

GROUND INVESTIGATION REPORT

Starlings, Milton Road, Harwich, Essex

Tendring District Council

January 2020

Project no: 60275

Document Review Sheet: -

Issue	Date	Description	Prepared	Checked	Approved			
Revisio	n Statu	<u>s</u>						
Docum	ent Stat	tus DRAFT	FINAL					
Date:	-		16 / 01 / 2020					
Docum	nent ved by: -	Basil Fagg on behalf of Rich	ard Jackson Ltd					
Date:	-	15 / 01 / 2020						
Docum checke	nent ed by: -	Basil Fagg on behalf of Rich	ard Jackson Ltd					
Date: -		06 / 01 / 2020						
Docum prepar	nent red by: -	Kay O'Reilly on behalf of Rich	ard Jackson Ltd					

This document has been prepared for the sole use of Tendring District Council, is copyright and its contents should not be relied upon by others without the written authority of Richard Jackson Ltd. If any unauthorised third party makes use of this report they do so at their own risk and Richard Jackson Ltd owe them no duty of care or skill.

All information provided by others is taken in good faith as being accurate, but Richard Jackson Ltd cannot, and does not, accept any liability for the detailed accuracy, errors or omissions in such information.

Title: GROUND INVESTIGATION REPORT
Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

Contents:-

Executive Summary

1. Intr	oductio	n	. 3
2. Site	Locatio	on and Description	. 3
3. Prop	osed D	evelopment	. 4
4. Revi	iew of F	CJL Phase One Desk Study Report, ref. 60275 (Nov 2019)	. 4
5. Fact	ual Gro	und Investigation Information	. 4
		ork	
	5.1.1.	Windowless Sampling	. 5
		Trial Pitting	
	5.1.3.	Gas Monitoring	. 6
5.2.	Labora	tory Testing	. 6
	5.2.1.	Geo-Environmental Testing	. 6
	5.2.2.	Geotechnical Testing	. 6
5.3.	Ground	Conditions	. 7
	5.3.1.	Made Ground	. 7
	5.3.2.	Head Deposits	. 8
	5.3.3.	Thames Group	. 9
	5.3.4.	Groundwater	10
	5.3.5.	Ground Gases	10
6. Geo	-Enviro	nmental Assessment	11
6.1.	Soil An	alysis	11
	6.1.1.	Reference Criteria	11
	6.1.2.	Discussion of Analytical Results - Soils	12
6.2.	Risk As	sessment	13
	6.2.1.	Soil Contamination and End Users	14
	6.2.1.	Soil Contamination and Controlled Waters	14
		Soil Contamination and Construction Workers, Maintenance Workers	
	6.2.3.	Soil Contamination and Flora	15
	6.2.4.	Soil Contamination and Structures and Services	15
	6.2.5.	Ground Gas Contamination	16
	6.2.6.	Conceptual Model	16

Title: GROUND INVESTIGATION REPORT
Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

7.1.	Structural Foundations	19
	7.1.1. Shallow Foundations	19
7.2.	Ground Floor Construction	20
7.3.	Groundworks	20
7.4.	Concrete Grade	21
7.5.	External Works	21
	7.5.1. Drainage	21
	7.5.2 Pavement Design	21

Appendix

Appendix A: Figures & drawings

Appendix B: Exploratory hole logs & data plots

Appendix C: Results of Chemical Analyses

Appendix D: Geotechnical Test Results

Appendix E: Gas monitoring results & calibration certificates

Appendix F: Limitations of use

List of Ta	List of Tables	
Table 1:	Summary of Groundwater Levels	10
Table 2:	Gas Monitoring Results on 13/01/2020	10
Table 3:	Results of Chemical Analyses - Soil	12
Table 4:	Revised Conceptual Model	17
Table 5:	Net Safe Bearing Pressures	19

Title: GROUND INVESTIGATION REPORT
Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

EXECUTIVE SUMMARY

Purpose:	To undertake an intrusive ground investigation to establish the prevailing ground conditions, recover soil samples, assess the contamination status of the site and install monitoring standpipes in order that an assessment of the gas regime beneath the site may be made.
Site Status:	At the time of investigation, the site comprised a vacant parcel of land cleared of structures, although floor slabs and a single storey height brick wall remained.
Fieldwork:	The fieldwork comprised the formation of 6no. trial pits, 5no. windowless sampler boreholes, the installation, soil sampling and subsequent monitoring of 3no. gas standpipes.
Ground Conditions:	The encountered ground conditions comprised the following sequence: • Made Ground – max. proven depth of 1.90m below ground level (bgl); • Head Deposits – max. proven depth of 3.60m bgl; • Thames Group – base unproven in this investigation at 5.00m bgl; • Groundwater – encountered between 1.30m bgl and 2.70m bgl.
Soil Contamination:	Concentrations of contaminants in soils were recorded to be below their threshold criteria for the protection of human health in a commercial setting, although microscopic asbestos cement fragments were recorded. Given the proposed hardstanding intended to cover the site remediation was not considered to be required.
Gassing Regime:	Gas monitoring to date has recorded to the following: • Max. CO ₂ concentrations of 1.9% by volume (v/v) • Max. CH ₄ concentrations of 1.2% v/v • Min. O ₂ concentrations of 10.5% v/v • Max. VOC concentrations of 0.0ppm • Peak flow rates of 0.0l/hr The monitoring programme is ongoing and the CS-2 classification should be reviewed and if necessary revised following completion of the monitoring regime.
Structural Foundations:	Shallow mass concrete foundations were considered appropriate for the majority of the site. Safe bearing pressures of between 50kN/m ² and 70kN/m ² have been determined for strip footings at 1.50m bgl and 2.00m bgl, respectively.
Ground Floor Construction:	Fully suspended floor slabs with a subfloor void appropriate to high- volume change potential soils will be required.
Concrete Grade:	A design sulphate class of DS-3 is considered appropriate for use on site, with an aggressive chemical environment for concrete (ACEC) classification of AC-3 recommended.
Pavement Design:	A design CBR value of 1% is recommended where the sub-base comprises the made ground with a design CBR value of 3% where the subbase comprises the Head Deposits. In-situ CBR tests are recommended to confirm these values.

Title: GROUND INVESTIGATION REPORT Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

January 2020 60275 Project No.: Page 1

Drainage:	Given the predominantly cohesive nature of the prevailing natural ground conditions, infiltration drainage is considered unlikely to be suitable at the site.
	Suitable de tile site.

Title: GROUND INVESTIGATION REPORT Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

January 2020 60275 Page 2 Project No.:

1. Introduction

Richard Jackson Ltd received an instruction to undertake ground investigation works in connection with the proposed redevelopment of Starlings, Milton Road, Harwich, Essex.

The works were instructed by the Client, Tendring District Council and were carried out in accordance with our fee proposal of 28th October 2019, reference 60275/RPL.

Richard Jackson Ltd (RJL) have previously prepared a phase one desk study report that covers the site, reference 60275 dated November 2019. This is briefly reviewed in this report.

The intrusive investigation, on which this report is based, comprised the formation of 5no. windowless sampler (WLS) boreholes and 6no. trial pits. In-situ testing and soil sampling were also undertaken. Semi-permanent monitoring standpipes were installed in 3no. WLS boreholes and gas monitoring is on-going.

This report assesses the findings of the intrusive investigation and gives recommendations for use in the design and construction of the proposed scheme.

Chemical analyses have been undertaken in order that the contamination status of the site may be determined and the need for further investigation or remediation assessed.

This report shall be read in conjunction with the limitations of use provided in Appendix F.

2. Site Location and Description

The site was located to the northwest of Milton Road, Dovercourt, Harwich, Essex, CO12 3EQ. The approximate Ordnance Survey grid reference for the centre of the site was TM 257 316. A site location plan is presented as Figure 1 in Appendix A.

The site was irregular in shape with maximum approximate dimensions of 40m northwest to southeast by 60m northeast to southwest.

At the time of investigation, the site comprised a vacant parcel of land which had been cleared of structures, although concrete floor slabs and a single storey brick wall were noted to remain. Debris, rubbish and unmanaged vegetation were also present at the site.

A detailed site description is presented as Section 3 of the RJL Phase One Desk Study Report reference 60275, dated November 2019.

Title: GROUND INVESTIGATION REPORT
Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

Project No.: 60275

January 2020

3. Proposed Development

The proposed scheme is to comprise redevelopment of the subject site to provide surface car parking together with the construction of a public toilet and small areas set to soft landscaping.

An indicative proposed development plan is presented in Appendix A.

4. Review of RJL Phase One Desk Study Report, ref. 60275 (Nov 2019)

RJL prepared a phase one desk study report for the subject site and an adjacent two-storey car park, 'Milton Road Car Park'. The findings of the report, specific to the subject site, are summarised as follows.

The site was recorded to have been developed throughout the studied historical period (1870-2019), with various phases of redevelopment recorded including a garage from the 1950s. Off-site mixed residential and industrial development was also recorded.

The Thames Group, an unproductive stratum, was recorded as the geology to exist beneath the site.

Made Ground, the sites former sue as a garage and fly tipped asbestos containing materials were identified as potential on-site sources of contamination. Off-site, made ground, infilled brickfields, industrial development and a landfill were identified as potential sources of contamination.

A moderate/low risk from soil contamination was considered to be presented to the identified sensitive receptors together with a high risk considered to be presented from ground gases.

It was recommended that intrusive ground investigations were undertaken at the site to confirm the prevailing ground conditions, establish the presence and extent of made ground and to assess the contamination status of the site. The installation and subsequent monitoring of standpipes was also recommended to assess the potential gassing regime beneath the site. Given the observed fly tipping, asbestos testing of recovered soil samples was also recommended.

5. **Factual Ground Investigation Information**

The findings of the factual ground investigation are provided in the following sections.

5.1. Fieldwork

The fieldwork on which the report is based was undertaken on 4th & 5th December 2019 and comprised the following:

The excavation of 6no. trial pits – (TP01 – TP06);

Title: GROUND INVESTIGATION REPORT Project: Starlings, Milton Road, Harwich, Essex

Tendring District Council Client:

Project No.: 60275

January 2020

- The formation of 5no. small diameter windowless sampler boreholes (WLS) – (WS01 – WS05);
- The installation of 3no. semi-permanent monitoring standpipes in WLS Boreholes (WS03-WS05);
- A single gas monitoring visit undertaken on 13th January 2010. A further 5no. visits are scheduled.

An exploratory hole location plan is presented as Figure 2 in Appendix A.

Exploratory hole logs are presented in Appendix B and give descriptions and depths of strata encountered, together with details of samples taken, in-situ tests, well installations and other relevant information.

Soil samples were recovered from throughout the depth of exploratory holes for chemical analyses, geotechnical testing and record keeping purposes. Samples recovered for chemical analyses were stored in air tight plastic containers and amber glass jars.

All samples recovered for chemical analysis were transported to the analytical laboratory, DETS Ltd, in cool boxes under chain of custody protocols.

Where applicable, investigative techniques, sampling, logging of soils and insitu testing complied with the requirements of British Standard BS5930:2015- 'Code of Practice for Site Investigations'.

5.1.1. Windowless Sampling

The windowless sampling (WLS) utilised a track-mounted hydraulic powerpack and percussive hammer to drive a series of small diameter windowless tubes into the ground.

The WLS boreholes were formed to depths of between 4.00m below ground level (bgl) (WS01) and 5.00m bgl (WS02 - WS04).

WLS boreholes were positioned to provide a representative site coverage whist targeting potential source of contamination identified in the phase one desk study.

In-situ standard penetration tests (SPTs) were undertaken throughout the depth of the WLS boreholes to provide an indication of the soil density / stiffness. The number of blows required to advance a 60° cone over the final 300mm of a 450mm total drive was recorded as the 'N' value theses values were presented on the borehole logs.

Where cohesive soils were encountered, both a hand shear vane and pocket penetrometer were used to assess the undrained shear strength of the encountered soils. The results of these tests are recorded as the 'IVN' and 'PP' values respectively and are presented on the logs in Appendix B.

Title: GROUND INVESTIGATION REPORT
Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

Project No.: 60275 Page

A photo-ionisation detector (PID) was used to screen recovered soil samples for the presence of volatile organic compounds (VOCs). Results of this screening are included on the WLS borehole records.

On completion of 3no. of the WLS boreholes, semi-permanent 50mm diameter HDPE gas and groundwater monitoring standpipes were installed to a maximum depth of 5.00m bgl (WS03-WS05).

5.1.2. Trial Pitting

A mechanical excavator was used to form 6no. trial pits (TP01 – TP06) to depths of between 1.60m bgl (TP05) and 2.80m bgl (TP01). Trial pits were positioned to provide a representative coverage of the site.

Where cohesive soils were encountered, both a hand shear vane and pocket penetrometer were used to assess the undrained shear strength of the encountered soils. The results of these tests are recorded as the 'IVN' and 'PP' values respectively and are presented on the trial pit logs in Appendix B.

A photo-ionisation detector (PID) was used to screen recovered soil samples for the presence of volatile organic compounds (VOCs). Results of this screening are included on the WLS borehole records.

5.1.3. Gas Monitoring

The installed standpipes have been monitored on a single occasion (13/01/2020) since installation for the presence of methane, carbon-dioxide and oxygen using an infra-red portable gas analyser. Gas flow, atmospheric pressure, and standing water levels (SWLs) were also monitored during each visit.

A photo-ionisation detector (PID) was used during the monitoring visit to assess the installations for the presence of volatile organic compounds (VOCs).

Measurements to the base of the standpipes were also made to confirm the depth of the installation.

5.2. Laboratory Testing

5.2.1. Geo-Environmental Testing

Chemical analyses were undertaken on a number of soil samples recovered from the site. Details of chemical analyses undertaken are provided in Section 6. Results of chemical analyses are presented in full in Appendix C.

5.2.2. Geotechnical Testing

Disturbed and undisturbed soil samples recovered from the exploratory holes were sent to a UKAS accredited soil testing laboratory Soil Property Testing (SPT) Ltd. The following tests were carried out in accordance with BS EN ISO: 17892-2:2014 & BS1377:1990:

Title: GROUND INVESTIGATION REPORT
Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

Project No.: 60275

January 2020

- 12no. water content determinations;
- 6no. atterberg limit tests (four-point liquid limit cone method);
- 2no. particle size distribution (PSD) determinations;
- 8no. pH value and sulphate content (2:1 water soil extract) determinations*;

*These tests were undertaken by the UKAS and MCerts accredited laboratory DETS Ltd

The results of these tests are presented in Appendices C and D.

5.3. Ground Conditions

The British Geological Survey (BGS) 1:50,000 scale series online mapping of the area, indicates the Thames Group to exist beneath the site. The deposits encountered in this investigation comprised the following sequence:

- Made Ground
- Head Deposits
- Thames Group

5.3.1. Made Ground

Concrete was encountered from ground level to 0.30m bgl in TP03.

