

GROUND INVESTIGATION REPORT

for

4 BELLINGHAM ROAD, CATFORD, LONDON SE6 2PT

on behalf of

SMART ENVIRONMENT FREEHOLDS LIMITED

Report	Reference: GWPR3599/GIR/May 2020	Status: FINAL			
lssue:	Prepared By:	Verified By:			
	Pageste	S-T. Williams			
V1.01 May 2020	Roger Foord BA (Hons) MSc DIC FGS Senior Geotechnical Engineer	Francis Williams M.Geol. (Hons) FGS C Geol CEnv AGS Director			
File Reference: Ground and Water/Project Files/ GWPR3599 4 Bellingham Road, Catford, London SE6 2PTQ					

Ground and Water Limited 15 Bow Street, Alton, Hampshire GU34 1NY Tel: 0333 600 1221 E-mail: enquiries@groundandwater.co.uk Website: www.groundandwater.co.uk

CONTENTS

EXECUTIVE SUMMARY

1.0 INTRODUCTION

- 1.1 General
- 1.2 Aims of Investigation
- 1.3 Conditions and Limitations

2.0 SITE SETTING

- 2.1 Site Location
- 2.2 Site Description
- 2.3 Proposed Development
- 2.4 Geology
- 2.5 Hydrogeology and Hydrology
- 2.6 Radon
- 2.7 Review of a Previous Desk Studies

2.7.1 Symonds Group Factual Desk Study Report, ref: 46947/0002.doc, dated March 1998.

2.7.2 Atkins Limited Factual Desk Study Report, ref: 2000078/NGP/Catford/R002v1, dated May 2014.

2.7.3 Atkins Limited Factual Desk Study Report - Final, ref: 5159414/R001v1, dated August 2017.

3.0 FIELDWORK

5.2

- 3.1 Scope of Works
- 3.2 Sampling Procedure

4.0 ENCOUNTERED GROUND CONDITIONS

- 4.1 Soil Conditions
- 4.2 Roots Encountered
- 4.3 Groundwater Conditions
- 4.4 Obstructions

5.0 INSITU AND LABORATORY GEOTECHNICAL TESTING

- 5.1 In-Situ Geotechnical Testing
 - 5.1.1 Standard Penetration Tests (SPT's)
 - Laboratory Geotechnical Testing
 - 5.2.1 Atterberg Limit Test
 - 5.2.2 Comparison of Soil's Moisture Content with Index Properties 5.2.2.1 Liquidity Index Analysis
 - 5.2.2.2 Liquid Limit
 - 5.2.3 Moisture Content Profiling
 - 5.2.4 Particle Size Distribution (PSD) Tests
 - 5.2.5 Water Sulphate and pH Tests
 - 5.2.6 BRE Special Digest 1

6.0 ENGINEERING CONSIDERATIONS

- 6.1 Soil Characteristics and Geotechnical Parameters
- 6.2 Spread Foundations
- 6.3 Piled Foundations
- 6.4 Excavations and Stability
- 6.5 Sub-Surface Concrete
- 6.6 Road and Hardstanding
- 6.7 Surface Water Disposal

7.0 PHASE 2 CONTAMINATION RISK ASSESSMENT

- 7.1 Results of Phase 1 Risk Assessment (Conceptual Site Model)
- 7.2 Sampling Locations
- 7.3 Chemical Laboratory Testing Human Health Risk Assessment
 - 7.3.1 Soil Assessment Criteria
 - 7.3.2 Determination of Representative Contaminant Concentrations
 - 7.3.3 Quantitative Asbestos Risk Assessment
- 7.4 Groundwater Risk Assessment
- 7.5 Re-Evaluated Phase 2 Conceptual Site Model

8.0 DEVELOPMENT OF A REMEDIATION STRATEGY

- 8.1 Option Appraisal
- 8.2 Remediation Strategy
- 8.3 Remediation Method Statement
- 8.4 Validation Strategy
- 8.5 Discovery Strategy
- 8.6 Waste Disposal
- 8.7 Imported Material
- 8.8 Duty of Care

FIGURES

- Figure 1 Site Location Plan
- Figure 2 Site Development Area
- Figure 3 Aerial View of Site
- Figure 4 Proposed Development Plan
- Figure 5 Trial Hole Location Plan
- Figure 6 Moisture Content v Depth Profile WS1
- Figure 7 Moisture Content v Depth Profile WS2
- Figure 8 Moisture Content v Depth Profile WS3
- Figure 9 Moisture Content v Depth Profile WS4

APPENDICES

- Appendix A Conditions and Limitations
- Appendix B Fieldwork Logs
- Appendix C Geotechnical Laboratory Test Results
- Appendix D Chemical Laboratory Test Results
- Appendix E Soil Assessment Criteria

Appendix FPAH Double Ratio SpreadsheetAppendix GAsbestos Risk Assessment

Appendix H Waste Hazard Assessment

	EXECUTIVE SUMMARY
Proposed Development	At the time of reporting, May 2020, the proposed development was understood to comprise the partial demolition and conversion of the former gas valve distribution building (Sui Generis Use Class) at 4 Bellingham Road, SE6 and the construction of a 3-storey, L-shaped building comprising 5x one bedroom, and 4x two bedroom dwellings, together with associated landscaping works and refuse and cycle storage.
Geology	The BGS Geological Map (Solid and Drift) for the Catford area (South London Sheet No. 270) revealed the majority of the site was located on the superficial deposits of the Kempton Park gravel Member overlying the bedrock deposits of the London Clay Formation.
Hydrogeology	The site was located on a Secondary A Aquifer relating to the superficial deposits of the Kempton Park Gravel Member overlying Unproductive Strata relating to the bedrock deposits of the London Clay Formation.
Radon	The site was not located in an area where Radon protection measures were likely to be required.
Soils Encountered	The ground conditions encountered within the trial holes was generally as anticipated from examination of the geology map. A capping of Topsoil was noted from ground level overlying the soils of Kempton Park Gravel Member which in turn rest upon the soils of the London Clay Formation for the remaining depth of the boreholes.
Foundation Design	Minimum foundation depths are likely to range between 2.00 – 2.50m bgl See section 6.2 for bearing capacities and anticipated settlements for spread foundations at depths of 1.50m, 2.00m, 2.50m and 3.40m bgl. Given the depth of excavation and amount of waste produced, a piled foundation may be more economical for the project and an indicative pile design is given in Section 6.3.
Infiltration	Soakaways constructed within the shallow Kempton Park Gravel Member and the underlying
Rates	cohesive soils of the London Clay Formation were unlikely to be successful.
Sub-Surface Concrete	According to BRE Special Digest 1, 2005, 'Concrete in Aggressive Ground' a Sulphate Design Classes of DS-1, DS-3 and DS-4 is appropriate for sub-surface concrete in contact with the soils encountered on site. Table C1 of the Digest indicated an ACEC (Aggressive Chemical Environment for Concrete) classification of AC-1, AC-3 and AC-4. A DS-4 class with an ACEC of AC-4 will be required for design.
Contamination Analyses	Chemical laboratory testing of the Topsoil revealed elevated levels of metals and PAHs above the guideline levels for a ' <i>Residential with homegrown produce</i> ' land-use scenario. Chrysotile asbestos was also detected. Remediation requires removal of the shallow thickness of Topsoil from the soft landscaped areas to expose the underlying soils of the Kempton Park Gravel Member The voids created should then be independently inspected, sample and verified and backfilled with certified clean Topsoil. No remediation of groundwater was considered to be necessary.
Waste Acceptance Protocols	Based on a risk phase analysis of the chemical laboratory test results, in accordance with EC Hazardous Waste Directive (WM3), undertaken by Ground and Water Limited, the three samples of the Topsoil tested were NON HAZARDOUS. A full WAC Solid Suite Test with single batch leachate was undertaken on one sample of the Topsoil (WS3/0.30m bgl) and indicated the sample conformed to the INERT Waste classification.

The above information must be read in conjunction with the full report.

1.0 INTRODUCTION

1.1 General

Ground and Water Limited were instructed by Smart Environment Freeholds Limited, on the 26th February 2020 to conduct a Ground Investigation on 4 Bellingham Road, Catford, London SE6 2PT. The scope of the investigation was detailed within the Ground and Water Limited fee proposal ref.: GWQ5356, dated 25th February 2020.

1.2 Aims of the Investigation

The aim of the investigation was understood to be to supply the client and their designers with information regarding the ground conditions underlying the site to assist them in preparing an appropriate scheme for development.

The investigation was to be undertaken to provide parameters for the design of foundations by means of in-situ and laboratory geotechnical testing undertaken on soil samples recovered from trial holes.

A programme of chemical laboratory testing, scheduled by Ground and Water Limited and carried out by DETS Environmental Limited, was undertaken on samples recovered from the trial holes. The testing schedule and suite was based on the Conceptual Site Model developed within Section 2.7 of this report and relies totally upon the following reports:

- Symonds Group Factual Desk Study Report, ref: 46947/0002.doc, dated March 1998;
- Atkins Limited Factual Desk Study Report, ref: 2000078/NGP/Catford/R002v1, dated May 2014;
- Atkins Limited Factual Desk Study Report Final, ref: 5159414/R001v1, dated August 2017.

Total reliance has been placed on these reports and no liability can be taken for their short comings.

The techniques adopted for the investigation were chosen considering the anticipated ground conditions and development proposals on-site, and bearing in mind the nature of the site, limitations to site access and other logistical limitations.

1.3 Conditions and Limitations

This report has been prepared based on the terms, conditions and limitations outlined within Appendix A.

2.0 SITE SETTING

2.1 Site Location

The site comprised a 0.07ha (700m²) rectangular plot of land, orientated in a north-west to southeast direction, and was located on the southern side of Bellingham Road in Catford, south-east London.

The approximate O.S. National Grid reference for the site is TQ 37969 72325. A site location plan is given within Figure 1. A plan showing the site development area is given within Figure 2.

2.2 Site Description

The northern half of the site comprises a detached two-storey house, with basement. The rear garden was understood to be partially overgrown with areas of soft landscaping and hardstanding. Access to the rear garden was via a ~800mm wide gate at the side of the house and a wider 2.70m wide gate off the access road along the western boundary of the site.

An aerial view of the site showing an approximate site boundary is given within Figure 3.

2.3 Proposed Development

At the time of reporting, May 2020, the proposed development was understood to comprise the partial demolition and conversion of the former gas valve distribution building (Sui Generis Use Class) at 4 Bellingham Road, SE6 and the construction of a 3-storey, L-shaped building comprising 5x one bedroom, and 4x two bedroom dwellings, together with associated landscaping works and refuse and cycle storage. A plan view of the proposed development is given in Figure 4.

2.4 Geology

The BGS Geological Map (Solid and Drift) for the Catford area (South London Sheet No. 270) revealed the site was located on the superficial deposits of the Kempton Park Gravel Member overlying the bedrock deposits of the London Clay Formation. There were no areas of Made Ground or Worked Ground in a close proximity to the site.

Kempton Park Gravel Member.

The Kempton Park Gravel Member is part of a complex series of River Terrace Deposits formed by the River Thames and its tributaries. These terraces represent ancient floodplain deposits that became isolated as the river cut downwards to lower levels. The Kempton Park Gravel Member is found at an elevation below the current river. The composition of the River Terrace Gravel varies greatly, depending on the source material available in the river's catchment. Deposits generally consist of sands and gravels of roughly bedded flint or chert commonly in a matrix of silts and clays.

London Clay Formation

The London Clay Formation comprises stiff grey fissured clay, weathering to brown near surface. Concretions of argillaceous limestone in nodular form (Claystones) occur throughout the formation. Crystals of gypsum (Selenite) are often found within the weathered part of the London Clay Formation, and precautions against sulphate attack to concrete are sometimes required. The lowest part of the formation is a sandy bed with black rounded gravel and occasional layers of sandstone and is known as the Basement Bed.

A BGS borehole record from 1943 ~35m to the west of the site revealed ~1.00m of Made Ground overlying sand and gravel to 3m bgl. The London Clay Formation was then encountered for the remaining depth of the borehole at 10m bgl.

2.5 Hydrogeology and Hydrology

An examination of the DEFRA website revealed the site was located on a **Secondary A Aquifer** relating to the superficial deposits of the Kempton Park Gravel Member overlying **Unproductive** Strata relating to the bedrock deposits of the London Clay Formation.

Superficial drift deposits are described as permeable unconsolidated (loose) deposits e.g. sands and gravels. The bedrock is described as solid permeable formations e.g. sandstone, chalk and limestone.

Secondary aquifers include a wide range of drift deposits with an equally wide range of water permeability and storage capacities. Secondary (A) Aquifers consist of deposits with permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as Minor Aquifers.

Unproductive Strata are rock layers with low permeability that have negligible significance for water supply or river base flow. These were formerly classified as non-aquifers.

Examination of the DEFRA records showed that the site within an Outer Zone (Zone II) Groundwater Source Protection Zone (SPZ) as classified in the Policy and Practice for the Protection of Groundwater. An Outer Zone (Zone II) Groundwater source Protection Zone is defined by a 400 day travel time from a point below the water table. The previous methodology gave an option to define SPZ2 as the minimum recharge area required to support 25 per cent of the protected yield. This option is no longer available in defining new SPZs and instead this zone has a minimum radius of 250 or 500 metres around the source, depending on the size of the abstraction.

The nearest surface water feature was the northerly flowing Ravensbourne River located \sim 150m to the west of the site.

From analysis of hydrogeological and topographical maps groundwater was anticipated to be encountered at moderate depth (2 - 4m below existing ground level (bgl)) and it was considered that the groundwater was flowing in a northerly/north-westerly direction in alignment with local topography and the flow of local rivers.

Examination of the Environment Agency records showed that the site fell within a Flood Zone 1 (an area with a low probability of river or sea flooding).

2.6 Radon

BRE 211 (2015) Map 5 of London, Sussex and west Kent revealed the site **was not** located within an area where mandatory protection measures against the ingress of Radon were likely to be required. The site **was not** located within an area where a risk assessment was required.

2.7 Review of Previous Desk Studies

2.7.1 Symonds Group Factual Desk Study Report, ref: 46947/0002.doc, dated March 1998. Symonds Group produced a Factual Desk Study Report on the site in March 1998 and a précis of the report can be found below.

A Site Walkover undertaken in February 1998 revealed a detached two storey building with a basement in the northern portion of the site with hardstanding to the north and a rear garden to the south. The building was a former District Pressure Regulating Station (Valve House and Governor) Stores and Office Depot. The basement was believed to have formerly

been used for regulating supply but had been out of use for 15 - 20 years. At the time of the Site Walkover, it was flooded by 0.15m of standing water. The ground floor was used as office space and general storage. The upper floor of the building was let as a residential flat.

The site was used as a distribution point run by BG St Mary Cray maintenance depot with medium pressure gas flow in and low pressure gas flow out. The gas control facility was carried out in a small extension at the front of the main building on the north-west corner.

During the Site Walkover, residential properties were noted to the north, south and east. A maintenance and repair garage was noted to the immediate west.

The geology of the site comprised River Terrace Deposits over the London Clay which in turn rest upon the Woolwich and Reading Beds at depth. The superficial deposits were classified as a Minor Aquifer with the London Clay being classed as a Non Aquifer.

A summary of the review of historical Ordnance Survey maps (1:10,560 and 1:10,000 maps only) from 1874 revealed the site was open undeveloped land until the 1930s when the buildings currently occupying the western portion of the site was erected and associated garden area was shown in the western portion. The area in which the site was located was also undeveloped until the 1891 historic map, when residential properties were shown to the east and west of the site and on the northern side of Bellingham Road. By 1938, the buildings to the west had been extended further south. By 1968, residential development to the south was noted.

Enquiries made to the London Borough of Lewisham Environmental Services and Planning Department revealed no evidence of any remediation measures having been undertaken at the site and that there were no pollution incidents in the vicinity of the site. The nearest licenced landfill site was 1.38km to the west at the Sydenham Gas Works which was an authorised waste disposal site operated by British Gas (South Eastern) plc.

Enquires made to the Health and Safety Executive (HSE) revealed that the site was not subject to the Control of Industrial Major Accident Hazards Regulations 1984 as amended and that there were no hazardous installations within 1km of the site.

Enquires made to the Environment Agency revealed no significant pollution incidents have affected the site or its environs.

2.7.2 Atkins Limited Factual Desk Study Report, ref: 2000078/NGP/Catford/R002v1, dated May 2014.

Atkins Limited produced a factual Desk Study Report on the site in May 2014 and a précis of any significant additions relevant to the site and contained within the report can be found below.

A Site Walkover in February 2014 revealed no significant changes to the site. The only change to the within the site's environs was a garage and printers to the north on the northern side of Bellingham Road.

A summary of the review of historical Ordnance Survey maps (1:10,560, 1:10,000 and 1:2,500 maps) from 1863 added that by 1949 the structure on-site was labelled as a gas

valve house. No significant changes were noted to the site from study of the subsequent maps.

Within the site's environs a north to south railway and Bellingham station was noted 180m to the west on the 1895 historic map. A garage was noted 168m to the north-west on the 1916 historic map. A building later identified as being a garage was noted ~70-80m to the south-west of the site from 1938. A works was noted ~10m to the north on the northern side of Bellingham Road on the 1981 historic map.

The report also references another Desk Study Report produced by Parsons Brinckerhoff Ref. BEN45513B-Catford, September 2003 (Ref.11) that added no new information.

2.7.3 Atkins Limited Factual Desk Study Report - Final, ref: 5159414/R001v1, dated August 2017.

Atkins Limited produced an updated Factual Desk Study Report on the site in August 2017 and this revealed no significant changes to the site or its environs since the production of the previous report.

The review of the Desk Study Reports has revealed the following potential on-site sources of contamination.

• The review of the maps has shown that the building on site has been used as a as a gas valve house/gas governor station. These buildings control the pressure of gas throughout the mains gas network and therefore were not considered likely to pose a contaminative risk.

However, construction activities are likely to have created a capping of Made Ground containing demolition debris where the original residential property was removed. Building materials used in the early 20th Century may have included asbestos for partitions and insulative lagging. Lead, cadmium and other heavy metal based paints may also have been used. During the demolition process, it is likely that removal of any harmful building materials would have been uncontrolled and quantities of asbestos and traces of heavy metals from paints and dyes may be present in the near surface soils around the footprints of the old building. Fires may have taken place on the site as part of the demolition process to remove waste. Potential pollutants such as carcinogenic PAHs in the tars produced by combustion of timber and other materials may be present in the near surface soils. Oil spills may have also occurred over time. However, given the size of the buildings demolished, the potential contamination is likely to be limited.

Given the age of the structure, an **Asbestos Management Strategy** should be put in place to ensure that any potentially asbestos containing materials are identified and removed from site in a suitable manner to prevent cross-contamination.

The review of the Desk Study Reports has revealed the following potential off-site sources of contamination.

• Within the site's environs a north to south railway and Bellingham station was noted 180m to the west on the 1895 historic map.

Potential contaminants associated with railway land include metals such as cadmium, chromium, nickel and lead, asbestos, Polycyclic Aromatic Hydrocarbons (PAHs), Total

Petroleum Hydrocarbons (TPH) and ethylene glycol, which is a common component in antifreeze.

Given the limited changes in the buildings occupying the site it was considered that the risk of fill being sourced from the railway land to change ground levels, was considered to be very low. Additionally, given the anticipated groundwater flow direction to the north/north-west, these potential sources of contamination were dismissed.

• A garage was noted 168m to the north-west on the 1916 historic map. A building later identified as being a garage was noted ~70-80m to the south-west of the site from 1938. A works was noted ~10m to the north on the northern side of Bellingham Road on the 1981 historic map.

Potential sources of contamination associated with a garage could include: lubricant oils; brake fluids (constitute mainly of polymerised glycols and ethers. Waste fluid is generated during repair work on brake systems); solvents (chlorinated hydrocarbons, carbon tetrachloride, paraffin and proprietary degreasing compounds); paints (lead-based paints, zinc-rich epoxy primers, polyurethanes as decorative finishes); gasoline, diesel, paraffin (Department of the Environment Industry Profile, Road vehicle fuelling, service and repair: garages and filling stations 1996).

Potential sources of contamination associated with a works could include: Metals and semimetals; asbestos; oil/fuel hydrocarbons, PAHs, solvents and inorganic chemicals (*R&D Publication CLR 8, 2002*).

Given the limited changes in the buildings occupying the site it was considered that the risk of fill being sourced from the garages/works to change ground levels, was considered to be very low. Additionally, given the anticipated groundwater flow direction to the north/north-west, these potential sources of contamination were dismissed.

A tabulated Conceptual Site Model based upon the results of the previously reviewed Desk Study Reports can be seen overpage.

Potential on-site Sources	Potential Absorption Pathways	Potential Receptors
Contaminants introduced by previous site usage and construction activities. • Heavy metals & semi-metals (Lead etc); • Combustion products (PAH's, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene); • Organic compounds (fuel oils, ash, tar); • Volatile and Semi-volatile Organic Compounds (VOC/SVOC's); • Asbestos (building material, pipe lagging).	Direct ingestion of soil and soil derived dust; Dermal contact of soil and soil derived dust; Ingestion of soil with elevated concentration of determinants; Dermal contact with impacted soils; Inhalation of impacted dust (indoors and outdoors) with elevated concentration of determinants. Inhalation of volatiles (indoors and outdoors) with elevated concentration of determinants. Inhalation of volatile vapours (indoors and outdoors) with elevated concentration of determinants. Inhalation of volatile vapours (indoors and outdoors) with elevated concentration of determinants. Via anthropogenic pathways; Via underlying geology; (Made Ground and Kempton Park Gravel Member) Via surface water.	Construction workers Service and Maintenance Operatives. Site Occupiers. Secondary A Aquifer (Kempton Park Gravel Member) Ravensbourne River ~150m to the west
Aggressive ground conditions with Made Ground and natural ground; • Sulphates • Acidic pH • PAHs	Direct contact with aggressive ground conditions	Building Materials and Services

3.0 FIELDWORK

3.1 Scope of Works

Site works were undertaken on the 5th March 2020 and comprised the drilling of 4No. Windowless Sampler Boreholes (WS1 – WS4) to depths of between 5.45 - 10.45m bgl. Standard Penetration Tests (SPTs) were carried out at 1.00m intervals in the boreholes.

The approximate locations of the trial holes are given on Figure 5.

Prior to commencing the ground investigation, a walkover survey was carried out to identify the presence of underground services and drainage. Where underground services/drainage were suspected and/or positively identified, exploratory positions were relocated away from these areas.

As a further precautionary measure, the positions were hand scanned with a Cable Avoidance Tool (CAT scanner) to minimise the risk to services.

Upon completion of the site works, the trial holes were backfilled and made good/reinstated in relation to the surrounding area.

3.2 Sampling Procedures

Small disturbed samples were recovered from the trial holes at the depths shown on the trial hole records. Soil samples were generally retrieved from each change of strata and/or at specific areas of concern. Samples were also taken at approximately 0.5m intervals during broad homogenous soil horizons.

A selection of samples were despatched for geotechnical testing purposes. A programme of chemical laboratory testing, scheduled by Ground and Water Limited and carried out by DETS Environmental Limited, was undertaken on soils samples recovered from the trial holes. The testing schedule and suite was based on the Conceptual Site Model developed in section 2.7 above or the revised CSM within this report.

4.0 ENCOUNTERED GROUND CONDITIONS

4.1 Soil Conditions

All exploratory holes were logged by Roger Foord of Ground and Water Limited, generally in accordance with BS EN 14688 'Geotechnical Investigation and Testing – Identification and Classification of Soil'.

The ground conditions encountered within the trial holes conformed to what was anticipated from examination of the geology map. A capping of Topsoil was noted from ground level overlying the soils of the Kempton Park Gravel Member overlying the soils of the London Clay Formation for the remaining depth of the boreholes.

The ground conditions encountered during the investigation are described in this section. All trial hole logs can be seen in Appendix B and the trial hole location plan can be viewed in Figure 5.

For the purposes of discussion, the succession of conditions encountered in the trial holes in descending order can be summarised as follows:

Topsoil Kempton Park Gravel Member London Clay Formation

Topsoil

Topsoil was encountered from ground level in each of the boreholes to a depth of between 0.35 – 0.45m bgl. The Topsoil generally comprised a dark brown slightly gravelly sandy clay. The sand was fine to coarse grained and the gravel was fine to coarse, sub-angular to sub-rounded flint.

Kempton Park Gravel Member

Soils of the Kempton Park Gravel Member were encountered underlying the Topsoil to a depth of between 0.90 - 1.10m bgl. The soils comprised an orange brown to brown clayey sandy gravel. The sand was fine to coarse grained and the gravel was fine to coarse, sub-angular to sub-rounded flint.

London Clay Formation

Soils described as the London Clay Formation were encountered underlying the Kempton Park Gravel Member comprising a grey brown silty clay for the remaining depth of WS1 – WS3 at a depth of 5.45m bgl and to a depth of 7.50m bgl in WS4. A grey silty clay with fine selenite crystals from 7.50m bgl for the remaining depth of 10.45m bgl in WS4.

For more complete information about the soils encountered during the investigation, reference should be made to the detailed trial hole records given within Appendix C.

4.2 Roots Encountered

The depth of roots encountered in the trial holes can be seen tabulated overpage

Trial Hole	Depth of Fresh Root Penetration (m bgl)	Depth of Dark Brown/Black Friable Rootlets (m bgl)
WS1	2.00m bgl	2.00m bgl
WS2	0.40m bgl	2.50m bgl
WS3	1.10m bgl	2.50m bgl
WS4	1.50m bgl	2.50 – 5.00m bgl

It must be noted that the chance of determining actual depth of fresh root penetration through a narrow diameter borehole is low. Roots may be found to greater depths at other locations on the site, particularly close to trees and/or trees that have been removed both within the site and its close environs.

4.3 Groundwater Conditions

Groundwater was not encountered in WS1 – WS4 during the intrusive investigation. However, any seepages may have been obscured by the speed of the drilling process. Perched water may be recorded, however, within the shallow granular deposits of the Kempton Park Gravel Member, especially after a prolonged period of rainfall.

Changes in groundwater level occur for a number of reasons including seasonal effects and variations in drainage. Exact groundwater levels may only be determined through long term measurements from monitoring wells installed on-site.

The site investigation was conducted in March 2020, when groundwater levels should be falling from their annual maximum (highest elevation). The long-term groundwater elevation might increase at some time in the future due to seasonal fluctuation in weather conditions. Isolated pockets of groundwater may be perched within any Made Ground found at other locations around the site.

4.4 Obstructions

No artificial or natural sub-surface obstructions were noted during drilling of the boreholes.

5.0 INSITU AND LABORATORY GEOTECHNICAL TESTING

5.1 In-Situ Geotechnical Testing

5.1.1 Standard Penetrations Tests (SPTs)

Standard Penetration Tests (SPTs) were carried out within WS1 – WS4 at 1.00m intervals. The results of the SPT's have not been amended to take into account hammer efficiency, rod lengths and overburden pressure in accordance with Eurocode 7. The test results are presented on the borehole logs within Appendix B.

Windowless Sampler Boreholes provide samples of the ground for assessment but they do not give any engineering data. The standard penetration test (SPT) is an in-situ dynamic penetration test designed to provide information on the geotechnical engineering properties of soil. The test uses a thick-walled sample tube, with an outside diameter of 50 mm and an inside diameter of 35 mm, and a length of around 650mm. This is driven into the ground at the bottom of a borehole by blows from a slide hammer with a weight of 63.5 kg falling through a distance of 760 mm. The sample tube is driven 150 mm into the ground and then the number of blows needed for the tube to penetrate each 75 mm up to a depth of 450 mm is recorded. The sum of the number of blows is termed the "standard penetration resistance" or the "N-value".

	Undrained Shear Strength from Field Inspection/ SPT results Cohesive Soils (EN ISO 14688-2:2004 & Stroud (1974))						
Classification	Undrained Shear Strength (kPa)	Field Indications					
Extremely High	>300	-					
Very High	150 – 300	Brittle or very tough					
High	75 – 150	Cannot be moulded in the fingers					
Medium	40 – 75	Can be moulded in the fingers by strong pressure					
Low	20-40	Easily moulded in the fingers					
Very Low	10 - 20	Exudes between fingers when squeezed in the fist					
Extremely Low	<10	-					

The cohesive soils of the London Clay Formation were classified based on the table below.

An interpretation of the in-situ geotechnical testing results is given in the table below.

In-Situ Geotechnical Testing Results Summary								
Strata	SPT results	Undrained Shear Strength (kPa) Cohesive Soils	Cohesive	Granular	Trial Hole/s			
London Clay Formation	8 - 22 9 - 23 8 - 18 8 - 40	40 - 110 45 - 115 40 - 90 40 - 200	Medium – High Medium – High Medium – High Medium – High	-	WS1 (0.90 – 5.45m bgl) WS2 (1.00 – 5.45m bgl) WS3 (1.10 – 5.45m bgl) WS4 (1.00 – 10.45m bgl)			

It must be noted that field measurements of undrained shear strength are dependent on a number of variables including disturbance of sample, method of investigation and also the size of specimen or test zone etc.

5.2 Laboratory Geotechnical Testing

A programme of geotechnical laboratory testing, scheduled by Ground and Water Limited and carried out by K4 Soils Laboratory and QTS Environmental Limited, was undertaken on samples recovered from the Kempton Park Gravel Member and the London Clay Formation. The results of the tests are presented in Appendix C and D. The test procedures used were generally in accordance with the methods described in BS1377:2016/2018. Details of the specific tests used in each case are given below:

Standard Methodology for Laboratory Geotechnical Testing							
Test	Standard	Number of Tests					
Atterberg Limit Tests	BS1377:2016:Part 2:Clauses 3.2, 4.3 & 5	4					
Moisture Content	BS1377:2016:Part 2:Clause 3.2	15					
Particle Size Distribution	BS1377:2016:Part 2:Clause 9	3					
Water Soluble Sulphate & pH	BS1377:2018:Part 3:Clause 5	1					
BRE Special Digest 1 (incl. Ph, Electrical Conductivity, Total Sulphate, W/S Sulphate, Total Chlorine, W/S Chlorine, Total Sulphur, Ammonium as NH4, W/S Nitrate, W/S Magnesium)	BRE Special Digest 1 "Concrete in Aggressive Ground (BRE, 2005).	2					

5.2.1 Atterberg Limit Tests

A précis of Atterberg Limit Tests undertaken on four samples of the London Clay Formation can be seen tabulated below.

Atterberg Limit Tests Results Summary								
Stratum/Depth Moisture Content (%)	Moisture		Modified	Soil Class	Consistency Index (Ic)	Volume Change Potential		
	Content (%)		PI (%)	Soli Class	Consistency index (ic)	BRE	NHBC	
London Clay Formation	25 - 33	94 - 100	34.8 - 41.6	CH – CV	Stiff – Very Stiff	Medium – High	Medium - High	

NB: NP – Non-plastic

BRE Volume Change Potential refers to BRE Digest 240 (based on Atterberg results)Soil Classification based on British Soil Classification System.Consistency Index (Ic) based on BS EN ISO 14688-2:2004.

5.2.2 Comparison of Soil's Moisture Content with Index Properties

5.2.2.1 Liquidity Index Analyses

The results of the Atterberg Limit tests undertaken on four samples of the London Clay Formation were analysed to determine the Liquidity Index of the samples. This gives an indication as to whether the samples recovered showed a moisture deficit and their degree of consolidation. The results are tabulated overpage. The test results are presented within Appendix C.

Liquidity Index Calculations Summary						
Stratum/Trial Hole/Depth	Moisture Content (%)	Plastic Limit (%)	Modified Plasticity Index (%)	Liquidity Index	Result	
London Clay Formation WS1/2.50m bgl Brown slightly mottled bluish grey silty CLAY with rare fine to medium mudstone fragments.	31	31	39.6	0.00	Heavily Overconsolidated (boundary)	
London Clay Formation WS2/3.00m bgl Brown slightly mottled bluish grey silty CLAY with rare fine to medium mudstone fragments.	33	27	41.6	0.14	Heavily Overconsolidated	
London Clay Formation WS3/1.50m bgl Brown slightly mottled bluish grey slightly gravelly silty CLAY (gravel is fine to medium and rounded).	25	26	34.8	-0.03	Potential Moisture Deficit	
London Clay Formation WS4/3.00m bgl Brown slightly mottled bluish grey silty CLAY.	30	29	36.0	0.03	Heavily Overconsolidated	

The results in the table above indicated that a potential significant moisture deficit was present within one of the samples of the London Clay Formation tested (WS3/1.50m bgl). The sample was described as a brown slightly mottled bluish grey slightly gravelly silty clay. The gravel was fine to medium and rounded. Roots were noted to 1.10m bgl in WS3. Dead roots were also noted at a depth of 2.50m bgl in WS3. Consequently the potential moisture deficit was likely to be related to the lithology of the soil (heavily overconsolidated soils with 6% coarse fraction) rather than the water demand of roots from nearby trees.

