

ALDI STORES LTD

Hostmoor Avenue, March

Coo Environmental Assessment Deport

	EXECUTIVE SUMMARY
Location and Brief Site Description	The site is located off Hostmoor Avenue, March, PE15 0AX. The subject site comprises two separate commercial/ light industrial premises. An above ground waste oil tank, diesel generators and an electrical sub-station were identified as potential sources of contamination on the site. The site is set within a small industrial/retail estate featuring retail and light industrial premises, which in turn is surrounded by agricultural land comprising fields.
Ground Conditions	 Generalised ground conditions from the ground investigation comprise (top down): Made ground (generally granular) encountered from ground level to between 0.20m and 1.45m bgl. Natural strata predominantly of firm to stiff clay, with a layer of sand of variable depth and thickness identified at shallow depth. No visual or olfactory evidence of contamination. Groundwater (perched) between 0.51m and 4.90m bgl.
Human Health - Soils Contamination	Based on the field observations, testing and assessment undertaken, there are no determinands above the relevant screening criteria for the proposed commercial end-use, the risks to human health from the identified source are considered to be low and remediation will not be necessary.
Controlled Waters	The overall risk to controlled waters is considered to be low and no further action is required.
Ground Gas	Based on our assessment, including gas monitoring data, the site is classified as CS1. No gas precaution measures are necessary.
Outline Remedial Strategy	No specific remedial measures are considered necessary at the site.
Waste	Waste classification on a selection of made ground and natural soils has revealed them to be non-hazardous and inert.
Foundations and Floor Slabs	The most suitable foundations for the proposed commercial development are considered to be pads and strips bearing in the loose to medium dense sand at a minimum depth of 0.8m bgl, or in the underlying firm to stiff (medium strength) clay at a minimum depth of 1.5m bgl. Preliminary foundations indicate foundations in the sand would provide an allowable bearing capacity of 120kN/m², whilst foundations in the clay at 1.5m bgl would provide 110kN/m². Ground bearing floor slabs may be adopted subject to appropriate design and preparation of the formation.
Concrete Classification	DS1 AC1s conditions prevail in both natural and made ground.
Highways Design	Made Ground estimated CBR – 2% Superficial Strata estimated CBR – cohesive/fine soils– 4% Superficial Strata estimated CBR – granular/coarse soils– 5% The above should be confirmed by in-situ testing at formation level by a specialist geotechnical engineer during construction.
Sustainable Drainage Systems (SUDS)	Drainage to soakaways is considered unsuitable for this site. Indicative soil infiltration rates range from 2.22x10-6m/s to 2.36x10-6m/s.
Further Work	 The following further works will be required to progress to the construction phase: Demolition Asbestos survey. Tree survey by qualified arboriculturist. Detailed foundation design by a structural engineer, including foundation zonation plan and depth schedule. Production of Materials Management Plan (MMP) under the CL:AIRE DoWCoP, if required.

This executive summary should be read in conjunction with the full report, reference AT/C4324/9589 and not as a standalone document.

PROJECT QUALITY CONTROL DATA SHEET

Site Name:	Hostmoor Avenue, March			
Document Name:	Geo-Environmental Assessment Report			
Reference:	AT/C4324/9589			
	-	6 Nov 2020	Interim (awaiting completed gas monitoring).	
Status:	А	4 Dec 2020	Updated with completed gas monitoring results.	

Issued By:	Client:	Engineer:
Brownfield Solutions Ltd Unit 5 Alfred Court Saxon Business Park Stoke Prior Bromsgrove Worcestershire B60 4AD Tel: 01215 729014 brownfield-solutions.com	Aldi Stores Ltd 1 Sheepcotes Chelmsford CM2 5AE	Stirling Maynard Stirling House Rightwell Bretton Peterborough PE3 8DJ
	Contact:N/A	Contact: Mr T. Hubble

Written by:

A Thornes BSc (Hons) MSc FGS Graduate Project Engineer Checked by:

W Griffiths BSc (Hons) CEnv MIEnvSc Principal Project Engineer

Approved by:

M Holland BSc (Hons) MSc FGS Senior Project Engineer

1.0 CONTEXT 6 1.1 1.2 1.3 Previous Reports 6 1.4 1.5 LIMITATIONS 6 THE SITE 8 2.0 2.1 2.2 3.0 3.1 BSL DESK STUDY9 4.0 4.1 4 2 4.3 4.4 4.5 Monitoring 12 5.0 5.1 5.2 5.3 5.4 5.5 Groundwater 14 5.6 6.0 6.1 6.2 6.3 6.4 7.0 GEOTECHNICAL ASSESSMENT 18 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 0.8 8.1 8.2 8.3 8.4 8.5 8.6 8.7

	CONTENTS	
8.8 8.9 8.10	Outline Remedial Measures Health and Safety Issues Asbestos	34
9.0	WASTE SOIL CLASSIFICATION & ASSESSMENT	36
9.1	SUMMARY	36
9.2	Waste Classification Procedure	36
9.3	Waste Classification and Waste Acceptance Criteria (WAC)	37
9.4	OPTIONS ASSESSMENT	39
9.5	RE-USE OF SOILS	40
10.0	CONCLUSIONS	42
10.1	GEO-ENVIRONMENTAL	42
10.2	GEOTECHNICAL	42
10.3	FURTHER WORK	42
11.0	ABBREVIATIONS AND DEFINITIONS	44
12.0	REFERENCES	47

DRAWINGS			
Drawing Number	Rev	Title	
2909-CHE-015B	-	Proposed Site Plan	
C4324/01	-	Site Location Plan	
C4324/02	-	Site Features Plan	
C4324/03	D	Exploratory Hole Location Plan	

APPENDICIES			
Appendix	Title		
Appendix A	BSL Methodology and Guidance		
Appendix B	Exploratory Hole Logs		
Appendix C	Chemical Testing Results		
Appendix D	Geotechnical Testing Results		
Appendix E	Monitoring Results		
Appendix F	Waste Assessment Report		

1.0 INTRODUCTION

1.1 Context

This report describes a Geo-Environmental Assessment carried out by Brownfield Solutions Limited (BSL) for Aldi Stores Ltd as instructed by Stirling Maynard on a site off Hostmoor Avenue, March and has been completed in general accordance with the following guidance:

- Environment Agency guidance Land Contamination: Risk Management (LCRM).
- BS 10175:2011+A2:2017 Investigation of Potentially Contaminated Sites.
- BS5930: 2015+A1:2020 Code of Practice for Ground Investigations.
- BS EN 1997-1:2004+A1:2013 Eurocode 7. Geotechnical design. General rules plus UK National Annex.
- BS EN 1997-2:2007 Eurocode 7 Geotechnical design. Ground investigation and testing plus UK National Annex.

Definitions of terms and acronyms used within this report is presented in Section 11.0.

1.2 Proposed Development

The proposed development is for a commercial end use comprising a steel framed retail building and associated car park areas as shown on the proposed development plan, drawing No. 2909-CHE-015B provided to BSL by the client.

1.3 Previous Reports

This report should be read in conjunction with BSL Phase 1 Desk Study Assessment Report (8816) issued in October 2019.

1.4 Objectives and Scope

The objectives of this report are to determine the geo-environmental setting and ground conditions of the site, highlighting potential risks and areas of concern that may govern the development under the current planning regime. This assessment is also intended to fulfil the requirements of a Ground Investigation Report (GIR) as detailed in BS EN 1997-2:2007.

Following the Phase I Desk Study referenced above, an exploratory intrusive investigation was undertaken to confirm the findings of the preliminary CSM and risk assessment and meet any objectives that had not been satisfied. The exploratory investigation was undertaken using trial pitting, window sampling, cable percussive drilling, gas and groundwater monitoring, laboratory chemical and geotechnical testing, with reporting on the findings.

1.5 Limitations

This assessment has been prepared in accordance with the relevant current legislative framework, guidance and risk assessment methodology as outlined in Appendix A. BSL is not liable for any subsequent changes in the guidance and legislation.

The findings and opinions conveyed via this report are based on information obtained from a number of sources as detailed within this report, BSL have assumed this information is correct and reliable. Nevertheless, BSL cannot and does not guarantee the authenticity or reliability of the information it has relied upon.

BSL have used reasonable skill, care and diligence for the investigation of the site and the production of this report. There may be other conditions prevailing on the site which are outside the scope of work and have not been highlighted by this assessment and therefore have not been considered by this report. Responsibility cannot be accepted for such site conditions not revealed by the assessment.

This report has been prepared for the sole use and reliance of the Client, Aldi Stores Ltd. No other third parties may rely upon or reproduce the contents of this report without the written permission of Brownfield Solutions Ltd (BSL). If any unauthorised third party comes into possession of this report, they rely on it at their own risk and BSL do not owe them any Duty of Care.

The investigation carried out on the site has been conducted to provide the best information on the ground conditions within site access and budgetary constraints. The inherent variation of ground conditions allows only for definition of the actual conditions at the locations and depths of exploratory locations at the time of the investigation. Different ground conditions may exist that have not been identified within this investigation.

The recommendations in this report assume that ground levels will remain as existing, unless stated otherwise within the report. If there is to be any re-profiling (e.g. to create development platforms or flood defences) then the recommendations may not apply.

The groundwater results described are only representative of the dates on which they were recorded, and levels may vary seasonally (e.g. due to changes in weather).

This assessment has been based on the proposed planning layouts provided. Any subsequent change to the planning layout may have an impact on the validity of recommendations made within this report. Furthermore, new information, changed practices or new legislation may necessitate revised interpretation of the report after the date of its submission.

Although every effort has been made to position exploratory holes in the least sensitive areas of the site, exploratory hole positions were located approximately as part of this investigation and no guarantee can be given as to their accuracy. Consideration should be given to the possibility that exploratory holes excavated as part of this investigation and indeed any previous ground investigation work by others may be encountered beneath or within the influence of individual foundations. BSL cannot be held responsible for structural failures caused by the location of foundations of any form of structure within the influence of exploratory holes.

Where it has not been possible to reasonably use an EC7 compliant investigation technique, a practical alternative has been adopted to obtain indicative soil parameters and any interpretation is based upon engineering experience, local precedent where applicable and relevant published information.

The chemical testing carried out for this report was not scoped to comply with the requirements of the water supply company and further work may be required, unless otherwise stated.

Notwithstanding site observations concerning the presence or otherwise of archaeological issues, asbestos-containing materials (ACM) or invasive weeds (e.g. Japanese Knotweed), this report does not constitute a formal survey of these potential issues.

The site plans enclosed in this report should not be scaled off. Any site boundary line depicted on plans does not imply legal ownership of land.

Any recommendations made in this report should be confirmed with the Regulatory Authorities prior to implementation to ensure compliance.

2.0 THE SITE

2.1 Location

The site is located off Hostmoor Avenue, March, PE15 0AX. It is situated approximately 2 Km north-west of March Town Centre, centred on National Grid Reference 540183, 298125 as shown on the Site Location Plan, Drawing No. C4324/01.

2.2 Site Description

The main site features and potential issues identified are detailed below and are shown on the Site Features Plan, Drawing No. C4324/02.

Feature	Description
Site Area	Approximately 1.25 hectares.
Site Access	Access to the site can be gained off either Hostmoor Avenue to the south or Martin Avenue to the east.
Current Land Use and Site Features	The subject site comprises two separate commercial plots. In the south accessed from Hostmoor Avenue, is Brimur Packaging Ltd, whilst the north is occupied by Stormport Ltd which is accessed from Martin Avenue. The majority of the Stormport site was external and used for storage of highways / construction materials, such as fencing, cones, ducting etc. In total across the two sites are three buildings, all of which appear to be of the same steel frame, metal clad construction. Numerous manhole covers are present across both areas denoting possible drainage /sewers. There are several overheard services (telecoms and power) crossing the northern part of the site. In the centre of the site is an area of grass soft landscaping which appears to be unused
Potential Sources of Gross Contamination	To the north of the Brimur Packaging Ltd building a bunded above ground waste oil storage tank was identified, no oil staining was noted surrounding the tank. Next to this attached to the building was what appeared to be a vent for a boiler. The ground surfacing near the above ground waste oil storage tank was raised relative to its surroundings, comprised gravel and appeared to contain some ash. Two external storage sheds were identified on the south side of the Stormport building, possibly housing a generator, evidenced from the 'electrical danger of death' sign externally. An outdoor electrical substation is present on the eastern boundary of the site with a separate boundary and access from Martin Avenue.
Vegetation	There are numerous deciduous trees across the south, east and western border, generally circa 8m to 12m high. The southern border is also defined by a low hedgerow generally of hawthorn.
Topography	The site is generally flat and level. However, a mound/ soil stockpile is situated to the north-west corner of the southern portion of the site.
Site Boundaries	The southern portion of the site is bordered by hedgerows and trees to the east, south and west, the entrance off Hostmoor Avenue to the south is protected by a single chain. The northern boundary is defined by the chainlink fence of the other property. The northern portion of the site (Stormport Ltd) is protected by chainlink fence around all borders, and the entrance off Martin Avenue is also gated. Trees are present along the western boundary, just outside of the fenced area. The electrical substation is bordered by wooden fencing, held in place with concrete posts.
Surrounding Area	The site is set within a small industrial/retail estate featuring retail and light industrial premises, which in turn is surrounded by agricultural land comprising fields. A railway line is located approximately 275m south of the site.

3.0 SUMMARY OF PREVIOUS REPORTS

3.1 BSL Desk Study

A summary of the relevant points from the Desk Study completed by BSL (reference 8816) is presented below:

- The site had remained as agricultural land until 1970 where commercial development of two large units and an electricity substation was constructed as part of March Trading Park. Between 1994 and 2003 a third commercial building was constructed in the northern portion of the site and has remained unchanged until the present day.
- Geology comprises Oadby Member (Glacial Diamicton, a Secondary Undifferentiated Aquifer) over mudstone of West Walton Formation and Ampthill Clay Formation (Undifferentiated), which is an Unproductive Aquifer.
- No faults are within an influencing distance of the site.
- Whilst the site is not within an area of recorded mining, there is a possible former sand and gravel pit located approximately 800m north-east of the site.
- There are no records of shallow mines in and around the site.
- The nearest watercourses to the site are a series of unnamed inland rivers, possibly drainage channels, the closest of which is indicated to be located 3m west of the site.
- The risk to human health is considered to be low to moderate.
- The risk from ground gas is considered to be low and the site is not located in an area requiring radon protection measures.
- The risk to controlled waters is low.
- The site is located in a UXO low risk zone.
- Recommendations were for an appropriate Phase II ground investigation to be carried out to confirm the identified risks and obtain information for preliminary design.

4.0 METHOD OF INVESTIGATION

4.1 Objectives

To confirm the risks to the identified receptors and confirm the ground conditions in respect to the identified geotechnical and geo-environmental risks, an appropriate intrusive investigation was undertaken as per the recommendations of the Phase I Desk Study Assessment.

The aim of the fieldwork was to:

- Investigate ground conditions on the site and the potential need for detailed investigation.
- Install standpipes to allow future monitoring.
- Assess the potential contamination on the site and obtain samples for contamination screening.
- Assess the potential impact of any contamination on controlled waters.
- Obtain geotechnical information on the ground conditions at the site for preliminary foundation design and preliminary pavement design purposes.
- Give an assessment of the geo-environmental risks associated with redevelopment of the site.

4.2 Site Works

The following site works have been undertaken as part of the intrusive investigation between the dates of 14th and 17th September 2020.

Method	No.	Range Depths (m bgl)	Purpose
Hand excavated trial pit	1	0.60	Obtain shallow samples for contamination testing.
Trial pits – JCB 3CX	3	1.50– 1.80	Establish general ground conditions and undertake soil infiltration tests to assist with drainage design.
Window sample boreholes – Tracked WS rig	9	2.80 – 5.00	Establish general ground conditions on site. Allow Standard Penetration Tests (SPTs) to be carried out and obtain samples for contamination and geotechnical testing. Installation of ground gas and water monitoring wells.
Cable percussive boreholes	2	10.00	Assess deeper ground conditions, carry out SPTs and obtain samples for contamination and geotechnical testing. Installation of ground gas and water monitoring wells.

The site was operational at the time of the ground investigation which lead to some restrictions on the locations of exploratory holes. The approximate locations of the exploratory holes are indicated on the Exploratory Hole Location Plan, Drawing No C4324/03. The exploratory hole logs are presented in Appendix B.

HP01 was originally proposed to be a window sample location. However, due to the close proximity to services and the CAT and Genny picking up a signal with minimal gain, it was not possible to maintain an appropriate standoff from the suspected location of the signal. Therefore, a hand excavated pit was dug to obtain environmental samples, log the soils and measure the thickness of the made ground in that location.

The exploratory holes were logged by an experienced geo-environmental engineer in general accordance with the following guidance:

- BS 5930:2015+A1:2020 Code of Practice for Site Investigations.
- BS EN 14688-1:2018 Geotechnical Investigation and Testing Identification and classification of soil.

4.3 Sampling

During the drilling and excavation of the exploratory holes, representative samples were taken at regular intervals to assist in the identification of the soils and to allow subsequent laboratory testing. They were stored and transported in general accordance with BS 10175:2011+A2:2017.

The type of sample was dependent upon the stratum and the purpose of analysis in accordance with current environmental and geotechnical guidance.

The distribution of samples taken across the site is recorded on the exploratory logs and a summary of the samples taken is presented in the table below:

Туре	Number
Environmental (ES)	51
Disturbed (D)	43
U100 (U)	5

4.4 Laboratory Testing

As part of the initial assessment for potential contamination of the site, selected samples were taken for the purpose of chemical contamination testing.

In the absence of particularly contaminative processes on site and the lack of visual evidence of potential hydrocarbon impaction, fourteen representative soil samples were screened for the following general suite of determinands at a UKAS approved laboratory:

Determinand	No of Samples
BSL Default Soil Suite: Arsenic, Cadmium, Chromium (III), Chromium (VI), Copper, Nickel, Mercury, Lead, Zinc, Selenium, speciated polycyclic hydrocarbons (PAH 16), water soluble sulphate (2:1 Extract), soil organic matter (SOM) and pH.	8
Petroleum Hydrocarbons (TPH CWG) inc BTEX and MTBE.	6
Asbestos Screen.	8
PCB Compounds (7 Congeners).	1
Total Organic Carbon (TOC).	10
Combined Herbicide / Pesticide Screen.	5

The Chemical Laboratory Testing Results are presented in Appendix C.

Representative disturbed samples were obtained for all soil types encountered. Selected samples were scheduled for testing at an approved laboratory in accordance with BS 1377 'Method of Test for Soils for Civil Engineering Purposes' and BS EN ISO 17892- Parts 1-12:2018 'Geotechnical investigation and testing. Laboratory testing of soil'.

The following tests were scheduled for geotechnical purposes:

Description	No of Samples
Natural Water Content.	6
Plasticity Index Analysis.	6
pH Value.	6
Water Soluble Sulphate Contents.	6
Determination of One-Dimensional Consolidation properties.	2
Undrained Triaxial Compression Test with Measurement of Pore Pressure.	3

The Geotechnical Laboratory Testing Results are presented in Appendix D.

4.5 Monitoring

Ground gas monitoring standpipes were installed in 3 boreholes and subsequently 4No. monitoring visits have been undertaken out of 4No. proposed as part of the current scope, in line with the recommendations of CIRIA C665.. All gas monitoring was undertaken using GFM436 infrared gas meter with integral electronic flow analyser.

Flow measurements on each standpipe (I/hr) were taken. Measurements of the percentage volume in air (%v/v) of oxygen (O_2), carbon dioxide (CO_2) and methane (CH_4) were recorded in addition to the percentage Lower Explosive Limit (%LEL) of methane (Note: 100% LEL equates to 5% by volume), the atmospheric pressure (mb) and average temperature during the visit ($^\circ$ C).

Standpipes were constructed in general accordance with the relevant guidance. A summary of the installation construction is presented in the table below:

Location	Internal Diameter Pipe	Response Zone (m bgl)	Targeted Strata	Purpose
WS03	35mm PVC	0.70 - 5.00	Natural Strata	Ground Gas
WS06	35mm PVC	1.00 – 4.00	Natural Strata	Ground Gas
BH01	50mm HDPE	1.00-10.00	Natural Strata	Ground Gas

The gas monitoring visits recorded peak and steady state conditions. Peak results are those that occur on opening the valve on the borehole tap. Steady state conditions are those that occur a period of time afterwards when the initial (accumulated) gases have been purged from the borehole.

Completed ground gas monitoring results are presented in Appendix E of this report.

5.0 GROUND CONDITIONS

5.1 Summary

A brief summary of the ground conditions encountered is presented in the table below:

Stratum	Range Depths - Top (m bgl)	Range Depths - Base (m bgl)	Range Thickness' (m)	Brief Description
Made Ground	00.00	00.20 - 01.45	00.20 - 01.45	Gravelly Sand
Natural Granular Strata	00.20-1.45	00.70-01.90	00.10-01.30	Gravelly Sand
Natural Cohesive Strata	00.30-01.90	0.60-10.45*	00.70-09.05*	Slightly gravelly CLAY.
Solid Geology	N/A	N/A	N/A	Not encountered

^{*}Base depths not proven.

Details are provided in the logs in Appendix B and the individual strata are described in the sections below.

5.2 Made Ground

Made Ground - Topsoil

Made Ground Topsoil was encountered in 6 locations across the site from ground level to between 0.10m and 0.20m bgl, generally comprising dark brown slightly gravelly sand with occasional rootlets and anthropogenic inclusions of gravel sized brick and concrete alongside quartzite.

Made Ground - General

Made ground was encountered within all the exploratory holes across the site and was observed from ground level to depths between 0.20m and 1.45m bgl.

Hardstanding surfacing of concrete was present in BH01 and WS01 between 0.20m and 0.30m thick. Gravel hardcore was observed in locations within the northern area of the site.

The composition of the made ground was fairly consistent across the site and comprised gravelly sand. Gravel was predominantly brick and concrete and quartzite with small amounts of clinker in WS05. Cobbles of brick and concrete ranged from low to medium content.

5.3 Natural Superficial Strata

The natural strata underlying the site was generally firm to stiff slightly gravelly or gravelly clay, locally slightly sandy or sandy, particularly at shallow depth. A layer of gravelly sand was present above or within the clay at shallow depth across the site, the depths are shown in the table below.

Sand Layers

Location	Depth Top	Depth Base	Thickness	Brief Description
BH01	0.60	1.40	0.80	Light brown Gravelly Sand
BH02	0.70	1.90	1.20	Loose reddish brown Gravelly Sand
ВПО2	5.40	5.70	0.30	Brown slightly clayey Sand
HP01	0.20	0.60+	0.40+	Brown gravelly Sand
TP101	0.70	1.10	0.40	Orange brown slightly gravelly Sand
TP103	1.00	1.30	0.30	Orange brown slightly gravelly Sand
WS01	1.40	1.65	0.25	Loose orange brown gravelly Sand

Location	Depth Top	Depth Base	Thickness	Brief Description
WS02	0.50	1.55	1.05	Brown slightly clayey slightly gravelly Sand (to 1.2m) over medium dense reddish brown gravelly Sand.
WS03	0.70	1.60	0.90	Medium dense reddish brown gravelly Sand.
WS04	0.30	0.70	0.40	Dark brown slightly gravelly clayey Sand.
WS05	1.45	1.55	0.10*	Reddish brown gravelly Sand.
WS06	0.60	1.40	0.80	Reddish brown slightly gravelly clayey Sand (to 1.3m) over reddish brown slightly gravelly Sand.
WS07	0.50	1.30	0.80	Reddish brown gravelly Sand.
WS08	0.20	1.50	1.30	Brown slightly clayey slightly gravelly Sand (to 0.8m) over medium dense reddish brown slightly gravelly clayey Sand.
WS09	0.70	1.00	0.30	Brown gravelly Sand.

^{*} Reduced natural sand thickness in WS05 due to thicker made ground present to 1.45m bgl.

In BH02 between 6.5m and 8.0m bgl a layer of very soft white and light grey chalky clay was encountered. The SPT value within this layer at 7.0m bgl was 24, which indicates a higher in-situ strength.

In WS01, the sand layer was deeper and thinner than most other locations and was present below a thicker layer of soft gravelly clay between 0.6m and 1.4m bgl.

A firm grey organic clay was encountered within WS08 from 1.50m to 2.00m.

Shear vane readings in the cohesive soils indicate the clays are generally medium and high strength.

The recorded superficial deposits underlying the site are Oadby Member, described by the BGS as Diamicton (meaning an unsorted or poorly sorted soil with a range of particle sizes), grey, weathering brown, characterised by Cretaceous and Jurassic rock fragments; subordinate lenses of sand and gravel, clay and silt. Clay, brown to grey, and silty clay, with chalk and flint fragments.

The natural ground is considered to be representative of the Oadby Member.

5.4 Solid Geology

The solid geology of the undifferentiated West Walton Formation or the Ampthill Clay Formation was not encountered in this investigation.

5.5 Groundwater

The depths to groundwater and locations present are shown in the table below:

Location	Depth During Site Works (m)	Depth During Monitoring Period (range) (m)
BH01	1.15	1.00-1.10
BH02	4.90	N/A
WS01	1.20	N/A
WS02	1.20	N/A
WS03	NGW	0.51-0.84
WS06	NGW	1.04-1.21
TP101	1.80	N/A
TP102	1.10	N/A

5.6 Observations

Contamination

During the works undertaken by BSL, observations for both visual and olfactory evidence of contamination were undertaken.

With the exception of clinker observed as a minor constituent in WS05, WS08 and WS09 within the made ground soils and slight hydrocarbon odour within the made ground of WS05, no other evidence of contamination was observed at the site.

Stability of Excavations/Boreholes

The sides of the trial pits were generally stable.

The stiff nature of the clay across the site proved difficult to excavate at depth.

Casing was required within boreholes to prevent collapse with the granular made ground and natural soils during drilling of the window sample boreholes and cable percussive boreholes.

6.0 TEST RESULTS

6.1 Geotechnical Laboratory Testing

Plasticity Index Analysis

Plasticity index results ranged between 18% and 25% indicating the cohesive soils to be of medium plasticity. Associated water contents ranged between 7.1% and 22%.

After modification of particle size in accordance with BRE 240 the modified plasticity indices are in the range 7.92% to 23.75% indicating the cohesive soils to be of low to medium volume change potential.

Undrained Shear Strength

Undrained shear strength in triaxial compression ranged from 97 to 214kPa indicating the cohesive soils to be of high to very high strength. The results of the tests are shown in the table below:

Location	Depth (m)	Shear Strength (kPa)	Undrained Shear Strength to EC7
BH01	2.10	112	High
BH02	2.10	97	High
BH02	3.10	214	Very High

One Dimensional Consolidation Properties

The one-dimensional consolidation properties were as follows:

Location	Depth (m)	Mv Range (m²/MN)	Cv Range t50, log (m²/yr)	Compressibility at Approx. Over- Burden Pressure
BH01	2.10	0.12-0.31	5.2-19	Medium
BH02	3.10	0.17-0.24	8.6-17	Medium

6.2 Aggressive Ground Conditions – Geotechnical Chemical Testing

The test results for the assessment of aggressive ground conditions are presented in Appendix C. The results are summarised and assessed within Section 8.0 of this report.

6.3 In Situ Geotechnical Testing

In Situ Hand Shear Vane Tests

Nine hand shear vane tests were carried out on suitable cohesive soils recovered from the trial pits. Each shear vane result recorded represents the mean value of three tests undertaken at the specified depth.

The results and distribution of the hand shear vane tests are recorded in kPa on the Exploratory Hole Logs which are presented in Appendix B.

In Situ Standard Penetration Tests

Standard Penetration Tests (SPTs) were carried out within the window sample and cable percussive boreholes at regular 1.0m intervals. The results of the individual blows and the N-values are recorded on the Exploratory Hole Logs in Appendix B.

All SPT N values are uncorrected. Density and strength descriptors are reported in accordance with the guidelines stated in BS 5930:2015+A1:2020, incorporating requirements of BS EN ISO 14688-1:2002, BS EN ISO 14688-2:2004 and BS EN ISO 14689-1:2003.

Soil Infiltration Test Results

Soil infiltration tests were undertaken within trial pits at 3No. locations across site, a summary of the results is presented in the table below. These were carried out in general accordance with BRE Digest 365 (BRE 2016) where infiltration rates allow three test runs during a working day (or where there is no infiltration), but where low infiltration rates were encountered the available time may not have been sufficient to fully comply with the BRE test method.

Where less than three tests were possible in a particular location the results provided should be considered as indicative only. Further discussion concerning the suitability of infiltration testing at the site is provided in Section 7.0.

Location	Stratum Type	Depth (m)	Infiltration Rate (m/sec)		
			Test 1	Test 2	Test 3
TP101/SA01	Sandy CLAY	1.80	2.36x10 ⁻⁶	N/A	N/A
TP102/SA02	Sandy CLAY	1.55	2.22x10 ⁻⁶	N/A	N/A
TP103/SA03	Sandy CLAY	1.50	2.33x10 ⁻⁶	N/A	N/A

The full test results are presented in Appendix E.

6.4 Geo-Environmental Testing

Chemical Laboratory Testing

The chemical test results for soils are presented in Appendix C. The results are summarised and assessed within Section 8.0 of this report.

Photo-Ionisation Detection (PID) Monitoring - Soils

PID head space monitoring was undertaken on all environmental soil samples taken during the ground investigation at the site, the results are recorded on the exploratory hole logs.

All of the samples tested recorded PID results of between 0.0ppm and 1.7ppm, indicating that no significant volatile vapour contamination was present.

Ground Gas Monitoring

Ground gas monitoring installations have been monitored on four occasions to date out of four visits scheduled. The results are presented in Appendix E and are summarised and assessed within Section 8.0 of this report.

7.0 GEOTECHNICAL ASSESSMENT

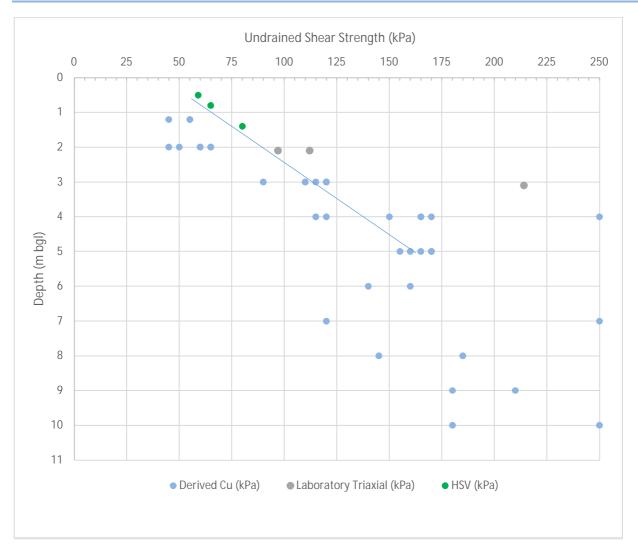
7.1 Ground Model Summary

The site is currently occupied with several large industrial units with associated hardstanding. An electricity substation is located on site.

The ground conditions can be summarised as below (top down):

- Made ground generally comprising gravelly sand with gravel of brick, concrete and quartzite from ground level to between 0.20m and 1.45m bgl.
- Natural superficial deposits comprising gravelly sand proven to depths between 0.70m and 1.90m bgl.
- Natural superficial deposits comprising stiff clay proven to depths of 10.45m bgl.
- Groundwater levels ranging between 1.15m and 4.90m bgl during site works.
- Post site works groundwater monitoring levels ranging between 0.51m and 1.21m bgl.

The groundwater encountered is not a continuous body, but is likely to be perched within the clay at variable depths.


7.2 Design Soil Parameters

The relevant test results from the prior section have been evaluated to derive geotechnical soil parameters for the site in the following section.

For cohesive (fine) soils, the equivalent approximate undrained shear strengths (Cu) and equivalent approximate coefficients of volume compressibility (mv) have been calculated from the recorded SPT N values, adopting f1 and f2 values respectively, based on the correlation of Stroud (1975) and the 'average' plasticity.

A depth (m bgl) vs derived shear strength (Cu) graph is provided below to provide a profile of the cohesive soils underlying the site.

The above graph shows a general increase in soils strengths as depth increases. The shear strength obtained through direct laboratory testing and hand shear vanes generally indicates higher shear strength than the SPT derived data, and is considered more reliable, therefore the line of fit on the above graph has been weighted towards the HSV and laboratory triaxial data, where available.

Data obtained from exploratory holes remote from the proposed building footprint (TP101, TP102, WS04, WS05 and WS09) has been omitted from the above graph, so that the characteristic values are not influenced by data that are potentially unrepresentative of the soils underlying the proposed structure.

Gravelly sand was present above or within the clay at shallow depth across the site. The shallow sand strata recorded in the exploratory holes in and surrounding the proposed building are summarised in the table below.

Location	Depth Top	Depth Base	Thickness	Brief Description	SPT N-value (depth)
BH01	0.60	1.40	0.80	Light brown Gravelly Sand	NA
BH02	0.70	1.90	1.20	Loose to medium dense reddish brown Gravelly Sand	9 (1.2m)
WS01	1.40	1.65	0.25	Loose to medium dense orange brown gravelly Sand	10 (1.2m)
WS02	0.50	1.55	1.05	Brown slightly clayey slightly gravelly Sand (to 1.2m) over medium dense reddish brown gravelly Sand.	14 (1.2m)*

Location	Depth Top	Depth Base	Thickness	Brief Description	SPT N-value (depth)
WS03	0.70	1.60	0.90	Medium dense reddish brown gravelly Sand.	23 (1.2m)*
WS06	0.60	1.40	0.80	Reddish brown slightly gravelly clayey Sand (to 1.3m) over reddish brown slightly gravelly Sand.	NA
WS07	0.50	1.30	0.80	Reddish brown gravelly Sand.	NA
WS08	0.20	1.50	1.30	Brown slightly clayey slightly gravelly Sand (to 0.8m) over medium dense reddish brown slightly gravelly clayey Sand.	18 (1.2m)*

^{*} These values are indicative only and should be used with caution as the SPT started in the sand but progressed into the underlying clay towards the bottom of the SPT.