Made ground was encountered beneath the concrete on TP03 and from ground level in the remaining 10no. exploratory holes. The depth of the made ground, ranged from 0.40m bgl (WS03 & WS04) to 1.90m bgl (WS01 & TP03). It should be noted that the base of the Made Ground remained unproven in TP05 which was terminated at its target depth of 1.50m bgl.

The made ground was encountered as a variable material, typically sand to cobbles sized fragments of red brick, concrete, ash and cinder block, together with a gravelly sand containing brick, ash, chalk, wire and ceramic fragments, and a silty sandy clay with gravel of brick and concrete.

Concrete was encountered within the made ground from 0.85m to 1.05m bgl in TP01 and from 1.00m to 1.10m bgl in WS02. A void was encountered immediately beneath the concrete on WS02 to a depth of 1.30m bgl.

A suspected hydrocarbon odour and black staining was recorded in the made ground soils in TP03 from 1.40m bgl with the presence of suspected oil tank pipe work from 1.70m bgl also noted.

Headspace screening using the PID was undertaken on a number of samples of made ground, full results of which are presented on the exploratory hole logs. Generally, headspace VOC concentrations were recorded to be 0.0ppm,

Title: GROUND INVESTIGATION REPORT
Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

Project No.: 60275 Pag

January 2020

although in TP03 VOC concentrations ranged from 0.0ppm (0.30m bgl) to 12.7ppm (1.50m bgl) were also recorded.

5.3.2. Head Deposits

Soils interpreted to represent the Head Deposits were encountered beneath the Made Ground in 9no. of the 11no. of the exploratory holes, being absent in TP05 and WS05. The base of the Head Deposits, where proven, ranged from 1.10m bgl (WS03) to 3.60m bgl (WS04). The base of the Head Deposits was not proven in TP02, TP03 or TP06 at 1.90m bgl, 2.50m bgl and 2.60m bgl respectively.

The Head Deposits were typically encountered as a soft to firm brown mottled orange clay with sandy pockets and gravel of flint. The Head Deposits were recorded as a clayey silty sand in TP04 from 1.30m to 2.00m bgl and in TP06 from 0.70m to 2.60m bgl. A saturated sand was recorded in WS02 from 2.00m to 2.50m bgl.

Black mottling and an organic odour were recorded in the Thames Group in WS03 from 0.40m bgl. A strong suspected hydrocarbon odour was recorded in the Head Deposits in TP01 from 1.80m bgl.

Headspace screening using the PID was undertaken on a number of samples of the Head Deposits, full results of which are presented on the exploratory hole logs. Recorded headspace VOC concentrations were generally 0.0ppm, although concentrations of 99.70ppm and 349ppm were recorded in TP01 at 1.80m bgl and 2.20m bgl, respectively.

SPTs were undertaken throughout the depth of the Head Deposits in WLS boreholes. The results of these tests ranged from N=2 (WS04 at 1.00m bgl) to N=9 (WS02 at 2.00m bgl). Full results are provided on the WLS logs presented in Appendix B and summarised on the 'N' Value -vs- Depth Plot presented in Appendix B.

Hand shear vane and pocket penetrometer tests were also undertaken throughout the depth of the Head Deposits. The results of these tests ranged from 18kN/m² (WS04 at 1.90m bgl) to 85kN/m² (WS01 at 2.90m bgl). Full results are provided on the exploratory hole logs and summarised on the 'undrained shear strength –vs- depth plots presented in Appendix B.

Water content determinations were undertaken on 7no. samples of the Head Deposits, the results of which ranged from 9.3% (TP06 at 1.60m bgl) to 45.8% (WS04 at 3.40m bgl).

Atterberg limit tests were undertaken on 4no. samples of the Head Deposits. Full results of these tests are provided in Appendix D and can be summarised as follows:

- Liquid Limits of between 23% (TP06 at 1.60m bgl) and 36% (WS02 at 1.40m bgl);
- Plastic Limits of between 13% (TP06 a 1.60m bgl) and 18% (WS02 at 1.40m bgl);

Title: GROUND INVESTIGATION REPORT
Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

Project No.: 60275 Pag

 Plasticity Indices of between 8% (WS04 at 1.70m bgl) and 18% (WS02 at 1.40m bgl).

Modified plasticity indices of between 8% (WS04 at 1.70m bgl) and 18% (WS02 at 1.40m bgl) were calculated on the basis of the following relationship:

 Modified plasticity index = (% samples passing 0.425mm sieve x plasticity index) / 100

The results of the atterberg limit tests indicated the Head Deposits to be of low to intermediate plasticity and of low volume change potential.

5.3.3. Thames Group

Soils interpreted to represent the Thames Group were encountered beneath the Made Ground in WS05 and beneath the Head Deposits in TP01, TP04 and WS01-WS05. The base of the Thames Group remained unproven in this investigation at a maximum depth of 5.00m bgl.

The Thames Group was typically encountered as a firm becoming stiff with depth, grey mottled brown clay. Weak mudstone fragments were encountered in WS05 from 3.70m bgl and ironstone nodules were recorded from 4.50m bgl on WS01.

Headspace screening using the PID was undertaken on a number of samples of the Thames Group, full results of which are presented on the exploratory hole logs. Recorded headspace VOC concentrations in the Thames Group were recorded to be 0.0ppm.

SPTs were undertaken throughout the depth of the Thames Group in WLS boreholes. The results of these tests ranged from N=7 (WS03 at 1.00m bgl) to N=23 (WS01 at 5.00m bgl). Full results are provided on the WLS logs presented in Appendix B and summarised on the 'N' Value -vs- Depth Plot presented in Appendix B.

Hand shear vane and pocket penetrometer tests were also undertaken throughout the depth of the Thames Group. The results of these tests ranged from 30kN/m^2 (WS01 at 3.50m bgl) to 135kN/m^2 (WS01 at 4.60m bgl). Full results are provided on the exploratory hole logs and summarised on the 'undrained shear strength –vs- depth plots presented in Appendix B.

Water content determinations were undertaken on 5no. samples of the Thames Group, the results of which ranged from 37.7% (WS02 at 2.60m bgl) to 46.8% (WS05 at 3.30m bgl).

Atterberg limit tests were undertaken on 2no. samples of the Thames Group. Full results of these tests are provided in Appendix D and can be summarised as follows:

Liquid Limits of between 75% (WS05 at 1.80m bgl) and 84% (WS03 at 2.30m bgl);

Title: GROUND INVESTIGATION REPORT
Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

- Plastic Limits of between 25% (WS05 a 1.80m bgl) and 30% (WS03 at 2.30m bgl);
- Plasticity Indices of between 50% (WS05 at 1.80m bgl) and 54% (WS03 at 2.30m bgl).

The results of the atterberg limit tests indicated the Thames Group to be of very high plasticity and of high-volume change potential.

5.3.4. Groundwater

Groundwater was encountered in a number of the exploratory holes during formation and subsequent monitoring. Table 1, provides a summary of the groundwater data and includes strike depth, observed rises in groundwater during borehole formation and standing water levels (SWLs) recorded during monitoring.

Table 1. Summary of Groundwater Levels

Exploratory Hole	Strike Depth (m bgl)	Stratum	SWL during monitoring on 13.01.20 (m bgl)
TP03	1.70	Made Ground	n/a
WCOD	1.30	Made Ground	n/a
WS02	2.00	Head Deposits	n/a
WS03	Not e	encountered	1.39
WS04	2.70	Head Deposits	1.82
WS05	Not encountered		2.10

5.3.5. Ground Gases

Table 2 provides a summary of the gas monitoring results to date. Full results are presented in Appendix E along with the calibration certificates for the gas analyser and PID used at the site.

Table 2: Gas Monitoring Results on 13/01/2020

Borehole	Peak CH ₄ (% v/v)	Peak CO ₂ (% v/v)	Min. O₂ (% v/v)	Peak VOCs (ppm)	Peak Flow Rate (I/hr)
WS03	0.0	1.7	10.5	0.0	0.0
WS04	0.0	1.9	16.2	0.0	0.0
WS05	1.2	1.2	19.8	0.0	0.0

The results of the remaining 5no. monitoring visits will be presented under separate cover on completion of the monitoring regime.

Title: GROUND INVESTIGATION REPORT Starlings, Milton Road, Harwich, Essex Project:

Client: Tendring District Council

January 2020 60275 Project No.:

Page 10

Geo-Environmental Assessment 6.

The purpose of this section is to provide an assessment of the contamination status of the site.

The analysis was undertaken by Concept Life Science (CLS) Ltd., a UKAS and MCerts accredited laboratory.

6.1. Soil Analysis

A broad suite of analyses was scheduled, including metals, asbestos and hydrocarbons. 5no. samples of soil have been analysed for a broad suite of contaminants as follows:

Arsenic pH

Cadmium Total Cyanide

Water Soluble Sulphate Chromium

Total Phenols Copper Nickel BTEX Compounds Lead Total Sulphur

Mercury Speciated Polyaromatic Hydrocarbons (PAH)

Organic Matter Content Selenium

Zinc Total Petroleum Hydrocarbons (TPH)

Analysis for the presence of a range of Volatile Organic Compounds (VOC) was undertaken on 4no. soil samples.

A further 2no. samples were analysed for TPH Criteria Works Group (CWG) methodology. Asbestos screening was undertaken by the analytical laboratory on 5no. samples of soil.

6.1.1. Reference Criteria

Screening values have been adopted for the site to reflect site-specific parameters, such as, intended end use and the Soil Organic Matter (SOM). Screening values have been developed on the basis of current guidance as given in The Land Quality Management / Chartered Institute of Environmental Health document, 'The LQM / CIEH S4ULS for human health assessment', (2015) publication no. S4UL3379.

It is understood that the site is to be developed for commercial purposes with limited areas of soft landscaping. Therefore, screening values specific to a commercial end use been adopted for the site.

A SOM of 1% has been adopted for organic chemicals for the purposes of the initial assessment on the basis of laboratory analysis. A SOM of 6% has been adopted for inorganic chemicals as detailed in 'The LQM / CIEH S4ULS for human health assessment', (2015).

In the absence of published S4UL for lead, the DEFRA Category 4 Screening Level (C4SL) for lead has been adopted.

GROUND INVESTIGATION REPORT Title: Project: Starlings, Milton Road, Harwich, Essex

Tendring District Council Client:

January 2020 Project No.: 60275

Full details of the reference criteria used to derive the screening values, including the adopted values, are provided in Appendix C and summarised below.

The adopted screening values are also summarised in the following section.

6.1.2. Discussion of Analytical Results - Soils

Results of the chemical analyses undertaken on soils are presented in Appendix C and summarised in Table 3.

Table 3: Results of Chemical Analyses - Soils

Contaminant	No of Samples Tested	Screening Value (mg/kg)	Range of Concentrations (mg/kg)	No of samples exceeding screening value
Arsenic	5	640	4 - 14	0
Cadmium	5	190	<0.2 - 0.5	0
Chromium	5	8,600	10 - 16	0
Copper	5	68,000	7 - 78	0
Nickel	5	980	7 - 21	0
Lead	5	2,300	13 - 354	0
Selenium	5	12,000	<3	0
Mercury	5	1,100	<1	0
Zinc	5	730,000	26 - 230	0
Benzo(a)pyrene	5	35	<0.1 - 0.65	0
Dibenz(a,h)anthracene	5	3.5	<0.1	0
Naphthalene	5	190	<0.1 - 0.12	0
Total Phenols	5	760	<2	0
TPH Aromatic C ₅ -C ₇	7	26,000	<0.01	0
TPH Aromatic C ₇ -C ₈	7	56,000	<0.05	0
TPH Aromatic C ₈ -C ₁₀	7	3,500	<2 - 7	0
TPH Aromatic C ₁₀ -C ₁₂	7	16,000	<2 - 14	0
TPH Aromatic C ₁₂ -C ₁₆	7	36,000	<2 - 20	0
TPH Aromatic C ₁₆ -C ₂₁	7	28,000	<3 - 10	0
TPH Aromatic C ₂₁ -C ₃₅	7	28,000	<10	0
TPH Aliphatic C5-C6	7	3,200	<0.01	0

Title: GROUND INVESTIGATION REPORT
Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

Contaminant	No of Samples Tested	Screening Value (mg/kg)	Range of Concentrations (mg/kg)	No of samples exceeding screening value
TPH Aliphatic C ₆ -C ₈	7	7,800	<0.05	0
TPH Aliphatic C ₈ -C ₁₀	7	2,000	<2 - 9	0
TPH Aliphatic C ₁₀ -C ₁₂	7	9,700	<2 - 30	0
TPH Aliphatic C ₁₂ -C ₁₆	7	59,000	<3 - 50	0
TPH Aliphatic C16-C35	7	1,600,000	<10 - 4	0
Benzene	7	27	<0.002 - 0.007	0
Toluene	7	56,000	<0.005	0
Ethylbenzene	7	5,700	<0.002 - 0.059	0
M & P xylene	7	5,900	<0.002 - 0.749	0
O xylene	7	6,600	<0.002 - 0.108	0
Vinyl Chloride	4	0.059	<0.005	0
1,2 - Dichloroethane	4	0.67	<0.005	0
Trichloroethene	4	1.2	<0.005	0
1,1,1 – Trichloroethane	4	660	<0.005	0
Tetrachloroethene	4	19	<0.005	0
Chlorobenzene	4	56	<0.005	0
Hexachlorobutadiene	4	31	<0.005	0

Asbestos was detected in 1no. of the 5no. samples which underwent asbestos screening. Chrysotile in microscopic cement fragments was recorded in the made ground in WS05 from 0.40-0.50m bgl.

From the above it is evident that none of the soil samples analysed presented elevated concentrations of the contaminants screened for when compared to their tier one screening values for the protection of human health in a commercial setting.

6.2. Risk Assessment

As detailed in the preceding sections, concentrations of contaminants in soil samples analysed have been recorded to be below their tier one screening values for the protection of human health in a commercial setting.

GROUND INVESTIGATION REPORT Title: Project: Starlings, Milton Road, Harwich, Essex

Tendring District Council Client:

January 2020 60275 Project No.:

6.2.1. Soil Contamination and End Users

Considering initially end users of the site, exposure to contaminants would be primarily through direct contact, ingestion or inhalation of contaminated soils where soil is exposed such as in landscaped areas.

There is considered to be a significantly reduced risk beneath buildings or in paved areas as in such areas there is a restricted pathway by which the pollutant linkage may be completed.

Microscopic asbestos cement fragments were encountered WS05 which could be considered to pose a risk to end users of the site. However, the proposed end use of the site will comprise predominantly hardstanding cover which is considered to mitigate the risk posed by asbestos present in made ground beneath the site.

