5.002 5.003	40.63 38.45	6.90 7.74	35.750 35.628	0.162 0.219	0.0	0.0	0.0		159.2 158.6	17.9 22.8
5.004 5.005	36.52 34.81	8.58 9.41	35.506 35.383	0.278 0.337	0.0	0.0	0.0		158.7 158.6	27.5 31.8
5.006 5.007	33.26 31.89	10.26 11.09	35.262 35.139	0.390 0.446	0.0	0.0	0.0	1.00	158.5 158.8	35.1 38.5
5.008 5.009	31.16 30.91	11.56 11.73	35.018 34.952	0.495 0.542	0.0	0.0	0.0	1.09	156.0 173.8	41.8 45.4
5.010	29.93	12.45	34.920	0.602	0.0	0.0	0.0	1.00	158.7 158.7	48.8
5.012	28.14	14.71	34.704 34.595	0.684	0.0	0.0	0.0	1.00	158.7 158.7	52.1 54.6
5.014	26.63 25.96		34.485	0.794	0.0	0.0	0.0	1.00	158.7 158.7	57.2 65.2
5.016 5.017 5.018	25.23 24.73 24.08	16.96 17.55 18.39	34.278 34.157 34.070	1.017 1.078 1.145	0.0 0.0 0.0	0.0	0.0 0.0 0.0	1.00	158.8 158.6 158.7	69.5 72.2 74.7
5.018 5.019 5.020	23.46		33.948 33.826	1.239	0.0	0.0	0.0	1.00	158.7 158.7	78.8 80.8
					- • •		- • •		"	

Systra Ltd		Page 13
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Dialilade
Micro Drainage	Network 2020.1	,

Network Design Table for 02 HW & CarPark

PN	Length	Fall	Slope	I.Area	T.E.	Ва	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
4.010	18.173	0.036	504.8	0.553	0.00		0.0	0.600	0	900	Pipe/Conduit	A
4.011	29.195	0.059	498.9	0.000	0.00		0.0	0.600	0	900	Pipe/Conduit	ĕ
4.012	12.654	0.025	499.0	0.255	0.00		0.0	0.600	0	900	Pipe/Conduit	
4.013	8.780	0.018	499.0	0.000	0.00		0.0	0.600	0	900	Pipe/Conduit	
4.014	60.345	0.080	754.3	1.127	0.00		0.0	0.600	0	900	Pipe/Conduit	
4.015	36.520	0.073	499.0	0.972	0.00		0.0	0.600	0	900	Pipe/Conduit	ĕ

Network Results Table

PN	Rain	T.C.	US/IL	$\Sigma \text{ I.Area}$	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow $(1/s)$	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
4.010	22.99	19.91	33.294	2.435	0.0	0.0	0.0	1.39	882.8	151.6
4.011	22.75	20.26	33.258	2.435	0.0	0.0	0.0	1.40	888.1	151.6
4.012	22.65	20.41	33.199	2.690	0.0	0.0	0.0	1.40	888.0	165.0
4.013	22.58	20.51	33.174	2.690	0.0	0.0	0.0	1.40	888.0	165.0
4.014	22.02	21.40	33.157	3.817	0.0	0.0	0.0	1.13	720.8	227.7
4.015	21.76	21.84	33.077	4.789	0.0	0.0	0.0	1.40	888.0	282.2

Systra Ltd		Page 14
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 1yrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Dialilacie
Micro Drainage	Network 2020.1	<u>'</u>

MH	MH CL (m)	MH Depth	MH Connection	MH Diam.,L*W	PN	Pipe Out Invert	Diameter	PN	Pipes In Invert	Diameter	Backdrop
Name	CH (III)	(m)	Connection	(mm)	FN	Level (m)	(mm)	- FN	Level (m)	(mm)	(mm)
S11	38.005	3.200	Open Manhole	1350	4.000	34.805	450				
S12	37.900	3.252	Open Manhole	1350	4.001	34.648	450	4.000	34.648	450	
S13	37.900	3.348	Open Manhole	1350	4.002	34.552	450	4.001	34.552	450	
S14	38.005	3.564	Open Manhole	1350	4.003	34.441	450	4.002	34.441	450	
S15	38.005	3.675	Open Manhole	1350	4.004	34.330	450	4.003	34.330	450	
S16	38.005	3.798	Open Manhole	1350	4.005	34.207	450	4.004	34.207	450	
S17	37.700	3.551	Open Manhole	1350	4.006	34.149	450	4.005	34.149	450	
S18	38.090	4.054	Open Manhole	1350	4.007	34.036	450	4.006	34.036	450	
S19	38.000	4.070	Open Manhole	1350	4.008	33.930	450	4.007	33.930	450	
S20	38.150	4.807	Open Manhole	1800	4.009	33.343	900	4.008	33.788	450	
S21	38.005	2.077	Open Manhole	1350	5.000	35.928	450				
S22	38.005	2.164	Open Manhole	1350	5.001	35.841	450	5.000	35.841	450	
S23	38.435	2.685	Open Manhole	1350	5.002	35.750	450	5.001	35.750	450	
S24	38.430	2.802	Open Manhole	1350	5.003	35.628	450	5.002	35.628	450	
S25	38.430	2.924	Open Manhole	1350	5.004	35.506	450	5.003	35.506	450	
S26	38.500	3.117	Open Manhole	1350	5.005	35.383	450	5.004	35.383	450	
S27	38.000	2.738	Open Manhole	1350	5.006	35.262	450	5.005	35.262	450	
S28	37.700	2.561	Open Manhole	1350	5.007	35.139	450	5.006	35.139	450	
S29	37.500	2.482	Open Manhole	1350	5.008	35.018	450	5.007	35.018	450	
S30	37.300	2.348	Open Manhole	1350	5.009	34.952	450	5.008	34.952	450	
S31	37.300	2.380	Open Manhole	1350	5.010	34.920	450	5.009	34.920	450	
S32	37.300	2.486	Open Manhole	1350	5.011	34.814	450	5.010	34.814	450	
S33	37.200	2.496	Open Manhole	1350	5.012	34.704	450	5.011	34.704	450	
S34	37.200	2.605	Open Manhole	1350	5.013	34.595	450	5.012	34.595	450	
S35	37.200	2.715	Open Manhole	1350	5.014	34.485	450	5.013	34.485	450	
S36	37.600	3.218	Open Manhole	1350	5.015	34.382	450	5.014	34.382	450	
S37	38.150	3.872	Open Manhole	1350	5.016	34.278	450	5.015	34.278	450	
S38	38.150	3.993	Open Manhole	1350	5.017	34.157	450	5.016	34.157	450	
S39	38.150	4.080	Open Manhole	1350	5.018	34.070	450	5.017	34.070	450	
S40	37.925	3.977	Open Manhole	1350	5.019	33.948	450	5.018	33.948	450	
S41	38.150	4.324	Open Manhole	1350	5.020	33.826	450	5.019	33.826	450	
S42	38.300	5.006	Open Manhole	1800	4.010	33.294	900	4.009	33.294	900	
								5.020	33.757	450	13
S43	38.275	5.017	Open Manhole	1800	4.011	33.258	900	4.010	33.258	900	
	38.250				4.012	33.199		4.011	33.199	900	
	37.935		_	1	4.013	33.174	900		33.174	900	
	37.620			1	4.014	33.157	900		33.157	900	
S47	37.420				4.015	33.077	900		33.077	900	
S49	37.500		Open Manhole	1800		OUTFALL		4.015	33.003	900	

Systra Ltd		Page 15
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	niairiade
Micro Drainage	Network 2020.1	'

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S11	433133.993	558513.525	433133.993	558513.525	Required	>
S12	433107.016	558572.002	433107.016	558572.002	Required	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
S13	433090.870	558607.919	433090.870	558607.919	Required	1
S14	433072.243	558649.450	433072.243	558649.450	Required	1
S15	433052.274	558693.178	433052.274	558693.178	Required	1
S16	433032.302	558736.912	433032.302	558736.912	Required	
S17	433041.403	558758.664	433041.403	558758.664	Required	
S18	433083.761	558777.856	433083.761	558777.856	Required	-
S19	433123.388	558795.776	433123.388	558795.776	Required	-0-
S20	433176.359	558819.731	433176.359	558819.731	Required	
S21	433140.187	558504.622	433140.187	558504.622	Required	
S22	433167.102	558516.656	433167.102	558516.656	Required	
S23	433201.434	558531.881	433201.434	558531.881	Required	
S24	433246.747	558552.329	433246.747	558552.329	Required	
S25	433292.356	558572.948	433292.356	558572.948	Required	-0-
S26	433338.146	558593.658	433338.146	558593.658	Required	-
S27	433383.543	558614.119	433383.543	558614.119	Required	

Systra Ltd		Page 16
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 1yrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	niairiade
Micro Drainage	Network 2020.1	,

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S28	433429.657	558635.081	433429.657	558635.081	Required	
S29	433474.717	558655.425	433474.717	558655.425	Required	
S30	433500.246	558666.811	433500.246	558666.811	Required	-6
S31	433500.939	558677.896	433500.939	558677.896	Required	
S32	433483.054	558717.402	433483.054	558717.402	Required	1
S33	433464.589	558758.480	433464.589	558758.480	Required	1
S34	433446.035	558799.447	433446.035	558799.447	Required	1
S35	433427.535	558840.423	433427.535	558840.423	Required	1
S36	433410.438	558879.138	433410.438	558879.138	Required	1
s37	433393.340	558917.854	433393.340	558917.854	Required	\ _0
S38	433347.678	558897.589	433347.678	558897.589	Required	
S39	433315.122	558882.976	433315.122	558882.976	Required	_0-
S40	433269.593	558862.251	433269.593	558862.251	Required	_0-
S41	433224.040	558841.659	433224.040	558841.659	Required	
S42	433198.657	558829.821	433198.657	558829.821	Required	-6-
S43	433191.180	558846.385	433191.180	558846.385	Required	
S44	433217.790	558858.397	433217.790	558858.397	Required	7,

Systra Ltd		Page 17
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 1yrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	niairiade
Micro Drainage	Network 2020.1	,

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S45	433212.583	558869.931	433212.583	558869.931	Required	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
S46	433208.971	558877.933	433208.971	558877.933	Required	
S47	433263.740	558903.268	433263.740	558903.268	Required	_0_
S49	433298.223	558891.241			No Entry	

Systra Ltd		Page 18
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Dialilade
Micro Drainage	Network 2020.1	'

Area Summary for 02 HW & CarPark

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)
4.000	User	_	100	0.050	0.050	0.050
4.001	User	_	100	0.030	0.077	0.077
4.001	User	_	100	0.050	0.050	0.050
4.002	User	_	100	0.053	0.053	0.053
4.004	User	_	100	0.055	0.055	0.055
4.005	User	_	100	0.180	0.180	0.180
4.006	User	_	100	0.030	0.030	0.030
4.007	User	_	100	0.057	0.057	0.057
4.007	User	_	100	0.039	0.039	0.039
4.009	0361	_	100	0.000	0.000	0.000
5.000	User	_	100	0.016	0.016	0.016
5.001	User	_	100	0.109	0.109	0.109
5.002	User	_	100	0.037	0.037	0.037
5.002	User	_	100	0.057	0.057	0.057
5.004	User	_	100	0.059	0.059	0.059
5.005	User	_	100	0.059	0.059	0.059
5.006	User	_	100	0.053	0.053	0.053
5.007	User	_	100	0.056	0.056	0.056
5.008	User	_	100	0.050	0.050	0.050
5.009	User	_	100	0.047	0.047	0.047
5.010	User	_	100	0.060	0.060	0.060
5.011	User	_	100	0.031	0.031	0.031
5.012	User	_	100	0.052	0.052	0.052
5.013	User	_	100	0.054	0.054	0.054
5.014	User	_	100	0.056	0.056	0.056
5.015	User	_	100	0.133	0.133	0.133
5.016	User	_	100	0.091	0.091	0.091
5.017	User	_	100	0.061	0.061	0.061
5.018	User	_	100	0.067	0.067	0.067
5.019	User	_	100	0.094	0.094	0.094
5.020	User	_	100	0.051	0.051	0.051
4.010	User	-	100	0.381	0.381	0.381
	User	-	100	0.172	0.172	0.553
4.011	-	-	100	0.000	0.000	0.000
4.012	User	_	100	0.255	0.255	0.255
4.013	-	-	100	0.000	0.000	0.000
4.014	User	-	100	1.127	1.127	1.127
4.015	User	_	100	0.828	0.828	0.828
	User	_	100	0.105	0.105	0.933
	User	_	100	0.039	0.039	0.972
				Total	Total	Total
				4.789	4.789	4.789