Characteristic Values

Characterisation of the geotechnical parameters above has been undertaken to obtain characteristic values, which are a cautious estimate of the values affecting the occurrence of the limit state.

The characteristic value for undrained shear strength (Cu) in cohesive deposits at 1.0m bgl is interpreted to be 60kN/m², increasing to 90kN/m² at 2.0mbgl.

The angle of shearing resistance (ϕ ') of the granular (coarse) soils has been derived from the uncorrected SPT N value data and the correlation of Peck (1967). A characteristic angle of internal friction of 30° has been derived based on a conservative characteristic N-value of 10.

The thickness of the sand varies typically between circa. 0.8m and 1.3m thick and is generally present at minimum foundation depth for the medium volume change potential clay (0.9m bgl). This was not the case in WS01, where the sand was only 0.25m thick and was encountered at greater depth (1.4-1.65m bgl) below a layer of soft sandy clay. The sand was generally present to depths of between 1.3m and 1.9m bgl.

A characteristic coefficient of volume compressibility (m_v) value of 0.2 m^2/MN has been adopted for the clay between 1m and 4m bgl based on the laboratory consolidation test results.

A characteristic coefficient of volume compressibility (m_v) of 0.0625 m^2 /MN has been derived from the insitu SPT testing within the cohesive materials below 4m bgl.

7.3 Foundations

The development will comprise a single storey food store with a steel frame and is considered to be classed as Geotechnical Category 2 in accordance with Eurocode 7.

Preliminary design by calculation has been undertaken to determine the design resistance of the bearing strata in the following section. No proposed structural loads were available at the time of writing, therefore the following recommendations are provisional and should be reviewed at the detailed design stage.

Pads and Strips

The most suitable foundation solution for the proposed development is considered to be pad foundations for the structural columns and strip foundations for the masonry walls, taken to the underside of any made ground to found on undisturbed natural loose to medium dense sand.

The sand is typically present from depths of between 0.5m and 0.7m bgl to maximum depths of between 1.3m and 1.6m bgl. Preliminary calculations indicate that a 1m square pad or 0.6m wide strip bearing in the loose to medium dense sand at 0.8m bgl would provide an allowable bearing capacity of 120 kN/m².

This assumes the sand is present to 1.3m bgl (0.5m below the pad/strip) and that perched groundwater is present below the base. This adopts a factor of safety of 3. Preliminary calculations indicate that total settlements would be less than 25mm.

In WS01, the sand was thin and present at greater depth (1.4m bgl), and the overlying sandy clay was described as soft. Foundations in this area would need to be deepened. We would recommend the foundations are deepened below the soft clay and thin sand to bear on the underlying firm grey slightly gravelly clay at 1.65m bgl. A 1m square pad or 0.6m wide strip at this depth would provide an allowable bearing capacity of 110kN/m² to limit settlements to less than 25mm. The extent of the soft shallow clay is unknown and it would be prudent to delineate this following demolition of the site.

Foundations spanning between cohesive and granular strata will need to be appropriately reinforced to mitigate differential settlements.

Alternatively all foundations could be deepened below the sand to bear on medium to high strength clay between depths of 1.5-1.9m bgl, adopting a characteristic Cu value of 60kN/m², an allowable bearing capacity of 110kN/m² has been calculated for the clay at a minimum depth of 1.5m bgl (1m square pad or 0.6m wide strip) limiting settlements to less than 25mm. This assumes groundwater is present below the base of the foundation.

The minimum depth of any foundations bearing in the clay would be 0.90mbgl bgl due to the medium volume change potential of the clays, and deeper near trees and hedges in accordance with current quidance.

Trees are noted within and close to the area of the site proposed for development. Depending on their size, type and maturity, the required depth of founding based on the recommendations of BRE 298 may exceed 2.5m. Should this prove to be the case, then piled foundations should be considered as a potentially more economical solution, unless it can be proven that the soils are not desiccated.

Note where foundations require deepening to greater than 2.5m below ground level, they must be designed by an engineer, as specified in NHBC Technical Requirement R5.

General Advice for Shallow Foundations

The bearing stratum should be inspected for 'soft spots' within the natural clay strata, resulting for instance from localised groundwater perched within the overlying fill materials. If soft soils are encountered, then foundations will need to be deepened to found on suitable strata. The stratum should also be inspected for 'hard spots' which may require removal.

If the ground conditions encountered during the construction phase differ significantly to the conditions encountered during construction, work should cease and BSL contacted for further advice.

During the construction phase supervision should be on a continuous basis to check the design assumptions are correct and construction conforms to design. Supervision should include inspections, Control Ground Investigations and monitoring.

7.4 Building Near Trees

The clay soils on site are of low to medium volume change potential. Where foundation excavations (or piles if adopted) encounter cohesive strata in the vicinity of existing, proposed or recently removed trees, foundations should be adjusted in full accordance with BRE 298. All foundations should be deepened below roots of greater than 5mm diameter during excavations for footings.

A survey of all trees and hedges on the site and within influencing distance of the site boundary should be undertaken to identify tree species and heights by a qualified arboriculturist in accordance with

BS 5837:2012 and NHBC Standards. This information will be required in order to assess the effects of trees on the cohesive strata.

Where foundation depths due to trees already present or recently removed exceeds 1.50m, there is a possibility for heave to occur on removal of the tree and guidance states that compressible material or void former is required against the inside face of the foundation, unless it can be satisfied that the soil is not desiccated.

7.5 Floor Slabs

Ground bearing slabs may be adopted providing the following criteria are satisfied:

- Any compressible or unsuitable materials (made ground in excess of 600mm, topsoil containing vegetation and organic matter, including tree roots, are excavated and either improved or removed and replaced with suitable materials.
- The foundation depth (such as due to the influence of trees) is less than 1.5m.
- It is demonstrated that desiccation in cohesive soils is not present.
- Any fill beneath the slab is suitable, well-compacted granular material placed in an appropriate thickness in accordance with a suitable specification (e.g. SHW Series 600) designed and supervised by an appropriately qualified engineer, with the end performance validated.
- The slab is adequately reinforced.
- Regular construction joints and ties are provided to allow for differential settlement.

The final floor slab design should be of sufficient thickness and sufficiently reinforced to accept the envisaged applied loads, without unacceptable total or differential movement.

Vertical elements within the structure, such as columns and walls will need to be isolated from the ground bearing slab in order to allow for the slab to expand against them without resulting in cracking.

Prior to the placement of the founding materials and the construction of a ground bearing floor slab, the sub-formation and formation will need to be inspected and checked by a geotechnical engineer to ensure the ground conditions are as expected. If soft spots or hard spots are identified at the formation level, they should be reported to the Geotechnical Engineer immediately and remedial actions agreed.

Incorporation of geogrid reinforcement at formation level, before granular material is placed and compacted, will likely minimise required excavation depths and help provide a suitable foundation for the ground bearing slab.

Suspended floor slabs may be also be adopted however alternative foundation options may need to be considered to support the load of a suspended slab.

7.6 Site Preparation and Construction

Topsoil and subsoil should be removed from beneath all buildings and hardstanding areas.

If organic soils or peat is encountered below the proposed building these will need to be removed.

There are a number of services crossing the site. To allow construction, all services will need to be disconnected and any suspected dead services are confirmed as dead by testing.

Instability of excavations through natural soils is not anticipated provided they are not exposed to adverse weather conditions for any substantial period of time. Instability of the made ground should be allowed for. All excavations should be carried out in accordance with CIRIA Report 97 'Trenching Practice'.

Excavation depths should generally be readily achieved using conventional plant (JCB or similar) although high specification plant (tracked 360° or similar) is recommended to maintain the build programme. Breaking equipment may also be required locally to penetrate old foundations associated with former construction.

To protect against the effects of heave, new drainage should be designed to take account of potential ground movement, including where pipes and services which pass through substructure walls or foundations. The volume change potential on this site is low to medium and the potential ground movements that need to be considered for design are 50mm to 100mm.

Recorded post site works groundwater levels ranged between 0.51m and 1.21m bgl and therefore are likely to be encountered within likely excavation depths. Based on the exploratory holes logs and monitoring, it is considered that methods such as sump pumping are likely to be sufficient to deal with anticipated flows Further guidance is provided in CIRIA C750 "Groundwater Control: Design and Practice". It should be noted that groundwater levels will vary seasonally and the timing of construction may influence requirements.

7.7 Concrete Classification

The soluble sulphate and pH test results have been assessed in accordance with BRE Special Digest 1 "Concrete in aggressive ground" 2005. The Design Sulphate (DS) classification and the Aggressive Chemical Environment for Concrete (ACEC) classification are presented in the table below.

For the purposes of this assessment, the groundwater has been classified as static given the site is underlain by low permeability deposits.

	Stratum	No. Samples	Characteristic SO ₄ (g/l)	Characteristic pH	DS Class	ACEC Class
	Made Ground	6	111	7.6	DS1	AC-1s
Γ	Natural Superficial Strata	8	147	8.3	DS1	AC-1s

Based on the above, the results of laboratory pH and sulphate content, indicate that sulphate class DS-1 and ACEC Class AC-1s conditions prevail in accordance with BRE Special Digest 1 "Concrete in aggressive ground" 2005.

The specific concrete mixes (the Design Concrete Class) to be used on site will be determined by the site-specific concrete requirements in terms of the durability and structural performance. These are assessed in terms of the Structural Performance Level (SPL) and any need for Additional Protective Measures (APM) detailed in Part D of BRE Special Digest 1 with further guidance in Pt E and F.

7.8 Highways

Based on Table 5.1 from DMRB IAN 73/06 Rev 1 equilibrium CBR values of 5% are likely to be achieved in undisturbed natural granular soils and 4% for natural clays soils for pavement design purposes, unless proven otherwise by in-situ testing at formation level by a specialist geotechnical engineer. Equilibrium CBR values are likely to be 2% within the made ground.

Where the CBR is found to be less than 2%, the sub-grade is unlikely to be suitable for both the trafficking of site plant and as a permanent highway foundation without improvement of the soils.

To achieve the required design CBR value, improvement works should be carried out in accordance with DMRB IAN 73/06 Rev 1 Chapter 5 and may include proof rolling, excavation and re-engineering /

replacement of weaker soils, the inclusion of a geogrid or use of stabilisation techniques such as the addition of hydraulic binders (e.g. cement/lime).

Based on the fines content of the soils, they are considered to be frost susceptible, therefore highway construction should be a minimum thickness of 450mm to mitigate against the risk.

Care should be taken to ensure the stratum at formation level is protected against inclement weather, as this is likely to lead to surface deterioration and a decrease in soils strengths.

7.9 Sustainable Drainage Systems (SUDS)

The use of soakaways within the natural ground is not considered to be feasible at the site due to the low infiltration rates obtained (in the order of 10⁻⁶ m/s) and the limited thickness of and shallow, variable distribution of granular strata underlying the site.

8.0 GFO-FNVIRONMENTAL RISK ASSESSMENT

8.1 Introduction

The samples were tested for an assessment of the chemical contamination that may pose a risk to human health. The results were examined with reference to a selection of guidance documents as detailed in Appendix A. In this case the LQM/CIEH S4ULs and DEFRA C4SLs for commercial end use have been adopted as Tier 1 generic screening values.

The apparent exceedance of the relevant screening value is taken as indicating further detailed assessment or remedial action is required.

A summary assessment sheet is presented in Appendix C alongside the chemical test results. Results are discussed in detail in the sections below.

8.2 Soils Test Results and Risk Assessment – Human Health

Metals

No metals have been detected above the adopted screening criteria.

Ashestos

No asbestos fibres have been detected in any of the 7No. samples screened.

No visual evidence of asbestos contamination was noted during the investigation, which was undertaken by an engineer with asbestos awareness and Non-Licenced Work qualifications.

Poly Aromatic Hydrocarbons (PAHs)

No PAHs have been detected above the adopted screening criteria. All concentrations were below laboratory detection limits.

Total Petroleum Hydrocarbons (TPH CWG)

No petroleum hydrocarbons have been identified above the adopted screening criteria. All concentrations were below laboratory detection limits, including a sample from WS05 in the vicinity of the above ground bunded waste oil tank.

BTEX and MTBE

No BTEX or MTBE compounds have been identified above the adopted screening criteria.

In addition to the above, PID head space monitoring was undertaken on all environmental soil samples taken during the ground investigation at the site, the results are recorded on the exploratory hole logs.

The samples recorded PID results of between 0.0ppm and 1.7ppm, indicating that no significant volatile vapour contamination was present.

PCBs

One sample from WS06 at 0.10m bgl in the vicinity of the on site electrical sub-station was tested for PCBs (7 congener suite) and all concentrations were below laboratory testing limits (<0.001mg/kg).

Total Organic Carbon (TOC)

The TOC results on the samples of Made Ground (7 samples) range between 1.0% and 3.1% (arithmetic mean 1.74%).

The TOC results on the samples of natural ground (3 samples) range between 0.8% and 2.0% (arithmetic mean 1.33%).

8.3 Summary – Human Health Risk Assessment

Based on the testing and assessment undertaken, there are no determinands above the relevant assessment criteria and mitigation measures will not be required in respect to soils.

8.4 Permanent Ground Gas and Vapours Results

Four ground gas monitoring visits have been carried out between the dates of 30th September and 17th November 2020. Results are summarised in the table below:

	CH ₄	(%)	CO	2 (%)	O ₂	(%)	CO (ppm)	H₂S ((ppm)	TVOC	(ppm)	Flow	(l/hr)
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Peak	0.0	1.8	8.0	4.0	11.2	19.2	0.0	0.0	0.0	0.0	0.0	0.0	-13.8	0.9
Steady	0.0	0.0	0.1	3.7	11.2	20.6	0.0	0.0	0.0	0.0	0.0	0.0	-12.7	0.7

Notes: CH_4 = Methane; CO_2 = Carbon dioxide; O_2 = Oxygen; CO= Carbon Monoxide; H_2S = Hydrogen Sulphide; TVOC (PID)= Total Volatile Organic Compounds (as measured with Photo Ionisation Detector); ppm= Parts Per Million.

The highest carbon dioxide concentrations were recorded in WS03 (4.0% v/v) on the second visit. The maximum peak flow of 0.9 l/hr was also recorded in WS03 on the second visit. The highest recorded peak methane concentrations were recorded in BH01 (1.8% v/v) on the fourth visit. No methane was detected under steady state conditions.

The atmospheric pressure ranged between 1032mb and 1008mb over the monitoring period, during periods of falling and steady pressure trends.

Groundwater levels were recorded above the response zone in WS03 on 3 out of 4 visits. All monitoring holes had groundwater levels above the response zone in the third and fourth visits, this is because of the relatively impermeable ground conditions and an accumulation of perched water seepages and infiltration into the borehole over time and is not considered representative of the groundwater table. The data obtained during the monitoring rounds in which response zones were flooded should be used with caution. The infiltration of water from the surface can cause an artificial effect within monitoring wells. Therefore, it would be prudent to use the data in which water is below the response zone, along with alternative gas assessment methods such as RB17.

8.5 Ground Gas Risk Assessment

In order to assess the ground gas situation and the requirement for ground gas precautionary measures at the site, guidance was taken from CIRIA C665 'Assessing risks posed by hazardous ground gases to buildings' and BS8485:2015+A1:2019 'Code of Practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings'.

As the proposed end-use is a commercial development, guidance dictates that the gas monitoring results should be assessed in accordance with the Wilson and Card methodology.

The Wilson and Card methodology uses the concept of a Gas Screening Value (GSV) which is derived using the following equation: (max gas concentration / 100) x maximum flow.

In the absence of any detectable gas concentrations (for methane), the detection limit of 0.1% has been used to calculate the GSV.

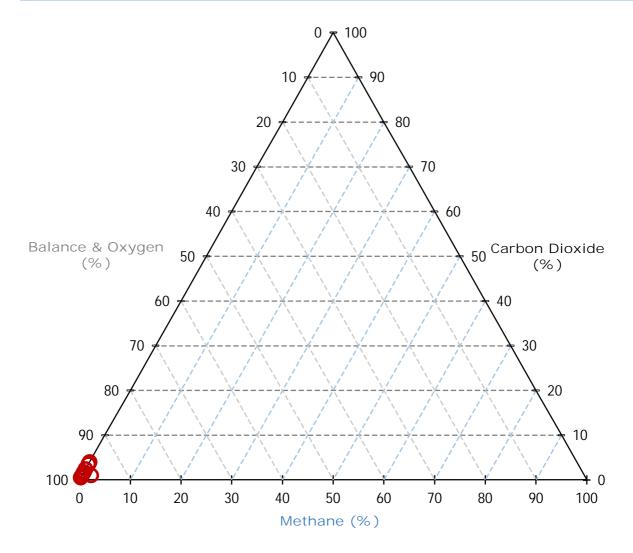
A maximum positive steady state flow rate of 0.7l/hr has been used to derive the GSVs. The GSV's for the site are presented below.

Gas	GSV (I/h)	Typical Threshold Concentration Exceeded	Classification
Methane	0.013	No	CS-1
Carbon Dioxide	0.028	No	CS-1

The GSVs for carbon dioxide and Methane place the site the site into Characteristic Situation 1 (CS1).

The threshold concentration for Methane was exceeded in BH01 (1.8% v/v) during one visit. However, no methane concentrations were recorded above 1% in any other location or on any other visit within BH01. Therefore, the methane concentration is typically below the threshold concentration and the site can be classified as CS1.

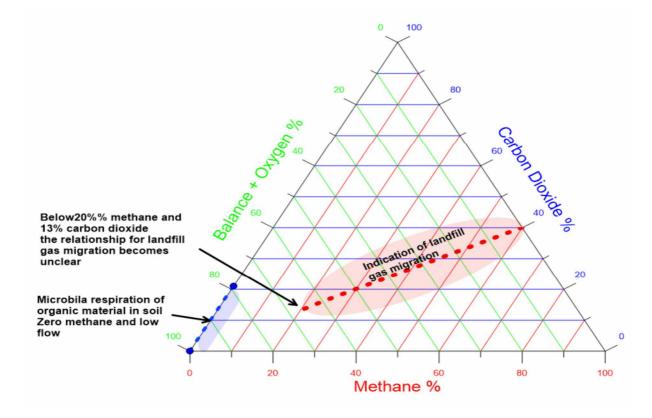
Based on the site history and exploratory investigations, significant thickness of made ground is not present and has been in place for over 20 years, therefore the gas generation potential is considered very low. The desk study report did not identify any significant sources of ground gas on or off site and the low permeability clays underlying the site do not provide a sufficient pathway for gas migration. The proposed development is of low sensitivity, being a large volume commercial unit with associated car parking.


RB17 states that made ground deposits less than 1m thick such as general fill below roads or carparks or road construction subbase, etc can be ignored for the purposes of this assessment. All exploratory holes with the exception of WS05 had made ground less than 1m in thickness. WS05 was situated on a mound which will likely be removed prior to construction. Therefore, the made ground in this area will be less than 1m once mound has been removed.

An average TOC content of 1.74% is observed within the made ground. Although this is higher than 1%, the limited thickness of made ground is not a sufficient source for gas generation.

Monitoring visits in which monitoring wells were not flooded do not show concentrations of methane above 1% or carbon dioxide above 5% and the GSVs generated are well below the CS2 threshold. Taking a lines of evidence approach based on the ground conditions encountered and CSM, assessment of the gas monitoring data and TOC data, the site can be classified as CS1.

In order to increase confidence in this assessment and adopting a lines of evidence approach, reference has been made to the recent 2018 paper by Wilson et al (Ambisence and EPG Ltd) "Using ternary plots for interpretation of ground gas monitoring results". The data has been presented on the ternary plot displayed below, which aims to determine the likely source of the ground gas.



The dataset falls within the zone attributed to microbial respiration of organic material in soils and this hypothesis is supported by the low gas flow rates and very low methane concentrations which characterise the gas monitoring data as shown below (extract from Wilson et al 2018).

28

Hostmoor Avenue, March

There may also be trace amounts of methane up to about 3% caused by anaerobic decomposition in small anaerobic hotspots or the reduction of carbon dioxide by methanogens. Oxygen concentrations may be depleted but in this scenario oxygen deficient air is not likely to be emitted quickly from the ground and it does not pose a risk.

Based on this rationale, in this instance upgrading the classification to CS2 is not considered to be required, therefore the site is classified as CS1 with respect to carbon dioxide and methane.

8.6 Potable Water Supply

The level of protection for the clean potable water supply pipes should be determined using the local water company risk assessment criteria in accordance with UKWIR.

As the site is brownfield, there is the assumption that barrier pipe would be utilised, although requirements should be confirmed by risk assessment and with the water supply company.

8.7 Qualitative Risk Assessment

The CSM has been revised based on the findings of the site investigation and laboratory testing results and these are presented overleaf. Unless stated otherwise, in respect to off-site sources, only risks that are assessed as moderate and above within the preliminary CSM have been carried forward to this section, or where a previously unidentified potential source, pathway and / or receptor has been identified from the recent site works.

Human Health						
Potential Source	Potential Pathway	Potential Receptor	Likelihood	Severity	Level of Risk	Justification
On site Electricity Substation PCBs, oil	Root uptake, ingestion, direct contact, inhalation of dusts	End-users	Unlikely	Medium	Low	The substation present on site was built prior to the nationwide ban of PCBs in 1981 (polychlorinated biphenyls), these are persistent but relatively immobile contaminants. Oils can be used as a coolant within electrical substations, however the risk associated with leaks is considered low, due to the ongoing maintenance and periodic inspection by the power network operator, furthermore the suspected underlying cohesive geology will reduce migration out of their asset boundary. The substation will remain post-development, but the area will be inaccessible to site end-users. The risk is considered to be low.
On site Made ground Metals, PAHs, asbestos, TPH	Root uptake, ingestion, direct contact, inhalation of dusts	End-users	Unlikely	Medium	Low	The made ground is thin and there was no evidence of contamination identified and no exceedances of chemical screening criteria were recorded for commercial end use. Indeed, contaminants were generally below laboratory detection limits. The presence of hardstanding across the commercial development will break the pathway to site end users. The risk is considered to be low.
On Site — Waste Oil Storage Tank	Ingestion, direct contact, inhalation of vapours	End-users	Unlikely	Medium	Low	The steel tank appeared to be in relatively good condition, i.e. no holes identified and was relatively full suggesting it didn't have any leaks. Furthermore, the tank was bunded which would contain any minor spillages or leaks and prevent contamination of the underlying soils. There was no visual or olfactory evidence of any leaks on the surface surrounding the tank. No hydrocarbons were detected on the site. No contamination was identified in WS05 in the vicinity. Post-development the location of the tank will be covered in hardstanding associated with the car park and the risk to end-users is considered to be low.
On Site - Possible Electrical Substations/ Generators	Ingestion, direct contact, inhalation of vapours	End-users	Unlikely	Medium	Low	These buildings appear to be substation buildings, this type of building is typically lowered onto small substations. These are therefore likely to be empty and a source of contamination is unlikely. No contamination was identified in WS01 in the vicinity. The risk to end-users is considered to be low.
On site Made Ground Metals and organic contamination	Migration into/chemical attack of water supply pipelines	Water Pipelines / End users	Unlikely	Mild	Very Low	Contaminants within the soil/groundwater could potentially attack the clean potable water supply pipe. No evidence of contamination has been identified through on site observations or chemical testing. The risk is considered to be very low. Contaminants should be assessed to determine the correct pipe material and level of precautions required.

Human Health						
Potential Source	Potential Pathway	Potential Receptor	Likelihood	Severity	Level of Risk	Justification
Made ground Ground Gas (carbon dioxide and methane)	Migration into confined spaces, inhalation and asphyxiation/ explosion	End-users / property / structures	Unlikely	Severe	CS1	Based on the site history and exploratory investigations, significant thickness of made ground is not present and has been in place for over 20 years, therefore the gas generation potential is considered very low. The completed gas monitoring classifies the site as CS1 (very low risk) therefore indicating no gas precautions are necessary.

Controlled Waters							
Potential Source	Potential Pathway	Potential Receptor	Likelihood	Severity	Level of Risk	Justification	
Made Ground PAHs, Metals, TPH	Overland flow, migration through saturated zone	Unnamed drainage channel 3m west (Surface waters)	Unlikely	Medium	Low	No contamination was identified within the made ground. Therefore, a low risk is posed to surface waters from the made ground.	
	Leaching through unsaturated zone / Migration through saturated zone	Secondary (undifferentiated) Superficial Aquifer	Unlikely	Medium	Low	The underlying aquifers are not considered to be sensitive due to the ground conditions (low sensitivity and potential for transmission of contaminants) and absence of groundwater abstractions within 2km. Furthermore, the lack of particularly contaminative historic uses, along with the absence of identified contamination observed on site or any exceedances within the testing, indicate the risk is low. In addition, the site is underlain by thick deposits of clay below the thin layer of unsaturated sand, which will inhibit any vertical migration of groundwater.	
On Site Waste Oil Tank and Electrical Generators TPH	Overland flow, migration through saturated zone	Unnamed drainage channel 3m west (Surface waters)	Unlikely	Medium	Low	The waste oil storage tank was bunded and there was no sign of spillage surrounding the bund. Similarly, there was no sign of staining on the hardstanding surrounding the suspected generators/substations, and no elevated TPH levels were recorded within the testing results. The risk to the controlled surface waters is considered to be low.	
	Leaching through unsaturated zone / Migration through saturated zone	Secondary (undifferentiated) Superficial Aquifer	Unlikely	Medium	Low	The underlying aquifers are not considered to be sensitive due to the ground conditions (low sensitivity and potential for transmission of contaminants) and absence of groundwater abstractions within 2km. No obvious signs of spillages were identified during the site works and no contamination was observed within the surrounding soils through laboratory testing. Therefore, the risk to Secondary Aquifer is considered low.	

Controlled Waters							
Potential Source	Potential Pathway	Potential Receptor	Likelihood	Severity	Level of Risk	Justification	
Electricity Substation PCBs, oils	Overland flow, migration through saturated zone	Unnamed drainage channel 3m west (Surface waters)	Unlikely	Medium	Low	PCBs are persistent but relatively immobile contaminants. No evidence of PCBs or other contaminants was observed or identified by testing of the shallow soils near to the substation. In addition, the substation is within a covered structure on hardstanding and the site is underlain by relatively impermeable deposits therefore it is unlikely any pathway will exist. The risk is considered to be low.	
	Leaching through unsaturated zone / Migration through saturated zone	Secondary (undifferentiated) Superficial Aquifer & Unproductive Bedrock)	Unlikely	Medium	Low	The underlying aquifers are not considered to be sensitive due to the ground conditions (low sensitivity and potential for transmission of contaminants) and absence of groundwater abstractions within 2km. PCBs are persistent but relatively immobile contaminants. No evidence of PCBs or other contaminants was observed or identified by testing of the shallow soils near to the substation. In addition, the substation is within a covered structure on hardstanding and the site is underlain by relatively impermeable deposits therefore it is unlikely any pathway will exist. The risk is considered to be low.	

8.8 Outline Remedial Measures

The level of protection for the clean potable water supply pipes should be determined using the local water company risk assessment criteria in accordance with UKWIR.

Sources of contamination have been identified on site, however, the risks have been demonstrated to be low. Therefore, no specific remedial measures are required for soils in respect to human health for the proposed end use.

Ground Gas Protection Systems

Based on our assessment, including the completed ground gas monitoring results, no mitigation measures are required, and no radon protection is required for new buildings at this location.

8.9 Health and Safety Issues

During the reclamation and construction phases of the site development it will be necessary to protect the health and safety of site personnel. The risk to construction and ground workers is assessed in the table below:

Potential Source	Potential Pathway	Potential Receptor	Likelihood	Severity	Level of Risk
Made Ground (heavy metals, PAHs, petroleum hydrocarbons)	Ingestion, direct contact, inhalation of dusts.	Construction Workers	Unlikely	Medium	Low
Asbestos	Ingestion, direct contact, inhalation of dusts.	Construction Workers	Unlikely	Medium	Low
Ground gas	Inhalation in confined spaces/trenches	Construction Workers	Unlikely	Severe	Moderate/ Low

The risk from made ground will be mitigated by standard PPE including gloves. Welfare facilities should be made available to wash before hand to mouth activities.

It is noted that concentrations of carbon dioxide (an asphyxiant) in the soil exceed HSE Workplace Exposure Limits for personnel in the working environment of 1.5% for short term (15 minutes) exposure and/or 0.5% for long term exposure.

Soil gas concentrations are not necessarily reflected by those in the breathing zone, all contractors and maintenance workers should be made aware of the possible presence of carbon dioxide and should take all necessary health and safety precautions when working in trenches or confined spaces.

General guidance on these matters is given in the Health and Safety Executive (HSE) document "Protection of Workers and the General Public during the Redevelopment of Contaminated Land". In summary, the following measures are suggested to provide a minimum level of protection:

Hostmoor Avenue, March

- All ground workers should be issued with the relevant protective clothing, footwear and gloves. These
 protective items should not be removed from the site and personnel should be instructed as to why and
 how they are to be used.
- Hand-washing and boot-washing facilities should be provided.
- Care should be taken to minimise the potential for off-site migration of contamination by the provision of dust suppression control and wheel cleaning equipment during the construction works.
- Good practices relating to personal hygiene should be adopted on the site.
- The contractor shall satisfy the Health and Safety Executive with regard to any other matters concerning the health, safety and welfare of persons on the site.

8.10 Asbestos

The investigation of asbestos issues within structures was beyond the scope of this report. However, guidance from UK Government indicates that asbestos should be assumed to be present in buildings unless proven otherwise.

Any asbestos within structures will require removal prior to re-development. This will need to be done by a suitably qualified experienced and licensed contractor, who ensures that adequate PPE is provided to operatives, and that all the relevant legislation is adhered to.

Excavations in soils containing asbestos should comply with the CL:AIRE publication 'Interpretation for Managing and working with Asbestos in Soil and Construction and Demolition Materials' (CARSOIL) and CAR 2012. All such works will need to be agreed with the regulatory bodies (HSE and/or LA).

Additional guidance is provided within the BSL methodology Guidance Note in Appendix A.

Hostmoor Avenue, March

9.0 WASTE SOIL CLASSIFICATION & ASSESSMENT

9.1 Summary

BSL have undertaken a preliminary assessment of potential excavation waste to arise from the site during redevelopment to:

- Classify the excavation waste to arise as either hazardous or non-hazardous.
- Identify the most sustainable options for the wastes to arise in accordance with the waste hierarchy.
- Provide a written description of the waste required as part of the Duty of Care.
- Provide details of "hazardous properties" to complete hazardous waste consignment note (where applicable).
- Be able to provide a basic classification report to a landfill operator (where waste is destined for landfill disposal).

9.2 Waste Classification Procedure

As described in the 'Waste Duty of Care Code of Practice (2016)' any substance or object that the holder discards, intends to discard or is required to discard is a waste. It is the responsibility of the waste producer to classify this waste. The classification process is described in the 'Guidance on the classification and assessment of waste' WM3 and aims to determine whether the waste is Hazardous or Non-Hazardous to human health and the environment.

Hazardous wastes are signified by entries where the code is followed by an asterisk, where some wastes are deemed hazardous without further assessment, which are termed "Absolute Entries" e.g. most waste oils. Alternatively, waste entries are termed "Mirror" entries that require further assessment of hazardous properties, in order to determine whether they are hazardous waste or not (e.g. soil and stones). The EWC codes relevant to excavation wastes are:

- 17 05 03* soil and stones containing dangerous substances.
- 17 05 04 soil and stones other than those mentioned in 17 05 03.

The Landfill Directive (Directive 1999/31/EC on the landfilling of waste, Decision 2003/33/EC and Landfill Regulations 2005) led to the establishment of a methodology for classifying wastes.

Wastes first need to be classified based on their total concentrations and classified as either hazardous or non-hazardous waste. WAC testing is only required if the end disposal route is a landfill and WAC analysis must not be used for waste classification.

Wastes can only be accepted at a landfill if they meet the relevant Waste Acceptance Criteria (WAC) for that type of landfill. A waste must comply with the WAC limits for the relevant landfill, otherwise the soil will need to be pre-treated. There are three different WAC criteria, these are:

- Inert waste.
- Stable Non-Reactive Hazardous Waste (SNRHW).
- Hazardous waste.

There are no standard set of WAC limits for non-hazardous landfill sites and each non-hazardous landfill will have its own set of criteria under which it is licenced to accept non-hazardous waste. These will need to be determined through the selected waste receiver prior to disposal.

A non-hazardous waste should not be compared with WAC limits for hazardous or SNRHW waste sites and the WAC test should only be used to determine if the waste is suitable for disposal at an inert waste landfill site. Likewise, wastes classified as hazardous based on their total concentrations should not be compared with WAC limits for inert waste landfill sites, as these will not be accepted.