On the basis of the results to date and the above summary, remediation is not considered to be necessary as no soil contamination has been encountered which would pose an on-going risk to the site's future end users.

6.2.1. Soil Contamination and Controlled Waters

Soil concentrations of TPH and BTEX compounds were recorded above their method detection limits (MDL) albeit still at relatively low concentrations respectively, in samples which were recorded to have suspected hydrocarbon odours. These impacted soils may be considered to pose a risk to controlled waters beneath the site.

Groundwater was encountered in discrete perched pockets within the made ground and Head deposits beneath the site. It should be noted that the prevailing soils beneath the site are designated as an unproductive stratum and although groundwater was encountered in a number of locations, it is considered that unlikely to be in hydraulic continuity with the wider controlled waters environment due to the potential cohesive nature of the nature soils beneath the site and in the surrounding area. The encountered groundwater is therefore considered to be of low sensitivity and to have minimal resource value.

On the basis of the above, remediation is respect to the TPH and BTEX impacted soils is not considered to be necessary for the protection of controlled waters, however, from a future land liability perspective groundwater monitoring and analysis may be prudent to confirm this.

6.2.2. Soil Contamination and Construction Workers, Maintenance Workers and the Public

Risks to site workers and site neighbours during redevelopment arise primarily through dermal contact, ingestion and inhalation of contaminants. It is considered that the degree of contamination observed poses a moderate risk to site workers and the general public.

In order to reduce the risk to site workers during redevelopment, appropriate safety measures should be adopted on site.

Title: GROUND INVESTIGATION REPORT Starlings, Milton Road, Harwich, Essex Project:

Tendring District Council Client:

January 2020 Project No.: 60275

Workers should avoid contact with the soils by the use of protective boots, overalls and gloves, and should wash before eating, drinking and using the toilet.

To prevent the inhalation of contaminants by site workers and the windblown transfer of contaminants off site, the generation of dust should be avoided; this can be achieved by spraying the materials with water if necessary. Measures should be taken to ensure that contaminated materials are not accidentally transferred off site, for example on vehicle tyres.

Given the recorded concentrations of carbon-dioxide and methane to date, of up to 1.9% and 1.2% by volume (% v/v), respectively, together with the depleted oxygen concentrations as low as 10.5% v/v, excavations should be checked for toxic, anoxic or explosive conditions prior to entry by site workers.

Reference should be made to CIRIA Report No.132 'A Guide for Safe Working on Contaminated Sites' (1996), and Health and Safety Guidance Document, Protection of Workers and the General Public during the Development of Contaminated Land' (1991).

6.2.3. Soil Contamination and Flora

Concentrations of the phytotoxic contaminants, zinc, copper and nickel have been compared to the threshold values presented in Table 1 of British Standard BS3882: 'Specification for Topsoil and Requirements for Use' (2007), in order that this risk to flora may be assessed. It should be appreciated that this specification is only applicable to topsoil materials which are being placed. Topsoil which is to remain in-situ is not required to comply with the specifications of BS3882.

The screening values for phytotoxic contaminants are pH dependent and the following values have been adopted on the basis of a pH greater than 7.

- Threshold Value for Zinc -300mg/kg
- Threshold Value for Copper –200mg/kg
- Threshold Value for Nickel -110mg/kg

Concentrations of the phytotoxic contaminants are all below the threshold values and thus the analysed samples are not considered to pose a risk to flora.

6.2.4. Soil Contamination and Structures and Services

The recorded concentrations of some TPH and BTEX compounds are considered to pose a risk to water supply services. It would be prudent to contact the water supply company to see if barrier pipes should be installed within the proposed scheme.

Title: GROUND INVESTIGATION REPORT Starlings, Milton Road, Harwich, Essex Project:

Tendring District Council Client:

January 2020 60275 Project No.:

6.2.5. Ground Gas Contamination

Gas monitoring to date has recorded maximum carbon-dioxide and methane concentrations of 1.9% and 1.2% by volume (%v/v) respectively. No VOC concentrations or flow rates have been detected.

Depleted oxygen concentrations as low as 10.5%v/v have been recorded.

Carbon-dioxide is a heavier gas than air, which affects the respiratory and central nervous systems. It can cause unconsciousness at concentrations of 5% by volume and death at concentrations of 10% to 15% by volume. Methane is a flammable asphyxiant gas, which is within explosive limits of 5% to 10% by volume in air.

Table 8.5 of CIRIA Report 665 (2007) provides information on current UK practice with respect to gas control measures based upon a Gas Screening Value (GSV).

A GSV is obtained by multiplying the maximum concentration of gas by the maximum flow rate. As no flow rates have been detected at the site, the minimum detection limit of the analyser of 0.1l/hr has been adopted. The following GSV have therefore been calculated:

- Carbon Dioxide 0.0019l/hr;
- Methane 0.0012l/hr

For the purposes of characterising the site, the more conservative GSV for Carbon Dioxide has been adopted.

The calculated GSV typically corresponds to a characteristic situation 1 (CS-1), however, where methane concentrations exceed 1% v/v it is recommended that a CS-2 classification is adopted and this is recommended for the site based on this initial data.

A CS-2 classification requires the adoption of protective measures to mitigate the risk posed by ground gases. Reference should be made to British Standard 8485 'Code of Practice for the Design of Protective Measures for Methane and Carbon-dioxide Ground Gases for New Buildings' (2015), to determine which protective measures are appropriate for adoption in the proposed scheme.

It should be noted that gas monitoring is on-going and the above will be reviewed on completion of the full monitoring regime.

6.2.6. Conceptual Model

On the basis of the findings detailed in Section 6.1 together with the above discussion, the preliminary conceptual model presented in our phase one desk study report has been revised and is presented as Table 4.

Title: GROUND INVESTIGATION REPORT Project: Starlings, Milton Road, Harwich, Essex

Tendring District Council Client:

Project No.: 60275

January 2020

Table 4: Revised Conceptual Model

Contaminant	Source(s)	Pathway(s)	Receptor(s)	Comment
Asbestos	Fly Tipped Material & Made Ground	Direct Contact, Ingestion, Inhalation	Site Workers & General Public	Soils to be covered by hardstanding. Fly tipped asbestos at the site should be removed by an appropriately qualified contractor. Refer to Section 6.2.2.
BTEX & TPH	Made Ground, Garage	Leaching & Migration	Controlled Waters	Consider groundwater monitoring and analysis as parts of sites future management.
		Direct Contact, Ingestion, Inhalation	Site Workers & General Public	Refer to Section 6.2.2.
		Direct Contact	Water Supply Services	Refer to Section 6.2.5.
Ground Gases (CO ₂ & CH ₄)	Made Ground, Infilled Brickfield	Inhalation, Accumulation, Explosion	End Users & General Public	On-going gas monitoring regime should be completed & the requirements for has mitigation measures should be revised following completion.
			Site Workers	Refer to Section 6.2.6

6.2.7. Summary

On the basis of the above it is considered that the site may be developed for its intended commercial end use, subject to the completion of the following tasks:

- Installation of hardstanding;
- Consideration to groundwater sampling and analysis as part of the sites ongoing management;
- Completion of the on-going gas monitoring programme and installation or appropriate gas mitigation measures, if required.

The above conclusions are subject to regulatory approval.

GROUND INVESTIGATION REPORT Title: Starlings, Milton Road, Harwich, Essex Project:

Tendring District Council Client:

January 2020 Project No.: 60275

6.3. Waste

Reference should be made to the EU Waste Framework Directive, Revised Directive 2008/98/EC and 'The definition of Waste: Development Industry Code of Practice (CoP) Version 2' published by CL:AIRE (2011) to establish whether soils generated from on-site works are classified as waste.

Waste will likely be generated from excavation works. There may be limited opportunities for re-use of materials on site, subject to compliance with the CoP.

The groundworks contractor should classify the waste in accordance with the document entitled, 'Guidance on the classification and assessment of waste (1st Edition 2015), Technical Guidance WM3', to determine whether the soils to be disposed of off-site are considered to be hazardous or not.

There is likely to be some waste to be disposed of off-site. Waste removed from the site, for disposal, must be classified according to the analytical methods and criteria recommended by the Landfill (England and Wales) (Amendment) Regulations 2004 and 2005. The regulations set new acceptance criteria for wastes to be disposed of at landfill sites with effect from 16th July 2005.

Results of solid soil analysis are included in Appendix C and should be forwarded to the receiver/haulier to assist in the off-site disposal of waste soils.

Full and detailed records should be kept of all waste soils removed from site for future reference purposes.

6.4. General Comments / Discovery Strategy

As with any sampling exercise, the sampling process is representative and it is possible that areas of contamination may be found during the redevelopment of the site. Excavations on site should be supervised and any areas of suspected contamination should be assessed by a competent professional and subject to further analysis is necessary.

It should be noted that all remediation proposals are subject to the approval of the Local Authority. It would be prudent to involve the regulatory bodies early in the development of the proposed scheme and before construction commences in order that all requirements are met.

7. **Geotechnical Assessment**

We understand that the proposed development scheme will include a predominantly hardstanding car park area, with a public toilet which has been assumed to be a single storey structure.

Proposed development plans indicated that the new toilet building will be situated in the north of the site. It is understood that levels at the sute are to be raised and as such the depths quoted below are based on existing site ground levels.

Title: GROUND INVESTIGATION REPORT Project: Starlings, Milton Road, Harwich, Essex

Tendring District Council Client:

January 2020 Project No.: 60275

The recommendations provided within this section are based upon the above information and our understanding of the proposed scheme as detailed in Section 3, together with the proposed development plans included in Appendix A.

Structural Foundations 7.1.

7.1.1. Shallow Foundations

Conventional mass concrete foundations, bearing on to either the Head Deposits or the Thames Group are considered appropriate for adoption across the site.

Net safe bearing pressures have been determined for the site on, based on conventional strip footings. The net safe bearing pressures is the permissible increase in vertical stress at the level of the underside of the foundation, above existing overburden pressure which may be calculated on the basis of a soil bulk density of 20kN/m3.

Groundwater was encountered in a number of exploratory holes during formation and subsequent monitoring. For the purposes of estimating net safe bearing pressures, we have taken a conservative approach to the depth to groundwater beneath the site and assumed that the water table is at 1.95m bgl.

Table 5 provides a summary of the calculated net safe bearing pressures at a range of depths bgl. The assumed shear strength of the soil has been inferred from the 'undrained shear strength -vs- depth plot presented in Appendix B together with the soil descriptions provided by the site engineer. The undrained shear strengths have also been derived from SPT 'N' Values using the correlations provided in Stroud and Butler's paper (1975). Elastic theory has been used to derive the stress distribution beneath the foundations.

Table 5: Net Safe Bearing Pressures

Foundation	Depth, bgl (m)	Nett Safe Bearing Pressure (kN/m²)
0.60m wide	1.50	50
strip footing	2.00	70

At the above net safe bearing pressures, total drained settlements have been calculated to be within tolerable limits.

The total drained settlements have been calculated using modulus of elasticity values, Ev'. In cohesive soils, the Ev' values are based on the relationship; $Ev' = 130 \times C_u$, after Stroud and Butler (1975).

Settlement in cohesive soils typically comprises a small amount of immediate settlement as loads are applied and a larger proportion of consolidation settlement which will occur over a longer period of time.

All surface materials and made ground should be penetrated and foundations extended at least 150mm into undisturbed natural soils. The formation

Title: GROUND INVESTIGATION REPORT Project: Starlings, Milton Road, Harwich, Essex

Tendring District Council Client:

January 2020 Project No .: 60275 Page 19

should be inspected by a competent engineer prior to concreting. If very soft or loose pockets are encountered, these should be excavated until a firm to stiff or medium dense to dense deposit suitable for bearing is encountered.

It should be noted that both the Head Deposits and Thames Group are shrinkable materials and therefore, where influenced by trees, hedgerows or other vegetation, foundations will need to be designed in accordance with NHBC Standards Chapter 4.2 'Building near Trees' (2016). The Head Deposits should be considered to have a low-volume change potential whilst the Thames Group should be considered to have a high-volume change potential.

Where foundations exceed a depth of 1.5m due to the influence of trees, anti-heave precautions should be adopted.

Foundations should be excavated beyond the depth of any significant roots encountered in the excavations. Reference should be made to NHBC standards when considering any new areas of planting.

Shallow groundwater may be encountered in the made ground or granular pockets of the Thames Group and therefore, groundwater control measures may be required to control groundwater ingress.

7.2. **Ground Floor Construction**

Fully suspended ground floor slabs are recommended for adoption on site and should incorporate a sub floor void appropriate to high-volume change potential.

7.3. Groundworks

The stability of made ground or disturbed ground must not be relied upon in unsupported excavations.

Safe working conditions must be provided at all times where operatives are required to work in excavations.

Heavy plant and stockpiles of materials should not be permitted close to the edges of open excavations.

Based on observations made during fieldwork, groundwater ingress from the made ground of Head Deposits could be encountered in excavations for structures or services and the requirement for groundwater control measures should be considered.

Further reference should be made to CIRIA Report No. 97, 'Trenching Practice' (1997).

Where operatives are required to work in excavations, the excavations should be monitored for the presence of carbon-dioxide, methane and oxygen prior to being entered. Monitoring should also be undertaken throughout the duration of the works in excavations to ensure safe working conditions are maintained.

Title: GROUND INVESTIGATION REPORT Project: Starlings, Milton Road, Harwich, Essex

Tendring District Council Client:

January 2020 60275 Project No.:

Concrete Grade 7.4.

Sulphate content and pH value determinations were carried out by the analytical laboratory on a total of 8no. samples.

Values of water-soluble sulphate ranged from 23mg/I SO₄ to 1760mg/I SO₄, pH values ranged from 7.8 to 8.6 and the concentrations of total sulphur ranged from <0.02% to 0.65%.

The above results have been compared to current guidance provided within BRE Special Digest 1, third edition 'Concrete in Aggressive Ground' (2005). Given the observed extent of made ground at the site, the methodology provided within Section C5.1.3 has been used to determine the required concrete grade.

The following representative values have been adopted for the shallow soils at the site:

- Water Soluble Sulphate 1,029mg/l SO₄;
- pH Value 7.8;
- Total Potential Sulphate 1.11%.

In accordance with BRE SD1 (2005) and on the basis of the above results and an assumption of mobile groundwater, the following classifications are recommended for shallow buried concrete at the site.

- Design Sulphate Class DS-3;
- Aggressive Chemical Environment for Concrete (ACEC) AC-3.

7.5. **External Works**

7.5.1. Drainage

Infiltration testing was outside the scope of this investigation. Given the predominantly cohesive nature of the underlying natural soils, it is considered that infiltration drainage at the site is unlikely to be a viable option. Alternative methods of surface water disposal should be investigated.