Liquidity Index testing revealed no evidence for a potential moisture deficit within the remaining heavily overconsolidated samples of the London Clay Formation tested.

5.2.2.2 Liquid Limit

A comparison of the soil moisture content and the liquid limit can be seen tabulated below.

Moisture Content vs. Liquid Limit						
Strata/Trial Hole/Depth/Soil Description	Moisture Content (MC) (%)	Liquid Limit (LL) (%)	40% Liquid Limit (LL)	Result		
London Clay Formation WS1/2.50m bgl Brown slightly mottled bluish grey silty CLAY with rare fine to medium mudstone fragments.	31	71	28.4	MC > 0.4 x LL (Not Significantly Desiccated)		
London Clay Formation WS2/3.00m bgl Brown slightly mottled bluish grey silty CLAY with rare fine to medium mudstone fragments.	33	69	27.6	MC > 0.4 x LL (Not Significantly Desiccated)		
London Clay Formation WS3/1.50m bgl Brown slightly mottled bluish grey slightly gravelly silty CLAY (gravel is fine to medium and rounded).	25	63	25.2	MC < 0.4 x LL (Potential Significant Moisture Deficit)		
London Clay Formation WS4/3.00m bgl Brown slightly mottled bluish grey silty CLAY.	30	65	26	MC > 0.4 x LL (Not Significantly Desiccated)		

The results in the table above indicated that a potential significant moisture deficit was present within one of the samples of the London Clay Formation tested

18

(WS3/1.50m bgl). The sample was described as a brown slightly mottled bluish grey slightly gravelly silty clay. The gravel was fine to medium and rounded. Roots were noted to 1.10m bgl in WS3. Dead roots were also noted at a depth of 2.50m bgl in WS3. Consequently the potential moisture deficit was likely to be related to the lithology of the soil (heavily overconsolidated soils with 6% coarse fraction) rather than the water demand of roots from nearby trees.

The results in the table above indicate that the remaining three samples of the London Clay Formation tested showed no evidence of a significant moisture deficit.

5.2.3 Moisture Content Profiling

The moisture content versus depth plots for WS1, WS2, WS3 and WS4 can be seen within Figures 6 - 8 respectively.

The results for the shallow samples tested at 0.80m bgl in WS1 and WS2 with the exceptionally low moisture contents will be disregarded as these were samples of gravel tested from the Kempton Park Gravel Member and the results were typical for those types of soil.

The moisture content profiles for boreholes WS2, WS3 and WS4 (Figures 7, 8 and 9) showed potential moisture content deficits to a depth of \sim 1.50 – 2.00m bgl where moisture contents generally increase, showing signs of recovery (with a slight exception of WS3/2.50m bgl) and then the profiles show a natural gradual decrease in moisture content with depth, with subtle variations in moisture content due to minor changes in lithology, showing a typical behaviour of soils of the London Clay Formation.

The moisture content profile for WS1 (Figure 6) showed no evidence for possible significant moisture deficits. In general, there is a natural gradual decrease in moisture content with depth, with subtle variations in moisture content due to minor changes in lithology.

5.2.4 Particle Size Distribution (PSD) Tests

The results of PSD testing undertaken on two samples of the Kempton Park Gravel Member and one sample of the London Clay Formation encountered are tabulated below.

PSD Test Results Summary					
	Passing 63µm sieve				
BRE	NHBC	Range (%)			
No	No	8			
No	No	6			
Yes	Yes	48			
	Volume Char Ran BRE No No	Volume Change Potential Range BRE NHBC No No No No			

NB Volume Change Potential refers to BRE Digest 240 (based on Grading test results). Shrinkability refers to NHBC Standards Chapter 4.2 (based on Grading test results).

Volume Change Potential – BRE 240 states that a soil has a volume change potential when the clay fraction exceeds 15%. Only the silt and clay combined fraction are determined by sieving therefore the volume change potential is estimated from the percentage passing the $63\mu m$ sieve.

NHBC Standards Chapter 4.2 states that a soil is shrinkable if the percentage of silt and clay passing the $63\mu m$ sieve is greater than 35% and the Plasticity Index is greater than 10%.

5.2.5 Water Sulphate and pH Tests

Water soluble Sulphate and pH tests were undertaken on one sample from the London Clay Formation (WS2/2.50m bgl). The water soluble sulphate concentration was 2440g/l with a pH of 7.6.

5.2.6 BRE Special Digest 1

In accordance with BRE Special Digest 1 'Concrete in Aggressive Ground' (BRE, 2005) one sample of the Kempton Park Gravel Member (WS3/1.00m bgl) and one sample of the London Clay Formation (WS4/5.50m bgl) were scheduled for laboratory analysis to determine parameters for concrete specification.

The results of the chemical analysis undertaken are given within Appendix D and a summary is tabulated below.

Summary of Results of BRE Special Digest Testing						
Determinand	Kempton Park Gravel Member	London Clay Formation				
рН	-	8.1	7.7			
Ammonium as NH ₄	mg/kg	0.13	0.65			
Sulphur	%	<0.02	0.77			
Chloride (water soluble)	mg/l	3.2	10.4			
Magnesium (water soluble)	mg/l	1.2	96			
Nitrate (water soluble)	mg/l	<1.5	<1.5			
Sulphate (water soluble)	mg/l	20	2490			
Sulphate (total)	%	<0.02	2.12			

6.0 ENGINEERING CONSIDERATIONS

6.1 Soil Characteristics and Geotechnical Parameters

Based on the results of the intrusive investigation and geotechnical laboratory testing the following interpretations have been made with respect to engineering considerations.

• Topsoil was encountered from ground level in each of the boreholes to a depth of between 0.35 – 0.45m bgl.

As a result of the inherent variability of Topsoil or Made Ground it is usually unpredictable in terms of bearing capacity and settlement characteristics. Foundations should, therefore, be taken through any Topsoil or Made Ground and either into, or onto a suitable underlying natural stratum of adequate bearing characteristics.

Made Ground may be found to deeper depth at other locations on the site.

 Soils of the Kempton Park Gravel Member were encountered underlying the Topsoil to a depth of between 0.90 – 1.10m bgl. The soils comprised an orange brown to brown clayey sandy gravel. The sand was fine to coarse grained and the gravel was fine to coarse, subangular to sub-rounded flint.

The granular soils were shown to have **no volume change potential** in accordance with both NHBC Standards Chapter 4.2 and BRE240.

Given that the granular soils of the Kempton Park Gravel Member were of limited thickness and that roots generally extended into the underlying cohesive soils, they were considered to be an unsuitable bearing stratum for the proposed development and should be bypassed in favour of the underlying London Clay Formation.

 Soils described as the London Clay Formation were encountered underlying the Kempton Park Gravel Member comprising a grey brown silty clay for the remaining depth of WS1 – WS3 at a depth of 5.45m bgl and to a depth of 7.50m bgl in WS4. A grey silty clay with fine selenite crystals from 7.50m bgl for the remaining depth of 10.45m bgl in WS4.

In-situ testing revealed the cohesive soils of the London Clay Formation were shown to have a medium to high undrained shear strength (SPT "N" blow counts of 8 - 40, 40 - 200kPa).

Geotechnical testing revealed the cohesive soils of the London Clay Formation to have a **medium to high volume change potential** in accordance with both BRE240 and NHBC Standards Chapter 4.2. Geotechnical analyses indicated these soils to be stiff to very stiff and with a potential moisture deficit resulting from the lithology of the soil (heavily overconsolidated soils with 6% coarse fraction) rather than the water demand of roots from nearby trees in one of the samples tested (WS3/1.50m bgl).

The moisture content versus depth plots for WS1, WS2, WS3 and WS4 can be seen within Figures 6 - 8 respectively. The moisture content profiles for boreholes WS2, WS3 and WS4 (Figures 7, 8 and 9) showed potential moisture content deficits to a depth of ~1.50 – 2.00m bgl where moisture contents increase and then the profiles show a natural gradual decrease in moisture content with depth, with subtle variations in moisture content due to minor

changes in lithology. The moisture content profiles for WS1 (Figures 6) showed no evidence for possible significant moisture deficits. In general, there is a natural gradual decrease in moisture content with depth, with subtle variations in moisture content due to minor changes in lithology.

The soils of the London Clay Formation comprised heavily overconsolidated cohesive soils and were therefore likely to be a suitable stratum for lightly to moderately loaded spread foundations. The settlements induced on loading are likely to be moderate to high.

The final design of foundations will need to take into account the volume change potential of the soil, the depth of root penetration and/or desiccation and the likely serviceability and settlement requirements of the proposed structure. These parameters for design are discussed in the next section of this report.

- Roots were noted to a depth of 2.00m bgl in WS1, 0.40m bgl in WS2, 1.10m bgl in WS3 and 1.50m bgl in WS4. Dead/decayed roots were noted at 2.00m bgl in WS1, 1.50m bgl in WS2, 2.50m bgl in WS3 and between 2.50 5.00m bgl in WS4. These dead roots were considered to be relict and therefore unlikely to affect the serviceability of the foundations of the proposed development.
- Groundwater was not encountered in WS1 WS4 during the intrusive investigation. However, any seepages may have been obscured by the speed of the drilling process. Perched water may be recorded, however, within the shallow granular deposits of the Kempton Park Gravel Member, especially after a prolonged period of rainfall.

6.2 Spread Foundations

At the time of reporting, May 2020, the proposed development was understood to comprise the partial demolition and conversion of the former gas valve distribution building (Sui Generis Use Class) at 4 Bellingham Road, SE6 and the construction of a 3-storey, L-shaped building comprising 5x one bedroom, and 4x two bedroom dwellings, together with associated landscaping works and refuse and cycle storage. A plan view of the proposed development is given in Figure 4.

The proposed development is likely to fall within Geotechnical Design Category 2 in accordance with Eurocode 7. The proposed foundation loads were not known to Ground and Water Limited at the time of reporting but are likely to range between 75 - 150 kN/m².

Geotechnical testing revealed the cohesive soils of the London Clay Formation to have a **medium to high volume change potential** in accordance with both BRE240 and NHBC Standards Chapter 4.2. Geotechnical analyses indicated these soils to be stiff to very stiff and with a potential moisture deficit resulting from the lithology of the soil (heavily overconsolidated soils with 6% coarse fraction) rather than the water demand of roots from nearby trees in one of the samples tested (WS3/1.50m bgl).

Foundations constructed within the soils of London Clay Formation should be designed therefore in accordance with soils of **high volume change potential** in accordance with BRE Digest 240 and with NHBC Chapter 4.2.

Due to the soils at shallow depth having the potential for volume change, foundations must not be placed within cohesive root penetrated and/or desiccated soils and the influence of the trees

surrounding the site must be taken into account. The base of foundation excavations must extend at least 300mm into non-root penetrated soils. Foundations must also be designed in accordance with NHBC Standards Chapter 4.2 and the proximity of nearby trees or recently removed trees (moisture recovery can take up to 15yrs to complete). Should a tree be removed from the footprint of the proposed structures then a piled foundation scheme should be considered.

Roots were noted to a depth of 2.00m bgl in WS1, 0.40m bgl in WS2, 1.10m bgl in WS3 and 1.50m bgl in WS4. Dead/decayed roots were noted at 2.00m bgl in WS1, 1.50m bgl in WS2, 2.50m bgl in WS3 and between 2.50 - 5.00m bgl in WS4. These dead roots were considered to be relict and therefore unlikely to affect the serviceability of the foundations of the proposed development.

It must be noted that the chance of determining actual depth of fresh root penetration through a narrow diameter borehole is low. The excavation of trial trenches could be considered to potentially more accurately determine the depth of roots.

The moisture content versus depth plots for WS1, WS2, WS3 and WS4 can be seen within Figures 6 - 8 respectively. The moisture content profiles for boreholes WS2, WS3 and WS4 (Figures 7, 8 and 9) showed potential moisture content deficits to a depth of $\sim 1.50 - 2.00$ m bgl where moisture contents increase and then the profiles show a natural gradual decrease in moisture content with depth, with subtle variations in moisture content due to minor changes in lithology. The moisture content profiles for WS1 (Figures 6) showed no evidence for possible significant moisture deficits. In general, there is a natural gradual decrease in moisture content with depth, with subtle variations in moisture content in moisture content with depth.

Groundwater was not encountered in WS1 – WS4 during the intrusive investigation. However, any seepages may have been obscured by the speed of the drilling process. Perched water may be recorded, however, within the shallow granular deposits of the Kempton Park Gravel Member, especially after a prolonged period of rainfall.

Consequently, in order to by-pass soils with a potential moisture deficit and the live roots noted in the boreholes, minimum foundation depths of 2.00 - 2.50m bgl are likely to be required.

The following bearing capacities could be adopted for 5.0m long by 0.75m and 1.00m wide strip footings and 1.50m square pads at depths of 2.00m and 2.50m bgl in the soils of the London Clay Formation. The bearing capacities and settlements were determined based on data available from WS4. The bearing capacities are tabulated below and overpage.

Limit State: Bearing Capacities Calculated (Based on WS4)				
Depth (m BGL) Foundation System Limit Bearing Capacity (kN/m ²)				
	5.00m by 0.75m Strip	125.69		
2.00m	5.00m by 1.00m Strip	126.78		
	1.50m by 1.50m Pad	145.49		
	5.00m by 0.75m Strip	160.50		
2.50m	5.00m by 1.00m Strip	161.89		
	1.50m by 1.50m Pad	175.86		

Serviceability State: Settlement Parameters Calculated (Based on WS4)			
Depth (m BGL)	Foundation System	Load (kN/m ²)	Settlement (mm)
	5.00m by 0.75m Strip	125	<15
2.00m	5.00m by 1.00m Strip	125	<18
	1.50m by 1.50m Pad	125	<18
2.50m	5.00m by 0.75m Strip	150	<15
	5.00m by 1.00m Strip	150	<20
	1.50m by 1.50m Pad	170	<20

The settlements include the elastic (short term) and the long-term part, using the oedometric modulus, based on Geostru 'dynamic probe' software. It should be noted, that the calculation of the total settlement, based on the oedometric modulus was considered to be a conservative approach and settlements are likely to be less. Further analysis using elastic short term and long-term Young modulus, based on literature can be carried out for less conservative results.

Note should be made that differential settlement may also occur between strip and isolated pad foundations.

It must be mentioned that it was assumed that excavations will be kept dry and either concreted or blinded as soon after excavation as possible. If water were allowed to accumulate on the formation for even a short time not only would an increase in heave occur resulting from the soil increasing in volume by taking up water, but also the shear strength and hence the bearing capacity would also be reduced.

Based upon the groundwater readings undertaken to date, it was considered unlikely that significant amounts of groundwater would be encountered during the foundation excavation. Perched water is likely to be encountered within the granular soils of the Made Ground after periods of prolonged rainfall.

Given the potential presence of cohesive soils at shallow depth, special foundation precautions may be required to prevent possible future shrinkage/swelling within clay strata affecting the integrity of the outside faces of ground beams. A void, void former or compressible layer must be provided to accommodate potential movement. Minimum void dimensions are given in Tables 9 and 10 of NHBC Chapter 4.2, Building near trees.

General Recommendations for Spread Foundations:

- Roots may be found to greater depths at other locations on the site, particularly close to trees and/or trees that have been removed both within the site and its close environs.
- Inspection of foundation excavations, prior to concreting, must be made by a competent and suitably qualified person to check for any soft spots and to check for the presence of roots.
- Any groundwater or surface water ingress must be prevented from entering foundation trenches. Excavations must be kept dry and either concreted or blinded as soon after excavation as possible. If water were allowed to accumulate on the formation for even a short time not only would an increase in heave occur resulting from the soil increasing in volume by taking up water, but also the shear strength and hence the bearing capacity

would also be reduced and this could result in increased settlements.

- Foundation excavations must be carefully bottomed out and any loose soil or soft spots removed prior to the foundation concrete or blinding being placed. Failure to ensure that foundation excavations are suitably bottomed out could result in additional settlements.
- Foundations must not be cast over foundations of former structures and/or other hard spots.
- Given the presence of cohesive natural soils with a high volume change potential at shallow depth, a suspended slab should be considered. The volume change potential of the shallow surface soils must be taken into account in final design (underfloor void diameter/compressible material/void formers etc.).
- Isolated Pad Foundations must be at least 1.5 times the width of the widest pad apart to keep to the anticipated settlements.
- Final designs for the foundations should be carried out by a suitably qualified Engineer based on the findings of this investigation and with reference to the anticipated loadings, serviceability requirements for the structure and the developments proximity to former, present and proposed trees.

6.3 Piled Foundations

Given the increased costs of excavating foundations to depth of 2.00 - 2.50m bgl, the amount of waste produced, the amount of concrete required and impracticality of forming traditional strip footings at this depth a piled foundation may prove to be the more economical foundation solution with piles taken through the Topsoil, Kempton Park Gravel Member and into the underlying London Clay Formation.

The construction and design of a piled foundation is a specialist job, and the advice of a reputable contractor, familiar with the type of ground and groundwater conditions encountered on this site, should be sought prior to finalising the foundation design, as the actual pile working load will depend on the particular type of pile and method of installation adopted.

The foundation would comprise a piled foundation with reinforced ground beams. For the cumulative pile capacity calculations, shaft friction over the desiccated levels should be ignored and piles should not be terminated within desiccated soils where moisture recovery following tree removal could occur.

Indicative limit loads and settlements for a bored pile have been given within the table below have been based on WS4. An allowance for negative skin friction to occur within the top 3.0m of the soil has been included within the calculations where it could pass through any Made Ground, root penetrated soils and soils showing a possible moisture deficit. An adhesion factor of 0.45m has been applied.

The bearing values may be limited by the maximum permissible stress allowable on a concrete pile. To achieve the full bearing value a pile should penetrate the bearing stratum by at least five times the pile diameter.

Bored Pile – Limit Loads and Settlement Parameters (Based on WS4)						
Depth	Diamatan (m)	Limit States (kN)		Settlement (Poulos Davis (1968))		
(m bgl)	(m bgl) Diameter (m)		Lateral	Total	Load (kN)	Total (Elastic + Rigid) (cm)
	0.30	23.53	83.35	96.68	95	0.18
6.00	0.45	53.85	125.02	155.02	150	0.20
	0.60	95.74	166.70	220.02	200	0.20
8.00	0.30	30.95	137.39	149.40	145	0.14
	0.45	69.63	198.89	236.71	225	0.24
	0.60	123.79	265.19	332.43	300	0.24

The bearing values given in the table above are applicable to single piles. Where piles are to be constructed in groups the bearing value of each individual pile should be reduced by a factor of approximately 0.8 and a calculation made to check the factor of safety against block failure.

The piles will need to be designed in accordance with the volume change potential of the soils encountered, depth of desiccation, root penetration, etc. Temporary casing may be required where the upper portion of the pile passes through the Made Ground, particularly where perched water is encountered, to prevent necking of the concrete.

6.4 Excavations and Stability

Shallow excavations in the Topsoil, Kempton Park Gravel Member and London Clay Formation are likely to be marginally stable at best. Long, deep excavations, through these strata are likely to become unstable, especially where groundwater strikes are noted.

Unsupported earth faces formed during excavation may be liable to collapse without warning and suitable safety precautions should therefore be taken to ensure that such earth faces are adequately supported before excavations are entered by personnel.

6.5 Sub-Surface Concrete

For the classification given below, the "mobile" and "brownfield" case was adopted given the geology encountered and the history of the site.

Topsoil

The water-soluble sulphates in the Topsoil tested (from the chemical laboratory testing) were found to be <10 - 11mg/l with a pH of 7.7 – 7.8.

Natural Ground – Kempton Park Gravel Member

The water-soluble sulphates were found to be 20mg/l (from the chemical laboratory tests). The total potential sulphate concentration (3x Sulphur) was found to be <0.06%. The pH was 8.1.

Natural Ground – London Clay Formation

The water-soluble sulphates were found to range between 2440 and 2490mg/kg (from the chemical laboratory tests). The total potential sulphate concentration (3x Sulphur) was found to be 2.31%. The pH was 7.6 - 7.7.

Therefore, sulphate concentrations measured in 2:1 water/soil extracts taken from the natural ground and total potential sulphate concentrations, fell into Classes **DS-1**, **DS-3** and **DS-4** of the BRE Special Digest 1, 2005, 'Concrete in Aggressive Ground' Table C1 of the Digest indicated an ACEC (Aggressive Chemical Environment for Concrete) classification of **AC-1**, **AC-3** and **AC-4**. A **DS4 class**

with an ACEC of AC-4 will be required for design.

Concrete to be placed in contact with soil or groundwater must be designed in accordance with the recommendations of Building Research Establishment Special Digest 1, 2005, *'Concrete in Aggressive Ground'* taking into account the pH of the soils.

It is prudent to note that pyrite nodules may be present within the London Clay Formation. Pyrite can oxidise to gypsum and this normally only occurs in the upper weathered layer, but excavation allows faster oxidation and water-soluble sulphate values can rapidly increase during construction. Therefore, rising sulphate values should be taken into account should ferruginous staining/pyrite nodules be encountered within the London Clay Formation.

6.6 Road and Hardstanding

Equilibrium CBR Assessment

Roads and hardstanding constructed on the granular soils of the Kempton Park Gravel Member should be designed based on a CBR value of 40%. This is based on reference to Table C1 of TRL1132 and average construction conditions. Based on wet conditions a CBR of 20% should be adopted, with dry conditions a CBR of 60% being applicable.

Roads and hardstanding constructed on the cohesive soils London Clay Formation encountered at shallow depth in BH3 should be designed based on a CBR value of 4.0%. This is based on reference to Table C1 of TRL1132 and average construction conditions. Based on wet conditions a CBR of 2.5% should be adopted, with dry conditions a CBR of 4.5% being applicable.

Frost Susceptibility

Given that the granular soils of the Kempton Park Gravel Member encountered beneath the site were shown to have a fines content of <10% **these deposits are likely to be non-frost susceptible.**

The cohesive soils of the London Clay Formation encountered beneath the site are cohesive soils with a modified plasticity index ranging between 34.8 - 41.6%. Therefore, these deposits are **likely to be frost susceptible**.

All formation levels for roads and hardstanding should be proof rolled to highlight any soft areas which should then be dug out and replaced with selected granular material compacted in thin layers to a suitable specification.

6.7 Surface Water Disposal

Infiltration tests were beyond the scope of the investigation.

Soakaways constructed within the the limited thickness of the granular soils of the Kempton Park Gravel Member or the cohesive soils of the London Clay Formation are unlikely to perform to a satisfactory standard.

Consultation with the Environment Agency must be sought regarding any use that may have an impact on groundwater resources.

The principles of sustainable urban drainage system (SUDS) and the requirements of the London Plan Policy 5.13 Sustainable Drainage should be applied to reduce the risk of flooding from surface water ponding and collection associated with the existing basement.

In accordance with the London Plan Policy 5.13 Sustainable Drainage the surface water run-off should be managed as close to its source as possible in line with the following drainage hierarchy:

- store rainwater for later use;
- use infiltration techniques, such as porous surfaces in non-clay areas;
- attenuate rainwater in ponds or open water features for gradual release;
- attenuate rainwater by storing in tanks or sealed water features for gradual release;
- discharge rainwater direct to a watercourse;
- discharge rainwater to a surface water sewer/drain;
- discharge rainwater to the combined sewer.

Drainage should be designed and implemented in ways that deliver other policy objectives of this Plan, including water use efficiency and quality, biodiversity, amenity and recreation.

7.0 PHASE 2 CONTAMINATION RISK ASSESSMENT

7.1 Results of the Phase 1 Risk Assessment (Conceptual Site Model)

The tabulated Conceptual Site Model based upon the review of the previous Desk Study Reports produced for the site and reviewed in section 2.7 of this report is reproduced in this section and can be seen below.

Tabulated Conceptual Site Model – Plausible Pollutant Linkages Only			
Potential on-site Sources	Potential Absorption Pathways	Potential Receptors	
 Contaminants introduced by previous site usage and construction activities. Heavy metals & semi-metals (Lead etc); Combustion products (PAH's, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene); Organic compounds (fuel oils, ash, tar); Volatile and Semi-volatile Organic Compounds (VOC/SVOC's); Asbestos (building material, pipe lagging). 	Direct ingestion of soil and soil derived dust; Dermal contact of soil and soil derived dust; Ingestion of soil with elevated concentration of determinants; Dermal contact with impacted soils; Inhalation of impacted dust (indoors and outdoors) with elevated concentration of determinants. Inhalation of volatiles (indoors and outdoors) with elevated concentration of determinants. Inhalation of volatile vapours (indoors and outdoors) with elevated concentration of determinants. Via anthropogenic pathways; Via underlying geology; (Made Ground and Kempton Park Gravel Member) Via surface water.	Construction workers Service and Maintenance Operatives. Site Occupiers. Secondary A Aquifer (Kempton Park Gravel Member) Ravensbourne River ~150m to the west	
Aggressive ground conditions with Made Ground and natural ground; Sulphates Acidic pH PAHs	Direct contact with aggressive ground conditions	Building Materials and Services	

No Made Ground was encountered in the boreholes drilled. Topsoil was encountered from ground level in each of the boreholes to a depth of between 0.35 - 0.45m bgl. The Topsoil generally comprised a dark brown slightly gravelly sandy clay. The sand was fine to coarse grained and the gravel was fine to coarse, sub-angular to sub-rounded flint.

Consequently, there was no need to modify the tabulated Conceptual Site Model developed in section 2.7 of this report.

7.2 Sampling Locations

The methodology for sampling locations can be seen tabulated overpage. A trial hole location plan is given within Figure 5 and the proposed development plan is shown within Figure 4.

Methodology for Sampling Locations and Chemical Laboratory Testing		
Trial Hole	Sampling Strategy	Anticipated Proposed End-use
WS1		Under Proposed Structure
WS2	Random Sampling	Communal Garden Area
WS3	Locations	Under Proposed Structure
WS4		Private Garden Area

The area investigated as part of the proposed residential development totals 0.07ha (700m²) and with four sampling locations, given an unknown hotspot shape, the sampling density means that a hotspot with an area of approximately 262.5m² and a radius of approximately 9.1m would be encountered (CLR 4).

Soil sampling depths were chosen to reflect the receptors of concern, human health, and typically comprised a surface or near surface sample. The receptors relevant to the sampling depths can be seen below:

Near surface samples	Direct ingestion, dermal contact and dust inhalation. Protection of end-users and maintenance workers e.g. Landscape Gardeners. Protection of shallow rooted plants Perched Water/Surface Water Run-off
>0.5m below ground level	Protection of deep rooted plants Perched Water/Surface Water Run-off

The depth of soil sampling can be seen within the trial hole logs presented in Appendix C.

7.3 Chemical Laboratory Testing – Human Health Risk Assessment

A programme of chemical laboratory testing, scheduled by Ground and Water Limited and carried out by DETS Limited, was undertaken on four samples samples of Topsoil (WS1/0.30m, WS2/0.30m, WS3/0.30m and WS4/0.30m bgl).

The samples tested and the reasons for testing can be seen tabulated below.

Methodology for Sampling Locations and Chemical Laboratory Testing			
Trial Hole	Depth (m bgl)	Sampling Strategy	Anticipated Proposed End-use
WS1	0.30m		Under Proposed Structure
WS2	0.30m	Representative samples of	Communal Garden Area
WS3	0.30m	Topsoil	Under Proposed Structure
WS4	0.30m		Private Garden Area

The depth of soil sampling can be seen within the trial hole logs presented in Appendix C.

The analysis suite is presented below and comprised:

• Semi Metals and Heavy Metals incl. Arsenic, Cadmium, Chromium (incl. Hexavalent Chromium), Copper, Lead, Mercury, Nickel, Selenium, Vanadium, Zinc: (WS1/0.30m, WS2/0.30m and WS4/0.30m bgl);

- Asbestos Screen: (WS1/0.30m, WS2/0.30m and WS4/0.30m bgl);
- Hvdrocarbons • Polvcvclic Aromatic (PAHs) incl. Naphthalene. Acenaphthylene. Acenaphthene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, Benzo(ghi)perylene: (WS1/0.30m, WS2/0.30m and WS4/0.30m bgl);
- Fuel Oils Speciated TPH including full aliphatic/aromatic split: (WS2/0.30m and WS4/0.30m bgl);
- BTEX compounds (Benzene, Toluene, Ethylbenzene, Xylene) and MTBE used as marker compounds for Volatile Organic Compounds (VOCs): (WS2/0.30m and WS4/0.30m bgl);
- Full WAC Solid Suite Test with single batch leachate: Ground and Water Limited (WS3/0.30m bgl)

The chemical laboratory results are presented in Appendix E.

7.3.1 Soil Assessment Criteria

The derivation of Soil Assessment Criteria used within this report can be seen within Appendix F.

7.3.2 Determination of Representative Contamination Concentrations

At the time of reporting, May 2020, the proposed development was understood to comprise the partial demolition and conversion of the former gas valve distribution building (Sui Generis Use Class) at 4 Bellingham Road, SE6 and the construction of a 3-storey, L-shaped building comprising 5x one bedroom, and 4x two bedroom dwellings, together with associated landscaping works and refuse and cycle storage. A plan view of the proposed development is given in Figure 4.

Therefore, the results of the chemical laboratory testing were compared to the LQM/CIEH Suitable 4 Use Levels (S4UL) and General Assessment Criteria (GAC) for a *'Residential with homegrown produce'* land-use scenario, as this was considered the most appropriate landuse scenario. The C4SL LLTC for Lead was compared to a *'Residential with homegrown produce'* land-use scenario.

Where no LQM/CIEH S4UL/C4SL LLTC was available for a particular determinant then preliminary reference was made to the laboratory detection limit of the determinant. If a positive concentration was noted then further risk assessment was undertaken.

For Cyanide, where no SGC/GAC or C4SL LLTC was available a Site Specific Assessment Criteria of 10mg/kg was adopted. This is based on ICRCL 59/83, TCL, ATRISK (SOIL) Screening Value and Dutch Intervention Value (ranging from 20 - 34mg/kg). Therefore, a SSAC of ~10mg/kg is considered conservative.

Where a contaminant of concern's LQM/CIEH S4UL/C4SL LLTC varies according to the Soil's Organic Matter (SOM), the SOM recorded for each soil sample was used to derive the appropriate SGV/GAC. The average SOM of the samples analysed was 2.9% (SOM ranged between 1.3 - 4.2%).