Details of how material should be classified for waste disposal are presented in the BSL Methodology and Guidance in Appendix A and are summarised in the table below:

		PRIOR TO LEAVING SITE			
	Classification based on Total Concentrations ¹	Non-Hazardous Waste		Hazardous Waste	
				HERE AND MUST GO TO LANDFILL	
	WAC testing	Below inert WAC limit values	Above inert WAC limit values	Below hazardous WAC limit values ⁴	> WAC limit values
Landfill requirements		INERT landfill	NON-HAZARDOUS landfill ²	HAZARDOUS landfill	PRE-TREATMENT ³

- 1 Total concentrations are defined as tests results on solids as opposed to leachate (i.e. a liquid).
- 2 Individual sites may have certain limit values pre-determined in their licence.
- 3 After pre-treatment the material characteristics may have changed to an extent that allow the soil to be re-classified.
- 4 Possibility that wastes could be classified as stable Nonreactive HAZARDOUS waste in non-hazardous Landfill (e.g. soils containing low concentrations of asbestos, gypsum or sulphate bearing soils).

Waste classified as non-hazardous can be accepted into a non-hazardous landfill without having to pass any numerical WAC.

Soils above hazardous WAC limit values require pre-treatment prior to disposal. The effective pre-treatment, typically involving separation, sorting and screening, can offer cost savings through reducing the hazardous nature and volumes of soil. Costs for disposal of non-hazardous/hazardous soils are significant compared to the disposal of inert material.

Inert Waste

The possibility of automatic inert classification of the naturally occurring "clean" soils should be explored in accordance with Section 4.3 of the EA guidance document. The Council Decision includes a list of wastes in Section 2.1.1 of the document that are assumed to be inert and therefore acceptable at a landfill for inert waste without testing. This is the case if:

- They are single stream waste of a single waste type (although different waste types from the list may be accepted together if they are from a single source); and
- There is no suspicion of material or substances such as metals, asbestos, plastics, chemicals, etc to an extent which increases the risk associated with the waste sufficiently to justify contamination and they do not contain other classes of landfill.

9.3 Waste Classification and Waste Acceptance Criteria (WAC)

We have reviewed the testing results and assessed them through a waste classification database which allows users to code and classify waste as defined in the EWC (European Waste Catalogue) based on EC Regulation 1272/2008 on the Classification, Labelling and Packaging of Substances and Mixtures (CLP) and latest Environment Agency guidance (WM3 "Guidance on the classification and assessment of waste - Technical Guidance").

Eight samples were tested for a comprehensive suite of analytes to assess whether they contained any contaminants in the hazardous range when screened against assessment criteria within WM3 using the HazWasteOnline tool.

The Waste Classification Report and WAC testing results are presented in Appendix F The results of the waste assessment based on total concentrations is presented in the table below.

Location	Depth (m)	Stratum	Waste Classification	WAC Analysis	Landfill
WS01	0.30	MADE GROUND: Slightly gravelly clayey sand	Non-hazardous	NA	
WS04	0.70	Gravelly CLAY	Non-hazardous	Inert	INERT landfill
WS05	1.20	MADE GROUND: Slightly gravelly slightly clayey sand	Non-hazardous	Inert	INERT landfill
WS07	0.40	MADE GROUND: Gravelly sand	Non-hazardous	NA	
HP01	0.10	MADE GROUND: Slightly gravelly sand	Non-hazardous	NA	
BH01	0.40	MADE GROUND: slightly gravelly sand	Non-hazardous	NA	
BH02	0.40	MADE GROUND: Slightly gravelly clayey sand	Non-hazardous	Inert	INERT landfill
BH02	0.90	Gravelly SAND	Non-hazardous	Inert	INERT landfill

Based on the waste classification database assessment, the made ground and natural soils have been classified as non-hazardous. The WAC analysis indicates that if a landfill disposal route is required, then the tested materials are likely to be suitable for disposal as inert waste, including soils in BH02 in the vicinity of the proposed loading ramp.

Waste Containing Asbestos

Should soils contain asbestos, the concentration and type of asbestos identified, in addition to the chemical composition (i.e. hazardous or non-hazardous detailed above), will determine which waste code is applicable to the soils and which landfill will accept it.

Waste	Conc. by Weight (%)	EWC 2002 Catalogue Entry Code	Waste Disposal Route
Non-hazardous containing asbestos fibres	<0.001 - <0.1%	17 05 04 (soil and stones other than those mentioned in 17 05 03*)	Non-hazardous landfill subject to achieving Waste Acceptance Criteria (WAC) for a stable non-reactive hazardous landfill site.
Hazardous containing asbestos fibres	<0.001 - <0.1%	17 05 03* (soil and stones containing hazardous substances)	Hazardous landfill subject to achieving Waste Acceptance Criteria (WAC) for a hazardous landfill site.
Non-hazardous soils containing asbestos fibres	>0.1%	17 05 03* (soil and stones containing hazardous substances)	Hazardous landfill authorised to receive asbestos, or in a stable non-reactive hazardous waste cell at a non-hazardous landfill authorised to receive asbestos.
Non-hazardous Soils containing ACM (Mechanically separable)	>0.1%	17 06 05 (construction material containing asbestos) 17 05 04 (soil and stones other than those mentioned in 17 05 03*)	ACMs disposed of at a hazardous landfill authorised to receive asbestos, or in a stable non-reactive hazardous waste cell at a non-hazardous landfill authorised to receive asbestos. Soils should be disposed of at a non-hazardous landfill subject to achieving Waste Acceptance Criteria (WAC) for a stable non-reactive hazardous landfill site.

Waste	Conc. by Weight (%)	EWC 2002 Catalogue Entry Code	Waste Disposal Route
Hazardous soils containing ACM	>0.1%	17 05 03* (soil and stones containing dangerous substances)	Hazardous landfill subject to achieving Waste Acceptance Criteria (WAC) for a hazardous landfill site.

Testing for total contaminant concentrations on natural soils was not undertaken and they are assumed to be non-hazardous.

9.4 Options Assessment

Following the classification of waste materials, the options available for the waste can be considered in the context of the waste hierarchy as below:

- Onsite re-use (with or without prior treatment) under suitable exceptions/permits.
- Offsite processing for recycling or recovery e.g. screening.
- Offsite disposal (with or without prior treatment) i.e. landfill.

Where feasible, efforts should be made to retain soils for onsite re-use to minimise costs and maximise the sustainability of projects.

Based on the above, the possible options for the generation of waste soils at the site are described in the table below:

Waste Generation Source	Comments
Crush	The crushed concrete is site derived from structures which had not been used for potentially contaminative activities. These should be subject to an asbestos survey and removal of asbestos as required, prior to demolition and crushing of structures. Assuming the above criteria are met, with materials containing no asbestos or ACM, crushed concrete is considered to be inert without testing. Where samples of crushed concrete have been subject to totals testing this is likely to hazardous due to pH, and where subject to WAC testing, the sulphate and TDS limits are breached, this is to be expected due to the presence of concrete.
Made Ground from site levelling/foundations excavations/services excavations	Samples of made ground from across the site have been classified as non-hazardous for off-site disposal purposes, although should be suitable for re-use on site if required under suitable exemptions/permits.
Natural ground from site levelling/foundations excavations/services excavations	The Diamicton may be considered suitable for re-use onsite as fill where the criteria of the WFD exception for re-use of naturally occurring soils can be met. Naturally occurring clean materials could also be exported to another site under the direct transfer scenario of the DoWCoP. Classified as non-hazardous and below inert WAC testing criteria for off-site disposal purposes.

General

If any gross hydrocarbon contaminated material is encountered during the construction phase, it is possible that this may be classified as hazardous and testing should be undertaken at that time.

Where it is necessary to dispose material off site it is recommended that materials are segregated and sufficient time is allowed to further classify the actual soil arisings that constitute the waste, including discussion with landfill sites and waste transfer stations to find the best disposal route. It is illegal to dilute and mix soils without a suitable permit.

As a significant proportion of the soils likely to be generated on site are clean it is recommended that where possible that the soils could be recycled at a suitable local waste treatment plant or transfer station rather than a landfill disposal route.

9.5 Re-use of Soils

By definition in law, any material excavated from the ground becomes waste at the moment of excavation. If that soil (now a "waste") is then placed on another part of the development site (or used on another development site) without an appropriate materials management plan, permit or exemption being in place, by law this material is defined as "illegally deposited waste".

Landfill tax rules allow HM Revenue & Customs (HMRC) to recover landfill tax on illegally deposited waste on construction sites. This could lead to excessive costs without the correct documentation in place. In addition, a person who makes, knowingly causes or knowingly facilitates a disposal to be made at an unauthorised site is also liable to pay Landfill Tax.

In order to comply with UK legislation and avoid excessive costs, if the re-use of soils is proposed on site, this should be done in accordance with the relevant exemptions or permits in place.

Soils Re-use Under DoWCoP

One of the main industry mechanisms for allowing the re-use of soils in construction is the CL:AIRE "Development Industry Code of Practice for the Definition of Waste" (CL:AIRE DoWCoP) also known as a Materials Management Plan (MMP). Further guidance is provided in the BSL Methodology and Guidance in Appendix A.

To implement the DoWCoP (for Route A), there is a requirement to notify the Environment Agency and Local Authority of the intention to use the code of practice in principal, after which there is a 21-day notice period for their response.

In order to re-use soils under the DoWCoP, there are four key criteria that need to be met:

- The aims and objectives of the project meet the requirements of the Waste Framework Directive (does not harm human health or the environment).
- The soils can be demonstrated to be suitable for use (backed up by chemical/geotechnical testing and assessment).
- There is certainty of use (planning consents are in place alongside materials tracking, which should be in place as part of good site practice in any case).
- Quantity (the quantity of materials used should be known).

Information on existing site levels, proposed levels, volumes generated (e.g. foundation / drainage excavation arisings) would need to be known in order to complete the MMP.

If the DoWCoP is the chosen route, the MMP should be in place and declared by a Qualified Persons (QP) before works commence, otherwise excavated soils could constitute an illegal deposit of waste and enforcement action could be taken by the EA and HMRC.

The declared MMP should be amended as new import sources are added.

Once the project is complete, a verification report detailing soils re-use/import will need to be produced and submitted to CL:AIRE, which may be subject to a random audit process. Sites found to be non-complaint with the CoP can be referred to the EA for further investigation.

Regardless of implementing re-use under the code of practice or not, all sites should have some form of materials tracking in place in compliance with current legislation. Any re-use scheme should also be designed to minimise disposal costs.

Re-use of soils containing asbestos should comply with the CL:AIRE publication 'Interpretation for Managing and working with Asbestos in Soil and Construction and Demolition Materials' (CAR-SOIL™) and CAR 2012.

In terms of the re-use of brick/concrete crush materials, the DoWCoP does cover aggregates, but only on the site of origin, and the EA WRAP aggregate Quality Protocol might best apply to ensure quality standards, which are discussed further below.

Soils Re-use under Exemptions and Permits

Other potentially suitable options to allow the re-use and/or import of soils and aggregates on site are provided in the table below:

Re-use Mechanism	Description
U1 Exemption	Can be applied to re-use/import of soils and stones, but only up to 1000 tonnes or for brick and concrete up to 5000 tonnes. This is usually an efficient way to re-use small volumes of waste materials. However, only one U1 can be filled in per site in any 3-year period. Quick and free via online registration.
WRAP Quality Protocols	Describes how processed demolition arisings can be removed from regulatory waste regime. Requires a demonstration of appropriateness by: • Factory Production Control Manual. • Facility Permit (or Exemption). • Grading Analysis.
Waste Framework Directive (WFD) exclusion	In regard to "clean" naturally occurring soils only that are to be re-used on their site of origin, these are covered by a Waste Framework Directive (WFD) exclusion which is an EA regulatory position statement. So long as the project can prove the four criteria listed above for the DoWCoP, then permits or the DoWCoP are not required. However, many projects still use the CoP to ensure compliance.
T5 Screening and blending of waste	 The T5 exemption allows you to temporarily treat waste on a small scale to produce aggregate or soil at a particular location, such as a construction or demolition site. The limit is 5,000 tonnes. This applies to: Screening soil on a demolition site to remove wood and rubble. Blending soil and compost that has been produced under an exemption on a construction site to produce better soil for landscaping on that site (e.g. peaty deposits). Crushing waste (except bricks, tiles and concrete) before screening or blending Grading waste concrete after it has been crushed to produce a certain type of aggregate.
T7 Exemption	The T7 allows treatment of waste bricks, tiles and concrete by crushing, grinding or reducing in size. This needs to be registered with the Local Authority.
Other Permitting Routes	Other options include use under an Environmental Permit (Standard or Bespoke Rules), however these may be a time consuming and costly route, where use of the other above options (if applicable) are likely to be more feasible in construction.

10.0 CONCLUSIONS

10.1 Geo-Fnvironmental

Geo-Environmental – Human Health

The proposed development is for commercial end-use comprising an Aldi retail store.

Testing of the made ground and natural soils at the site did not reveal any exceedances of heavy metals, PAHs, petroleum hydrocarbons, BTEX or MTBE compounds.

No asbestos has been detected in any of the 7 samples that were tested.

No PCBs were identified in the vicinity of the sub-station.

The risks to human health from the identified sources of contamination are considered to be low.

Ground gas monitoring has revealed a maximum peak carbon dioxide concentration of 4.0%v/v and typical methane concentrations of 0.0%v/v. Based on our assessment, the site is classified as Characteristic Situation 1, therefore ground gas protection measures are not required.

Geo-Environmental – Controlled Waters

The overall risk to controlled waters is considered to be low and no further action is required.

Waste

Waste classification on a selection of made ground and natural soils has revealed them to be non-hazardous and inert.

10.2 Geotechnical

Foundations

The most suitable foundations for the proposed commercial development are considered to be pads and strips bearing in the loose to medium dense sand at a minimum depth of 0.8m bgl, or in the underlying firm to stiff (medium strength) clay at a minimum depth of 1.5m bgl. Preliminary foundations indicate foundations in the sand would provide an allowable bearing capacity of 120kN/m², whilst foundations in the clay at 1.5m bgl would provide 110kN/m².

Floor slabs

Ground bearing floor slabs may be adopted subject to appropriate design and preparation of the formation. Suspended floor slabs may also be adopted however alternative foundation options may need to be considered to support the load of a suspended slab.

Concrete classification

Both made ground soils and natural superficial strata are classified as DS1 AC-1s. Static groundwater has been assumed due to the presence of low permeability clays.

Highways

CBR values of 5% are likely to be achieved in undisturbed natural granular soils and 4% for natural clays soils for pavement design purposes, unless proven otherwise by in-situ testing at formation level by a specialist geotechnical engineer. Equilibrium CBR values are likely to be 2% within the made ground.

42

Drainage (SUDS)

The use of soakaways within the natural ground is not considered to be feasible at the site.

10.3 Further Work

The following further work is considered necessary to progress the site to construction phase:

- Demolition Asbestos survey.
- Tree survey by qualified arboriculturist.
- Detailed foundation design by a structural engineer.
- Production of Materials Management Plan (MMP) under the CL:AIRE DoWCoP, if required.
- Watching Brief following removal of floor slabs; BSL representative or other competent person should attend site to inspect the soils exposed from beneath the buildings for evidence of any potential contamination.
- Watching brief during the removal of former oil tank by a BSL representative or other competent person to inspect the soils exposed from beneath the tank for evidence of any potential contamination and sample if evidence of contamination is observed.

11.0 ABBREVIATIONS AND DEFINITIONS

	GLOSSARY
Term / Abbreviation	Definition
AST	Above Ground Storage Tank.
B(a)P	Benzo (a) Pyrene.
BGS	British Geological Survey.
BRE	Building Research Establishment.
BS	British Standard.
BSL	Brownfield Solutions Ltd.
BTEX	Benzene, Toluene, Ethylbenzene, Xylenes.
CBR	California Bearing Ratio (used in pavement/highways design).
CAR 2012	Control of Asbestos Regulations (2012).
CBCB	Cheshire Brine Compensation Board.
CBCD	Cheshire Brine Compensation District.
CBR	California Bearing Ratio.
CIEH	Chartered Institute of Environmental Health.
CIRIA	Construction Industry Research Association.
CL:AIRE	Contaminated Land: Applications in Real Environments.
CLEA	Contaminated Land Exposure Assessment.
CLO	Contaminated Land Officer.
COMAH	Control of Major Accident Hazards.
Contamination	Presence of a substance which is in, on or under land, and which has the potential to cause significant harm or to cause significant pollution of controlled water. There is no assumption in this definition that harm results from the presence of the contamination. Naturally enhanced concentrations of harmful substances can fall within this definition of contamination. Contamination may relate to soils, surface water, groundwater or ground gas.
Controlled Waters	Inland freshwater (any lake, pond or watercourse above the freshwater limit), water contained in underground strata and any coastal water between the limit of highest tide or the freshwater line to the three-mile limit of territorial waters.
CPT	Cone Penetration Test.
CSM	Conceptual Site Model. A schematic hypothesis of the nature and sources of contamination, potential migration pathways (including description of the ground and groundwater) and potential receptors, developed on the basis of the information from the preliminary investigation and refined during subsequent phases of investigation and which is an essential part of the risk assessment process. The conceptual site model is initially derived from the information obtained by the preliminary investigation (i.e. the Phase I Desk Study). This conceptual model is used to focus subsequent investigations, where these are considered to be necessary, in order to meet the objectives of the investigations and the risk assessment. The results of intrusive investigations can provide additional data that can be used to further refine the conceptual site model.
DCP	Dynamic Cone Penetrometer.
DNAPL	Dense Non-Aqueous Phase Liquid.
DoWCoP	Definition of Waste Code of Practice.
DWS	Drinking Water Standard.
EA	Environment Agency.
EHO	Environmental health Officer.
EQS	Environmental Quality Standard.
	Generic Assessment Criteria.

	GLOSSARY
Term / Abbreviation	Definition
GDR	Geotechnical Design Report.
GFR	Geotechnical Feedback Report.
GIR	Ground Investigation Report.
GSV	Gas Screening Value.
Harm	Adverse effect on the health of living organisms, or other interference with ecological systems of which they form part, and, in the case of human health, including property/structures and water supply pipelines.
Hazard	Inherently dangerous quality of a substance, procedure or event.
HDPE	High Density Polyethylene.
HSV	Hand Shear Vane.
K	Modulus of Subgrade Reaction.
LCRM	Land Contamination: Risk Management (EA guidance).
LNAPL	Light Non-Aqueous Phase Liquid (petrol, diesel, kerosene).
LOD	Limit of Detection (for particular method adopted).
MMP	Materials Management Plan.
Mv	Modulus of Volume of Compressibility.
ND	Not Detected.
NHBC	National House Building Council.
NR	Not Recorded.
OS	Ordnance Survey.
PAH	Polycyclic Aromatic Hydrocarbon.
Pathway	Mechanism or route by which a contaminant comes into contact with, or otherwise affects, a receptor.
PCB	Poly-Chlorinated Biphenyl.
PCSM	Preliminary Conceptual Site Model.
рН	Scale used to specify how acidic or basic a water-based solution is.
PHC	Petroleum Hydrocarbons.
PID	Photo Ionisation Detector.
PNEC	Predicted No-Effect Concentration.
Precision	Level of agreement within a series of measurements of a parameter.
PSD	Particle Size Distribution.
PVC	Polyvinyl Chloride.
Receptor	Human health, living organisms, ecological systems, controlled waters (surface waters and groundwater within aquifers), atmosphere, structures and utilities that could potentially be adversely affected by contaminant(s).
Risk	Probability of the occurrence, magnitude and consequences of an unwanted adverse effect on a receptor.
Risk Assessment	Process of establishing, to the extent possible, the existence, nature and significance of risk.
Sampling	Methods and techniques used to obtain a representative sample of the material under investigation.
SOM	Soil Organic Matter.
Source	Location from which contamination is, or was, derived. This could possibly be the location of the highest soil, groundwater or gas concentration of the contaminant(s).
SPT	Standard Penetration Test.
SVOCs	Semi Volatile Organic Compounds.
TOC	Total Organic Carbon.
TPH CWG	Total Petroleum Hydrocarbon (Criteria Working Group).

	GLOSSARY
Term / Abbreviation	Definition
TVOCs	Total volatile organic compounds.
UCS	Unconfined Compressive Strength.
Uncertainty	Parameter, associated with the result of a measurement that characterises the dispersion of the values that could reasonably be attributed to the measurement.
UST	Underground Storage Tank.
UXO	Unexploded Ordnance.
VCCs	Vibro Concrete Columns.
VSCs	Vibro Stone Columns
VOCs	Volatile Organic Compounds.
WAC	Waste Assessment Criteria.
WFD (in waste context)	Waste Framework Directive.
WFD (in water context)	Water Framework Directive.
Units	Definition
0	Degrees
Φ	Phi angle (in degrees)
g/l	Grams per Litre
Km	Kilometres
kPa	Kilo Pascal (Equivalent to kN/m²)
KN/m ² /mm	Kilo Newton per metered squared per millimeter
kN/m ²	Kilo Newtons per metre squared
kPa	Kilo Pascal (Equivalent to kN/m²)
l/hr	Litres per hour
MJ/kg	Mega joule per kilogram
MN	Mega Newton
M^2/MN	Mega Newton per metre squared
M	Metres
m bgl	Metres Below Ground Level
m OD	Metres Ordnance Datum (sea level)
μg/l	Micrograms per Litre (parts per billion)
μm	Micrometre
mb	Millibars (atmospheric pressure)
mg/kg	Milligrams per kilogram (parts per million)
mg/m ³	Milligram per metre cubed
mm	Millimetre
ppb	Parts Per Billion
Ppm	Parts Per Million

12.0 REFERENCES

Association of Ground Investigation Specialists. 'Guidelines for Good Practice in Site Investigation'. Issue 2, March 2006.

Black, W.P.M. & Lister, N.W. The strength of clay fill subgrades, its prediction in relation to road performance Report LR889, TRRL. 1979.

BRE Special Digest 1: 'Concrete in Aggressive Ground' 3rd Ed 2005.

BRE Report BR211, Scivyer, C. 'Radon – Guidance on protective measures for new buildings' 2015 Edition.

BRE Digest, vols. 240 and 241 'Low-rise buildings on shrinkable clay soils'. 1993.

BRE Digest 298 'The influence of trees on house foundations in clay soils'. 1999.

BRE Digest 365 'Soakaway Design'. 2016.

British Geological Survey Technical Report WD/97/34. 312pp. Environment Agency R&D Publication 8. 'The physical properties of major aquifers in England and Wales'. 1997.

British Geological Survey Technical Report WD/00/04. 234pp. Environment Agency R&D Publication 68 'The physical properties of minor aquifers in England and Wales'.

British Geological Survey 'The advanced soil geochemical atlas of England and Wales'. 2012.

BS 1377 'Method of Test for Soils for Civil Engineering Purposes'. 1990.

BS EN 1997-1. 'Eurocode 7 – Geotechnical design - Part 1: General rules'. Plus associated UK National Annex. 2004.

BS EN 1997-2. 'Eurocode 7 – Geotechnical design - Part 2: 'Geotechnical investigation and testing'. Plus associated UK National Annex. 2007.

BS 5837: 'Trees in relation to design, demolition and construction Recommendations'. 2012.

BS 5930+A1:2020: 'Code of Practice for Site Investigations'. 2020.

BS 8004: 'Code of practice for foundations'. 2015.

BS 8485+A1: 'Code of practise for the design of protective measures for methane and carbon dioxide ground gases for new buildings'. 2019.

BS 8500-1 AMD 2. Concrete. Complementary BS to BS EN 206. Part 1. 'Method of specifying and guidance for the specifier'. 2018.

BS 8576 'Guidance on investigations for ground gas – Permanent gases and Volatile Organic Compounds (VOCs)'. 2013.

BS 10175:2011+A2 'Investigation of Potentially Contaminated sites - code of practice'. 2017.

BS 10176:2020 'Taking soil samples for determination of volatile organic compounds (VOCs)'. 2020.

BS EN ISO 14688 'Geotechnical investigation and testing – Identification and classification of soil'. 2018.

BS EN ISO 17892 'Geotechnical investigation and testing. Laboratory testing of soil.' Parts 1-12:2018.

BULL ET AL. Promoting the Use of B(a)P as a Marker for PAH Exposure in UK Soils. February 2013.

CIRIA Special Publications 101-112, 'Remedial Treatment for Contaminated Land'. 1998.

CIRIA Special Publication 124, 'Barriers, liners and cover systems for containment and control of land contamination'. 1996.

CIRIA R143, 'The Standard Penetration Test (SPT): methods and use'. 1995.

CIRIA 149 'Protecting Development from Methane'. 1995.

CIRIA 150 'Methane Investigation Strategies'. 1995.

CIRIA 151 'Interpreting Measurements of Gas in the Ground'. 1995.

CIRIA 152 'Risk assessment for Methane and Other Gases from the Ground'. 1995.

CIRIA 552 'Contaminated Land Risk Assessment – A guide to good practice'. 2001.

CIRIA C659 'Assessing risks posed by hazardous ground gases to buildings.' 2006.

CIRIA C665 'Assessing Risks Posed by Hazardous Ground Gases to Buildings'. 2007.

CIRIA C681 'Unexploded Ordnance (UXO) A guide for the construction industry'. 2009.

CIRIA C716 'Remediating and mitigating risks from volatile organic compound (VOC) vapours from land affected by contamination'. 2012.

CIRIA C733 'Asbestos in Soil And Made Ground: A Guide To Understanding And Managing Risks'. 2014.

CIRIA C735 'Good Practice on The Testing and Verification of Protection Systems for Buildings Against Hazardous Ground Gases'. 2014.

CIRIA C750 'Groundwater control: design and practice, second edition". 2016.

CIRIA C753 'The SuDS Manual'. 2015.

CL:AIRE and CIEH. 'Guidance on Comparing Soil Contamination Data with a Critical Concentration'. May 2008.

CL:AIRE 'The Definition of Waste: Development Industry Code of Practice'. Version 2. March 2011.

CL:AIRE RB17 'A Pragmatic Approach to Ground Gas Risk Assessment'. 2012.

CL:AIRE SP1010 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination'. Rev 2 2014.

CL:AIRE 'Interpretation for Managing and Working with Asbestos in Soil and Construction and Demolition Materials – CAR-SOILTM'. 2016.

DEFRA and the Environment Agency, CLR10 'Soil Guideline Value Reports for Individual Soil Contaminants'. 2002-2004.

DEFRA and the Environment Agency, CLR Report No 11 'Model Procedures for the Management of Contaminated Land'. 2004. [Withdrawn 2019.]

Department of the Environment, CLR Report No 1 'A framework for assessing the impact of contaminated land on groundwater and surface water'. 1994.

Department of the Environment, CLR Report No 2 'Guidance on Preliminary Site Inspection of Contaminated Land'. 1994.

Department of the Environment, CLR Report No 3 'Documentary research on Industrial Sites'. 1994.

Department of the Environment, CLR Report No 4 'Sampling Strategies for Contaminated Land'. 1994.

Department of the Environment Waste Management Paper No. 27. 'Landfill Gas: A Technical Memorandum Providing Guidance on the Monitoring and Control of Landfill Gas'. 1992.

Department of the Environment. 'Industry Profiles' - 48 separate publications available from The Stationery Office, London. 1995.

DETR. Circular: Contaminated Land. 2006.

EC Regulation 1272/2008 'The Classification, labelling and packaging of substances and mixtures (CLP)' 2008.

Environment Agency guidance - Land Contamination: Risk Management (LCRM). 2019.

Environment Agency 'Using Soil Guideline Values'. 2009.

Environment Agency, 'Updated Technical Background to the CLEA model'. 2009.

Environment Agency, 'Human health toxicological assessment of contaminants in soil'. 2009.

Environment Agency Hazardous Waste: 'Guidance on the classification and assessment of waste' WM3 ver 1.1 May 2018.

Environment Agency. 'Remedial Targets Methodology. Hydrogeological Risk Assessment for Land Contamination'. 2006.

Environment Agency. R&D Publication 20. 'Methodology for the Derivation of Remedial Targets for Soil and Groundwater to Protect Water Resources'. 1999.

Environment Agency Petroleum Hydrocarbons in Groundwater 'Supplementary Guidance for Hydrogeological Risk Assessment'. 2009.

Environment Agency 'Groundwater protection: Principles and practice (GP3)'. 2013. [Superseded 2017 by www.gov.uk online guidance].

Environmental Permitting Guidance: version 3.1 'The Landfill Directive for the Environmental Permitting (England and Wales) Regulations'. 2010.

Environmental Quality Standards. 2008.

European Parliament Directive 2008/98/EC of the Council of 19 November 2008 on waste and repealing certain Directives. 2008.

European Parliament. Directive 2014/955/EU: Commission Decision of 18 December 2014 amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC.

Ground Engineering, Wilson & Card 'Proposed method classifying gassing sites' /1999.

Hazardous Waste (England and Wales) Regulations. 2005.

Health & Safety Executive (HSE). 'Protection of Workers & the General Public during the Development of Contaminated Land'. 1991.

Health and Safety Executive (HSE). Control of Asbestos Regulations (CAR). 2012.

Highways Agency. Design Guidance for Road Pavement Foundations (Draft HD25). Interim Advice Note 73/06. Rev 1. Highway Agency, London. 2009. [Withdrawn 30th May 2017].

Land Quality Press, Nathanail, C. P., McCaffrey, C., Gillett, A., Ogden, R. C. and Nathanail, J.F. 'The LQM/CIEH S4ULs for Human Health Risk Assessment.' 2015.

Japanese Geotechnical Society. Hatanaka and Uchida 'Empirical correlation between penetration resistance and effective friction of sandy soil'. Soils & Foundations, 36 (4), 1-9. 1996.

Manual of Contract Documents for Highway Works, Specification for Highway Works: Volume 1, Amendment August 2014. [Withdrawn 30th May 2017].

Manual of Contract Documents for Highway Works, Specification for Highways Works – Series 600 Earthworks November 2006. [Withdrawn 30th May 2017, Replacement unknown].

National Planning Policy Framework (NPPF). July 2018.

National Planning Policy Framework - Technical Guidance. March 2012.

NHBC Standards 2020, Part 1 'Introduction and Technical Requirements.' 2020.

NHBC Standards, Part 4 'Foundations.' 2020.

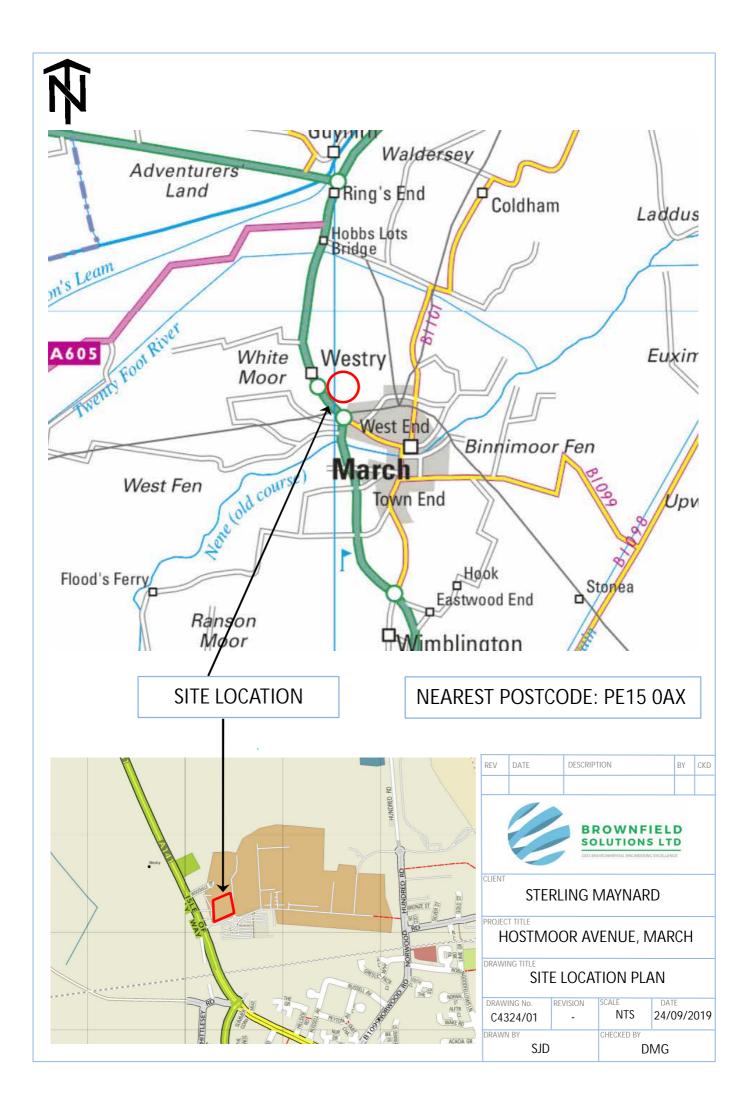
Public Health England (PHE). Contaminated land information sheet: risk assessment approaches for polycyclic aromatic hydrocarbons (PAHs). September 2017.