7.5.2. Pavement Design

The investigation identified the likely subgrade for pavement design to comprise either Made Ground or the Head Deposits.

Given the variable nature of the made ground, a conservative design CBR value of 1% should be adopted for preliminary design purposes in areas where made ground is present at subgrade level.

Reference has been made to the 'Design Guidance for Road Pavement Foundations', Interim Advice Note 73106, Revision 1 (2009), when considering the CBR value appropriate for use where the Head Deposits exists at subgrade level.

Title: GROUND INVESTIGATION REPORT Project: Starlings, Milton Road, Harwich, Essex

Tendring District Council Client:

Project No.: 60275

January 2020

Interim advice note 73106, Revision 1 (2009) provides recommendations for design CBR values on the basis of soil plasticity. The recorded plasticity index of the Head Deposits ranged from 8% to 18%. Therefore, a CBR value of 3% is recommended for the preliminary design of thin road pavements where the Head Deposits are present at formation level. Thin pavement construction is defined as a depth to subgrade of 300mm.

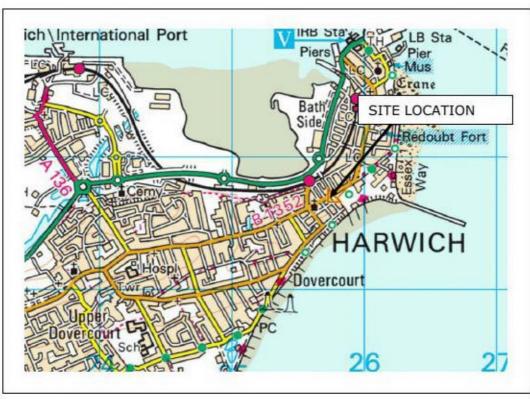
In-situ CBR tests should be carried out prior to road pavement construction to confirm the CBR values. In-situ tests should be undertaken once final levels for road construction have been determined.

It should be noted that in some locations the Thames Group is classified as a frost susceptible material on the basis of a recorded plasticity index below 15%. All due care and attention should be taken in respect of this.

GROUND INVESTIGATION REPORT Title: Starlings, Milton Road, Harwich, Essex Project:

Client: Tendring District Council

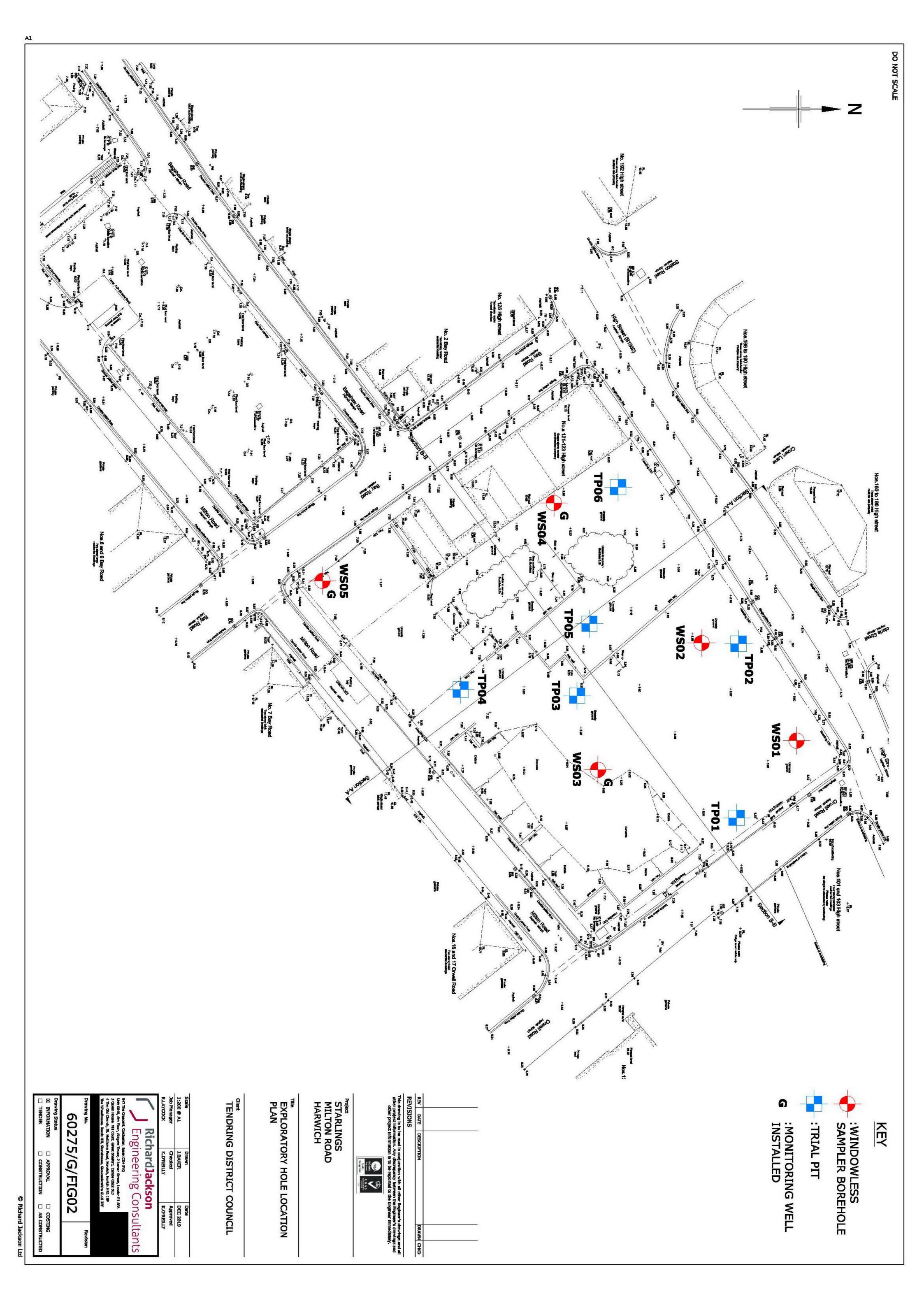
January 2020 60275 Project No.: Page 22



Appendix A

Figures & Drawings

Title: GROUND INVESTIGATION REPORT
Project: Starlings, Milton Road, Harwich, Essex


Client: Tendring District Council

REPRODUCED FROM ORDNANCE SURVEY MAP WITH THE PERMISSION OF THE CONTROLLER OF HER MAJESTY'S STATIONARY OFFICE, © CROWN COPYRIGHT RICHARD JACKSON LTD − ACC No. 100002572

Appendix B

Exploratory hole logs and data plots

Title: GROUND INVESTIGATION REPORT
Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

Richard Jackson Trial Pit No. 847 The Crescent, Colchester, Essex, CO4 TP01 **Engineering Consultants** 9YQ Sheet 1 of 1 Project No. Co-ords: Date Project Starlings Name: 60275 Orientation: Dimensions (m) 05/12/2019 Level (m, aOD): 1.90 Scale Location: Milton Road, Dovercourt 1:20 2 Depth (m): Logged o Tendring District Council Ground Samples & In Situ Testing Level Depth Legend Stratum Description (m) (m) Depth Type Results Red brick recovered as medium SAND to COBBLE sized fragments. 0.20 MADE GROUND Clinker and ash recovered as fine SAND to ES₁ 0.30 coarse GRAVEL sized fragments. PID 0.30 PID=0.0 MADE GROUND 0.85 CONCRETE 1.05 Brown gravelly medium to coarse SAND. Gravel is fine brick ash and chalk. 1.20 D2 MADE GROUND 1.20 PID PID=0.0 1.40 Firm grey with reddish orange veins slightly sandy very silty CLAY. PP=85 1.60 PP HEAD DEPOSITS 1.70 D3 1.70 PID PID=0.0 ...black staining and a strong hydrocarbon 1.80 ES4 odour from 1.80m 1.80 PID PID=99.7 PP 2.10 PP=20 2.20 D₅ 2.20 PID PID=349.0 2.70 IVN Firm brown CLAY. 2.75 67 2.80 THAMES GROUP End of Pit at 2.800m 3 Key Groundwater: Groundwater not encountered Hand Vane Disturbed Dry & Stable Stability: PID Reading Bulk Environmental Pocket Penetrometer Remarks: Groundwater strike

		KICI	nardJa	CKS	on				7 The Cres	scent, ssex, CO4	Trial Pit N	
-	J	Engineering Consult						S 9Y	TP0			
Project		91000	94.00		Project No.		Co-ords:				Sheet 1 o	
Name:	Starlings	S			60275		Orientatio	n:	Dime	nsions (m)	05/12/20	
ocatio	n: Milton R	load, Dov	ercourt				Level	(m, aOD):	13.62	2.20	Scale 1:20	
Client:	Tendring	A	Depth (m): 1.90				0.50	0.50	Logged	i		
Ground	- And House	les & In Sit	DATE ACCOUNTS OF THE PARTY OF T	Level (m)	Depth (m)	Legend		S	ription			
Grou	0.40 0.40 1.50 1.60 1.80	ES1 PID	PID=0.0 PP=45 PP=55	(m)	0.15 0.20	Legend X	Red brick recovered as medium SAND to COBBLE sized fragments. MADE GROUND Clinker recovered as fine to coarse GRAVEL with sand sized ash. MADE GROUND Brown slightly cobbly gravelly medium to coarse SAND with occasional roots. Gravel is rounded to subangular medium to coarse brick flint and concrete. Cobbles are brick and concrete. MADE GROUND Firm grey with rare reddish orange veins slightly sandy very silty CLAY. HEAD DEPOSITSbecoming slightly silty at 1.70m End of Pit at 1.900m					
Ground	lwater: Gro	undwater r	not encountered						Ke	ey		4
Stabilit		& Stable					D B	Distu Bu	rbed	IVN	Hand Vane PID Reading	
Remark		2018					ES	Environ	mental		ket Penetrome	eter

RichardJackson Trial Pit No. 847 The Crescent, Colchester, Essex, CO4 TP03 **Engineering Consultants** 9YQ Sheet 1 of 1 Project No. Co-ords: Date Project Starlings Name: 60275 Orientation: Dimensions (m) 05/12/2019 Level (m, aOD): 2.10 Scale Location: Milton Road, Dovercourt 1:20 2 Depth (m): Logged Tendring District Council Ground Samples & In Situ Testing Level Depth Legend Stratum Description (m) (m) Depth Type Results CONCRETE 0.15 Brown slightly clayey gravelly medium to coarse SAND. Gravel is subangular to 0.30 D1 subrounded fine to coarse brick ash concrete PID 0.30 PID=0.0 ceramic and rare wire fragments. MADE GROUND 0.80 Soft greyish brown occasionally mottled 0.90 PP PP=10 orange slightly silty slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded medium to coarse brick and occasional concrete. 1.20 PP PP=15 MADE GROUND 1.30 D2 1.30 PID PID=0.0 1.40 Stiff grey stained black silty CLAY with sand 1.50 ES3 lenses and a strong suspected hydrocarbon 1.50 PID PID=12.7 1.60 PP PP=85 V MADE GROUND ...suspected oil tank pipework at 1.70m in southern end of pit with a strong suspected hydrocarbon odour 1.90 Firm pale grey occasionally mottled orange 2.00 D4 brown slightly silty sandy CLAY with sand 2.00 PID PID=8.8 lenses. HEAD DEPOSITS 2.20 PP PP=75 ..rare sand lenses from 2.20m PP 2.50 2.50 PP=60 End of Pit at 2.500m 3 Key Groundwater: Groundwater struck at 1.70m Hand Vane Disturbed Stability: Stable PID Reading Environmental Pocket Penetrometer Remarks: Groundwater strike

1			nardJa ineerir			sult	ants	Co		scent, ssex, CO4	Trial Pit N TP04 Sheet 1 of	4	
Project Name:		41000			Project No.			Co-ords:					
Name:	Starting	Starlings				60275			24.5	nsions (m)	05/12/201	19	
Location	n: Milton R	toad, Dov	ercourt				Level (m	n, aOD):	13.88	1.90	Scale 1:20		
Client:	Tendring	District (Council				Depth (0.50		Logged		
Ground	Samples & In Situ Testing			Level	Depth	Legend	2.50	5-0	tratum Desc	ription			
P. S.	Depth	Type	Results	(m)	(m)	Logona				35			
	0.50 0.50	D1 PID	PID=0.0				SAND. medium Cobble	Gravel in to coar	s fine ash se brick a ck and cor	obbly mediu and brick ar nd concrete ncrete.	nd		
	0.80	PP D2	PP=25		0.70		gravelly Gravel	sandy	CLAY with rick and m	e brown slig rare cobble edium to co	s.		
	1.00	PID	PID=0.0					GROUN				1	
							bi	ecoming s	ilty at 1.20m				
	1.40 1.40	D3 PID	PID=0.0		1.30		SAND.	clayey		ne to mediu	im		
	2.10	IVN	65		2.00		Firm or	ange bro	own CLAY. UP			2	
	2.40 2.40	D4 PID	PID=0.0		2.50		g		End of Pit at 2.	500m			
												3	
											8	4	
			not encountered	É			D	Distu	rbed	y IVN	Hand Vane		
Stability	: Dry	& Stable					B ES	Bu	ilk mental	PID	PID Reading set Penetrome		

1			nardJa			sult	anto	Co		scent, ssex, CO4	Trial Pit N	5
Project Name:	Starling	44.00		Project No.			<u>:</u>	Dime	nsions (m)	Date 05/12/201		
Location: Milton Road, Dovercourt							Level (m, aOD):		1.90	Scale 1:20	
Client:	Tendring	g District	Council				Depth 1.6	(m):	0.50		Logged	
ter	Samp	les & In Si	tu Testing	Level	Depth	Legend	1.0	520	t D	-1-41	NO.	
Ground	Depth	Туре	Results	(m)	(m)	Legena					_	
	1.00 1.00 1.30 1.40 1.40	D1 PID PP D3 PID	PID=0.0 PP=40 PID=0.0		1.10		roots. ceram MADE	Gravel is ic with sla GROUN GROUN frequent concrete and slightly clay rown slig I is mediu	arse gravel a brick from 0.80 httly sandy	and cobbles of 70m 70m gravelly Cl se brick and	rick and	2
	- Viz								- 12		t e	4
			not encountered	i			D	Distu	rbed Ke	IVN	Hand Vane	
Stability		& Stable					B ES	Bu Environ	mental	PID	PID Reading ket Penetrome	ter
Remark	5.					0	V	Groundwa	ter strike		Standing water level	1275