Free Flowing Outfall Details for 02 HW & CarPark

Outfall	Outfall	C. Level	I. Level	Min	D,L	W
Pipe Number	Name	(m)	(m)	I. Level	(mm)	(mm)
				(m)		
4.015	S49	37.500	33.003	0.000	1800	0

Systra Ltd		Page 19
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	pramage
Micro Drainage	Network 2020.1	'

Simulation Criteria for 02 HW & CarPark

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 0.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (l/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (l/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 2 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type S	Summer
Return Period (years)	1	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	18.300	Storm Duration (mins)	30
Ratio R	0.350		

Systra Ltd		Page 20
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Mirro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Diamage
Micro Drainage	Network 2020.1	

Online Controls for 02 HW & CarPark

Pump Manhole: S47, DS/PN: 4.015, Volume (m³): 48.3

Invert Level (m) 33.077

Depth (m)	Flow (1/s)								
	4.5.0000		45 0000		45.000		4.5.0000	0.500	45 0000
0.100	15.3000	0.700	15.3000	1.300	15.3000	1.900	15.3000	2.500	15.3000
0.200	15.3000	0.800	15.3000	1.400	15.3000	2.000	15.3000	2.600	15.3000
0.300	15.3000	0.900	15.3000	1.500	15.3000	2.100	15.3000	2.700	15.3000
0.400	15.3000	1.000	15.3000	1.600	15.3000	2.200	15.3000	2.800	15.3000
0.500	15.3000	1.100	15.3000	1.700	15.3000	2.300	15.3000	2.900	15.3000
0.600	15.3000	1.200	15.3000	1.800	15.3000	2.400	15.3000	3.000	15.3000

Systra Ltd		Page 21
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	pramaye
Micro Drainage	Network 2020.1	<u>'</u>

Storage Structures for 02 HW & CarPark

Porous Car Park Manhole: S46, DS/PN: 4.014

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	62.0
Membrane Percolation (mm/hr)	1000	Length (m)	210.0
Max Percolation $(1/s)$	3616.7	Slope (1:X)	1000.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	34.270	Membrane Depth (mm)	0

Tank or Pond Manhole: S47, DS/PN: 4.015

Invert Level (m) 33.077

Depth (m)	Area (m²)								
0.000	3500.0	2.400	0.0	4.800	0.0	7.200	0.0	9.600	0.0
0.400	3500.0	2.800	0.0	5.200	0.0	7.600	0.0	10.000	0.0
0.800	3500.0	3.200	0.0	5.600	0.0	8.000	0.0		
1.200	3500.0	3.600	0.0	6.000	0.0	8.400	0.0		
1.201	0.0	4.000	0.0	6.400	0.0	8.800	0.0		
2.000	0.0	4.400	0.0	6.800	0.0	9.200	0.0		

Systra Ltd		Page 22
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Dialilade
Micro Drainage	Network 2020.1	<u>'</u>

Volume Summary (Static)

Length Calculations based on Centre-Centre

Pipe	USMH	Total
Number	Name	Volume (m³)
4 000	011	0 000
4.000	S11	0.000
4.001	S12	0.000
4.002	S13	0.000
4.003	S14	0.000
4.004	S15	0.000
4.005	S16	0.000
4.006	S17	0.000
4.007	S18	0.000
4.008	S19	0.000
4.009	S20	0.000
5.000	S21	0.000
5.001	S22	0.000
5.002	S23	0.000
5.003	S24	0.000
5.004	S25	0.000
5.005	S26	0.000
5.006	S27	0.000
5.007	S28	0.000
5.008	S29	0.000
5.009	S30	0.000
5.010	S31	0.000
5.011	S32	0.000
5.012	S33	0.000
5.013	S34	0.000
5.014	S35	0.000
5.015	S36	0.000
5.016	S37	0.000
5.017	S38	0.000
5.018	S39	0.000
5.019	S40	0.000
5.020	S41	0.000
4.010	S42	0.000
4.011	S43	0.000
4.012	S44	0.000
4.013	S45	0.000
4.014	S46	0.000
4.015	S47	0.000
Total		0.000

Systra Ltd		Page 23
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Dialilade
Micro Drainage	Network 2020.1	<u>'</u>

Volume Summary (Static)

Length Calculations based on True Length

Pipe	USMH	Total
Number	Name	Volume (m³)
4.000	S11	0.000
4.000	S12	0.000
4.001	S12	0.000
4.002	S14	0.000
4.004	S15	0.000
4.005	S16	0.000
4.006	S17	0.000
4.007	S18	0.000
4.008	S19	0.000
4.009	S20	0.000
5.000	S21	0.000
5.001	S22	0.000
5.002	S23	0.000
5.003	S24	0.000
5.004	S25	0.000
5.005	S26	0.000
5.006	S27	0.000
5.007	S28	0.000
5.008	S29	0.000
5.009	S30	0.000
5.010	S31	0.000
5.011	S32	0.000
5.012	S33	0.000
5.013	S34	0.000
5.014	S35	0.000
5.015	S36	0.000
5.016	S37	0.000
5.017	S38	0.000
5.018	S39	0.000
5.019	S40	0.000
5.020	S41	0.000
4.010	S42	0.000
4.011	S43	0.000
4.012	S44	0.000
4.013	S45	0.000
4.014	S46	0.000
4.015	S47	0.000
Total		0.000

Systra Ltd		Page 24
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 1yrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Diamage
Micro Drainage	Network 2020.1	'

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 02 HW & CarPark

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 0.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 2 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 18.300 Cv (Summer) 0.750 Region England and Wales Ratio R 0.350 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 10.0 DVD Status ON Analysis Timestep Fine Inertia Status ON DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440 Return Period(s) (years) 1 Climate Change (%)

									Water	Surcharged	${\tt Flooded}$	
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume	Flow /
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	Cap.
4.000	C11	15 Winter	1	+0%					34.864	-0.391	0.000	0.04
4.000		15 Winter	1	+0%					34.744	-0.354	0.000	0.04
4.001		15 Winter	1	+0%					34.744	-0.345	0.000	
1			1	+0%								0.12
4.003		15 Winter	_						34.559	-0.332	0.000	0.15
4.004		15 Winter	1	+0%					34.460	-0.320	0.000	0.17
4.005		15 Winter	1	+0%					34.375	-0.282	0.000	0.28
4.006		15 Winter	1	+0%					34.307	-0.292	0.000	0.27
4.007		15 Winter	1	+0%					34.201	-0.285	0.000	0.29
4.008		30 Winter	1	+0%					34.095	-0.285	0.000	0.29
4.009		30 Winter	1	+0%					33.656	-0.587	0.000	0.07
5.000		15 Winter	1	+0%					35.973	-0.405	0.000	0.01
5.001		15 Winter	1	+0%					35.936	-0.355	0.000	0.09
5.002		15 Winter	1	+0%					35.851	-0.349	0.000	0.11
5.003		15 Winter	1	+0%					35.741	-0.337	0.000	0.14
5.004		15 Winter	1	+0%					35.630	-0.326	0.000	0.17
5.005	S26	15 Winter	1	+0%					35.517	-0.316	0.000	0.19
5.006	S27	15 Winter	1	+0%					35.401	-0.311	0.000	0.20
5.007	S28	30 Winter	1	+0%					35.283	-0.306	0.000	0.22
5.008	S29	30 Winter	1	+0%					35.186	-0.282	0.000	0.25
5.009	S30	30 Winter	1	+0%					35.120	-0.282	0.000	0.30
5.010	S31	30 Winter	1	+0%					35.076	-0.294	0.000	0.26
5.011	S32	30 Winter	1	+0%					34.972	-0.292	0.000	0.27
5.012	S33	30 Winter	1	+0%					34.865	-0.289	0.000	0.28
5.013	S34	30 Winter	1	+0%					34.759	-0.286	0.000	0.29
5.014	S35	30 Winter	1	+0%					34.653	-0.282	0.000	0.30
5.015	S36	30 Winter	1	+0%					34.556	-0.275	0.000	0.32
5.016	S37	60 Winter	1	+0%					34.458	-0.271	0.000	0.33
					©19	82-2020	Innovyze					

Systra Ltd		Page 25
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 1yrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Dialilade
Micro Drainage	Network 2020.1	,

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 02 HW \&}{\text{CarPark}}$

PN	US/MH Name	Overflow (1/s)	Half Drain Time (mins)	Flow		Level Exceeded
4.000	S11			5.8	OK	
4.001	S12			13.1	OK	
4.002	S13			17.3	OK	
4.003	S14			21.1	OK	
4.004	S15			24.5	OK	
4.005	S16			36.6	OK	
4.006	S17			38.2	OK	
4.007	S18			40.9	OK	
4.008	S19			42.5	OK	
4.009	S20			42.6	OK	
5.000	S21			1.9	OK	
5.001	S22			12.7	OK	
5.002	S23			15.8	OK	
5.003	S24			20.3	OK	
5.004	S25			24.1	OK	
5.005	S26			27.2	OK	
5.006	S27			29.4	OK	
5.007	S28			31.3	OK	
5.008	S29			33.2	OK	
5.009	S30			34.9	OK	
5.010	S31			37.1	OK	
5.011	S32			38.1	OK	
5.012	S33			39.6	OK	
5.013	S34			41.0	OK	
5.014	S35			42.3	OK	
5.015	S36			45.5	OK	
5.016	S37			48.1	OK	

Systra Ltd		Page 26
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 1yrs	Micro
Date 16/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Diamarje
Micro Drainage	Network 2020.1	

$\frac{\text{1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 02 HW \&}{\text{CarPark}}$

									Water	Surcharged	Flooded		l
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume	Flow /	
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	Cap.	
5.017	S38	60 Winter	1	+0%					34.347	-0.260	0.000	0.36	
5.018	S39	60 Winter	1	+0%					34.257	-0.263	0.000	0.36	
5.019	S40	60 Winter	1	+0%					34.141	-0.257	0.000	0.38	
5.020	S41	60 Winter	1	+0%					34.028	-0.247	0.000	0.42	
4.010	S42	30 Winter	1	+0%					33.643	-0.551	0.000	0.25	
4.011	S43	30 Winter	1	+0%					33.605	-0.553	0.000	0.19	
4.012	S44	30 Winter	1	+0%					33.570	-0.529	0.000	0.33	
4.013	S45	30 Winter	1	+0%					33.533	-0.541	0.000	0.34	
4.014	S46	30 Winter	1	+0%					33.504	-0.552	0.000	0.32	
4.015		720 Winter	1	+0%					33.253	-0.724	0.000	0.02	
1.010	517	, 20	_						00.200	0.721	0.000	0.02	

			Half Drain	Pipe		
	US/MH	Overflow	Time	Flow		Level
PN	Name	(1/s)	(mins)	(1/s)	Status	Exceeded
5.017	S38			50.2	OK	
5.018	S39			52.3	OK	
5.019	S40			55.2	OK	
5.020	S41			56.7	OK	
4.010	S42			123.4	OK	
4.011	S43			122.9	OK	
4.012	S44			133.2	OK	
4.013	S45			133.3	OK	
4.014	S46		13	191.6	OK	
4.015	S47			15.3	OK	