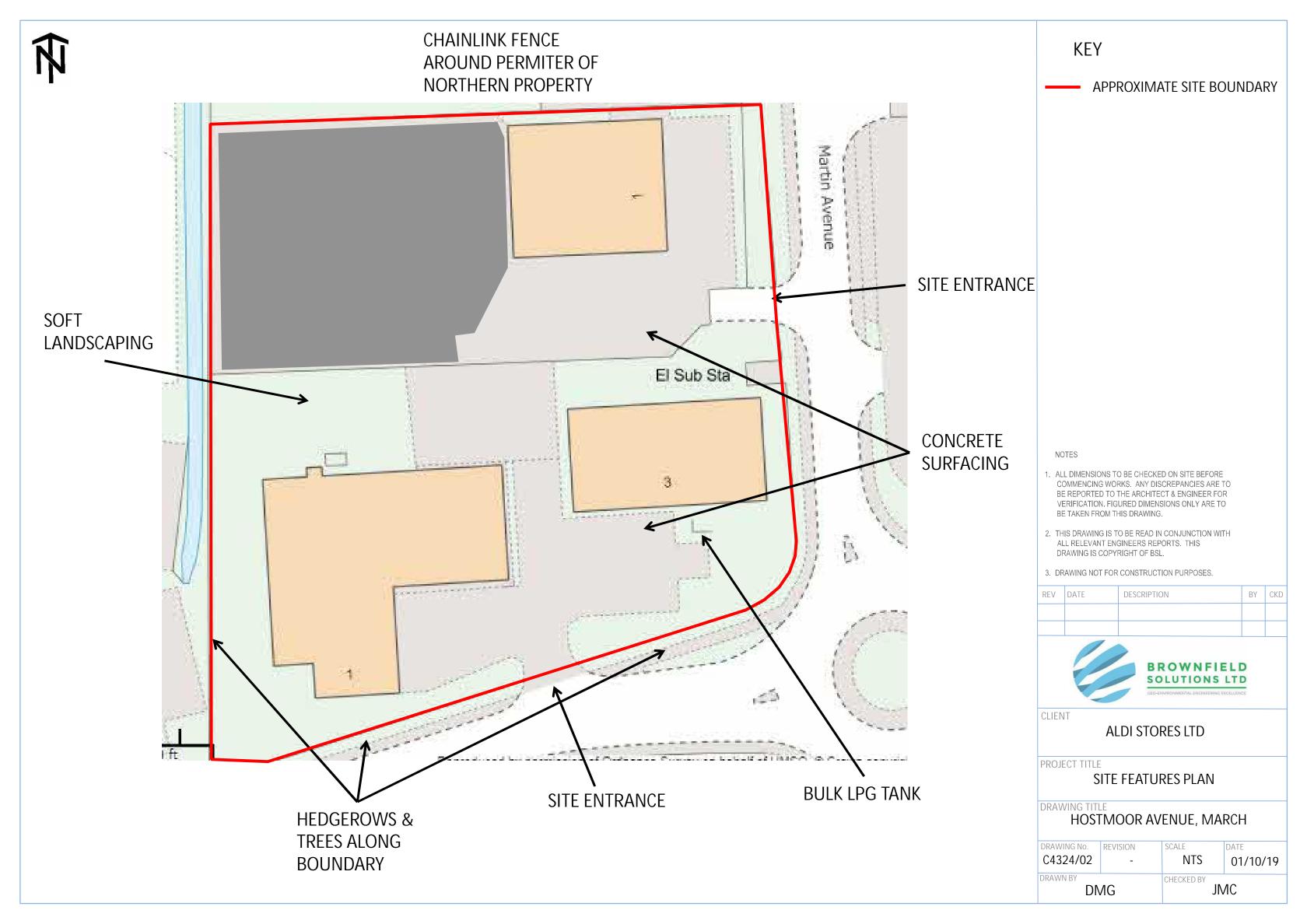
Total Petroleum Hydrocarbon Criteria Working Group Volume 5 'Human Health Risk-Based Evaluation of Petroleum Release Sites: Implementing the Working Group Approach' June 1999.

UK Drinking Water Standards: Water Supply (Water Quality) Regulations 1989 (SI 1989/1147) and Water Supply (Water Quality) Regulations 2000 (SI 2000/3184).

UKTAG. Updated recommendations on environmental standards. River Basin Management (2015-21). UK Technical Advisory Group on the Water Framework Directive. November 2013 (updated January 2018).

UKTAG-WFD. UKTAG River & Lake Assessment Method, Specific Pollutants (Metals), Metal Bioavailability Assessment Tool (M-BAT). Water Framework Directive — United Kingdom Technical Advisory Group. 2014.-


UKWIR Report 10/WM/03/21 2010 'Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites' 2010.


Water Framework Directive, 2000.

Water UK HBF. Contaminated Land Assessment Guidance. Water UK and the Home Builders Federation.

DRAWINGS

APPROXIMATE LOCATION OF PROPOSED FOODSTORE

KEY

APPROXIMATE SITE BOUNDARY

TRIAL PIT/ SOAKAWAY

WINDOW SAMPLE BOREHOLE

CABLE PERCUSSIVE BOREHOLE

HPXX HAND EXCAVATED PIT

SOAKAWAY TEST LOCATION

BOREHOLE INSTALLATION

NOTES

- 1. ALL DIMENSIONS TO BE CHECKED ON SITE BEFORE COMMENCING WORKS. ANY DISCREPANCIES ARE TO BE REPORTED TO THE ARCHITECT & ENGINEER FOR VERIFICATION. FIGURED DIMENSIONS ONLY ARE TO BE TAKEN FROM THIS DRAWING.
- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ENGINEERS REPORTS. THIS DRAWING IS COPYRIGHT OF BSL.
- 3. DRAWING NOT FOR CONSTRUCTION PURPOSES.

REV	DATE	DESCRIPTION	BY	CKD

CLIENT

STIRLING MAYNARD

PROJECT TITLE

HOSTMOOR AVENUE, MARCH

EXPLORATORY HOLE LOCATION PLAN

DRAWN BY	Т	CHECKED BY XX	<
C4324/03	REVISION D	NTS	18/09/20

APPENDIX A

BSL Methodology and Guidance

BSL Methodology and Guidance – Geo-Environmental Assessment Reports

This Appendix provides information on the approaches, methods and guidance used by Brownfield Solutions Ltd in the preparation of this report.

The term 'geo-environmental' is used to describe aspects relating to ground-related environmental issues (such as potential soils and groundwater contamination). The term 'geotechnical' is used to describe aspects relating to the physical nature of the site (such as foundation requirements). It should be noted that this is an integrated investigation and these two main aspects are related, unless otherwise specified within the report.

Desk Studies are written in broad agreement with BS 10175:2011+A2:2017. The first stage of a two-staged investigation and assessment of a site is the Preliminary Investigation (BS 10175:2011+A2:2017), often referred to as a Phase 1 Desk Study Assessment, comprising a desk study and walk-over survey, which culminates in the Preliminary Risk Assessment. A preliminary conceptual site model (CSM) is developed. From this are identified any geotechnical and geo-environmental hazards and the qualitative degree of risk associated with them.

From the geo-environmental perspective, the hazard Identification process uses professional judgement to evaluate all the hazards in terms of possible contaminant linkages (of source-pathway-receptor). Possible contaminant linkages are potentially unacceptable risks in terms of the current contaminated land regime legal framework and require either remediation or further assessment. These are normally addressed via intrusive ground investigation and generic risk assessment.

The second stage is the Ground Investigation, Generic Risk Assessment and Geotechnical Interpretation. This represents the further assessment mentioned above. The Ground Investigation comprises field work and laboratory testing based on the findings of the Preliminary Risk Assessment, to reduce uncertainty in the geotechnical and geo-environmental hazard identification. This may include the exploratory, main and supplementary Investigations described in BS 10175:2011+A2:2017.

Legislative Background

Environmental liabilities and risks have been evaluated in terms of a source -pathway - target relationship in accordance with the approach set out in:

- The 1995 Environment Act;
- The Contaminated Land (England) Regulations 2000;
- The DETR circular 02/2000 Environmental Protection Act 1990: Part IIA Contaminated Land.

Contaminated land is defined within the legislative framework as land which is in such condition by reason of substances in, on or under the land that:

- 1) Significant harm is being caused or there is a significant possibility of such harm being caused;
- 2) Significant pollution of controlled waters is being or is likely to be caused.

The potential for harm is based on the presence of three factors:

- > Source substances that are potential contaminants or pollutants that may cause harm;
- Pathway a potential route by which contaminants can move from the source to the receptor;
- Receptor a receptor that may be harmed, for example the water environment, humans and water.

Where a source, pathway and target are all present a pollutant linkage exists and there is potential for harm to be caused. The presence of a source does not automatically imply that a contamination problem exists, since contamination must be defined in terms of pollutant linkages and unacceptable risk of harm. The nature and importance of both pathways and receptors are site specific and will vary according to the intended end use of the site, its characteristics and its surroundings.

The key principle which supports the SPR approach is 'suitable for use' criteria. This requires remedial action only where contamination is considered to pose unacceptable actual or potential risks to health or the environment and, taking into account the proposed use of the site.

Relevant Guidance Documents

This report has been prepared in accordance with the list of guidance below however the list is not exhaustive:

- DETR Circular 02/2000, Contaminated Land: Implementation of Part IIA of the Environmental Protection Act 1990.
- CLR11 Model Procedures.
- Brownfields Managing the development of previously developed land A client's guide, CIRIA 2002.
- DEFRA and Environment Agency publications CLR7 10, supported by the TOX guides and SGV guides, dated March 2002.
- Environment Agency technical advice to third parties on Pollution of Controlled Waters for Part IIA of the EPA1990, May 2002.
- Contamination and Environmental Matters Their implications for Property Professionals (2nd Edition RICS Nov 2003).
- BS 10175:2011+A2:2017.

Relevant Legislative Documents

The following is a non-exhaustive list of legislative framework documents that has been considered in the production of this report:

- The Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance (2012).
- The Environment Protection Act (1990).
- The Water Resources Act (1991).
- The Environment Act (1995).
- The Contaminated Land (England) Act (2000).
- The Pollution Prevention and Control (England and Wales) Regulations (2000).
- The Landfill Regulations (England and Wales) Regulations (2002).
- The Landfill (England and Wales) (Amendment) Regulations (2004).
- Contaminated Land (England) Regulations (2012).
- Health and Safety at Work Act.

Contaminated Land Risk Assessment

Contaminated Land Risk Assessment is a technique that identifies and considers the associated risk, determines whether the risks are significant and whether action needs to be taken. The four main stages of risk assessment are:

Hazard Identification Hazard Assessment Risk Estimation Risk Evaluation

CLR11 outlines the framework to be followed for risk assessment in the UK. The framework is designed to be consistent with UK legislation and policies including planning. The starting point of the risk assessment is to identify the context of the problem and the objectives of the process. Under CLR11, three tiers of risk assessment exist - Preliminary, Generic Quantitative and Detailed Quantitative.

Formulating and developing a conceptual model for the site is an important requirement of risk assessment, this supports the identification and assessment of pollutant linkages. Development of the conceptual model forms the main part of preliminary risk assessment, and the model is subsequently refined or revised as more information and understanding is obtained through the risk assessment process.

Risk is a combination of the likelihood of an event occurring and the magnitude of its consequences. Therefore, both the likelihood and the consequences of an event must be taken into account when assessing risk.

The risk assessment process needs to take into account the degree of confidence required in decisions. Identification of uncertainties is an essential step in risk assessment.

The likelihood of an event is classified on a four-point system using the following terms and definitions from CIRIA C552:

- High likelihood: There is a pollution linkage and an event appears very likely in the short term and almost inevitable over the long term, or there is evidence at the receptor of harm or pollution;
- Likely: There is a pollution linkage and all the elements are present and in the right place, which means it is probable that an event will occur. Circumstances are such that the event is not inevitable, but possible in the short term and likely over the long term;
- Low likelihood: There is a pollution linkage and circumstances are possible under which an event could occur.
 However, it is by no means certain even over a longer period such event would take place, and is less likely in the short term:
- Unlikely: There is a pollution linkage but circumstances are such that it is improbable the event would occur even in the long term.

The severity is also classified using a system based on CIRIA C552. The terms and definitions are:

- Severe: Short term (acute) risk to human health likely to result in 'significant harm' as defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution of sensitive water resources. Catastrophic damage to buildings or property. A short-term risk to a particular ecosystem or organism forming part of that ecosystem (note definition of ecosystem in 'Draft Circular on Contaminated Land', DETR 2000);
 Examples – High concentrations of contaminant on surface of recreation area, major spillage of contaminants from site into controlled waters, explosion causing building to collapse;
- Medium: Chronic damage to human health ('significant harm' as defined in DETR 2000). Pollution of sensitive water resources. A significant change in a particular ecosystem or organism forming part of that ecosystem (note definition of ecosystem in 'Draft Circular on Contaminated Land', DETR 2000);
 Examples Concentrations of contaminants exceed the generic assessment criteria, leaching of contaminants from a site to a Principal or Secondary Aquifer, death of species within a designated nature reserve;
- Mild: Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000). Damage to sensitive buildings, structures, services or the environment; Examples Pollution of non-classified groundwater or damage to buildings rendering it unsafe to occupy.
- Minor: harm, not necessarily significant harm, which may result in financial loss or expenditure to resolve. Non-permanent health effects to human health (easily prevented by use of personal protective clothing etc). Easily repairable effects of damage to buildings, structures and services.

Examples – Presence of contaminants at such concentrations PPE is required during site work, loss of plants in landscaping scheme or discolouration of concrete.

Once the likelihood and severity have been determined, a risk category can be assigned using the table below.

			Conseq	uences	
		Severe	Medium	Mild	Minor
	Highly likely	Very high	High	Moderate	Moderate/low
2	Likely	High	Moderate	Moderate/low	Low
	Low likelihood	Moderate	Moderate/low	Low	Very low
-	Unlikely	Moderate/low	Low	Very Low	Very low
	No Linkage	No risk			

Definitions of the risk categories obtained from the above table are as follows together with an assessment of the further work that might be required:

- Very high: There is a high probability that severe harm could arise to a designated receptor from an identified hazard or there is evidence that severe harm is currently happening. This risk, if realised, could result in substantial liability. Urgent investigation and remediation are likely to be required;
- High: Harm is likely to arise to a designated receptor from an identified hazard. Realisation of the risk is likely to present a substantial liability. Urgent investigation is required and remedial works may be necessary in the short term and are likely over the longer term;
- Moderate: It is possible that harm could arise to a designated receptor from an identified hazard. However, it is
 either relatively unlikely that any such harm would be severe, or if any harm were to occur it would be more likely to
 be relatively mild. Investigation is normally required to clarify the risk and determine the liability. Some remedial
 works may be required in the longer term;
- Low: It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realised, would at worst normally be mild;
- Very Low: There is a low possibility that harm could arise to a receptor. In the event of such harm being realised, it is not likely to be severe.

Some linkages may be identified which constitutes a theoretical connection between a source and a receptor, but professional judgement shows them not to be possible for some reason. These are labelled 'no linkage' in the summary table and no further action is required.

Ground Gas Guidance

Redevelopment on brownfield sites is an ever increasing occurrence, including those sites where a potential ground gas issue is present.

BS8485:2015+A1:2019 and CIRIA C665 is the current guidance which gives up-to-date advice on all aspects of ground gas. It outlines good practice in investigation, the collection of relevant data and monitoring programmes in a risk-based approach to gas contaminated land. Two semi-quantitative methods are set out for the assessment of risk:

- 1 For low rise housing with a ventilated under floor void at minimum 150 mm (Boyle and Witherington);
- 2 For all other development types (Wilson and Card).

Both methods use the concept of Gas Screening Values (GSVs) to identify levels of risk. The mitigation and management of potentially unacceptable risk is described with reference to both passive and active systems of gas. Source removal is also discussed as an option.

CIRIA C665 and the advice it contains has been prepared to be generally consistent with CLR11 Model Procedures for the management of land contamination (Defra and Environment Agency, 2004a). The aim of CIRIA C665 is a consistent approach to decision making, particularly relating to the scope of protective design measures on a site specific basis.

Legislative Framework

CIRIA C665 provides technical guidance however also recognises the context into which the guidance has to be employed. Government policy is based upon a "suitable for use approach", which is relevant to both the current and proposed future use of land. When considering the current use of land, Part IIA of the Environment Protection Act 1990 provides the regulatory regime. The presence of hazardous ground gases could provide the "source" in a "pollutant linkage" which could lead the regulator to determine that considerable harm or there is a significant possibility of such harm being caused. Under such circumstances, the regulator would determine the land to be "contaminated land" under the provisions of the Act, setting out the process of remediation as described in the DETR Circular 02/2000 Statutory guidance on contaminated land (DETR, 2000a).

Frequency and Duration of Monitoring

The monitoring period for a specific site covers the "worst case" scenario. A "worst case" scenario will occur during falling atmospheric pressure and, in particular, weather conditions such as rainfall, frost and dry weather.

The benefits of the additional information and whether it is likely to change the scope of gas protection should be considered, as are the consequences of failing to characterise adequately pollutant linkages. Investigations concerned with soil gas are required to provide monitoring data sufficient to allow prediction of worst case conditions enabling the confident assessment of risk and subsequent design of appropriate gas protection schemes. Monitoring programmes should not be an academic exercise in data collection.

Below are matrices that will aid in determining an appropriate number of gas monitoring visits and the length of monitoring period.

Typical/idealised periods of monitoring

			Generati	on of Potentia	al Source	
		Very Low	Low	Moderate	High	Very High
	Low (Commercial)	1 month	2 months	3 months	6 months	12 months
6 6 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Moderate (Flats)	2 months	3 months	6 months	12 months	24 months
	High (Residential with Gardens)	3 months	6 months	6 months	12 months	24 months

Typical/idealised frequency of monitoring

		Generation of Potential Source							
		Very Low	Low	Moderate	High	Very High			
	Low (Commercial)	4	6	6	12	12			
, E	Moderate (Flats)	6	6	9	12	24			
	High (Residential with Gardens)	6	9	12	24	24			

Note

- NHBC guidance also recommends this period of monitoring (Boyle and Witherington, 2007).
- 2
- There is no industry consent over "high", "medium" or "low" generation potential of source.

 At least two sets of readings should be at low and falling atmospheric pressure (but not restricted to periods below <1000 mb) known as worst case conditions. Historical data can be used as part of the data set (Table 5.5b).

It is recommended that newly installed monitoring wells are left for 24 hours to allow the soil gas to reach equilibrium. It should be recognised, however, that some soil gas regimes could take considerably longer (up to seven days). Interpretation of any initial readings should take this equilibrium process into account.

Contaminated Land Screening Values

In assessing the potential for contamination Brownfield Solutions Limited (BSL) follows UK guidance and current best practice.

General

The current recommended method for assessing contamination is on the basis of:

Source-Pathway-Receptor

Where any one of these "pollution linkages" is absent there is deemed to be no risk.

Fundamentally receptors can be considered as humans and controlled waters (surface and ground waters).

The purpose of using Tier 1 screening levels is to have a simple means of assessing the potential contamination of a site and to inform decisions on whether further investigation is warranted or whether an option to undertake clean up based on the data to hand is cost effective.

Human Health

Current UK guidance is provided by DEFRA and the Environment Agency (EA). Publications forming part of the guidance include; CLEA Model, toxicological reports and soil guideline values (SGV), collectively referred to as the CLEA Guidance. The CLEA Guidance has included a number of publications which have provided initial screening values for soil contamination based on standard land uses and soil assumptions.

CLEA guidance has gone through a number of revisions, all of the original SGV's that were published have been withdrawn and publication of new SGV's commenced in 2009.

For determinands where no SGVs are available, S4UL values have been published using the CLEA 1.06 Model. These are the third set of generic assessment criteria generated by CIEH, and replace the previous two sets of GACs. The revised S4UL values are based on greater knowledge of relevant toxicology and further consideration of exposure frequencies.

No SGV or S4UL is available for lead as this is derived based on blood lead levels. C4SL values for six determinands including lead was published by DEFRA/CL:AIRE in December 2014 and they represent a low risk as opposed to minimal risk. The C4SL values are based on a sandy loam with 6% Soil Organic Matter. These screening values were published by DEFRA for Part 2A use, although with the dual purpose for use under planning. However these have not been officially accepted by Local Government for use under planning. S4ULs remain the first reference due to the broader range of end uses and soil organic content.

The preference from the EA is that site specific screening levels are used wherever possible. Due to numerous factors it is not always possible to utilise site specific values. In these instances the following data sources are used in the order of preference given below:

- CIEH S4UL values (derived by CIEH/LQM)
- DEFRA/CL:AIRE C4SL's
- CL:AIRE GAC values
- Current UK SGV's
- Guidance from other European countries
- Guidance from the outside Europe

Controlled Waters

The European Water Framework Directive (WFD) became UK law in December 2003. It was created to ensure that European countries manage their rivers, groundwater and lakes so that they stay healthy for people and for wildlife.

This is achieved by the use of chemical standards for surface waters and groundwater. These values describe concentrations of chemicals that are not expected to cause harm to environmental organisms or human health, provided they are not exceeded. The same chemical may have several standards for different environmental regimes, and for different protection objectives.

Statutory Standards are set in legislation and if exceeded, this constitutes non-compliance with statutory obligations. European Directives are implemented in England and Wales by corresponding statutory instruments (i.e. regulations). The statutory instruments can be the exact same standards as they appear in the Directive or be more stringent.

A number of non-statutory standards also exist, these are set by various organisations (including the EA) for chemicals that are considered to be of concern, but are not covered by any specific legislation.

The chemical standards used in the UK to control impaction of contamination on controlled waters are Environmental Quality Standards (EQS). The EQS's cover a large number of compounds.

Where certain compounds are not covered by the EQS these are commonly compared to the UK Drinking Water Standards (DWS).

Further Assessment

When screening values are exceeded then further consideration is required. This could include the use of simple measures to break the pollution pathway and mitigate the risk, further more detailed investigation, including the deriving of site specific values to better define the risk and to design appropriate remedial measures.

									Pro	oosed End Us	se						
			Residenti	al <u>with</u> Home	grown	Residential	without Hon	megrown	(ommercial		Public On	en Space (PC)S) resi	Public On	en Space (PC)S) nark
Source																	J) punk
10140411		SOM (%)	1	2.5	6	1	2.5	6	1 (40	2.0	6	1 70	2.5	6	1	2.5	6
LQM S4UL	Arsenic	mg/kg	37	37	37	40	40	40	640	640	640	79	79	79	170	170	170
LQM S4UL LQM S4UL	Cadmium Chromium (III)	mg/kg	11 910	11 910	11 910	85 910	85 910	85 910	190 8600	190 8600	190 8600	120 1500	120 1500	120 1500	532 33000	532 33000	532 33000
LQM S4UL	Chromium (VI)	mg/kg mg/kg	6	6	6	6	6	6	33	33	33	7.7	7.7	7.7	220	220	220
LQM S4UL	Copper	mg/kg	2400	2400	2400	7100	7100	7100	68000	68000	68000	12000	12000	12000	44000	44000	44000
C4SL	Lead	mg/kg	200	200	200	330	330	330	2300	2300	2300	760	760	760	1400	1400	1400
LQM S4UL	Mercury, Elemental	mg/kg	1.2	1.2	1.2	1.2	1.2	1.2	58	58	58	16	16	16	30	30	30
LQM S4UL	Nickel	mg/kg	180	180	180	180	180	180	980	980	980	230	230	230	3400	3400	3400
LQM S4UL	Selenium	mg/kg	250	250	250	430	430	430	12000	12000	12000	1100	1100	1100	1800	1800	1800
LQM S4UL	Zinc	mg/kg	3700	3700	3700	40000	40000	40000	730000	730000	730000	81000	81000	81000	170000	170000	170000
LQM S4UL	Phenol (total)	mg/kg	280	550	1100	750	1300	2300	760	1500	3200	760	1500	3200	760	1500	3200
LQM S4UL	Acenaphthene	mg/kg	210	510	1100	3000	4700	6000	84000	97000	100000	15000	15000	15000	29000	30000	30000
LQM S4UL	Acenaphthylene	mg/kg	170	420	920	2900	4600	6000	83000	97000	100000	15000	15000	15000	29000	30000	30000
LQM S4UL	Anthracene	mg/kg	2400	5400	11000	31000	35000	37000	520000	540000	540000	74000	74000	74000	150000	150000	150000
LQM S4UL	Benz(a)anthracene	mg/kg	7.2	11	13	11	14	15	170	170	180	29	29	29	49	56	62
LQM S4UL	Benzo(a)pyrene	mg/kg	2.2	2.7	3.0	3.2	3.2	3.2	35	35	36	5.7	5.7	5.7	11	12	13
LQM S4UL	Benzo(b)fluoranthene	mg/kg	2.6	3.3	3.7	3.9	4	4	44	44	45	7.1	7.2	7.2	13	15	16
LQM S4UL	Benzo(ghi)perylene	mg/kg	320 77	340 93	350 100	360 110	360 110	360 110	3900 1200	4000 1200	4000 1200	640 190	640 190	640 190	1400 370	1500 410	1600 440
LQM S4UL LQM S4UL	Benzo(k)fluoranthene	mg/kg	15	22	27	30	31	32	350	350	350	190 57	57	57	93	110	120
LQM S4UL	Chrysene Dibenz(a,h)anthracene	mg/kg mg/kg	0.24	0.28	0.30	0.31	0.32	0.32	3.5	3.6	3.6	0.57	0.57	0.58	1.1	1.3	1.4
LQM S4UL	Fluoranthene	mg/kg	280	560	890	1500	1600	1600	23000	23000	23000	3100	3100	3100	6300	6300	6400
LOM S4UL	Fluorene	mg/kg	170	400	860	2800	3800	4500	63000	68000	71000	9900	9900	9900	20000	20000	20000
LQM S4UL	Indeno(1,2,3,cd)pyrene	mg/kg	27	36	41	45	46	46	500	510	510	82	82	82	150	170	180
LQM S4UL	Naphthalene	mg/kg	2.3	5.6	13	2.3	5.6	13	190	460	1100	4900	4900	4900	1200	1900	3000
LQM S4UL	Phenanthrene	mg/kg	95	220	440	1300	1500	1500	22000	22000	23000	3100	3100	3100	6200	62000	6300
LQM S4UL	Pyrene	mg/kg	620	1200	2000	3700	3800	3800	54000	54000	54000	7400	7400	7400	15000	15000	15000
LQM S4UL	Petroleum Hydrocarbons Aliphatic EC 5 - 6	mg/kg	42	78	160	42	78	160	3200	5900	12000	570000	590000	600000	95000	130000	180000
LQM S4UL	Petroleum Hydrocarbons Aliphatic EC 6 - 8	mg/kg	100	230	530	100	230	530	7800	17000	40000	600000	610000	620000	150000	220000	320000
LQM S4UL	Petroleum Hydrocarbons Aliphatic EC 8 - 10	mg/kg	27	65	150	27	65	150	2000	4800	11000	13000	13000	13000	14000	18000	21000
LQM S4UL	Petroleum Hydrocarbons Aliphatic EC 10 - 12	mg/kg	130	330	760	130	330	770	9700	23000	47000	13000	13000	13000	21000	23000	24000
LQM S4UL	Petroleum Hydrocarbons Aliphatic EC 12 - 16	mg/kg	1100	2400	4300	1100	2400	4400	59000	82000	90000	13000	13000	13000	25000	25000	26000
LQM S4UL	Petroleum Hydrocarbons Aliphatic EC 16 - 35	mg/kg	65000	92000	110000	65000	92000	110000	1600000	1700000	1800000	250000	250000	250000 250000	450000	480000	490000
LQM S4UL LQM S4UL	Petroleum Hydrocarbons Aliphatic EC 35 - 44 Petroleum Hydrocarbons Aromatic EC 5 - 7	mg/kg	65000 70	92000 140	110000 300	65000 370	92000 690	110000 1400	1600000 26000	1700000 46000	1800000 86000	250000 56000	250000 56000	56000	450000 76000	480000 84000	490000 92000
LQM S4UL	Petroleum Hydrocarbons Aromatic EC 5 - 7 Petroleum Hydrocarbons Aromatic EC 7 - 8	mg/kg mg/kg	130	290	660	860	1800	3900	56000	110000	180000	56000	56000	56000	87000	95000	100000
LQM S4UL	Petroleum Hydrocarbons Aromatic EC 7 - 8	mg/kg	34	83	190	47	110	270	3500	8100	17000	5000	5000	5000	7200	8500	9300
LOM S4UL	Petroleum Hydrocarbons Aromatic EC 10 - 12	mg/kg	74	180	380	250	590	1200	16000	28000	34000	5000	5000	5000	9200	9700	10000
LOM S4UL	Petroleum Hydrocarbons Aromatic EC 12 -16	mg/kg	140	330	660	1800	2300	2500	36000	37000	38000	5100	5100	5000	10000	10000	10000
LOM S4UL	Petroleum Hydrocarbons Aromatic EC 16 - 21	mg/kg	260	540	930	1900	1900	1900	28000	28000	28000	3800	3800	3800	7600	7700	7800
LQM S4UL	Petroleum Hydrocarbons Aromatic EC 21 - 35	mg/kg	1100	1500	1700	1900	1900	1900	28000	28000	28000	3800	3800	3800	7800	7800	7900
LQM S4UL	Petroleum Hydrocarbons Aromatic EC 35 - 44	mg/kg	1100	1500	1700	1900	1900	1900	28200	28200	28200	3800	3800	3800	7800	7800	7900
LQM S4UL	Benzene	mg/kg	0.087	0.17	0.37	0.38	0.7	1.4	27	47	90	72	72	73	90	100	110
LQM S4UL	Toluene	mg/kg	130	290	660	880	1900	3900	56000	110000	180000	56000	56000	56000	87000	95000	100000
LQM S4UL	Ethyl Benzene	mg/kg	47	110	260	83	190	440	5700	13000	27000	24000	24000	25000	17000	22000	27000
LQM S4UL	Xylene - o	mg/kg	60	140	330	88	210	480	6600	15000	33000	41000	42000	43000	17000	24000	33000
LQM S4UL	Xylene - m	mg/kg	59	140	320	82	190	450	6200	14000	31000	41000	42000	43000	17000	24000	32000
LQM S4UL	Xylene - p	mg/kg	56	130	310	79	180	430	5900	14000	30000	41000	42000	43000	17000	23000	31000
CL:AIRE 2010	MTBE (methyl tert-butyl ether)	mg/kg	49	84	160	49	84	160	7900	13000	24000	49	84	160	49	84	160
LQM S4UL	Chloroethene (Vinyl Chloride)	mg/kg	0.00064	0.00087	0.0014	0.00077	0.001	0.0015	0.059	0.077	0.12	3.5	3.5	3.5	4.8	5	5.4
LOM SAUL	1,2-Dichloroethane (1,2-DCA)	mg/kg	0.0071	0.011	0.019 39	0.0092	0.013 18	0.023	0.67	0.97	1.7 3000	29 14000	29 14000	29 14000	21 57000	24 76000	100000
LQM S4UL LQM S4UL	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	mg/kg mg/kg	8.8 1.6	1.8 3.4	39 7.5	3.9	18	40 17	660 270	1300 550	3000 11000	14000	14000	14000	1800	2100	100000 2300
LQM S4UL	1,1,2,2-Tetrachloroethane	mg/kg mg/kg	1.6	2.8	6.4	3.9 1.5	3.5	8.2	0.79	1.9	4.4	1400	1400	1400	1500	1800	2300
LOM S4UL	Tetrachloroethene (PCE)	mg/kg	0.18	0.39	0.4	0.18	0.4	0.92	19	42	95	1400	1400	1400	810	1100	1500
LOM S4UL	Tetrachloromethane (carbon tetrachloride)	mg/kg	0.026	0.056	0.13	0.026	0.056	0.12	2.9	6.3	14	890	920	950	190	270	400
	· · · · · · · · · · · · · · · · · · ·	9,9	0.020	0.000	00	0.020	0.000	00	2.7	0.0		0,0	,20	,50	0	2.0	.50

									Prop	osed End Usi	e						
Source	Contaminant	Unit	Residentia	al <u>with</u> Home Produce	grown	Residential	<u>without</u> Hom Produce	egrown	С	ommercial		Public Op	en Space (PO	S) resi	Public Ope	n Space (POS	s) park
		SOM (%)	1	2.5	6	1	2.5	6	1	2.5	6	1	2.5	6	1	2.5	6
LQM S4UL	Trichloroethene (TCE)	mg/kg	0.016	0.034	0.075	0.017	0.036	0.08	1.2	2.6	5.7	120	120	120	70	91	120
LQM S4UL	Trichloromethane (chloroform)	mg/kg	0.91	1.7	3.4	1.2	2.1	4.2	99	170	350	2500	2500	2500	2600	2800	3100
LQM S4UL	Chlorobenzene	mg/kg	0.45	1	2.4	0.46	1	2.4	56	130	290	11000	13000	14000	1300	2000	2900
LQM S4UL	1, 2 Dichlorobenzene	mg/kg	23	55	130	24	57	130	2000	4800	11000	90000	95000	98000	24000	26000	51000
LQM S4UL	1, 3 Dichlorobenzene	mg/kg	0.4	1	2.3	0.44	1.1	2.5	30	73	170	300	300	300	390	440	470
LQM S4UL	1, 4 Dichlorobenzene	mg/kg	61	150	350	61	150	340	4400	10000	25000	17000	17000	17000	26000	36000	36000
LQM S4UL	1, 2, 3 Trichlorobenzene	mg/kg	1.5	3.6	8.6	1.5	3.7	8.8	102	250	590	1800	1800	1800	770	1100	1600
LQM S4UL	1, 2, 4 Trichlorobenzene	mg/kg	2.6	6.4	15	2.6	6.4	15	220	530	1300	15000	17000	19000	1700	2600	4000
LQM S4UL	1, 2, 3, 4 Trichlorobenzene	mg/kg	0.33	0.81	1.9	0.33	0.81	1.9	23	55	130	1700	1700	1800	280	580	860
LQM S4UL	1, 2, 3, 4 Tetrachlorobenzene	mg/kg	15	36	78	24	56	120	1700	3080	4400	830	830	830	1500	1600	1600
LQM S4UL	1, 2, 3, 5 Tetrachlorobenzene	mg/kg	0.66	1.6	3.7	0.75	1.9	4.3	49	120	240	78	79	79	110	120	130
LQM S4UL	1, 2, 4, 5 Tetrachlorobenzene	mg/kg	0.33	0.77	1.6	0.73	1.7	3.5	42	72	96	13	13	13	25	26	26
LQM S4UL	Pentachlorobenzene	mg/kg	5.8	12	22	19	30	38	640	770	830	100	100	100	190	190	190
LQM S4UL	Hexachlorobenze	mg/kg	1.8	3.3	4.9	4.1	5.7	6.7	110	120	120	16	16	16	30	30	30

LOM/CIEH S4ULs copyright Land Quality Manangment Limited reproduced with permission: Publication Number S4UL3237. All rights reserved. See LOM/CIEH S4ULs for Human Health Risk Assessment document for notes regarding derivation.