1	J		nardJa ineeri			sult	ants			scent, ssex, CO4	Trial Pit I	6
Project Name:					Project 6027	No.	Co-ords: Orientation:		- 24.3	ensions (m)	Date 05/12/2019	
Location	n: Milton R	load, Dov	ercourt	WA.			Level (m, aC	OD):	1,000	2.00	Scale 1:20	
Client:	Tendring District Council				38	× -	Depth (m): 05 05 05 05 05 05 05 05 05 05 05 05 05				Logged KO	d
Ground	Samp	les & In Si	0.0000000000000000000000000000000000000	Level	Depth	Legend	. Textone.v	Str	atum Desc	ription	38.03355	
5 *	Depth	Туре	Results	(m)	(m)			and cin	der block s.	and COBBLE with occas		
	0.80 0.80	D1 PID	PID=0.0		0.70		Pale brow SAND. HEAD DE	97	St. 157.0	ne to mediur	m	1
	1.60 1.60	D2 PID	PID=0.0				friabl	e clay p	ockets fron	n 1.40m		2
	2.40 2.40	D3 PID	PID=0.0		2.60			E	End of Pit at 2	.600m		
												3
												4
Graves	water C-	undurates	not on accomtant		4				Ke	av.		8
Stability		& Stable	not encountered	1			D B	Disturt	ped	IVN	Hand Vane PID Reading	
Remark						415	ES E	nvironn	nental		et Penetrom Standing water level	eter

	RichardJackson	1	847 The Crescent, Colchester,	Borehole No.
	Engineering Co		Essex, CO4 9YQ	WS01
	Lingineering Co	HSULLATILS		Sheet 1 of 1
Project Name:	Starlings	Dates 04/12/2019	Project no. 60275	Hole Type WLS
Location:	Milton Road, Dovercourt	(Co-ordinates:	Scale 1:30
Client:	Tendring District Council	Gre	ound Level (m):	Logged By KO

ell	Wate	er	20	5	Samples & In-s	itu Test	ts	Level	Depth	Legend	Stratum Des	cription	Sca
em	Depth	Level	Casing	SWL	Depth	Type	Results	(m)	(m)	Legend	Stratum Desi	cription	30
					0.30 0.30 - 0.40	PID ES1	PID=0.0		0.50		Reddish brown slightl medium SAND. Grave fine to medium brick flint.	l is subrounded	
									0.50		MADE GROUND		/
8									0.70		Red brick COBBLES.		1
											MADE GROUND		1
			1.00		1.00	С	N=3 (1,2/1,1,1,0)		1.00		Firm to stiff greyish be sandy gravelly CLAY. G subangular to rounde coarse concrete brick	iravel is d medium to	
					1.40	PID	PID=0.0				MADE GROUND		1
					1.40 - 1.50	D2			1.90		Yellowish brown sligh medium to coarse SAI brick.		
ă			1.00		2.00	С	N=5		1.90	7.7	MADE GROUND		1
					2.10 - 2.20	D3	(1,1/1,1,1,2)				Stiff brown slightly sa gravelly CLAY with roc ash and brick and occ subrounded medium	ots. Gravel is fine asional	
					2.50	IVN	50				MADE GROUND Firm greyish brown m orange sandy CLAY wi		I
S					2.90	IVN	85				angular to subrounde		
			1.00		3.00	С	N=10		3.00	×	medium chert and qu	artzite and rare	
					3.10 - 3.20	D4	(1,2/2,2,3,3)			X	recently active roots.		
					3.20	PID	PID=0.0			<u>×</u>	HEAD DEPOSITSvery silty from 2.70m	to 2.80m	
Ø					3.50	IVN	30			× ×	sand lens at 2.80m becoming stiff at 2.90	m	H
					3.60	PP	95			xx	Stiff pale grey occasion brown silty CLAY.		
S			5500000000		3.90	PP	125			<u> </u>	THAMES GROUP		
Ø			1.00		4.00	C	N=16			XX	IVN at 3.80m = Failed		8
					4.20 - 4.30	D5	(2,3/3,4,4,5)			X_=X	occasionally mottled r from 4.00m	eddish orange	
					4.60	PP	135			xx	ironstone nodules from	m 4.50m	
					4.90	PP	75			x			
10			1.00		5.00	С	N=23 (3,3/5,6,6,6)		5.00	W 5	End of Borehole	at 5.000m	9 6
20		10	33				T as				2	Name and the second	
						34		oround	water K	ey	Sample Type Key	Test Type Ke	Y

75 757 V		Groundwater Key		Sa	imple Type Key	Test Type Key	
Groundwater:	Groundwater not encountered		Groundwater	D	Disturbed	IVN	Hand vane
			Strike	В	Bulk	S/C	SPT / CPT
Remarks:		_	Standing	U	Undisturbed	PP	Pocket penetrometer
Nemarks.		~	water level	ES	Environmental	PID	PID Reading

	, RichardJackson	1	847 The Crescent, Colchester,	Borehole No.
	Engineering Co		Essex, CO4 9YQ	WS02
	Lingineering Co	risultarits		Sheet 1 of 1
Project Name:	Starlings	Dates 04/12/2019	Project no. 60275	Hole Type WLS
Location:	Milton Road, Dovercourt	(Co-ordinates:	Scale 1:30
Client:	Tendring District Council	Gre	ound Level (m):	Logged By KO

ell	Wate	r		5	samples & In-s	itu Test	s	Level	Depth	Legend	Stratum Description	Sca
	Depth	Level	Casing	SWL	Depth	Type	Results	(m)	(m)	Legenu		36
									0.10		Red brick recovered as a subangular medium to coarse GRAVEL. MADE GROUND	1
					0.40 0.40 - 0.50	PID ES1	PID=0.0				Greyish black subrounded to subangular fine to coarse GRAVEL of ash and clinker. MADE GROUND	
	1.30	_	1.00		1.00	С	N=1 (1,1/1,0,0,0)		1.00 1.10 1.30		Firm to stiff greyish brown very sandy gravelly CLAY. Gravel is subrounded to subangular medium brick and	
8	1.30				1.40 - 1.50	D2	20020010000		1.30		concrete. MADE GROUND	1
					1.50 1.60	PID IVN	PID=0.0 30				Concrete recovered as coarse GRAVEL and COBBLES.	
X					1.90	IVN	69				CONCRETE	4
	2.00	•	1.00		2.00	C	N=9 (1,1/1,2,3,3)		2.00		VOID Soft brown sandy CLAY with occasional very clayey sand pockets. HEAD DEPOSITS	
					5.3111.2.5				2.50		becoming firm at 1.90m Saturated greyish brown medium to	1
8					2.60 2.60 - 2.70	PID D3	PID=0.0			XX	coarse SAND.	1
8					at ent of the	300000				XX	HEAD DEPOSITS	1
8			1.00		2.90 3.00	IVN C	60 N=11			XX	Firm pale grey mottled brown and orange brown silty CLAY.	15
8			13.2002638		3.20 - 3.30	D4	(1,2/2,3,3,3)			××	THAMES GROUP	
					3.30	PID	PID=0.0			X_ = X	IVN at 2.50m = Failed becoming stiff at 3.00m	
					3.60	IVN	78			X_X_X		
					3.90	IVN	94			×_==		
22			1.00		4.00	С	N=13 (2,2/3,3,3,4)		4.00		End of Borehole at 4.000m	
												18/27
33												300
	- 4	10	8						01 01		= <u>#</u>	10

	Groundwater Key			imple Type Key	Test Type Key		
Groundwater struck at 1.30m & 2.00m.		Groundwater	D	Disturbed	IVN	Hand vane	
		Strike	В	Bulk	S/C	SPT / CPT	
emarks:		Standing	U	Undisturbed	PP	Pocket penetrometer	
		water level	ES	Environmental	PID	PID Reading	
	Groundwater struck at 1.30m & 2.00m.		Strike Standing	Groundwater struck at 1.30m & 2.00m. Groundwater D Strike B Standing U	Groundwater struck at 1.30m & 2.00m. Groundwater Strike Strike Standing U Disturbed B Bulk Undisturbed	Groundwater struck at 1.30m & 2.00m. Groundwater Strike Strike Standing U Undisturbed PP	

	, RichardJackson	1	847 The Crescent, Colchester,	Borehole No.
	Engineering Co		Essex, CO4 9YQ	WS03
	/ Engineering Co	risultarits		Sheet 1 of 1
Project Name:	Starlings	Dates 04/12/2019	Project no. 60275	Hole Type WLS
Location:	Milton Road, Dovercourt		Co-ordinates:	Scale 1:30
Client:	Tendring District Council	Gre	ound Level (m):	Logged By KO
ACTION AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF	The state of the s	The Other Comments of the		20000000

1.00	0.50 0.50 - 0.60 0.60 1.00 1.20 1.20 - 1.30 1.60	PID ES1 IVN C PID D2 IVN	PID=0.0 22 N=7 (1,1/1,2,2,2) PID=0.0	(m)	0.40 0.90 1.10	Legend	Brown mottled red and whitish sandy subrounded to subangul to coarse brick and concrete Gi MADE GROUND Soft grey occasionally mottled I silty very sandy CLAY with an orodour. HEAD DEPOSITS Grey very clayey slightly silty m SAND with a slight organic odo	a grey ar fine RAVEL. black rangic	Sca 1
	0.50 - 0.60 0.60 1.00 1.20 1.20 - 1.30 1.60	ES1 IVN C PID D2 IVN	N=7 (1,1/1,2,2,2) PID=0.0		0.90		sandy subrounded to subangul to coarse brick and concrete GF MADE GROUND Soft grey occasionally mottled I silty very sandy CLAY with an orodour. HEAD DEPOSITS Grey very clayey slightly silty m SAND with a slight organic odo	ar fine RAVEL. black rangic	1
	0.60 1.00 1.20 1.20 - 1.30 1.60	C PID D2	N=7 (1,1/1,2,2,2) PID=0.0		- HR. E.	X X X X	silty very sandy CLAY with an or odour. HEAD DEPOSITS Grey very clayey slightly silty m SAND with a slight organic odo	rangic Judium	1
	1.20 1.20 - 1.30 1.60 1.90	PID D2	(1,1/1,2,2,2) PID=0.0		- HR. E.		Grey very clayey slightly silty m SAND with a slight organic odo		1
1.00	1.20 - 1.30 1.60 1.90	D2 IVN	PID=0.0		1.10		SAND with a slight organic odo		
1.00	1.60 1.90	IVN	68				· MEDITINEINISTIC		
1.00	1.90	23.050	68				HEAD DEPOSITS Firm grey mottled orange brow with occasional sandy pockets.		
1.00	(300)(30)	IV/NI					THAMES GROUP		
		C	89 N=9				becoming stiff at 1.80m		2
	2200	5000	(1,1/1,2,3,3)				no sandy pockets from 2.00m		1000
	2.30 2.30 - 2.40	PID D3	PID=0.0				rare silt partings and decayed roo 2.30m	ots from	
	2.50	IVN	90						
	2.80	IVN	98						
1.00	3.00	С	N=10 (2,2/2,3,2,3)						3
	3.30 3.30 - 3.40	PID D4	PID=0.0						
	3.60	IVN	93						
	3.80	PP	110				NAV -1 2 00 5-71		
1.00	4.00 4.10 - 4.20	C D5	N=11 (2,2/2,2,3,4)						4
	4.70	PP	120						
1.00	5.00	С	N=12 (3,2/3,3,3,3)		5.00		iron staining from 4.90m End of Borehole at 5.000m		5
	1.00	2.80 3.00 3.30 3.30 - 3.40 3.60 3.80 4.00 4.10 - 4.20	2.80 IVN 3.00 C 3.30 PID 3.30 - 3.40 D4 3.60 IVN 3.80 PP 4.00 C 4.10 - 4.20 D5	2.80 IVN 98 1.00 C N=10 (2,2/2,3,2,3) 3.30 PID PID=0.0 3.30 - 3.40 D4 3.60 IVN 93 3.80 PP 110 1.00 4.00 C N=11 (2,2/2,2,3,4) 4.70 PP 120 1.00 5.00 C N=12	2.80 IVN 98 1.00 C N=10 (2,2/2,3,2,3) 3.30 PID PID=0.0 3.30 - 3.40 D4 3.60 IVN 93 3.80 PP 110 1.00 4.00 C N=11 4.10 - 4.20 D5 (2,2/2,2,3,4) 4.70 PP 120 1.00 5.00 C N=12	1.00 2.80 IVN 98	1.00 3.00 C N=10 (2,2/2,3,2,3) 3.30 PID PID=0.0 3.30 - 3.40 D4 3.60 IVN 93 3.80 PP 110 1.00 4.00 C N=11 4.10 - 4.20 D5 (2,2/2,2,3,4) 4.70 PP 120 1.00 5.00 C N=12 5.00 To To To To To To To	1.00 3.00 C N=10	1.00 2.80 IVN 98 3.00 C N=10 (2,2/2,3,2,3) 3.30 PID PID=0.0 3.30 - 3.40 D4 3.60 IVN 93 3.80 PP 110 3.80 PP 110 3.80 PP 110 3.80 PP 120 3.40 D5 (2,2/2,2,3,4) 3.50 C N=12 5.00 C N=12 5.00 End of Borehole at 5.000m

Remarks:

Strike

Standing

water level

В

U

ES

Bulk

Undisturbed

Environmental

S/C

PP

PID

SPT / CPT

Pocket penetrometer

PID Reading

	, RichardJackson	1	847 The Crescent, Colchester,	Borehole No.
	Engineering Co		Essex, CO4 9YQ	WS04
	Lingineering Co	Hisultants		Sheet 1 of 1
Project Name:	Starlings	Dates 04/12/2019	Project no. 60275	Hole Type WLS
Location:	Milton Road, Dovercourt	C	o-ordinates:	Scale 1:30
Client:	Tendring District Council	Gro	ound Level (m):	Logged By