Systra Ltd		Page 27
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 30yrs	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	nialilacie
Micro Drainage	Network 2020.1	

$\underline{30~\text{year}}$ Return Period Summary of Critical Results by Maximum Level (Rank 1) for 02 HW & $\underline{\text{CarPark}}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 0.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 2 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 18.300 Cv (Summer) 0.750 Region England and Wales Ratio R 0.350 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 10.0 DVD Status ON Analysis Timestep Fine Inertia Status ON DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440 Return Period(s) (years) 30 Climate Change (%)

									Water	Surcharged	${\tt Flooded}$	
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume	Flow /
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	Cap.
4.000	C11	15 Winter	30	+0%					34.904	-0.351	0.000	0.10
4.000		15 Winter		+0%					34.810		0.000	
			30							-0.288		0.24
4.002		15 Winter	30	+0%					34.736	-0.266	0.000	0.31
4.003		15 Winter	30	+0%					34.649	-0.242	0.000	0.39
4.004		15 Winter	30	+0%					34.565	-0.215	0.000	0.42
4.005		15 Winter	30	+0%					34.502	-0.155	0.000	0.72
4.006		15 Winter	30	+0%					34.428	-0.172	0.000	0.69
4.007		15 Winter	30	+0%					34.326	-0.159	0.000	0.73
4.008		15 Winter	30	+0%					34.218	-0.161	0.000	0.72
4.009	S20	30 Winter	30	+0%					33.953	-0.290	0.000	0.17
5.000	S21	15 Winter	30	+0%					36.020	-0.358	0.000	0.03
5.001	S22	15 Winter	30	+0%					36.009	-0.282	0.000	0.26
5.002	S23	15 Winter	30	+0%					35.926	-0.274	0.000	0.31
5.003	S24	15 Winter	30	+0%					35.827	-0.251	0.000	0.38
5.004	S25	15 Winter	30	+0%					35.720	-0.236	0.000	0.45
5.005	S26	15 Winter	30	+0%					35.609	-0.224	0.000	0.49
5.006	S27	15 Winter	30	+0%					35.494	-0.218	0.000	0.52
5.007	S28	30 Winter	30	+0%					35.391	-0.198	0.000	0.54
5.008	S29	30 Winter	30	+0%					35.308	-0.160	0.000	0.62
5.009	S30	30 Winter	30	+0%					35.243	-0.160	0.000	0.74
5.010		30 Winter	30	+0%					35.184	-0.186	0.000	0.64
5.011		30 Winter	30	+0%					35.082	-0.183	0.000	0.66
5.012		30 Winter	30	+0%					34.978	-0.176	0.000	0.68
5.013		30 Winter	30	+0%					34.878	-0.167	0.000	0.71
5.014		30 Winter	30	+0%					34.781	-0.154	0.000	0.73
5.015		30 Winter	30	+0%					34.690	-0.142	0.000	0.79
5.016		30 Winter	30	+0%					34.594	-0.142	0.000	0.79
J.010	331	20 MILLEI	30	TU0		00 0000	-		34.334	-0.133	0.000	0.02
					©19	82-2020	ınnovyze					

Systra Ltd	Page 28	
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 30yrs	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	niairiade
Micro Drainage	Network 2020.1	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 02 HW & $\underline{\text{CarPark}}$

			Half Drain	Pipe		
	US/MH	Overflow	Time	Flow		Level
PN	Name	(1/s)	(mins)	(1/s)	Status	Exceeded
4.000	S11			14.1	OK	
4.001	S12			34.1	OK	
4.002	S13			45.1	OK	
4.003				54.0	OK	
4.004	S15			62.1	OK	
4.005	S16			94.5	OK	
4.006	S17			98.2	OK	
4.007				104.5	OK	
4.008	S19			105.6	OK	
4.009	S20			107.7	OK	
5.000	S21			4.8	OK	
5.001	S21			36.9	OK	
5.002				44.8	OK	
5.003				55.3	OK	
5.004	S25			64.4	OK	
5.005	S26			71.0	OK	
5.006	S27			75.1	OK	
5.007				78.0	OK	
5.008	S29			82.2	OK	
5.009	S30			86.3	OK	
5.010	S31			91.5	OK	
5.011	S32			93.9	OK	
5.012				97.6	OK	
5.013				100.8	OK	
5.014	S35			104.2	OK	
5.015				112.3	OK	
5.016	S37			118.9	OK	
0.010	55,			110.0	OIC	

Systra Ltd	Page 29	
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 30yrs	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Diamage
Micro Drainage	Network 2020.1	'

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 02 HW & $\underline{\text{CarPark}}$

									Water	Surcharged	Flooded	
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume	Flow /
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	Cap.
5.017	S38	30 Winter	30	+0%					34.493	-0.114	0.000	0.89
5.018	S39	30 Winter	30	+0%					34.401	-0.118	0.000	0.89
5.019	S40	60 Winter	30	+0%					34.302	-0.096	0.000	0.92
5.020	S41	60 Winter	30	+0%					34.199	-0.076	0.000	1.00
4.010	S42	30 Winter	30	+0%					33.929	-0.265	0.000	0.66
4.011	S43	30 Winter	30	+0%					33.894	-0.264	0.000	0.49
4.012	S44	30 Winter	30	+0%					33.862	-0.238	0.000	0.88
4.013	S45	30 Winter	30	+0%					33.833	-0.242	0.000	0.89
4.014	S46	30 Winter	30	+0%					33.815	-0.242	0.000	0.88
4.015	S47	720 Winter	30	+0%					33.553	-0.423	0.000	0.02

			Half Drain	Pipe		
	US/MH	Overflow	Time	Flow		Level
PN	Name	(1/s)	(mins)	(1/s)	Status	Exceeded
5.017	S38			123.5	OK	
5.018	S39			128.3	OK	
5.019	S40			132.7	OK	
5.020	S41			135.2	OK	
4.010	S42			319.0	OK	
4.011	S43			321.9	OK	
4.012	S44			350.4	OK	
4.013	S45			354.8	OK	
4.014	S46		14	530.4	OK	
4.015	S47			15.3	OK	

Systra Ltd	Page 30	
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 100yrs+ CC	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	pramaye
Micro Drainage	Network 2020.1	'

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 02 HW & CarPark

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 0.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 2 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 18.300 Cv (Summer) 0.750 Region England and Wales Ratio R 0.350 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 10.0 DVD Status ON Analysis Timestep Fine Inertia Status ON DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440 Return Period(s) (years) 100 Climate Change (%)

									Water	Surcharged	Flooded
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)
4.000	S11	30 Winter	100	+40%					35.030	-0.225	0.000
4.001	S12	30 Winter	100	+40%					35.022	-0.076	0.000
4.002	S13	30 Winter	100	+40%					34.969	-0.033	0.000
4.003	S14	15 Winter	100	+40%	100/15 Winter				34.895	0.004	0.000
4.004	S15	15 Winter	100	+40%	100/15 Winter				34.853	0.073	0.000
4.005	S16	15 Winter	100	+40%	100/15 Summer				34.808	0.151	0.000
4.006	S17	15 Winter	100	+40%	100/15 Summer				34.751	0.152	0.000
4.007	S18	30 Winter	100	+40%	100/15 Summer				34.635	0.150	0.000
4.008	S19	30 Winter	100	+40%	100/15 Summer				34.510	0.130	0.000
4.009	S20	30 Winter	100	+40%	100/15 Summer				34.330	0.087	0.000
5.000	S21	30 Winter	100	+40%					36.296	-0.082	0.000
5.001	S22	30 Winter	100	+40%	100/30 Winter				36.294	0.003	0.000
5.002	S23	30 Winter	100	+40%	100/30 Winter				36.284	0.084	0.000
5.003	S24	30 Winter	100	+40%	100/15 Winter				36.235	0.157	0.000
5.004	S25	15 Winter	100	+40%	100/15 Winter				36.416	0.460	0.000
5.005	S26	30 Summer	100	+40%	100/15 Winter				36.194	0.361	0.000
5.006	S27	30 Winter	100	+40%	100/15 Winter				36.131	0.419	0.000
5.007	S28	30 Winter	100	+40%	100/15 Winter				36.095	0.506	0.000
5.008	S29	30 Winter	100	+40%	100/15 Summer				36.053	0.584	0.000
5.009	S30	30 Winter	100	+40%	100/15 Winter				36.055	0.653	0.000
5.010	S31	30 Winter	100	+40%	100/15 Winter				35.987	0.617	0.000
5.011	S32	30 Winter	100	+40%	100/15 Winter				35.923	0.659	0.000
5.012	S33	30 Winter	100	+40%	100/15 Summer				35.850	0.695	0.000
5.013	S34	30 Winter	100	+40%	100/15 Summer				35.764	0.720	0.000
5.014	S35	30 Winter	100	+40%	100/15 Summer				35.666	0.731	0.000
5.015	S36	30 Winter	100	+40%	100/15 Summer				35.564	0.732	0.000
5.016	S37	30 Winter	100	+40%	100/15 Summer				35.421	0.692	0.000
					©1982-20)20 Innov	yze				

Systra Ltd	Page 31	
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 100yrs+ CC	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Diamark
Micro Drainage	Network 2020.1	

$\frac{\text{100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 02 HW \&}{\text{CarPark}}$

PN	US/MH Name		Overflow (1/s)	Half Drain Time (mins)	Flow	Status	Level Exceeded
4.000	S11	0.14			21.0	OK	
4.001	S12	0.35			49.2	OK	
4.002	S13	0.44			62.5	OK	
4.003	S14	0.51			70.8	SURCHARGED	
4.004	S15	0.56			82.6	SURCHARGED	
4.005	S16	1.11			146.8	SURCHARGED	
4.006	S17	1.03			148.1	SURCHARGED	
4.007	S18	1.08			153.1	SURCHARGED	
4.008	S19	1.10			161.3	SURCHARGED	
4.009	S20	0.27			167.6	SURCHARGED	
5.000	S21	0.05			7.0	OK	
5.001	S22	0.38			53.5	SURCHARGED	
5.002	S23	0.45			64.5	SURCHARGED	
5.003	S24	0.54			78.0	SURCHARGED	
5.004	S25	0.67			96.2	SURCHARGED	
5.005	S26	0.64			91.5	SURCHARGED	
5.006	S27	0.68			98.1	SURCHARGED	
5.007	S28	0.74			106.5	SURCHARGED	
5.008	S29	0.85			112.4	SURCHARGED	
5.009	S30	0.98			113.5	SURCHARGED	
5.010	S31	0.86			121.9	SURCHARGED	
5.011	S32	0.83			118.9	SURCHARGED	
5.012	S33	0.90			128.1	SURCHARGED	
5.013	S34	0.96			136.8	SURCHARGED	
5.014	S35	1.03			145.8	SURCHARGED	
5.015	S36	1.17			166.3	SURCHARGED	
5.016	S37	1.26			182.1	SURCHARGED	

Systra Ltd	Page 32	
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 100yrs+ CC	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	nialilade
Micro Drainage	Network 2020.1	

$\frac{100 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank 1) for 02 HW }{\underline{\text{CarPark}}}$

									Water	Surcharged	Flooded
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)
5.017	S38	30 Winter	100	+40%	100/15 Summer				35.223	0.616	0.000
5.018	s39	30 Winter	100	+40%	100/15 Summer				35.057	0.537	0.000
5.019	S40	30 Winter	100	+40%	100/15 Summer				34.809	0.411	0.000
5.020	S41	30 Winter	100	+40%	100/15 Summer				34.513	0.237	0.000
4.010	S42	30 Winter	100	+40%	100/15 Summer				34.318	0.124	0.000
4.011	S43	30 Winter	100	+40%	100/15 Summer				34.276	0.118	0.000
4.012	S44	30 Winter	100	+40%	100/15 Summer				34.230	0.131	0.000
4.013	S45	30 Winter	100	+40%	100/15 Summer				34.191	0.117	0.000
4.014	S46	30 Winter	100	+40%	100/15 Summer				34.157	0.101	0.000
4.015	S47	1440 Winter	100	+40%	100/600 Winter				34.067	0.091	0.000