Re-Use Of Waste - Guidance Note

Definition of Waste

The Environment Agency considers waste to be "...any material that is discarded, or intended to be discarded..." This includes any soil from trenches, footing, site strip etc. It is no longer required in its original location, therefore it is considered to be waste.

CL:AIRE: Code of Practice

Where materials are excavated for construction purposes, wherever possible these should be retained on site for engineering purposes if they are suitable for use. This can be implemented under the CL:AIRE "Development Industry Code of Practice for the Definition of Waste" (CL:AIRE DoWCoP), also commonly referred to as a "Materials Management Plan".

The developer/contractor is advised to complete all works under the DoWCoP.

Potential scenarios where soils may be able to be re-used:

- Material capable of being used in another place on the same site without treatment.
- Material capable of being used in another place on the same site following ex-situ treatment on site.
- Material capable of being used in another development site without treatment (Direct Transfer).
- Material capable of being used in another development site following ex-situ treatment on another site eg Hub site.

The Code of Practice requires 4 No. Factors to be addressed:

- 1. Protection of human health and protection of the environment.
- 2. Suitability of use, without further treatment.
- 3. Certainty of use.
- 4. Quantity of material.

In order to satisfy these requirements the following are required:

- i) Consultation/approval with Local Authority & Environment Agency to confirm they have no objections to the proposed re-use of waste soils, or the risk assessments for the site.
- ii) Risk Assessments to demonstrate that the site does not present an Environmental Hazard.
- iii) Remediation Strategy for contaminated sites (or Design Statement for non-contaminated sites).
- iv) Materials Management Plan (MMP) which details material generated stockpiles and the end use.
- v) Volume calculations.
- vi) Planning permission for the development.
- vii) Contractual details to be clear, regarding who steps in is a contractor goes into administration/liquidation.

The use of the CoP is effectively industry regulated, there is a requirement to appoint an independent Qualified Person (QP) who checks all the requirements have been met and registers the documentation with the Environment Agency. This person must not have had any involvement with the preparing of the risk assessments or remedial strategy on the site.

Soils which require treatment on site (eg bioremediation, stabilisation) will require an Environmental Permit for treatment, together with justification and validation to prove, once treated, this material is suitable for use.

Site management procedures need to be in place to ensure that material is tracked through from excavation stockpiling, treatment and remediation processes. Should the process of material tracking be considered non-robust, or not adhered to, this may fail the test whether excavated materials may be considered non-waste.

Waste Classification For Soils

Introduction

Waste producers have a duty of care to classify the waste they are producing:

- before it is collected, disposed of or recovered.
- to identify the controls that apply to the movement of the waste.
- to complete waste documents and records.
- to identify suitably authorised waste management options.
- to prevent harm to people and the environment.

The most sustainable and economic method of dealing with waste soil is usually the retention and re-use on site. Where this is not possible there are three main options for the disposal of soils:

- Disposal to a permitted waste recycling facility.
- 2. Re-use on another site (subject to the suitability).
- 3. Disposal to a landfill site.

The disposal to a permitted facility will be subject to the specific conditions of the permits for each individual facility and will vary dependent on location and environmental sensitivity of the receiving site. Re-use on another site will also be subject to the acceptability criteria of that site.

The guidance below relates to disposal to landfill sites only.

Background for Landfill Disposal

In July 2005 the United Kingdom implemented the European Directive 1999/31/EC (The Landfill Directive), this introduced the current regime for waste and waste disposal to landfill. The Landfill Directive places controls on waste disposal. These controls include requirements to follow the waste acceptance procedures and criteria that have been agreed by the Council of the European Union and are laid out in Council Decision 2003/33/EC.

Before a waste can be accepted at a landfill site, the landfill operator must be satisfied that the waste meets his permit conditions, the waste acceptance procedures (WAP) and waste acceptance criteria (WAC).

If disposal to landfill is the best management option for the waste soils, these procedures must be followed or the operator may refuse to accept the waste.

Key Points

- Not all waste can be landfilled
- Landfills are classified according to whether they can accept hazardous, non-hazardous or inert wastes.
- Wastes can only be accepted at a landfill if they meet the waste acceptance criteria (WAC) for that class of landfill.
- Most wastes must be treated before you can send them to landfill.
- There are formal processes for identifying and checking wastes that must be followed before wastes can be accepted at a landfill site.

Classification

Wastes are listed in the European Waste Catalogue (EWC 2002) and grouped according to generic industry, process or waste types. Wastes within the EWC are either hazardous or non-hazardous. Some of these wastes are hazardous without further assessment (absolute entries) or are 'mirror' entries that require further assessment of their hazardous properties in order to determine whether they are hazardous waste.

Waste soil has mirror entries on the EWC and as such the first phase of the waste classification process is that of determining if the waste is hazardous or not i.e the hazard assessment. The most common EWC waste codes related to soil are:

17 05	soil (including excavated soil from contaminated sites), stones and dredging spoil
17 05 03*	soil and stones containing dangerous substances
17 05 04	soil and stones other than those mentioned in 17 05 03

Soils may contain certain contaminants (eg asbestos, oil,) which have prescribed concentration thresholds, that if breached will render the material hazardous waste. These are based on specific "hazardous properties" which include hazards such as carcinogenicity, flammability and toxicity.

In the first instance the concentrations of plausible contaminants within the soil should be identified and wastes should be classified based on their total concentrations.

Waste Definitions

Inert	 Will not undergo any significant physical, chemical or biological transformations. Will not dissolve. Will not burn. Will not physically or chemically react. Will not biodegrade. Will not adversely affect other matter with which it comes into contact in a way likely to give rise to environmental pollution or harm to human health. Has insignificant total leachability and pollutant content. Produces a leachate with an ecotoxicity that is insignificant (if it produces leachate).
Non-Hazardous	Is not inert (see above) Is not hazardous (see below)
Hazardous	Soil has hazardous properties as defined in WM3 (Guidance on the classification and assessment of waste (1st edition 2015)- Technical Guidance)
Stable Non-reactive hazardous waste#	Hazardous waste, the leaching behaviour of which will not change adversely in the long-term, under landfill design conditions or foreseeable accidents either: in the waste alone (for example, by biodegradation), under the impact of long-term ambient conditions (for example, water, air, temperature or mechanical constraints) or by the impact of other wastes (including waste products such as leachate and gas).

[#] This option allows hazardous waste that is stable and thus has a low leaching potential to be deposited in cells with a standard of containment consistent with non-hazardous wastes.

WAC Testing

The purpose of WAC analysis is to confirm that the waste complies with the relevant WAC for the receiving landfill. If the waste has any disposal route other than a landfill site (e.g. recycling facility, incineration etc) the WAC is not relevant. Furthermore the WAC limits cannot be used to make an assessment of whether a waste is hazardous. WAC testing does however define if a non-hazardous waste is suitable for an inert landfill.

Classification based on Total Concentrations ¹	Non-Hazaro	dous Waste	Hazardous Waste				
WAC testing	Below inert WAC limit values:	Above inert WAC limit values:	Below hazardous WAC limit values	Above hazardous WAC limit values			
Landfill requirements	INERT landfill	NON-HAZARDOUS landfill ²	HAZARDOUS landfill	PRE-TREATMENT ³			

- 1 Total concentrations are defined as tests results on solids as opposed to leachate (i.e. a liquid).
- 2 Individual sites may have certain limit values pre-determined in their licence.
- 3 After pre-treatment the material characteristics may have changed to an extent that allow the soil to be re-classified.

Hydrocarbons in Soils

WM3 uses the term Oil or Waste Oil to cover hydrocarbons products such as fuel oil, petrol or diesel. These are defined by WM3 as hazardous under an absolute entry in the List of Wastes. However hydrocarbons in soils are a mixture rather than a pure product and are therefore not absolute entries.

Known Oils

The simplest scenario is where the identity of the contaminating oil is known or can be identified. If the oil is known the manufacturer's or supplier's REACH compliant safety data sheet for the specific oil can be obtained and the hazard statement codes on that Safety Data Sheet can be used for the hazardous waste assessment.

Where the identity of the oil can only be identified down to a petroleum group level (i.e. the contaminating oil is known to be diesel, but the specific type/brand is unknown), then the classification of that petroleum group should be used in the assessment. The marker compounds associated with that petroleum group may be used to confirm carcinogenicity.

Oils may contain a range of hydrocarbons, so the presence of for instance Diesel Range Organics (DRO) does not enable the assessor to conclude that diesel is present. These hydrocarbons may have arisen from other oils, the laboratory needs

to provide an interpretation of the chromatograph to determine if it is consistent with diesel or weathered diesel as a whole.

The concentration of known oils should be determined using a method that as a minimum spans the range in which the carbon numbers for that known oil fall.

Unknown Oils

Where hydrocarbons are contaminating soils it is likely that the oil will be unknown or cannot be determined.

WM3 states that

For contaminated land specific consideration must be given to the following before proceeding;

- The presence of other organic contaminants, for example solvents or coal tar that could be detected as hydrocarbons. Coal Tar is not an oil and is considered separately in WM3 example 2. Where the site history or investigation indicates the presence of hydrocarbons from oil and other sources (e.g. coal tar), and the origin of the hydrocarbons cannot reliably be assigned to either, then a worst case approach of considering the hydrocarbons both as waste oil (in accordance with this example) and from other sources, for example coal tar should be taken.
- The presence of diesel, or weathered diesel, should be specifically considered by the laboratory and where this is confirmed by the hydrocarbon profile the oil should be assessed as a known or identified oil (diesel).

The use of marker compounds is optional; however it is recommended that where possible the marker compounds should be used. WM3 states:

If the identity of the oil is unknown, and the petroleum group cannot be established, then the oil contaminating the waste can be classified as non-carcinogenic/mutagenic due to the presence of oil if all three of the following criteria are met:

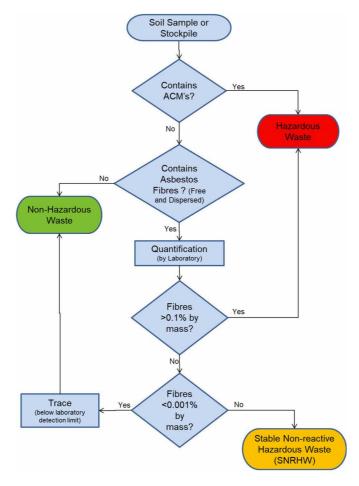
- The waste contains benzo[a]pyrene (BaP) at a concentration of less than 0.01% (1/10,000th) of the TPH concentration (This is the carcinogenic limit specified in table 3.1 of the CLP for BaP)
- This has been determined by an appropriate and representative sampling approach in accordance with the principles set out in Appendix D of WM3, and
- The analysis clearly demonstrates, for example by carbon bands or chromatograph, and the laboratory has reasonably concluded that the hydrocarbons present have not arisen from petrol or diesel.

For example:

TPH Concentration (mg/kg)	Petrol or Diesel	BaP (mg/kg)	Classification
10,000	No	0.9	Non- Hazardous
1,000	No	Not available	Hazardous
1,000	Yes	Not relevant	Hazardous

References

- Environmental Permitting (England and Wales) Regulations 2010 (as amended) (EP Regulations), the Landfill Directive (1999/31/EC) and the subsequent Council Decisions.
- 2. Environment Agency Environmental Permitting Regulations: "Inert Waste Guidance-Standards and Measures for the Deposit of Inert Waste on Land" 2009.
- Environment Agency "Waste acceptance at landfills Guidance on waste acceptance procedures and criteria" Nov 2010.
 Environment Agency "Guidance on the classification and assessment of waste (Technical Guidance WM3)".
- Classification, Labelling and Packaging of Substances Regulation (EC 1272/2008) (CLP).
- 6. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives
- 7. 2014/955/EU: Commission Decision of 18 December 2014 amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament
- 8. Environmental Permitting Guidance The Landfill Directive For the Environmental Permitting (England and Wales) Regulations 2010 Updated March 2010 Version 3.1
- 9. Classification, Labelling and Packaging of Substances Regulation (EC 1272/2008) (CLP)


Additional Asbestos Guidance Notes

Disposal

The 1st Edition of WM3 "Guidance on the classification and assessment of waste", details the way in which Asbestos is assessed within soils.

The assessment of asbestos containing waste is dependent on whether the asbestos is present as:

- Fibres that are free and dispersed, or
- Identifiable pieces of asbestos containing materials (ACM's)

Identifiable pieces of asbestos are any particle of a size that can be identified as potentially being asbestos by a competent person if examined by the naked eye. The result is that commonly soils with visible ACM's are sorted and the ACM's removed by hand picking and separate disposal.

Asbestos concentrations below 0.001% by mass are below standard laboratory detection limits and are not currently regarded as containing asbestos for the purposes of disposal and may be disposed of to an inert landfill site¹. These levels are often termed "trace" by laboratories.

Asbestos concentrations between 0.001% and 0.1% are stable non-reactive hazardous waste (SNRHW)¹. Waste transfer stations where soil recycling takes place may be able to take SNRHW, but are unlikely to take soils containing asbestos above trace concentrations.

The following codes should be assigned to the asbestos waste as appropriate:

17 06	Insulation materials and asbestos-containing construction materials
17 06 01	Insulation materials containing asbestos
17 06 03	Other insulation materials consisting of or containing hazardous substances
17 06 04	Insulation materials other than those mentioned in 17 06 01 and 17 06 03
17 06 05	Construction material containing asbestos

WM3 indicates that 17 06 05 would normally be used in preference to 17 06 01 for the asbestos in asbestos contaminated soil and stones.

Construction materials containing asbestos and "other suitable materials" may be landfilled at landfills for non-hazardous waste in accordance with the Landfill Directive without testing.

This means that wastes that are only hazardous because of their asbestos content can be disposed of at landfills for non-hazardous waste in separate landfill cells that only accept asbestos wastes and other suitable materials. The Landfill Directive requires that stable non-reactive hazardous waste shall not be deposited with biodegradable waste (for example organic material, household waste, paper etc..) and must meet the waste acceptance criteria set out in accordance with Annex II.

Construction

Health and Safety Executive (HSE) guidance on asbestos is not directly related to soil and much of the guidance focuses on the removal of asbestos from buildings. The overarching legislation is the Control of Asbestos Regulation (CAR 2012). However where work involves (or is likely to involve) contact with asbestos then CAR 2012 requires a risk assessment including whether or not the work is licensed or notifiable non-licensed work and may require an Asbestos Management Plan. Work becomes notifiable if it is considered that the control limit could be exceeded.

Brownfield sites frequently have soils that contain asbestos and the presence of asbestos needs to be considered within the context of construction, particularly in relation to groundworks. The exposure of soils and the use of excavators and plant to move soil around increases the possibility of fibres becoming airborne. However it is good site practice to not generate dusts and to employ dust suppression on all sites regardless of the presence of asbestos.

The legal control limit for asbestos is 0.1f/ml over a continuous four hour period. The control limit is not a 'safe' level and exposure from work activities involving asbestos must be reduced to as far below the control limit as possible.

Clearly the higher the concentrations in the soil the greater potential there is for fibres to be released, however IOM publication TM/88/14 "the release of dispersed asbestos fibres from soil" 1988 concludes that:

- Mixtures of asbestos in dry soils with asbestos content as low as 0.001% can produce airborne respirable asbestos concentrations greater than 0.1f/ml in dust clouds where the respirable dust concentrations are less than 5mg/m³.
- An action limit is recommended of no higher than 0.001% asbestos in soils above which steps should be taken to minimise exposure to airborne fibres (eg by wetting).
- The addition of relatively small quantities (10%) of water can reduce the airborne fibre concentrations by an order of magnitude.

Where asbestos has been identified at concentrations above 0.001% as free and dispersed fibres in the soil precautions need to be adopted. Concentrations below this are considered to be normal background, although good site practice dictates that the generation of dusts should be avoided and therefore any fugitive fibre release from minor concentrations should be kept to a practical minimum.

End Use

The use of materials containing asbestos and material containing asbestos is prohibited under EU legislation. There is currently a Joint Industry Working Group (JIWG) tasked with producing a Code of Practice for Asbestos in Soil, Made Ground and Construction & Demolition Material that will clarify in due course the position of the various government agencies.

Asbestos containing materials can remain in situ under a suitable cover system which may be hardsurfacing or soft landscaping (with or without hard dig layers and markers).

There is a risk that future maintenance may compromise such systems and details of the presence of asbestos should be kept in the Health and Safety File.

Preliminary publications from JIWG (April 2015) provide guides for decision making in relation to construction. These are at a "Beta" test stage and further publications will be provided in due course.

The re-use of waste soils should be undertaken in accordance with the CL:AIRE Code of Practice and is subject to suitable risk assessments demonstrating low risk . There is nothing that specifically excludes the re-use of soils containing asbestos as fill to raise levels. However the movement of materials increases the risk of fibres becoming airborne and suitable precautions will be required.

The re-use of soils containing asbestos at concentrations above hazardous waste levels is likely to meet with regulatory opposition. Assuming a suitable strategy could be agreed this would take a considerable amount of time and is only likely to be feasible where there is a long program for implementation.

Asbestos in Soil as Free Fibres

					Construction Issues	End Use				
weight)	Recycle	Inert	SNR Hazardous	Hazardous		Suitable for re-use on site	Precautions			
Not detected	٧	٧			No precautions necessary, however on a brownfield site asbestos not previously identified may be found during works and a statement within the contractors method statement for how they will deal with this unforeseen asbestos would be good practice to ensure compliance with CAR2012.	Yes	None			
Trace (<0.001%)		√ ²			Precautions are unlikely to be required, however a detailed method statement may be required to ensure compliance with CAR2012. Basic asbestos management good practice will be required. Typically precautions would include: Ensuring soils do not dry out to become dusty. Site personnel have the risk communicated at induction stage.	Yes Soils can be re-used under CL:AIRE CoP with the correct precautions in place.	Generally clean cover or hardstanding cover required.			
0.001% - 0.099%			٧		Contractor needs to produce an Asbestos Management Plan in accordance with CAR2012 as part of their method statement. Typical precautions would include: Site personnel have the risk communicated at induction stage. Ensuring personnel have suitable training. Task monitoring to inform PPE requirements. Ensuring soils do not dry out to become dusty and that misting is available during groundworks. Separate stockpiling. Clean haulage routes.	Possibly Soils may be able to be re-used under CL:AIRE COP, subject to a satisfactory Risk Assessment and regulatory agreement with the correct precautions in place.	Clean cover or hardstanding cover required.			
0.1+%				V	Contractor needs to produce an Asbestos Management Plan in accordance with CAR2012 as part of their method statement. Typical precautions would include: Site personnel have the risk communicated at induction stage. Ensuring personnel have suitable training. Task monitoring to inform PPE requirements. Site wide and or perimeter monitoring. Ensuring soils do not dry out to become dusty and that misting is available during groundworks. Separate stockpiling. Clean haulage routes. Decontamination unit	Unlikely ³ Re-use of soils containing asbestos within an earthworks scheme will involve significant engineering and the risk for generating dusts will be significantly increased with repeated handling and compaction.	Clean cover and a hard dig layer. A plan should be in place for future excavations as part of the Health and Safety File.			

The standard laboratory detection limit is normally 0.001%. Below 0.001% is trace and currently regarded as not containing asbestos for the purposes of disposal off site. However the waste producer has a duty to fully classify the waste and the presence of trace asbestos should be declared. Consequently it is unlikely that a waste treatment site will take this soil and an inert landfill may make a commercial decision to only take it under some circumstances.

Page 4 www.brownfield-solutions.com June 2015

The re-use of soils containing asbestos at concentrations above hazardous waste is likely to meet with regulatory opposition. Assuming a suitable strategy could be agreed this would take a considerable amount of time and is only likely to be warranted where there a long program for implementation.

APPENDIX B

Exploratory Hole Logs

Well	Water	Sample		Situ Tes e ng	Depth	Level	Logond
vveil	Strikes	Depth (m)	Type	Results	(m)	Level (m OD)	Legend
					10.45		
ī							

Well	Water	Sample		Situ Tes e ng	Depth	Level	Logond
vveil	Strikes	Depth (m)	Type	Results	(m)	Level (m OD)	Legend
					10.45		
ī							

Water	Samp	ole and In Si	tu Tes e ng	Depth	Level (m OD)	Logond
Strikes	Depth (m)	Туре	Results	(m)	(m OD)	Legend
				0.20		
				0.60		

Water	Samp	ole and In Si	tu Tes e ng	Depth	Level	Logond
Water Strikes	Depth (m)	Туре	Results	(m)	Level (m OD)	Legend
				0.20		
				0.20		
				0.70		
				1.10		
				1.80		

Water Strikes		ole and In Si		Depth (m)	Level (m OD)	Legend
Strikes	Depth (m)	Туре	Results	(m)	(m OD)	Logona
				0.10		
				0.30 0.40		
				0.40		
				1.50		
				1		J

Ctrikes = (m) (m OD) 1	I DOMENT
WaterSample and In Situ Tes e ngDepthLevelStrikesDepth (m)TypeResults(m)(m OD)	Legend
0.30	
1.00	
1.30	
1.50	

APPENDIX C

Chemical Testing Results

Amy Thornes

Brownfield Solutions Ltd William Smith House 173 - 183 Witton Street Northwich Cheshire CW9 5LP

e: a.thornes@brownfield-solutions.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-31170

Project / Site name: Hostmoor Avenue, March Samples received on: 18/09/2020

Your job number: C4324 Samples instructed on/ 18/09/2020

Analysis started on:

Your order number: 1271 Analysis completed by: 25/09/2020

Report Issue Number: 1 **Report issued on:** 25/09/2020

Samples Analysed: 21 soil samples

Signed:

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: soils

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Your Order No: 1271

Lab Camarla Manahan				1/2/045	1/2/04/	1/2/047	1/2/040
Lab Sample Number				1626045 WS01	1626046 WS01	1626047 WS03	1626048 WS04
Sample Reference							
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.30	2.40	0.20	0.70
Date Sampled				14/09/2020	14/09/2020	14/09/2020	14/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soll Analysis)	:						
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	15	16	12	13
Total mass of sample received	kg	0.001	NONE	1.2	1.2	1.2	1
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	-
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	7.6	-	-	8.3
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	83	-	-	56
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.042	-	-	0.028
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	41.5	-	-	28.2
Organic Matter	%	0.1	MCERTS	2.7	-	-	1.4
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.6	-	1	0.8
Speciated BAHs							
Speciated PAHs Naphthalene	w - 11	0.05	MCERTS	< 0.05	_		< 0.05
,	mg/kg	0.05					
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	-	-	< 0.80
Heavy Metals / Metalloids							
Arsenic (agua regia extractable)	mg/kg	1	MCERTS	13	_	-	9.8
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	-	0.2
. 1		1.2	MCERTS	< 1.2	-	-	< 1.2
Chromium (hexavalent)	ma/ka						
Chromium (hexavalent) Chromium (III)	mg/kg mg/kg		NONE		-	-	24
Chromium (III)	mg/kg	1	NONE MCERTS	18	-	-	24 24
Chromium (III) Chromium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	18 18			24
Chromium (III) Chromium (aqua regia extractable) Copper (aqua regia extractable)	mg/kg mg/kg mg/kg	1	MCERTS MCERTS	18 18 13	-	-	
Chromium (III) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg	1 1 1	MCERTS MCERTS MCERTS	18 18 13 18	-	-	24 11 8.4
Chromium (III) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg	1 1 1 1 0.3	MCERTS MCERTS MCERTS MCERTS	18 18 13 18 < 0.3			24 11 8.4 < 0.3
Chromium (III) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg	1 1 1 1 0.3	MCERTS MCERTS MCERTS MCERTS MCERTS	18 18 13 18 < 0.3			24 11 8.4 < 0.3
Chromium (III) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg	1 1 1 1 0.3	MCERTS MCERTS MCERTS MCERTS	18 18 13 18 < 0.3	-	-	24 11 8.4 < 0.3
Chromium (III) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable) Selenium (aqua regia extractable) Zinc (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 1 1 1 0.3 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	18 18 13 18 < 0.3 14 < 1.0	-		24 11 8.4 < 0.3 20 < 1.0
Chromium (III) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable) Selenium (aqua regia extractable) Zinc (aqua regia extractable) Monoaromatics & Oxygenates	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 1 1 1 0.3 1 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	18 18 13 18 < 0.3 14 < 1.0			24 11 8.4 < 0.3 20 < 1.0 40
Chromium (III) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable) Selenium (aqua regia extractable) Zinc (aqua regia extractable) Monoaromatics & Oxygenates Benzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 1 1 1 0.3 1 1 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	18 18 13 18 < 0.3 14 < 1.0 44			24 11 8.4 < 0.3 20 < 1.0 40
Chromium (III) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable) Selenium (aqua regia extractable) Zinc (aqua regia extractable) Monoaromatics & Oxygenates Benzene Toluene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 1 1 1 0.3 1 1 1 1	MCERTS	18 18 13 18 < 0.3 14 < 1.0 44			24 11 8.4 < 0.3 20 < 1.0 40 < 1.0 < 1.0
Chromium (III) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable) Selenium (aqua regia extractable) Zinc (aqua regia extractable) Monoaromatics & Oxygenates Benzene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 1 1 1 0.3 1 1 1	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	18 18 13 18 < 0.3 14 < 1.0 44			24 11 8.4 < 0.3 20 < 1.0 40

Your Order No: 1271

Lab Sample Number				1626045	1626046	1626047	1626048
Sample Reference				WS01	WS01	WS03	WS04
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.30	2.40	0.20	0.70
Date Sampled				14/09/2020	14/09/2020	14/09/2020	14/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter							
(Soil Analysis)	;	1 1 1					
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0
Monoaromatics & Oxygenates							
Benzene	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001
Toluene	mg/kg	0.001	MCERTS	_	< 0.001	-	< 0.001
Ethylbenzene	mg/kg	0.001	MCERTS	_	< 0.001	-	< 0.001
p & m-xylene	mg/kg	0.001	MCERTS	_	< 0.001	-	< 0.001
o-xylene	mg/kg	0.001	MCERTS	_	< 0.001	-	< 0.001
MTBE (Methyl Tertiary Butyl Ether)	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001
` ,	5 5						
Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS		< 0.001		< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	< 8.0	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	< 8.0	-	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10	-	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	< 10	-	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	< 10	-	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10	-	< 10
PCBs by GC-MS							
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-
Total PCBs by GC-MS	<u>-</u>	-	-				
TOTAL TODG BY GO-ING							

Your Order No: 1271

 							
Lab Sample Number				1626049 WS05	1626050 WS06	1626051 WS07	1626052 WS08
Sample Reference							
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.20	0.10	0.40	0.10
Date Sampled				15/09/2020	15/09/2020	15/09/2020	15/09/2020
Time Taken	_			None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	-	1.1.1					
(Soil Analysis)	Ī	1 1					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	-
Moisture Content	%	N/A	NONE	10	9.6	8	-
Total mass of sample received	kg	0.001	NONE	1.2	1.2	1.2	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	-	Not-detected
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	8.1	-	8.6	-
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	52	-	100	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.026	-	0.051	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	25.8	-	50.7	-
Organic Matter	%	0.1	MCERTS	2.9	-	2.3	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.7	3.1	1.3	-
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	-	< 0.80	-
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14	-	13	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	-
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	-	< 1.2	-
Chromium (III)	mg/kg	1	NONE	22	-	19	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	22	-	19	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	13	-	10	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	17	-	18	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	23	-	18	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	56	-	49	-
Monoaromatics & Oxygenates							
Benzene	μg/kg	1	MCERTS	-	-	< 1.0	-
Toluene	μg/kg	1	MCERTS	-	-	< 1.0	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	< 1.0	-
p & m-xylene	μg/kg	1	MCERTS	-	-	< 1.0	-
o-xylene	μg/kg	1	MCERTS	-	-	< 1.0	-

Your Order No: 1271

Lab Sample Number				1626049	1626050	1626051	1626052
Sample Reference				WS05	WS06	WS07	WS08
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.20	0.10	0.40	0.10
Date Sampled				15/09/2020	15/09/2020	15/09/2020	15/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	:	1.1					
(Soil Analysis)	:						
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	< 1.0	-
Monoaromatics & Oxygenates							
Benzene	mg/kg	0.001	MCERTS	-	-	< 0.001	-
Foluene	mg/kg	0.001	MCERTS	-	-	< 0.001	-
Ethylbenzene	mg/kg	0.001	MCERTS	-	-	< 0.001	_
o & m-xylene	mg/kg	0.001	MCERTS	-	-	< 0.001	-
p-xylene	mg/kg	0.001	MCERTS	-	-	< 0.001	-
MTBE (Methyl Tertiary Butyl Ether)	mg/kg	0.001	MCERTS	-	-	< 0.001	-
(and and any	<i>y</i> 3						
Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	< 0.001	-
PH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	< 0.001	-
PH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	< 0.001	-
PH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	< 2.0	-
FPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	< 8.0	-
FPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	< 10	-
FPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	_	_	< 0.001	_
FPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS		-	< 0.001	
FPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS			< 0.001	
FPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS		-	< 1.0	
FPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS		-	< 2.0	
FPH-CWG - Aromatic >EC16 - EC21		10	MCERTS		-	< 10	
FPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	< 10	-
FPH-CWG - Aromatic (EC5 - EC35)	mg/kg mg/kg	10	MCERTS	-		< 10	-
rn-cwg - Alomatic (ECS - ECSS)	mg/kg	10	WICERTS	-	•	< 10	-
PCBs by GC-MS							
PCB Congener 28	mg/kg	0.001	MCERTS	-	< 0.001	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	< 0.001	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	< 0.001	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	< 0.001	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	< 0.001	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	< 0.001	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	< 0.001	-	-
Tatal DODa har CO MC							
Fotal PCBs by GC-MS	I		F		0	1	
Total PCBs	mg/kg	0.007	MCERTS	-	< 0.007	-	

Your Order No: 1271

Lab Sample Number				1626053	1626054	1626055	1626056
Sample Reference				WS08	HP01	BH01	BH01
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.70	0.10	0.40	0.60
Date Sampled				15/09/2020	15/09/2020	16/09/2020	16/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Degradation			1 1 1				
Analytical Parameter (Soil Analysis)							
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	14	5.2	8.8	5.7
Total mass of sample received	kg	0.001	NONE	1.2	1.2	1	1
Asbestos in Soil	Туре	N/A	ISO 17025	-	Not-detected	-	-
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	-	8.5	9.3	-
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	-	41	340	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	0.021	0.17	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	20.6	171	-
Organic Matter	%	0.1	MCERTS	-	4	2.5	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.2	2.3	-	-
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	_
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	_
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	_
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	_
Fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	_
Pyrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	_
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	-
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	< 0.80	< 0.80	-
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	12	12	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	0.2	< 0.2	-
Chromium (hexavalent)	mg/kg	1.2	MCERTS	-	< 1.2	< 1.2	-
Chromium (III)	mg/kg	1	NONE	-	22	20	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	22	20	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	12	11	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	17	18	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	20	19	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	< 1.0	< 1.0	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	74	56	-
Monoaromatics & Oxygenates							
Benzene	μg/kg	1	MCERTS	-	-	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	-	-	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	-	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	-	-	< 1.0	< 1.0

MCERTS

μg/kg

< 1.0

< 1.0

o-xylene

Your Order No: 1271

Lab Sample Number				1626053	1626054	1626055	1626056
Sample Reference				WS08	HP01	BH01	BH01
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.70	0.10	0.40	0.60
Date Sampled				15/09/2020	15/09/2020	16/09/2020	16/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter		1.1					
(Soil Analysis)	;						
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	< 1.0	< 1.0
Monoaromatics & Oxygenates							
Benzene	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001
Toluene	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001
Ethylbenzene	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001
p & m-xylene	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001
p-xylene	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001
MTBE (Methyl Tertiary Butyl Ether)	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001
	•	•	•				
Petroleum Hydrocarbons							
FPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001
FPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001
FPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	_	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	_	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	_	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	_	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	< 10	< 10
	3 3					1	
PCBs by GC-MS	T					T	1
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-
T							
Fotal PCBs by GC-MS	1		1			1	
Total PCBs	mg/kg	0.007	MCERTS	-	-	-	-

