									Window Sa	mpler No.	\Box
								Borehole Log	WS	606	
									Sheet		\Box
PRO	JECT NO:	C4324					CO-ORD	S:	Hole W		\dashv
PRO	JECT NAM	ME: HOSTN	лооr л	AVENUE, MARCH			LEVEL:		Sca 1::	ale	\exists
CLIE	NT:	ALDI S	TORES	LTD			DATES:	15/09/20	Logged	Checke	∌d
	Water	Sample	and In	Situ Testing	Depth	Level			AT	JW	\dashv
Well	Strikes	Depth (m)	Туре	Results	(m)	(m OD)	Legend	Stratum Description	n		
		0.10 0.30 0.70 1.20 1.40 2.00 2.10	ES PID ES PID SPT D	0.5PPM 0.5PPM 0.4PPM N=11 (4,4/3,2,2,4) N=12 (2,2/2,3,3,4)	0.20 0.60 1.30 1.40			MADE GROUND TOPSOIL: Grass over brown to coarse sand with occasional rootlets. Grarounded fine to coarse of concrete and qua MADE GROUND: Brown slightly clayey slight coarse sand. Gravel is angular to sub-round chert, concrete, quartzite and occasional braced is angular to sub-angular fine to medium of coarse is angular to sub-angular fine to medium of coarse angular to sub-angular fine to medium of coard shell fragments. Reddish brown slightly gravelly fine to coarse angular to sub-angular fine to medium of coard shell fragments. Firm grey slightly gravelly CLAY. Gravel is suffine to coarse of chalk. Layer of reddish brown gravelly fine to coarse sand as about 1.70m bgl. Becoming stiff from 2.00m bgl. Grey mottled brown in colour between 2.00 and 3.50m bgl.	avel is angular to substractive. Intly gravelly fine to led fine to coarse of rick. To coarse SAND. To coarse	1.0	0-
		3.50	D					Becoming very stiff from 3.50m bgi.			- - - -
		4.00	SPT	N≥50 (8,10/50 for 240mm)	4.00			End of Borehole at 4.00	m	5.0	0
Rema	arks	2. Hand dug p 3. Groundwat	oit excav ter not e					00m-4.00m bgl slotted pipe.	ES = Environmental Sample D = Disturbed Sample B = Bulk Sample B = Large Bulk Sample U = Undisturbed Sample UT = Undisturbed Thin Wall Sa SFT = Standard Penetration Tes PID = Photoionization Detector PPM = Part Per Million HSV = Hand Shear Vane	t	

								ndow Sa	dow Sampler No.		
								Borehole Log	WS	07	
									Sheet	1 of 1	
PROJ	IECT NO:	C4324					CO-ORD	S:	Hole W		_
PROJ	IECT NAN	∕IE: HOSTN	лооr A	AVENUE, MARCH			LEVEL:		Sca 1:3	le	\exists
CLIE	NT:	ALDI S	TORES	LTD			DATES:	15/09/70	ged	Checke	:d
	Water	Sample	and In	Situ Testing	Depth	Level		A	VI	344	\dashv
Well	Strikes	Depth (m)	Туре	Results	(m)	(m OD)	Legend	Stratum Description			
		0.10 0.40 0.60	ES PID ES PID ES PID	0.4PPM 1.7PPM 0.4PPM N=9	0.20			to coarse sand with occasional rootlets. Gravel is angula medium of quartzite and occasional brick. MADE GROUND: Brown gravelly fine to coarse sand. Gra angular to sub-angular fine to coarse of brick, concrete a quartzite. Reddish brown gravelly fine to coarse SAND. Gravel is an	r fine to wel is and		0 —
		1.30	D	(3,2/1,2,3,3)	1.30			sub-rounded to round fine to coarse of chalk.			-
		2.00	SPT D	N=13 (2,3/3,3,3,4)	2.00			Stiff grey slightly gravelly CLAY. Gravel is sub-angular to r fine to coarse of chalk. Becoming very stiff from 2.50m bgl.	rounded	2.0) — - - - - -
		3.00	SPT	N=22 (4,3/4,5,6,7)						3.0) —
		4.00	SPT	N=30	4.00			End of Borehole at 4.00m		4.0	o —
				(7,5/6,7,8,9)				EVEL: DATES: 15/09/20 Stratum Description MADE GROUND TOPSOIL: Grass over brown slightly gravelly to coarse sand with occasional rootlets. Gravel is angular fine medium of quartzite and occasional brick. MADE GROUND: Brown gravelly fine to coarse sand. Gravel is angular to sub-angular fine to coarse of brick, concrete and quartzite. Reddish brown gravelly fine to coarse SAND. Gravel is angular sub-angular fine to medium of chert, chalk, quartzite and she fragments. Firm to stiff grey mottled brown slightly gravelly CLAY. Gravel sub-rounded to round fine to coarse of chalk. Layer of readish brown gravelly fine to coarse sand as above between 1.40 and 1.50m bgl. Stiff grey slightly gravelly CLAY. Gravel is sub-angular to round fine to coarse of chalk. Becoming very stiff from 2.50m bgl.		5.0	-
Rema	nrks	2. Hand dug p 3. Groundwat	oit excav ter not e	using Radio Detect rated to 1.20m bgl encountered. with arisings upor	•		S.	D = Disturbed Sampl B = Bulk Sample LB = Large Bulk Sam U = Undisturbed Sar UT = Undisturbet T SPT = Standard Pene PID = Photolonizatio PPM = Part Per Milli	ple pple mple nin Wall San etration Test on Detector		