Double plot analysis indicated that the majority PAH's encountered were from a combustion source, within the urban background source and may be associated fragments of coal. None of the PAH's appeared to be from a Coal Tar source and therefore the benzo(a)pyrene S4UL

was considered suitable for use. The PAH double ratio analysis can be seen in Appendix F. The results of the comparison of the representative contaminant concentrations are presented in the table below:

Soil Guideline Values and General Acceptance Criteria Results			
	Sample Location		
	Where available LQM/CIEH S4UL/, CSL4 LLTC or GAC were exceeded for		
Substance	relevant land-use scenario		
	"Residential with Homegrown Produce" Land-Use Scenario		
Arsenic	None		
Boron	None		
Cadmium	None		
Chromium (III) Hexavalent Chromium (VI)	None		
	None WS1/0.30m (333 mg/kg)		
Lead	WS4/0.30m (433 mg/kg);		
Mercury (Elemnetal)	None		
Nickel	None		
Selenium	None		
Vanadium	None		
Copper	None		
Zinc	None		
Boron	None		
Cyanide (Total)	None		
Phenol	None		
TPH C5 – C6 (aliphatic)	None		
TPH C6 – C8 (aliphatic)	None		
TPH C8 - C10 (aliphatic)	None		
TPH C10 - C12 (aliphatic)	None		
TPH C12 - C16 (aliphatic)	None		
TPH C16 - C21 (aliphatic)			
TPH C21 - C34 (aliphatic)	None None		
TPH C5 – C7 (aromatic)	None		
TPH C5 – C7 (aromatic) TPH C7 – C8 (aromatic)	None		
TPH C8 - C10 (aromatic)	None		
TPH C10 - C12 (aromatic)	None		
TPH C12 - C16 (aromatic)	None		
TPH C16 - C21 (aromatic)	None		
TPH C21 - C35 (aromatic)	None		
Naphthalene	None		
Acenapthylene	None		
Acenapthene	None		
Fluorene	None		
Phenanthrene	None		
Anthracene	None		
Fluoranthene	None		
Pyrene	None		
Benzo(a)anthracene	None		
Chrysene	None		
Benzo(b)fluoranthene	WS4/0.30m (4.97 mg/kg)		
Benzo(k)fluoranthene	None		
Indeno(1,2,3-cd)pyrene	None		
Benzo(ghi)perylene	None		
Benzo(a)pyrene	WS4/0.30m (3.24 mg/kg)		
Dibenz(a,h)anthracene	WS4/0.30m (0.35 mg/kg)		
Benzene	None		
Toluene	None		
Ethylbenzene	None		
Xylene (o, m & p)	None		
MTBE	None		
	WS4/0.30m (chrysotile – small bundle 0.001%);		

Chemical laboratory testing revealed elevated levels of lead in excess of the C4SL LLTC of 210mg/kg for a *'Residential with homegrown produce'* land-use scenario within two samples of Topsoil (WS1/0.30m (333 mg/kg) and WS4/0.30m (433 mg/kg)).

Elevated levels of PAHs were detected in one of the samples of Topsoil tested (WS4/0.30m bgl) above the respective guideline values for a *'Residential with homegrown produce'* land use scenario. Chemical laboratory testing revealed elevated levels of: benzo(b)fluoranthene (4.97 mg/kg) above the guideline value of 3.30mg/kg (2.5% SOM); benzo(a)pyrene (3.24mg/kg), above the guideline value of 2.70mg/kg (2.5% SOM); and dibenz a,h)anthracene (0.35 mg/kg), above the guideline value of 0.28mg/kg (2.5% SOM).

Chemical laboratory testing of the Topsoil revealed no other elevated levels of determinants above the guideline levels for a *'Residential with homegrown produce'* land-use scenario.

In addition, the intrusive investigation did not reveal any visual or olfactory evidence to suggest any hydrocarbon-type contamination in the trial holes excavated on the site. The chemical laboratory results have verified that no elevated concentrations of aliphatic/aromatic hydrocarbons (C5-C35) BTEX compounds are present in the soils underlying the site.

Asbestos was identified in one of the samples tested as shown in the table below.

Type and Quantity of Asbestos detected in Trial Holes				
Trial Hole/ Sample	Asbestos Matrix	Asbestos Type	Asbestos Quantification (%)	
WS4/0.30m	Small bundle	Chrysotile	0.001%	

A quantification risk assessment was carried out for the highest concentration of chrysotile recorded (0.001%), in accordance with the guidance within CIRIA 733. The background, considerations taken and the calculations can be seen in Appendix G. A cumulative value of fibres/ml.year of 0.00091 for mesothelioma and 0.00065 for lung cancer were calculated.

Regarding the risk for mesothelioma, based on Table 14.1, the risk fell within the insignificant category.

Regarding the risk for lung cancer, based on Table 14.3, the risk was also regarded as insignificant.

An **Asbestos Management Strategy** should be put in place so that any potentially asbestos containing materials are identified and removed from site in a suitable manner to prevent cross-contamination.

An **asbestos survey** of the buildings currently on site is also recommended prior to any demolition and conversion.

7.4 Groundwater Risk Assessment

An examination of the DEFRA website revealed the site was located on a **Secondary A Aquifer** relating to the superficial deposits of the Kempton Park Gravel Member overlying **Unproductive** Strata relating to the bedrock deposits of the London Clay Formation.

Examination of the DEFRA records showed that the site within an Outer Zone (Zone II) Groundwater Source Protection Zone (SPZ) as classified in the Policy and Practice for the Protection of Groundwater. An Outer Zone (Zone II) Groundwater source Protection Zone is defined by a 400 day travel time from a point below the water table. The previous methodology gave an option to define SPZ2 as the minimum recharge area required to support 25 per cent of the protected yield. This option is no longer available in defining new SPZs and instead this zone has a minimum radius of 250 or 500 metres around the source, depending on the size of the abstraction.

The nearest surface water feature was the northerly flowing Ravensbourne River located \sim 150m to the west of the site.

From analysis of hydrogeological and topographical maps groundwater was anticipated to be encountered at moderate depth (2 - 4m below existing ground level (bgl)) and it was considered that the groundwater was flowing in a northerly/north-westerly direction in alignment with local topography and the flow of local rivers.

Examination of the Environment Agency records showed that the site fell within a Flood Zone 1 (an area with a low probability of river or sea flooding).

The potential receptors are presented below and comprise:

- Secondary A Aquifer underlying the site;
- Northerly flowing Ravensbourne River ~150m to the west of the site.

Given the hydrogeological setting of the site, the groundwater directly underlying the site and the Ravensbourne River ~150m to the west were considered to be sensitive receptors. However, given the likely limited mobility of determinants noted during the investigation no risk is posed to groundwater from the Made Ground encountered on-site.

7.5 Re-Evaluated Phase 2 Conceptual Site Model

Following completion of the Phase 2 Site Investigation, the CSM within Section 7.1 of this report was re-evaluated and can be seen overpage.

The plausible pollutant linkages remaining after risk assessment are shown and where risk assessment has indicated no unacceptable risk to sensitive receptors, the pollutant linkages have been crossed out.

Potential on-site Sources	Potential Absorption Pathways	Potential Receptors	
Contaminants introduced by previous site usage and construction/demolition activities.	Direct ingestion of soil and soil derived dust;		
 Heavy metals & semi-metals (Lead); Combustion products (PAH's, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene); 	Dermal contact of soil and soil derived dust; Ingestion of soil with elevated concentration of determinants;		
 Organic compounds (fuel oils, ash, tar); Volatile and Semi-volatile Organic Compounds 	Dermal contact with impacted soils;		
 (VOC/SVOC's); Asbestos (building material, pipe lagging). 	Inhalation of impacted dust (indoors and outdoors) with elevated concentration of determinants.	Construction workers	
Elevated concentration of metals and PAHs were deemed to pose a risk to end-users.	Inhalation of volatiles (indoors and outdoors) with elevated concentration of determinants.	Service and Maintenance Operatives.	
The presence of asbestos in soil poses a risk to construction works, service and maintenance workers.	Inhalation of volatile vapours (indoors and outdoors) with elevated concentration of determinants.	Site Occupiers.	
An Asbestos Management Strategy should be put in place so that any potentially asbestos containing materials are identified and removed from site in a	Via anthropogenic pathways;		
suitable manner to prevent cross-contamination.	Via underlying geology; (Made Ground and Kempton Park Gravel Member)		
An asbestos survey of the buildings should be undertaken prior to any demolition/conversion.	Via surface water.	Secondary A Aquifer (Kempto Park Gravel Member)	
Aggressive ground conditions with Made Ground and natural ground;		Ravensbourne River ~150m to the west	
 Sulphates Acidic pH PAHs 		Building Materials and Service	
	Direct contact with aggressive ground conditions		
Fell into Classes DS-4 and AC-4.			
Elevated concentration of PAHs			

8.0 DEVELOPMENT OF A REMEDIATION STRATEGY

8.1 Option Appraisal

This section of the report will discuss the options available following completion of the Site Investigation and Risk Assessment with respect to soil and groundwater contamination.

Risk Assessment to date has revealed the following contaminants of concern:

We have assessed that the contamination noted does not pose a risk to groundwater and therefore remediation is solely necessary with respect to human health.

Risk Assessment has indicated that the determinants noted pose no unacceptable risk to groundwater and therefore the Made Ground can remain under areas of permanent hardstanding. However given the risks posed to end-users remediation is necessary for areas of soft landscaping.

Complete removal of Made Ground from the site has not been considered given the cost implications and that a simple capping system could be adopted. This would prevent needless lorry movements and prevent waste unnecessarily being sent to landfills with only a finite capacity.

All works associated with construction/remediation will need to take into account the presence of elevated metals, PAHs and asbestos fibres within the Made Ground at the concentrations noted within the report. The Method Statements must ensure that not only site operative/workers are protected from any potential release of asbestos fibres but also that local residents are not affected.

All future maintenance workers/service operatives, working within areas of hardstanding (including beneath the footprint of building), will need to take into account the presence of Made Ground potentially containing fibrous asbestos and elevated metals and PAHs within their work Method Statements.

In relation to end-users the presence of permanent hardstanding (i.e. a building, car parking area or roads) will sever any plausible pollutant linkages present. In areas of soft landscaping then a risk may exist and remediation will be required.

8.2 Remediation Strategy

Based on the results of the contamination testing to date the following remediation options are available.

Complete removal of Topsoil from the site has not been considered given the cost implications and that a simple capping system could be adopted. This would prevent needless lorry movements and prevent waste unnecessarily being sent to landfills with only a finite capacity.

All works associated with construction/remediation will need to take into account the presence of asbestos cement and fibres within the Topsoil at the concentrations noted within the report. The Method Statements must ensure that not only site operative/workers are protected from any potential release of asbestos fibres but also that local residents are not affected.

All future maintenance workers/service operatives, working within areas of hardstanding (including beneath the footprint of buildings), will need to take into account the presence of Topsoil potentially containing cement bound and fibrous asbestos within their work Method Statements.

In relation to end-users the presence of permanent hardstanding (i.e. a building, car parking area or roads) will sever any plausible pollutant linkages present. In areas of soft landscaping a risk may exist and remediation will be required.

The levels of metals and PAH's within the Topsoil were considered likely to pose a risk to end-users. No risks to groundwater were considered likely to be present. Given the limited thickness of Topsoil encountered (0.35 - 0.45m in thickness, the Topsoil should be removed from the soft landscaped areas to expose the underlying soils of the Kempton Park Gravel Member. The voids created should then be independently inspected, sample and verified and backfilled with certified clean Topsoil.

Any imported soils would need to be verified as suitable for use, from a human health/contamination perspective, prior to importation.

8.3 Remediation Method Statement

At the time of reporting, May 2020, the proposed development was understood to comprise the partial demolition and conversion of the former gas valve distribution building (Sui Generis Use Class) at 4 Bellingham Road, SE6 and the construction of a 3-storey, L-shaped building comprising 5x one bedroom, and 4x two bedroom dwellings, together with associated landscaping works and refuse and cycle storage. A plan view of the proposed development is given in Figure 4.

The following remedial methodology should be undertaken based on the elevated levels of determinants noted:

- It is recommended that Topsoil (0.35 0.45m in thickness) is removed from the private garden areas and the private amenity areas to expose the natural soils of the Kempton Park Gravel Member with samples of the formation taken to verify it is suitable for use.
- Should validation sampling identify further contamination then remedial excavation should continue until validation sampling reveals all contaminants to have been removed. Repeat points above till sampling proves contaminants have been removed.
- Where a satisfactory capping is present or has been formed then the voids created may be backfilled with certified clean Subsoil/Topsoil.
- It is recommended that all remedial works are supervised by a Ground and Water Limited Engineer. This will allow for supervision and segregation of the waste produced whilst remedial works are ongoing. This may reduce overall disposal costs.
- Following the reduced dig the voids created must be visually inspected by an independent and suitably qualified person to verify the removal of the Topsoil. Validation samples from the sides and, where applicable, the base of the excavations should be taken and analysed for the presence of asbestos and/or elevated levels of contaminants. Validation of any anticapillarity barriers installed at the base of the voids will also be undertaken.
- The voids created should be measured and photographed.
- The voids should be backfilled with certified clean Subsoil/Topsoil.
- Stockpiled contaminated Topsoil, destined for removal from site, must be placed on an

impermeable liner with raised edge and must be covered at all times.

- Materials to be removed off-site must be classified by carrying out Waste Acceptance Produce (WAP) testing. A registered contractor must undertake the removal of waste. Full liaison must be made with the Environment Agency prior to the removal of any material and must be conducted to meet their full approval.
- Additional verification of any imported soil will also need to occur onsite, once received, to
 validate the accompanying lab certificate. Any samples taken from a stockpile of imported
 soil or placed soil should be at a rate of one sample per 50m³ of material and be tested for
 semi-metals, heavy metals, speciated PAH's and speciated TPH.

Validation;

• Following completion of all the remediation and validation works, outlined above, a report should be submitted to the local authority for approval.

Full liaison must be made with the statutory authority, prior to the implementation of this method statement and/or the removal of any material from site. All works must be undertaken to meet their full approval.

8.4 Validation Strategy

Any remedial works undertaken on the site will need to be inspected and independently validated by a Ground and Water Limited Engineer. All remedial excavations will need to be inspected, documented and photographed.

8.5 Discovery Strategy

There may be areas of contamination that have not been identified during the course of the intrusive investigation. For example, there may have been underground storage tanks (UST's) not identified during the Desk Study and/or Ground Investigation for which there is no historical or contemporary evidence.

Such occurrences may be discovered during the demolition and construction phases for the redevelopment of the site.

Groundworkers should be instructed to report to the Site Manager any evidence for such contamination; this may comprise visual indicators, such as fibrous materials within the soil, discolouration, or odours and emission. Upon discovery advice must be taken from a suitably qualified person before proceeding, such that appropriate remedial measures and health and safety protection may be applied.

Should a new source of contamination be suspected or identified then the Local Authority will need to be informed.

8.6 Waste Disposal

The excavation of foundations is likely to produce waste which will require classification and then recycling or removal from site.

Under the Landfill (England and Wales) Regulations 2002 (as amended), prior to disposal all waste must be classified as;

- Inert;
- Non-hazardous, or;
- Hazardous.

The Environment Agency's Hazardous Waste Technical Guidance (WM2) document outlines the methodology for classifying wastes.

Once classified the waste can be removed to the appropriately licensed facilities, with some waste requiring pre-treatments prior to disposal.

Asbestos was detected in one of the three samples of the Made Ground tested. No asbestos was found in the remaining two samples analysed.

Asbestos is the name given to a group of naturally occurring minerals which consist of flexible fibres. The most common types of asbestos are Chrysotile (white), Amosite (brown) and Crocidolite (blue). The properties of asbestos, in particular its strength, high thermal and electrical insulation, chemical resistance and fire resistance made it a very useful building material. However, breathing in asbestos fibres can cause diseases of the respiratory system. Whilst its use has now been banned, there are still many buildings which have asbestos containing materials which were installed before the ban came into effect.

Asbestos is both carcinogenic and toxic. The threshold limit for carcinogenic materials (0.1%) is lower than the threshold for toxic materials (3%). In practice this means that any material containing more than 0.1% asbestos is classed as hazardous waste.

Chrysotile asbestos (0.001%) was identified in one of the three samples of the Topsoil tested. This was below the hazardous waste threshold; therefore, the levels of asbestos noted were **NON-HAZARDOUS**.

Based on a risk phrase analysis of the chemical laboratory test results, in accordance with EC Hazardous Waste Directive and undertaken by Ground and Water Limited, the three samples of Topsoil tested were **NON-HAZARDOUS**. The results of the assessment are given within Appendix G.

INERT waste classification should be undertaken to determine if the proposed waste confirms to INERT or NON-HAZARDOUS Waste Acceptable Criteria (WAC).

It is important to note that whilst we consider our in-house assessment tool to be an accurate interpretation of the requirements of WM3, therefore producing an initial classification in accordance with the guidance, landfill operators have their own assessment tools and can often come to different conclusions. As a result, some landfill operators could refuse to take apparently suitable waste. It is recommended that the receiving landfill views the results of this assessment and the chemical laboratory results to determine their own classification.

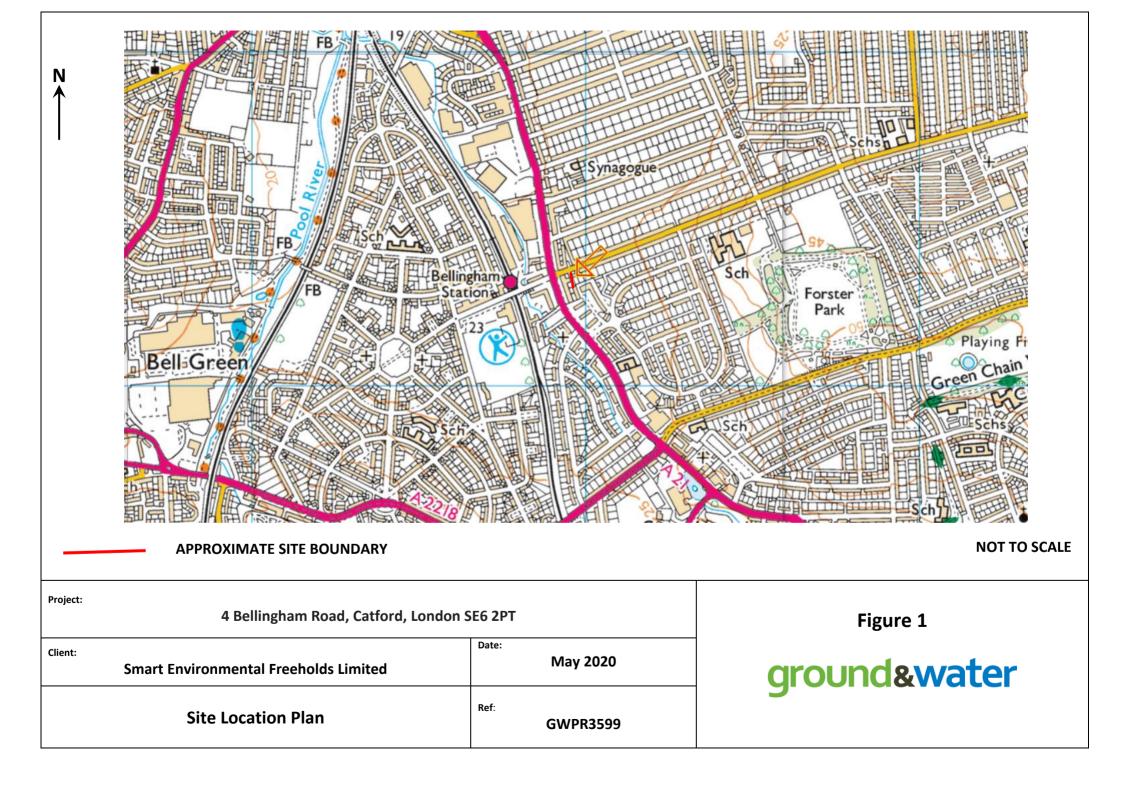
Following this initial waste hazard assessment, 1No. Full WAC Solid Suite Test with single batch leachate was undertaken on one sample of Topsoil (WS3/0.30m bgl) to determine which landfill category the waste conformed to. The results of the WAC tests can be seen summarised overpage and the full results in Appendix D.

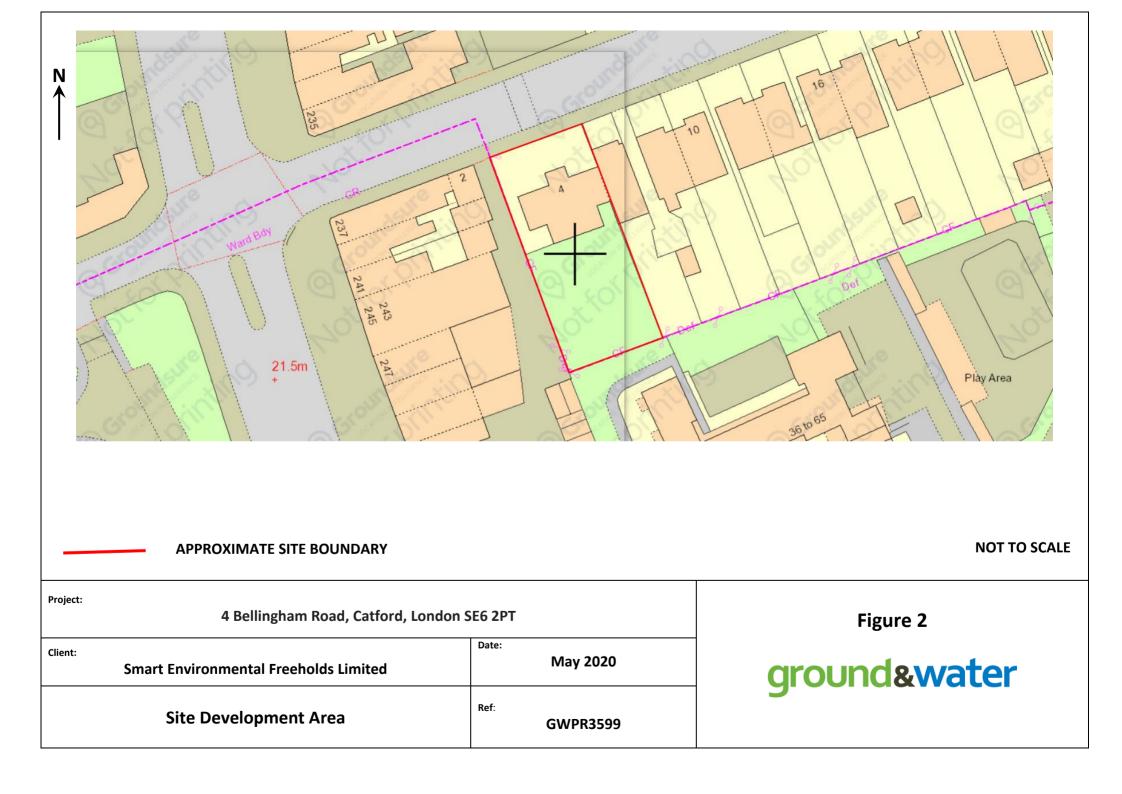
Sum	mary of WAC Tests
Trial Hole	Classification
WS3/0.30m	INERT Waste Landfill

8.7 Imported Material

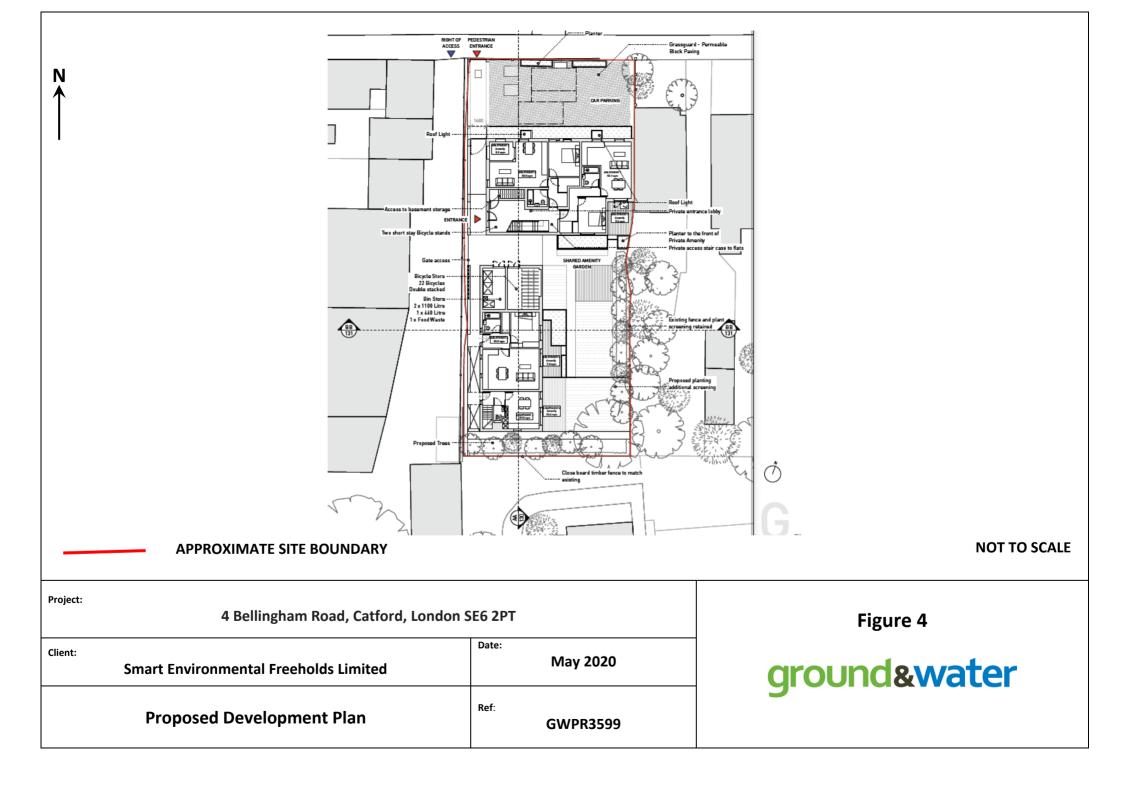
Any soil which is to be imported onto the site must undergo chemical analysis to prove that it is suitable for the purpose for which it is intended.

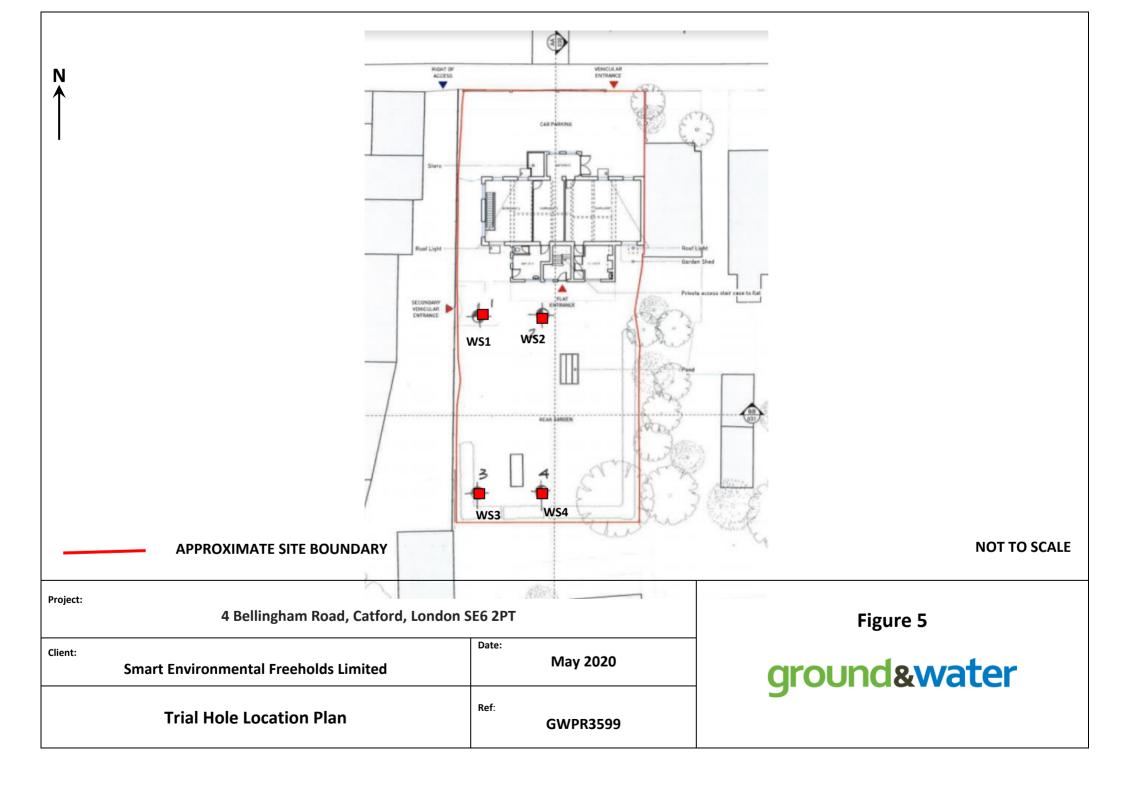
The Topsoil must be fit for purpose and must either be supplied with traceable chemical laboratory test certificates or be tested, either prior to placing (ideally) or after placing, to ensure that the human receptor cannot come into contact with compounds that could be detrimental to human health. The compounds that are to be tested for are those given in the LQM CIEH Generic Assessment Criteria, which can be viewed in Appendix E of this report.

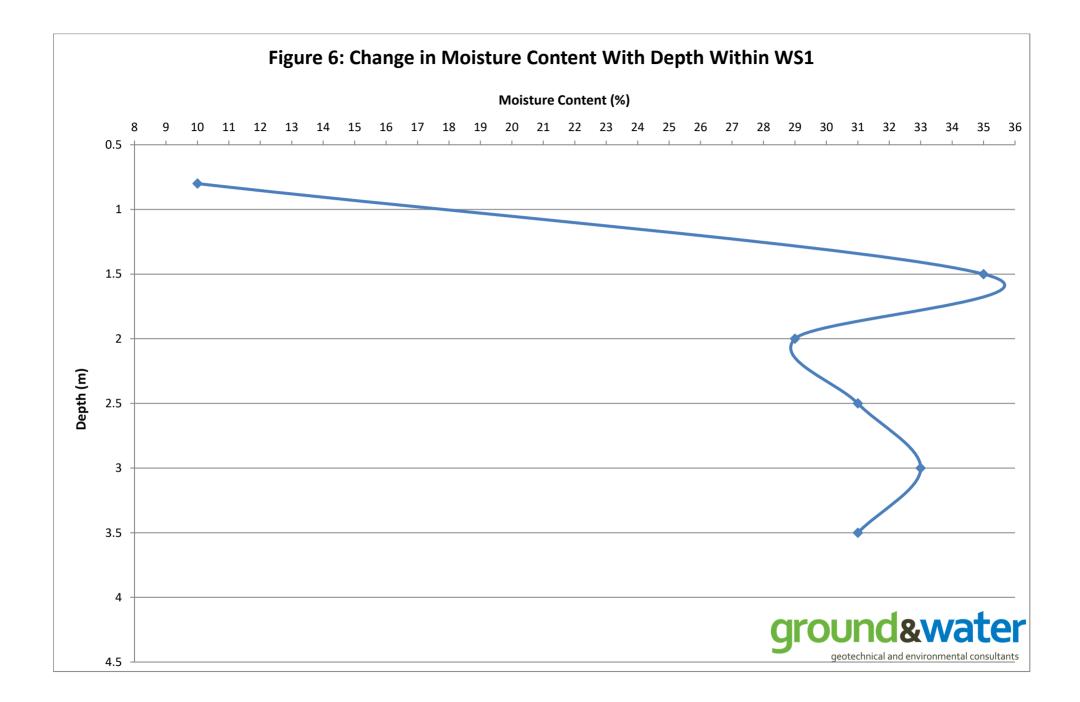

8.8 Duty of Care

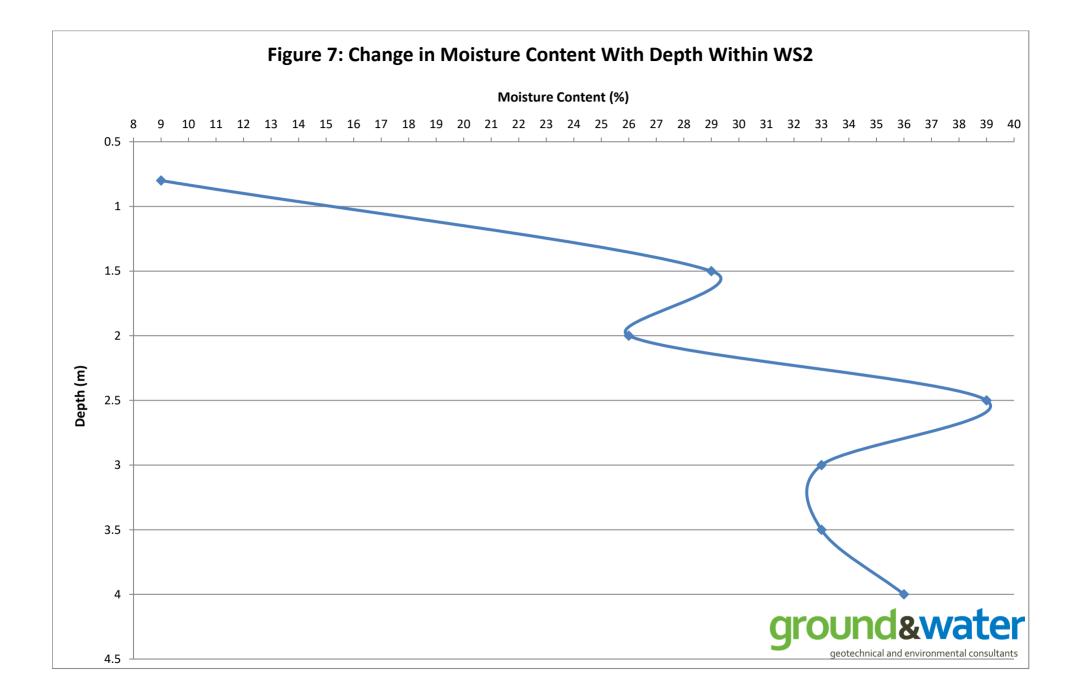

Groundworkers must maintain a good standard of personal hygiene including the wearing of overalls, boots, gloves and eye protectors and the use of dust masks during periods of dry weather.