Depth	Level	Casing	SWL	Depth 0.20 0.20 - 0.30	Type	Results	(m)	Depth (m)	Legend	Stratum Desc	Tr.	Sca
					PID			L. 33	2222222	And the second of the second o		
					ES1	PID=0.0		676-75-6-4		Red brick recovered as to medium GRAVEL siz MADE GROUND		
				0.50	IVN	20		0.40	X	Very soft to soft brown very silty CLAY with oc		3
				0.80	IVN	38			X	recently active roots. HEAD DEPOSITS		
		1.00		0.90 0.90 - 1.00	PID	PID=0.0 N=2			ж 8			1
		100000.00			D2 C	100000000000000000000000000000000000000			×			
				1.00	C	(0,1/0,1,0,1)			X			
				1.60	IVN	19			×			
3				1.70 - 1.80	D3	13			X			
1.95	•	aneses:		1.90	IVN	18			×	N N		
1.55		1.00		2.00	С	N=6 (1,1/1,2,1,2)			X X	orange fine to medium 1.95m	sand lens from	100
				3.50	IV/NI	61			× × ×	locally firm with no silt	from 2.40m to	
				2.50 2.50 - 2.60	IVN D4	61			_ = ^	2.60m		
				2.80	IVN	20			X	becoming soft at 2.80n)	
		1.00		3.00	С	N=8 (1,1/1,2,2,3)			X - X	dark blackish brown sp	eckling at 2.90m	33
				3.40	PID	PID=0.0			2			
				3.40 - 3.50	D5				Z- <u></u> -2			
				3.60	IVN	47		3.60		Firm brown slightly sa THAMES GROUP	ndy CLAY.	
		ACTION NAMED AND		3.90	IVN	90				becoming stiff at 3.90n		
		1.00		4.00	С	N=10				becoming sun at 3.90n	1.	8
				4.20	PID	(1,2/2,2,3,3)						
				4.20 - 4.30	D6	PID=0.0						
				4.70	IVN	84						
				4.70								
4								5.00		End of Borehole a	at 5.000m	
	10					To ass	iround			Sample Type Key	Test Type Ke	

92.0 COSX	S 2 2 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Groun	dwater Key	Sa	mple Type Key	To	est Type Key
Groundwater:	Groundwater struck at 1.95m		Groundwater	D	Disturbed	IVN	Hand vane
			Strike	В	Bulk	S/C	SPT / CPT
Remarks:		_	Standing	U	Undisturbed	PP	Pocket penetrometer
TTCTTIGT KS			water level	ES	Environmental	PID	PID Reading

	, RichardJacksor	1	847 The Crescent, Colchester,	Borehole No.
	Engineering Co	Essex, CO4 9YQ	WS05	
	Lingineering Co	iisuttaiits		Sheet 1 of 1
Project Name:	Starlings	Dates 04/12/2019	Project no. 60275	Hole Type WLS
ocation:	Milton Road, Dovercourt		Co-ordinates:	Scale 1:30
Tiont.	Tondaina District Council	Gr	ound Level (m):	Logged By

Depth Level Casing SWL Depth Type Results (m) (m) Casing Stratum Description Stratum D	ient:		TC.IIGITII		ict Council			1	ř	-		КО	T
1.00 1.00 C N=4 (0,1/1,1,1,1) N=4	ell	-	1	_		r	r	Level (m)		Legend	Stratum Descript	ion	Sca
1.60 IVN 76 1.80 - 1.90 D2 1.90 IVN 68 1.90 PID PID=0.0 2.20 PID (1,1/1,1/2,2) 2.20 - 2.30 D3 PID=0.0 2.50 IVN 103 3.30 PID PID=0.0 3.30 C N=8 (1,1/1,2,2,3) 3.30 PID PID=0.0 3.30 - 3.40 D4 3.50 IVN 53 1.00 4.00 C N=14 (2,2/3,3,4,4) 4.20 - 4.30 D5 IVN 88 I 1.40 Firm brown occasionally mottled grey and orange slightly sity CLAY with rare recently active roots and fine chert gravel. THAMES GROUP I 1.40 Firm brown occasionally mottled grey and orange slightly sity CLAY with rare recently active roots and fine chert gravel. THAMES GROUP I 1.40 Firm brown occasionally mottled grey and orange slightly sity CLAY with rare recently active roots and fine chert gravel. THAMES GROUP I 1.40 Firm brown occasionally mottled grey and orange slightly sity CLAY with rare recently active roots and fine chert gravel. THAMES GROUP I 1.40 Firm brown occasionally mottled grey and orange slightly sity CLAY with rare recently active roots and fine chert gravel. THAMES GROUP I 1.40 Firm brown occasionally mottled grey and orange slightly sity CLAY with rare recently active roots and fine chert gravel. THAMES GROUP I 1.40 Firm brown occasionally mottled grey and orange slightly sity CLAY with rare recently active roots and fine chert gravel. I 1.40 Firm brown occasionally mottled grey and orange slightly sity CLAY with rare recently active roots and fine chert gravel. I 1.40 Firm brown occasionally mottled grey and orange slightly sity CLAY with rare recently active roots and increase slightly sity CLAY with rare recently active roots and fine chert gravel. I 1.40 Firm brown occasionally mottled grey and orange slightly sity CLAY with rare recently active roots and fine chert gravel. I 1.40 Firm brown occasionally mottled grey and orange slightly sity CLAY with rare recently active race recent gravel. I 1.40 Firm brow	Depth	Level		SWL	0.40 - 0.50 0.50	ES1 PID	PID=0.0	(,			GRAVEL of subrounded to fine to coarse brick ash cl concrete and flint. MADE GROUND	subangular inker	
1.00 1.80 - 1.90 IVN 68 1.90 IVN 1.90 PID PID=0.0 2.00 C N=6 2.20 PID VIVN 58 2.80 IVN 103 3.00 C N=8 (1,1/1,2,2,3) 3.30 PID PID=0.0 3.30 - 3.40 D4 3.50 IVN 53 3.70 Firm pale grey mottled orange brown with frequent iron staining CLAY with frequent weak mudstone fragments and ironstone nodules. THAMES GROUP Interval Interva			1.00				(0,1/1,1,1,1)	\$	1.40		MADE GROUND Firm brown occasionally r and orange slightly silty C	nottled grey LAY with	_
1.00 3.00 C N=8 (1,1/1,2,2,3) 3.30 PID PID=0.0 3.30 - 3.40 D4 3.50 IVN 53 1.00 4.00 C N=14 (2,2/3,3,4,4) 4.20 - 4.30 D5 4.70 IVN 88			1.00		1.90 1.90 2.00 2.20 2.20 - 2.30	IVN PID C PID D3	PID=0.0 N=6 (1,1/1,1,2,2) PID=0.0			× × × × × × × × × × × × × × × × × × ×	chert gravel. THAMES GROUP		2
1.00 4.00 C N=14 (2,2/3,3,4,4) 4.20 - 4.30 D5 4.70 IVN 88			1.00		3.00 3.30 3.30 - 3.40	C PID D4	N=8 (1,1/1,2,2,3) PID=0.0			× × × × × × × × × × × × × × × × × × ×			414
4.70 IVN 88			1.00					70	3.70		with frequent iron stainin frequent weak mudstone and ironstone nodules. THAMES GROUP	g CLAY with	
					4.70	IVN	88		5.00			000m	
	oundwate	er:	Ground	water r	not encountere	d	1	Ground	Water K Ground		D Disturbed IV	Test Type Ke N Hand va	

Remarks:

Strike

Standing

water level

В

U

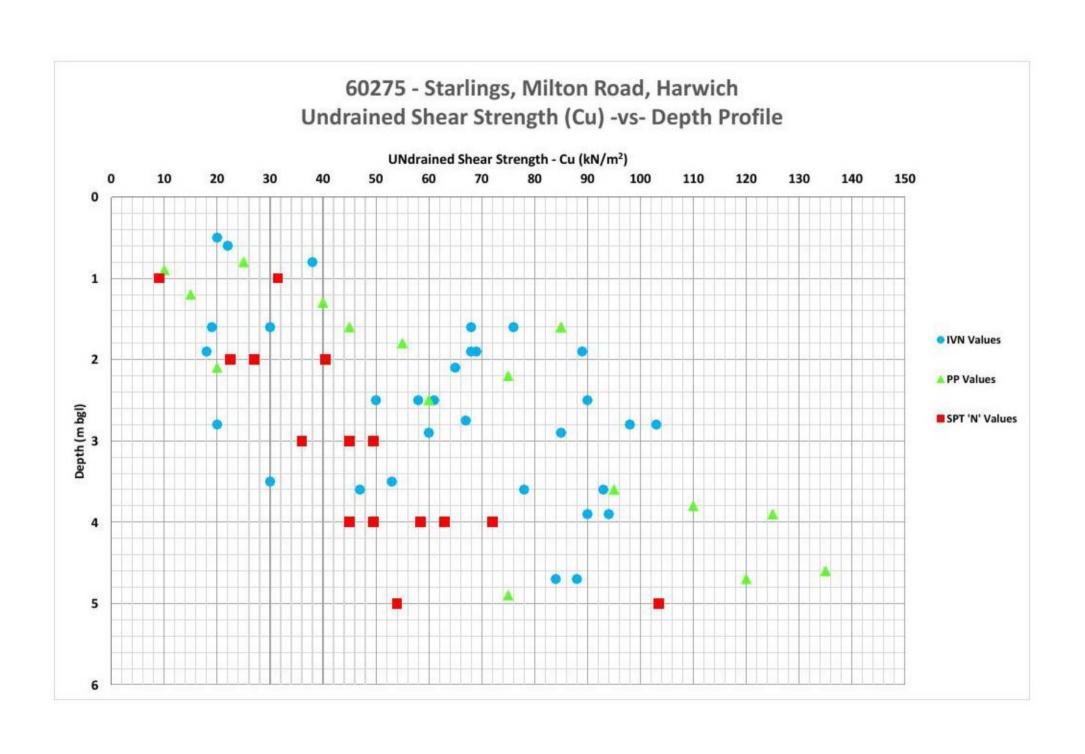
ES

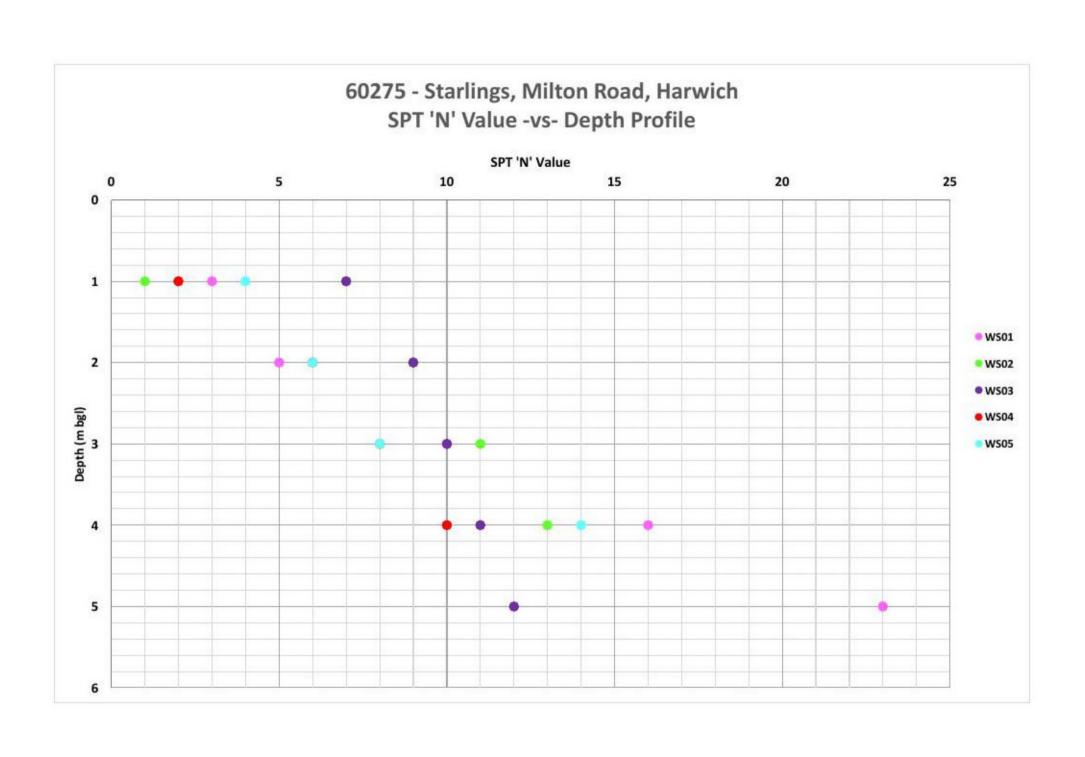
Bulk

Undisturbed

Environmental

S/C


PP


PID

SPT / CPT

Pocket penetrometer

PID Reading

Appendix C

Results of Chemical Analyses

Title: GROUND INVESTIGATION REPORT
Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

60275 - Starlings, Milton Road, Harwich, Essex

Geo-environmental Assessment Reference Criteria

Soils

In 2014 Land Quality Management Ltd (LQM) and the Chartered Institute of Environmental Health (CIEH) published 'Suitable 4 Use Levels' (S4ULs) for human health risk assessment. The S4ULs have been derived in accordance with UK legislation, national and Environment Agency policy using a modified version of the Contaminated Land Exposure Assessment (CLEA) software. The S4ULs are based on minimal or tolerable risk as described in SR2 (Environment Agency, 2009a).

The S4ULs are intended to replace the 2nd edition of the LQM/CIEH Generic Assessment Criteria (GAC).

The S4ULs have also been used to replace the Environment Agency Soil Guideline Values (SGVs), which were defined in 2009 alongside updates to the CLEA methodology and software.

The parameters detailed in the LQM/CIEH S4ULs publication have been adapted using the CLEA software to reflect site specific conditions, including the Soil Organic Matter (SOM), where these are significantly different from the values used to derive the SGV.

It is understood the site is to be developed to provide a surface car park with localised areas of soft landscaping, therefore S4ULs for commercial use been adopted for this site.

A SOM of 1% has been adopted for organic chemicals for the purposes of the initial assessment on the basis of laboratory analysis. A SOM of 6% has been adopted for inorganic chemical as detailed in 'The LQM / CIEH S4ULS for human health assessment', (2015).

Only the three most hazardous PAH's, benzo(a)pyrene, dibenz(a,h)anthracene and naphthalene have been considered on this occasion.

In the absence an S4UL for lead the Category 4 Screening Level (C4SL) for lead has been adopted. In March 2014 DEFRA published C4SLs for six contaminants including lead. The C4SLs are based on a unique toxicological benchmark, 'Low Level of Toxicological Concern' rather than the 'minimal or tolerable level of risk' which forms the basis for the S4ULs.

A summary of the tier one screening values for human health is given in the Table, below.