									Window Samp	ler No.	
								Borehole Log	WS0	8	
									Sheet 1		
PRO.	IECT NO:	C4324					CO-ORD	S:	Hole Ty WS	pe	
DDO	ICCT NIAR	AF. HOSTA	400P /	V/ENILIE MADCII			15/51.		Scale		
,				LEVEL:	1:30						
CLIENT:		ALDI STORES LTD					DATES:	15/09/20	Logged C	hecked JW	
Well	Water	Sample	and In	Situ Testing	Depth	Level	Legend	Stratum Description			
weii	Strikes	Depth (m)	Туре	Results	(m)	(m OD)	Legenu	•			
		0.10	ES PID ES PID	0.0PPM 0.0PPM	0.20			MADE GROUND TOPSOIL: Grass over brown grav coarse sand with occasional rootlets. Gravel is an rounded fine to coarse of quartzite, chert and oc and clinker. Brown slightly clayey slightly gravelly fine to coar is angular to rounded fine to coarse of chalk, qua	gular to sub- casional brick se SAND. Gravel		
		1.20	SPT	N=18 (2,2/3,5,5,5)	0.80			Medium dense reddish brown slightly gravelly cla coarse SAND. Gravel is angular to sub-angular fin chert, chalk, quartzite and shell fragments.	yey fine to	1.0	
		1.30	ES PID	0.0PPM	1.50						
		1.70	ES PID	0.0PPM	1.30			Firm grey mottled brown organic slightly gravelly sub-angular to rounded fine to coarse of chalk.	CLAY. Gravel is	-	
		2.00	SPT	N=9 (1,1/2,1,3,3)	2.00			Stiff grey mottled brown slightly gravelly CLAY. Gr angular to rounded fine to coarse of chalk. Becoming stiff from 2.00m bgl.	avel is sub-	2.0	
		2.50	D							- - -	
		3.00 3.50	SPT D	N=18 (3,2/4,4,4,6)						3.0 —	
				N=24	4.00			Becoming very stiff from 3.50m bgl.			
		4.00	SPT	N=24 (4,3/4,6,6,8)	4.00			End of Borehole at 4.00m		5.0	
										6.0	
Remarks 1. Location scanned using Radio Detection and GPR methods. 2. Hand dug pit excavated to 1.20m bgl. 3. Groundwater not encountered. 4. Location backfilled with arisings upon completion.							S.	D = Dists B = Bulk LB = Larg U = Undi UT = Und SPT = Sta PID = Ph	ronmental Sample rhed Sample Sample Bulk Sample sturbed Sample isturbed Thin Wall Sample idard Penetration Test actionization Detector (pp rt Per Million and Shear Vane		