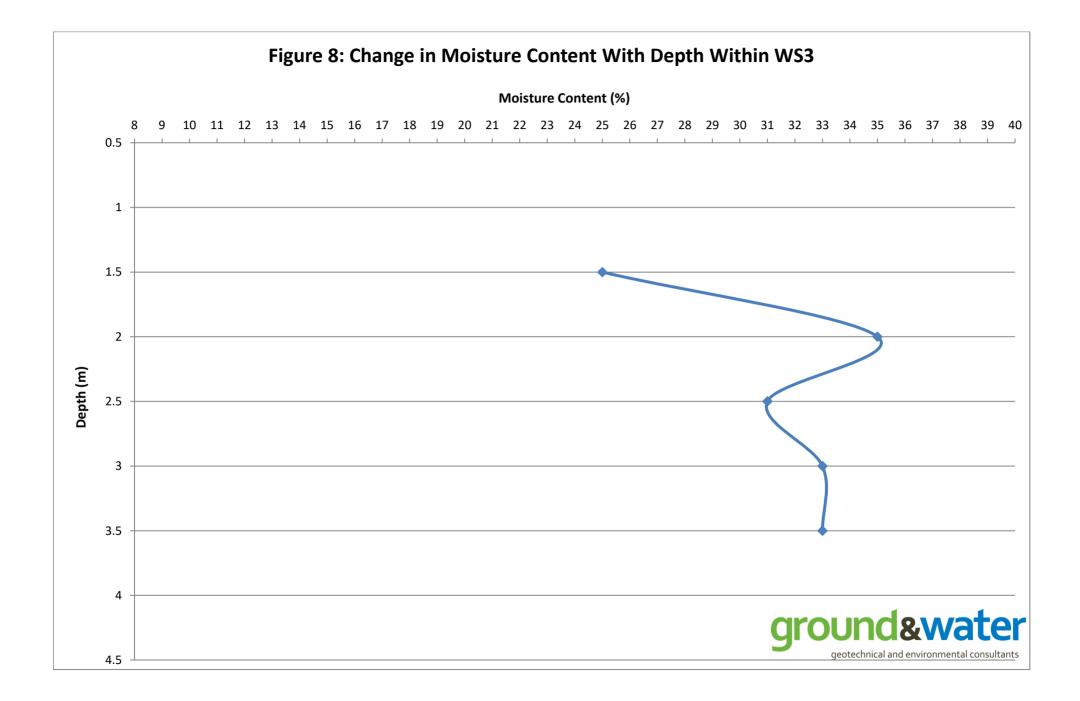
To prevent exposure to airborne dust by both the general public and construction personnel the site should be kept damp during dry weather and at other times when dust were generated as a result of construction activities.

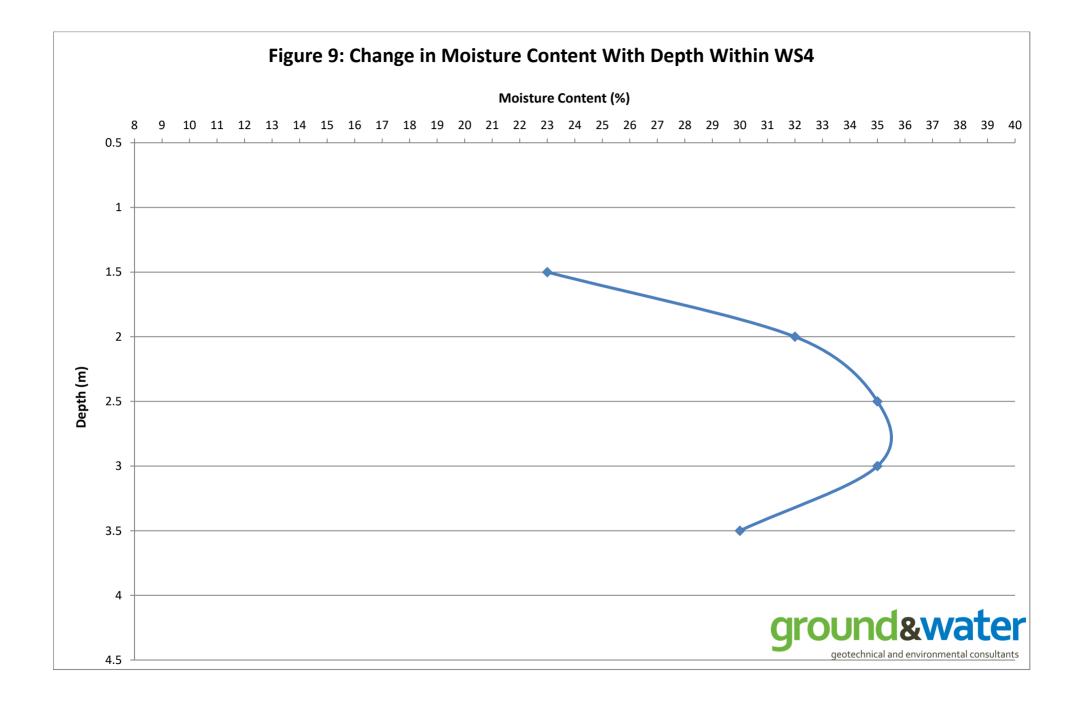

The site should be securely fenced at all times to prevent unauthorised access. Washing facilities should be provided and eating restricted to mess huts.


The presence of Asbestos fibres within the Made Ground will need to be take into account when producing Method Statement for construction and remedial works. Dampening down of excavation is likely to be required along with PP3 marks, gloves and overalls for all site operatives. Perimeter dust monitoring may be required.









APPENDIX A Conditions and Limitations

The ground is a product of continuing natural and artificial processes. As a result, the ground will exhibit a variety of characteristics that vary from place to place across a site, and also with time. Whilst a ground investigation will mitigate to a greater or lesser degree against the resulting risk from variation, the risks cannot be eliminated.

The report has been prepared on the basis of information, data and materials which were available at the time of writing. Accordingly any conclusions, opinions or judgements made in the report should not be regarded as definitive or relied upon to the exclusion of other information, opinions and judgements.

The investigation, interpretations, and recommendations given in this report were prepared for the sole benefit of the client in accordance with their brief; as such these do not necessarily address all aspects of ground behaviour at the site. No liability is accepted for any reliance placed on it by others unless specifically agreed in writing.

Any decisions made by you, or by any organisation, agency or person who has read, received or been provided with information contained in the report ("you" or "the Recipient") are decisions of the Recipient and we will not make, or be deemed to make, any decisions on behalf of any Recipient. We will not be liable for the consequences of any such decisions.

Current regulations and good practice were used in the preparation of this report. An appropriately qualified person must review the recommendations given in this report at the time of preparation of the scheme design to ensure that any recommendations given remain valid in light of changes in regulation and practice, or additional information obtained regarding the site.

Any Recipient must take into account any other factors apart from the Report of which they and their experts and advisers are or should be aware. The information, data, conclusions, opinions and judgements set out in the report may relate to certain contexts and may not be suitable in other contexts. It is your responsibility to ensure that you do not use the information we provide in the wrong context.

This report is based on readily available geological records, the recorded physical investigation, the strata observed in the works, together with the results of completed site and laboratory tests. Whilst skill and care has been taken to interpret these conditions likely between or below investigation points, the possibility of other characteristics not revealed cannot be discounted, for which no liability can be accepted. The impact of our assessment on other aspects of the development required evaluation by other involved parties.

The opinions expressed cannot be absolute due to the limitations of time and resources within the context of the agreed brief and the possibility of unrecorded previous in ground activities. The ground conditions have been sampled or monitored in recorded locations and tests for some of the more common chemicals generally expected. Other concentrations of types of chemicals may exist. It was not part of the scope of this report to comment on environment/contaminated land considerations.

The conclusions and recommendations relate to 4 Bellingham Road, Catford, London SE6 2PT.

Trial hole is a generic term used to describe a method of direct investigation. The term trial pit, borehole or window sampler borehole implies the specific technique used to produce a trial hole.

The depth to roots and/or of desiccation may vary from that found during the investigation. The client is responsible for establishing the depth to roots and/or of desiccation on a plot-by-plot basis prior to the construction of foundations. Where trees are mentioned in the text this means existing trees, recently removed trees (approximately 15 years to full recovery on cohesive soils) and those planned as part of the site landscaping.

Ownership of copyright of all printed material including reports, laboratory test results, trial pit and borehole log sheets, including drillers log sheets, remain with Ground and Water Limited. Licence is for the sole use of the client and may not be assigned, transferred or given to a third party.

Only our client may rely on this report and should this report or any information contained in it be provided to any third party we accept no responsibility to the third party for the contents of this report save to the extent expressly outlined by us in writing in a reliance letter addressed from us to the third party.

Recipients are not permitted to publish this report outside of their organisation without our express written consent.

APPENDIX B Fieldwork Logs

CK														
Project	Name:	4 Bellingham	n Road	I	Clien	t: Smart E	nvironm	ent Freeho	lds Limited	Date: 05/0	3/2020			
Locatio	on: Catf	ord, London S	SE6 2F	νT	Cont	ractor:								
Project	No. : G	SWPR3599			Crew	Name:				Drilling Eq	uipment:			
Bore	hole N WS1	umber		e Type VLS		Level			led By RF		cale :50		e Number	
	Water Strikes			Situ Testing		Depth (m)	Level (m)	Legend		Stratu	m Descriptio	on		
		Sample a Depth (m) 0.30 0.50 0.80 1.00 1.00 1.00 2.00 2.00 2.00 3.00 3.00 3.50 4.00 4.50 5.00	Type D D SPT D SPT D SPT D SPT D SPT D SPT D		,2,2) ,2,3) ,4,4)				sand was fi fine to coar KEMPTON to brown cla coarse grai angular to s LONDON C	Dark brown in ne to coarse se, sub-angu PARK GRA' ayey sandy (ned and the sub-rounded CLAY FORM. lenite crysta	slightly grave grained and ular to sub-ro VEL MEMBE GRAVEL. Th gravel was fi	Ily sandy cla the gravel v <u>unded flint.</u> R: Orange b e sand was ne to coarse brown silty t n bgl.	rown fine to , sub-	
														10 -
	Jolo Diamo	tor	Casing	Diamotor			Chico	lling		1	Inclination	and Oriontation		
	lole Diame e (m) Diar	eter neter (mm) Depth		Diameter Diameter (mm)	Dept	h Top Dept	Chise h Base	Duration	Tool	Depth Top	Depth Base	and Orientation Inclination	Orient	ation
Rema	rks											lI		
		encountered.	Roots r	noted to 2.00m	bgl.								AGS	3

Project Name	e: 4 Bellinghan	n Road		Clier	nt: Smart E	nvironm	ent Freeho	lds Limited	Date: 05/0	3/2020			
Location: Cat	ford, London S	SE6 2F	νT	Cont	tractor:								
Project No. :	GWPR3599			Crev	v Name:				Drilling Eq	uipment:			
Borehole N WS2			e Type /LS		Level			ed By RF		cale :50		e Number et 1 of 1	
Well Water	-		Situ Testing		Depth (m)	Level (m)	Legend		Stratu	n Descriptio	on		
Hole Dian	Depth (m) 0.30 0.50 0.80 1.00 1.00 2.00 2.50 3.00 3.00 3.50 4.00 4.00 4.50 5.00 5.00	Type D D SPT D SPT D SPT D SPT D SPT D SPT	Results N=9 (2,2/2,2, N=9 (3,3/2,2, N=16 (3,3/4,4 N=20 (4,4/5,5 N=23 (5,5/6,6	2,3) 2,3) ,4,4)	(m) 0.40 1.00	Chise		sand was fi fine to coar KEMPTON to brown cl coarse grai angular to s LONDON (Dark brown i ine to coarse se, sub-angu PARK GRA' ayey sandy (ned and the sub-rounded CLAY FORM. Jenite crysta	slightly grave grained and ular to sub-ro VEL MEMBEI GRAVEL. Th gravel was fii flint. ATION: Grey Is from 1.50m	ly sandy cla the gravel w <u>unded flint.</u> R: Orange b e sand was ne to coarse brown silty (h bgl.	rown fine to , sub- CLAY	
Remarks No groundwate	er encountered.	Roots n	noted to 0.40m	bgl. [Dead roots n	oted at 1	.50m bgl.					AGS	

Ø	vva													
Projec	t Name	: 4 Bellinghan	n Road	I	Clier	nt: Smart E	nvironm	ent Freeho	lds Limited	Date: 05/0)3/2020			
Locati	ion: Catf	ord, London S	SE6 2F	т	Cont	ractor:								
Projec	ct No. : C	GWPR3599			Crew	/ Name:				Drilling Eq	uipment:			
Bor	ehole N WS3			e Type /LS		Level			ied By RF		cale I:50		Numbe et 1 of 1	
Well	Water Strikes	-		Situ Testing		Depth (m)	Level (m)	Legend		Stratu	m Descriptio	on		
	Suikes	Depth (m)	Туре	Results		(11)	(11)		TOPSOIL:	Dark brown	slightly grave	lly sandy cla	y. The	_
		0.20	D			0.35			sand was fi fine, sub-ar	ne to mediu ngular to sub	m grained an o-rounded flint	d the gravel	was	-
		0.50	D						KEMPTON	PARK GRA	VEL MEMBEI GRAVEL. Th	R: Orange b	rown fine to	-
		0.80 1.00	D						coarse grai	ned and the sub-rounded	gravel was fi	ne to coarse	, sub-	1 —
		1.00	SPT	N=8 (2,2/2,2,	2,2)	1.10			LONDON	LAY FORM	ATION: Grey	brown silty (CLAY	' -
		1.50	D						with the se	ienite crysta	lls from 3.00m	i bgi.		-
		2.00	D											2 —
		2.00	SPT	N=10 (2,2/2,3	,2,3)									-
		2.50	D											
		0.00												-
		3.00 3.00	D SPT	N=16 (3,3/4,4	,4,4)									3 —
		3.50	D											-
														-
		4.00 4.00	D SPT	N=18 (5,5/4,4	,5,5)									4 —
														-
		5.00	SPT	N=18 (5,5/4,4	,5,5)									5 —
						E 45								-
						5.45				End of B	orehole at 5.45	50m		-
														6 —
														-
														/
														_
														-
														8 —
														-
														9 —
														_
														-
														10 —
Depth Ba	Hole Diamo ase (m) Diar	eter meter (mm) Depth		Diameter Diameter (mm)	Dept	th Top Dept	Chise h Base	lling Duration	Tool	Depth Top	Inclination a	and Orientation Inclination	Orienta	ition
,			()										2.10114	
Rema		r encountered.	Roota -	noted to 1 10m	hal F)ead rooto r	inted at 2	50mbal						
. to gru	anawald	shoountered.	10013		~yı. L	.500 10015 1	loicu ai Z	.oombyl.					AGS	

	wai	: 4 Bellingha	am Road	1	Clien	t: Smart F	nvironme	ent Freeho	lds Limited	Date: 05/03/2020		
-		ford, Londor				ractor:						
		GWPR3599		•		Name:				Drilling Equipment:		
	ehole N			э Туре	CIEW	Level			ed By	Scale	Page Nu	Imper
DOI	WS4			VLS		20101			RF	1:50	Sheet 1	
/ell	Water	Sample	e and In	Situ Testing	J	Depth	Level	Legend		Stratum Descri	otion	
	Strikes	Depth (m)) Type	Results		(m)	(m)		TOPSOIL	Dark brown slightly gra		av
X		0.20	D						The sand w	as fine to medium gra ub-angular to sub-roun	ined and the gravel	l
Ű		0.50	D			0.45			KEMPTON	PARK GRAVEL MEM	BER:: Orange brow	/n
S		0.80	D						coarse grai	ayey sandy GRAVEL. ned and the gravel wa	s fine to coarse, su	to b-
S		1.00 1.00	D SPT	N=8 (1,1/2,2	,2,2)	1.00		X X X X X	LONDON	Sub-rounded flint.	rey brown silty CLA	Y
Y		1 50			,				with fine se	lenite crystals from 1.5	50m bgl.	
Ù		1.50	D									
Ű		2.00	D					$\frac{\times \widehat{\times} \times \widehat{\times} \widehat{\times}$				
Y		2.00	SPT	N=12 (3,3/3,3	3,3,3)							
H		2.50	D									
H								$\frac{\times \times \times \times \times \times}{\times \times \times \times \times}$				
Ì		3.00 3.00	D SPT	N=17 (5,5/5,4	1 1 1)							
Ì				11-17 (0,0/0,-	,,,,,)							
Ű		3.50	D									
Y		4.00	D									
H		4.00		N=20 (5,5/5,5	5,5,5)							
H		4.50	D					$\frac{\times \times \times \times \times \times \times}{\times \times \times \times \times \times}$				
Ì												
Ì		5.00	D					$\frac{\times \frac{\times}{\times} \times \times \times} \times $				
U		5.00	SPT	N=20 (5,5/4,5	5,5,6)			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				
Ű		5.50	D									
S												
H		6.00 6.00	D SPT	N=24 (5,6/6,6	6,6,6)			$\times \times $				
Y		6 50			,							
Ŭ		6.50	D									
U		7.00	D									
Y		7.00	SPT	N=27 (6,6/6,7	7,7,7)							
H		7.50	D			7.50			LONDON	CLAY FORMATION: G	ev silty CLAY with	
S,								$\frac{\overline{\times} \times \overline{\times} $	fine selenite		,, e u mar	
Ì		8.00 8.00	D SPT	N=28 (7,7/7,7	7 7 7							
Ű					,., <i>.</i> ,			$\begin{array}{c} & & \\ \hline \times \\ \hline \times \\ \hline \times \\ \hline \times \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \\ \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \end{array} \\ \\ \\ \\$				
Ű		8.50	D					$\frac{\times \times \times \times \times}{\times \times \times \times} \times \times \times \times \times \times \times \times \times \times$				
Ŵ		9.00	D					$\frac{\overline{\times \times \times \times \times \times}}{\overline{\times \times \times \times \times \times}}$				
Y		9.00		N=36 (8,8/9,9	9,9,9)							
Y,		9.50	D									
Ű												
Ň		10.00	D					$\xrightarrow{\times \xrightarrow{\sim} \times \longrightarrow \longrightarrow \times \longrightarrow $				- 1
. r	Hole Diam			Diameter		h Tan	Chise		T!		on and Orientation)rig = t : t'
n Ba	ise (m) Dia	meter (mm) Dep	pin Base (m)	Diameter (mm)	Dept	n iop Dept	h Base	Duration	Tool	Depth Top Depth Bas	se Inclination C	Drientatio
m	arks											
Rema No gro		r encountered	d. Roots r	noted to 1.50m	bgl. D	ead roots r	noted betw	/een 2.50 -5	.00m bgl.			

&	Nat	ler			-						3			
Project	Name	: 4 Belling	ham Road	1	Client: S	mart E	invironm	ent Freeho	olds Limited	Date: 05/0	3/2020			
Locatio	on: Catf	ford, Lond	on SE6 2F	рт	Contract	or:								
Project	No. : (GWPR359	9		Crew Na	ime:				Drilling Eq	uipment:			
Bore	ehole N WS4			e Type VLS		Level			ged By RF		cale :50		e Numbe et 2 of 2	
Well	Water	Samp	ole and In	Situ Testing		epth	Level	Legend		Stratu	m Descriptio	n		
	Strikes		n) Type SPT	Results		(m)	(m)	Legend		Stratu	in Descriptio			
		10.00	371	N=40 (9,9/10,10,10		0.45				End of Bo	rehole at 10.4	50m		-
														19 -
														20 -
	Hole Diame se (m) Diar			Diameter	Depth To	Dept	Chis th Base	elling Duration	Tool	Depth Top	Inclination Depth Base	and Orientation Inclination	Orienta	ition
Remai No grou		r encounter	red. Roots r	noted to 1.50m	bgl. Dead	roots r	noted bet	ween 2.50 -{	5.00m bgl.	<u> </u>			AGS	

APPENDIX C Geotechnical Laboratory Test Results

SOILS

Summary of Natural Moisture Content, Liquid Limit and Plastic Limit Results

ob No.			Project	Namo						1	Prog	ramme	
	0042					SECODT				Samples r			3/2020
	8043		4 Bellin	gnam	Road, Catford, Londor	1 SE6 2P1				Schedule			3/2020
roject No.			Client							Project sta	rted	18/03	3/2020
GWI	PR3599	9	Ground	l & Wa	ter Ltd					Testing St	arted	04/05	5/2020
Hole No.		San	nple		Soil Des	cription	NMC	Passing	LL	PL	PI	Ron	narks
noie no.	Ref	Top m	Base m	Туре	Soli Des	chption	%	425µm %	%	%	%	Ren	liaiks
WS1	-	0.80	1.00	D	Brown clayey very sa (gravel is fmc and sul rounded)		10						
WS1	-	1.50	-	D	Brown silty CLAY		35						
WS1	-	2.00	-	D	Brown mottled bluish with traces of decaye		29						
WS1	-	2.50	-	D	Brown slightly mottled CLAY with rare fm m		31	99	71	31	40		
WS1	-	3.00	-	D	Brown slightly mottled CLAY with orangish b pockets and scattered	prown fine sand	33						
WS1	-	3.50	-	D	Brown slightly mottled CLAY with orangish b pockets and scattered	prown fine sand	31						
WS2	-	0.80	1.00	D	Brown clayey very sa (gravel is fmc and sul rounded)	-	9.0						
WS2	-	1.50	-	D	Brown mottled bluish with traces of decaye	• • •	29						
WS2	-	2.00	-	D	Brown slightly mottled slightly sandy slightly with rare cobbles (gra angular)	gravelly silty CLAY	26						
WS2	-	2.50	-	D	Brown slightly mottled CLAY with scattered and decomposed roo	traces of selenite	39						
WS2	-	3.00	-	D	Brown slightly mottled CLAY with rare fm m		33	99	69	27	42		
WS2	-	3.50	-	D	Brown slightly mottled CLAY with orangish b pockets and scattered	prown fine sand	33						
			: BS137 Content clause 4.		t 2: 1990: 9 3.2 	Test F Ui		Herts WD	018 9RU	ATORY ach		App Initials	ed and roved J.P
					re (Tech.Mgr) J.Phaure			01923 711 mes@k4s		n		Date:	12/05/2 5-R1(b)

SOILS

Summary of Natural Moisture Content, Liquid Limit and Plastic Limit Results

ob No.			Project	Name							Prog	ramme	
	8042					SEC 2DT				Samples r	eceived	17/03	3/2020
	8043		4 Bellin	ignam	Road, Catford, Londor	1 3E0 2P1				Schedule		12/03	3/2020
roject No.			Client							Project sta	arted	18/03	3/2020
G\WI	PR359	9	Ground	& \V/≏	ter I td					Testing St	arted	04/04	5/2020
	11000	0	Cround	10 110						resting of		04/00	0,2020
Hole No.	Def	1	nple	Turne	Soil Des	cription	NMC	Passing 425µm	LL	PL	PI	Ren	narks
	Ref	Top m	Base m	Туре			%	%	%	%	%		
WS2	-	4.00	-	D	Brown mottled bluish with scattered traces		36						
WS3	-	1.50	-	D	Brown slightly mottled slightly gravelly silty (and rounded)		25	94	63	26	37		
WS3	-	2.00	-	D	Brown mottled bluish with scattered traces		35						
WS3	-	2.50	-	D	Brown slightly mottled CLAY with orangish b pockets and scattered	prown fine sand	31						
WS3	-	3.00	-	D	Brown slightly mottled CLAY with orangish b pockets and scattered	prown fine sand	33						
WS3	-	3.50	-	D	Brown slightly mottled CLAY	d bluish grey silty	33						
WS4	-	1.50	-	D	Brown slightly sandy (gravel is fmc and sul rounded)		23						
WS4	-	2.00	-	D	Brown slightly mottled CLAY with orangish b pockets		32						
WS4	-	2.50	-	D	Brown mottled bluish with traces of decaye		35						
WS4	-	3.00	-	D	Brown slightly mottled slightly fine sandy silt scattered traces of se	y CLAY with	35						
WS4	-	3.50	-	D	Brown slightly mottled CLAY	d bluish grey silty	30	100	65	29	36		
	Natural	Moisture	Content clause 4	: clause	t 2: 1990: e 3.2 	Test I U		Herts WI	018 9RU	ATORY ach	1	App Initials	roved J.P
								01923 711 mes@k4s		n		Date:	12/05/2
2519	Annes	und Sign	otorioo		re (Tech.Mgr) J.Phaure							MSF-	

Γ		K	1					P/	AR	тіс	CL	E	SIZ	E	DIS	TR	IB	UT	ION						ob F									280				
			SOILS																							nole/		No.						W	S1			
	Site	Narr	ne		4 Be	ellin	gham	Roa	d, C	atfo	rd,	Lon	ndon	SE	6 2P	Τ								S	Samp	ole N	0.							-				
P	rojeo	ct No	0.			Ģ	SWPR	3599	9				Clie	nt			G	rou	nd & V	Vat	ter L	td		C	Pepth	n Top	р						0.	.80				m
																								De	epth	Base	е						2.	.00				m
	So	il De	escripti	on	Br	owr	n claye	ey ve	ery s	and	y G	RA		. (gra unde		is fn	nc a	nd s	sub-an	gu	lar to	o sub)-	S	Samp	ole T	уре							C)			
													10	unut	50)								ļ			ples									/202			
	Т	est	Metho	d	BS1	377	:Part	2: 19	990.	clau	JSe	9.0)											S		dules oject				_					/202			
				-		-			,																	ate t									/2020			
		0	LAY		- 1		SILT		_							SANE									AVE					С	OBB	LES	Τ	во	ULDE	RS		
	10			Fine	e	N	1edium		Coa	arse			Fine	i		lediu	m	C	Coarse	_		Fine	1 11	Me	edium	1		barse	e		·—	-						1
	0	0 -																								Χ												
																																				Π		
	8	i0																			_				/								1	1			t	
%	7	'0				╈		+	+	-		++	-							┥	_			\mathcal{A}	-	-	+						+-	+			+	
, bui	6	i0							_					-										/		_							-	_			-	
Percentage Passing	5	io -																					/													Ш		
tage																							1															
rcent	4	.0																				/											1				Ť.	
Ре	3	i0				╈		-	+	-		++	_	-						-						-		-					+	+		++	+	
	2	20							_				_				/								_								-	_				
	1	0																																				
	'	۰T											Τ																							\square		
		0 ↓ 0.0	01			().01					().1		ļ	<u>i i</u>			1				<u> </u>	1()				<u>. l</u>		100					1	ц 1000)
	_			0.1													Parti	cle	Size	m	m																	
		Dort	iolo Si	ze mm	ving	0/ F	Passin	a.		ortic			edir e mn			5n 6 Pa	ooin	~																				
		ran	125		_		100	y	ľ	ann	Je .	SIZE	;		70	0 F d;	5511	y	_	E	Sam	ple	Dror	ort	iona					-			0/.	dry	mas			_
			90				100		╟─													/ coa		Jon	ions	•							70	0.		5		
			75				100														Grav												_	70		_		
	_		63 50				100 100		╢─												San	a												22	.1			
			37.5	5			100													ľ	Fine	es <0	.063	mm										7.	6			
	_		28 20				100 95		╢─											ſ	Gra	ding	Ana	alysi	s					Т								
			14				90													Ū	D10	0							mm	_			_			_		
	\vdash		10 6.3		\vdash		76 56		╢─					╉					-		D60 D30								mm mm	_				6.9 2.0				\neg
	þ		5				47							1						Ī	D10								mm	-			_	0.1	59	_		
	┝		3.35 2	Ì	\vdash		37 30		╢─					╉					-			ormit /atur								+			—	4		—		-
			1.18				26													L														0.	•			
			0.6		-		23 21															narks aration		estino	a in ad	ccorda	ance	with	BS1:	377	unles	ss not	ed be	elow				
			0.42				16		╢─																,													
			0.212				12 10																															
	E		0.15 0.063				8																															
	- - -	,											<u> </u>	il c	1.5		o <u>+</u> -														С	heck	(ed	and	Аррі	rove	d	
	0.05							n!+ 4	• •	י-ור						bor		-	14/17			יום								-					-			
- (7	>≮)	Ē				U	1117 9	o, (ora, k4s			, WD om	10	2 21	κU							Initi		•					J.I		
U.	K A	S	Į.									Τe	el: ()19	23	711	28											ľ	Date	e:)5/05	/202	20	
2	519)	Арр	roved S	Signat	es: K.F	gr)	J.Pr	naur	e (La	ab.M	lgr)																MS	F-5-	R3								

	K					P	PAR	тісі	LE	SIZ	ZE I	DIS	TR	IBI	JTI	ION					Job F	Ref hole/							2804 WS]
			/	4 Doll	linah	am Da		ottord		ndor		6 00	т											10.					003	Z			-
	ite Na			4 Dell		am Roa		alioro	1, LC			0 ZP				nd & W	1-1-					ple N							-				_
PI	oject l	NO.			GW	/PR359	99			Clie	eni			G	rour		ate	LLU			-	h To							80			m	_
				Bro	wn c	layey v		andv	GR		l (ar	aval	ie fn	00.2	nd e	ub-an	حايية	r to su	ıh-			Bas						Ζ.	00			m	-
	Soil E	Descripti	on	DIO	WIT C	ayey v	Cry S	anuy	UI.		bunde		13 111		iu s	ub-an	guia	10 30	10-			ple T ples	•••	aiver	4			17	D 7/03/2				_
																						dule							2/03/2				
	Tes	t Methoo	d	BS13	877:P	'art 2: 1	990,	claus	ie 9.	.0												oject Date							3/03/2 1/05/2				
	_				0	. .																	lesie	u				1	/03/2	2020		_	
	-	CLAY	Fine	•	SII		Coa	arse		Fine	e		SANE		С	coarse		Fine)		RAVE edium		Co	arse		COBB	BLES		BOU	LDER	S		
	100																							Ϊ									
	90	1															╈																
	80										-						╀											-	+				
.0	70										_						+																
% ɓu	60	ļ																															
Percentage Passing	50																																
tage																																	
ercent	40																T		/														
Pe	30																┢																
	20													_			╞	_				_	-					-					
	10	ļ																															
	0																																
		001			0.0)1				0.1			F	Parti		1 Size	mm			1	0					100					10	00	
			Sie	ving						Sedi	men	tatic	n]																	
	Pa	rticle Siz	ze mm	%	6 Pas	ssing	Pa	article	e Siz	ze mi	m	%	Pa	ssinę	9																		
		125			10											1		ample		-	tions	8						%		mass			
	-	90 75			10 10						-					-		ery coa ravel	arse	•									0.0 71.3				-
		63			10											1	Sa	and											22.4	4			
		50 37.5	;		10 90											-	Fi	nes <(0.06	3mm	1								6.3	3			-
		28			77	7										1										·							
	\vdash	20 14			70 66		-∦				+					-		rading 100	g An	alys	IS			m	m	\vdash							-
		10			57	7	上									1	De	60						m	m				11.				1
	\vdash	6.3 5			43		-∦				+					-	D: D'								im im	<u> </u>			2.2				4
		3.35			34													niform	ity C	Coeffi	cient	t							66				-
		2			29												С	urvatu	ire C	coeffi	cient	t							2.7	7			
	-						_										R	emark	c														
			5															eparatio		l testin	ig in a	ccorda	ance v	vith B	S137	7 unle	ss note	ed be	low				
		0.3																															
	_						_																										
G	<u>ل</u>								K	4 Sc	oils	Lal	oor	ato	ry											С	heck	ked a	and A	Appro	ved		
- (>	\mathbf{x}					Unit	8, C										18	9RU						In	itial	s:					J.P		
	AS							Em								om								D	ate:				05	5/05/2	020		
25	інс 519	Арр	1.18 26 0.6 23 0.425 20																								MS	F-5-F	23				