				Half Drain	Pipe		
	US/MH	Flow /	Overflow	Time	Flow		Level
PN	Name	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
5.017	S38	1.39			193.4	SURCHARGED	
5.018	S39	1.43			205.5	SURCHARGED	
5.019	S40	1.54			222.5	SURCHARGED	
5.020	S41	1.72			232.0	SURCHARGED	
4.010	S42	1.16			561.4	SURCHARGED	
4.011	S43	0.86			561.4	SURCHARGED	
4.012	S44	1.56			622.4	SURCHARGED	
4.013	S45	1.57			623.8	SURCHARGED	
4.014	S46	1.62		16	980.0	SURCHARGED	
4.015	S47	0.02			15.3	SURCHARGED	

Systra Ltd		Page 33
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Dialilacie
Micro Drainage	Network 2020.1	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for 03 Building

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and Wales

Return Period (years) 1 PIMP (%) 100

M5-60 (mm) 18.300 Add Flow / Climate Change (%) 0

Ratio R 0.350 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 100 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Time Area Diagram for 03 Building

Time	Area	Time	Area	Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)	(mins)	(ha)	(mins)	(ha)
0-4	0.953	4-8	4.066	8-12	3.590	12-16	0.377

Total Area Contributing (ha) = 8.986

Total Pipe Volume $(m^3) = 1141.630$

Network Design Table for 03 Building

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s	(mm)	SECT	(mm)		Design
s6.000	52.798	0 106	100 1	0.185	5.00	0	0.600	0	000	Pipe/Conduit	
								-		-	ð
S6.001	59.874	0.120	500.1	0.567	0.00	0.	0.600	0	900	Pipe/Conduit	₩.
S6.002	45.966	0.092	498.1	0.479	0.00	0.	0.600	0	900	Pipe/Conduit	₩.
S6.003	43.916	0.088	499.5	0.000	0.00	0.	0.600	0	900	Pipe/Conduit	•
S6.004	35.898	0.072	499.0	0.296	0.00	0.	0.600	0	900	Pipe/Conduit	•
S6.005	23.044	0.046	499.0	0.251	0.00	0.	0.600	0	900	Pipe/Conduit	Ğ
S6.006	41.465	0.083	499.0	0.000	0.00	0.	0.600	0	900	Pipe/Conduit	Ğ
S6.007	45.614	0.087	521.8	0.096	0.00	0.	0.600	0	900	Pipe/Conduit	•
S6.008	54.934	0.110	499.0	0.000	0.00	0.	0.600	0	900	Pipe/Conduit	•

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
s6.000	44.58	5.63	36.063	0.185	0.0	0.0	0.0	1.40	888.8	22.4
S6.001	42.26	6.35	35.957	0.752	0.0	0.0	0.0	1.39	887.0	86.1
S6.002	40.66	6.89	35.837	1.231	0.0	0.0	0.0	1.40	888.8	135.5
S6.003	39.26	7.42	35.745	1.231	0.0	0.0	0.0	1.40	887.5	135.5
S6.004	38.19	7.85	35.657	1.527	0.0	0.0	0.0	1.40	888.0	157.9
S6.005	37.54	8.12	35.585	1.778	0.0	0.0	0.0	1.40	888.0	180.8
S6.006	36.44	8.62	35.539	1.778	0.0	0.0	0.0	1.40	888.0	180.8
S6.007	35.28	9.17	35.456	1.874	0.0	0.0	0.0	1.36	868.2	180.8
S6.008	34.03	9.83	35.368	1.874	0.0	0.0	0.0	1.40	888.0	180.8

©1982-2020 Innovyze

Systra Ltd		Page 34
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 1yrs	Micro Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Diamage
Micro Drainage	Network 2020.1	

Network Design Table for 03 Building

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)	SECT	(mm)		Design
S6.009	41.593	0.083	499.0	0.759	0.00	0.0	0.600	0	1200	Pipe/Conduit	€
S6.010	59.179	0.119	499.0	0.942	0.00	0.0	0.600	0	1200	Pipe/Conduit	Ğ
S6.011	62.133	0.128	483.8	0.417	0.00	0.0	0.600	0		Pipe/Conduit	•
S7.000	45.013	0.090	499.0	0.168	5.00	0.0	0.600	0	900	Pipe/Conduit	ð
S7.001	45.000	0.090	499.0	0.404	0.00	0.0	0.600	0	900	Pipe/Conduit	ĕ
S7.002	45.000	0.090	499.0	0.000	0.00	0.0	0.600	0	900	Pipe/Conduit	ď
S7.003	48.599	0.097	499.0	0.481	0.00	0.0	0.600	0	900	Pipe/Conduit	of
S7.004	48.599	0.097	499.0	0.520	0.00	0.0	0.600	0	900	Pipe/Conduit	ĕ
S7.005	45.058	0.090	499.0	0.751	0.00	0.0	0.600	0	900	Pipe/Conduit	₽
S7.006	44.943	0.090	499.0	0.189	0.00	0.0	0.600	0	900	Pipe/Conduit	ď
S7.007	21.304	0.043	499.0	0.220	0.00	0.0	0.600	0	900	Pipe/Conduit	<u>-</u>
S7.008	18.541	0.037	499.0	0.000	0.00	0.0	0.600	0	900	Pipe/Conduit	•
S7.009	26.445	0.053	499.0	0.000	0.00	0.0	0.600	0	900	Pipe/Conduit	•
S7.010	45.000	0.090	500.0	0.177	0.00	0.0	0.600	0	900	Pipe/Conduit	ď
S7.011	45.000	0.090	499.0	0.440	0.00	0.0	0.600	0	900	Pipe/Conduit	ď
S7.012	39.749	0.080	499.0	0.000	0.00	0.0	0.600	0	900	Pipe/Conduit	₫*
S7.013	50.286	0.101	499.3	0.211	0.00	0.0	0.600	0	900	Pipe/Conduit	<u>-</u>
S7.014	51.655	0.107	483.2	0.615	0.00	0.0	0.600	0	900	Pipe/Conduit	•
S7.015	76.381	0.153	499.2	0.000	0.00	0.0	0.600	0	1200	Pipe/Conduit	ð
S6.012	39.112	0.078	499.0	0.817	0.00	0.0	0.600	0	1200	Pipe/Conduit	₫*
S6.013	62.002	0.124	499.0	0.000	0.00	0.0	0.600	0	1200	Pipe/Conduit	•
S6.014	47.187	0.095	499.0	0.000	0.00	0.0	0.600	0	1200	Pipe/Conduit	•

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S6.009	33.28	10.25	34.958	2.633	0.0	0.0	0.0	1.67	1886.4	237.3
S6.010	32.29	10.84	34.875	3.575	0.0	0.0	0.0	1.67	1886.4	312.6
S6.011	31.33	11.45	34.756	3.992	0.0	0.0	0.0	1.69	1915.9	338.7
S7.000	44.91	5.54	36.327	0.168	0.0	0.0	0.0	1.40	888.0	20.5
S7.001	43.10	6.07	36.237	0.572	0.0	0.0	0.0	1.40	888.0	66.8
S7.002	41.46	6.61	36.147	0.572	0.0	0.0	0.0	1.40	888.0	66.8
S7.003	39.85	7.19	36.056	1.053	0.0	0.0	0.0	1.40	888.0	113.6
S7.004	38.37	7.77	35.959	1.573	0.0	0.0	0.0	1.40	888.0	163.4
S7.005	37.11	8.31	35.862	2.324	0.0	0.0	0.0	1.40	888.0	233.6
S7.006	35.95	8.85	35.771	2.513	0.0	0.0	0.0	1.40	888.0	244.7
S7.007	35.43	9.10	35.681	2.733	0.0	0.0	0.0	1.40	888.0	262.3
S7.008	34.99	9.32	35.639	2.733	0.0	0.0	0.0	1.40	888.0	262.3
S7.009	34.38	9.64	35.601	2.733	0.0	0.0	0.0	1.40	888.0	262.3
S7.010	33.40	10.18	35.548	2.911	0.0	0.0	0.0	1.39	887.1	263.3
S7.011	32.49	10.71	35.458	3.350	0.0	0.0	0.0	1.40	888.0	294.8
S7.012	31.73	11.19	35.368	3.350	0.0	0.0	0.0	1.40	888.0	294.8
S7.013	30.83	11.79	35.289	3.561	0.0	0.0	0.0	1.40	887.7	297.3
S7.014	30.00	12.40	35.188	4.177	0.0	0.0	0.0	1.42	902.4	339.4
S7.015	29.05	13.16	34.781	4.177	0.0	0.0	0.0	1.67	1886.0	339.4
S6.012	28.60	13.55	34.628	8.986	0.0	0.0	0.0	1.67	1886.4	695.9
S6.013	27.90	14.17	34.550	8.986	0.0	0.0	0.0	1.67	1886.4	695.9
S6.014	27.40	14.64	34.425	8.986	0.0	0.0	0.0	1.67	1886.4	695.9

©1982-2020 Innovyze

Systra Ltd		Page 35
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	nialilade
Micro Drainage	Network 2020.1	,

Network Design Table for 03 Building

PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm)Design

S6.015 46.004 0.086 532.1 0.000 0.00 0.0 0.600 o 1200 Pipe/Conduit

Network Results Table

Rain T.C. US/IL Σ I.Area Σ Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (m/s) (1/s) (1/s)
 S6.015
 26.92
 15.12
 34.331
 8.986
 0.0
 0.0
 0.0
 1.61
 1826.3
 695.9

Systra Ltd		Page 36
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	niairiade
Micro Drainage	Network 2020.1	'

Manhole Schedules for 03 Building

Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S48	38.163	2.100	Open Manhole	1800	s6.000	36.063	900				
S49	38.163	2.206	Open Manhole	1800	S6.001	35.957	900	s6.000	35.957	900	
S50	38.163	2.326	Open Manhole	1800	S6.002	35.837	900	S6.001	35.837	900	
S51	38.163	2.418	Open Manhole	1800	s6.003	35.745	900	S6.002	35.745	900	
S52	38.300	2.643	Open Manhole	1800	S6.004	35.657	900	s6.003	35.657	900	
S53	37.900	2.315	Open Manhole	1800	s6.005	35.585	900	S6.004	35.585	900	
S54	37.900	2.361	Open Manhole	1800	s6.006	35.539	900	s6.005	35.539	900	
S55	38.290	2.834	Open Manhole	1800	s6.007	35.456	900	s6.006	35.456	900	
S56	38.150	2.782	Open Manhole	1800	s6.008	35.368	900	s6.007	35.368	900	
S57	38.300	3.342	Open Manhole	2100	s6.009	34.958	1200	S6.008	35.258	900	
S58	38.250	3.375	Open Manhole	2100	s6.010	34.875	1200	s6.009	34.875	1200	
S59	38.150	3.394	Open Manhole	2100	s6.011	34.756	1200	s6.010	34.756	1200	
S60	38.550	2.223	Open Manhole	1800	s7.000	36.327	900				
S61	38.558	2.321	Open Manhole	1800	S7.001	36.237	900	s7.000	36.237	900	
S62	38.562	2.415	Open Manhole	1800	s7.002	36.147	900	s7.001	36.147	900	
S63	38.566	2.510	Open Manhole	1800	s7.003	36.056	900	s7.002	36.056	900	
S64	38.575	2.616	Open Manhole	1800	S7.004	35.959	900	s7.003	35.959	900	
S65	38.112	2.250	Open Manhole	1800	s7.005	35.862	900	s7.004	35.862	900	
S66	37.895	2.124	Open Manhole	1800	S7.006	35.771	900	s7.005	35.771	900	
S67	37.672	1.991	Open Manhole	1800	s7.007	35.681	900	s7.006	35.681	900	
S68	37.483	1.844	Open Manhole	1800	s7.008	35.639	900	s7.007	35.639	900	
S69	37.481	1.880	Open Manhole	1800	s7.009	35.601	900	S7.008	35.601	900	
S70	37.400	1.852	Open Manhole	1800	s7.010	35.548	900	s7.009	35.548	900	
S71	37.372	1.914	Open Manhole	1800	S7.011	35.458	900	S7.010	35.458	900	
S72	37.358	1.990	Open Manhole	1800	s7.012	35.368	900	S7.011	35.368	900	
S73	37.344	2.055	Open Manhole	1800	S7.013	35.289	900	S7.012	35.289	900	
S74	37.800		Open Manhole	1800	S7.014	35.188	900	S7.013	35.188	900	
S75	38.050	3.269	Open Manhole	2100	S7.015	34.781	1200	S7.014	35.081	900	
S76	38.150	3.522	Open Manhole	2100	S6.012	34.628	1200	S6.011	34.628	1200	
	00.100		open namere		50.012	01.020	1200	S7.015	34.628	1200	
S77	37.825	3.275	Open Manhole	2100	s6.013	34.550	1200	S6.012	34.550	1200	
S78	37.623	3.198	Open Manhole	2100	S6.014	34.425	1200	S6.013	34.425	1200	
S79	37.420	3.089	Open Manhole	2100	S6.015	34.331	1200	S6.014	34.331	1200	
S80	37.500	3.256	Open Manhole	2100	20.013	OUTFALL	1200	S6.014	34.244	1200	