Title: GROUND INVESTIGATION REPORT
Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

Contaminant	Origin of Screening Value	Screening Value (mg/kg)
Arsenic	S4UL ¹	640
Cadmium	S4UL ¹	190
Chromium	S4UL ¹	8,600
Copper	S4UL ¹	68,000
Nickel	S4UL ¹	980
Lead	C4SL ²	2,300
Selenium	S4UL ¹	12,000
Mercury	S4UL ¹	1,100
Zinc	S4UL ¹	730,000
Benzo(a)pyrene	S4UL ³	35
Dibenz(a,h)anthracene	S4UL ³	3.5
Naphthalene	S4UL ³	190
Total Phenols	S4UL ³	760
TPH Aromatic C ₅ -C ₇	S4UL ³	26,000*
TPH Aromatic C ₇ -C ₈	S4UL ³	56,000*
TPH Aromatic C ₈ -C ₁₀	S4UL ³	3,500*
TPH Aromatic C ₁₀ -C ₁₂	S4UL ³	16,000*
TPH Aromatic C ₁₂ -C ₁₆	S4UL ³	36,000*
TPH Aromatic C ₁₆ -C ₂₁	S4UL ³	28,000
TPH Aromatic C ₂₁ -C ₃₅	S4UL ³	28,000
TPH Aliphatic C ₅ -C ₆	S4UL ³	3,200*
TPH Aliphatic C ₆ -C ₈	S4UL ³	7,800*
TPH Aliphatic C ₈ -C ₁₀	S4UL ³	2,000*
TPH Aliphatic C ₁₀ -C ₁₂	S4UL ³	9,700*
TPH Aliphatic C ₁₂ -C ₁₆	S4UL ³	59,000*
TPH Aliphatic C ₁₆ -C ₃₅	S4UL ³	1,600,000
Benzene	S4UL ³	27
Toluene	S4UL ³	56,000*
Ethylbenzene	S4UL ³	5,700*
M & P Xylene	S4UL ³	65,900*
O Xylene	S4UL ³	6,600*
Vinyl Chloride	S4UL ³	0.059

Title: GROUND INVESTIGATION REPORT Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

Contaminant	Origin of Screening Value	Screening Value (mg/kg)		
1,2 - Dichloroethane	S4UL ³	0.67		
Trichloroethene	S4UL ³	1.2		
1,1,1 - Trichloroethane	S4UL ³	660		
Tetrachloroethene	S4UL ³	19		
Chlorobenze	S4UL ³	56		
Hexachlorobutadine	S4UL ³	31		

¹ Value derived for site specific conditions use using CLEA software, S4UL parameters, at an SOM of 6% for commercial use ² Category 4 Screening Level adopted based on DEFRA (2014)

Title: GROUND INVESTIGATION REPORT Project: Starlings, Milton Road, Harwich, Essex

Tendring District Council Client:

³ Value derived for site specific conditions use using CLEA software, S4UL parameters, at an SOM of 1% for commercial use

^{*}Although soils up to this value may not be harmful to human health, it should be noted that soils would be saturated at this value and remediation may still be necessary. Results will therefore be reviewed on a case

Kay O'Reilly Richard Jackson Ltd 847 The Crescent Colchester Essex CO4 9YQ

UKAS IESTING 4480

DETS LtdUnit 1
Rose Lane Industrial Estate

Rose Lane Lenham Heath

Kent ME17 2JN

DETS Report No: 19-17098

Site Reference: Starlings

Project / Job Ref: 60275

Order No: None Supplied

Sample Receipt Date: 09/12/2019

Sample Scheduled Date: 09/12/2019

Report Issue Number: 1

Reporting Date: 13/12/2019

Authorised by:

Dave Ashworth Technical Manager

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate	98	- 2	48	137	0.00	
DETS Report No: 19-17098	Date Sampled	04/12/19	04/12/19	04/12/19	04/12/19	04/12/19
Richard Jackson Ltd	Time Sampled	None Supplied				
Site Reference: Starlings	TP / BH No	WS01 ES1	WS02 ES1	WS03 ES1	WS04 ES1	WS05 ES1
Project / Job Ref: 60275	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	0.30 - 0.40	0.40 - 0.50	0.50 - 0.60	0.20 - 0.30	0.40 - 0.50
Reporting Date: 13/12/2019	DETS Sample No	451477	451478	451479	451480	451481

Determinand	Unit	RL	Accreditation					
Asbestos Screen (5)	N/a	N/a	ISO17025	Not Detected	Not Detected	1	Not Detected	Detected
Sample Matrix (S)	Material Type	N/a	NONE			Ĭ		Chrysotile in microscopie cemen
Asbestos Type (5)	PLM Result	N/a	ISO17025					Chrysotile
pH	pH Units	N/a	MCERTS	7.9	8.4	7.8	8.5	8.6
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Total Sulphate as SO ₄	mg/kg	< 200	NONE	4000	WE		100	200
Total Sulphate as SO ₄	%	< 0.02	NONE	W. W. C. W. C. W.				20.00
W/S Sulphate as SO ₄ (2:1)	mg/I	< 10	MCERTS	1760	299	45	23	289
W/S Sulphate as SO ₄ (2:1)	g/I	< 0.01	MCERTS	1.76	0.30	0.04	0.02	0.29
Total Sulphur	%	< 0.02	NONE	0.65	0.03	0.04	< 0.02	0.09
Organic Matter	%	< 0.1	MCERTS	1.1	0.3	0.8	0.3	1.6
Ammonium as NH ₄	mg/kg	< 0.5	NONE		115.0		200401	1800
Ammonium as NH ₄	mg/l	< 0.05	NONE	- 6	- 3			
W/S Chloride (2:1)	mg/kg	< 1	MCERTS		4			
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS				5 B	
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS					
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS					
Arsenic (As)	mg/kg	< 2	MCERTS	9	7	4	6	14
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	0.5
Chromium (Cr)	mg/kg	< 2	MCERTS	12	10	11	11	16
Copper (Cu)	mg/kg	< 4	MCERTS	12	11	7	7	78
Lead (Pb)	mg/kg	< 3	MCERTS	227	55	13	35	354
W/S Magnesium	mg/l	< 0.1	NONE	101010	***	- 20	13374	
Mercury (Hg)	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	7	9	9	9	2:
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	< 3	< 3
Zinc (Zn)	mq/kq	< 3	MCERTS	67	26	31	31	230
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 7

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C Subcontracted analysis (S)

Soil Analysis Certificate		- 2	18		1000	
DETS Report No: 19-17098	Date Sampled	05/12/19	05/12/19	05/12/19	05/12/19	
Richard Jackson Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Starlings	TP / BH No	TP03 ES3	WS04 D2	TP02 D2	TP04 D4	
Project / Job Ref: 60275	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	
Order No: None Supplied	Depth (m)	1.50	0.90 - 1.00	1.50	2.40	
Reporting Date: 13/12/2019	DETS Sample No	451483	451484	451485	451486	

Determinand	Unit	RL	Accreditation			-36-		
Asbestos Screen (5)	N/a	N/a	ISO17025	Not Detected				
Sample Matrix (S)	Material Type	N/a	NONE					
Asbestos Type (5)	PLM Result	N/a	ISO17025					
pH	pH Units	N/a	MCERTS		7.8	8.2	7.8	
Total Cyanide	mg/kg	< 2	NONE					
Total Sulphate as SO ₄	mg/kg	< 200	NONE		298	776	2207	
Total Sulphate as SO ₄	%	< 0.02	NONE		0.03	0.08	0.22	
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS		26	225	43	
W/S Sulphate as SO ₄ (2:1)	g/I	< 0.01	MCERTS		0.03	0.22	0.04	
Total Sulphur	%	< 0.02	NONE	0	< 0.02	0.03	0.08	
Organic Matter	96	< 0.1	MCERTS	li i				
Ammonium as NH ₄	mg/kg	< 0.5	NONE		67.4	< 0.5	< 0.5	
Ammonium as NH ₄	mg/l	< 0.05	NONE	18	6.74	< 0.05	< 0.05	
W/S Chloride (2:1)	mg/kg	< 1	MCERTS		16	31	23	
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS		8.2	15.5	11.7	
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS		5	< 3	6	
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS		2.4	< 1.5	2.8	
Arsenic (As)	mq/kq	< 2	MCERTS					
Cadmium (Cd)	mg/kg	< 0.2	MCERTS		9	1	- 93	
Chromium (Cr)	mq/kq	< 2	MCERTS					
Copper (Cu)	mg/kg	< 4	MCERTS				38	
Lead (Pb)	mg/kg	< 3	MCERTS	l.				
W/S Magnesium	mg/l	< 0.1	NONE		1.4	2.6	2.1	
Mercury (Hg)	mq/kq	< 1	NONE		- 8	35		
Nickel (Ni)	mg/kg	< 3	MCERTS		il.	W.		
Selenium (Se)	mg/kg	< 3	NONE					
Zinc (Zn)	mq/kq	< 3	MCERTS					
Total Phenols (monohydric)	mg/kg	< 2	NONE		- 5			

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C Subcontracted analysis (S)

Soil Analysis Certificate - Speciated P	AHs				29.	
DETS Report No: 19-17098	Date Sampled	04/12/19	04/12/19	04/12/19	04/12/19	04/12/19
Richard Jackson Ltd	Time Sampled	None Supplied				
Site Reference: Starlings	TP / BH No	WS01 ES1	WS02 ES1	WS03 ES1	WS04 ES1	WS05 ES1
Project / Job Ref: 60275	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	0.30 - 0.40	0.40 - 0.50	0.50 - 0.60	0.20 - 0.30	0.40 - 0.50
Reporting Date: 13/12/2019	DETS Sample No	451477	451478	451479	451480	451481

Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.12	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.13
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	0.26	< 0.1	< 0.1	0.13	0.31
Anthracene	mg/kg	< 0.1	MCERTS	0.16	< 0.1	< 0.1	< 0.1	0.14
Fluoranthene	mg/kg	< 0.1	MCERTS	0.38	0.15	< 0.1	0.17	0.94
Pyrene	mg/kg	< 0.1	MCERTS	0.31	0.13	< 0.1	0.13	0.85
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	0.43	0.31	< 0.1	0.31	0.69
Chrysene	mg/kg	< 0.1	MCERTS	0.18	< 0.1	< 0.1	< 0.1	0.57
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	0.48	0.34	< 0.1	< 0.1	0.94
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.30
Benzo(a)pyrene	mq/kq	< 0.1	MCERTS	0.31	0.22	< 0.1	< 0.1	0.65
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	0.40	< 0.1	< 0.1	< 0.1	0.70
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(qhi)perylene	mq/kq	< 0.1	MCERTS	0.28	< 0.1	< 0.1	< 0.1	0.53
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	3.2	< 1.6	< 1.6	< 1.6	6.8

Soil Analysis Certificate - TPH CWG Banded												
DETS Report No: 19-17098	Date Sampled	05/12/19	05/12/19									
Richard Jackson Ltd	Time Sampled	None Supplied	None Supplied									
Site Reference: Starlings	TP / BH No	TP01 ES4	TP03 ES3									
Project / Job Ref: 60275	Additional Refs	None Supplied	None Supplied									
Order No: None Supplied	Depth (m)	1.80	1.50									
Reporting Date: 13/12/2019	DETS Sample No	451482	451483									

Determinand	Unit	RL	Accreditation		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01	< 0.01	
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	
Aliphatic >C8 - C10	mg/kg			9	< 2	
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	30	< 2	
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	50	< 3	
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	4	< 3	
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10	< 10	
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	93	< 21	
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01	< 0.01	
Aromatic >C7 - C8	mq/kq	< 0.05	NONE	< 0.05	< 0.05	
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	7	< 2	
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	14	< 2	
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	20	< 2	
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	10	< 3	
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	< 10	< 10	
Aromatic (C5 - C35)	mg/kg	< 21	NONE	52	< 21	
Total >C5 - C35	mg/kg	< 42	NONE	145	< 42	

Soil Analysis Certificate - TPH LQM Ba	anded	OUNCE HANDEN	2000000-0000	2002 200 1914	TO A A TO 10 10 10 10 10 10 10 10 10 10 10 10 10	- CONTRACTOR
DETS Report No: 19-17098	Date Sampled	04/12/19	04/12/19	04/12/19	04/12/19	04/12/19
Richard Jackson Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Starlings	TP / BH No	WS01 ES1	WS02 ES1	WS03 ES1	WS04 ES1	WS05 ES1
Project / Job Ref: 60275	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Order No: None Supplied	Depth (m)	0.30 - 0.40	0.40 - 0.50	0.50 - 0.60	0.20 - 0.30	0.40 - 0.50
Reporting Date: 13/12/2019	DETS Sample No	451477	451478	451479	451480	451481

Determinand	Unit	RL	Accreditation					
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aliphatic >C16 - C35	mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
Aliphatic >C35 - C44	mg/kg	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic (CS - C44)	mq/kq	< 30	NONE	< 30	< 30	< 30	< 30	< 30
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C12 - C16	mq/kq	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
Aromatic >C35 - C44	mg/kg	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aromatic (>C5 - C44)	mg/kg	< 30	NONE	< 30	< 30	< 30	< 30	< 30
Total >C5 - C44	mg/kg	< 60	NONE	< 60	< 60	< 60	< 60	< 60

Soil Analysis Certificate - BTEX / MTE	BE	20	24	-31	89.	
DETS Report No: 19-17098	Date Sampled	04/12/19	04/12/19	04/12/19	04/12/19	04/12/19
Richard Jackson Ltd	Time Sampled	None Supplied				
Site Reference: Starlings	TP / BH No	WS01 ES1	WS02 ES1	WS03 ES1	WS04 ES1	WS05 ES1
Project / Job Ref: 60275	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	0.30 - 0.40	0.40 - 0.50	0.50 - 0.60	0.20 - 0.30	0.40 - 0.50
Reporting Date: 13/12/2019	DETS Sample No	451477	451478	451479	451480	451481

Determinand	Unit	RL	Accreditation	35	700-		200	
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	3
p & m-xylene	ug/kg	< 2	MCERTS	< 2	8	< 2	< 2	8
o-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5

Soil Analysis Certificate - BTEX / MTE	E	20		-21 32.3	
DETS Report No: 19-17098	Date Sampled	05/12/19	05/12/19		
Richard Jackson Ltd	Time Sampled	None Supplied	None Supplied		
Site Reference: Starlings	TP / BH No	TP01 ES4	TP03 ES3	# #	
Project / Job Ref: 60275	Additional Refs	None Supplied	None Supplied		
Order No: None Supplied	Depth (m)	1.80	1.50		
Reporting Date: 13/12/2019	DETS Sample No	451482	451483		

Determinand	Unit	RL	Accreditation		79-	
Benzene	ug/kg	< 2	MCERTS	7	< 2	
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	
Ethylbenzene	ug/kg	< 2	MCERTS	59	< 2	
p & m-xylene	ug/kg	< 2	MCERTS	749	< 2	
o-xylene	ug/kg	< 2	MCERTS	108	< 2	
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	

Soil Analysis Certificate - Volatile Org						
DETS Report No: 19-17098	Date Sampled	04/12/19	04/12/19	05/12/19	05/12/19	
Richard Jackson Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Starlings	TP / BH No	WS03 ES1	WS05 ES1	TP01 ES4	TP03 ES3	
Project / Job Ref: 60275	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	
Order No: None Supplied	Depth (m)	0.50 - 0.60	0.40 - 0.50	1.80	1.50	
Reporting Date: 13/12/2019	DETS Sample No	451479	451481	451482	451483	