	(PA	RT	ICL	E	SIZ	Έ.	DIS	TR	IBI	Л	ION					Job	Ref							28	043	0.1		
	V		SOILS									·											Bore	ehole	e/Pit	No.					W	S4			
:	Site N	Name			4 Bell	lingł	nam R	oad,	Cat	ford,	Lo	ndor	SE6	6 2P	Т								Sam	ple l	No.							-			
Р	rojec	t No.				G۷	VPR3	599				Clie	nt			G	rour	nd & W	/ater	Ltd			Dep	th To	р						1.50				m
																					Depth Base									-				m	
	Soil	l Des	cription	1	Bro	wn s	slightly	/ san	dy g	Irave			CLA'			l is f	mc a	and su	b-an	igulai	r to		Sam	nple ⁻	Гуре	e					D				
												Sub-	Touri	ueu)										nples							17/03				
	Te	est M	ethod		BS13	77.	Part 2:	199	0 cl	ause	- 9 (<u>ר</u>															ceived rted				12/03 18/03				
		00110	otriou		2010		urt 2.	100	0, 01	auot		5												Date											
		CL					ILT								AND								RAVI					CO	BBLES	3	В	DULD	ERS		
	100			Fine		Me	dium	C	Coars	se		Fine	i	M	ediur	n	C	Coarse	_	Fine	e	N	lediu	m	C Z	oarse	> •	1							1
	90																							Ζ											
																							\vee												
	80																					/												T.	
%	× 70 -									+									+			/								-					
sing																			-						_					_	_	+			
Pas	ss д 50											┢	_	/																					
ntage	60																																		
erce																																			
а.	30	0																																	
	20	0 -		_						+									+																
	10	₀ _								_			-						+						_					_	_				
	C	٥L				Ш						Ļ																						Ц	
	(0.001				0.0	01					0.1			F	Parti		1 Size	mm				10					10	00					1000	0
	Γ			Siev	/ing			1			s	Sedi	men	tatio				7																	
	F	Partic	le Size	mm	%	6 Pa	issing		Par	ticle	Siz	e mr	n	%	Pas	ssing	ļ																		
			125			1(00													mple			tion	s						%	6 dr	y ma	ass		
			90 75				00											_	_	ery co avel	arse	9						-).0 8.6			
			63			1(00													and												3.8			
			50 37.5				00 00	_					_					-	Fir	nes <	0.06	3mr	n					-			4	7.6			
			28			1(00																									1.0			
			20 14				16 10											_		adin	g Ar	nalys	sis				nm	_							
			10				3												De								nm				0.	998			
			6.3				′1 –												D3								nm								
			5 3.35				67 64	_					_					-	D1 Ur	niform	nity (Coeff	icier	nt		r	nm								
			2			6														urvatu															
			1.18				0											_	_																
		(0.6 0.425				i9 i8													emark paratio		d testi	ng in a	accord	lance	with I	BS13	77 ur	nless n	oted	below				
			0.3				5																												
	F		0.212				2	╢																											
			0.15 0.063				51 8																												
	- 																												Che	ckec	and	App	orov	ed	
	9944 1	-					11		~'				oils				-		40.4	ייסמ	1														
- (1	>≮						Un	ιt ð,					nes					, WD om	19 2	θKŪ							nitia	itials: J.P							
U	KA:	s							•																	Date: 05/05/2020									
2	UKAS TEL: 01923 711288 2519 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)											MSF-5-R3																							

	4
Ų	SOILS

Sulphate Content (Gravimetric Method) for 2:1 Soil: Water Extract and pH Value - Summary of Results Tested in accordance with BS1377 : Part 3 : 2018, Clause 7.6 & Clause 12

	Soils													
ob No.			Project N	ame										
3043			4 Belling	nam Road	d, Catford, London SE6 2PT			Samples re						
					· ·			Schedule r		12/03/2020				
roject No			Client					Project st		18/03/2020				
WPR359	9		Ground &	Water Lt	id			Testing S	tarted	28/04/2020				
		Sa	ample			Dry Mass passing	SO4							
Hole No.	Ref	Тор	Base	Туре	Soil description	2mm	Content	рН	F	Remarks				
		m	m			%	mg/l							
WS2	- 2.50		-	D	Brown slightly mottled bluish grey silty CLAY with scattered traces of selenite and decomposed roots		2440	7.59						
			1		I Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288	<u> </u>	I		Checked and Approved Initials J.P					
UK A	A S				Email: James@k4soils.com				Date:	05/05/20				
				App						05/0				

APPENDIX D Chemical Laboratory Test Results

Roger Foord Ground & Water Ltd 2 The Long Barn Norton Farm Selborne Road Alton Hampshire GU34 3NB

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 20-03296

Site Reference: 4 Bellingham Road, Catford, London SE6 2PT

Project / Job Ref: GWPR3599

Order No: None Supplied

Sample Receipt Date: 13/03/2020

- Sample Scheduled Date: 13/03/2020
- Report Issue Number: 1

Reporting Date: 19/03/2020

Authorised by:

MAN

Dave Ashworth Technical Manager

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soli Analysis Certificate						
DETS Report No: 20-03296	Date Sampled	05/03/20	05/03/20	05/03/20	05/03/20	05/03/20
Ground & Water Ltd	Time Sampled	None Supplied				
Site Reference: 4 Bellingham Road, Catford, London	TP / BH No	WS1	WS2	WS4	WS3	WS4
SE6 2PT						
Project / Job Ref: GWPR3599	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	0.30	0.30	0.30	1.00	5.50
Reporting Date: 19/03/2020	DETS Sample No	468412	468413	468415	468416	468417

Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	IS017025	Not Detected	Not Detected	Detected		
Sample Matrix ^(S)	Material Type	N/a	NONE			Bundle of		
Sample Matrix 💙	Material Type	IN/d	_			Chrysotile		
Asbestos Type ^(S)	PLM Result	N/a	ISO17025			Chrysotile		
pH	pH Units	N/a		7.8	7.8	7.7	8.1	7.7
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2		
Total Sulphate as SO₄	mg/kg	< 200	NONE				< 200	21200
Total Sulphate as SO ₄	%	< 0.02	NONE				< 0.02	2.12
W/S Sulphate as SO_4 (2:1)	mg/l	< 10	MCERTS	11	< 10	< 10	20	2490
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.01	< 0.01	< 0.01	0.02	2.49
Total Sulphur	%	< 0.02	NONE				< 0.02	0.77
Organic Matter	%	< 0.1	MCERTS	3.3	1.3	4.2		
Total Organic Carbon (TOC)	%	< 0.1	MCERTS	1.9	0.8	2.4		
Ammonium as NH ₄	mg/kg	< 0.5	NONE				1.3	6.5
Ammonium as NH ₄	mg/l	< 0.05	NONE				0.13	0.65
W/S Chloride (2:1)	mg/kg	< 1	MCERTS				6	21
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS				3.2	10.4
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS				< 3	< 3
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS				< 1.5	< 1.5
Arsenic (As)	mg/kg	< 2	MCERTS	14	7	16		
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	< 1		
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	0.4	< 0.2	0.7		
Chromium (Cr)	mg/kg	< 2	MCERTS	19	20	21		
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2		
Copper (Cu)	mg/kg	< 4	MCERTS	39	28	102		
Lead (Pb)	mg/kg	< 3	MCERTS	333	135	433		
W/S Magnesium	mg/l	< 0.1	NONE				1.2	94
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1	< 1		
Nickel (Ni)	mg/kg	< 3	MCERTS	18	13	19		
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3		
Vanadium (V)	mg/kg	< 2	NONE	39	20	43		
Zinc (Zn)	mg/kg	< 3	MCERTS	258	60	363		
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Subcontracted analysis (S)

Soil Analysis Certificate - Speciated PAHs												
DETS Report No: 20-0329	96		Date Sampled	05/03/20	05/03/20	05/03/20						
Ground & Water Ltd			Time Sampled	None Supplied	None Supplied	None Supplied						
Site Reference: 4 Bellingh	nam Road, Catford,	TP / BH No		WS1	WS2	WS4						
London SE6 2PT	London SE6 2PT											
Project / Job Ref: GWPR3	Additional Refs		None Supplied	None Supplied	None Supplied							
Order No: None Supplied			Depth (m)	0.30	0.30	0.30						
Reporting Date: 19/03/2	020	D	ETS Sample No	468412	468413	468415						
Determinand		RL						-				
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.76						
Acenaphthylene		< 0.1	MCERTS	< 0.1	< 0.1	< 0.1						
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.65						
Fluorene	mg/kg		MCERTS	< 0.1	< 0.1	0.55						
Phenanthrene	mg/kg	< 0.1	MCERTS	1.81	0.52	5.08						
Anthracene		< 0.1	MCERTS	0.75	< 0.1	0.49						
Fluoranthene	5, 5		MCERTS	5.56	1.37	9.65						
Pyrene	mg/kg	< 0.1	MCERTS	4.85	1.18	7.83						
Benzo(a)anthracene		< 0.1	MCERTS	2.29	0.53	3.58						
Chrysene	5, 5		MCERTS	2.01	0.67	3.90						
Benzo(b)fluoranthene		< 0.1	MCERTS	2.33	0.91	4.97						
Benzo(k)fluoranthene		< 0.1	MCERTS	0.94	0.37	1.86						
Benzo(a)pyrene		< 0.1	MCERTS	1.89	0.72	3.24						
Indeno(1,2,3-cd)pyrene	mg/kg		MCERTS	1.32	0.62	2.22						
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.35						
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	0.88	0.38	1.68						
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	24.6	7.3	46.8						

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate - TPH CWG Banded												
DETS Report No: 20-032	96		Date Sampled	05/03/20	05/03/20							
Ground & Water Ltd			Time Sampled	None Supplied	None Supplied							
Site Reference: 4 Belling	ham Road, Catford,		TP / BH No	WS2	WS4							
London SE6 2PT												
Project / Job Ref: GWPR	Additional Refs		None Supplied	None Supplied								
Order No: None Supplied			Depth (m)	0.30	0.30							
Reporting Date: 19/03/2	020	D	TS Sample No	468413	468415							
Determinand			Accreditation									
Aliphatic >C5 - C6		< 0.01	NONE	< 0.01	< 0.01							
Aliphatic >C6 - C8		< 0.05		< 0.05	< 0.05							
Aliphatic >C8 - C10	5, 5	< 2	MCERTS	< 2	< 2							
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2							
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3	< 3							
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	< 3							
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10	< 10							
Aliphatic (C5 - C34)			NONE	< 21	< 21							
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01	< 0.01							
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05							
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2							
Aromatic >C10 - C12	5 5	< 2	MCERTS	< 2	< 2							
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2	7							
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	28							
Aromatic >C21 - C35	mg/kg		MCERTS	< 10	50							
Aromatic (C5 - C35)	5, 5		NONE	< 21	86							
Total >C5 - C35	mg/kg	< 42	NONE	< 42	86							

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate	- BTEX / MTBE					
DETS Report No: 20-0329	6		Date Sampled	05/03/20	05/03/20	
Ground & Water Ltd		Time Sampled		None Supplied	None Supplied	
Site Reference: 4 Belling	TP / BH No		WS2	WS4		
London SE6 2PT						
Project / Job Ref: GWPR3	3599	4	Additional Refs	None Supplied	None Supplied	
Order No: None Supplied		Depth (m)	0.30	0.30		
Reporting Date: 19/03/2	020	D	ETS Sample No	468413	468415	
Determinand	Unit	RL	Accreditation			
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	
			MOEDTO			
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	< 2	
Ethylbenzene p & m-xylene	ug/kg ug/kg	< 2		< 2	< 2	
			MCERTS	< 2 < 2 < 2	< 2 < 2 < 2	

 MTBE
 ug/kg
 < 5</th>
 MCERTS

 Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C
 MCERTS
 MCERTS

DETS Report No: 20-03296		Date Sampled	05/03/20		Landfill Wast	te Acceptance (Criteria Limi
Ground & Water Ltd		Time Sampled	None				
Site Reference: 4 Bellinghan Catford, London SE6 2PT	n Road,	TP / BH No	Supplied WS3			Stable Non-	
Project / Job Ref: GWPR359	9	Additional Refs	None Supplied		Inert Waste	reactive HAZARDOUS	Hazardou Waste
Order No: None Supplied		Depth (m)	0.30		Landfill	waste in non- hazardous Landfill	Landfill
Reporting Date: 19/03/2020)	DETS Sample No	468414			Lanutin	
Determinand	Unit	MDL					
TOC ^{MU}	%	< 0.1	2.2		3%	5%	6%
Loss on Ignition	%	< 0.01	4.80				10%
BTEX ^{MU}	mg/kg	< 0.05	< 0.05		6		
Sum of PCBs	mg/kg	< 0.1	< 0.1		1		
Mineral Oil ^{MU}	mg/kg	< 10	< 10		500		
Total PAH ^{MU}	mg/kg	< 1.7	21.7		100		-
pH ^{MU}	pH Units	N/a	6.3			>6	
Acid Neutralisation Capacity			< 1			To be	To be
nciu meurialisarion capacity	mol/kg (+/-)	۲ ۲	~ 1	я.		evaluated	evaluated
			10:1	Cumulativ		for compliance	
Eluate Analysis				10:1	using BS B	EN 12457-3 at l	L/S 10 l/kg
			mg/l	mg/kg		(mg/kg)	
Arsenic			< 0.01	< 0.1	0.5	2	25
Barium ^U			< 0.02	< 0.2	20	100	300
Cadmium ^u			< 0.0005	< 0.005	0.04	1	5
Chromium ^U			< 0.005	< 0.05	0.5	10	70
Copper ^u			< 0.01	< 0.1	2	50	100
Mercury ^U			< 0.0005	< 0.005	0.01	0.2	2
Molybdenum ^u			< 0.001	< 0.01	0.5	10	30
Nickel ^U			< 0.007	< 0.07	0.4	10	40
Lead ^U			< 0.005	< 0.05	0.5	10	50
Antimony ^U			< 0.005	< 0.05	0.06	0.7	5
Selenium ^U			< 0.005	< 0.05	0.1	0.5	7
Zinc ^U			0.018	0.18	4	50	200
Chloride ^U			1.5	15	800	15000	25000
Fluoride ^U	-1		< 0.5	< 5	10	15000	500
Sulphate ^U	-1		3.3	33	1000	20000	50000
TDS	-1		58	580	4000	60000	100000
Phenol Index	-1		< 0.01	< 0.1	1	-	-
DOC	-1		9.7	97.1	500	800	1000
Leach Test Information	4		5.1	57.1	500	000	1000
		1					
	1				1		
	4				1		
					1		
Sample Mass (kg)			0.11		1		
Dry Matter (%)			80.6		1		
Moisture (%)			24		-1		
Stage 1			27		-1		
Volume Eluate L10 (litres)			0.00		-1		
volume Eludie LIU (IItres)			0.88		-1		
					-1		
					-1		
				1			

M Denotes MCERTS accredited test U Denotes ISO17025 accredited test

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 20-03296	
Ground & Water Ltd	
Site Reference: 4 Bellingham Road, Catford, London SE6 2PT	
Project / Job Ref: GWPR3599	
Order No: None Supplied	
Reporting Date: 19/03/2020	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
468412	WS1	None Supplied	0.30	18.4	Brown loamy sand with vegetation
468413	WS2	None Supplied	0.30	8	Brown loamy sand with stones
468414	WS3	None Supplied	0.30	19.3	Brown loamy sand with stones and vegetation
468415	WS4	None Supplied	0.30	22	Black loamy sand with stones and vegetation
468416	WS3	None Supplied	1.00	46.1	Brown sandy gravel with stones
468417	WS4	None Supplied	5.50	22.1	Brown loamy clay

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample ^{1/S} Unsuitable Sample ^{U/S}

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 20-03296
Ground & Water Ltd
Site Reference: 4 Bellingham Road, Catford, London SE6 2PT
Project / Job Ref: GWPR3599
Order No: None Supplied
Reporting Date: 19/03/2020

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E009
			Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	
Soil	AR	Chromium - Hexavalent	1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR		Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D		Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	E004
		C12-C16, C16-C21, C21-C40)		
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR		Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)		E004
Soil	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried

Parameter	Matrix Type	Suite Reference	Uncertainity Measurement	Unit
ТОС	Soil	BS EN 12457	7	%
Loss on Ignition	Soil	BS EN 12457	17	%
BTEX	Soil	BS EN 12457	14	%
Sum of PCBs	Soil	BS EN 12457	23	%
Mineral Oil	Soil	BS EN 12457	9	%
Total PAH	Soil	BS EN 12457	20	%
рН	Soil	BS EN 12457	0.23	Units
Acid Neutralisation Capacity	Soil	BS EN 12457	18	%
Arsenic	Leachate	BS EN 12457	10	%
Barium	Leachate	BS EN 12457	10	%
Cadmium	Leachate	BS EN 12457	7	%
Chromium	Leachate	BS EN 12457	7	%
Copper	Leachate	BS EN 12457	12	%
Mercury	Leachate	BS EN 12457	12	%
Molybdenum	Leachate	BS EN 12457	9	%
Nickel	Leachate	BS EN 12457	10	%
Lead	Leachate	BS EN 12457	5	%
Antimony	Leachate	BS EN 12457	9	%
Selenium	Leachate	BS EN 12457	10	%
Zinc	Leachate	BS EN 12457	7	%
Chloride	Leachate	BS EN 12457	8	%
Fluoride	Leachate	BS EN 12457	9	%
Sulphate	Leachate	BS EN 12457	9	%
TDS	Leachate	BS EN 12457	12	%
Phenol Index	Leachate	BS EN 12457	14	%
DOC	Leachate	BS EN 12457	10	%
Clay Content	Soil	BS 3882: 2015	15	%
Silt Content	Soil	BS 3882: 2015	14	%
Sand Content	Soil	BS 3882: 2015	13	%
Loss on Ignition	Soil	BS 3882: 2015	17	%
рН	Soil	BS 3882: 2015	0.23	Units
Carbonate	Soil	BS 3882: 2015	16	%
Total Nitrogen	Soil	BS 3882: 2015	12	%
Phosphorus (Extractable)	Soil	BS 3882: 2015	24	%
Potassium (Extractable)	Soil	BS 3882: 2015	20	%
Magnesium (Extractable)	Soil	BS 3882: 2015	26	%
Zinc	Soil	BS 3882: 2015	7	%
Copper	Soil	BS 3882: 2015	12	%
Nickel	Soil	BS 3882: 2015	10	%
Available Sodium	Soil	BS 3882: 2015	23	%
Available Calcium	Soil	BS 3882: 2015	23	%
Electrical Conductivity	Soil	BS 3882: 2015	10	%

Roger Foord Ground & Water Ltd 2 The Long Barn Norton Farm Selborne Road Alton Hampshire GU34 3NB

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 20-04632

Site Reference: 4 Bellingham Road, Catford, London SE6 2PT

Project / Job Ref: GWPR3599

Order No: None Supplied

Sample Receipt Date: 13/03/2020

Sample Scheduled Date: 24/04/2020

Report Issue Number: 1

Reporting Date: 29/04/2020

Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate								
DETS Report No: 20-04632	Date Sampled	05/03/20						
Ground & Water Ltd	Time Sampled	None Supplied						
Site Reference: 4 Bellingham Road, Catford, London	TP / BH No	WS4						
SE6 2PT								
Project / Job Ref: GWPR3599	Additional Refs	None Supplied						
Order No: None Supplied	Depth (m)	0.30						
Reporting Date: 29/04/2020	DETS Sample No	474345						
Determinand	PI Accreditation							

 Determinand
 Unit
 RL
 Accreditation

 Asbestos Ouantification
 (S)
 %
 < 0.001</td>
 ISO17025
 0.001
 Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or as-received portion

Subcontracted analysis (S)

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Cail Analysis Castificate Methodology 9 Miscellanoons Information
Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 20-04632
Ground & Water Ltd
Site Reference: 4 Bellingham Road, Catford, London SE6 2PT
Project / Job Ref: GWPR3599
Order No: None Supplied
Reporting Date: 29/04/2020

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E009
			Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	
Soil	AR	Chromium - Hexavalent	1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR		Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D		Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	E004
		C12-C16, C16-C21, C21-C40)	headspace GC-MS	
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	FOC (Fraction Organic Carbon)	titration with Iron (11) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D		Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR		Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography Determination of water soluble sulphate by extraction with water followed by ICP-OES	E009 E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E014 E018
Soil	D		Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E018 E024
			Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by	
Soil	AR	SVOC	GC-MS Determination of thiocyanate by extraction in caustic soda followed by acidification followed by	E006
Soil	AR	Thiocyanate (as SCN)	addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)		E004
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried

APPENDIX E Soil Assessment Criteria

Appendix E

Soil Guideline Values and Genera Assessment Criteria

E1 Assessment Criteria

The Contaminated Land Regime reflects the UK Government's stated objectives of achieving sustainable development through the 'suitable for use approach'.

E1.1 Contaminated Land Exposure Assessment Model (CLEA)

Current United Kingdom risk assessment practice is based on the Contaminated Land Exposure Assessment Model (CLEA).

The CLEA Guidance comprises the following documents:

1) EA Science Report SC050021/SR2: *Human health toxicological assessment of contaminants in soil.*

2) EA Science Report SC050021/SR3: Updated technical background to the *CLEA model*.

3) EA CLEA Bulletin (2009).

4) CLEA software version 1.06 (2009)

5) Toxicological reports and SGV technical notes.

The CLEA guidance and tools:

• do not cover other types of risk to humans, such as fire, suffocation or explosion, or short-term and acute exposures.

• do not cover risks to the environment, such as groundwater, ecosystems or buildings.

• do not provide a definitive test for telling when human health risks are significant.

• are not a legal requirement in assessing land contamination risks. They are not part of the legal regime for Part 2A of the Environmental Protection Act 1990.

The CLEA guidance derives soil concentrations of contaminants above which (in the opinion of the EA) there may be a concern that warrants further investigation. It does not provide a definitive test for establishing that the risk is significant.

E1.2 Land-use Scenarios

The CLEA model uses a range of standard land-use scenarios to develop conceptual exposure models as follows:

1 Residential (with home grown produce) (RwHP)

Generic scenario assumes a typical two-storey house built on a ground bearing slab with a private garden having a lawn, flowerbeds and a small fruit and vegetable patch.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil and indoor dust ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and indoor dust and inhalation of indoor and outdoor dust and vapours.
- Building type is a two-storey small terraced house.

A sub-set of this land-use is residential apartments with communal landscaped gardens where the consumption of home grown vegetables will not occur. (Residential without homegrown produce (RwoHP)).

2) Allotments

Provision of open space (about 250sq.m) commonly made available to tenants by the local authority to grow fruit and vegetable for their own consumption. Typically, there are a number of plots to a site which may have a total area of up to 1 hectare. The tenants are assumed to be adults and that young children make occasional accompanied visits.

Although some allotment holders may choose to keep animals including rabbits, hens, and ducks, potential exposure to contaminated meat and eggs is not considered.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and inhalation of outdoor dust and vapours.
- There is no building.

3) Commercial/Industrial

The generic scenario assumes a typical commercial or light industrial property comprising a three-storey building at which employees spend most time indoors and are involved in office-based or relatively light physical work.

- Critical receptor is a working female adult (aged 16 to 65 years old).
- Exposure duration is a working lifetime of 49 years.
- Exposure pathways include direct soil and indoor dust ingestion, skin contact with soils and dusts and inhalation of dust and vapours.
- Building type is a three-storey office (pre 1970).

E1.4 LQM/CIEH SUITABLE 4 USE LEVELS (S4UL)

For derivation of these S4UL reference must be made to:

Nathanial, P., McCaffrey, C., Gillet, A., Ogden, R., Nathanial, J.,. *The LQM/CIEH S4UL's for Human Health Risk Assessment*. Land Quality Press. 2015

The LQM/CIEH S4UL for a given land use is the concentration of the contaminant in soil at which the predicted daily exposure, as calculated by the CLEA software, equals the Health Criteria Value.

The final output for each contaminant represents a synthesis of new toxicological (and fate and transport) reviews published since the preparation of the 2nd edition LQM/CIEH GAC's (Nathanial et al., 2009).

In the derivation of LQM/CIEH S4UL's the principles of 'minimal' or 'tolerable' risk enshrined in SR2, which has not been withdrawn, has been maintained.

S4UL's have been derived for the basic CLEA land-uses, as described above, and for two new land uses:

- Public Open Spaces near Residential Housing (POSresi)
- Public Park (POSpark).

Public Open Spaces near Residential Housing (POSresi)

Includes the predominantly grassed areas adjacent to high density housing, the central green area on many 1930's – 1970's housing estates, and smaller areas commonly incorporated in newer developments as informal grassed areas or more formal landscaped areas with a mixture of open space and covered soils with planting. It is assumed that the close proximity to the place of residence will allow tracking back of soil to occur.

Public Park (POSpark)

An area of open space, usually owned and maintained by the local authority, provided for recreational uses including family visists and picnics, children's play area, informal sporting activities (not a dedicated sports pitch), and dog walking. It is assumed that tracking back of soils into places of residence will be negligible.

The following LQM/CIEH S4UIs (Copyright Land Quality Management Limited) have been reproduced with permission, to the publication number S4UL3072

E1.5 Category 4 Screening Levels (C4SLs)

In the case of Lead, no SGV or GAC has been published to date. This is likely to be due to the toxicity review that is currently being undertaken by the Environment Agency. In the absence of updated toxicity information the SGV derived using CLEA 1.06 methodology and related toxicity will be used.

The overall objective of the C4SLs research project was to assist the provision of technical guidance in support of Defra's revised Statutory Guidance (SG) for Part 2A of the Environmental Protection Act 1990 (Part 2A) (Defra, 2012a). Specifically, the project aimed to deliver:

• A methodology for deriving C4SLs for four generic land-uses comprising residential, commercial, allotments and public open space; and

• A demonstration of the methodology, via the derivation of C4SLs for six substances – arsenic, benzene, benzo(a)pyrene, cadmium, chromium (VI) and lead.

To help achieve a more targeted approach to identifying and managing contaminated land in relation to the risk (or possibility) of harm to human health, the revised SG presented a new four category system for considering land under Part 2A, ranging from Category 4, where there is no risk that land poses a significant possibility of significant harm (SPOSH), or the level of risk is low, to Category 1, where the risk that land poses a significant possibility of significant harm (SPOSH) is unacceptably high. More specific guidance on what type of land should be considered as Category 4 (Human Health) is provided in Paragraphs 4.21 and 4.22 of the revised SG, as follows:

"4.21 The local authority should consider that the following types of land should be placed into Category 4: Human Health:

(a) Land where no relevant contaminant linkage has been established.

(b) Land where there are only normal levels of contaminants in soil, as explained in Section 3 of this Guidance.

(c) Land that has been excluded from the need for further inspection and assessment because contaminant levels do not exceed relevant generic assessment criteria in accordance with Section 3 of this Guidance, or relevant technical tools or advice that may be developed in accordance with paragraph 3.30 of this Guidance.

(d) Land where estimated levels of exposure to contaminants in soil are likely to form only a small proportion of what a receptor might be exposed to anyway through other sources of environmental exposure (e.g. in relation to average estimated national levels of exposure to substances commonly found in the environment, to which receptors are likely to be exposed in the normal course of their lives).

4.22 The local authority may consider that land other than the types described in paragraph 4.21 should be placed into Category 4: Human Health if following a detailed quantitative risk assessment it is satisfied that the level of risk posed is sufficiently low."

The C4SLs are intended as "relevant technical tools" (in relation to Paragraph 4.21(c)) to help local authorities and others when deciding to stop further assessment of a site, on the grounds that it falls within Category 4 (Human Health).

The Impact Assessment (IA), which accompanied the revised SG (Defra, 2012b) provides further information on the nature and potential role of the C4SLs. Paragraph 47(h) of the IA states that:

"The new statutory guidance will bring about a situation where the current SGVs/GACs are replaced with more pragmatic (but still strongly precautionary) Category 4 screening levels (C4SLs) which will provide a higher simple test for deciding that land is suitable for use and definitely not contaminated land."

A key distinction between the Soil Guideline Values (SGVs) and the C4SLs is the level of risk that they describe. As described by the Environment Agency (2009a): "SGVs are guidelines on the level of long-term human exposure to individual chemicals in soil that, unless stated otherwise, are tolerable or pose a minimal risk to human health."

The implication of Paragraph 47(h) of the IA is that minimal risk is well within Category 4 and that the C4SLs should describe a higher level of risk which, whilst not minimal, can still be considered low enough to allow a judgement to be made that land containing substances at, or below, the C4SLs would typically fall within Category 4. This reflects Paragraph 4.20 of the revised SG, which states:

"4.20 The local authority should not assume that land poses a significant possibility of significant harm if it considers that there is no risk or that the level of risk posed is low. For the purposes of this Guidance, such land is referred to as a "Category 4: Human Health" case. The authority may decide that the land is a Category 4: Human Health case as soon as it considers it has evidence to this effect, and this may happen at any stage during risk assessment including the early stages."

C4SLs, therefore, should not be viewed as "SPOSH levels" and they should not be used as a legal trigger for the determination of land under Part 2A.

The generic screening values referred to before usually take the form of riskbased Soil Guideline Values (SGVs) or other Generic Assessment Criteria (GACs) that are most typically derived using the Environment Agency's Contaminated Land Exposure Assessment (CLEA) model, as described in the Environment Agency's SR2, SR3 and SR7 reports (EA, 2009b & c; EA, 2008). It is anticipated that C4SLs will be used in a similar manner; as generic screening criteria that can be used within a GQRA, albeit describing a higher level of risk than the SGVs.

The suggested approach to the development of C4SLs consists of the retention and use of the CLEA framework, modified according to considerations of the underlying science within the context of Defra's policy objectives relating to the revised SG. Within this context, it is suggested that the development of C4SLs may be achieved in one of three ways, namely:

• By modifying the toxicological parameters used within CLEA (while maintaining current exposure parameters);

• By modifying the exposure parameters embedded within CLEA (while maintaining current toxicological "minimal risk" interpretations); and

• By modifying both toxicological and exposure parameters.

There is also a suggested check on "other considerations" (e.g., background levels, epidemiological data, sources of uncertainty) within the approach, applicable to all three options.

It is suggested that a new term is defined for the toxicological guidance values associated with the derivation of C4SLs – a Low Level of Toxicological Concern (LLTC). A LLTC should represent an intake of low concern that remains suitably protective of health, and definitely does not approach an intake level that could be defined as SPOSH.

E1.6 CL:AIRE Generic Assessment Criteria (GAC)

For derivation of the CL:AIRE Generic Assessment Criteria (GAC) reference should be made to the following report:

CL:AIRE, *The Soil Generic Assessment Criteria for Human Health Risk Assessment.* **Contaminated Land: Applications in the Real Environment**. 2009.

Within this report CL:AIRE provided Generic Assessment Criteria (GAC's) in accordance with the CLEA software and the principles outlined above for a further 35 contaminants sometime encountered on land affected by contamination.

E1.7 Detailed Quantitative Risk Assessments (DQRA)

Where the adoption of an S4UL/GAC/C4SL is not appropriate, for instance when the intended land-use is at variance the CLEA standard land-uses then a DQRA may be undertaking to develop site specific values for relevant soil contaminants.

 \Rightarrow Establishing the plausibility that generic exposure pathways exist in practice by measurement and observation.

Developing more accurate parameters using site data.

E1.8 Phytotoxicity

 \Rightarrow

CLEA guidance only addresses human health toxicity; assessment of plant toxicity (phytotoxicity) is based on threshold trigger values obtained from the following source:

• ICRCL 70/90: Notes on the restoration and aftercare of metalliferous mining sites for pasture and grazing.

E1.8 Statistical Tests

DEFRA R&D Publication CLR 7 (DOE 1994) addressed the statistical treatment of test results and their comparison to Soil Guideline Values.

Consideration must be given to the appropriate area of land to be considered termed the critical averaging area.

For a communal open space or commercial land-use, the critical averaging area will depend on the proposed layout. For a residential use with private gardens the averaging area is the individual plot.

It may be appropriate to compare the upper 95th percentile concentration with the Soil Guideline Value, subject to applying a statistical test to establish that the range of concentrations are reasonably consistent and belonging to the same underlying distribution of data.