MH	Manhole	Manhole	Intersection	Intersection	Manhole	Layout
Name	Easting	Northing	Easting	Northing	Access	(North)
	(m)	(m)	(m)	(m)		

S48 433133.288 558519.379 433133.288 558519.379 Required

Systra Ltd		Page 37
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	niamade
Micro Drainage	Network 2020.1	·

Manhole Schedules for 03 Building

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S49	433111.226	558567.347	433111.226	558567.347	Required	6
S50	433086.306	558621.789	433086.306	558621.789	Required	1
S51	433067.436	558663.703	433067.436	558663.703	Required	1
S52	433049.503	558703.790	433049.503	558703.790	Required	1
S53	433034.364	558736.340	433034.364	558736.340	Required	
S54	433043.178	558757.632	433043.178	558757.632	Required	
S55	433080.913	558774.816	433080.913	558774.816	Required	
S56	433122.585	558793.367	433122.585	558793.367	Required	
S57	433172.672	558815.927	433172.672	558815.927	Required	0_
S58	433210.358	558833.527	433210.358	558833.527	Required	
S59	433264.278	558857.914	433264.278	558857.914	Required	0-
S60	433171.865	558523.831	433171.865	558523.831	Required	
S61	433212.983	558542.148	433212.983	558542.148	Required	0-
S62	433253.985	558560.690	433253.985	558560.690	Required	0-
S63	433294.987	558579.232	433294.987	558579.232	Required	-0-
S64	433339.269	558599.257	433339.269	558599.257	Required	
S65	433383.551	558619.282	433383.551	558619.282	Required	

Systra Ltd		Page 38
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	niamade
Micro Drainage	Network 2020.1	·

Manhole Schedules for 03 Building

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S66	433424.524	558638.028	433424.524	558638.028	Required	
S67	433465.556	558656.366	433465.556	558656.366	Required	
S68	433485.040	558664.981	433485.040	558664.981	Required	
S69	433496.440	558679.603	433496.440	558679.603	Required	\
S70	433485.954	558703.880	433485.954	558703.880	Required	
S71	433467.412	558744.882	433467.412	558744.882	Required	1
S72	433448.870	558785.885	433448.870	558785.885	Required	1
S73	433432.121	558821.933	433432.121	558821.933	Required	1
S74	433411.778	558867.921	433411.778	558867.921	Required	1
S75	433390.488	558914.985	433390.488	558914.985	Required	\ _0
S76	433320.876	558883.551	433320.876	558883.551	Required	1
S77	433304.428	558919.036	433304.428	558919.036	Required	1
S78	433278.853	558975.518	433278.853	558975.518	Required	1
S79	433321.961	558994.711	433321.961	558994.711	Required	7
S80	433303.412	559036.809			No Entry	

Systra Ltd		Page 39
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	pranade
Micro Drainage	Network 2020.1	<u>'</u>

Area Summary for 03 Building

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Type	Name	(%)	Area (ha)	Area (ha)	(ha)
6.000	User	_	100	0.185	0.185	0.185
6.001	User	_	100	0.567	0.567	0.567
6.002	User	_	100	0.479	0.479	0.479
6.003	_	_	100	0.000	0.000	0.000
6.004	User	_	100	0.296	0.296	0.296
6.005	User	_	100	0.251	0.251	0.251
6.006	_	_	100	0.000	0.000	0.000
6.007	User	_	100	0.096	0.096	0.096
6.008	_	_	100	0.000	0.000	0.000
6.009	User	_	100	0.759	0.759	0.759
6.010	User	-	100	0.543	0.543	0.543
	User	-	100	0.399	0.399	0.942
6.011	User	-	100	0.417	0.417	0.417
7.000	User	-	100	0.168	0.168	0.168
7.001	User	_	100	0.404	0.404	0.404
7.002	-	-	100	0.000	0.000	0.000
7.003	User	_	100	0.481	0.481	0.481
7.004	User	_	100	0.520	0.520	0.520
7.005	User	_	100	0.395	0.395	0.395
	User	_	100	0.356	0.356	0.751
7.006	User	_	100	0.189	0.189	0.189
7.007	User	_	100	0.220	0.220	0.220
7.008	-	_	100	0.000	0.000	0.000
7.009	_	_	100	0.000	0.000	0.000
7.010	User	_	100	0.177	0.177	0.177
7.011	User	-	100	0.229	0.229	0.229
	User	-	100	0.211	0.211	0.440
7.012	-	-	100	0.000	0.000	0.000
7.013	User	-	100	0.211	0.211	0.211
7.014	User	-	100	0.615	0.615	0.615
7.015	-	-	100	0.000	0.000	0.000
6.012	User	_	100	0.368	0.368	0.368
	User	_	100	0.450	0.450	0.817
6.013	-	_	100	0.000	0.000	0.000
6.014	_	_	100	0.000	0.000	0.000
6.015	-	_	100	0.000	0.000	0.000
				Total	Total	Total
				8.986	8.986	8.986

Free Flowing Outfall Details for 03 Building

Outfall	Outfall	C. Level	I. Level	Min	D,L	W
Pipe Number	Name	(m)	(m)	I. Level	(mm)	(mm)
				(m)		
S6.015	S80	37.500	34.244	0.000	2100	0

Systra Ltd		Page 40
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 1yrs	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	nialilade
Micro Drainage	Network 2020.1	'

Simulation Criteria for 03 Building

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 0.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (l/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (l/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type S	Summer
Return Period (years)	1	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	18.300	Storm Duration (mins)	30
Ratio R	0.350		

Systra Ltd		Page 41
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	nialilade
Micro Drainage	Network 2020.1	,

Online Controls for 03 Building

Pump Manhole: S79, DS/PN: S6.015, Volume (m³): 61.7

Invert Level (m) 34.331

Depth (m)	Flow (1/s)								
0.100	29.7000	0.680	60.3000	1.300	72.0000	1.900	72.0000	2.500	72.0000
0.200	29.7000	0.720	72.0000		72.0000		72.0000		72.0000
0.290	60.3000	0.800	72.0000	1.500	72.0000	2.100	72.0000	2.700	72.0000
0.400	60.3000	1.000	72.0000	1.600	72.0000	2.200	72.0000	2.800	72.0000
0.410	60.3000	1.100	72.0000	1.700	72.0000	2.300	72.0000	2.900	72.0000
0.600	60.3000	1.200	72.0000	1.800	72.0000	2.400	72.0000	3.000	72.0000

Systra Ltd		Page 42
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Dialilacie
Micro Drainage	Network 2020.1	'

Storage Structures for 03 Building

Tank or Pond Manhole: S79, DS/PN: S6.015

Invert Level (m) 34.331

Depth (m)	Area (m²)								
0.000	3500.0	2.400	0.0	4.800	0.0	7.200	0.0	9.600	0.0
0.400	3500.0		0.0	5.200	0.0	7.600	0.0	10.000	0.0
0.800	3500.0	3.200	0.0	5.600	0.0	8.000	0.0		
1.200	3500.0	3.600	0.0	6.000	0.0	8.400	0.0		
1.600	3500.0	4.000	0.0	6.400	0.0	8.800	0.0		
1.601	0.0	4.400	0.0	6.800	0.0	9.200	0.0		

Volume Summary (Static)

Length Calculations based on Centre-Centre

Pipe Number		Total Volume (m³)
S6.000	S48	0.000
S6.001	S49	0.000
S6.002	S50	0.000
S6.003	S51	0.000
S6.004	S52	0.000
S6.005	S53	0.000
S6.006	S54	0.000
S6.007	S55	0.000
S6.008	S56	0.000
S6.009	S57	0.000
S6.010	S58	0.000
S6.011	S59	0.000
S7.000	S60	0.000
S7.001	S61	0.000
S7.002	S62	0.000
S7.003	S63	0.000
S7.004	S64	0.000
S7.005	S65	0.000
S7.006	S66	0.000
S7.007	S67	0.000
S7.008	S68	0.000
S7.009	S69	0.000
S7.010	S70	0.000
S7.011	S71	0.000
S7.012	S72	0.000
S7.013	S73	0.000
S7.014	S74	0.000
S7.015	S75	0.000
S6.012	S76	0.000
S6.013	S77	0.000
S6.014	S78	0.000
S6.015	S79	0.000
Total		0.000

©1982-2020 Innovyze

Systra Ltd		Page 43
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Dialilacie
Micro Drainage	Network 2020.1	<u>'</u>

Volume Summary (Static)

Length Calculations based on True Length

Pipe	USMH	Tota	.1
Number	Name	Volume	(m³)
ac 000	0.40	0	000
\$6.000 \$6.001	S48		.000
S6.001	S49		.000
S6.002	S50		
S6.004	S51 S52		.000
S6.004 S6.005	S52 S53		.000
S6.005	S53		.000
S6.006	S54		.000
S6.007	S56		.000
S6.008	S50 S57		
S6.009	S57 S58		.000
S6.010	S58 S59		.000
S7.000	S60		.000
S7.000			.000
S7.001	S61		.000
S7.002 S7.003	S62		.000
S7.003	S63 S64		.000
S7.004 S7.005	S65		.000
S7.005	S66		.000
S7.000	S67		.000
S7.007	S68		.000
S7.008	S69		.000
S7.009	S70		.000
S7.010	S71		.000
S7.011	S72		.000
S7.012	S73		.000
S7.013	S74		.000
S7.014	S75		.000
S6.012	S76		.000
S6.012	S77		.000
S6.014	S78		.000
S6.014	S79		.000
20.013	213	U	.000
Total		0	.000

Systra Ltd		Page 44
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 1yrs	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	niamade
Micro Drainage	Network 2020.1	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 0.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 18.300 Cv (Summer) 0.750 Region England and Wales Ratio R 0.350 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 10.0 DVD Status ON Analysis Timestep Fine Inertia Status ON DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440 Return Period(s) (years) 1 Climate Change (%) 0