Your Order No: 1271

Lab Sample Number				1626057	1626058	1626059	1626060
Sample Reference				BH02	BH02	TP101	WS02
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	0.90	0.50	None Supplied
Date Sampled Time Taken				16/09/2020	16/09/2020	17/09/2020 None Supplied	14/09/2020
Time taken	1	-		None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)							
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	8.9	7.7	12	13
Total mass of sample received	kg	0.001	NONE	1	1.2	1.2	1
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	-	-	-
	•						
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	7.6	8.8	-	8.3
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	76	17	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.038	0.0087	-	0.24
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	38.2	8.7	-	-
Organic Matter	%	0.1	MCERTS	2.1	0.2	-	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.2	÷	2	-
Speciated DAHs							
Speciated PAHs Naphthalene	malle	0.05	MCERTS	< 0.05	< 0.05	-	
Acenaphthylene	mg/kg	-		< 0.05	< 0.05		-
	mg/kg	0.05	MCERTS			-	-
Acenaphthene Fluorene	mg/kg	0.05	MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	-	-
	mg/kg	0.05	MCERTS				
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-
Pyrene Panaga (a) anthrosona	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05 < 0.05	< 0.05	-	-
Chrysene	mg/kg	0.05	MCERTS		< 0.05	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05 < 0.05	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-
Benzo(ghi)perylene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-
Benizo(gni)per yiene	IIIg/kg	0.03	WICERTS	< 0.03	< 0.03	-	-
Total PAH		0.0	MOEDTO	. 0.00	. 0.00	_	
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	-	-
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.8	13	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-	-
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	-	-
Chromium (III)	mg/kg	1	NONE	18	10	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	18	10	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	10	4.7	-	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	18	6.1	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	14	13	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	45	24	-	-
Monoaromatics & Oxygenates							
Benzene	μg/kg	1	MCERTS	< 1.0	-	-	-
Toluene	μg/kg	1	MCERTS	< 1.0	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-
p & m-xylene	μg/kg	1	MCERTS	< 1.0	-	-	-
p a m xylene	F-5- · · · 5						

Your Order No: 1271

Lab Sample Number				1626057	1626058	1626059	1626060
Sample Reference				BH02	BH02	TP101	WS02
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	0.90	0.50	None Supplied
Date Sampled				16/09/2020	16/09/2020	17/09/2020	14/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	:	1.1					
(Soil Analysis)	;						
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	-	-
Monoaromatics & Oxygenates							
Benzene	mg/kg	0.001	MCERTS	< 0.001	-	-	-
Toluene	mg/kg	0.001	MCERTS	< 0.001	-	-	-
Ethylbenzene	mg/kg	0.001	MCERTS	< 0.001	-	-	-
p & m-xylene	mg/kg	0.001	MCERTS	< 0.001	-	-	-
o-xylene	mg/kg	0.001	MCERTS	< 0.001	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	mg/kg	0.001	MCERTS	< 0.001	-	-	-
	0 0						
Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	-	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	-	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	-	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	-	-
PCBs by GC-MS							
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-
Total PCBs by GC-MS	•	-	-				
Total PCBs Total PCBs	mg/kg	0.007	MCERTS	-	-	_	
TOTAL LODS	mg/kg	0.007	MICERIS	-	-	-	

Your Order No: 1271

Lab Sample Number				1626061 WS04	1626062 WS06	1626063 WS07	1626064 WS09
Sample Reference							
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied 14/09/2020	None Supplied	None Supplied	None Supplied
Date Sampled Time Taken				None Supplied	15/09/2020 None Supplied	15/09/2020 None Supplied	15/09/2020 None Supplied
	1			None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter							
(Soil Analysis)	·	1.1	100				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	13	12	11	12
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5
	-		1				
Asbestos in Soil	Туре	N/A	ISO 17025	-	-	-	-
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	8.5	8.3	8.5	8.4
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	-	-	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.034	0.019	0.011	0.053
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-	-	-	-
Organic Matter	%	0.1	MCERTS	-	-	-	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	-	-	-
Consists of DAILs							
Speciated PAHs		0					
Naphthalene	mg/kg	0.05	MCERTS	-	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	-
Fluorene	mg/kg	0.05	MCERTS	-	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	-
Anthracene Fluoranthene	mg/kg	0.05	MCERTS MCERTS	-	-	-	-
Pyrene	mg/kg mg/kg	0.05	MCERTS	-	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	-
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	-	-	-
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	-	-	-
Chromium (hexavalent)	mg/kg	1.2	MCERTS	-	-	-	-
Chromium (III)	mg/kg	1	NONE	-	-	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	-	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-
Monoaromatics & Oxygenates							
Benzene	μg/kg	1	MCERTS	-	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	-	-	-	-
o-xylene	μg/kg	1	MCERTS	-	-	-	-

Your Order No: 1271

Lab Sample Number				1626061	1626062	1626063	1626064
Sample Reference				WS04	WS06	WS07	WS09
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				14/09/2020	15/09/2020	15/09/2020	15/09/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter	:	1.1					
(Soil Analysis)							
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	÷	-	-	-
Monoaromatics & Oxygenates							
Benzene	mg/kg	0.001	MCERTS	-	-	-	-
Toluene	mg/kg	0.001	MCERTS	-	-	-	-
Ethylbenzene	mg/kg	0.001	MCERTS	-	-	-	-
p & m-xylene	mg/kg	0.001	MCERTS	-	-	-	-
o-xylene	mg/kg	0.001	MCERTS	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	mg/kg	0.001	MCERTS	-	-	-	-
Potroloum Hydrocarbons							
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6	∞ ≈ B =	0.001	MCERTS	_	_	_	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC8 TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	
FPH-CWG - Aliphatic >EC10 - EC12	mg/kg mg/kg	1	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-		-	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	_	-	_
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	•	-	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS		-	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-
PCBs by GC-MS							
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-
Total PCBs by GC-MS							
Total PCBs	mg/kg	0.007	MCERTS	-	_		

Environmental Science

Project / Site name: Hostmoor Avenue, March

Your Order No: 1271

Lab Sample Number				1626065
Sample Reference				BH02
Sample Number				None Supplied
Depth (m)				None Supplied
Date Sampled				17/09/2020
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	:			
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	N/A	NONE	15
Total mass of sample received	kg	0.001	NONE	0.5
Asbestos in Soil	Туре	N/A	ISO 17025	-
General Inorganics				
pH - Automated	pH Units	N/A	MCERTS	8.4
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.054
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-
Organic Matter	%	0.1	MCERTS	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	-
Speciated PAHs				
Naphthalene	mg/kg	0.05	MCERTS	-
Acenaphthylene	mg/kg	0.05	MCERTS	-
Acenaphthene	mg/kg	0.05	MCERTS	-
Fluorene	mg/kg	0.05	MCERTS	-
Phenanthrene	mg/kg	0.05	MCERTS	-
Anthracene	mg/kg	0.05	MCERTS	-
Fluoranthene	mg/kg	0.05	MCERTS	-
Pyrene	mg/kg	0.05	MCERTS	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-
Chrysene	mg/kg	0.05	MCERTS	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-
-----------------------------	-------	-----	--------	---

0.05

0.05

0.05

0.05

0.05

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

MCERTS

MCERTS

MCERTS

MCERTS

MCERTS

Heavy Metals / Metalloids

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(ghi)perylene

Benzo(a)pyrene

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-
Chromium (hexavalent)	mg/kg	1.2	MCERTS	-
Chromium (III)	mg/kg	1	NONE	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-

Monoaromatics & Oxygenates

Benzene	μg/kg	1	MCERTS	-
Toluene	μg/kg	1	MCERTS	-
Ethylbenzene	μg/kg	1	MCERTS	-
p & m-xylene	μg/kg	1	MCERTS	-
o-xylene	μg/kg	1	MCERTS	-

Your Order No: 1271

Lab Sample Number						
Sample Reference						
Sample Number						
Depth (m)						
Date Sampled						
Time Taken				None Supplied		
Analytical Parameter (Soil Analysis)	:					
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-		

Monoaromatics & Oxygenates

Benzene	mg/kg	0.001	MCERTS	-
Toluene	mg/kg	0.001	MCERTS	-
Ethylbenzene	mg/kg	0.001	MCERTS	-
p & m-xylene	mg/kg	0.001	MCERTS	-
o-xylene	mg/kg	0.001	MCERTS	-
MTBE (Methyl Tertiary Butyl Ether)	mg/kg	0.001	MCERTS	-

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-

TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-

PCBs by GC-MS

PCB Congener 28	mg/kg	0.001	MCERTS	-
PCB Congener 52	mg/kg	0.001	MCERTS	-
PCB Congener 101	mg/kg	0.001	MCERTS	-
PCB Congener 118	mg/kg	0.001	MCERTS	-
PCB Congener 138	mg/kg	0.001	MCERTS	-
PCB Congener 153	mg/kg	0.001	MCERTS	-
PCB Congener 180	mg/kg	0.001	MCERTS	-

Total PCBs by GC-MS

Total PCBS by GC-IVIS				
Total PCBs	mg/kg	0.007	MCERTS	-

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1626045	WS01	None Supplied	0.3	Brown loam and clay with gravel.
1626046	WS01	None Supplied	2.4	Brown clay with gravel.
1626047	WS03	None Supplied	0.2	Brown loam and clay with gravel.
1626048	WS04	None Supplied	0.7	Brown loam and clay with gravel.
1626049	WS05	None Supplied	1.2	Brown loam and clay with gravel.
1626050	WS06	None Supplied	0.1	Brown loam with gravel and vegetation.
1626051	WS07	None Supplied	0.4	Brown loam with gravel and vegetation.
1626053	WS08	None Supplied	1.7	Brown loam and clay with gravel.
1626054	HP01	None Supplied	0.1	Brown loam with gravel and vegetation.
1626055	BH01	None Supplied	0.4	Brown loam and clay with gravel.
1626056	BH01	None Supplied	0.6	Brown loam and sand with gravel.
1626057	BH02	None Supplied	0.4	Brown loam and clay with gravel.
1626058	BH02	None Supplied	0.9	Brown loam and sand with gravel.
1626059	TP101	None Supplied	0.5	Brown loam and clay with gravel.
1626060	WS02	None Supplied	None Supplied	Brown clay with gravel.
1626061	WS04	None Supplied	None Supplied	Brown clay with gravel.
1626062	WS06	None Supplied	None Supplied	Brown clay and sand with gravel.
1626063	WS07	None Supplied	None Supplied	Brown clay with gravel.
1626064	WS09	None Supplied	None Supplied	Brown clay with gravel.
1626065	BH02	None Supplied	None Supplied	Brown clay with gravel.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	MTBE in soil (Monoaromatics) Determination of BTEX in soil by headspace GC-MS. In-house method based on USEPA8260		L073B-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and	In house method.	L038-PL	D	MCERTS

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Amy Thornes

Brownfield Solutions Ltd William Smith House 173 - 183 Witton Street Northwich Cheshire CW9 5LP

e: a.thornes@brownfield-solutions.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-31173

Project / Site name: Hostmoor Avenue, March Samples received on: 18/09/2020

Your job number: C4324 Samples instructed on/ 18/09/2020

Analysis started on:

Your order number: 1271 Analysis completed by: 29/09/2020

Report Issue Number: 1 **Report issued on:** 29/09/2020

Samples Analysed: 4 10:1 WAC samples

Signed:

Karolina Marek
PL Head of Reporting Team
For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		20-31173				
				Client:	BSL	
Location		Hostmoor Avenue, N	March			
Lab Deference (Comple Number)				Landfill \	Waste Acceptanc	e Criteria
Lab Reference (Sample Number)		1626077 / 1626078	8		Limits	
Sampling Date		14/09/2020			Stable Non-	
Sample ID		WS04		Inert Waste	reactive HAZARDOUS	Hazardous
Depth (m)		0.70		Landfill	waste in non- hazardous Landfill	Waste Landfill
Solid Waste Analysis						
TOC (%)**	0.5			3%	5%	6%
Loss on Ignition (%) **	2.0					10%
BTEX (µg/kg) **	< 10			6000	==	
Sum of PCBs (mg/kg) **	< 0.007			1		
Mineral Oil (mg/kg)	< 10			500		
Total PAH (WAC-17) (mg/kg)	< 0.85			100		
pH (units)**	8.5				>6	
Acid Neutralisation Capacity (mol / kg)	31				To be evaluated	To be evaluated
Eluate Analysis	10:1		10:1	Limit value	es for compliance le	eaching test
(BS EN 12457 - 2 preparation utilising end over end leaching			10.1	using BS EN	12457-2 at L/S 10	I/kg (mg/kg)
procedure)	mg/l		mg/kg			
Arsenic *	0.0050		0.0455	0.5	2	25
Barium *	0.0076		0.0694	20	100	300
Cadmium *	< 0.0001		< 0.0008	0.04	1	5
Chromium *	0.0007		0.0061	0.5	10	70
Copper *	< 0.0007		< 0.0070	2	50	100
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2
Molybdenum *	< 0.0004		< 0.0040	0.5	10	30
Nickel *	0.0020		0.018	0.4	10	40
Lead *	0.0034		0.031	0.5	10	50
Antimony *	< 0.0017		< 0.017	0.06	0.7	5
Selenium *	< 0.0040		< 0.040	0.1	0.5	7
Zinc *	0.0021		0.019	4	50	200
Chloride *	0.93		8.4	800	15000	25000
Fluoride	0.56		5.1	10	150	500
Sulphate *	3.5		32	1000	20000	50000
TDS*	42		380	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	=
DOC	5.79		52.7	500	800	1000
Leach Test Information						
Stone Content (%)	< 0.1					
Sample Mass (kg)	1.0					
Ory Matter (%)	87					
Moisture (%)	13					
	oisture content where			* LIVAS accredit	ed (liquid eluate an	alucic anlu)

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		20-31173					
-							
					Client:	BSL	
Location		Hostmoor Avenue,	March				
Lab Deference (Comple Number)					Landfill \	Waste Acceptanc	e Criteria
Lab Reference (Sample Number)		1626079 / 16260	080			Limits	
Sampling Date		15/09/2020				Stable Non-	
Sample ID		WS05			Inert Waste	reactive HAZARDOUS	Hazardous
Depth (m)		1.20			Landfill	waste in non- hazardous Landfill	Waste Landfill
Solid Waste Analysis							
TOC (%)**	1.7				3%	5%	6%
Loss on Ignition (%) **	4.2						10%
BTEX (µg/kg) **	< 10	İ			6000	==	
Sum of PCBs (mg/kg) **	< 0.007	İ			1		
Mineral Oil (mg/kg)	< 10				500		
Total PAH (WAC-17) (mg/kg)	< 0.85				100	==	
pH (units)**	8.3					>6	
Acid Neutralisation Capacity (mol / kg)	5.0					To be evaluated	To be evaluated
Flusta Analysia					Limit value	es for compliance le	eaching test
Eluate Analysis	10:1		10):1			
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l		mg	/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)		
Arsenic *	< 0.0011		< 0.1	0110	0.5	2	25
Barium *	0.0195			180	20	100	300
Cadmium *	< 0.0001			0008	0.04	1	5
Chromium *	0.0043		0.0		0.5	10	70
Copper *	0.0082			076	2	50	100
Mercury *	< 0.0005			0050	0.01	0.2	2
Molybdenum *	< 0.0003			0040	0.5	10	30
Nickel *	0.0083		0.0		0.4	10	40
Lead *	0.0083			023	0.4	10	50
				.017	0.06	0.7	
Antimony *	< 0.0017						5
Selenium *	< 0.0040			.040	0.1	0.5	7
Zinc *	0.012		0.		4	50	200
Chloride *	1.2		1		800	15000	25000
Fluoride	0.95		8		10	150	500
Sulphate *	3.5		3		1000	20000	50000
TDS*	50			50	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010		< C	0.10	1	-	-
DOC	14.4		13	34	500	800	1000
	+						
each Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.2						
Ory Matter (%)	90					ļ	
Moisture (%)	10						
						ļ	
	oisture content where	o applicable		*_	 LIKAS accredit 	ed (liquid eluate an	alysis only)

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		20-31173				
				Client:	BSL	
Location		Hostmoor Avenue, M	arch			
Lab Defense (Commiss Numbers)				Landfill \	Naste Acceptanc	e Criteria
Lab Reference (Sample Number)		1626081 / 1626082	2		Limits	
Sampling Date		16/09/2020			Stable Non-	
Sample ID		BH02		Inert Waste	reactive HAZARDOUS	Hazardous
Depth (m)		0.40		Landfill	waste in non- hazardous Landfill	Waste Landfill
Solid Waste Analysis						
TOC (%)**	1.1			3%	5%	6%
Loss on Ignition (%) **	2.7					10%
BTEX (µg/kg) **	< 10			6000		
Sum of PCBs (mg/kg) **	< 0.007			1	==	
Mineral Oil (mg/kg)	< 10			500		
Total PAH (WAC-17) (mg/kg)	< 0.85			100	==	
pH (units)**	7.8				>6	
Acid Neutralisation Capacity (mol / kg)	2.3				To be evaluated	To be evaluate
Eluate Analysis	10.1		10.1	Limit value	es for compliance le	eaching test
	10:1		10:1		12457-2 at L/S 10	
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l		mg/kg			
Arsenic *	< 0.0011		< 0.0110	0.5	2	25
Barium *	0.0231		0.205	20	100	300
Cadmium *	< 0.0001		< 0.0008	0.04	1	5
Chromium *	0.0007		0.0063	0.5	10	70
Copper *	0.0088		0.078	2	50	100
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2
Molybdenum *	< 0.0004		< 0.0040	0.5	10	30
Nickel *	0.0050		0.044	0.4	10	40
Lead *	0.0069		0.061	0.5	10	50
Antimony *	< 0.0017		< 0.017	0.06	0.7	5
Selenium *	< 0.0040		< 0.040	0.1	0.5	7
Zinc *	0.0077		0.069	4	50	200
Chloride *	1.8		16	800	15000	25000
Fluoride	0.97		8.6	10	150	500
Sulphate *	6.6		59	1000	20000	50000
TDS*	55		490	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	=
DOC	16.3		145	500	800	1000
Leach Test Information						
Stone Content (%)	< 0.1					
Sample Mass (kg)	1.0					
Ory Matter (%)	91					
Moisture (%)	8.9					
Results are expressed on a dry weight basis, after correction for m	oicture content where	applicable		*= UKAS accredit	ed (liquid eluate an	alveis only)

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical	resures	20-31173				
report No.		20 01170				
				Client:	BSL	
					502	
Location		Hostmoor Avenue, March	1			
				Landfill \	Waste Acceptanc	e Criteria
Lab Reference (Sample Number)		1626083 / 1626084			Limits	
Sampling Date		16/09/2020			Stable Non-	
Sample ID		BH02		Inart Masta	reactive	Hazardous
Depth (m)		0.90		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Waste Landf
Solid Waste Analysis						
TOC (%)**	0.2			3%	5%	6%
oss on Ignition (%) **	0.8					10%
BTEX (μg/kg) **	< 10			6000		
Sum of PCBs (mg/kg) **	< 0.007			1		
Mineral Oil (mg/kg)	< 10			500		
otal PAH (WAC-17) (mg/kg)	< 0.85			100		
OH (units)**	8.5	İ			>6	
Acid Neutralisation Capacity (mol / kg)	6.0				To be evaluated	To be evaluat
teld Neutralisation capacity (mor/ kg)	0.0					
Eluate Analysis	10:1		10:1	Limit value	es for compliance le	eaching test
(DC EN 124E7 - 2 proporation utilizing and over and leaching				using BS EN	12457-2 at L/S 10	I/kg (mg/kg)
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l		mg/kg	_		
<u>'</u>					I -	T
Arsenic *	< 0.0011		< 0.0110	0.5	2	25
Barium *	0.0057		0.0512	20	100	300
Cadmium *	< 0.0001		< 0.0008	0.04	1	5
Chromium *	0.0006		0.0051	0.5	10	70
Copper *	0.0029		0.026	2	50	100
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2
Molybdenum *	< 0.0004		< 0.0040	0.5	10	30
Nickel *	0.0013		0.011	0.4	10	40
ead *	0.0028		0.025	0.5	10	50
Antimony *	< 0.0017		< 0.017	0.06	0.7	5
Selenium *	< 0.0040		< 0.040	0.1	0.5	7
Zinc *	0.011		0.097	4	50	200
Chloride *	< 0.15		< 1.5	800	15000	25000
Fluoride	0.41		3.7	10	150	500
Sulphate *	1.3		11	1000	20000	50000
TDS*	31		280	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	=	-
DOC	10.7		96.2	500	800	1000
	+					
each Test Information	+					
Leach Test Information	+					
Stone Content (%)	< 0.1					
Sample Mass (kg)	1.2					
Ory Matter (%)	92					
Moisture (%)	7.7					
1000000 (70)						
	+					
	+					
			1	*= UKAS accredit	l	L

Analytical Report Number : 20-31173 Project / Site name: Hostmoor Avenue, March

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1626077	WS04	None Supplied	0.7	Brown loam and clay with gravel.
1626079	WS05	None Supplied	1.2	Brown loam and clay with gravel.
1626081	BH02	None Supplied	0.4	Brown loam and clay with gravel.
1626083	BH02	None Supplied	0.9	Brown loam and sand with gravel.

^{*} These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Analytical Report Number : 20-31173 Project / Site name: Hostmoor Avenue, March

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance"	L046-PL	W	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil"*	L039-PL	W	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil"*	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

Analytical Report Number : 20-31173 Project / Site name: Hostmoor Avenue, March

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenois 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX D

Geotechnical Testing Results

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Brownfield Solutions Ltd Client:

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Amy Thornes Contact:

Hostmoor Avenue, March Site Address:

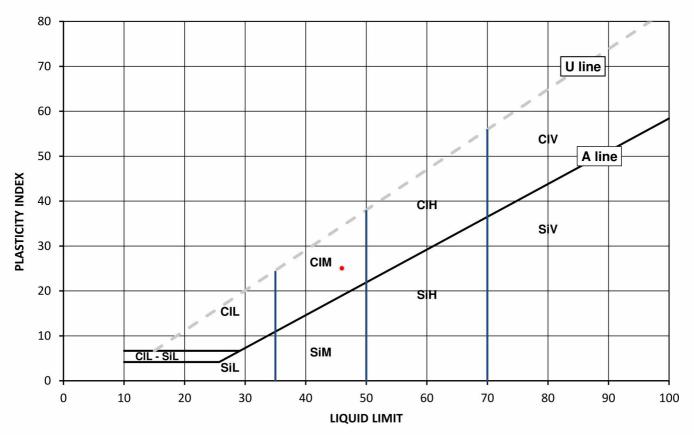
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C4324

Job Number: 20-30837 Date Sampled: 14/09/2020

Date Received: 18/09/2020 Date Tested: 25/09/2020

Sampled By: Client - AT


Test Results:

Laboratory Reference: 1623982 Depth Top [m]: 1.80 WS01 Depth Base [m]: Not Given Hole No .: Sample Reference: Not Given Sample Type: D

Soil Description: Dark brown slightly gravelly slightly sandy CLAY with fragments of chalk

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
19	46	21	25	95

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt M Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Szczepan Bielatowicz

PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Brownfield Solutions Ltd Client:

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Contact: **Amy Thornes**

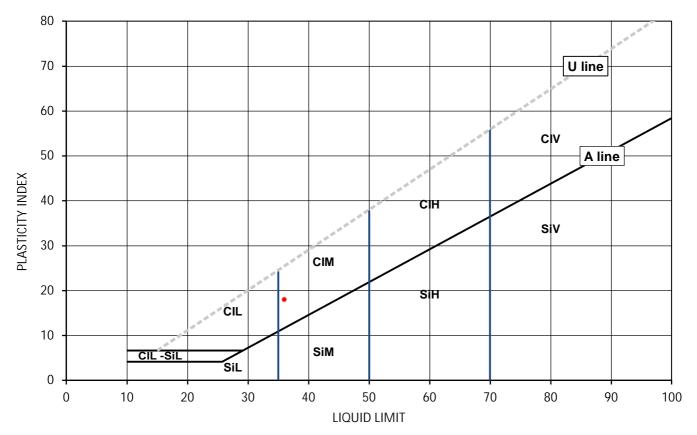
Site Address: Hostmoor Avenue, March

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C4324 Job Number: 20-30837 Date Sampled: 14/09/2020

Date Received: 18/09/2020 Date Tested: 25/09/2020

Sampled By: Client - AT


Test Results:

Laboratory Reference: 1623983 Depth Top [m]: 1.60 WS03 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Soil Description: Brown gravelly sandy CLAY with fragments of chalk

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
13	36	18	18	44

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

		Plasticity	Liquid Limit
CI	Clay	L Low	below 35
Si	Silt	M Medium	35 to 50
		H High	50 to 70
		V Very high	exceeding 70
		O Organic	append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1 **Date Reported:** 06/10/2020

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Brownfield Solutions Ltd Client:

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Amy Thornes Contact:

Hostmoor Avenue, March Site Address:

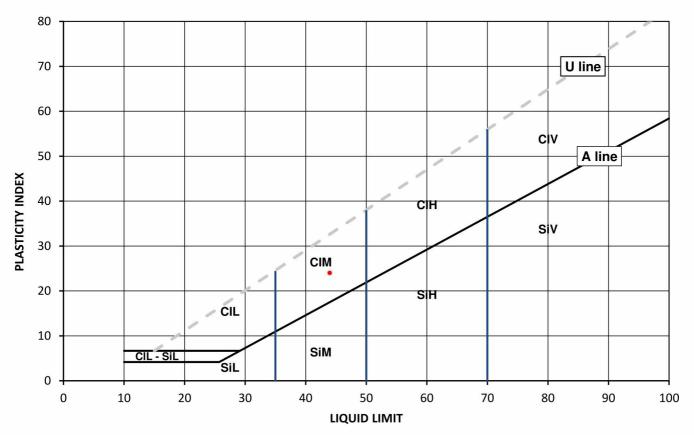
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C4324

Job Number: 20-30837 Date Sampled: 15/09/2020

Date Received: 18/09/2020 Date Tested: 25/09/2020

Sampled By: Client - AT


Test Results:

Laboratory Reference: 1623984 Depth Top [m]: 2.10 WS06 Depth Base [m]: Not Given Hole No .: Sample Reference: Not Given Sample Type: D

Soil Description: Brown slightly gravelly sandy CLAY with fragments of chalk

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
19	44	20	24	92

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt M Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 06/10/2020

GF 232.10

Liquid and Plastic Limits

Plastic Limit

[Wp]%

19

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Brownfield Solutions Ltd

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Contact: Amy Thornes

Site Address: Hostmoor Avenue, March

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Liquid Limit

[WL]%

43

Client Reference: C4324

Depth Top [m]: 1.10

Sample Type: D

[lp]%

24

Depth Base [m]: Not Given

Job Number: 20-30837

Date Sampled: 15/09/2020 Date Received: 18/09/2020

Date Tested: 25/09/2020 Sampled By: Client - AT

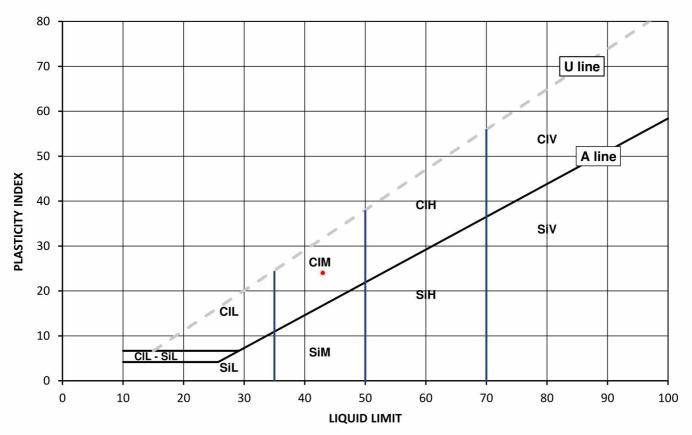
Test Results:

Laboratory Reference: 1623985
Hole No.: WS09
Sample Reference: Not Given

As Received Moisture

Content [W] %

7.1


Soil Description: Brown slightly gravelly sandy CLAY with fragments of chalk

Sample Preparation: Tested after washing to remove >425um

Plasticity Index	% Passing 425μm

BS Test Sieve

77

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt M Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed:

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

GF 232.10

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Brownfield Solutions Ltd Client:

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Amy Thornes Contact:

Hostmoor Avenue, March Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C4324

Depth Top [m]: 1.90

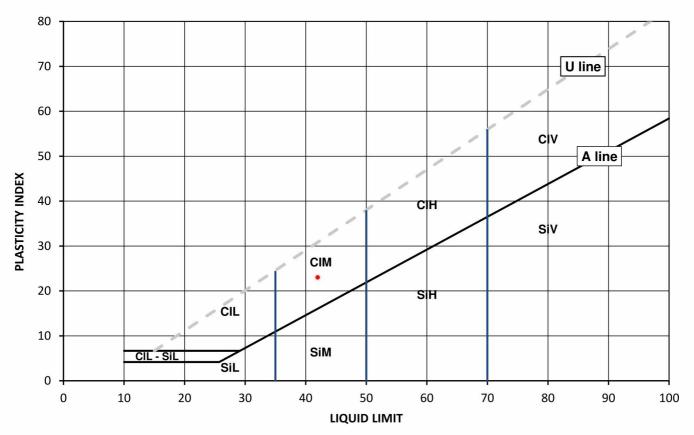
Sample Type: D

Depth Base [m]: Not Given

Job Number: 20-30837

Date Sampled: 16/09/2020 Date Received: 18/09/2020

Date Tested: 25/09/2020 Sampled By: Client - AT


Test Results:

Laboratory Reference: 1623986 **BH01** Hole No .: Sample Reference: Not Given

Soil Description: Dark brown slightly gravelly sandy CLAY with fragments of chalk

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
22	42	19	23	76

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt M Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Szczepan Bielatowicz

PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 06/10/2020

GF 232.10

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Brownfield Solutions Ltd Client:

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Amy Thornes Contact:

Hostmoor Avenue, March Site Address:

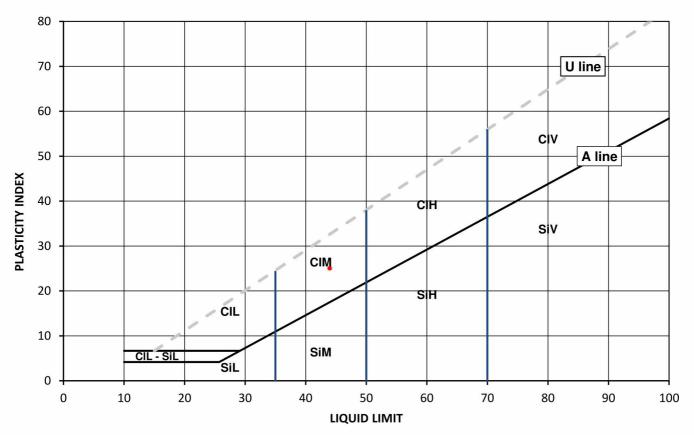
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C4324

Job Number: 20-30837 Date Sampled: 17/09/2020

Date Received: 18/09/2020 Date Tested: 25/09/2020

Sampled By: Client - AT


Test Results:

Laboratory Reference: 1623989 Depth Top [m]: 2.60 **BH02** Depth Base [m]: Not Given Hole No .: Sample Reference: Not Given Sample Type: D

Soil Description: Brown slightly gravelly sandy CLAY with fragments of chalk

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
20	44	19	25	95

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt M Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 06/10/2020

Client Address:

Client:

Summary of Classification Test Results

Tested in Accordance with:

Brownfield Solutions Ltd William Smith House, 173 - 183 Witton

Street.