The DEFRA discussion paper Assessing risks from land contamination – a proportionate approach ('the way forward') (CLAN06/2006) aimed to increase understanding of the role that statistics can play in quantifying the uncertainty attached to the estimates of the mean concentration of contaminants in soil. In direct response CLAIRE/CIEH published a joint report, *Guidance in comparing soil contamination data with a critical concentration* (CLAIRE/CIEH 2008). A software implementation of the statistical techniques given in the report was published by ESI International (2008).

Treatment of Hot-Spots

- \Rightarrow A statistical test is applied to establish whether the data is a part of a single set, or whether data outliers are present.
- \Rightarrow Provided that the data is based on random sampling and no distinct contamination source was present at the sampling location, the hot-spot(s) may be excluded and the mean of the remaining data assessed.

E2 Ground and Water Limited Soil Assessment Criteria

The Soil Assessment Criteria used in the preparation of this report are tabulated in the following pages:

C4SL Low Level of Toxicological Concern

C4SL Low Level of Toxicological Concern										
Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)				
Lead	<210	<330	<84	<6000	<760	<1400				

Phytotoxicity Recommendations

ICRCL 70/90 Restoration of metalliferous mining areas

Phytotoxicity (Harmful to Plants) Threshold Trigger Values

Copper	250mg/kg
Zinc	1000mg/kg
Notes:	

Many cultivars and specifically grasses have a high tolerance and there will be no ill-effect at the threshold trigger values given for neutral or near neutral pH. Site observation of plant vitality may give additional guidance.

Cont'd from previous page: LQM CIEH Suitable 4 Use Levels (S4UL's)

LQM/CIEH Suitable 4 Use Levels – Metals and Semi-metals										
Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)				
Metals:										
Arsenic	37	40	43	640	79	170				
Beryllium	1.7	1.7	35	12	2.2	63				
Boron	290	11000	45	240000	21000	46000				
Cadmium	11	85	1.9	190	120	532				
Chromium (III)	910	910	18000	8600	1500	33000				
Chromium (VI)	6	6	1.8	33	7.7	20				
Copper	2400	7100	520	68000	12000	44000				
Elemental Mercury	1.2	1.2	21	58	16	30				
Inorganic Mercury	40	56	19	1100	120	240				
Methylmercury	11	15	6	320	40	68				
Nickel	130	180	230	980	230	3400				
Selenium	250	430	88	12000	1100	1800				
Vanadium	410	1200	91	9000	2000	5000				
Zinc	3700	40000	620	730000	81000	170000				

LQM/CIEH Suitable 4 Use Levels – BTEX Compounds										
Contaminant	Soil Organic Matter	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)			
	1.0% SOM	0.087	0.38	0.017	27	72	90			
Benzene	2.5% SOM	0.170	0.38	0.017	47	72	100			
Denzene	6.0% SOM	0.370	1.40	0.075	90	72	110			
	0.078 30141	0.370	1.40	0.075	50	75	110			
	1.0% SOM	130	880	22	56000	56000	87000			
Toluene	2.5% SOM	290	1900	51	110000	56000	95000			
	6.0% SOM	660	3900	120	180000	56000	100000			
	1.0% SOM	47	83	16	5700	24000	17000			
Ethylbenzene	2.5% SOM	110	190	39	13000	24000	22000			
	6.0% SOM	260	440	91	27000	25000	27000			
	1.0% SOM	60	88	28	6600	41000	17000			
o-Xylene	2.5% SOM	140	210	67	15000	42000	24000			
	6.0% SOM	330	480	160	33000	43000	33000			
	1.0% SOM	59	82	31	6200	41000	17000			
m-Xylene	2.5% SOM	140	190	74	14000	42000	24000			
	6.0% SOM	320	450	170	31000	43000	33000			
	1.0% SOM	56	79	29	5900	41000	17000			
p-Xylene	2.5% SOM	130	180	69	14000	42000	23000			
	6.0% SOM	310	430	160	30000	43000	31000			

Cont'd from previous page:

LQM/CIEH Suitable 4 Use Levels For TPH										
Alipl	hatic	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)			
	1.0% SOM	42	42	730	3,200 (304) sol	570,000 (304) sol	95,000 (304) sol			
EC 5-6	2.5% SOM	78	78	1,700	5,900 (558) sol	590,000	130,000 (558) sol			
	6.0% SOM	160	160	3,900	12,000 (1150) sol	600,000 ¹	180,000 (1150) sol			
	1.0% SOM	100	100	2 200	7,800 (144) ^{sol}	600.000	150,000 (144) sol			
EC >6-8		230	230	2,300	17,000 (322) sol	600,000	150,000 (144) sol 220,000 (322) sol			
EC 20-8	2.5% SOM 6.0% SOM	530	530	5,600	, , ,	610,000	, , ,			
	6.0% SOIVI	530	530	13,000	40,000 (736) ^{sol}	620,000	320,000 (736) sol			
	1.0% SOM	27	27	320	2,000 (78) sol	13,000	14,000 (78) sol			
EC >8-10	2.5% SOM	65	65	770	4,800 (118) vap	13,000	18,000 (118) vap			
	6.0% SOM	150	150	1,700	11,000 (451) vap	13,000	21,000 (451) vap			
	4.00/ 5014	120 (10) van	420 (40) van	2 200	0.700 (40) col	42.000	24,000 (40) sol			
50 - 40 43	1.0% SOM	130 (48) vap	130 (48) vap	2,200	9,700 (48) sol	13,000	21,000 (48) sol			
EC >10-12	2.5% SOM	330 (118) ^{vap}	330 (118) vap	4,400	23,000 (118) vap	13,000	23,000 (118) vap			
	6.0% SOM	760 (283) ^{vap}	770 (283) ^{vap}	7,300	47,000 (283) ^{vap}	13,000	24,000 (283) ^{vap}			
	1.0% SOM	1,100 (24) sol	1,100 (24) sol	11,000	59,000 (24) sol	13,000	25,000 (24) sol			
EC >12-16	2.5% SOM	2,400 (59) sol	2,400 (59) sol	13,000	82,000 (59) sol	13,000	25,000 (59) sol			
	6.0% SOM	4,300 (142) sol	4,400 (142) sol	13,000	90,000 (142) sol	13,000	26,000 (142) sol			
	1.0% SOM	65,000 (8.48) ^{sol}	65,000 (8.48) ^{sol}	260,000	1,600,000	250,000	450,000			
EC >16-35	2.5% SOM	92,000 (21) sol	92,000 (21) ^{sol}	270,000	1,700,000	250,000	480,000			
	6.0% SOM	110,000	110,000	270,000	1,800,000	250,000	490,000			
	1.0% SOM	65,000 (8.48) ^{sol}	65,000 (8.48) sol	260,000	1,600,000	250,000	450,000			
EC >35-44	2.5% SOM	92,000 (21) ^{sol}	92,000 (21) sol	270,000	1,700,000	250,000	480,000			
	6.0% SOM	110,000	110,000	270,000	1,800,000	250,000	490,000			

E.

Cont'd from previous page:

LQM/CIEH Suitable 4 Use Levels For TPH									
Aroma	atic	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
EC 5-7	1.0% SOM	70	370	13	26,000 (1220) sol	56,000	76,000 (1220 sol		
(Benzene)	2.5% SOM	140	690	27	46,000 (2260) sol	56,000	84,000 (2260) sol		
(Benzene)	6.0% SOM	300	1,400	57	86,000 (4710) sol	56,000	92,000 (4710) sol		
EC >7-8	1.0% SOM	130	860	22	56,000 (869) vap	56,000	87,000 (869) ^{sol}		
(Toluene)	2.5% SOM	290	1,800	51	110,000 (1920) sol	56,000	95,000 (1920) sol		
(Toluene)	6.0% SOM	660	3,900	120	180,000 (4360) vap	56,000	100,000 (4360) vap		
	1.0% SOM	34	47	8.6	3,500 (613) ^{vap}	5,000	7,200 (613) ^{vap}		
EC >8-10	2.5% SOM	83	110	21	8,100 (1500) ^{vap}	5,000	8,500 (1500) vap		
2070-10	6.0% SOM	190	270	51	17,000 (3850) vap	5,000	9,300 (3580) vap		
	0.070 30101	190	270		17,000 (3030)	3,000	3,500 (5500)		
	1.0% SOM	74	250	13	16,000 (364) sol	5,000	9,200 (364) sol		
EC >10-12	2.5% SOM	180	590	31	28,000 (899) sol	5,000	9,700 (889) sol		
	6.0% SOM	380	1,200	74	34,000 (2150) sol	5,000	10,000		
	1.0% SOM	140	1,800	23	36,000 (169) sol	5,100	10,000		
EC >12-16	2.5% SOM	330	2,300 (419) sol	57	37,000	5,100	10,000		
	6.0% SOM	660	2,500	130	38,000	5,000	10,000		
	1.0% SOM	260	1,900	46	28,000	3,800	7,600		
EC >16-21	2.5% SOM	540	1,900	110	28,000	3,800	7,700		
	6.0% SOM	930	1,900	260	28,000	3,800	7,800		
	1.0% SOM	1,100	1,900	370	28,000	3,800	7,800		
EC >21-35	2.5% SOM	1,500	1,900	820	28,000	3,800	7,800		
	6.0% SOM	1,700	1,900	1,600	28,000	3,800	7,900		
	1.00/ 0001	4 (2 2	4 6 6 6	0.70	20.000	2.555	7.000		
	1.0% SOM	1,100	1,900	370	28,000	3,800	7,800		
EC >35-44	2.5% SOM	1,500	1,900	820	28,000	3,800	7,800		
	6.0% SOM	1,700	1,900	1,600	28,000	3,800	7,900		
	1.0% SOM	1,600	1,900	1,200	28,000	3,800	7,800		
EC >44-70	2.5% SOM	1,800	1,900	2,100	28,000	3,800	7,800		
	6.0% SOM	1,900	1,900	3,000	28,000	3,800	7,900		

SOM = Soil Organic Matter Content (%)

Determinant	s	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
	1.0% SOM	210	3,000 (57.0) ^{sol}	34	84,000(57.0) sol	15,000	29,000
Acenapthene	2.5% SOM	510	4,700(141) sol	85	97,000(141) sol	15,000	30,000
	6.0% SOM	1100	6,000(336) sol	200	100,000	15,000	30,000
	1.0% SOM	170	2,900(86.1) sol	28	83,000(86.1) sol	15,000	29,000
Acenapthylene	2.5% SOM	420	4,600(212) sol	69	97,000(212) sol	15,000	30,000
	6.0% SOM	920	6,000(506) sol	160	100,000	15,000	30,000
	1.0% SOM	2,400	31,000(1.17) vap	380	520,000	74,000	150,000
Anthracene	2.5% SOM	5,400	35,000	950	540,000	74,000	150,000
	6.0% SOM	11,000	37,000	2,200	540,000	74,000	150,000
	1.0% SOM	7.20	11	2.90	170	29	49
Benzo(a)anthracene	2.5% SOM	11	14	6.50	170	29	56
	6.0% SOM	13	15	13	180	29	62
	1.0% SOM	2.20	3.20	0.97	35	5.70	11
Benzo(a)pyrene	2.5% SOM	2.70	3.20	2.00	35	5.70	12
	6.0% SOM	3.00	3.20	3.50	36	5.70	13
	1.0% SOM	2.60	3.90	0.99	44	7.10	13
Benzo(b)flouranthene	2.5% SOM	3.30	4.00	2.10	44	7.20	15
	6.0% SOM	3.70	4.00	3.90	45	7.20	16
	1.0% SOM	320	360	290	3,900	640	1,400
Benzo(ghi)perylene	2.5% SOM	340	360	470	4,000	640	1,500
	6.0% SOM	350	360	640	4,000	640	1,600
	1.0% SOM	77	110	37	1,200	190	370
Benzo(k)flouranthene	2.5% SOM	93	110	75	1,200	190	410
	6.0% SOM	100	110	130	1,200	190	440
	1.0% SOM	15	30	4.10	350	57	93
Chrysene	2.5% SOM	22	31	9.40	350	57	110
	6.0% SOM	27	32	19	350	57	120
	1.0% SOM	0.24	0.31	0.14	3.50	0.57	1.10
Dibenzo(ah)anthracene	2.5% SOM	0.28	0.32	0.27	3.60	0.57	1.30
	6.0% SOM	0.30	0.32	0.43	3.60	0.58	1.40

LQM/CIEH Suitable 4 Use Levels For Polycyclic Aromatic Hydrocarbons (PAH's)

LQM/CIEH Suitable 4 Use Levels For Polycyclic Aromatic Hydrocarbons (PAH's)									
Determinan	its	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
	1.0% SOM	280	1,500	52	2,3000	3,100	6,300		
Flouranthene	2.5% SOM	560	1,600	130	2,3000	3,100	6,300		
	6.0% SOM	890	1,600	290	2,3000	3,100	6,300		
	1.0% SOM	170	2,800 (30.9) ^{sol}	27	63,000(30.9) sol	9,900	20,000		
Flourene	2.5% SOM	400	3,800(76.5) sol	67	68,000	9,900	20,000		
	6.0% SOM	860	4,500(183) ^{sol}	160	71,000	9,900	20,000		
	1.0% SOM	27	45	9.50	500	82	150		
Indeno(123-cd)pyrene	2.5% SOM	36	46	21	510	82	170		
	6.0% SOM	41	46	39	510	82	180		
	1.0% SOM	2.30	2.6	4.10	190 ^f (76.4) ^{sol}	4,900 ^f	1,200 ^f (76.4) sol		
Napthalene	2.5% SOM	5.60	5.6	10	460 ^f (183) ^{sol}	4,900 ^f	1,900 ^f (183) sol		
	6.0% SOM	13	13	24	1,100 ^f (432) ^{sol}	4,900 ^f	3,000		
	1.0% SOM	95	1,300(183) sol	18	22,000	3,100	6,200		
Phenanthrene	2.5% SOM	220	1,500	38	22,000	3,100	6,200		
	6.0% SOM	440	1,500	90	23,000	3,100	6,300		
	1.0% SOM	620	3,700	110	54,000	7,400	15,000		
Pyrene	2.5% SOM	1200	3,800	270	54,000	7,400	15,000		
	6.0% SOM	2000	3,800	620	54,000	7,400	15,000		
Coal Tar	1.0% SOM	0.79	1.2	0.32	15	2.20	4.40		
(Benzo(a)pyrene used	2.5% SOM	0.98	1.2	0.67	15	2.20	4.70		
as marker compound	6.0% SOM	1.10	1.2	1.20	15	2.20	4.80		

^{vap} – GAC presented exceeds the vapour saturation limit, which is presented in brackets.

^{sol} – GAC presented exceeds the soil saturation limit, which is presented in brackets.

Cont'd from previous page: LQM/CIEH Suitable 4 Use Levels (cont.)

Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
Chloroalkanes & alkenes						
1,2 Dichloroethane	0.0074			0.67	20	24
1.0% SOM	0.0071	0.0092	0.0046	0.67	29	21
2.5% SOM	0.011	0.013	0.0083	0.97	29	24
6.0% SOM	0.019	0.023	0.016	1.70	29	28
1,1,2,2 Tetrachloroethane						
1.0% SOM	1.60	3.90	0.41	270	1,400	1,800
2.5% SOM	3.40	8.00	0.89	550	1,400	2,100
6.0% SOM	7.50	17	2.00	1,100	1,400	2,300
1,1,1,2 Tetrachloroethane						
1.0% SOM	1.20	1.50	0.79	110	1,400	1,500
2.5% SOM	2.80	3.50	1.90	250	1,400	1,800
6.0% SOM	6.40	8.20	4.40	560	1,400	2,100
Tetrachloroethene						
1.0% SOM	0.18	0.18	0.65	19	1,400	810 sol(424)
	0.18	0.18	1	42	1,400	1,100 ^{sol} (951)
2.5% SOM	0.39	0.40	1.50	95	1,400	1,500
6.0% SOM	0.90	0.92	3.60	35	1,400	1,500
1,1,1 Trichloroethane						
1.0% SOM	8.80	9.00	48	660	140,000	57,000 vap(1425)
2.5% SOM	18	18	110	1,300	140,000	76,000 vap(2915)
				3,000	140,000	100,000
6.0% SOM	39	40	240	,	,	^{vap} (6392)
Tatua ah lawa waatha waa						
Tetrachloromethene 1.0% SOM	0.026	0.026	0.45	2.90	890	190
	0.020	0.020	1.00	6.30	920	270
2.5% SOM 6.0% SOM	0.130	0.130	2.40	14	950	400
Trichloroethene						
1.0% SOM	0.016	0.017	0.041	1.20	120	70
2.5% SOM	0.034	0.036	0.091	2.60	120	91
6.0% SOM	0.075	0.080	0.210	5.70	120	120
Trichloromethane						
1.0% SOM	0.91	1.20	0.42	99	2,500	2,600
2.5% SOM	1.70	2.10	0.83	170	2,500	2,800
6.0% SOM	3.40	4.20	1.70	350	2,500	3,100
Vinyl Chloride				0.0=0		
1.0% SOM	0.00064	0.00077	0.00055	0.059	3.50	4.80
2.5% SOM	0.00087	0.00100	0.00100	0.077	3.50	5.00
6.0% SOM	0.00014	0.00150	0.00180	0.120	3.50	5.40

LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds							
Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)	
Explosives							
2,4,6 Trinitrotoluene							
1.0% SOM	1.60	65	0.24	1,000	130	260	
2.5% SOM	3.70	66	0.58	1,000	130	270	
6.0% SOM	8.10	66	1.40	1,000	130	270	
RDX (Hexogen/Cyclonite/1,3,5- trinitro-1,3,5- triazacyclohexane)							
1.0% SOM	120	13,000	17	210,000	26,000	49,000(18.7) ^{sol}	
2.5% SOM	250	13,000	38	210,000	26,000	51,000	
6.0% SOM	540	13,000	85	210,000	27,000	53,000	
HMX (Octogen/1,3,5,7- tetrenitro-1,3,5,7- tetrazacyclo-octane)							
1.0% SOM	5.70	67,00	0.86	110,000	13,000	23,000(0.35) ^{vap}	
2.5% SOM	13	67,00	1.90	110,000	13,000	23,000(0.39) ^{vap}	
6.0% SOM	26	67,00	3.90	110,000	13,000	24,000(0.48) ^{vap}	
Atrazine							
1.0% SOM	3.30	610	0.50	9,300	1,200	2,300	
2.5% SOM	7.60	620	1.20	9,400	1,200	2,400	
6.0% SOM	17.40	620	2.70	9,400	1,200	2,400	
Pesticides							
Aldrin							
1.0% SOM	5.70	7.30	3.20	170	18	30	
2.5% SOM	6.60	7.40	6.10	170	18	31	
6.0% SOM	7.10	7.50	9.60	170	18	31	
Dieldrin							
1.0% SOM	0.97	7.00	0.17	170	18	30	
2.5% SOM	2.00	7.30	0.41	170	18	30	
6.0% SOM	3.50	7.40	0.96	170	18	31	
Dichlorvos							
1.0% SOM	0.032	6.40	0.0049	140	16	26	
2.5% SOM 6.0% SOM	0.066	6.50 6.60	0.0100	140 140	16 16	26 27	
Alpha - Endosulfan							
1.0% SOM	7.40	160(0.003) ^{vap}	1.20	5,600(0.003) ^{vap}	1,200	2,400	
2.5% SOM 6.0% SOM	18 41	280(0.007) ^{vap} 410(0.016) ^{vap}	2.90 6.80	7,400(0.007) ^{vap} 8,400(0.016) ^{vap}	1,200 1,200	2,400 2,400	
	/1		6.00			1 /////	

Cont'd from previous page:

	RwHP	RwoHP		Commercial	POSresi	POSpark
Contaminant	(mg/kg)	(mg/kg)	Allotment (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Pesticides						
Beta - Endosulfan						
1.0% SOM	7.00	190(0.00007) ^{vap}	1.10	6,300(0.00007) ^{vap}	1,200	2,400
2.5% SOM	17	320(0.0002) ^{vap}	2.70	7,800(0.0002) ^{vap}	1,200	2,400
6.0% SOM	39	440(0.0004) ^{vap}	6.40	8700	1,200	2,500
Alpha -						
Hexachlorocyclohexanes						
1.0% SOM	0.23	6.90	0.035	170	24	47
2.5% SOM	0.55	9.20	0.087	180	24	48
6.0% SOM	1.20	11	0.210	180	24	48
Beta -						
Hexachlorocyclohexanes	0.085	3.70	0.013	65	8.10	15
1.0% SOM 2.5% SOM	0.085	3.70	0.013	65	8.10	15
				65	8.10	15
6.0% SOM	0.460	3.80	0.077		0.10	10
Gamma -						
Hexachlorocyclohexanes	0.06	2.00	0.0002	67	0.7	14
1.0% SOM	0.06	2.90	0.0092	67	8.2	14
2.5% SOM	0.14	3.30	0.0230	69	8.2	15
6.0% SOM	0.33	3.50	0.0540	70	8.2	15
Chlorobenzenes						
Chlorobenzene						
1.0% SOM	0.46	0.46	5.90	56	11,000	1,300(675
2.5% SOM	1.00	1.00	14	130	13,000	2,000(1520
6.0% SOM	2.40	2.40	32	290	14,000	2,900
1,2-Dichlorobenzene						
1.0% SOM	23	24	94	2,000 (571) sol	90,000	24,000(57:
2.5% SOM	55	57	230	4,800 (1370) sol	95,000	36,000(137
6.0% SOM	130	130	540	11,000 (3240) sol	98,000	51,000(324
1,3-Dichlorobenzene						
1.0% SOM	0.40	0.44	0.25	30	300	390
2.5% SOM	1.00	1.10	0.60	73	300	440
6.0% SOM	2.30	2.50	1.50	170	300	470
1,4-Dichlorobenzene						
1.0% SOM	61	61	15	4,400 (224) ^{vap}	17,000 ^g	36,000 (224
2.5% SOM	150	150	37	10,000 (540) ^{vap}	17,000 ^g	36,000 (540
6.0% SOM	350	350	88 ^g	25,000 (1280) ^{vap}	17,000 ^g	36,000 (128
1,2,3,-Trichlorobenzene						
1.0% SOM	1.50	1.50	4.70	102	1,800	770(134 ⁾
2.5% SOM	3.60	3.70	12	250	1,800	1,100(330)
6.0% SOM	8.60	8.80	28	590	1,800	1,600(789)

LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds								
Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
Chlorobenzenes								
1,2,3,-								
Trichlorobenzene	1.50	1.50	4.70	102	1 800	770/124\vap		
1.0% SOM	1.50	1.50	4.70	250	1,800 1,800	770(134) ^{vap} 1,100(330) ^{vap}		
2.5% SOM 6.0% SOM	3.60 8.60	3.70 8.80	<u>12</u> 28	590	1,800	1,600(789) ^{vap}		
6.0% SOIVI	8.60	8.80	28	590	1,000	1,000(789) ¹⁰⁰		
1,2,4,- Trichlorobenzene								
1.0% SOM	2.60	2.60	55	220	15,000	1,700(318) ^{vap}		
2.5% SOM	6.40	6.40	140	530	17,000	2,600(786) ^{vap}		
6.0% SOM	15	15	320	1,300	19,000	4,000(1880) ^{vap}		
1,3,5,- Trichlorobenzene								
1.0% SOM	0.33	0.33	4.70	23	1,700	380(36.7) ^{vap}		
2.5% SOM	0.81	0.81	12	55	1,700	590(90.8) ^{vap}		
6.0% SOM	1.90	1.90	140	130	1,800	860(217) ^{vap}		
1,2,3,4,-								
Tetrachlorobenzene			4.40	1 700/122)wap		4 500(400)//20		
1.0% SOM	15	24	4.40	1,700(122)vap	830	1,500(122) ^{vap}		
2.5% SOM	36	56	11	3,080(304) ^{vap}	830	1,600		
6.0% SOM	78	120	26	4,400(728) ^{vap}	830	1,600		
1,2,3,5,-								
Tetrachlobenzene								
1.0% SOM	0.66	0.75	0.38	49(39.4) ^{vap}	78	110(39) ^{vap}		
2.5% SOM	1.60	1.90	0.90	120(98.1) ^{vap}	79	120		
6.0% SOM	3.70	4.30	2.20	240(235) ^{vap}	79	130		
1,2,4, 5,-								
Tetrachlobenzene								
1.0% SOM	0.33	0.73	0.06	42(19.7) ^{sol}	13	25		
2.5% SOM	0.77	1.70	0.16	72(49.1) ^{sol}	13	26		
6.0% SOM	1.60	3.50	0.37	96	13	26		
Pentachlrobenzene								
1.0% SOM	5.80	19	1.20	640(43.0) ^{sol}	100	190		
2.5% SOM	12	30	3.10	770(107) ^{sol}	100	190		
6.0% SOM	22	38	7.00	830	100	190		
Hexachlorobenzene								
1.0% SOM	1.80(0.20) ^{vap}	4.10 (0.20) ^{vap}	0.47	110(0.20) ^{vap}	16	30		
2.5% SOM	3.30(0.50) ^{vap}	5.70 (0.50) ^{vap}	1.10	120	16	30		
6.0% SOM	4.90	6.70 (1.2) ^{vap}	2.50	120	16	30		

LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds							
Contaminant	VOIATII RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)	
Phenols & Chlorophenols							
Phenols							
1.0% SOM	280	750	66	760 ^{dir} (31,000)	760 ^{dir} (11,000)	760 ^{dir} (8,600)	
2.5% SOM	550	1,300	140	1,500 ^{dir} (35,000)	1,500 ^{dir} (11,000)	1,500 ^{dir} (9,700)	
6.0% SOM	1100	2,300	280	3,200 ^{dir} (37,000)	3,200 ^{dir} (11,000)	3,200 ^{dir} (11,000)	
Chlorophenols (4 Congeners)							
1.0% SOM	0.87	94	0.13	3,500	620	1,100	
2.5% SOM	2.00	150	0.30	4,000	620	1,100	
6.0% SOM	4.50	210	0.70	4,300	620	1,100	
Pentachlorophenols							
1.0% SOM	0.22	27(16.4) ^{vap}	0.03	400	60	110	
2.5% SOM	0.52	29	0.08	400	60	120	
6.0% SOM	1.20	31	0.19	400	60	120	
Others							
Carbon Disulphide							
1.0% SOM	0.14	0.14	4.80	11	11,000	1,300	
2.5% SOM	0.29	0.29	10	22	11,000	1,900	
6.0% SOM	0.62	0.62	23	47	12,000	2,700	
Hexachloro-1,3- Butadiene							
1.0% SOM	0.29	0.32	0.25	31	25	48	
2.5% SOM	0.70	0.78	0.61	68	25	50	
6.0% SOM	1.60	1.80	1.40	120	25	51	

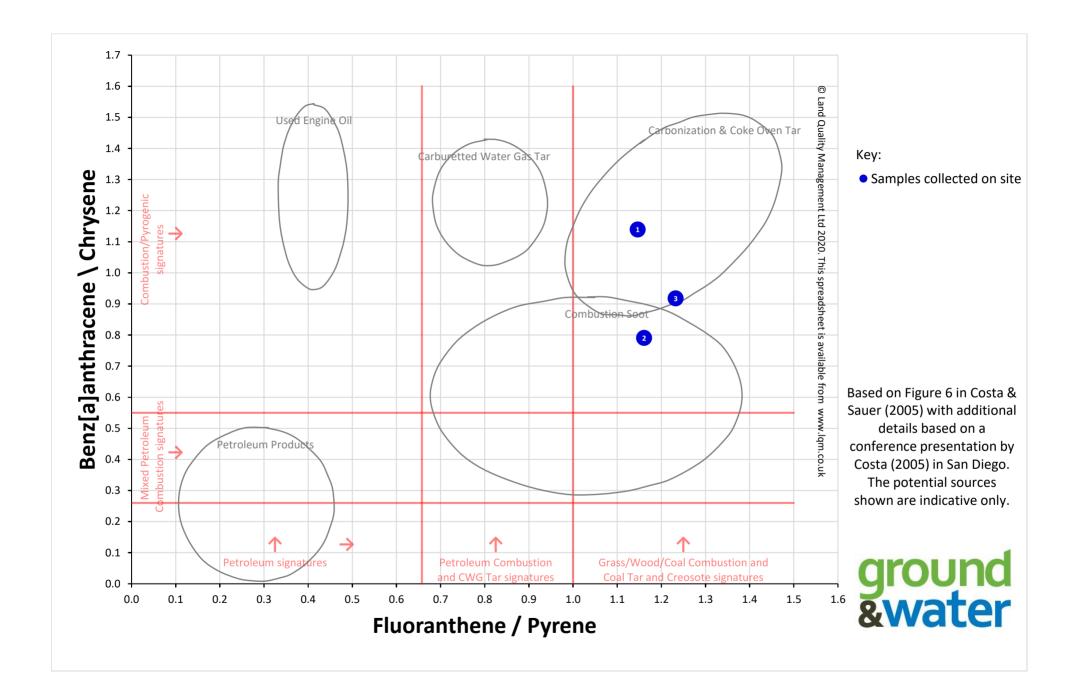
Cont'd from previous page:

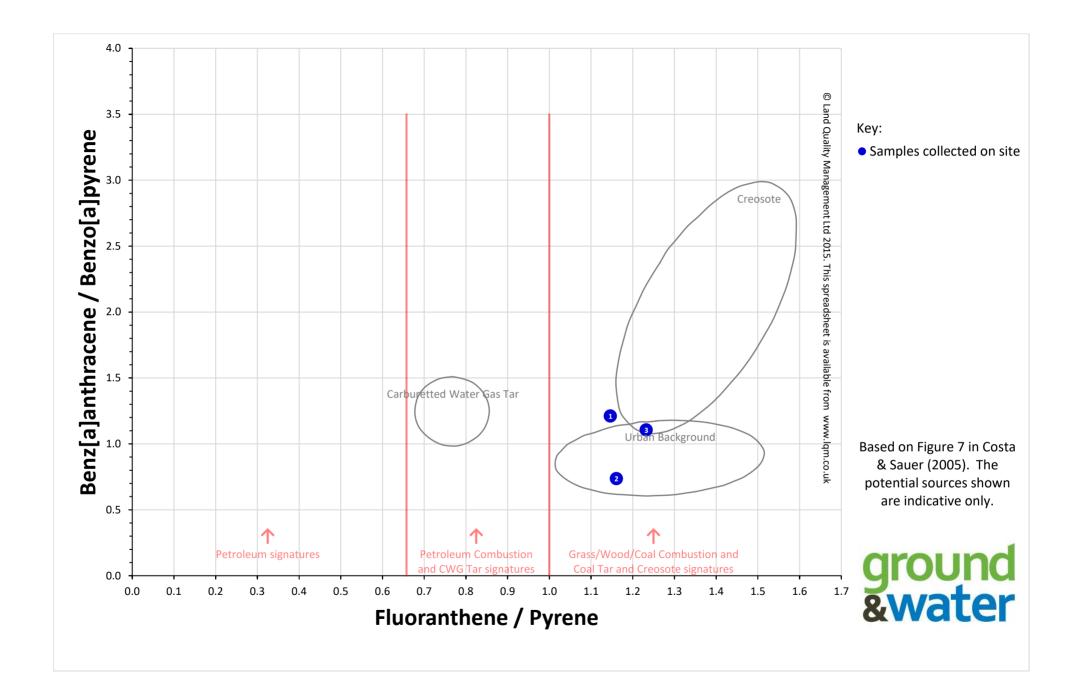
CL:AIRE Soil Generic Assessment Criteria								
Contaminant	Residential (mg/kg) Residential without plant uptake (mg/kg) Allotment (mg/kg) Commercial (mg/kg)							
Metals:								
Antimony	ND	550	ND	7500				
Barium	ND	1300	ND	22000				
Molybdenum ND 670 ND 17000								

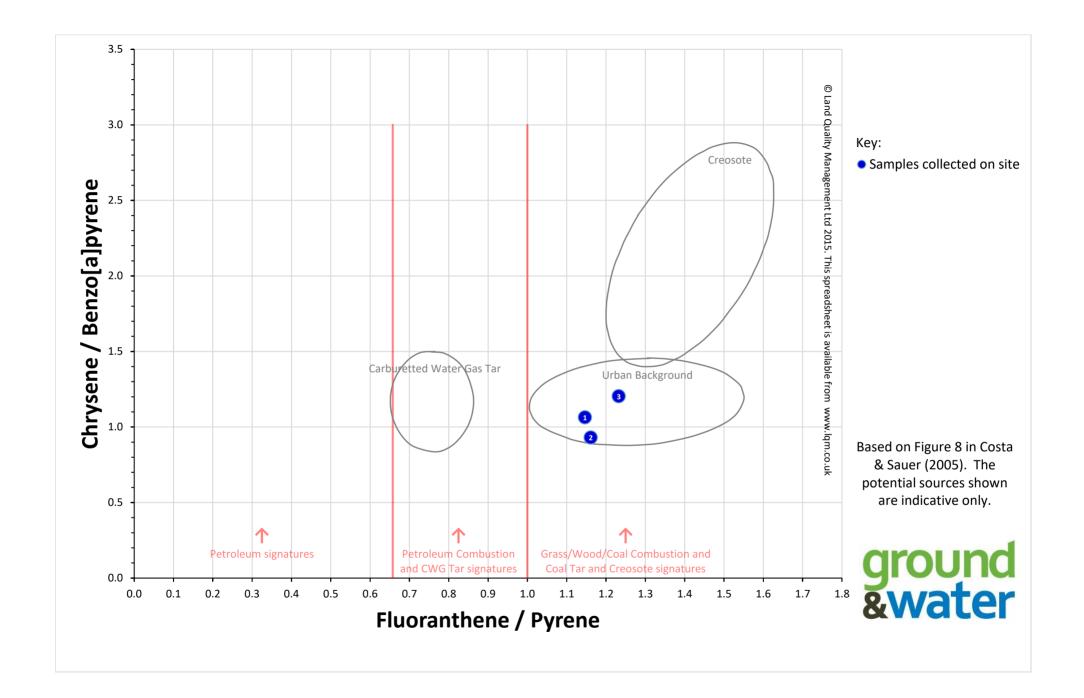
ND – Not Derived.