PN	US/MH Name	Storm			First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.
s6.000	S48	15 Winter	1	+0%					36.215	-0.748	0.000	0.03
S6.001	S49	15 Winter	1	+0%					36.187	-0.670	0.000	0.09
s6.002	S50	15 Winter	1	+0%					36.107	-0.630	0.000	0.15
S6.003	S51	15 Winter	1	+0%					36.023	-0.622	0.000	0.14
S6.004	S52	15 Winter	1	+0%					35.952	-0.605	0.000	0.17
S6.005	S53	15 Winter	1	+0%					35.888	-0.597	0.000	0.22
S6.006	S54	15 Winter	1	+0%					35.827	-0.612	0.000	0.18
S6.007	S55	30 Winter	1	+0%					35.737	-0.619	0.000	0.19
S6.008	S56	30 Winter	1	+0%					35.621	-0.647	0.000	0.18
S6.009	S57	30 Winter	1	+0%					35.317	-0.842	0.000	0.12
S6.010	S58	30 Winter	1	+0%					35.264	-0.811	0.000	0.15
S6.011	S59	30 Winter	1	+0%					35.189	-0.767	0.000	0.15
s7.000	S60	15 Winter	1	+0%					36.470	-0.757	0.000	0.03
S7.001	S61	15 Winter	1	+0%					36.440	-0.697	0.000	0.08
S7.002	S62	15 Winter	1	+0%					36.374	-0.672	0.000	0.07
s7.003	S63	15 Winter	1	+0%					36.338	-0.618	0.000	0.12
S7.004	S64	15 Winter	1	+0%					36.289	-0.570	0.000	0.18
S7.005	S65	15 Winter	1	+0%					36.230	-0.532	0.000	0.26
S7.006	S66	15 Winter	1	+0%					36.152	-0.519	0.000	0.26
s7.007	S67	15 Winter	1	+0%					36.080	-0.501	0.000	0.35
S7.008	S68	30 Winter	1	+0%					36.031	-0.508	0.000	0.38
S7.009	S69	30 Winter	1	+0%					35.975	-0.526	0.000	0.29
S7.010	S70	30 Winter	1	+0%					35.919	-0.530	0.000	0.27
S7.011	S71	30 Winter	1	+0%					35.832	-0.526	0.000	0.29
S7.012	S72	30 Winter	1	+0%					35.738	-0.531	0.000	0.29
S7.013	S73	30 Winter	1	+0%					35.648	-0.541	0.000	0.29
S7.014	S74	30 Winter	1	+0%					35.526	-0.562	0.000	0.30
S7.015	S75	30 Winter	1	+0%					35.198	-0.783	0.000	0.14
					©198	32-2020 I	nnovyze					

Systra Ltd		Page 45
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in lyrs	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	nialilade
Micro Drainage	Network 2020.1	'

			Half Drain	Pipe		
	US/MH	Overflow	Time	Flow		Level
PN	Name	(1/s)	(mins)	(1/s)	Status	Exceeded
S6.000	S48			21.6	OK	
S6.001	S49			70.6	OK	
S6.002	S50			106.0	OK	
S6.003	S51			102.7	OK	
S6.004	S52			118.9	OK	
S6.005	S53			131.1	OK	
S6.006	S54			129.3	OK	
S6.007	S55			130.0	OK	
S6.008	S56			129.6	OK	
S6.009	S57			163.4	OK	
S6.010	S58			221.3	OK	
S6.011	S59			234.7	OK	
S7.000	S60			19.7	OK	
S7.001	S61			57.0	OK	
S7.002	S62			52.6	OK	
S7.003	S63			87.8	OK	
S7.004	S64			127.8	OK	
S7.005	S65			182.9	OK	
S7.006	S66			187.7	OK	
S7.007	S67			194.4	OK	
S7.008	S68			188.2	OK	
S7.009	S69			187.2	OK	
S7.010	S70			192.1	OK	
S7.011	S71			205.5	OK	
S7.012	S72			203.7	OK	
S7.013	S73			208.1	OK	
S7.014	S74			223.4	OK	
S7.015	S75			223.0	OK	

Systra Ltd		Page 46
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 1yrs	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	niairiade
Micro Drainage	Network 2020.1	

									Water	Surcharged	Flooded
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)
S6.012	s76	30 Winter	1	+0%					35.139	-0.689	0.000
S6.013	S77	30 Winter	1	+0%					35.038	-0.711	0.000
S6.014	S78	30 Winter	1	+0%					34.889	-0.736	0.000
S6.015	S79	360 Winter	1	+0%					34.618	-0.913	0.000

				Half Drain	Pipe		
	US/MH	Flow /	Overflow	Time	Flow		Level
PN	Name	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S6.012	S76	0.34			457.3	OK	
S6.013	S77	0.30			454.9	OK	
S6.014	S78	0.32			454.0	OK	
S6.015	S79	0.04			59.4	OK	

Systra Ltd		Page 47
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 30yrs	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	niairiade
Micro Drainage	Network 2020.1	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 0.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 18.300 Cv (Summer) 0.750 Region England and Wales Ratio R 0.350 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 10.0 DVD Status ON Analysis Timestep Fine Inertia Status ON DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440 Return Period(s) (years) 30 Climate Change (%)

PN	US/MH Name	Storm			First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.
s6.000	S48	15 Winter	30	+0%					36.393	-0.570	0.000	0.07
S6.001	S49	15 Winter	30	+0%					36.361	-0.496	0.000	0.24
s6.002	S50	15 Winter	30	+0%					36.296	-0.441	0.000	0.38
S6.003	S51	15 Winter	30	+0%					36.216	-0.429	0.000	0.37
S6.004	S52	15 Winter	30	+0%					36.147	-0.410	0.000	0.44
S6.005	S53	15 Winter	30	+0%					36.077	-0.408	0.000	0.56
S6.006	S54	15 Winter	30	+0%					36.009	-0.430	0.000	0.46
S6.007	S55	30 Winter	30	+0%					35.911	-0.445	0.000	0.46
S6.008	S56	30 Winter	30	+0%					35.789	-0.479	0.000	0.43
S6.009	S57	30 Winter	30	+0%					35.628	-0.531	0.000	0.30
S6.010	S58	30 Winter	30	+0%					35.599	-0.476	0.000	0.36
S6.011	S59	30 Winter	30	+0%					35.551	-0.405	0.000	0.37
s7.000	S60	15 Winter	30	+0%					36.679	-0.548	0.000	0.07
S7.001	S61	15 Winter	30	+0%					36.660	-0.476	0.000	0.21
s7.002	S62	15 Winter	30	+0%					36.631	-0.416	0.000	0.17
s7.003	S63	15 Winter	30	+0%					36.596	-0.361	0.000	0.30
S7.004	S64	15 Winter	30	+0%					36.556	-0.303	0.000	0.43
S7.005	S65	15 Winter	30	+0%					36.508	-0.254	0.000	0.62
S7.006	S66	15 Winter	30	+0%					36.437	-0.234	0.000	0.63
s7.007	S67	15 Winter	30	+0%					36.370	-0.211	0.000	0.83
S7.008	S68	15 Winter	30	+0%					36.316	-0.223	0.000	0.92
S7.009	S69	30 Winter	30	+0%					36.241	-0.261	0.000	0.71
S7.010	S70	30 Winter	30	+0%					36.180	-0.268	0.000	0.65
S7.011	S71	30 Winter	30	+0%					36.092	-0.266	0.000	0.69
S7.012	S72	30 Winter	30	+0%					35.991	-0.277	0.000	0.70
S7.013	S73	30 Winter	30	+0%					35.896	-0.293	0.000	0.69
S7.014	S74	30 Winter	30	+0%					35.769	-0.319	0.000	0.74
S7.015	S75	30 Winter	30	+0%					35.550	-0.431	0.000	0.35
					©198	32-2020 I	nnovyze					

Systra Ltd		Page 48
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 30yrs	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	pramade
Micro Drainage	Network 2020.1	'

			Half Drain	Pipe		
	US/MH	Overflow	Time	Flow		Level
PN	Name	(1/s)	(mins)	(1/s)	Status	Exceeded
s6.000	S48			52.1	OK	
S6.001	S49			176.4	OK	
\$6.002	S50			273.8	OK	
S6.003	S51			262.8	OK	
S6.004	S51			301.1	OK	
\$6.005	S53			332.1	OK	
\$6.006	S54			324.5	OK	
S6.007	S55			321.0	OK	
S6.008	S56			316.1	OK	
S6.009	S57			409.4	OK	
S6.010	S58			542.8	OK	
S6.011	S59			565.7	OK	
S7.000	S60			47.3	OK	
S7.001	S61			149.1	OK	
S7.002	S62			122.3	OK	
S7.003	S63			214.6	OK	
S7.004	S64			307.0	OK	
S7.005	S65			444.4	OK	
S7.006	S66			447.6	OK	
S7.007	S67			458.6	OK	
S7.008	S68			457.5	OK	
S7.009	S69			448.3	OK	
S7.010	S70			460.6	OK	
S7.011	S71			491.1	OK	
S7.012	S72			487.4	OK	
S7.013	S73			498.2	OK	
S7.014	S74			549.5	OK	
S7.015	S75			546.7	OK	

Systra Ltd		Page 49
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 30yrs	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Diamage
Micro Drainage	Network 2020.1	,

									Water	Surcharged	Flooded
	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)
S6.012	s76	30 Winter	30	+0%					35.495	-0.333	0.000
S6.013	S77	30 Winter	30	+0%					35.383	-0.367	0.000
S6.014	S78	30 Winter	30	+0%					35.224	-0.402	0.000
S6.015	S79	360 Winter	30	+0%					35.040	-0.490	0.000

PN	US/MH Name	•	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S6.012	s76	0.82			1116.5	OK	
S6.013	S77	0.74			1107.1	OK	
S6.014	S78	0.78			1103.8	OK	
S6.015	S79	0.05			69.0	OK	

Systra Ltd		Page 50
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 100yrs+40% CC	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	niamade
Micro Drainage	Network 2020.1	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 0.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 18.300 Cv (Summer) 0.750 Region England and Wales Ratio R 0.350 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 10.0 DVD Status ON Analysis Timestep Fine Inertia Status ON DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440 Return Period(s) (years) 100 Climate Change (%)