								Window Sam	Window Sampler No.		
								Borehole Log wsc)9		
								Sheet 1	of 1		
PROJ	IECT NO:	C4324					CO-ORD	S: Hole Ty			
PROJ	IECT NAN	ΛΕ: HOSTN	лооr A	AVENUE, MARCH			LEVEL:	Scale Scale 1:30	e		
CLIENT:		ALDI STORES LTD					DATES:	15/09/20 Logged	Checked		
	Water	Sample	and In	Situ Testing	Depth	Level		AT AT	JW		
Well	Strikes	Depth (m)	Туре	Results	(m)	(m OD)	Legend	Stratum Description			
		0.10	ES PID	0.5PPM	0.50			MADE GROUND: Brown gravelly fine to coarse sand. Gravel is angular to sub-rounded fine to coarse of brick, concrete, clinker and rare plastic. Cobbles of brick between 0.20 and 0.50m bgl, MADE GROUND: Brown gravelly fine to coarse sand. Gravel is	- - - - -		
		1.10 1.20	PID D SPT	0.0PPM N=24 (5,4/6,6,6,6)	1.00			angular to sub-rounded fine to coarse of quartzite, chert, brick and concrete. Brown gravelly fine to coarse SAND. Gravel is angular to sub-rounded fine to coarse of chert, chalk and quartzite. Stiff dessicated grey slightly gravelly CLAY. Gravel is angular to sub-rounded fine to coarse of chalk and chert. Stiff grey slightly gravelly CLAY. Gravel is sub-angular to rounded fine to coarse of chalk.	1.0		
		1.80	D								
		2.00	SPT	N=13 (7,4/3,3,4,3)	2.00			Firm cream slightly gravelly CLAY. Gravel is sub-rounded fine to coarse of chalk.	2.0		
		2.50	D		2.50			Stiff grey mottled brown slightly gravelly CLAY. Gravel is subrounded fine to coarse of chalk.			
		3.00	SPT	N=24 (3,4/4,6,6,8)					3.0		
		3.70	D					Becoming very stiff from 3.60m bgl.	- - -		
		4.00	SPT	N=30 (5,4/4,8,7,11)	4.00			End of Borehole at 4.00m	4.0		
									5.0		
									6.0		
Remarks 1. Location scanned using Radio Detection ar 2. Hand dug pit excavated to 1.20m bgl. 3. Groundwater not encountered. 4. Location backfilled with arisings upon com					5.	ES = Environmental Sample D = Disturbed Sample B = Bulk Sample LB = Large Bulk Sample U = Undisturbed Sample U = Undisturbed Sample UT = Undisturbed Thin Wall Samp SPT = Standard Penetration Test PID = Photoionization Detector (p PPM = Part Per Million HSV = Hand Shear Vane					

12234567898

9: ;< =>?@8A;BC=DE8F;BG@C88

Amy Thornes

Brownfield Solutions Ltd William Smith House 173 - 183 Witton Street Northwich Cheshire CW9 5LP

e: a.thornes@brownfield-solutions.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

18/09/2020

Analytical Report Number: 20-31170

Project / Site name: Hostmoor Avenue, March Samples received on: 18/09/2020

Your job number: C4324 Samples instructed on/

Analysis started on:

Your order number: 1271 Analysis completed by: 25/09/2020

Report Issue Number: 1 **Report issued on:** 25/09/2020

Samples Analysed: 21 soil samples

Signed:

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 20-31170 Project / Site name: Hostmoor Avenue, March

Your Order No: 1271

							ı
Lab Sample Number				1626045	1626046	1626047	1626048
Sample Reference	WS01	WS01	WS03	WS04			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.30	2.40	0.20	0.70			
Date Sampled	14/09/2020	14/09/2020	14/09/2020	14/09/2020			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter	u	Lin de	at Ac				
(Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
			0 - =				
Stano Cantont	9/	0.1	NONE	4 O 1	4 O 1	. 0.1	< 0.1
Stone Content Moisture Content	%	0.1	NONE	< 0.1 15	< 0.1 16	< 0.1 12	13
	%	N/A	NONE	1.2	1.2	1.2	13
Total mass of sample received	kg	0.001	NONE	1.2	1.2	1.2	1
A-hh i C-il	1 -		TCO 47035	N-6 d-6-4-4		N - E - I - E E I	
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	-	Not-detected	-
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	7.6	-	-	8.3
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	83	-	-	56
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/I	0.00125	MCERTS	0.042	-	-	0.028
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	41.5	-	=	28.2
Organic Matter	%	0.1	MCERTS	2.7	-	-	1.4
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.6	-	1	0.8
Speciated PAHs				1	1		
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	-	ı	< 0.80
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	-	-	9.8
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	-	0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	-	-	< 1.2
Chromium (III)	mg/kg	1	NONE	18	-	-	24
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	18	-	-	24
Copper (aqua regia extractable)	mg/kg	1	MCERTS	13	-	-	11
Lead (aqua regia extractable)	mg/kg	1	MCERTS	18	-	-	8.4
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	-	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	14	-	-	20
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	=	< 1.0
Scientarii (aqaa regia extractable)	1	1	MCERTS	44	-	-	40
	mq/kq						
Zinc (aqua regia extractable)	mg/kg						
Zinc (aqua regia extractable)	mg/kg						
Zinc (aqua regia extractable) Monoaromatics & Oxygenates		1	MCERTS	_	< 1.0		< 1.0
Zinc (aqua regia extractable) Monoaromatics & Oxygenates Benzene	µg/kg	1 1	MCERTS MCERTS	<u>-</u>	< 1.0	<u>-</u>	< 1.0 < 1.0
Zinc (aqua regia extractable) Monoaromatics & Oxygenates Benzene Toluene	hд/kд	1	MCERTS	-	< 1.0	- -	< 1.0
Zinc (aqua regia extractable) Monoaromatics & Oxygenates Benzene	µg/kg					-	