NA – Not Applicable

CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds							
Contaminant	Residential (mg/kg)	Residential without plant uptake (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)			
1,1,2 Trichloroethane							
1.0% SOM	0.60	0.88	0.28	94			
2.5% SOM	1.20	1.8	0.61	190			
6.0% SOM	2.70	3.9	1.40	400			
1,1-Dichloroethane							
1.0% SOM	2.40	2.50	9.20	280			
2.5% SOM	3.90	4.10	17	450			
6.0% SOM	7.40	7.70	35	850			
1,1-Dichloroethene							
1.0% SOM	0.23	0.23	2.80	26			
2.5% SOM	0.40	0.41	5.60	46			
6.0% SOM	0.82	0.82	12	92			
1,2,4-Trimethylbenzene							
1.0% SOM	0.35	0.41	0.38	42			
2.5% SOM	0.85	0.99	0.93	99			
6.0% SOM	2.00	2.30	2.20	220			
1,2-Dichloropropane	0.024	0.024	0.62	2.2			
1.0% SOM	0.024		1.20	3.3			
2.5% SOM 6.0% SOM	0.042	0.042	2.60	5.9 12			
2,4-Dimethylphenol							
1.0% SOM	19	210	3.10	16000*			
2.5% SOM	43	410	7.20	24000*			
6.0% SOM	97	730	17	30000*			
2,4-Dinitrotoluene							
1.0% SOM	1.50	170*	0.22	3700*			
2.5% SOM	3.20	170	0.49	3700*			
6.0% SOM	7.20	170	1.10	3800*			
2,6-Dinitrotoluene							
1.0% SOM	0.78	78	0.12	1900*			
2.5% SOM	1.70	84	0.27	1900*			
6.0% SOM	3.90	87	0.61	1900*			
2-Chloronapthalene							
1.0% SOM	3.70	3.80	40	390*			
2.5% SOM	9.20	9.30	98	960*			
6.0% SOM	22	22	230	2200*			


CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds							
Contaminant	Residential (mg/kg)	Residential without plant uptake (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)			
Biphenyl							
1.0% SOM	66*	220*	14	18000*			
2.5% SOM	160	500*	35	33000*			
6.0% SOM	360	980*	83	48000*			
Bis (2-ethylhexyl) phthalate							
1.0% SOM	280*	2700*	47*	85000*			
2.5% SOM	610*	2800*	120*	86000*			
6.0% SOM	1100*	2800*	280*	86000*			
Bromobenzene							
1.0% SOM	0.87	0.91	3.2	97			
2.5% SOM	2.0	2.1	7.6	220			
6.0% SOM	4.7	4.9	18	520			
Bromodichloromethane							
1.0% SOM	0.016	0.019	0.016	2.1			
2.5% SOM	0.030	0.034	0.032	3.7			
6.0% SOM	0.061	0.070	0.068	7.6			
Bromoform							
1.0% SOM	2.8	5.2	0.95	760			
2.5% SOM	5.9	11	2.1	1500			
6.0% SOM	13	23	4.6	3100			
Butyl benzyl phthalate							
1.0% SOM	1400*	42000*	220*	940000*			
2.5% SOM	3300*	44000*	550*	940000*			
6.0% SOM	7200*	44000*	1300*	950000*			
Chloroethane							
1.0% SOM	8.3	8.4	110	960			
2.5% SOM	11	11	200	1300			
6.0% SOM	18	18	380	2100			
Chloromethane							
1.0% SOM	0.0083	0.0085	0.066	1.0			
2.5% SOM	0.0098	0.0099	0.13	1.0			
6.0% SOM	0.013	0.013	0.23	1.2			
Cis 1,2 Dichloroethene							
1.0% SOM	0.11	0.12	0.26	14			
2.5% SOM	0.19	0.12	0.50	24			
6.0% SOM	0.19	0.39	1.0	47			


CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds						
Contaminant	Residential (mg/kg)	Residential without plant uptake (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)		
Dichloromethane						
1.0% SOM	0.58	2.10	0.10	270		
2.5% SOM	0.98	2.80	0.19	360		
6.0% SOM	1.70	4.50	0.34	560		
Diethyl Phthalate						
1.0% SOM	120*	1800*	19*	150000*		
2.5% SOM	260*	3500*	41*	220000*		
6.0% SOM	570*	6300*	94*	290000*		
Di- <i>n</i> -butyl phthalate						
1.0% SOM	13*	450*	2.00	15000*		
2.5% SOM	31*	450*	5.00	15000*		
6.0% SOM	67*	450*	12	15000*		
Di- <i>n</i> -octyl phthalate						
1.0% SOM	2300*	3400*	940*	89000*		
2.5% SOM	2800*	3400*	2100*	89000*		
6.0% SOM	3100*	3400*	3900*	89000*		
Hexachloroethane						
1.0% SOM	0.20	0.22	0.27	22*		
2.5% SOM	0.48	0.54	0.67	53*		
6.0% SOM	1.10	1.30	1.60	120*		
Isopropylbenzene						
1.0% SOM	11	12	32	1400*		
2.5% SOM	27	28	79	3300*		
6.0% SOM	64	67	190	7700*		
Methyl <i>tert</i> -butyl ether						
1.0% SOM	49	73	23	7900		
2.5% SOM	84	120	44	13000		
6.0% SOM	160	220	90	24000		
Propylbenzene						
1.0% SOM	34	40	34	4100*		
2.5% SOM	82	97	83	9700*		
6.0% SOM	190	230	200	21000*		
Styrene						
1.0% SOM	8.10	35	1.60	3300*		
2.5% SOM	19	78	3.70	6500*		
6.0% SOM	43	170	8.70	11000*		


	CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds							
Contaminant Residential (mg/kg) Residential without plant uptake (mg/kg) Allotment (mg/kg) Commercial (mg/kg)								
Total Cresols (2-, 3-, and 4- methylphenol)								
1.0% SOM	80	3700	12	160000				
2.5% SOM	180	5400	27	180000*				
6.0% SOM	400	6900	63	180000*				
Trans 1,2 Dichloroethene								
1.0% SOM	0.19	0.19	0.93	22				
2.5% SOM	0.34	0.35	1.90	40				
6.0% SOM	0.70	0.71	0.24	81				
Tributyl tin oxide								
1.0% SOM	0.25	1.40	0.042	130*				
2.5% SOM	0.59	3.10	0.100	180*				
6.0% SOM	1.30	5.70	0.240	200*				

Notes: *Soil concentration above soil saturation limit

APPENDIX F PAH Double Ratio Spreadsheets

APPENDIX G Asbestos Risk Assessment

ground&water CIRIA733 Asbestos Risk Assessment										
Site information	Trial Hole	WS3								
SILE INIOITIALION	Depth (m bgl)	0.3								
	Abestos type	Chrysotile		Amosite		Crocidolite				
Asbestos Type	Kasbestos	1.3			1.7			2.0		
Considerations	Soil Concentration (Quantification Result in %)		0.001							
	Soil Type	Sand	Sandy Clay	Clay	Sand	Sandy Clay	Clay	Sand	Sandy Clay	Clay
Soil Type	Ksoil	2.9	1.7	0.93	2.9	1.7	0.93	2.9	1.7	0.93
Considerations	Enter the relevant from the above		1.7							
Constants	Koverall		1.6		1.6		1.6			
	Dust Concentration (mg/m3)	0.1		0.1			0.1			
Constants	Dry Conditions Exposure (hrs)	750		750		750				
	Occupation hours in a year	1920		1920		1920				
	fibre/ml per mg/m3	0.00138								
Calculation Results	fibre/ml		0.000138							
Calculation Results	fibre/ml.hr 0.104		0.104							
	fibre/ml.year	0.000054								
	Age (exposure commences)	0		0		0				
Mesothelioma	Risk persists for (Years)	60		60		60				
Accumulated Risk	Cummulative Age Adjustment Factor	16.8		16.8		16.8				
	fibre/ml.year (cumulative)	0.00091								
Lung Cancer	Risk persists for (Years)		60			60			60	
Accumulated Risk	fibre/ml.year (cumulative)		0.00065							

BACKGROUND

This asbestos risk assessment has been undertaken in accordance with the guidance within CIRIA733.

The fibre concentration within the airborne soil dust (in fibres/ml per mg/m3) was calculated based on the results of Addison et al 1988.

The airborne concentration of soil dust (0.1mg/m3) was based on ambient urban dust levels and ART modelling.

The dry conditions exposure (750hrs) was based upon regional meteorological data suggesting 150hrs of dry conditions per year, when applied over a 5-year segment this equates to 750hours.

The occupational hours per year (1920hrs) is based on a 40-hour working week and 48 working weeks in a year.

A worst-case exposure scenario has been considered for residents, groundworkers or generally end-users. This was based on the risk persisting for a period of 60 years, accumulated in 5-year increments. As the risk of mesothelioma is age dependent, this considered the exposure commencing at age 0 with the relevant age adjustment factor applied for each 5-year increment.

Based on the above considerations, the following equations have been used:

((Kasbestostype x Ksoil) ÷ Koverall) x Soil Concentration = fibre/ml per mg/m3

Fibre/ml per mg/m3 x Dust Concentration = fibre/ml

(f/ml x Dry Conditions Exposure (hrs)) = fibre/ml.hr

Fibre/ml.hr ÷ occupational hours per year = fibre/ml.year

Mesothelioma: fibre/ml.year x 16.8 (cumulative age adjustment factor for 60 years)

Lung Cancer: fibre/ml.year x 12 (60 years in 5-year increments)

APPENDIX H Waste Hazard Assessment

Waste Classification Report

Job name			
GWPR3599			
Description/Comme	ents		
Project			
GWPR3599			
C ite			
Site			
Related Documents			
# Name	i	Description	
	;	Description	
# Name		Description	
# Name		Description	
# Name None		Description	
# Name None Waste Stream Temp		Description	
# Name None Waste Stream Temp		Description	
# Name None Waste Stream Temp Ground and Water V2 PA Classified by Name:		Description HazWasteOnline™ Training Record:	
# Name None Waste Stream Temp Ground and Water V2 PA Classified by Name: Roger Foord	Diate Company: Ground and Water	HazWasteOnline™ Training Record:	
# Name None Waste Stream Temp Ground and Water V2 PA Classified by Name: Roger Foord Date:	Diate Company: Ground and Water 15 Bow Street	HazWasteOnline™ Training Record: Course	Date
# Name None Waste Stream Temp Ground and Water V2 PA Classified by Name: Roger Foord	Diate Company: Ground and Water 15 Bow Street	HazWasteOnline™ Training Record:	Date -

Report

Created by: Roger Foord Created date: 12 May 2020 15:58 GMT

Job summary

1 GWPR3599 WS1@0.30 0.3 Non Hazardous 2 GWPR3599 WS2@0.30m 0.3 Non Hazardous	Page
	2
2 GWPR3599 WS2@0.30m 0.3 Non Hazardous	4
3 GWPR3599 WS4@0.30m 0.3 Non Hazardous	7

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	10
Appendix B: Rationale for selection of metal species	12
Appendix C: Version	12

Classification of sample: GWPR3599 WS1@0.30

ł
1
÷.

Sample details

Sample Name:	LoW Code:	
GWPR3599 WS1@0.30	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.3 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
18.4%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 18.4% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	٥	рН		PH		7.8	pН		7.8	pН	7.8 pH		
2	4	cyanides { salts of exception of complete ferricyanides and methods are specified elsewhere 006-007-00-5	ex cyanides such as hercuric oxycyanide	s ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< th=""></lod<>
3	4	arsenic { arsenic tri 033-003-00-0	<mark>oxide</mark> } 215-481-4	1327-53-3		14	mg/kg	1.32	18.485	mg/kg	0.00185 %		
4	4	boron { [•] boron tril (combined) }	bromide/trichloride/	trifluoride 10294-33-4, 10294-34-5, 7637-07-2		<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
5	4	cadmium { cadmiur			1	0.4	mg/kg	1.285	0.514	mg/kg	0.00004 %		
6	8	048-010-00-4 Chromium (III) Sulp		1306-23-6		19	mg/kg		19	mg/kg	0.0019 %		
7	4	chromium { chromiu 024-001-00-0	um(VI) oxide } 215-607-8	1333-82-0		<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
8	4	copper { [●] dicoppe			_	39	mg/kg	1.126	43.91	mg/kg	0.00439 %		
9	*	lead { lead chromat 082-004-00-2		7758-97-6	1	333	mg/kg	1.56	519.418	mg/kg	0.0333 %		
10	4	mercury { mercury	dichloride }	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
11			<mark>roxide</mark> } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		18	mg/kg	1.579	28.431	mg/kg	0.00284 %		
12		selenium { seleniun cadmium sulphosel in this Annex 034-002-00-8				<3	mg/kg	2.554	<7.661	mg/kg	<0.000766 %		<lod< td=""></lod<>

geotechnical and environmental consultants

	-	geoteciliigai and environmental consoltants								-	
#		Determinand CLP index number EC Number CAS	Number	CLP Note	User entered dat	ta	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
13	4	vanadium { divanadium pentaoxide; vanadium	pentoxide }			n/ka	1.785	69.622 mg/kg	0.00696 %	2	
		023-001-00-8 215-239-8 1314-62	2-1			<i>,</i> 9					
14	4	zinc { <mark>zinc chloride</mark> }			258 mg	n/ka	2.085	537.806 mg/kg	0.0538 %		
		030-003-00-2 231-592-0 7646-85	5-7		200 mg	<i>y</i> 9	2.000		0.0000 /0		
15		phenol			<2 mg	g/kg		<2 mg/kg	<0.0002 %		<lod< td=""></lod<>
10		604-001-00-2 203-632-7 108-95-	2		~2 mg	y ng			0.0002 /0		
16		naphthalene			<0.1 mg	g/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
10		601-052-00-2 202-049-5 91-20-3			30.1 Ing	<i>y</i> ng		soli ingrig			
17		acenaphthylene			<0.1 mg	g/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
.,		205-917-1 208-96-	8		<0.1 mg	y ng			0.00001 /0		LOD
18		acenaphthene			<0.1 mg	g/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
10		201-469-6 83-32-9			<0.1 mg	y ng			0.00001 /0		LOD
19		fluorene			<0.1 mg	g/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		201-695-5 86-73-7				<i>,</i> 9					
20		phenanthrene			1.81 mg	g/kg		1.81 mg/kg	0.000181 %		
20		201-581-5 85-01-8				<i>y</i> ng		1.01 Ing/K			
21		anthracene			0.75 mg	g/kg		0.75 mg/kg	0.000075 %		
21		204-371-1 120-12-	7		0.75 mg	y ng		0.70 119/10	0.000010 /0		
22		fluoranthene			5.56 mg	g/kg		5.56 mg/kg	0.000556 %		
22		205-912-4 206-44-	0		5.50 mg	j/ NY		5.50 llig/kį	0.000330 /8		
23		pyrene			4.85 mg	g/kg		4.85 mg/kg	0.000485 %		
20		204-927-3 129-00-	0		4.00 mg	y ng		4.00 mg/kg	0.000400 /0		
24		benzo[a]anthracene			2.29 mg	g/kg		2.29 mg/kg	0.000229 %		
24		601-033-00-9 200-280-6 56-55-3			2.20 mg	y ng		2.23 mg/kg	0.000223 /0		
25	1	chrysene			2.01 mg	g/kg		2.01 mg/kg	0.000201 %		
20		601-048-00-0 205-923-4 218-01-	9		2.01 119	y ng		2.01 119/10	0.000201 /0		
26		benzo[b]fluoranthene			2.33 mg	g∕kg		2.33 mg/kg	0.000233 %		
20		601-034-00-4 205-911-9 205-99-	2		2.00 mg	, ng		2.00 mg/kg	0.000200 /0		
27		benzo[k]fluoranthene			0.94 mg	g/kg		0.94 mg/kg	0.000094 %		
21		601-036-00-5 205-916-6 207-08-	9		0.04 Ilig	, ny		0.07 mg/kį	0.000034 /0		
28		benzo[a]pyrene; benzo[def]chrysene			1.89 mg	g/kg		1.89 mg/kg	0.000189 %		
20		601-032-00-3 200-028-5 50-32-8			1.00 mg	, ng		1.00 119/10			
29		indeno[123-cd]pyrene			1.32 mg	g/kg		1.32 mg/kg	0.000132 %		
23		205-893-2 193-39-	5		1.52 119	y, ng		1.52 Hig/K	0.000102 /0		
30		dibenz[a,h]anthracene			<0.1 mg	g/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
50		601-041-00-2 200-181-8 53-70-3			IIIg	y ng		<0.1 mg/kų	0.0001 //		
31		benzo[ghi]perylene			0.88 mg	g/kg		0.88 mg/kg	0.000088 %		
51		205-883-8 191-24-	2		0.00 mg	y, ng		0.00 mg/kg	0.000000 //		
								Total	0.111 %		

Kev

itey	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
8	Determinand defined by classifier (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: GWPR3599 WS2@0.30m

. .

Ξ.,

Non Hazardous Waste	1
Classified as 17 05 04	
in the List of Waste	

Sample details

Sample Name:	LoW Code:	
GWPR3599 WS2@0.30m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.3 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
8%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 8% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	pН		PH		7.8	рН		7.8	pН	7.8 pH		
2	4	cyanides { salts exception of complete ferricyanides and m specified elsewhere 006-007-00-5	ex cyanides such as hercuric oxycyanide	s ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< td=""></lod<>
3	4	arsenic { arsenic tri 033-003-00-0	<mark>oxide</mark> } 215-481-4	1327-53-3		7	mg/kg	1.32	9.242	mg/kg	0.000924 %		
4	4	boron { [•] boron trii (combined) }				<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
5	4	cadmium {	•	4200.00.0	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
6	8	Chromium (III) Sulp	215-147-8 phate	1306-23-6		20	mg/kg		20	mg/kg	0.002 %		
7	4	chromium { chromiu 024-001-00-0	um(VI) oxide } 215-607-8	1333-82-0		<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
8	4	copper { [●] dicoppe 029-002-00-X	e <mark>r oxide; copper (I)</mark> 215-270-7	<mark>oxide</mark> } 1317-39-1	_	28	mg/kg	1.126	31.525	mg/kg	0.00315 %		
9	*	lead { lead chromat 082-004-00-2	<mark>e</mark> } 231-846-0	7758-97-6	1	135	mg/kg	1.56	210.575	mg/kg	0.0135 %		
10		mercury { mercury		7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
11	4	nickel { nickel dihyd 028-008-00-X		12054-48-7 [1] 11113-74-9 [2]		13	mg/kg	1.579	20.533	mg/kg	0.00205 %		
12		selenium { selenium cadmium sulphosel in this Annex }				<3	mg/kg	2.554	<7.661	mg/kg	<0.000766 %		<lod< td=""></lod<>
		034-002-00-8											

ground&water

geotechnical and environmental consultants

HazWasteOnline[™] Report created by Roger Foord on 12 May 2020

i Determinand CAS Number CAS Number Compound core. Compound core. <t< th=""><th>MC Applied</th><th>Conc. Not</th></t<>	MC Applied	Conc. Not
11 with an exact of demandation pertactices of pertactions of pertactio	MC A	Used
12 123-201-0-8 121-239-8 131-462-1 1 4 4 4 4 125-201-8 125-071 mgkq 0.0125 % 15 0 303-003-02 231-592-0 7-64-685-7 60 mgkq 2.085 125.071 mgkq 4.0002 % 16 naphthalene 100-002-02 202-049-5 91-20-3 -0.1 mgkq -0.1 mgkq 4.011 mgkq 4.00001 % 17 a aconaphthene 201-69-5 96-73-7 -0.1 mgkq -0.1 mgkq 4.0.1 mgkq 4.00001 % 18 a aconaphthene -0.1 mgkq -0.1 mgkq -0.01 mgkq -0.01 mgkq -0.01 mgkq -0.01 mgkq -0.01 mgkq 0.00001 % -0.00001 % -0.01 mgkq -0.01 mgkq 0.00001 % -0.00001 % -0.01 mgkq 0.00001 % -0.00001 % -0.01 mgkq 0.00001 % -0.000001 % -0.01		
Image: second of the		
Distance		
15 064001-002 203-632-7 108-65-2 Nmpkq Nmpkq Nmpk	_	
16 appthalene naphty e.o.1 mgkg e.o.0001 % g.o.00001 % g.o.000001 % g.o.00001 % g		<lod< td=""></lod<>
10 01-082-00-2 (0)-082-00-5 (0)-082-00-5 (0)-082-00-5 (0)-082-00-7 (0	-	
17 accomptibulie Des-917.1 p08-96-8 <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.0001 % 18 accomptibure p01-469-6 B3-32.9 <0.1		<lod< td=""></lod<>
Image: point of the p		<lod< td=""></lod<>
18 201-468-6 183-32-9 -0.1 mg/kq x0.1 mg/kq x0.00001 % x0.00001 % x0.00001 % x0.00001 % x0.0001 % x0.0001 % x0.0001 % x0.0001 % x0.0001 % x0.0001 % x0.00001 % x0.00000 % x0.00000 % x0.00000 % x0.000000 % x0.000000 % x0.000000 % x0.0		
Image: second		<lod< td=""></lod<>
19 201-685-5 36-73-7 -0.1 mg/kg <0.1 mg/kg <0.1 mg/kg 20.1 mg/kg 20.00015% 20.00015% 20.00015% 20.00015% 20.00015% 20.00015% 20.00015% 20.00015% 20.00015% 20.00015% 20.00015% 20.00015% 20.00005% 20.00005% 20.00005% 20.00005% 20.00005% 20.00005% 20.000005% 20.00005% 20.00005% 20.000005% 20.00005% 20.000005%		
20 phenanthrene 201-581-5 B5-01-8 0.52 mg/kg 0.52 mg/kg 0.000052 % 21 a anthracene 204-371-1 120-12-7 <-0.1		<lod< td=""></lod<>
20 - D01-581-5 B5-01-8 0.52 mg/kg 0.52 mg/kg 0.000022% 21 anthracene -	_	
21 anthracene 204-371-1 120-12-7 -0.1 mg/kg -0.1 mg/kg 0.00001 % 22 a fluoranthene 205-912-4 206-44-0 1.37 mg/kg 1.37 mg/kg 0.000137 % 23 a pyrene 1.18 mg/kg 1.18 mg/kg 0.000137 % 24 benzo[a]anthracene 0.53 mg/kg 0.53 mg/kg 0.53 mg/kg 0.000053 % 25 bchzo[a]anthracene 0.53 mg/kg 0.67 mg/kg 0.000067 % 26 benzo[a]burbaratene 205-912-9 0.91 mg/kg 0.91 mg/kg 0.00007 % 27 benzo[a]burbaratene 205-917-6 207-05-9 0.37 mg/kg 0.37 mg/kg 0.00007 % 28 benzo[a]burbaratene 205-917-6 207-05-9 0.37 mg/kg 0.37 mg/kg 0.000072 % 30 dibenz[a,h]anthracene 205-933-6 50-32-4 0.62 mg/kg 0.38 mg/kg		
21 204-371-1 120-12-7 20.1 mg/kg 20.1 mg/kg 20.0000 % 22 * flooranthene 20.4-371-1 120-12-7 1.37 mg/kg 0.000137 % 23 * pyrene 20.4-327.3 129-00-0 1.18 mg/kg 0.000137 % 24 benzolglanthracene 501-032-00-9 200-280-6 56-55-3 0.53 mg/kg 0.53 mg/kg 0.000053 % 25 chrysene	-	
22 Iluoranthene 1.37 mg/kg 1.37 mg/kg 0.000137 % 23 Pyrene 204-927.3 129-00-0 1.18 mg/kg 1.18 mg/kg 0.000137 % 24 benzo[a]antbracene 204-927.3 129-00-0 1.18 mg/kg 0.53 mg/kg 0.000033 % 25 chrysene 501-048-00-0 205-923-4 218-01-9 0.67 mg/kg 0.67 mg/kg 0.000067 % 26 benzo[b]tuoanthene 205-91-9 0.91 mg/kg 0.37 mg/kg 0.000067 % 26 benzo[b]tuoanthene 205-91-6 207-08-9 0.37 mg/kg 0.37 mg/kg 0.000072 % 28 benzo[a]pyrene; benzo[def[chrysne 0.72 mg/kg 0.62 mg/kg 0.62 mg/kg 0.000072 % 29 indeno[123-c]h]anthracene -0.1 mg/kg 0.38 mg/kg 0.00002 % 0.000002 % 31 benzel 205-83-8 191-24-2 0.38 mg/kg 0.000		<lod< td=""></lod<>
22 profen		-
23 204-927.3 129-00-0 1.18 mg/kg 1.18 mg/kg 0.000118 % 24 benzo[a]anthracene 0.1033-00-9 200-280-6 56-55-3 0.53 mg/kg 0.53 mg/kg 0.000053 % 25 chrysene 0.148-00-0 205-923-4 218-01-9 0.67 mg/kg 0.677 mg/kg 0.000067 % 26 benzo[k]lluoranthene 0.054-00-4 205-911-9 205-992-2 0.91 mg/kg 0.91 mg/kg 0.000067 % 27 benzo[k]lluoranthene 205-916-6 207-08-9 0.37 mg/kg 0.377 mg/kg 0.000037 % 28 benzo[k]luoranthene 200-028-5 50-32-8 0.72 mg/kg 0.200017 % 30 didenz[a.h]anthracene 200-028-5 50-32-8 0.622 mg/kg 0.20001 % 31 benzo[ghi]perytene 0.62 mg/kg 0.20001 % 0.000002 % 32 benzene 501-02-00-8 200-753-7 [71-43-2 -<0.002		
Image: Constraint of the		
24 801-033-00-9 200-280-6 56-55-3 0.53 mg/kg 0.53 mg/kg 0.00053% 25 601-048-00-0 205-923-4 218-01-9 0.67 mg/kg 0.00007% 26 benzolb/litoranthene 0.1034-00-4 205-911-9 205-99-2 0.91 mg/kg 0.91 mg/kg 0.000001% 27 benzolb/litoranthene 0.01-034-00-4 205-916-6 207-08-9 0.37 mg/kg 0.000072% 28 benzola/lyrene; benzoldef[chrysene 601-032-00-3 200-028-5 50-32-8 0.72 mg/kg 0.000072% 29 indencit23-cdipyrene 0.32 mg/kg 0.622 mg/kg 0.000072% 30 dibenz[a,h]anthracene 601-022-00-8 200-783-7 [71-43-2 0.38 mg/kg 0.38 mg/kg 0.00002 % 31 benzene 501-021-00-3 203-625-9 108-88-3 <0.002	\perp	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	+	
26 benzo[b]fluoranthene 0.91 mg/kg 0.91 mg/kg 0.000091 % 27 benzo[k]fluoranthene 0.37 mg/kg 0.37 mg/kg 0.37 mg/kg 0.000037 % 28 benzo[a]pyrene; benzo[def]chrysene 0.37 mg/kg 0.72 mg/kg 0.000072 % 29 iindenc[123-00-3 200-028-5 50-32-8 0.62 mg/kg 0.62 mg/kg 0.000072 % 30 dibenz[a,h]antracene - - 0.62 mg/kg 0.62 mg/kg 0.000062 % 30 dibenz[a,h]antracene - - 0.38 mg/kg 0.000072 % 31 benzelgh]perylene 0.38 mg/kg 0.38 mg/kg 0.00002 % 32 benzene - - 0.38 mg/kg 0.002 mg/kg -0.002 mg/kg -0.002 mg/kg -0.002 mg/kg -0.002 mg/kg -0.0000005 % 34 ethylbenzene - - - - 0.002 mg/kg -0.002 mg		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	+	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	-
28 benzo[a]pyrene; benzo[def[chrysene 0.72 mg/kg 0.72 mg/kg 0.000072 % 29 indeno[123-cd]pyrene [205-893-2] [193-39-5] 0.62 mg/kg 0.62 mg/kg 0.000072 % 30 dibenz[a,h]anthracene 0.62 mg/kg 0.62 mg/kg 0.00001 % 31 benzo[ghi]perylene 0.38 mg/kg 0.38 mg/kg 0.0002 % 32 benzene [205-883-8] [191-24-2] 0.38 mg/kg 0.38 mg/kg 0.00002 % 31 benzene [205-883-8] [191-24-2] 0.38 mg/kg 0.38 mg/kg 0.00002 % 33 toluene [205-883-8] [191-24-2] 0.002 mg/kg 0.00002 % 0.000002 % 34 ethylenzene - -<0.002		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	+	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
image: series of the		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		<lod< td=""></lod<>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_	
33 toluene 601-021-00-3 203-625-9 108-88-3 <0.005 mg/kg <0.005 mg/kg <0.0000005 % 34 ethylbenzene 601-023-00-4 202-849-4 100-41-4 <0.002		<lod< td=""></lod<>
33 601-021-00-3 203-625-9 108-88-3 <0.005	-	
34 ethylbenzene 601-023-00-4 [202-849-4 [100-41-4 solution of the second of t		<lod< td=""></lod<>
34 01-023-00-4 202-849-4 100-41-4 <0.002		
35 ⁰ - 022 - 00 - 9 ¹ 202 - 422 - 2 [1] ¹ 95 - 47 - 6 [1] ¹ 106 - 42 - 3 [2] ¹ 106 - 42 - 3 [2] ¹ 108 - 38 - 3 [3] ¹ 215 - 535 - 7 [4] ¹ 1330 - 20 - 7 [4] 		<lod< td=""></lod<>
35 203-396-5 [2] 106-42-3 [2] <0.002		
200-576-3 [3] 100-32-3 [2] 00-38-3 [3] 215-535-7 [4] 1330-20-7 [4] 36 0-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4] 601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-576-3 [3] 106-42-3 [2] <0.002		
a 215-535-7 [4] 1330-20-7 [4] a<		<lod< td=""></lod<>
36 o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4] 601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4] <0.002 mg/kg		
36 203-396-5 [2] 106-42-3 [2] <0.002		
37 ¹⁰⁰ ²⁰³⁻⁵⁷⁶⁻³ ¹⁰⁰⁻³²⁻⁵		<lod< td=""></lod<>
i 215-535-7 [4] 1330-20-7 [4] i<		<lod< td=""></lod<>
37 diesel petroleum group 37 68334-30-5, 68476-34-6, 94114-59-7, 37 68334-30-5, 68476-34-6, 94114-59-7,		
37 68476-34-6, 94114-59-7, <3 mg/kg <0.0003 %		
94114-59-7,		<lod< td=""></lod<>
		<lod< td=""></lod<>
1159170-26-9		
38 TPH (C6 to C40) petroleum group <42 mg/kg <42 mg/kg <0.0042 %		<lod< td=""></lod<>
TPH TPH		
Total: 0.0462 %		

www.hazwasteonline.com

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
8	Determinand defined by classifier (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
LOD	Below limit of detection
ND	Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: GWPR3599 WS4@0.30m