\$6.000 \$48 30 Winter 100 \$40 \cdot 100/30 Winter 38.055 \$1.092 \$0.000 \$6.001 \$49 30 Winter 100 \$40 \cdot 100/30 Winter 37.877 \$1.020 \$0.000 \$6.002 \$55 30 Winter 100 \$40 \cdot 100/15 Winter 37.656 \$0.919 \$0.000 \$6.003 \$51 30 Winter 100 \$40 \cdot 100/30 Winter 37.360 \$0.715 \$0.000 \$6.004 \$52 30 Winter 100 \$40 \cdot 100/15 Summer \$36.915 \$0.358 \$0.001 \$6.005 \$53 30 Winter 100 \$40 \cdot 100/15 Summer \$36.638 \$0.153 \$0.001 \$6.006 \$54 30 Winter 100 \$40 \cdot 100/15 Summer \$36.388 \$0.032 \$0.001 \$6.007 \$55 30 Winter 100 \$40 \cdot 100/15 Summer \$36.388 \$0.032 \$0.001 \$6.008 \$56 30 Winter 100 \$40 \cdot 100/15 Summer \$36.388 \$0.032 \$0.001 \$6.009 \$57 30 Winter 100 \$40 \cdot 100/15 Winter \$36.287 \$0.129 \$0.001 \$6.010 \$58 30 Winter 100 <t></t>	ed ie
\$6.002 \$50 30 Winter 100 \$40\% 100/15 Winter 37.656 0.919 0.000 \$6.003 \$51 30 Winter 100 \$40\% 100/30 Summer 37.360 0.715 0.000 \$6.004 \$52 30 Winter 100 \$40\% 100/15 Summer 36.915 0.358 0.000 \$6.005 \$53 30 Winter 100 \$40\% 100/15 Summer 36.638 0.153 0.000 \$6.006 \$54 30 Winter 100 \$40\% 100/15 Summer 36.518 0.079 0.000 \$6.007 \$55 30 Winter 100 \$40\% 100/15 Summer 36.388 0.032 0.000 \$6.008 \$56 30 Winter 100 \$40\% 100/15 Summer 36.324 0.056 0.001 \$6.010 \$58 30 Winter 100 \$40\% 100/15 Winter 36.287 0.129 0.000 \$6.011 \$59 30 Winter 100 \$40\% 100/15 Winter 36.263 0.188 0.000 \$7.001 \$61 30 Winter 100 \$40\% 100/15 Winter 37.356 0.301 0.000	00
\$6.003 \$51 30 Winter 100 \$40% 100/30 Summer 37.360 0.715 0.000 \$6.004 \$52 30 Winter 100 \$40% 100/30 Winter 36.915 0.358 0.000 \$6.005 \$53 30 Winter 100 \$40% 100/15 Summer 36.638 0.153 0.000 \$6.006 \$54 30 Winter 100 \$40% 100/15 Summer 36.518 0.079 0.000 \$6.007 \$55 30 Winter 100 \$40% 100/15 Summer 36.388 0.032 0.000 \$6.008 \$56 30 Winter 100 \$40% 100/15 Summer 36.324 0.056 0.000 \$6.009 \$57 30 Winter 100 \$40% 100/15 Winter 36.287 0.129 0.000 \$6.010 \$58 30 Winter 100 \$40% 100/15 Winter 36.263 0.188 0.000 \$6.011 \$59 30 Winter 100 \$40% 100/30 Summer 36.263 0.269 0.000 \$7.001 \$61 30 Winter	0 (
S6.004 S52 30 Winter 100 +40% 100/30 Winter 36.915 0.358 0.000 S6.005 S53 30 Winter 100 +40% 100/15 Summer 36.638 0.153 0.000 S6.006 S54 30 Winter 100 +40% 100/15 Summer 36.518 0.079 0.000 S6.007 S55 30 Winter 100 +40% 100/15 Summer 36.388 0.032 0.000 S6.008 S56 30 Winter 100 +40% 100/15 Summer 36.324 0.056 0.000 S6.009 S57 30 Winter 100 +40% 100/15 Winter 36.227 0.129 0.000 S6.010 S58 30 Winter 100 +40% 100/15 Winter 36.263 0.188 0.000 S6.011 S59 30 Winter 100 +40% 100/30 Summer 36.226 0.269 0.000 S7.001 S61 30 Winter 100 +40% 100/30 Winter 37.528 0.301 0.000 S7.002 S62 30 Winter 100 +40% 100/15 Winter 37.356 0.309 0.000	00
S6.005 S53 30 Winter 100 +40% 100/15 Summer 36.638 0.153 0.000 S6.006 S54 30 Winter 100 +40% 100/15 Summer 36.518 0.079 0.000 S6.007 S55 30 Winter 100 +40% 100/30 Winter 36.388 0.032 0.000 S6.008 S56 30 Winter 100 +40% 100/15 Summer 36.324 0.056 0.00 S6.009 S57 30 Winter 100 +40% 100/15 Winter 36.287 0.129 0.000 S6.010 S58 30 Winter 100 +40% 100/15 Winter 36.226 0.269 0.000 S7.000 S60 30 Winter 100 +40% 100/30 Summer 36.226 0.269 0.000 S7.001 S61 30 Winter 100 +40% 100/15 Winter 37.528 0.301 0.000 S7.002 S62 30 Winter 100 +40% 100/15 Winter 37.356 0.309 0.000 S7.003 S63 30 Winter 100 +40% 100/15 Winter 37.317 0.361 0.000	00
\$6.006 \$54 30 Winter 100 \$40\% 100/15 Summer 36.518 0.079 0.000 \$6.007 \$55 30 Winter 100 \$40\% 100/15 Summer 36.388 0.032 0.000 \$6.008 \$56 30 Winter 100 \$40\% 100/15 Summer 36.324 0.056 0.000 \$6.009 \$57 30 Winter 100 \$40\% 100/15 Winter 36.287 0.129 0.000 \$6.010 \$58 30 Winter 100 \$40\% 100/15 Winter 36.263 0.188 0.000 \$6.011 \$59 30 Winter 100 \$40\% 100/30 Summer 36.226 0.269 0.000 \$7.000 \$60 30 Winter 100 \$40\% 100/30 Winter 37.528 0.301 0.000 \$7.001 \$61 30 Winter 100 \$40\% 100/15 Winter 37.451 0.314 0.000 \$7.002 \$62 30 Winter 100 \$40\% 100/15 Winter 37.317 0.361 0.000 \$7.004 \$64 30 Winter 100 \$40\% 100/15 Winter 37.314 0.455 0.000	00
\$6.007 \$55 30 Winter 100 \$40% 100/30 Winter 36.388 0.032 0.000 \$6.008 \$56 30 Winter 100 \$40% 100/15 Summer 36.324 0.056 0.000 \$6.009 \$57 30 Winter 100 \$40% 100/15 Winter 36.287 0.129 0.000 \$6.010 \$58 30 Winter 100 \$40% 100/15 Winter 36.263 0.188 0.000 \$6.011 \$59 30 Winter 100 \$40% 100/30 Summer 36.226 0.269 0.000 \$7.000 \$60 30 Winter 100 \$40% 100/30 Winter 37.528 0.301 0.000 \$7.001 \$61 30 Winter 100 \$40% 100/15 Winter 37.451 0.314 0.000 \$7.002 \$62 30 Winter 100 \$40% 100/15 Winter 37.317 0.361 0.000 \$7.003 \$63 30 Winter 100 \$40% 100/15 Winter 37.314 0.455 0.000 \$7.004 \$64 30 Winter 100 \$40% 100/15 Summer 37.299 0.538 0.000	00
\$6.008 \$56 30 Winter 100 \$40\% 100/15 Summer 36.324 0.056 0.000 \$6.009 \$57 30 Winter 100 \$40\% 100/15 Winter 36.287 0.129 0.000 \$6.010 \$58 30 Winter 100 \$40\% 100/15 Winter 36.263 0.188 0.000 \$6.011 \$59 30 Winter 100 \$40\% 100/30 Summer 36.226 0.269 0.000 \$7.000 \$60 30 Winter 100 \$40\% 100/30 Winter 37.528 0.301 0.000 \$7.001 \$61 30 Winter 100 \$40\% 100/15 Winter 37.451 0.314 0.000 \$7.002 \$62 30 Winter 100 \$40\% 100/15 Winter 37.317 0.361 0.000 \$7.003 \$63 30 Winter 100 \$40\% 100/15 Winter 37.314 0.455 0.000 \$7.004 \$64 30 Winter 100 \$40\% 100/15 Summer 37.314 0.455 0.000 \$7.005 \$65 30 Winter 100 \$40\% 100/15 Summer 37.255 0.584 0.000	00
\$6.009 \$57 30 Winter 100 \$40\% 100/15 Winter 36.287 0.129 0.000 \$6.010 \$58 30 Winter 100 \$40\% 100/15 Winter 36.263 0.188 0.000 \$6.011 \$59 30 Winter 100 \$40\% 100/30 Summer 36.226 0.269 0.000 \$7.000 \$60 30 Winter 100 \$40\% 100/15 Winter 37.528 0.301 0.000 \$7.001 \$61 30 Winter 100 \$40\% 100/15 Winter 37.356 0.309 0.000 \$7.002 \$62 30 Winter 100 \$40\% 100/15 Winter 37.317 0.361 0.000 \$7.003 \$63 30 Winter 100 \$40\% 100/15 Winter 37.314 0.455 0.000 \$7.004 \$64 30 Winter 100 \$40\% 100/15 Summer 37.299 0.538 0.000 \$7.005 \$65 30 Winter 100 \$40\% 100/15 Summer 37.186 0.605 0.000 \$7.007 \$67 30 Winter 100 \$40\% 100/15 Summer 37.186 0.605 0.000 \$7.008 \$68 30 Winter 100 \$40\% 100/15 Summer 37.123 0.584 <td>00</td>	00
\$6.010 \$58 30 Winter 100 \$40\% 100/15 Winter 36.263 0.188 0.000 \$6.011 \$59 30 Winter 100 \$40\% 100/30 Summer 36.226 0.269 0.000 \$7.000 \$60 30 Winter 100 \$40\% 100/30 Winter 37.528 0.301 0.000 \$7.001 \$61 30 Winter 100 \$40\% 100/15 Winter 37.451 0.314 0.000 \$7.002 \$62 30 Winter 100 \$40\% 100/15 Winter 37.356 0.309 0.000 \$7.003 \$63 30 Winter 100 \$40\% 100/15 Winter 37.317 0.361 0.000 \$7.004 \$64 30 Winter 100 \$40\% 100/15 Winter 37.314 0.455 0.000 \$7.005 \$65 30 Winter 100 \$40\% 100/15 Summer 37.299 0.538 0.000 \$7.006 \$66 30 Winter 100 \$40\% 100/15 Summer 37.186 0.605 0.000 \$7.007 \$67 30 Winter 100 \$40\% 100/15 Summer 37.123 0.584 0.000 \$7.008 \$68 30 Winter 100 \$40\% 100/15 Summer 37.123 0.584 <td>00</td>	00
S6.011 S59 30 Winter 100 +40% 100/30 Summer 36.226 0.269 0.000 S7.000 S60 30 Winter 100 +40% 100/30 Winter 37.528 0.301 0.000 S7.001 S61 30 Winter 100 +40% 100/15 Winter 37.451 0.314 0.000 S7.002 S62 30 Winter 100 +40% 100/15 Winter 37.317 0.361 0.000 S7.003 S63 30 Winter 100 +40% 100/15 Winter 37.314 0.455 0.000 S7.004 S64 30 Winter 100 +40% 100/15 Summer 37.299 0.538 0.000 S7.005 S65 30 Winter 100 +40% 100/15 Summer 37.255 0.584 0.000 S7.007 S67 30 Winter 100 +40% 100/15 Summer 37.186 0.605 0.000 S7.008 S68 30 Winter 100 +40% 100/15 Summer 37.123 0.584 0.000 S7.009 S69 30 Winter	0 C
S7.000 S60 30 Winter 100 +40% 100/30 Winter 37.528 0.301 0.000 S7.001 S61 30 Winter 100 +40% 100/15 Winter 37.451 0.314 0.000 S7.002 S62 30 Winter 100 +40% 100/15 Winter 37.356 0.309 0.000 S7.003 S63 30 Winter 100 +40% 100/15 Winter 37.317 0.361 0.000 S7.004 S64 30 Winter 100 +40% 100/15 Winter 37.314 0.455 0.000 S7.005 S65 30 Winter 100 +40% 100/15 Summer 37.299 0.538 0.000 S7.006 S66 30 Winter 100 +40% 100/15 Summer 37.186 0.605 0.000 S7.007 S67 30 Winter 100 +40% 100/15 Summer 37.186 0.605 0.000 S7.008 S68 30 Winter 100 +40% 100/15 Summer 37.123 0.584 0.000 S7.009 S69 30 Winter 100 +40% 100/15 Summer 37.060 0.558 0.000	0 C
S7.001 S61 30 Winter 100 +40% 100/15 Winter 37.451 0.314 0.000 S7.002 S62 30 Winter 100 +40% 100/15 Winter 37.356 0.309 0.000 S7.003 S63 30 Winter 100 +40% 100/15 Winter 37.317 0.361 0.000 S7.004 S64 30 Winter 100 +40% 100/15 Winter 37.314 0.455 0.000 S7.005 S65 30 Winter 100 +40% 100/15 Summer 37.299 0.538 0.000 S7.006 S66 30 Winter 100 +40% 100/15 Summer 37.255 0.584 0.000 S7.007 S67 30 Winter 100 +40% 100/15 Summer 37.123 0.584 0.000 S7.008 S68 30 Winter 100 +40% 100/15 Summer 37.123 0.584 0.000 S7.009 S69 30 Winter 100 +40% 100/15 Summer 37.060 0.558 0.000	0 (
S7.002 S62 30 Winter 100 +40% 100/15 Winter 37.356 0.309 0.000 S7.003 S63 30 Winter 100 +40% 100/15 Winter 37.317 0.361 0.000 S7.004 S64 30 Winter 100 +40% 100/15 Winter 37.314 0.455 0.000 S7.005 S65 30 Winter 100 +40% 100/15 Summer 37.299 0.538 0.000 S7.006 S66 30 Winter 100 +40% 100/15 Summer 37.255 0.584 0.000 S7.007 S67 30 Winter 100 +40% 100/15 Summer 37.186 0.605 0.000 S7.008 S68 30 Winter 100 +40% 100/15 Summer 37.123 0.584 0.000 S7.009 S69 30 Winter 100 +40% 100/15 Summer 37.060 0.558 0.000	00
S7.003 S63 30 Winter 100 +40% 100/15 Winter 37.317 0.361 0.000 S7.004 S64 30 Winter 100 +40% 100/15 Winter 37.314 0.455 0.000 S7.005 S65 30 Winter 100 +40% 100/15 Summer 37.299 0.538 0.000 S7.006 S66 30 Winter 100 +40% 100/15 Summer 37.255 0.584 0.000 S7.007 S67 30 Winter 100 +40% 100/15 Summer 37.186 0.605 0.000 S7.008 S68 30 Winter 100 +40% 100/15 Summer 37.123 0.584 0.000 S7.009 S69 30 Winter 100 +40% 100/15 Summer 37.060 0.558 0.000	0 (
S7.004 S64 30 Winter 100 +40% 100/15 Winter 37.314 0.455 0.000 S7.005 S65 30 Winter 100 +40% 100/15 Summer 37.299 0.538 0.000 S7.006 S66 30 Winter 100 +40% 100/15 Summer 37.255 0.584 0.000 S7.007 S67 30 Winter 100 +40% 100/15 Summer 37.186 0.605 0.000 S7.008 S68 30 Winter 100 +40% 100/15 Summer 37.123 0.584 0.000 S7.009 S69 30 Winter 100 +40% 100/15 Summer 37.060 0.558 0.000	0 (
S7.005 S65 30 Winter 100 +40% 100/15 Summer 37.299 0.538 0.000 S7.006 S66 30 Winter 100 +40% 100/15 Summer 37.255 0.584 0.000 S7.007 S67 30 Winter 100 +40% 100/15 Summer 37.186 0.605 0.000 S7.008 S68 30 Winter 100 +40% 100/15 Summer 37.123 0.584 0.000 S7.009 S69 30 Winter 100 +40% 100/15 Summer 37.060 0.558 0.000	0 (
S7.006 S66 30 Winter 100 +40% 100/15 Summer 37.255 0.584 0.000 S7.007 S67 30 Winter 100 +40% 100/15 Summer 37.186 0.605 0.000 S7.008 S68 30 Winter 100 +40% 100/15 Summer 37.123 0.584 0.000 S7.009 S69 30 Winter 100 +40% 100/15 Summer 37.060 0.558 0.000	00
S7.007 S67 30 Winter 100 +40% 100/15 Summer 37.186 0.605 0.000 S7.008 S68 30 Winter 100 +40% 100/15 Summer 37.123 0.584 0.000 S7.009 S69 30 Winter 100 +40% 100/15 Summer 37.060 0.558 0.000	0 (
S7.008 S68 30 Winter 100 +40% 100/15 Summer 37.123 0.584 0.000 S7.009 S69 30 Winter 100 +40% 100/15 Summer 37.060 0.558 0.000	00
S7.009 S69 30 Winter 100 +40% 100/15 Summer 37.060 0.558 0.000	00
	0 (
S7.010 S70 30 Winter 100 +40% 100/15 Summer 36.981 0.532 0.000	0 (
	00
S7.011 S71 30 Winter 100 +40% 100/15 Summer 36.861 0.502 0.000	00
S7.012 S72 30 Winter 100 +40% 100/15 Summer 36.721 0.453 0.000	00
S7.013 S73 30 Winter 100 +40% 100/15 Summer 36.603 0.415 0.000	00
S7.014 S74 30 Winter 100 +40% 100/15 Summer 36.453 0.365 0.000	0 (
S7.015 S75 30 Winter 100 +40% 100/30 Summer 36.248 0.267 0.000)0