Analytical Report Number: 20-31170 Project / Site name: Hostmoor Avenue, March

Your Order No: 1271

Lab Sample Number				1626045	1626046	1626047	1626048
Sample Reference		WS01	WS01	WS03	WS04		
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)		0.30	2.40	0.20	0.70		
Date Sampled		14/09/2020	14/09/2020	14/09/2020	14/09/2020		
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0	_	< 1.0
Monoaromatics & Oxygenates							
Benzene	mg/kg	0.001	MCERTS	_	< 0.001	-	< 0.001
Toluene	mg/kg	0.001	MCERTS	_	< 0.001	-	< 0.001
Ethylbenzene	mg/kg	0.001	MCERTS	_	< 0.001	-	< 0.001
p & m-xylene	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001
o-xylene	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001
MTBE (Methyl Tertiary Butyl Ether)	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001
Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	< 8.0	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	< 8.0	-	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10	-	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001	_	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	_	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	_	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	_	< 1.0	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	_	< 2.0	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	_	< 10	-	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	_	< 10	-	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10	-	< 10
PCBs by GC-MS							
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	=	=	=	=
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-
Total PCBs by GC-MS							
Tatal DCD-		2 227	MOSERTO				

0.007

mg/kg

MCERTS

U/S = Unsuitable Sample I/S = Insufficient Sample

Total PCBs

Analytical Report Number: 20-31170 Project / Site name: Hostmoor Avenue, March

Your Order No: 1271

Lab Sample Number				1626049	1626050	1626051	1626052
Sample Reference	WS05	WS06	WS07	WS08			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	1.20	0.10	0.40	0.10			
Date Sampled	15/09/2020	15/09/2020	15/09/2020	15/09/2020			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter	c	Lin	Ac ta				
(Soil Analysis)	Units	Limit of detection	Accredi tation Status				
, , ,		<u></u>	s =				
Character Company	0/		NONE	. 0.1	. 0.1	. 0.1	_
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	<u>-</u>
Moisture Content	%	N/A	NONE	10	9.6	8	
Total mass of sample received	kg	0.001	NONE	1.2	1.2	1.2	-
	_		F				
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	-	Not-detected
General Inorganics				1			
pH - Automated	pH Units	N/A	MCERTS	8.1	-	8.6	-
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	52	-	100	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.026	-	0.051	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	25.8	-	50.7	-
Organic Matter	%	0.1	MCERTS	2.9	-	2.3	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.7	3.1	1.3	-
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	_	< 0.05	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	_	< 0.05	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-
	•		<u>.</u>				
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	_	< 0.80	_
openius retail Envir 10 trails	9/5	0.0	11021110	. 0.00		. 0.00	
Heavy Metals / Metalloids							
Arsenic (agua regia extractable)	mg/kg	1	MCERTS	14	_	13	-
Cadmium (aqua regia extractable)		0.2	MCERTS	< 0.2	-	< 0.2	_
Chromium (aqua regia extractable) Chromium (hexavalent)	mg/kg	1.2		< 1.2	-	< 1.2	-
	mg/kg		MCERTS		-	19	-
Chromium (III) Chromium (aqua regia extractable)	mg/kg	1	NONE	22 22	-	19	-
Copper (agua regia extractable)	mg/kg		MCERTS			10	
,	mg/kg	1	MCERTS	13	<u>-</u> -		-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	17	-	18	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3		< 0.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	23	-	18	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	56	-	49	-
Monoaromatics & Oxygenates		1	, ·				
Benzene	μg/kg	1	MCERTS	-	-	< 1.0	-
Toluene	μg/kg	1	MCERTS	-	-	< 1.0	-
Ethylbenzene	µg/kg	1	MCERTS	-	-	< 1.0	-
p & m-xylene	μg/kg	1	MCERTS	-	-	< 1.0	-
o-xylene	μg/kg	1	MCERTS	_	_	< 1.0	_