Sample details

Moisture content:	03)
22% (no correction)	

Hazard properties

None identified

Determinands

Moisture content: 22% No Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number		CAS Number	CLP Note	User entered data		Conv. Factor Compound conc.		Classification value	MC Applied	Conc. Not Used	
1	0	рН				7.7	pН		7.7	pН	7.7 pH		
				PH									
2	~	cyanides { salts of exception of complete ferricyanides and me specified elsewhere 006-007-00-5	ex cyanides such as hercuric oxycyanide	s ferrocyanides,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< th=""></lod<>
	\$	arsenic { arsenic tri	ovide }		+					_			
3			215-481-4	1327-53-3	-	16	mg/kg	1.32	21.125	mg/kg	0.00211 %		
4	4	boron { [©] boron tril (combined) }				<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< th=""></lod<>
5	4	cadmium { cadmium sulfide }			1	0.7	mg/kg	1 205	0.9 mg/kg	0.00007 %			
5		048-010-00-4	215-147-8	1306-23-6	1'	0.7	iiig/kg	1.200	0.3		0.00007 /0		
6	8	Chromium (III) Sulp	ohate	10101-53-8		21	mg/kg		21	mg/kg	0.0021 %		
7	4	chromium { chromium(VI) oxide }						1 000			0.000005.0/	İ.	
1		024-001-00-0	215-607-8	1333-82-0		<2	mg/kg	1.923	<3.846	тg/кg	<0.000385 %		<lod< td=""></lod<>
8	4	copper { ^e dicoppe	e <mark>r oxide; copper (I) o</mark> 215-270-7	<mark>oxide</mark> }	_	102	mg/kg	1.126	114.841	mg/kg	0.0115 %		
	~	lead { lead chromate }			1.	433	mg/kg	1.56	.56 675.4	mg/kg	0.0433 %		
9		082-004-00-2 231-846-0 7758-97-6		1									
10		mercury { mercury				<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
	4	080-010-00-X 231-299-8 7487-94-7								_		-	
11			roxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		19	mg/kg	1.579	30.01	mg/kg	0.003 %		
12	4	selenium { <mark>seleniun cadmium sulphosel</mark> in this Annex 034-002-00-8				<3	mg/kg	2.554	<7.661	mg/kg	<0.000766 %		<lod< th=""></lod<>

www.hazwasteonline.com

ground&water geotechnical and environmental consultants

HazWasteOnline[™] Report created by Roger Foord on 12 May 2020

33 44 43 178 7.785 <th>#</th> <th></th> <th><u>.</u></th> <th>Determinand</th> <th></th> <th>CLP Note</th> <th>User entere</th> <th>d data</th> <th>Conv. Factor</th> <th>Compound</th> <th>conc.</th> <th>Classification value</th> <th>MC Applied</th> <th>Conc. Not Used</th>	#		<u>.</u>	Determinand		CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used	
No. No. <th></th> <th></th> <th>CLP index number</th> <th>EC Number</th> <th>CAS Number</th> <th>Ľ b l</th> <th></th> <th></th> <th>I actor</th> <th colspan="2"></th> <th>value</th> <th>1C A</th> <th>Usea</th>			CLP index number	EC Number	CAS Number	Ľ b l			I actor			value	1C A	Usea	
Image:	10	æ	vanadium { divanad	dium pentaoxide; va	anadium pentoxide }		40		4 705	70 700		0.00700.0/	2		
Image: Process of the set of th	13	~	023-001-00-8	215-239-8	1314-62-1		43	mg/kg	1.785	76.763	тg/кg	0.00768 %			
Discolor Discolor Discolor Discolor Discolor C-2 mpkg C	14	4	zinc { zinc chloride	}	x		363	ma/ka	2 085	756 681	ma/ka	0 0757 %			
Signed to 2 in the problem i	14		030-003-00-2	231-592-0	7646-85-7			ing/itg	2.000			0.0707 %			
Bit Col: 0.02 D20: 0.03: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:	15						<2	ma/ka		<2	ma/ka	<0.0002 %		<lod< td=""></lod<>	
B) D): 0:02:00:2 D): 0:00:00:5 % D): 0:00:00:5 % C.D.B mg/kg D: 0:00:00:5 % C.D.D mg/kg D: 0:00:00:5 % C.D.D 10 accomphthylene D: 0:1489-6 B: 0:1685 Mg/kg D: 0:0:0:0:5 % C C D: 0:0:0:0:5 % C C D: 0:0:0:0:0:5 % C C D: 0:0:0:0:0:5 % C C D: 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0			604-001-00-2	203-632-7	108-95-2										
Divide 0.02 Divide 0.0001 % CLOD a accomphibme 201-685.6 B	16		•				0.76	mg/kg		0.76	mg/kg	0.000076 %			
Image: Process of the second			601-052-00-2	202-049-5	91-20-3										
8 accompletionen 201-669-6 jk3-2-0 0.65 mg/kg 0.65 mg/kg 0.00065 % 1 a interment 201-669-5 jk6-73-7 0.55 mg/kg 0.65 mg/kg 0.000056 % 1 a phenattracene 201-681-5 jk6-01-8 5.08 mg/kg 0.049 mg/kg 0.000056 % 1 a phenattracene 206-912-4 206-442-0 9.65 mg/kg 0.000068 % 1 1 a phenattracene 206-912-4 206-442-0 9.65 mg/kg 0.49 mg/kg 0.000068 % 1 a phenattracene 204-927-3 [29-00-0 7.83 mg/kg 0.000368 % 1	17	0				ļ	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
Image: style in the s				205-917-1	208-96-8										
9 Partner Port-685-5 Port-37-7 0.55 mg/kg 0.65 mg/kg 0.000055 % 0 Prenanthrene 201-681-5 Port-37-7 0.49 mg/kg 0.48 mg/kg 0.00008 % 1 1 anthrace 201-581-5 Port-11 1201-27 0.49 mg/kg 0.48 mg/kg 0.000049 % 1 2 fluoranthene 205-912-4 206-942-7 129-00-0 7.83 mg/kg 0.48 mg/kg 0.00095 % 1 2 prene 205-912-4 206-912	18	0	•				0.65	mg/kg		0.65	mg/kg	0.000065 %			
10 201-085-5 36-73-7 0.55 mg/q 0.55 mg/q 0.00005 % 20 0 phenanthrene [201-581-5] [5-01-8] 5.08 mg/q 0.49 mg/q 0.000058 % 1 21 0 phenanthrene [201-581-5] [5-01-8] 0.49 mg/q 0.49 mg/q 0.49 mg/q 0.000068 % 1 22 0 phenanthrene [201-327.3] [206-42.7] 1 9.65 mg/q 9.65 mg/q 0.000783 % 1 23 0 phenalpharanthere 1.99-00-0 7.83 mg/q 3.58 mg/q 0.000783 % 1 1 24 bbrock[k[lucranthere 1.86 mg/q 3.9 mg/q 3.9 mg/q 3.9 mg/q 0.00038 % 1				201-469-6	83-32-9	-									
20 a phenanthrane 201-581-5 BS-01-3 S.08 mg/kg S.08 mg/kg 0.000608 % 1 21 a nthracene 201-581-5 BS-01-3 0.49 mg/kg 0.49 mg/kg 0.000608 % 1 22 a fluoranthene 205-912-4 206-44-0 9.85 mg/kg 9.85 mg/kg 0.000605 % 1 23 a prine 205-912-4 206-44-0 9.85 mg/kg 3.58 mg/kg 0.000783 % 1 24 benzo[ajanthracene 50-03-00 205-922-4 218-01-9 3.9 mg/kg 3.9 mg/kg 0.00039 % 1 25 benzo[ajprine 3.9 mg/kg 3.9 mg/kg 3.9 mg/kg 0.000497 % 1 <t< td=""><td>19</td><td>0</td><td></td><td></td><td>00 70 7</td><td></td><td>0.55</td><td>mg/kg</td><td></td><td>0.55</td><td>mg/kg</td><td>0.000055 %</td><td></td><td></td></t<>	19	0			00 70 7		0.55	mg/kg		0.55	mg/kg	0.000055 %			
Dec P01-581-5 BS-01-8 S.08 mgrap S.08 mgrap D.000308 % 21 # anthracene [004-371-1] [120-12.7] 0.49 mgrap 0.49 mgrap 0.00049 % . 22 # Inconnine [205-912.4] 206-44-0 9.65 mgrap 9.65 mgrap 0.000368 % . 23 # Dencolajanthracene 5.03 mgrap 3.58 mgrap 0.000368 % . 24 Bencolajanthracene 5.03 mgrap 3.58 mgrap 0.000368 % . 25 Bortoglanthracene 501-033-00-9 [205-93-2] 4.97 mgrap 3.9 mgrap 3.9 mgrap 3.9 mgrap 0.00038 % . . 26 Bortoglaptrene: bencalphiconntheme 501-032-00-8 [207-08-9] 1.86 mgrap 3.24 mgrap 3.24 mgrap 0.000324 % 	20 21	0		201-695-5	86-73-7	-									
21 * anthracene 0.49 mg/kg 0.49 mg/kg 0.000049 % 1 21 * fluoranthene 205-912-4 206-44-0 9.65 mg/kg 0.000965 % 1 23 * fluoranthene 204-927-3 129-00-0 7.83 mg/kg 7.83 mg/kg 0.000783 % 1 24 benzo[a]anthracene 3.58 mg/kg 3.58 mg/kg 0.000783 % 1 25 chrysene			•	001 E91 E	95 01 9		5.08	mg/kg		5.08	mg/kg	0.000508 %			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				201-581-5	85-01-8	\vdash									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		۵		004 074 4	100 10 7		0.49	mg/kg		0.49	mg/kg	0.000049 %			
22 p05-912-4 p06-944-0 9.65 mg/kg 9.85 mg/kg 0.00095 % 23 p/prine 204-927-3 1/29-00-0 7.83 mg/kg 0.000783 % 1 24 benzolplanthracene 561-033-00-9 p00-280-6 56-55-3 3.58 mg/kg 0.00039 % 1 24 benzolplanthracene 561-048-00-0 p05-932-4 P18-01-9 3.9 mg/kg 4.97 mg/kg 0.00039 % 1 26 benzolplanthracene 501-038-00-4 p05-99-2 4.97 mg/kg 4.97 mg/kg 0.000497 % 1 27 benzolplayrene: benzolplayrene p05-93-2 1.86 mg/kg 0.000247 % 1 28 benzolplayrene: benzole/loyrene p05-93-8 3.24 mg/kg 0.000228 % 1 29 indenz(123-dipyrene p00-028-5 p0-38-8 186 mg/kg 0.00022 % 1 29 indenz(124-dipyrene 1.68 mg/kg 0.00022 %				204-37 1-1	120-12-7	\vdash									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	22	8		205 012 /	206 11 0		9.65	mg/kg		9.65	mg/kg	0.000965 %			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				203-912-4	200-44-0	┢									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	23	•		204-927-3	129-00-0		7.83	mg/kg		7.83	mg/kg	0.000783 %			
44 801-033-00-9 200-280-6 56-56-3 3.358 mg/kg 3.358 mg/kg 0.00038 % 25 dhysene 801-043-00-0 205-923-4 218-01-9 3.9 mg/kg 3.9 mg/kg 0.00039 % 26 berzo(b//luoranthene 205-911-3 205-99-2 1.86 mg/kg 1.86 mg/kg 0.000497 % 27 berzo(b//luoranthene 205-918-6 207-08-9 1.86 mg/kg 3.24 mg/kg 0.000186 % 28 berzo(a/ly/ucranthene 501-032-00-3 200-028-5 50-32-8 3.24 mg/kg 0.35 mg/kg 0.000035 % 29 e indeno[123-od]pyrene 200-181-8 53-70-3 0.35 mg/kg 0.35 mg/kg 0.000035 % 31 e berzo(a/liplerylene 1.68 mg/kg 0.68 mg/kg 0.0000005 % <lod< td=""> 32 berzole 200-763-7 [71-43-2 -0.002 mg/kg -0.002 mg/kg -0.002 mg/kg -0.002 mg/kg</lod<>		_			123-00-0	-				1					
25 chrysene 3.9 mg/kg 3.9 mg/kg 0.0039 % 0.0039 % 26 berzotk/llocanthene 0.0039 % 1.86 mg/kg 4.97 mg/kg 0.00039 % 0.00039 % 27 berzotk/llocanthene 0.000497 % 1.86 mg/kg 1.86 mg/kg 0.000497 % 28 berzotk/llocanthene 0.00028-5 50-32-8 3.24 mg/kg 3.24 mg/kg 0.000324 % 0.000324 % 29 indeno(123-odjpyrene: berzotk/llocanthene 0.35 mg/kg 0.35 mg/kg 0.00035 % 0.00035 % 30 diberz(a,hjanthacene 0.035 mg/kg 0.35 mg/kg 0.000168 % 0.0000168 % 0.00000002 % cLOD	24				56-55-3	{	3.58	mg/kg		3.58	mg/kg	0.000358 %			
2 801-048-00-0 205-923-4 218-01-9 3.9 mg/kg 3.9 mg/kg 0.0033 % 1 26 benzol[l]tuoranthene 0.00427 % 4.97 mg/kg 4.97 mg/kg 0.000497 % 1 27 benzol[k]tuoranthene 0.000497 % 1.86 mg/kg 1.86 mg/kg 0.000497 % 1 28 benzol[k]tuoranthene 0.000225 50-32-8 3.24 mg/kg 3.24 mg/kg 0.000324 % 1 29 indeno(122-c0]pyrene 200-028-5 50-32-8 2.22 mg/kg 0.35 mg/kg 0.00035 % 1 30 dibenz(a,h)anthracene 50-021-81-8 53-70-3 0.35 mg/kg 0.35 mg/kg 0.000168 % 1 1 31 ebenzele/microprese 200-181-8 53-70-3 0.35 mg/kg 0.000168 % 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				200 200 0	00 00 0										
berzelbilluoranthene pos-99-2 4.97 mg/kg 4.97 mg/kg 0.000497 % 27 berzelkjilluoranthene pos-911-9 pos-99-2 1.86 mg/kg 1.86 mg/kg 0.000497 % 1.86 mg/kg 0.000186 % 1.86 mg/kg 0.000186 % 1.86 mg/kg 0.000186 % 1.86 mg/kg 0.000222 % 1.86 mg/kg 0.000222 % 1.86 mg/kg 0.000222 % 1.86 mg/kg 0.000222 % 1.86 mg/kg 0.000022 % 1.86 mg/kg 0.000022 % 1.86 mg/kg 0.000022 % 1.88 mg/kg 0.35 mg/kg 0.35 mg/kg 0.00002 % 1.68 mg/kg 0.000002 % 1.68 mg/kg 0.000188 % 1.68 mg/kg 0.000188 % 1.60 1.68 mg/kg 0.000188 % 1.60 1.68 mg/kg 0.000000 % 4.00 20 berzelegibilperylene 1.68 mg/kg 0.0002 mg/kg 0.000168 % 1.60 1.60 1.60 1.60 </td <td>25</td> <td></td> <td></td> <td>205-923-4</td> <td>218-01-9</td> <td>{</td> <td>3.9</td> <td>mg/kg</td> <td></td> <td>3.9</td> <td>mg/kg</td> <td>0.00039 %</td> <td></td> <td></td>	25			205-923-4	218-01-9	{	3.9	mg/kg		3.9	mg/kg	0.00039 %			
Zb 601-034-00-4 205-911-9 205-99-2 4.97 mg/kg 4.97 mg/kg 0.000497 % 27 benzol(filtuoranthene 501-036-00-5 205-916-6 207-08-9 1.86 mg/kg 1.86 mg/kg 0.000324 % 28 benzol(alpyrene; benzoldelfchrysene 501-032-00-3 200-028-5 50-32-8 2.22 mg/kg 3.24 mg/kg 0.000324 % 29 indenof123-cd[pyrene; 601-041-00-2 200-181-8 53-70-3 0.35 mg/kg 0.35 mg/kg 0.00035 % 31 mbrzol(pil)perylene					210 01 3										
27 benzo[k]fluoranithene 601-035-00-5 ≥05-916-6 ≥07-08-9 1.86 mg/kg 1.86 mg/kg 0.000186 % 28 benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 ≥00-028-5 50-032-8 3.24 mg/kg 3.24 mg/kg 0.000324 % 29 e indeno[123-cd]pyrene 205-893-2 [193-39-5 3.24 mg/kg 0.35 mg/kg 0.000324 % 30 dibenz[a,h]anthracene 601-022-00-8 [200-181-8 §3-70-3 0.35 mg/kg 0.35 mg/kg 0.000035 % 31 e benzole 601-022-00-8 [200-753-7 [71-43-2 <0.002	26				205-99-2		4.97	mg/kg		4.97	mg/kg	0.000497 %			
2/2 801-036-00-5 205-916-6 207-08-9 1.86 mg/kg 1.86 mg/kg 0.000186 % 1.86 mg/kg 0.000186 % 1.86 mg/kg 0.000186 % 1.86 mg/kg 0.000186 % 1.86 mg/kg 0.000226 % 1.86 mg/kg 0.000226 % 1.86 mg/kg 0.000324 % 1.86 mg/kg 0.00035 % 1.86 mg/kg 0.000168 % 1.86 mg/kg 0.000168 % 1.86 mg/kg 0.000168 % 1.86 mg/kg 0.000168 % 1.68 mg/kg 0.000168 % 1.68 mg/kg 0.000168 % 1.68 mg/kg 0.000168 % 1.68 mg/kg 0.000168 % 1.60 1.68 mg/kg 0.000002 % 4.00D 4.00D 1.68 mg/kg 0.0000002 % 4.00D 1.00 1.00 1.00 <					200 00 2	\vdash									
28 benzo[a]pyrene; benzo[def]chrysene 3.24 mg/kg 3.24 mg/kg 0.000324 % 29 indeno[123-cd]pyrene 205-893-2 [93-39-5] 2.22 mg/kg 2.22 mg/kg 0.000324 % 30 dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3 0.35 mg/kg 0.35 mg/kg 0.00035 % 31 benzo[chi]perylene 16.8 mg/kg 1.68 mg/kg 0.000 0002 % <lod< td=""> 32 benzole -</lod<>	27				207-08-9		1.86	mg/kg		1.86	mg/kg	0.000186 %			
24 601-032-00-3 200-028-5 50-32-8 3.24 mg/rg 3.24 mg/rg 0.000324 % 1 29 indeno[123-cd]pyrene 205-893-2 [193-39-5 2.22 mg/rg 0.000035 % 1 30 dibenz[a,h]anthracene 50-70-3 0.35 mg/rg 0.35 mg/rg 0.000035 % 1 31 benzo[ghi]perylene 205-883-8 [191-24-2 1.68 mg/rg 0.0002 mg/rg c0.0002 mg/rg c0.000002 % <lod< td=""> 32 benzene 501-021-00-3 203-625-9 [108-88-3 c0.005 mg/rg c0.002 mg/rg c0.0000002 % <lod< td=""> 33 toluene 501-021-00-3 203-625-9 [108-88-3] c0.005 mg/rg c0.002 mg/rg c0.0000002 % <lod< td=""> 34 ethylbenzene 501-021-00-3 203-625-9 [108-88-3] c0.002 mg/rg c0.002 mg/rg c0.0000002 % cLOD 35 off-021-00-3 203-625-12 106-42-3 [2] c0.002 mg/rg c0.002 mg/rg c0.0000002 % cLOD</lod<></lod<></lod<>				1	F	\vdash									
29 indeno[123-cd]pyrene 205-893-2 [193-39-5 2.22 mg/kg 2.22 mg/kg 0.000222 % 1 30 dibenz[a,h]anthracene 53-70-3 0.35 mg/kg 0.35 mg/kg 0.00035 % 1 31 benzo[ghi]perylene 200-181-8 [53-70-3] 1.68 mg/kg 0.000168 % 1 32 benzene 205-883-8 [191-24-2] 1.68 mg/kg 0.0002 mg/kg 0.000002 % <lod< td=""> 32 benzene 200-753-7 [71-43-2] <0.002</lod<>	28				50-32-8		3.24	mg/kg		3.24	mg/kg	0.000324 %			
29 1 1 205-893-2 [193-39-5] 2.22 mg/kg 2.22 mg/kg 0.000222 % 30 dibenz[a,h]anthracene 0.35 mg/kg 0.35 mg/kg 0.00035 % 0.00035 % 31 e benzo[ghi]perylene 1.68 mg/kg 0.35 mg/kg 0.000022 % 32 benzene 205-883-8 [191-24-2] 1.68 mg/kg 0.000 mg/kg 0.000002 % <lod< td=""> 33 diuene 200-753-7 [71-43-2] <0.002</lod<>															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	29				193-39-5		2.22	mg/kg		2.22	mg/kg	0.000222 %			
601-041-00-2 200-181-8 53-70-3 C </td <td>00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.05</td> <td></td> <td></td> <td>0.05</td> <td></td> <td></td> <td></td> <td></td>	00						0.05			0.05					
31 205-883-8 191-24-2 1.88 Higkg 1.88 Higkg 0.000108 % 32 benzene 601-020-00-8 200-753-7 71-43-2 <0.002	30		601-041-00-2	200-181-8	53-70-3		0.35	mg/kg		0.35	mg/кg	0.000035 %			
31 205-883-8 191-24-2 1.88 Higkg 1.88 Higkg 0.000108 % 32 benzene 601-020-00-8 200-753-7 71-43-2 <0.002	<u> </u>		benzo[ghi]perylene)			4.00			4.60		0.000100.00			
32 601-020-00-8 200-753-7 [71-43-2 <0.002	<td< td=""><td>31</td><td></td><td></td><td></td><td>191-24-2</td><td></td><td>1.68</td><td>mg/kg</td><td></td><td>1.68</td><td>mg/кg</td><td>0.000168 %</td><td></td><td></td></td<>	31				191-24-2		1.68	mg/kg		1.68	mg/кg	0.000168 %		
601-020-00-8 200-753-7 71-43-2 I	22		benzene		1		-0.002	~~~// <i>.</i> ~		-0.002	~~~// <i>c</i>	-0.0000000.0/			
33 601-021-00-3 203-625-9 108-88-3 <0.005	32		601-020-00-8	200-753-7	71-43-2	1	<0.002	тід/кд		<0.002	тід/кд	<0.0000002 %		<lod< td=""></lod<>	
601-021-00-3 203-625-9 108-88-3 C <thc< td=""><td>22</td><td></td><td>toluene</td><td></td><td></td><td></td><td>~0.005</td><td>ma/ka</td><td></td><td>~0.005</td><td>ma/ka</td><td><0.000005.94</td><td></td><td></td></thc<>	22		toluene				~0.005	ma/ka		~0.005	ma/ka	<0.000005.94			
34 Image: Second se			601-021-00-3	203-625-9	108-88-3		<0.005	mg/kg		<0.005	ing/kg	~0.0000005 %			
image: bit index in the second sec	34	0	ethylbenzene				<0.002	ma/ka		<0.002	ma/ka	<0.000002 %		<l od<="" td=""></l>	
33 			601-023-00-4	202-849-4	100-41-4	1	.0.002	ing/ing		<0.00Z					
35 203-396-5 [2] 106-42-3 [2] 106-42-3 [2] <0.002	<lod< td=""> 36 0-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4] <</lod<>			xylene											
a 203-576-3 [3] 100-32-3 [2] 100-32-3 [3] 100-32-3 [3] 100-32-3 [3] 100-32-3 [3] 100-32-3 [3] 100-32-3 [3] 100-32-3 [3] 100-32-3 [3] 100-32-3 [3] 100-32-3 [3] 100-32-3 [3] 100-32-3 [3] 100-32-3 [3] 100-32-3 [3] 100-32-3 [3] 100-32-3 [3] 100-32-3 [2] 100-32-3	25					1	<0.000	mg/kg		<0.002 mg/k	malka	g <0.0000002 %			
i 215-535-7 [4] 1330-20-7 [4] i<	35						<0.002				тід/кд			<lod< td=""></lod<>	
36 o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4] 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] 95-47-6 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] 															
36 ⁶⁰¹⁻⁰²²⁻⁰⁰⁻⁹ ²⁰²⁻⁴²²⁻² [1] ⁹⁵⁻⁴⁷⁻⁶ [1] ²⁰³⁻³⁹⁶⁻⁵ [2] ¹⁰⁶⁻⁴²⁻³ [2] ²⁰³⁻⁵⁷⁶⁻³ [3] ¹⁰⁸⁻³⁸⁻³ [3] ¹⁰⁸⁻						\square									
36 203-396-5 [2] 106-42-3 [2] -<0.002 mg/kg	36		601-022-00-9 202-422-2 [1] 95-47-6 [1]			1									
a 215-535-7 [4] 1330-20-7 [4] a<							< 0.002	mg/kg		<0.002 mg/kg	<0.000002 %		<lod< td=""></lod<>		
37 diesel petroleum group 68334-30-5, 68476-34-6, 94114-59-7, 1159170-26-9 35 mg/kg 35 mg/kg 0.0035 % 38 TPH (C6 to C40) petroleum group 86 mg/kg 86 mg/kg 0.0086 %															
37 68334-30-5, 68476-34-6, 94114-59-7, 1159170-26-9 35 mg/kg 0.0035 % 38 TPH (C6 to C40) petroleum group 86 mg/kg 86 mg/kg					1330-20-7 [4]	-							\square		
37 68476-34-6, 94114-59-7, 1159170-26-9 35 mg/kg 0.0035 % 38 TPH (C6 to C40) petroleum group 86 mg/kg 86 mg/kg						{									
38 TPH (C6 to C40) petroleum group 159170-26-9 38 TPH (C6 to C40) petroleum group 86 mg/kg	37						35	mg/kg		35	mg/kg	0.0035 %			
38 TPH (C6 to C40) petroleum group TPH 86 mg/kg 86 mg/kg 0.0086 %					94114-59-7,										
38 TPH 86 mg/kg 86 mg/kg 0.0086 %	-		7011/001 011	<u> </u>	1159170-26-9										
	38	0	1PH (C6 to C40) p	etroleum group	TOU	1	86	mg/kg		86	mg/kg	0.0086 %			
					ILLH						Tatal	0 165 9/	+		
	L										iotal:	0.105 %			

Page 8 of 13

ser supplied data eterminand values ignored for classification, see column 'Conc. Not Used' for reason eterminand defined or amended by HazWasteOnline (see Appendix A)
eterminand defined or amended by HazWasteOnline (see Appendix A)
eterminand defined by classifier (see Appendix A)
peciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound oncentration
elow limit of detection
ot detected
Inly the metal concentration has been used for classification
or el

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Heavy end hydrocarbons unlikely to flammable at the concentrations noted

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

diesel petroleum group: (conc.: 0.0035%) TPH (C6 to C40) petroleum group: (conc.: 0.0086%)

Report created by Roger Foord on 12 May 2020

Appendix A: Classifier defined and non CLP determinands

• pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Risk Phrases: None. Hazard Statements: None.

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5 Description/Comments: Conversion factor based on a worst case compound: sodium cyanide Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP1) Additional Risk Phrases: None. Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s): 14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

[®] boron tribromide/trichloride/trifluoride (combined) (CAS Number: 10294-33-4, 10294-34-5, 7637-07-2)

Conversion factor: 13.43 Description/Comments: Combines the hazard statements and the average of the conversion factors for boron tribromide, boron trichloride and boron trifluoride Data source: N/A Data source date: 06 Aug 2015 Risk Phrases: C R35, C R34, T+ R26/28, R14 Hazard Statements: Skin Corr. 1B H314, Skin Corr. 1A H314, Acute Tox. 2 H300, Acute Tox. 2 H330, EUH014

Chromium (III) Sulphate (CAS Number: 10101-53-8)

Description/Comments: Data source: 10101-53-8 Data source date: 24 Jun 2015 Risk Phrases: None. Hazard Statements: None.

• dicopper oxide; copper (I) oxide (EC Number: 215-270-7, CAS Number: 1317-39-1)

CLP index number: 029-002-00-X Description/Comments: M-factor for long-term aquatic hazard not included as per paragraph (5), ATP9 Data source: Regulation (EU) 2016/1179 of 19 July 2016 (ATP9) Additional Risk Phrases: N R50/53 >= 0.25 %, N R50/53 Additional Hazard Statement(s): None. Reason for additional Hazards Statement(s): 10 Oct 2016 - N R50/53 >= 0.25 % risk phrase sourced from: WM3 v1 still uses ecotoxic risk phrases 10 Oct 2016 - N R50/53 risk phrase sourced from: WM3 v1 still uses ecotoxic risk phrases

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Risk Phrases: R38, R37, R36, R27, R26, R22 Hazard Statements: Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 1 H310, Acute Tox. 1 H330, Acute Tox. 4 H302

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Risk Phrases: N R51/53 , N R50/53 , R38 , R37 , R36 Hazard Statements: Aquatic Chronic 2 H411 , Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Skin Irrit. 2 H315 , STOT SE 3 H335 , Eye Irrit. 2 H319

Report created by Roger Foord on 12 May 2020

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7) Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Risk Phrases: N R50/53 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400 • phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8) Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Risk Phrases: N R50/53, R43, R40, R38, R37, R36, R22 Hazard Statements: Skin Irrit. 2 H315, Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Sens. 1 H317, Carc. 2 H351, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 4 H302 ^a anthracene (EC Number: 204-371-1, CAS Number: 120-12-7) Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Risk Phrases: N R50/53 , R43 , R38 , R37 , R36 Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Skin Sens. 1 H317 , Skin Irrit. 2 H315 , STOT SE 3 H335 , Eye Irrit. 2 H319 • fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0) Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Risk Phrases: N R50/53 . Xn R22 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Acute Tox. 4 H302

• pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Risk Phrases: N R50/53, Xi R36/37/38 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, STOT SE 3 H335, Eye Irrit. 2 H319, Skin Irrit. 2 H315

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Risk Phrases: R40 Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Risk Phrases: N R50/53 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4 Description/Comments: Data source: Commission Regulation (EU) No 605/2014 – 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP6) Additional Risk Phrases: None. Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s): 03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

Report created by Roger Foord on 12 May 2020

^e diesel petroleum group (CAS Number: 68334-30-5, 68476-34-6, 94114-59-7, 1159170-26-9)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Risk Phrases: R66, R65, R51/53, R40 Hazard Statements: Aquatic Chronic 2 H411, STOT RE 2 H373, Asp. Tox. 1 H304, Carc. 2 H351, Acute Tox. 4 H332, Skin Irrit. 2 H315, Flam. Lig. 3 H226

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Risk Phrases: R65, R63, R51/53, R46, R45, R10 Hazard Statements: Aquatic Chronic 2 H411, Repr. 2 H361d, Carc. 1B H350, Muta. 1B H340, STOT RE 2 H373, Asp. Tox. 1 H304, Flam. Liq. 3 H226

Appendix B: Rationale for selection of metal species

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Worst case species
arsenic {arsenic trioxide}
Worst case species based on risk phrases
boron {boron tribromide/trichloride/trifluoride (combined)}
Worst case species based on risk phrases
cadmium {cadmium sulfide}
Worst case species based on risk phrases
chromium {chromium(VI) oxide}
Worst case species based on risk phrases
copper {dicopper oxide; copper (I) oxide}
Most likely common species
lead {lead chromate}
Worst case species based on risk phrases
mercury {mercury dichloride}
Worst case species based on risk phrases
nickel {nickel dihydroxide}
Worst case species based on risk phrases
selenium {selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex}
Worst case species based on risk phrases
vanadium {divanadium pentaoxide; vanadium pentoxide}
most common form
zinc {zinc chloride}
Zinc chromate unlikely to be found on-site

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition, May 2015 HazWasteOnline Classification Engine Version: 2020.128.4292.8469 (09 May 2020) HazWasteOnline Database: 2020.128.4292.8469 (09 May 2020)

This classification utilises the following guidance and legislation: WM3 - Waste Classification - May 2015 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011

2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004 1st ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010 2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010