©1982-2020 Innovyze

Systra Ltd		Page 51
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 100yrs+40% CC	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	niamade
Micro Drainage	Network 2020.1	

PN	US/MH Name	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S6.000	S48	0.11			77.0	SURCHARGED	
S6.001	S49	0.37			274.0	SURCHARGED	
S6.002	S50	0.61			435.2	SURCHARGED	
S6.003	S51	0.56			394.4	SURCHARGED	
S6.004	S52	0.69			471.9	SURCHARGED	
S6.005	S53	0.91			538.3	SURCHARGED	
S6.006	S54	0.70			488.9	SURCHARGED	
S6.007	S55	0.64			449.3	SURCHARGED	
S6.008	S56	0.57			416.8	SURCHARGED	
S6.009	S57	0.46			635.0	SURCHARGED	
S6.010	S58	0.60			895.4	SURCHARGED	
S6.011	S59	0.61			935.9	SURCHARGED	
S7.000	S60	0.09			64.8	SURCHARGED	
S7.001	S61	0.29			203.0	SURCHARGED	
S7.002	S62	0.24			169.0	SURCHARGED	
S7.003	S63	0.41			298.9	SURCHARGED	
S7.004	S64	0.64			458.6	SURCHARGED	
S7.005	S65	0.98			699.1	SURCHARGED	
S7.006	S66	1.04			739.0	SURCHARGED	
S7.007	S67	1.42			789.5	SURCHARGED	
S7.008	S68	1.58			785.7	SURCHARGED	
S7.009	S69	1.22			776.3	SURCHARGED	
S7.010	S70	1.13			800.9	SURCHARGED	
S7.011	S71	1.24				SURCHARGED	
S7.012	S72	1.25			869.1	SURCHARGED	
S7.013	S73	1.23				SURCHARGED	
S7.014	S74	1.38			1019.6	SURCHARGED	
S7.015	S75	0.65			1007.4	SURCHARGED	

Systra Ltd		Page 52
Innovation Court	Envision	
121 Edmund Street	Surface Water Design	
Birmingham B3 2HJ	1 in 100yrs+40% CC	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	niairiade
Micro Drainage	Network 2020.1	·

									Water	Surcharged	Flooded
	US/MH		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)
S6.012	s76	30 Winter	100	+40%	100/15 Winter				36.183	0.355	0.000
S6.013	S77	30 Winter	100	+40%	100/15 Winter				35.961	0.211	0.000
S6.014	S78	30 Winter	100	+40%	100/30 Winter				35.718	0.093	0.000
S6.015	S79	600 Winter	100	+40%	100/360 Winter				35.585	0.055	0.000

PN	US/MH Name	Flow / Cap.	Overflow (1/s)	Time (mins)	Flow (1/s)	Status	Level Exceeded
S6.012	s76	1.48			2023.9	SURCHARGED	
S6.013	S77	1.33			1995.2	SURCHARGED	
S6.014	S78	1.39			1982.2	SURCHARGED	
S6.015	S79	0.05			72.0	SURCHARGED	

Systra Ltd		Page 53
Innovation Court	Envision	
121 Edmund Street	Foul Water Design	
Birmingham B3 2HJ	South	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	niairiade
Micro Drainage	Network 2020.1	'

FOUL SEWERAGE DESIGN

Network Design Table for Foul South

PN	-		-		Houses	Base		k	HYD		Section Type	Auto
	(m)	(m)	(1:X)	(ha)		Flow	(1/s)	(mm)	SECT	(mm)		Design
F1.000	43.456	0.435	99.9	0.000	0		0.0	1.500	0	150	Pipe/Conduit	a
F1.001	43.456	0.435	99.9	0.000	0		0.0	1.500	0	150	Pipe/Conduit	Ă
F1.002	44.973	0.450	99.9	0.000	0		0.0	1.500	0	150	Pipe/Conduit	Ă
F1.003	44.973	0.450	100.0	0.000	0		0.0	1.500	0	150	Pipe/Conduit	ĕ
F1.004	45.013	0.450	100.0	0.000	0		0.0	1.500	0	150	Pipe/Conduit	ĕ
F1.005	45.013	0.450	100.0	0.000	0		0.0	1.500	0	150	Pipe/Conduit	ĕ
F1.006	64.436	0.644	100.0	0.000	0		0.0	1.500	0	150	Pipe/Conduit	ĕ
F1.007	13.853	0.139	100.0	0.000	0		0.0	1.500	0	150	Pipe/Conduit	ĕ
F1.008	45.000	0.450	100.0	0.000	0		0.0	1.500	0	150	Pipe/Conduit	Ä
F1.009	45.000	0.450	100.0	0.000	0		0.0	1.500	0	150	Pipe/Conduit	ĕ
F1.010	30.147	0.301	100.0	0.000	0		0.0	1.500	0	150	Pipe/Conduit	ĕ
F1.011	30.194	0.302	100.0	0.000	0		0.0	1.500	0	150	Pipe/Conduit	ĕ

Network Results Table

PN	US/IL	Σ Area	Σ Base	Σ Hse	Add Flow	P.Dep	P.Vel	Vel	Cap	Flow
	(m)	(ha)	Flow (1/s)		(1/s)	(mm)	(m/s)	(m/s)	(1/s)	(1/s)
F1.000	36.885	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0
F1.001		0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0
F1.002	36.016	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0
F1.003	35.566	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0
F1.004	35.116	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0
F1.005	34.666	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0
F1.006	34.216	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0
F1.007	33.572	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0
F1.008	33.433	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0
F1.009	32.983	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0
F1.010	32.533	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0
F1.011	32.232	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0

Systra Ltd		Page 54
Innovation Court	Envision	
121 Edmund Street	Foul Water Design	
Birmingham B3 2HJ	North	Micro
Date 06/07/2021	Designed by GP	Drainage
File Drainage Networks v3.MDX	Checked by TD	Diamage
Micro Drainage	Network 2020.1	-

FOUL SEWERAGE DESIGN

Network Design Table for Foul - north

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	se (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
F2.000	37.242	0.372	100.1	0.000	0	0.0	1.500	0	150	Pipe/Conduit	ð
F3.000	27.159	0.272	100.0	0.000	0	0.0	1.500	0	150	Pipe/Conduit	ď
F2.001	44.999	0.450	100.0	0.000	0	0.0	1.500	0	150	Pipe/Conduit	€
F2.002	44.999	0.450	100.0	0.000	0	0.0	1.500	0	150	Pipe/Conduit	ď
F2.003	43.913	0.439	100.0	0.000	0	0.0	1.500	0	150	Pipe/Conduit	ď
F2.004	43.913	0.439	100.0	0.000	0	0.0	1.500	0	150	Pipe/Conduit	ď
F2.005	45.156	0.452	100.0	0.000	0	0.0	1.500	0	150	Pipe/Conduit	ď
F2.006	45.156	0.452	100.0	0.000	0	0.0	1.500	0	150	Pipe/Conduit	ď
F2.007	33.355	0.334	100.0	0.000	0	0.0	1.500	0	150	Pipe/Conduit	ď
F4.000	61.257	0.613	100.0	0.000	0	0.0	1.500	0	150	Pipe/Conduit	0
F2.008	27.360	0.274	100.0	0.000	0	0.0	1.500	0	150	Pipe/Conduit	₩
F2.009	9.887	0.099	100.0	0.000	0	0.0	1.500	0	150	Pipe/Conduit	ď

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
F2.000	36.640	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0	
F3.000	36.640	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0	
F2.001	36.268	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0	
F2.002	35.818	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0	
F2.003	35.368	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0	
F2.004	34.929	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0	
F2.005	34.490	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0	
F2.006	34.038	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0	
F2.007	33.587	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0	
F4.000	36.640	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0	
F2.008	33.253	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0	
F2.009	32.979	0.000	0.0	0	0.0	0	0.00	0.88	15.5	0.0	