Northwich, Cheshire,

CW9 5LP

Contact: **Amy Thornes**

Site Address: Hostmoor Avenue, March

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Moisture Content by BS 1377-2: 1990: Clause 3.2; Water Content by BS EN 17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: C4324 Job Number: 20-30837

Date Sampled: 14/09 - 17/09/2020

Date Received: 18/09/2020 Date Tested: 25/09/2020

Sampled By: Client - AT

Test results

			Sample	9				Content /]	tent		Atte	berg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Type	Description	Remarks	Moisture Cor [W]	Water Content [W]	% Passing 425um %	WL	Wp %	lp %	bulk	dry	PD	Total % Porosity#	
1623986	BH01	Not Given	1.90	Not Given	D	Dark brown slightly gravelly sandy CLAY with fragments of chalk	Atterberg 1 Point	22	76	76	42	19	23	IVIg/III3	IVIG/1115	Mg/m3	76	
1623989	BH02	Not Given	2.60	Not Given	D	Brown slightly gravelly sandy CLAY with fragments of chalk	Atterberg 1 Point	20		95	44	19	25					
1623982	WS01	Not Given	1.80	Not Given	D	Dark brown slightly gravelly slightly sandy CLAY with fragments of chalk	Atterberg 1 Point	19		95	46	21	25					
1623983	WS03	Not Given	1.60	Not Given	D	Brown gravelly sandy CLAY with fragments of chalk	Atterberg 1 Point	13		44	36	18	18				,	
1623984	WS06	Not Given	2.10	Not Given	D	Brown slightly gravelly sandy CLAY with fragments of chalk	Atterberg 1 Point	19		92	44	20	24					
1623985	WS09	Not Given	1.10	Not Given	D	Brown slightly gravelly sandy CLAY with fragments of chalk	Atterberg 1 Point	7.1		77	43	19	24					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

> Page 1 of 1 **Date Reported:** 06/10/2020 GF 234.12

Unconsolidated Undrained

Triaxial Compression Tested in Accordance with: BS 1377-7: 1990: Clause 8

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Brownfield Solutions Ltd Client:

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Amy Thornes Contact:

Hostmoor Avenue, March Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C4324 Job Number: 20-30837 Date Sampled: 16/09/2020 Date Received: 18/09/2020 Date Tested: 26/09/2020

Sampled By: Client - AT

Test Results:

Laboratory Reference: 1623987 **BH01** Hole No .: Sample Reference: Not Given

Brownish grey CLAY with fragments of chalk Sample Description:

Depth Top [m]: 2.10 Depth Base [m]: 2.60

Sample Type: U

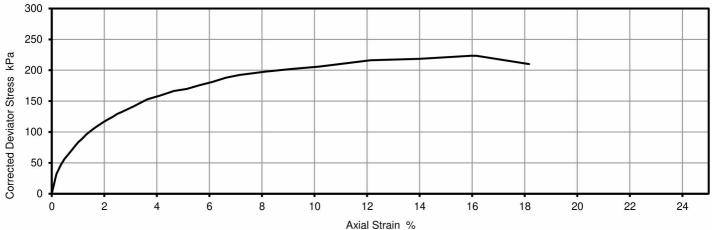
Test Number Length

Diameter

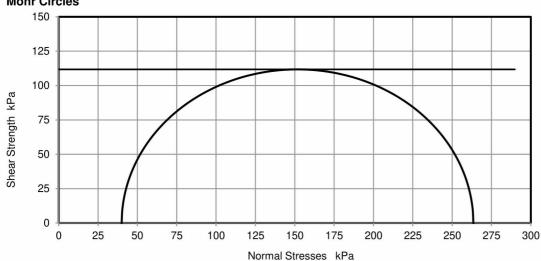
Bulk Density

Moisture Content Dry Density

97.49 mm 50.22 mm 1.98 Mg/m3 18 1.68 Ma/m3 Membrane Correction 1.40


Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

Mode of Failure Membrane thickness 2.00 %/min 40 kPa 16.0 % 223 kPa


112 kPa ½(σ1 - σ3)f

Compound 0.22

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed:

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 06/10/2020

GF 184.11

Unconsolidated Undrained

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Brownfield Solutions Ltd Client:

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Amy Thornes Contact:

Hostmoor Avenue, March Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C4324 Job Number: 20-30837 Date Sampled: 17/09/2020 Date Received: 18/09/2020 Date Tested: 26/09/2020

Sampled By: Client - AT

Test Results:

Laboratory Reference: 1623988 **BH02** Hole No .: Sample Reference: Not Given

Yellowish brown CLAY with fragments of chalk Sample Description:

Depth Top [m]: 2.10 Depth Base [m]: 2.60

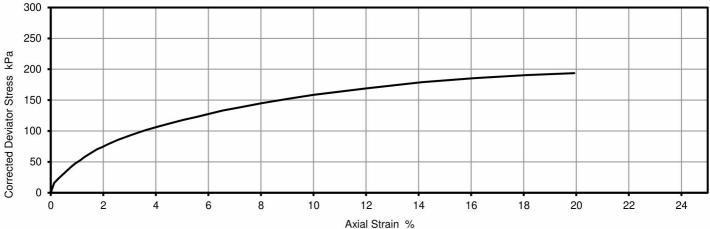
Sample Type: U

Test Number Length Diameter **Bulk Density** Moisture Content

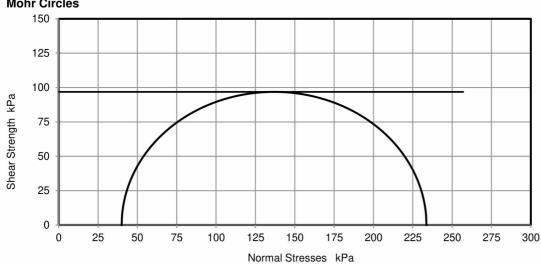
Membrane Correction

Dry Density

201.84 mm 104.22 mm 2.03 Mg/m3 21 1.68 Ma/m3 0.88


Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

Mode of Failure Membrane thickness 1.98 %/min 40 kPa 19.9 % 194 kPa 97


0.24

kPa ½(σ1 - σ3)f Compound

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed:

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 06/10/2020

Unconsolidated Undrained

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Brownfield Solutions Ltd

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Contact: Amy Thornes

Site Address: Hostmoor Avenue, March

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C4324
Job Number: 20-30837
Date Sampled: 17/09/2020
Date Received: 18/09/2020
Date Tested: 26/09/2020
Sampled By: Client - AT

Test Results:

Laboratory Reference: 1623990 Hole No.: BH02 Sample Reference: Not Given

Sample Description: Brownish grey CLAY with fragments of chalk

Depth Top [m]: 3.10 Depth Base [m]: 3.60

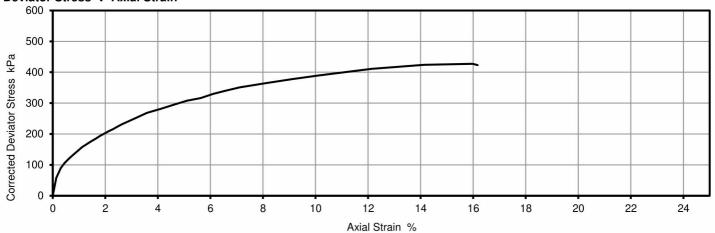
Sample Type: U

Test Number Length Diameter Bulk Density Moisture Content

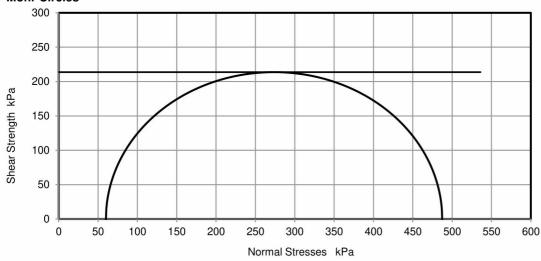
Membrane Correction

Dry Density

1 mm
136.87 mm
70.49 mm
2.08 Mg/m3
18 %
1.77 Mg/m3
1.04 kPa


Rate of Strain
Cell Pressure
Axial Strain at failure
Deviator Stress, (σ1 - σ3)f
Undrained Shear Strength, cu

Mode of Failure Membrane thickness 2.00 %/min 60 kPa 16.0 % 427 kPa


0.23

214 kPa ½(σ1 - σ3)f Compound

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Note: Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed:

Szczepan Bielatowicz PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 06/10/2020

GF 184.11

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

One Dimensional Consolidation Test

Tested in Accordance with: BS 1377-5: 1990: Clause 3

Brownfield Solutions Ltd Client:

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Amy Thornes Contact:

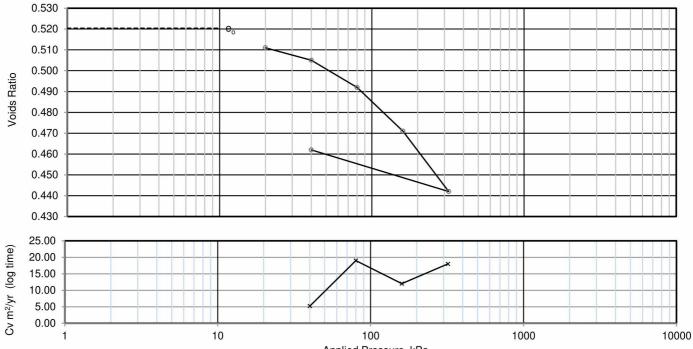
Site Address: Hostmoor Avenue, March

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C4324 Job Number: 20-30837 Date Sampled: 16/09/2020 Date Received: 18/09/2020

Date Tested: 26/09/2020 Sampled By: Client - AT

Test Results:


Laboratory Reference: 1623987 Hole No .: **BH01** Not Given Sample Reference:

Brownish grey CLAY with fragments of chalk Sample Description:

Depth Top [m]: 2.10

Depth Base [m]: 2.60

Sample Type: U

Applied Pressure kPa

Applied Pressure	Voids ratio	Mv	Cv (t50, log)	Cv (t90, root	Csec
kPa		m2/MN	m2/yr	m2/yr	
0	0.520		2:	F2	-
20	0.511	0.31	N/A	N/A	N/A
40	0.505	0.21	5.2	19	N/A
80	0.492	0.2	19	18	0.0013
160	0.471	0.18	12	18	0.0013
320	0.442	0.12	18	30	0.0019
40	0.462	0.049			

Preparation

Index tests

Orientation of the sample Particle density Liquid limit Plastic limit

Vertical		
assumed	2.65	Mg/m3
N/A		%
N/A		%

Final

Initial

Specimen details Diameter Height Moisture Content Bulk density Dry density Voids Ratio Saturation Avg. temperature for test Swelling Pressure

Settlement on saturation

mm	æ	50.02						
mm	19.28	20.04						
%	20	18						
Mg/m	2.18	2.06						
Mg/m	1.81	1.74						
	0.462	0.520						
%	116	94						
°C	22.0							
kPa	Not measured							
0/								

Note: Cv corrected to 20°C

Remarks: Stage 1 - swelling

Signed:

Szczepan Bielatowicz

PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

GF 172.15

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

One Dimensional Consolidation Test

Tested in Accordance with: BS 1377-5: 1990: Clause 3

Brownfield Solutions Ltd Client:

Client Address: William Smith House, 173 - 183 Witton Street,

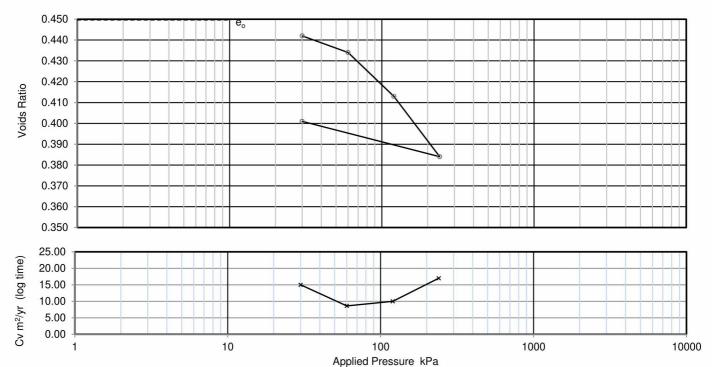
Northwich, Cheshire,

CW9 5LP

Amy Thornes Contact:

Site Address: Hostmoor Avenue, March

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Client Reference: C4324 Job Number: 20-30837 Date Sampled: 17/09/2020 Date Received: 18/09/2020

> Date Tested: 26/09/2020 Sampled By: Client - AT

Test Results:

Laboratory Reference: 1623990 Depth Top [m]: 3.10 Hole No .: **BH02** Depth Base [m]: 3.60 Not Given Sample Type: U Sample Reference:

Brownish grey CLAY with fragments of chalk Sample Description:

Applied	Voids	Μv	Cv	Cv	Csec
Pressure	ratio	""	(t50, log)	(t90, root	CSEC
kPa		m2/MN	m2/yr	m2/yr	
0	0.450		-	-	-
30	0.442	0.17	15	16	0.00025
60	0.434	0.2	8.6	9.2	0.00062
120	0.413	0.24	10	11	0.00064
240	0.384	0.17	17	17	0.0013
30	0.401	0.059			

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation.

This report may not be reproduced other than in full without the prior written approval of the issuing

Preparation

Index tests

Orientation of the sample Particle density Liquid limit Plastic limit

Mg/m3
%
%

Specimen details Diameter Height Moisture Content Bulk density Dry density Voids Ratio Saturation Avg. temperature for test Swelling Pressure

Settlement on saturation

	Final	Initial						
mm	.=	50.03						
mm	19.47	20.15						
%	18	15						
Mg/m3	2.23	2.11						
Mg/m3	1.89	1.83						
1	0.401	0.450						
%	117	90						
°C	22.0							
kPa	easured	Not measured						
%								

Note: Cv corrected to 20°C

Remarks:

Signed:

Szczepan Bielatowicz

PL Deputy of Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

APPENDIX E

Monitoring Results

Ground Gas Monitoring Results

CLIENT:	Date	Operator	- Analsyer		Weather Observations		Temp (°C)	Pressure Trend	Notes
ALDI STORES LTD	30/09/2020	JW	GFM436	Intermittent cloud	Light breeze	Cool	14	Falling	
JOB NO.	07/10/2020	AT	GFM436	Intermittent cloud	Light breeze	Cool	11	Steady	
C4324	04/11/2020	AH	GFM436	Sunny	Light breeze	Cool	9	Falling	Start time: 11:48
SITE:	17/11/2020	AH	GFM436	Overcast	Light breeze	Cool	14	Falling	Start time: 12:18
HOSTMOOR AVENUE, MARCH									

Notes: mb = millibars; CH_4 = methane; LEL = lower explosive limit = 5%v/v; CO_2 = carbon dioxide; O_2 = oxygen; CO=carbon monoxide; O_2 = oxygen; O_2 = oxygen; O_3 = oxyg

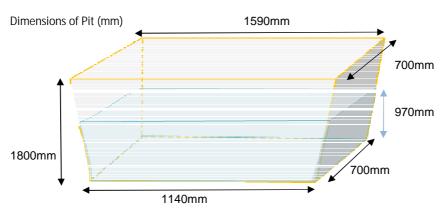
			laces. Calibration Rec						- ,				Ü										actection minit is reported (riighing filed in green). Ous
				Pressu	res (mb)		flows		H_4		H ₄) ₂		Other Gase		•	4		2	
			Dospopes zope		()	(1/	'hr)	(%\	//v)	(%	LEL)	(%)	v/v)	(% ¹	//v)		(PPM)		÷	: :	3 ° ;		
Date	Time	Location	Response zone (m)		7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- - - -		:		:		:		:		СО	H₂S	TVOC (PID)	* · · · · · · · · · · · · · · · · · · ·				Notes
												Sum	ımary Stati	istcs									
			Max values:	1032	0.4	0.9	0.7	1.8	0.0	36.0	0.0	4.0	3.7	19.2	20.6	0.0	0.0	0.0	1 2	10.0	0.000	0.1/5	
			Min. values:		-1.9				0.0	0.0	0.0	0.8	0.1	19.2	11.2	0.0	0.0	0.0	0.3	4.0	0.000		
			iviiri. values:	1003	-1.9	-13.8	-12.7	0.0	0.0								l maximum i					0.000	_
30/09/2020	AM	Ambient	X.00 - X.00	1005	0.0	NA	NA	NA	0.0	NA	0.0	NA	0.2	NA NA	20.5	0.0	0.0	NA	NA	NA	NA	0.028 NA	
00/07/2020	,	BH01	1.00 - 10.00	1005	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.6	17.7	19.3	0.0	0.0	NA	1.10	NA	0.000	0.000	
		WS03	0.70 - 5.00	1004	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.6	19.2	19.4	0.0	0.0	NA	0.84	NA	0.000	0.000	
		WS06	1.00 - 4.00	1004	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.4	2.3	18.3	18.6	0.0	0.0	NA	1.21	NA	0.000	0.000	
30/09/2020	AM	Ambient	X.00 - X.00	1003	0.0	NA	NA	NA	0.0	NA	0.0	NA	0.2	NA	20.6	0.0	0.0	NA	NA	NA	NA	NA	
07/10/2020	AM	Ambient	X.00 - X.00	1008	0.0	NA	NA	NA	0.0	NA	0.0	NA	0.1	NA	20.2	0.0	0.0	NA	NA	NA	NA	NA	
		BH01	1.00 - 10.00	1008	0.2	NA	0.7	0.0	0.0	NA	0.0	NA	0.5	NA	19.1	0.0	0.0	NA	1.00	10.02	0.000	NA	Headworks flooded, steady state taken.
		WS03	0.70 - 5.00	1008	0.2	0.9	0.4	0.0	0.0	0.0	0.0	4.0	0.3	18.1	20.0	0.0	0.0	NA	0.51	5.03	0.000	0.016	
		WS06	1.00 - 4.00	1008	0.4	0.7	0.4	0.0	0.0	0.0	0.0	1.7	0.8	19.0	19.6	0.0	0.0	NA	1.04	4.04	0.000	0.007	
07/10/2020	AM	Ambient	X.00 - X.00	1008	0.0	NA	NA	NA	0.0	NA	0.0	NA	0.1	NA	20.2	0.0	0.0	NA	NA	NA	NA	NA	
04/11/2020	AM	Ambient	X.00 - X.00	1032	NA	NA	NA	NA	0.0	NA	0.0	NA	0.2	NA	20.1	0.0	0.0	NA	NA	NA	NA	NA	
		BH01	1.00 - 10.00		-1.9	-13.8	-12.7	0.0	0.0	0.0	0.0	1.3	1.3	16.5	16.5	0.0	0.0	NA	0.85	10.02	0.000		Cover was waterlogged
		WS03	0.70 - 5.00		-1.1	-9.7	0.0	0.0	0.0	0.0	0.0	3.5	3.5	11.2	11.2	0.0	0.0	NA	0.34	5.03	0.000	0.000	Cover was waterlogged
		WS06	1.00 - 4.00		0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.6	1.6	18.9	18.9	0.0	0.0	NA	0.76	4.04	0.000	0.000	
04/11/2020	AM	Ambient	X.00 - X.00	1031	NA	NA	NA	NA	0.0	NA	0.0	NA	0.2	NA	20.3	0.0	0.0	NA	NA	NA	NA	NA	
17/11/2020	PM	Ambient	X.00 - X.00	1016	NA	NIA	NΙΛ	NA	0.0	NA	0.0	NΙΛ	0.2	NA	20.4	0.0	0.0	NA	NA	NΙΛ	NA	NA	
1//11/2020	rivi	BH01	1.00 - 10.00	1010	0.0	NA 0.0	NA 0.0	1.8	0.0	36.0	0.0 0.0	NA 1.0	0.2 0.9	17.7	20.4 17.8	0.0 0.0	0.0 0.0	NA NA	0.90	NA 10.02	0.000	0.000	
		WS03	0.70 - 5.00		-0.3	-4.0	0.0	0.0	0.0	0.0	0.0	3.7	3.7	16.5	16.5	0.0	0.0	NA	0.41	5.03	0.000	0.000	
		WS06	1.00 - 4.00		-0.3	-3.3	0.0	0.0	0.0	0.0	0.0	1.8	1.8	19.1	19.1	0.0	0.0	NA	0.41	4.04	0.000	0.000	
17/11/2020	PM	Ambient	X.00 - X.00	1015	NA	NA	NA	NA	0.0	NA	0.0	NA	0.2	NA	20.3	0.0	0.0	NA	NA	NA	NA	NA	
1771172020	I IVI	Allibicit	7.00 - 7.00	1013	INA	INA	INA	INA	0.0	INA	0.0	INA	0.2	INC	20.5	0.0	0.0	INC	IVA	INA	INA	INA	

Percolation Test
SA01

Test 1

Percolation Test ALDI STORES LTD

HOSTMOOR AVENUE, MARCH


C4324

Test Pit Construction

Date of Test: 17/09/2020

Logged By: SM Checked By:

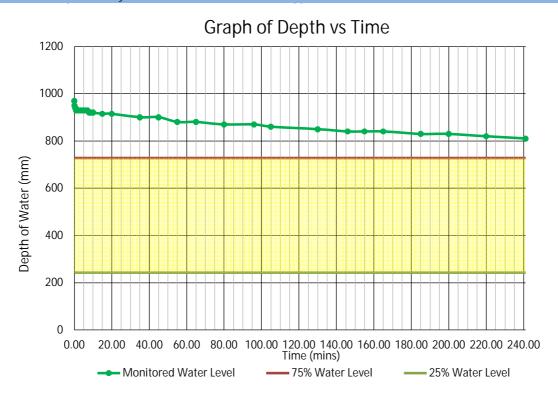
Strata Description	Sandy CLAY										
Depth of Pit	1800mm										
Depth of Water (start)		970mm									
Pit Details		n with no stone fi ated Log for Strat	ų.								
Void Ratio	1	Volume of Pit (m ³)	0.927								
Infill Volume (m³)	N/A	Water Volume (m ³)	0.927								

Site Recorded Data

Time (mins)	Depth to water (mm)	Depth of water (mm)	Time (mins)	Depth to water (mm)	Depth of water (mm)
0.00	830	970	55.0	920	880
0.13	850	950	65.0	920	880
0.50	860	940	80.0	930	870
0.75	860	940	96.0	930	870
1.00	870	930	105.0	940	860
2.00	870	930	130.0	950	850
3.00	870	930	146.0	960	840
4.00	870	930	155.0	960	840
5.00	870	930	165.0	960	840
6.00	870	930	185.0	970	830
7.00	870	930	200.0	970	830
8.00	880	920	220.0	980	820
9.00	880	920	241.0	990	810
10.00	880	920	End of Test	End of Test	End of Test
15.00	885	915			
20.00	885	915			
35.00	900	900			
45.00	920	880			

Percolation Test SA01

Test 1


Percolation Test ALDI STORES LTD

HOSTMOOR AVENUE, MARCH

C4324

Data Analysis

Soil Infiltration Rate Calculation

Water Level 1 (mm)	970
Water Level 2 (mm)	810
Time to Drain from Level 1 to Level 2 (mins)	241
Volume of water discharged (m³)	0.15288
Discharge Area (m ²)	4.4737
Soil Infiltration Rate (m/min)	0.000141797
Soil Infiltration Rate (m/sec)	2.36E-06

Compliancy Check

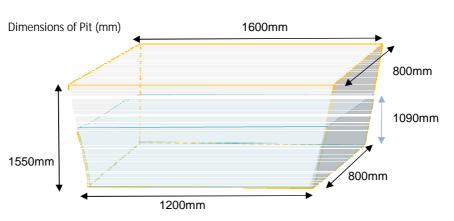
Water Level at 75% effective depth (mm)	727.5
Water Level at 25% effective depth (mm)	242.5

Test not BRE 365 compliant - insufficient time to drain past 25% effective depth

Percolation Test ALDI STORES LTD

SA02 Test 1

HOSTMOOR AVENUE, MARCH


C4324

Test Pit Construction

Date of Test: 17/09/2020

Logged By: SM Checked By:

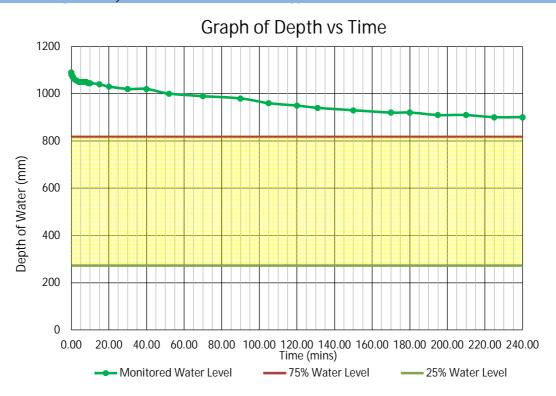
Strata Description		Sandy CLAY	
Depth of Pit	1550mm		
Depth of Water (start)	1090mm		
Pit Details	Open with no stone filling See Associated Log for Stratum Details		
Void Ratio	1	Volume of Pit (m ³)	1.221
Infill Volume (m³)	N/A	Water Volume (m ³)	1.221

Site Recorded Data

Time (mins)	Depth to water (mm)	Depth of water (mm)	Time (mins)	Depth to water (mm)	Depth of water (mm)
0.00	460	1090	52.0	550	1000
0.15	470	1080	70.0	560	990
0.25	470	1080	90.0	570	980
0.75	480	1070	105.0	590	960
1.00	480	1070	120.0	600	950
2.00	490	1060	131.0	610	940
3.00	495	1055	150.0	620	930
4.00	500	1050	170.0	630	920
5.00	500	1050	180.0	630	920
6.00	500	1050	195.0	640	910
7.00	500	1050	210.0	640	910
8.00	500	1050	225.0	650	900
9.00	505	1045	240.0	650	900
10.00	505	1045	End of Test	End of Test	End of Test
15.00	510	1040			
20.00	520	1030			
30.00	530	1020			
40.00	550	1000			

Percolation Test SA02

Test 1


Percolation Test ALDI STORES LTD

HOSTMOOR AVENUE, MARCH

C4324

Data Analysis

Soil Infiltration Rate Calculation

Water Level 1 (mm)	1040
Water Level 2 (mm)	900
Time to Drain from Level 1 to Level 2 (mins)	225
Volume of water discharged (m³)	0.1568
Discharge Area (m ²)	5.228
Soil Infiltration Rate (m/min)	0.000133299

Compliancy Check

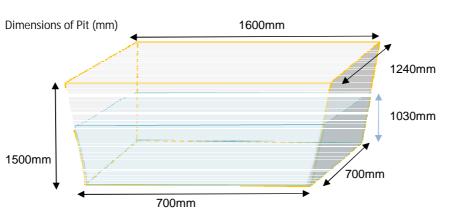
Soil Infiltration Rate (m/sec)

Water Level at 75% effective depth (mm)	817.5
Water Level at 25% effective depth (mm)	272.5

2.22E-06

Test not BRE 365 compliant - insufficient time to drain past 25% effective depth

Percolation Test ALDI STORES LTD


SA03 Test 1

HOSTMOOR AVENUE, MARCH

C4324

Test Pit Construction

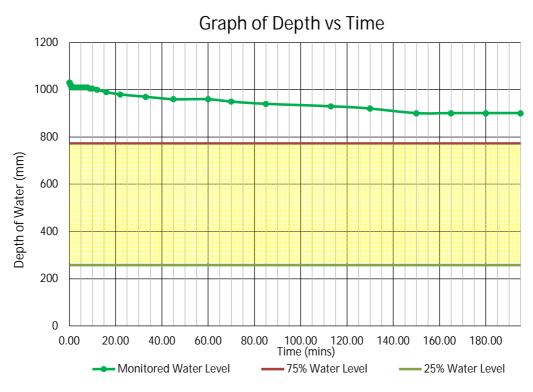
Date of Test: 17/09/2020 Logged By: SM Checked By:

Strata Description	Sandy CLAY		
Depth of Pit	1500mm		
Depth of Water (start)	1030mm		
Pit Details	Open with no stone filling See Associated Log for Stratum Details		
Void Ratio	1	Volume of Pit (m ³)	1.274
Infill Volume (m³)	N/A	Water Volume (m ³)	1.274

Site Recorded Data

Time (mins)	Depth to water (mm)	Depth of water (mm)	Time (mins)	Depth to water (mm)	Depth of water (mm)
0.00	470	1030	45.0	540	960
0.25	470	1030	60.0	540	960
0.50	480	1020	70.0	550	950
0.75	480	1020	85.0	560	940
1.00	490	1010	113.0	570	930
2.00	490	1010	130.0	580	920
3.00	490	1010	150.0	600	900
4.00	490	1010	165.0	600	900
5.00	490	1010	180.0	600	900
6.00	490	1010	195.0	600	900
7.00	490	1010	End of Test	End of Test	End of Test
8.00	490	1010			
9.00	495	1005			
10.00	495	1005			
12.00	500	1000			
16.00	510	990			
22.00	530	970			
33.00	540	960			

Percolation Test ALDI STORES LTD


SA03 Test 1

HOSTMOOR AVENUE, MARCH

Data Analysis

Soil Infiltration Rate Calculation

Water Level 1 (mm)	1005
Water Level 2 (mm)	900
Time to Drain from Level 1 to Level 2 (mins)	185
Volume of water discharged (m³)	0.1171275
Discharge Area (m²)	4.5286
Soil Infiltration Rate (m/min)	0.000139805

Soil Infiltration Rate (m/sec)	2.33E-06

Compliancy Check

Water Level at 75% effective depth (mm)	772.5
Water Level at 25% effective depth (mm)	257.5

Test not BRE 365 compliant - insufficient time to drain past 25% effective depth

APPENDIX F

Waste Assessment Report

Waste Classification Report

Date

Job name

Hostmoor Avenue, March

Description/Comments

Project

C4324

Site

Hostmoor Avenue, March

Related Documents

Name Description

Waste Stream Template

BSL Suite

Classified by

Name: Co
Nicola Swallow Bro

Date: **20 Oct 2020 15:48 GMT** Telephone:

01606 334 844 CW9 5LP

Company:
Brownfield Solutions Ltd
William Smith House
173 – 183 Witton Street

Northwich CW9 5LP HazWasteOnline™ Training Record:

Course
Hazardous Waste Classification

Advanced Hazardous Waste Classification

Report

Created by: Nicola Swallow

Created date: 20 Oct 2020 15:48 GMT

Job summary

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	WS01	0.30	Non Hazardous		3
2	WS01[2]	2.40	Non Hazardous		5
3	WS03	0.20	Non Hazardous		6
4	WS04	0.70	Non Hazardous		7
5	WS05	1.20	Non Hazardous		9
6	WS06	0.10	Unknown. Chemistry data not		11
			provided.		
7	WS07	0.40	Non Hazardous		12
8	WS08	0.10	Non Hazardous		14
9	WS08[2]	1.70	Non Hazardous		15
10	HP01	0.10	Non Hazardous		16
11	BH01	0.40	Non Hazardous		18

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
12	BH01[2]	0.60	Non Hazardous		20
13	BH02	0.40	Non Hazardous		21
14	BH02[2]	0.90	Non Hazardous		23
15	TP101	0.50	Unknown. Chemistry data not		25
			provided.		
16	WS02		Non Hazardous		26
17	WS04[2]		Non Hazardous		27
18	WS06[2]		Non Hazardous		28
19	WS07[2]		Non Hazardous		29
20	WS09		Non Hazardous		30
21	BH02[3]		Non Hazardous		31

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	32
Appendix B: Rationale for selection of metal species	33
Appendix C: Version	33

Page 2 of 34 6TRL Y-JWR2J-H4EZ6 www.hazwasteonline.com

Classification of sample: WS01

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: WS01 Chapter: Sample Depth: Usual Chapter: Sample Depth: Entry: Moisture content: Usual Chapter: Usual

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

(wet weight correction)

None identified

Determinands

Moisture content: 15% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound conc		Classification value	MC Applied	Conc. Not Used
1		pH		PH		7.6	рН		7.6 pH		7.6 pH		
2	4	arsenic { arsenic tri	,	4007.50.0		13	mg/kg	1.32	14.59 mg	/kg	0.00146 %	1	
	_		215-481-4	1327-53-3	-							\vdash	
3	4	cadmium { cadmiur		4000 00 0	1	<0.2	mg/kg	1.285	<0.257 mg	/kg	<0.00002 %		<lod< td=""></lod<>
4	4	chromium in chromoxide (worst case)	}			18	mg/kg	1.462	22.362 mg	/kg	0.00224 %	✓	
			215-160-9	1308-38-9									
5	4	copper { dicopper o		•		13	mg/kg	1.126	12.441 mg	/kg	0.00124 %	1	
		029-002-00-X	215-270-7	1317-39-1							Ļ		
6	4	lead { <mark>lead chroma:</mark> 082-004-00-2	te } 231-846-0	7750 07 0	1	18	mg/kg	1.56	23.865 mg	/kg	0.00153 %	1	
_				7758-97-6								Н	
7	-		231-299-8	7407.04.7	-	<0.3	mg/kg	1.353	<0.406 mg	/kg	<0.0000406 %		<lod< td=""></lod<>
	\vdash	080-010-00-X		-							H		
8	4	,	235-008-5 [1]	12054-48-7 [1]	-	14	ma/ka	1.579	18.796 mg	/kg	0.00188 %	/	
			234-348-1 [2]	11113-74-9 [2]			55	1.070		99	0.00100 /0	•	
9	4	selenium { selenium cadmium sulphose in this Annex }				<1	mg/kg	1.405	<1.405 mg	/kg	<0.000141 %		<lod< th=""></lod<>
		034-002-00-8											
10	4	zinc { zinc chromat	•			44	mg/kg	2.774	103.753 mg	/kg	0.0104 %	1	
			236-878-9	13530-65-9	<u> </u>					_		Ľ	
11		naphthalene				<0.05	mg/kg		<0.05 mg	/kg	<0.000005 %		<lod< td=""></lod<>
			202-049-5	91-20-3						_		L	
12		acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05 mg	/kg	<0.000005 %		<lod< td=""></lod<>
40		acenaphthene	203-917-1	200-90-0		0.05			0.05	"	0.00005.0/	H	
13		·	201-469-6	83-32-9		<0.05	mg/kg		<0.05 mg	/kg	<0.000005 %		<lod< td=""></lod<>
14	•	fluorene				<0.05	mg/kg		<0.05 mg	/kg	<0.000005 %		<lod< th=""></lod<>
			201-695-5	86-73-7			3.19			J			-

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
15	•	phenanthrene	201-581-5	85-01-8		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
16	٠	anthracene	204-371-1	120-12-7		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
17	0	fluoranthene	205-912-4	206-44-0		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
18	٠	pyrene	204-927-3	129-00-0		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
19		benzo[a]anthracene	e 200-280-6	56-55-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
20		chrysene 601-048-00-0	205-923-4	218-01-9		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
21		benzo[b]fluoranther		205-99-2		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
22		benzo[k]fluoranther	l	207-08-9		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
23		benzo[a]pyrene; be		50-32-8		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
24	•	indeno[123-cd]pyre	ene			<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
25		dibenz[a,h]anthrace		193-39-5		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
26	•	benzo[ghi]perylene		53-70-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		asbestos	205-883-8	191-24-2								
27		650-013-00-6		12001-28-4 132207-32-0 12172-73-5 77536-66-4 77536-68-6 77536-67-5 12001-29-5		<			<	<		ND
									Total:	0.019 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 4 of 34 6TRL Y-JWR2J-H4EZ6 www.hazwasteonline.com

Classification of sample: WS01[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

WS01[2]
Chapter:
Sample Depth:

2.40 m
Entry:
Moisture content:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

(wet weight correction)

None identified

Determinands

Moisture content: 16% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1		benzene 601-020-00-8	200-753-7	71-43-2		<0.001 mg/kg	,	<0.001 mg/kg	<0.0000001 %		<lod< th=""></lod<>
2		toluene 601-021-00-3	203-625-9	108-88-3		<0.001 mg/kg	J	<0.001 mg/kg	<0.0000001 %		<lod< th=""></lod<>
3	•	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<0.001 mg/kg	1	<0.001 mg/kg	<0.0000001 %		<lod< th=""></lod<>
4			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001 mg/kg	3		<0.0000001 %		<lod< th=""></lod<>
	Total: 4										

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

<LOD Below limit of detection

ND Not detected

Classification of sample: WS03

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

WS03
Chapter:

Sample Depth:

0.20 m
Entry:

Moisture content:

12%
(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 12% Wet Weight Moisture Correction applied (MC)

#	!		Determinand		o Note	User entered data	Conv. Factor		Classification value	Ap	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP					2	
1		asbestos 650-013-00-6		12001-28-4 132207-32-0 12172-73-5 77536-66-4 77536-68-6 77536-67-5 12001-29-5		<		<	<		ND
	Tota										

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

<LOD Below limit of detection

ND Not detected

Page 6 of 34 6TRL Y-JWR2J-H4EZ6 www.hazwasteonline.com

Classification of sample: WS04

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: WS04 Chapter: Sample Depth: Union Entry: Moisture content:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 $\overline{03}$)

Hazard properties

(wet weight correction)

None identified

13%

Determinands

Moisture content: 13% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
1	•	рН		PH		8.3	рН		8.3	рН	8.3 pH	2	
2	4	arsenic { arsenic tri	oxide } 215-481-4	1327-53-3		9.8	mg/kg	1.32	11.257	mg/kg	0.00113 %	√	
3	4	cadmium { <mark>cadmiur</mark> 048-010-00-4	<mark>n sulfide</mark> } 215-147-8	1306-23-6	1	0.2	mg/kg	1.285	0.224	mg/kg	0.0000174 %	✓	
4	4	chromium in chromoxide (worst case)	}			24	mg/kg	1.462	30.517	mg/kg	0.00305 %	√	
5	-	copper { dicopper o	215-160-9 <mark>oxide; copper (I) oxi</mark> 215-270-7	1308-38-9 de }		11	mg/kg	1.126	10.775	mg/kg	0.00108 %	✓	
6	4	lead { lead chromat		7758-97-6	1	8.4	mg/kg	1.56	11.399	mg/kg	0.000731 %	✓	
7	_	mercury { mercury 080-010-00-X	<mark>dichloride</mark> } 231-299-8	7487-94-7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< th=""></lod<>
8	-		Iroxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		20	mg/kg	1.579	27.483	mg/kg	0.00275 %	√	
9	•	selenium { selenium cadmium sulphoselin this Annex }				<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< th=""></lod<>
10	4	zinc { zinc chromat	<mark>e</mark> } 236-878-9	13530-65-9		40	mg/kg	2.774	96.54	mg/kg	0.00965 %	√	
11		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
12	•	acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
13	•	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
14	•	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>

#		Determinand CLP index number	CLP Note	User entered	data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
15	•	phenanthrene 201-581-5 85-01-8		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
16	0	anthracene 204-371-1 120-12-7		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
17	•	fluoranthene 205-912-4 206-44-0		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
18	٠	pyrene 204-927-3 129-00-0		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
19		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
20		chrysene 601-048-00-0 205-923-4 218-01-9		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
21		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
22		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
23		benzo[a]pyrene; benzo[def]chrysene		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
24	•	601-032-00-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
25		dibenz[a,h]anthracene 601-041-00-2 200-181-8		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
26	•	benzo[ghi]perylene 205-883-8 191-24-2		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
27		benzene 601-020-00-8 200-753-7 71-43-2		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< th=""></lod<>
28		toluene 601-021-00-3 203-625-9 108-88-3		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< th=""></lod<>
29		ethylbenzene 601-023-00-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		po 1 020 00 7 <u>202-040-4</u> 100-41-4					Total	0.0187 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 8 of 34 6TRL Y-JWR2J-H4EZ6 www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

WS05
Chapter:
Sample Depth:

1.20 m
Entry:
Moisture content:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

(wet weight correction)

None identified

Determinands

Moisture content: 10% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1		рН		PH		8.1	рН		8.1 pH	8.1 pH		
2	4	arsenic { arsenic tri 033-003-00-0	oxide } 215-481-4	1327-53-3		14	mg/kg	1.32	16.636 mg/kg	0.00166 %	√	
3	4	cadmium { cadmiur 048-010-00-4	<mark>n sulfide</mark> } 215-147-8	1306-23-6	1	<0.2	mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< th=""></lod<>
4	4	chromium in chromoxide (worst case)	· / I	s { • chromium(III)		22	mg/kg	1.462	28.939 mg/kg	0.00289 %	√	
5	4	copper { dicopper o				13	mg/kg	1.126	13.173 mg/kg	0.00132 %	√	
6	4	lead { lead chromat		7758-97-6	1	17	mg/kg	1.56	23.865 mg/kg	0.00153 %	✓	
7		mercury { mercury 080-010-00-X	dichloride }	7487-94-7		<0.3	mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
8	4		Iroxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		23	mg/kg	1.579	32.696 mg/kg	0.00327 %	✓	
9	4	selenium { selenium cadmium sulphose in this Annex }				<1	mg/kg	1.405	<1.405 mg/kg	<0.000141 %		<lod< th=""></lod<>
10	4	zinc { zinc chromat	e } 236-878-9	13530-65-9		56	mg/kg	2.774	139.817 mg/kg	0.014 %	√	
11		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
12	٠	acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
13	٠	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
14	٠	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>

	_	1			_	1				T	_	
#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
\vdash					Ö						Σ	
15		phenanthrene	laa. = a. =	(0= 0.1.0	_	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
H			201-581-5	85-01-8	╁							
16	0	anthracene		1		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
Н			204-371-1	120-12-7	+							
17	0	fluoranthene				<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-912-4	206-44-0	\perp							
18		pyrene				<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
			204-927-3	129-00-0	-							
19		benzo[a]anthracen				<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
Щ			200-280-6	56-55-3	+							
20		chrysene				<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		1	205-923-4	218-01-9	\perp							
21		benzo[b]fluoranthe				<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-911-9	205-99-2	1							
22		benzo[k]fluoranthe				<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-036-00-5	205-916-6	207-08-9	\perp							
23		benzo[a]pyrene; be				<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-032-00-3	200-028-5	50-32-8	1							
24		indeno[123-cd]pyre	ene			<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-893-2	193-39-5								
25		dibenz[a,h]anthrac	ene			<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3								
26		benzo[ghi]perylene)			<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-883-8	191-24-2		40.00				40.000000 70		1202
		xylene										
27			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		asbestos										
28		650-013-00-6		12001-28-4 132207-32-0 12172-73-5 77536-66-4 77536-68-6 77536-67-5 12001-29-5		<			<	<		ND
									Total	0.0249 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound 4

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 10 of 34 6TRL Y-JWR2J-H4EZ6 www.hazwasteonline.com

Unknown. Chemistry data not provided. Classified as 17 05 04 or 17 05 03 * in the List of Waste

Sample details

Sample Name: LoW Code: **WS06** Chapter: Sample Depth: 0.10 m Entry: Moisture content: 9.6% (wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 9.6% Wet Weight Moisture Correction applied (MC)

#		Determinand		Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
	CLP index number	EC Number	CAS Number	CLP					MC /	
							Total:	0%		

User supplied data

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

WS07
Chapter:
Sample Depth:

0.40 m
Entry:
Moisture content:

8%
(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 8% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	•	рН		PH		8.6	рН		8.6	рН	8.6 pH	_	
2	4	arsenic { arsenic tri	•	1327-53-3		13	mg/kg	1.32	15.791	mg/kg	0.00158 %	✓	
3	4	cadmium { cadmiur 048-010-00-4	<mark>n sulfide</mark> } 215-147-8	1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
4	4	chromium in chrom oxide (worst case)	}	(a) chromium(III)		19	mg/kg	1.462	25.548	mg/kg	0.00255 %	√	
5	4	copper { dicopper o	oxide; copper (I) oxide			10	mg/kg	1.126	10.358	mg/kg	0.00104 %	√	
6	4	lead { lead chromat		7758-97-6	1	18	mg/kg	1.56	25.831	mg/kg	0.00166 %	√	
7	4	mercury { mercury 080-010-00-X	<mark>dichloride</mark> } 231-299-8	7487-94-7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
8	4		roxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		18	mg/kg	1.579	26.157	mg/kg	0.00262 %	√	
9	4	selenium { selenium cadmium sulphosel in this Annex }				<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< th=""></lod<>
10	4	034-002-00-8 zinc { zinc chromate 024-007-00-3	e } 236-878-9	13530-65-9		49	mg/kg	2.774	125.059	mg/kg	0.0125 %	√	
11		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
12	•	acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
13	•	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
14	•	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>

				_							_	
#		Determinand		CLP Note	User entered	l data	Conv. Factor	Compound c	onc.	Classification value	Applied	Conc. Not Used
	CLP index number	EC Number	CAS Number	CLP							MC	
15	phenanthrene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< th=""></lod<>
		201-581-5	85-01-8		10.00				mg/ng			
16	anthracene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
		204-371-1	120-12-7		10.00				mg/ng			1200
17	fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		205-912-4	206-44-0		10.00				mg/ng	~0.000000 70		1200
18	pyrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		204-927-3	129-00-0		10.00				mg/ng			1200
19	benzo[a]anthracene	Э			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	601-033-00-9	200-280-6	56-55-3						mg/ng			1200
20	chrysene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	601-048-00-0	205-923-4	218-01-9		10.00				mg/ng	40.000000 70		1200
21	benzo[b]fluoranther	ne			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
21	601-034-00-4	205-911-9	205-99-2		VO.03	ilig/kg		~0.03	ilig/kg	<0.000003 /8		\LOD
22	benzo[k]fluoranther	ne			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
	601-036-00-5	205-916-6	207-08-9		VO.03	ilig/kg		~ 0.03	ilig/kg	<0.000003 /8		\LOD
23	benzo[a]pyrene; be	nzo[def]chrysene			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
23	601-032-00-3	200-028-5	50-32-8		VO.03	ilig/kg		~ 0.03	ilig/kg	<0.000003 /8		\LOD
24	indeno[123-cd]pyre	ne			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
24		205-893-2	193-39-5		VO.03	ilig/kg		<0.03	ilig/kg	<0.000003 /8		\LOD
25	dibenz[a,h]anthrace	ene			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
23	601-041-00-2	200-181-8	53-70-3		<0.03	ilig/kg		<0.03	ilig/kg	<0.000003 /8		\LOD
26	benzo[ghi]perylene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
20		205-883-8	191-24-2		VO.03	ilig/kg		<0.03	ilig/kg	<0.000003 /8		\LOD
27	benzene				<0.001	mg/kg		<0.001	ma/ka	<0.0000001 %		<lod< td=""></lod<>
21	601-020-00-8	200-753-7	71-43-2		40.001	ilig/kg		\(\text{0.001}\)	ilig/kg	<0.0000001 78		\LOD
28	toluene				<0.001	mg/kg		<0.001	ma/ka	<0.0000001 %		<lod< td=""></lod<>
20	601-021-00-3	203-625-9	108-88-3		20.001	ilig/kg		20.001	mg/kg	<0.0000001 %		LOD
29	ethylbenzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
23	601-023-00-4	202-849-4	100-41-4	L	Q0.001	ilig/kg			mg/kg	C0.0000001 /6		\LUD
			<u> </u>						Total:	0.0222 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: WS08 Chapter: Sample Depth: Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% Wet Weight Moisture Correction applied (MC)

#	CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor		Classification value	MC Applied	Conc. Not Used
1	asbestos 650-013-00-6		12001-28-4 132207-32-0 12172-73-5 77536-66-4 77536-68-6 77536-67-5 12001-29-5		<		<	<		ND
							Total:	0%		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

<LOD Below limit of detection

ND Not detected

Page 14 of 34 6TRL Y-JWR2J-H4EZ6 www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: WS08[2] Chapter: Sample Depth:

1.70 m Entry: Moisture content:

14% (wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 14% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	1		202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001 mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< th=""></lod<>
2		asbestos 650-013-00-6		12001-28-4 132207-32-0 12172-73-5 77536-66-4 77536-68-6 77536-67-5 12001-29-5		<		<	<		ND
								Total:	1.0e-07 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

<LOD Below limit of detection

ND Not detected

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

HP01 Chapter:

Sample Depth:

0.10 m Entry:

Moisture content:

5.2%
(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 5.2% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound o	onc.	Classification value	MC Applied	Conc. Not Used
1	0	рН		PH		8.5	рН		8.5	рН	8.5 pH		
2	_		oxide } 215-481-4	1327-53-3		12	mg/kg	1.32	15.02	mg/kg	0.0015 %	✓	
3	4	cadmium { cadmiur 048-010-00-4	<mark>n sulfide</mark> } 215-147-8	1306-23-6	1	0.2	mg/kg	1.285	0.244	mg/kg	0.000019 %	✓	
4	æ e	chromium in chrom oxide (worst case)	· / I	s { • chromium(III)		22	mg/kg	1.462	30.482	mg/kg	0.00305 %	√	
5	-	copper { dicopper o				12	mg/kg	1.126	12.808	mg/kg	0.00128 %	✓	
6	4	lead { lead chromat		7758-97-6	1	17	mg/kg	1.56	25.138	mg/kg	0.00161 %	✓	
7		mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< th=""></lod<>
8	-	028-008-00-X	<mark>froxide</mark> } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		20	mg/kg	1.579	29.947	mg/kg	0.00299 %	✓	
9	~	selenium { selenium cadmium sulphosel in this Annex }				<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< th=""></lod<>
10	4	zinc { zinc chromate	e } 236-878-9	13530-65-9		74	mg/kg	2.774	194.612	mg/kg	0.0195 %	✓	
11		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
12	•	acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
13	•	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
14	0	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>

_	_				_								
#		OLD in day, march and	Determinand	CACAL weeks	CLP Note	User entered	d data	Conv. Factor	Compound o	conc.	Classification value	Applied:	Conc. Not Used
		CLP index number	EC Number	CAS Number	占							<u>R</u>	
15		phenanthrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	ш	<lod< th=""></lod<>
	_		201-581-5	85-01-8	-								
16		anthracene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	ш	<lod< th=""></lod<>
			204-371-1	120-12-7	<u> </u>								
17		fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	ш	<lod< td=""></lod<>
			205-912-4	206-44-0									
18		pyrene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %	ш	<lod< td=""></lod<>
			204-927-3	129-00-0						3 3			
19		benzo[a]anthracene	Э			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %	ш	<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3						3 3			
20		chrysene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %	ш	<lod< th=""></lod<>
		601-048-00-0	205-923-4	218-01-9						<i>3</i> 3			
21		benzo[b]fluoranther	ne			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %	ш	<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2									
22		benzo[k]fluoranther	ne			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %	ш	<lod< th=""></lod<>
		601-036-00-5	205-916-6	207-08-9									
23		benzo[a]pyrene; be				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %	ш	<lod< th=""></lod<>
		601-032-00-3	200-028-5	50-32-8		10.00			10.00	9,9	10.000000 70		1202
24		indeno[123-cd]pyre	ne			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %	ш	<lod< td=""></lod<>
			205-893-2	193-39-5		10.00			10.00	9,9	10.000000 /0		1202
25		dibenz[a,h]anthrace	ene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
		601-041-00-2	200-181-8	53-70-3		10.00			10.00	9,9	10.000000 70		
26		benzo[ghi]perylene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
			205-883-8	191-24-2		10.00			10.00	9,9	10.000000 70		
		xylene											
27			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
										Total:	0.0302 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

BH01 Chapter:

Sample Depth:

0.40 m Entry:

Moisture content:

8.8%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 8.8% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
1	0	рН		PH		9.3	рН		9.3	рН	9.3 pH		
2	-	arsenic { arsenic tri 033-003-00-0	<mark>oxide</mark> } 215-481-4	1327-53-3		12	mg/kg	1.32	14.45	mg/kg	0.00144 %	✓	
3	-	cadmium { cadmiur 048-010-00-4	<mark>n sulfide</mark> } 215-147-8	1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< th=""></lod<>
4	4	oxide (worst case)		s { • chromium(III)		20	mg/kg	1.462	26.659	mg/kg	0.00267 %	√	
5	-	copper { dicopper o				11	mg/kg	1.126	11.295	mg/kg	0.00113 %	✓	
6	-	lead { <mark>lead chromat</mark> 082-004-00-2	t <mark>e</mark> } 231-846-0	7758-97-6	1	18	mg/kg	1.56	25.606	mg/kg	0.00164 %	✓	
7		mercury { mercury 080-010-00-X	<mark>dichloride</mark> } 231-299-8	7487-94-7		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< th=""></lod<>
8			lroxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		19	mg/kg	1.579	27.37	mg/kg	0.00274 %	✓	
9	•	selenium { selenium cadmium sulphosel in this Annex }				<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< th=""></lod<>
10	4	zinc { zinc chromate	<mark>e</mark> } 236-878-9	13530-65-9		56	mg/kg	2.774	141.681	mg/kg	0.0142 %	✓	
11		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
12	•	acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
13	0	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
14	0	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>

#		01.01	Determinand		o Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							S	
15		phenanthrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	ш	<lod< th=""></lod<>
			201-581-5	85-01-8									
16		anthracene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %	ш	<lod< th=""></lod<>
			204-371-1	120-12-7						J J			
17		fluoranthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	ш	<lod< th=""></lod<>
			205-912-4	206-44-0						3 3			
18	0	pyrene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	ш	<lod< th=""></lod<>
			204-927-3	129-00-0	1					3 3			
19		benzo[a]anthracene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	ш	<lod< th=""></lod<>
		601-033-00-9	200-280-6	56-55-3									
20		chrysene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	ш	<lod< th=""></lod<>
		601-048-00-0	205-923-4	218-01-9									
21		benzo[b]fluoranthei	ne			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %	ш	<lod< th=""></lod<>
		601-034-00-4	205-911-9	205-99-2						3 3			
22		benzo[k]fluoranther	ne			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	ш	<lod< th=""></lod<>
		601-036-00-5	205-916-6	207-08-9						3 3			
23		benzo[a]pyrene; be				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %	ш	<lod< th=""></lod<>
		601-032-00-3	200-028-5	50-32-8						3 3			
24	0	indeno[123-cd]pyre	ene			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %	ш	<lod< th=""></lod<>
			205-893-2	193-39-5						3 3			
25		dibenz[a,h]anthrace	ene			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %	ш	<lod< th=""></lod<>
		601-041-00-2	200-181-8	53-70-3						3 3			
26		benzo[ghi]perylene	1			<0.05	mg/kg		<0.05	ma/ka	<0.000005 %	ш	<lod< th=""></lod<>
			205-883-8	191-24-2						99			
27		benzene				<0.001	mg/kg		<0.001	ma/ka	<0.0000001 %	ш	<lod< th=""></lod<>
		601-020-00-8	200-753-7	71-43-2									
28		toluene				<0.001	mg/kg		<0.001	ma/ka	<0.0000001 %	ш	<lod< th=""></lod<>
		601-021-00-3	203-625-9	108-88-3		10.00				9,9			1.00
29		ethylbenzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	ш	<lod< th=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
30			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
								1		Total:	0.0241 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: BH01[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

BH01[2] Chapter:

Sample Depth:

0.60 m Entry:

Moisture content:

5.7%
(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 5.7% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1		benzene 601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
2		toluene 601-021-00-3	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
3	•	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
										Total:	3.0e-07 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

<LOD Below limit of detection

ND Not detected

Page 20 of 34 6TRL Y-JWR2J-H4EZ6 www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:
BH02 Chapter:
Sample Depth:
0.40 m Entry:
Moisture content:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)17 05 04 (Soil and stones other than those mentioned in 17 05

03)

8.9%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 8.9% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH		PH		7.6	рН		7.6 pH	7.6 pH		
2	~	arsenic { arsenic tri	•	1,00= =0.0		9.8	mg/kg	1.32	11.788 mg/l	g 0.00118 %	1	
_	-		215-481-4	1327-53-3	-						\vdash	
3	-	cadmium {		1	1	<0.2	mg/kg	1.285	<0.257 mg/l	g <0.00002 %		<lod< td=""></lod<>
	\rightarrow	048-010-00-4	215-147-8	1306-23-6	-				<u> </u>		-	
4		oxide (worst case)	}	s { • chromium(III)		18	mg/kg	1.462	23.967 mg/l	g 0.0024 %	✓	
			215-160-9	1308-38-9	ļ						_	
5	-	copper { dicopper o				10	mg/kg	1.126	10.257 mg/l	g 0.00103 %	1	
	-		215-270-7	1317-39-1	_					<u> </u>	Ļ	
6	-	lead { <mark>lead chromat</mark>	•		1	18	mg/kg	1.56	25.578 mg/l	g 0.00164 %	1	
			231-846-0	7758-97-6							\vdash	
7	-	mercury { mercury				<0.3	mg/kg	1.353	<0.406 mg/l	g <0.0000406 %		<lod< td=""></lod<>
	\rightarrow		231-299-8	7487-94-7							_	
	~	nickel {	·					4 570	00.445	0.00004.0/	١.	
8	1		235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		14	mg/kg	1.579	20.145 mg/l	g 0.00201 %	√	
9	~	selenium {				<1	mg/kg	1.405	<1.405 mg/l	g <0.000141 %		<lod< td=""></lod<>
	ĺ	034-002-00-8										
10	ď.	zinc { zinc chromat	<mark>e</mark> }			45	ma/ka	2.774	113.726 mg/l	a 0.0114 %	1	
		024-007-00-3	236-878-9	13530-65-9				2.77	110.720 mg/1	9 0.011170	ľ	
11		naphthalene				<0.05	mg/kg		<0.05 mg/l	q <0.000005 %		<lod< th=""></lod<>
		601-052-00-2	202-049-5	91-20-3		10.00				9 10.000000 70		1202
12	٠	acenaphthylene	205-917-1	boo oo o		<0.05	mg/kg		<0.05 mg/l	g <0.000005 %		<lod< td=""></lod<>
			205-917-1	208-96-8							-	
13	•	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05 mg/l	g <0.000005 %		<lod< td=""></lod<>
		fluorene	E0: 403-0	00 02-0		0.05						
14			201-695-5	86-73-7	1	<0.05	mg/kg		<0.05 mg/l	g <0.000005 %		<lod< td=""></lod<>

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
15	0	phenanthrene	201-581-5	85-01-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
16		anthracene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< th=""></lod<>
L			204-371-1	120-12-7		40.00				9/119			1205
17		fluoranthene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< th=""></lod<>
			205-912-4	206-44-0		10.00				9,9			1202
18	0	pyrene				<0.05	mg/kg		< 0.05	ma/ka	<0.000005 %		<lod< th=""></lod<>
			204-927-3	129-00-0									
19		benzo[a]anthracen				<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
		601-033-00-9	200-280-6	56-55-3									
20		chrysene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
			205-923-4	218-01-9									
21		benzo[b]fluoranthe				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
			205-911-9	205-99-2	1								
22		benzo[k]fluoranther				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
		601-036-00-5	205-916-6	207-08-9						J J			
23		benzo[a]pyrene; be				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< th=""></lod<>
			200-028-5	50-32-8									
24	0	indeno[123-cd]pyre				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< th=""></lod<>
			205-893-2	193-39-5						J J			
25		dibenz[a,h]anthrace				<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
Ĺ			200-181-8	53-70-3			J. 9			J 19			_
26		benzo[ghi]perylene				<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
_			205-883-8	191-24-2	_		- 5 5						
27		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
		601-020-00-8	200-753-7	71-43-2	_		- 5 5						
28		toluene				<0.001	mg/kg		<0.001	mg/ka	<0.0000001 %		<lod< th=""></lod<>
Ĺ			203-625-9	108-88-3	1		J. 19						
29		ethylbenzene				<0.001	mg/kg		<0.001	mg/ka	<0.0000001 %		<lod< th=""></lod<>
Ĺ		601-023-00-4	202-849-4	100-41-4			J. 9						
L										Total:	0.0199 %	L	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 22 of 34 6TRL Y-JWR2J-H4EZ6 www.hazwasteonline.com

Classification of sample: BH02[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: BH02[2] Chapter: Sample Depth: Union Construction 7: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

(wet weight correction)

None identified

7.7%

Determinands

Moisture content: 7.7% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	•	рН		PH		8.8	рН		8.8 pH	8.8 pH		
2	~		i <mark>oxide</mark> } 215-481-4	1327-53-3		13	mg/kg	1.32	15.843 mg/k	g 0.00158 %	1	
3	4		<mark>m sulfide</mark> } 215-147-8	1306-23-6	1	<0.2	mg/kg	1.285	<0.257 mg/k	g <0.00002 %		<lod< th=""></lod<>
4	4	oxide (worst case)	\	s { • chromium(III)		10	mg/kg	1.462	13.49 mg/k	g 0.00135 %	√	
5	4	copper { dicopper o				4.7	mg/kg	1.126	4.884 mg/k	g 0.000488 %	1	
6	4	lead { lead chroma		7758-97-6	1	6.1	mg/kg	1.56	8.782 mg/k	g 0.000563 %	1	
7	~		dichloride }	7487-94-7		<0.3	mg/kg	1.353	<0.406 mg/k	g <0.0000406 %		<lod< th=""></lod<>
8	4	028-008-00-X	droxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		13	mg/kg	1.579	18.952 mg/k	g 0.0019 %	√	
9	4	selenium { seleniur cadmium sulphose in this Annex }				<1	mg/kg	1.405	<1.405 mg/k	g <0.000141 %		<lod< th=""></lod<>
10	4	zinc { zinc chromat	e } 236-878-9	13530-65-9		24	mg/kg	2.774	61.453 mg/k	g 0.00615 %	✓	
11		naphthalene	202-049-5	91-20-3		<0.05	mg/kg		<0.05 mg/k	g <0.000005 %		<lod< th=""></lod<>
12	•	acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05 mg/k	g <0.000005 %		<lod< th=""></lod<>
13	•	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05 mg/k	g <0.00005 %		<lod< th=""></lod<>
14	•	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05 mg/k	g <0.00005 %		<lod< th=""></lod<>

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
15	۰	phenanthrene	201-581-5	85-01-8	-	<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
16		anthracene	204-371-1	120-12-7		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
17	•	fluoranthene	205-912-4	206-44-0		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
18	۰	pyrene	204-927-3	129-00-0		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
19		benzo[a]anthracen		56-55-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
20		chrysene	205-923-4	218-01-9		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
21		benzo[b]fluoranthe		205-99-2		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
22		benzo[k]fluoranther		207-08-9		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
23		benzo[a]pyrene; be		50-32-8		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
24	٠	indeno[123-cd]pyre		193-39-5		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
25		dibenz[a,h]anthrace		53-70-3		<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
26	0	benzo[ghi]perylene	<u> </u>			<0.05	mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
27		asbestos 650-013-00-6	205-883-8	12001-28-4 132207-32-0 12172-73-5 77536-66-4 77536-67-5 12001-29-5		<			<	<		ND
									Total:	0.0123 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 24 of 34 6TRL Y-JWR2J-H4EZ6 www.hazwasteonline.com

Unknown. Chemistry data not provided. Classified as 17 05 04 or 17 05 03 * in the List of Waste

Sample details

Sample Name: LoW Code: TP101 Chapter: Sample Depth: 0.50 m Entry: Moisture content: 12% (wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 12% Wet Weight Moisture Correction applied (MC)

#	010:1	Determinand	0404	o Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
	CLP index number	EC Number	CAS Number	CLP					MC	
							Total:	0%	Г	

User supplied data

Non Hazardous Waste
Classified as 17 05 04
in the List of Waste

Sample details

Sample Name:

WS02
Chapter:

Moisture content:

13%
(wet weight correction)

LoW Code:
Chapter:
Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 13% Wet Weight Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv.	Compound of	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP						MC,	
1	0	рН		DH		8.3 pH		8.3	рН	8.3 pH		
				111					Total:	0%		

Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Page 26 of 34 6TRL Y-JWR2J-H4EZ6 www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: WS04[2] Chapter:

Moisture content: 13%

(wet weight correction)

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 13% Wet Weight Moisture Correction applied (MC)

#	CLP index number	Determinand EC Number	CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compoun	d conc.	Classification value	MC Applied	Conc. Not Used
1	pH		PH		8.5	рН		8.5	рН	8.5 pH		
2	asbestos 650-013-00-6		12001-28-4 132207-32-0 12172-73-5 77536-66-4 77536-68-6 77536-67-5 12001-29-5		<			<		<		ND
	`		`						Total:	0%		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

<LOD Below limit of detection

ND Not detected

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

WS06[2]
Chapter:

Moisture content:

12%
(wet weight correction)

LoW Code:
Chapter:
Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 12% Wet Weight Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP						MC/	
1	0	pH		PH		8.3 pH		8.3	pН	8.3 pH		
									Total:	0%		

Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Page 28 of 34 6TRL Y-JWR2J-H4EZ6 www.hazwasteonline.com

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: WS07[2] Chapter:

Moisture content:

11% (wet weight correction) Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05

)3)

Hazard properties

None identified

Determinands

Moisture content: 11% Wet Weight Moisture Correction applied (MC)

#		Determinand		Note	User ente	red data	Conv. Factor	Compoun	d conc.	Classification value	Applied	Conc. Not Used
	CLP index number	EC Number	CAS Number	CLP							MC	
1	pH		PH		8.5	рН		8.5	рН	8.5 pH		
									Total:	0%		

Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

WS09
Chapter:

Moisture content:

12%
(wet weight correction)

LoW Code:
Chapter:
Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 12% Wet Weight Moisture Correction applied (MC)

#			Determinand		Note	User entered	d data	Conv.	Compound	d conc.	Classification value	Applied	Conc. Not
		CLP index number	EC Number	CAS Number	CLP							MC,	
1	•	pH		PH		8.4	рН		8.4	рН	8.4 pH		
										Total:	0%		

Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Page 30 of 34 6TRL Y-JWR2J-H4EZ6 www.hazwasteonline.com

Classification of sample: BH02[3]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Entry:

Sample details

Sample Name: LoW Code: BH02[3] Chapter:

Moisture content: 15%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 15% Wet Weight Moisture Correction applied (MC)

#			Determinand		Note	User enter	red data	Conv. Factor	Compoun	d conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							MC	
1	•	pH		PH		8.4	pН		8.4	рН	8.4 pH		
										Total:	0%		

Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Appendix A: Classifier defined and non CLP determinands

• pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

* chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4 H332, Acute Tox. 4 H302, Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Resp. Sens. 1

H334 , Skin Sens. 1 H317 , Repr. 1B H360FD , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/quest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4 H302 , Acute Tox. 1 H330 , Acute Tox. 1 H310 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Aquatic Acute 1 H400, Aquatic Chronic 1 H410, Aquatic

Chronic 2 H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

 $Hazard\ Statements:\ Acute\ Tox.\ 4\ H302\ ,\ Eye\ Irrit.\ 2\ H319\ ,\ STOT\ SE\ 3\ H335\ ,\ Carc.\ 2\ H351\ ,\ Skin\ Sens.\ 1\ H317\ ,\ Aquatic\ Acute\ 1\ H400\ ,$

, Aquatic Chronic 1 H410 , Skin Irrit. 2 H315

* anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

 $Hazard\ Statements:\ Eye\ Irrit.\ 2\ H319\ ,\ STOT\ SE\ 3\ H335\ ,\ Skin\ Irrit.\ 2\ H315\ ,\ Skin\ Sens.\ 1\ H317\ ,\ Aquatic\ Acute\ 1\ H400\ ,\ Aquatic\ Acute$

Chronic 1 H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4 H302, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2 H315 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

Page 32 of 34 6TRL Y-JWR2J-H4EZ6 www.hazwasteonline.com

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4

Description/Comments:

Data source: Commission Regulation (EU) No 605/2014 - 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP6)

Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Worst case species based on hazard statements

cadmium {cadmium sulfide}

Worst case species based on hazard statements

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Worst case species based on hazard statements

copper {dicopper oxide; copper (I) oxide}

Most likely common species

lead {lead chromate}

Worst case species based on hazard statements

mercury {mercury dichloride}

Worst case species based on hazard statements

nickel {nickel dihydroxide}

Worst case species based on hazard statements

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Worst case species based on hazard statements

zinc {zinc chromate}

Worst case species based on hazard statements

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018

HazWasteOnline Classification Engine Version: 2020.289.4500.8764 (15 Oct 2020)

HazWasteOnline Database: 2020.290.4501.8765 (16 Oct 2020)

This classification utilises the following guidance and legislation:

WM3 v1.1 - Waste Classification - 1stEditionv1.1-May2018
CLP Regulation - Regulation1272/2008/ECof16December2008

1st ATP - Regulation790/2009/ECof10August2009

2nd ATP - Regulation286/2011/ECof10March2011

3rd ATP - Regulation618/2012/EUof10July2012

4th ATP - Regulation487/2013/EUof8May2013

Correction to 1st ATP - Regulation758/2013/EUof7August2013

5th ATP - Regulation944/2013/EUof2October2013

6th ATP - Regulation605/2014/EUof5June2014

WFD Annex III replacement - Regulation1357/2014/EUof18December2014

Revised List of Wastes 2014 - Decision2014/955/EUof18December2014

7th ATP - Regulation2015/1221/EUof24July2015

8th ATP - Regulation(EU)2016/918of19May2016 9th ATP - Regulation(EU)2016/1179of19July2016

10th ATP - Regulation(EU)2017/776of4May2017

HP14 amendment - Regulation(EU)2017/997of8June2017

13th ATP - Regulation(EU)2018/1480of4October2018

14th ATP - Regulation(EU)2020/217of4October2019

15th ATP - Regulation(EU)2020/1182of19May2020

POPs Regulation 2004 - Regulation850/2004/ECof29April2004

1st ATP to POPs Regulation - Regulation756/2010/EUof24August2010 2nd ATP to POPs Regulation - Regulation757/2010/EUof24August2010

Page 34 of 34 6TRL Y-JWR2J-H4EZ6 www.hazwasteonline.com