Determinand	Unit	RL	Accreditation				- 200	
Dichlorodifluoromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Vinyl Chloride	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Chloromethane	uq/kq	< 10	MCERTS	< 10	< 10	< 10	< 10	
Chloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromomethane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Trichlorofluoromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
trans-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
cis-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
2,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Chloroform	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1,1-Trichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1-Dichloropropene	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Carbon Tetrachloride	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	7	< 2	
1,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Trichloroethene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromodichloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Dibromomethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
TAME	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
cis-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
		< 5	MCERTS	< 5	< 5	< 5	< 5	
rans-1,3-Dichloropropene	uq/kq	< 10		< 10	< 10	< 10	< 10	
1,1,2-Trichloroethane	ug/kg	< 10	MCERTS MCERTS	< 5	< 5	< 5	< 5	
1,3-Dichloropropane	ug/kg		MCERTS	-				
Tetrachloroethene	ug/kg	< 5	The second second second	< 5	< 5	< 5	< 5 < 5	
Dibromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5		
1,2-Dibromoethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Chlorobenzene	uq/kq	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,1,1,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Ethyl Benzene	ug/kg	< 2	MCERTS	< 2	3	59.	< 2	
m,p-Xylene	ug/kg	< 2	MCERTS	< 2	8	749	< 2	
o-Xylene	uq/kq	< 2	MCERTS	< 2	< 2	108	< 2	
Styrene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Bromoform	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Isopropylbenzene	uq/kq	< 5	MCERTS	< 5	< 5	12	< 5	
1,1,2,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2,3-Trichloropropane	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
n-Propylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	61	< 5	
Bromobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
2-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,3,5-Trimethylbenzene	uq/kq	< 5	MCERTS	< 5	< 5	375	< 5	
4-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
tert-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2,4-Trimethylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	793	< 5	
sec-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	21	< 5	
p-Isopropyltoluene	ug/kg	< 5	MCERTS	< 5	< 5	30	< 5	
1,3-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,4-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
n-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
1,2-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Dibromo-3-chloropropane	ug/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Hexachlorobutadiene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	

Soil Analysis Certificate - Sample Descriptions	/w
DETS Report No: 19-17098	
Richard Jackson Ltd	
Site Reference: Starlings	
Project / Job Ref: 60275	
Order No: None Supplied	
Reporting Date: 13/12/2019	一

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
451477	WS01 ES1	None Supplied	0.30 - 0.40	13.1	Brown sandy gravel with stones and brick
451478	WS02 ES1	None Supplied	0.40 - 0.50	9.1	Brown clayey sand with stones and brick
451479	WS03 ES1	None Supplied	0.50 - 0.60	11.9	Brown clay
451480	WS04 ES1	None Supplied	0.20 - 0.30	11	Brown clayey sand
451481	WS05 ES1	None Supplied	0.40 - 0.50	9.8	Brown gravelly sand with stones and brick
451482	TP01 ES4	None Supplied	1.80	10.9	Brown clayey sand
451483	TP03 ES3	None Supplied	1.50	9.5	Brown clayey sand with stones
451484	WS04 D2	None Supplied	0.90 - 1.00	11.7	Brown clay
451485	TP02 D2	None Supplied	1.50	12.7	Brown clayey sand
451486	TP04 D4	None Supplied	2.40	19.3	Brown clay

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm US}$

Insufficient Sample ^{US} Unsuitable Sample ^{US}

Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 19-17098
Richard Jackson Ltd
Site Reference: Starlings
Project / Job Ref: 60275
Order No: None Supplied
Reporting Date: 13/12/2019

Matrix	Analysed On	Determinand	Brief Method Description	Method No							
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012							
Soil	AR		Determination of BTEX by headspace GC-MS	E001							
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002							
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E009							
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1.5 diohenylcarbazide followed by colorimetry	E016							
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015							
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015							
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015							
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011							
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004							
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022							
Soil	AR.	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement								
Soil	D	Flomental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020							
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004							
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004							
3011	5 6		Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	LUUT							
Soil	AR	C12-C16, C16-C21, C21-C40)	headspace GC-MS	E004							
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009							
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010							
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019							
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025							
Soil	D	Metals	Determination of metals by agua-regia digestion followed by ICP-OES	E002							
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004							
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003							
Soil	D	Nitrate - Water Soluble (2:1)		E009							
Soil	D	Organic Matter	Determination of organic matter by oxidising with notassium dichromate followed by titration with	E010							
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005							
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008							
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011							
Soil	AR	pH		E007							
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021							
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009							
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013							
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009							
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014							
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018							
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024							
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006							
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017							
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011							
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with	E010							
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	I MITTAL SMISC BOOK	E004							
Soil	AR	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004							
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001							
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001							

D Dried AR As Received

Appendix D

Geotechnical test results

Title: GROUND INVESTIGATION REPORT
Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 18/12/2019

Contract Starlings, Harwich Serial No. 36265 Client: Soil Property Testing Ltd Richard Jackson Limited 847 The Crescent 15, 16, 18 Halcyon Court, St Margaret's Way, Colchester Stukeley Meadows, Huntingdon, Essex Cambridgeshire, PE29 6DG CO4 9YQ Samples Submitted By: Approved Signatories: Richard Jackson Limited ☐ J.C. Garner B.Eng (Hons) FGS Technical Director & Quality Manager S.P. Townend FGS Samples Labelled: Chairman Starlings, Harwich ☐ W. Johnstone Materials Lab Manager D. Sabnis Operations Manager Date Received: Samples Tested Between: 10/12/2019 and 18/12/2019 10/12/2019 Remarks: For the attention of Kay O'Reilly Your Reference No: 60275 Notes: All remaining samples or remnants from this contract will be disposed of after 21 days from today, 1 unless we are notified to the contrary. UKAS - United Kingdom Accreditation Service. 2 Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. (b) Tests marked "NOT UKAS ACCREDITED" in this test report are not included in the UKAS Accreditation 3 Schedule for this testing laboratory. This test report may not be reproduced other than in full except with the prior written approval of the issuing laboratory.

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 18/12/2019

0998

Contra	act		Starling	gs, F	lar	wich											
Serial	No.		36265											1	Target	Date	23/12/2019
Sched	uled E	Ву	Richard	d Jac	ksc	n Lir	nited	i						-			1,
			200				SC	HEI	DULE	OF	LAB	DRAT	ORY	TE	STS		
Sched	ule Re	emarks															
Bore Hole No.	Top Depth	/,4	later	on the state of th	Sen Ser	gardic		//				20			Sample Remarks		
TP04	D	3	1.50	1		Ť			T	T							Jumple Hellians
TP06	D	2	1.60	1	1	1		DE Y	-	15							
WS01	D	3	2.10	1	1	1						11					
WS02	D	2	1.40	1	1					74							
WS02	D	3	2.60	1													
WS03	D	3	2.30	1	1		3			A							
WS04	D	3	1.70	1	1												
WS04	D	4	2.50	1		1	8			74 50			- 13	0			
WS04	D	5	3.40	1													
WS05	D	2	1.80	1	1					J-1							
WS05	D	3	2.20	1													
WS05	D	4	3.30	1							0 10						
	3	Totals		12	6	2											End of Schedule

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 18/12/2019

0998

Contract	Starlings, Harwich
Serial No.	36265

SUMMARY OF WATER CONTENT, LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX AND LIQUIDITY INDEX

100				Water	Liquid	Plastic	Plasti-	Liquid-	SA	MPLE PRE	PARATIO	N		
Borehole /Pit No.	Depth (m)	Type	Ref.	Content (%)	Limit (%)	Limit (%)	city Index (%)	ity Index	Method	Ret'd 0.425mm (%)	Corr'd W/C <0.425mm	Curing Time (hrs)	Description	CLAS
TP04	1.50	D	3	18.4									Yellowish brown slightly slity slightly clayey fine to medium SAND.	
TP06	1.60	D	2	9.3	23	13	10	-0.37	Wet Sieved	7 (M)	10.0*	73	Friable yellowish brown slightly gravelly sandy silty CLAY with occasional recently active roots. Gravel is fine to coarse angular to subangular brick, chert, concrete, and ceramic fragments.	CL
WS01	2.10 - 2.20	D	3	17.8	29	16	13	0.14	Wet Sleved	11 (M)	20.0*	75	Firm yellowish brown slightly gravelly sandy silty CLAY with occasional greyish brown mottling, and rare recently active roots. Gravel is fine to medium angular to subrounded chert, and quartzite, and rare brick.	CL
W502	1.40 - 1.50	D	2	25.1	36	18	18	0.39	From Natural	0 (A)		100	Soft yellowish brown sandy silty CLAY. Sand is fine.	CI
W502	2.60	D	3	37.7									Firm yellowish brown CLAY with rare bluish grey mottling.	
WS03	2.30	D	3	42.5	84	30	54	0.23	From Natural	0 (A)		24	Firm yellowish brown CLAY with rare bluish grey mottling, rare orange silt partings, and decayed roots.	
W504	1.70 - 1.80	D	3	18.0	24	16	8	0.26	From Natural	0 (A)		26	Soft yellowish brown sandy silty CLAY with occasional recently active roots. Sand is fine to medium.	CL
WS04	2.50 - 2.60	D	4	38.2									Firm dark yellowish brown CLAY with rare recently active roots.	

Method Of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS1377:Part 2:1990:3.2, 4.3

Type of Sample Key: U = Undisturbed, L = Liner, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: *Corrected water content assume material greater than 0.425mm is non-porous. See B51377: Part 2: 1990 Clause 3 Note 1.

Table Notation: Ret'd 0.425mm: (A) = Assumed, (M) = Measured

ISSUED BY SOIL PROPERTY TESTING LTD **DATE ISSUED: 18/12/2019**

Contract	Starlings, Harwich
Serial No.	36265

SUMMARY OF WATER CONTENT, LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX AND LIQUIDITY INDEX

10				Water	er Liquid	Plastic	Plasti-	Liquid-	SA	MPLE PRE	EPARATIO	N		
Borehole /Pit No.	Depth (m)	Туре	Ref.	Content (%)	Limit (%)	Limit (%)	city Index (%)	ity Index	Method	Ret'd 0.425mm (%)	Corr'd W/C <0.425mm	Curing Time (hrs)	Description	CLAS
WS04	3.40 - 3.40	D	5	45.8									Soft dark yellowish brown CLAY with rare recently active roots.	
W505	1.80 - 1.90	D	2	38.4	75	25	50	0.27	From Natural	<1% (A)		25	Soft olive yellow CLAY with occasional bluish grey and orange mottling, rare recently active roots, and fine chert gravel.	cv
WS05	2.20 - 2.30	D	3	43.2									Soft yellowish brown CLAY with rare orange silt partings.	
WS05	3.30 - 3,40	D	4	46.8									Soft yellowish brown CLAY with rare orange silt partings.	
												45		
3								12						

Method of Test:

Method Of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:4.2

Type of Sample Key:

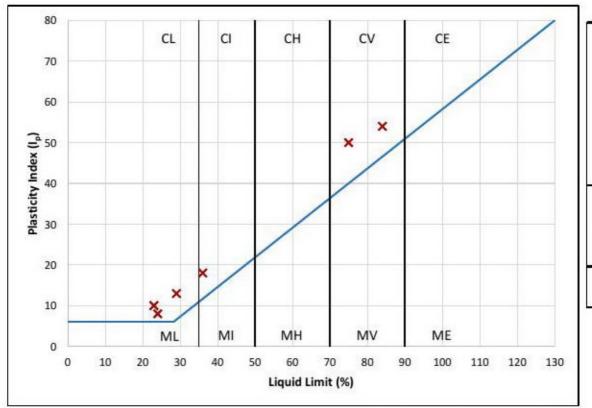
BS EN ISO: 17892-1: 2014 & BS1377:Part 2:1990:3.2, 4.3 BS EN ISO: 17892-1: 2014 & BS1377:rait 2.1390.3.2, 4.3

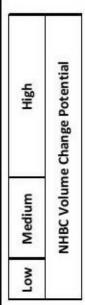
U = Undisturbed, L = Liner, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments:

Table Notation: Ret'd 0.425mm: (A) = Assumed, (M) = Measured

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 18/12/2019




Contract Starlings, Harwich

Serial No. 36265

PLOT OF PLASTICITY INDEX AGAINST LIQUID LIMIT USING CASAGRANDE CLASSIFICATION CHART

		Plastici	ity	
Low	Medium	High	Very High	Extremely High

Plasticity Chart BS5930: 2015: Figure 8

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS1377: Part 2: 3.2, 4.3, 5.3, 5.4

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD **DATE ISSUED: 18/12/2019**

Contract Starlings, Harwich Serial No. 36265 DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND **DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX** Borehole Water Depth Sample / Pit No. Content Description Remarks Type Reference (W) % m Friable yellowish brown slightly gravelly sandy silty CLAY with **TP06** 1.60 2 D 9.3 occasional recently active roots. Gravel is fine to coarse angular to subangular brick, chert, concrete, and ceramic fragments. **PREPARATION** Liquid Limit 23 % Method of preparation Wet sieved over 0.425mm sieve Plastic Limit 13 % Sample retained 0.425mm sieve 7 % Plasticity Index 10 % (Measured) 10.0 % Liquidity Index Corrected water content for material passing 0.425mm -0.37Sample retained 2mm sieve (Measured) 3 % NHBC Modified (I'p) 9 % 73 hrs Clay Content Derived Activity Curing time Not analysed Not analysed 70 C=CLAY CL CI CH CV CE 60 BC Volume Change Potential High 50 Plasticity Index 40 % Medium 30 (lp) 20 WO. 10 × M=SILT MV ME ML MI MH 0 **Liquid Limit %** 120 70 100

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

30

20

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.3, 5.3, 5.4

40

U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter Type of Sample Key:

50

Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1 Comments:

60

80

90

110

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

Note: Modified Plasticity Index I'p = Ip x (% less than 425microns/100)

0

10

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 18/12/2019

Contract Starlings, Harwich Serial No. 36265 DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND **DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX** Borehole Water Depth Sample / Pit No. Content Description Remarks Type Reference (W) % m Firm yellowish brown slightly gravelly sandy silty CLAY with occasional 2.10 -WS01 3 17.8 D greyish brown mottling, and rare recently active roots. Gravel is fine to 2.20 medium angular to subrounded chert, and quartzite, and rare brick. **PREPARATION** Liquid Limit 29 % Method of preparation Wet sieved over 0.425mm sieve Plastic Limit 16 % Sample retained 0.425mm sieve Plasticity Index 13 % (Measured) 11 % 20.0 % Liquidity Index 0.14 Corrected water content for material passing 0.425mm Sample retained 2mm sieve (Measured) 4 % NHBC Modified (I'p) 12 % 75 hrs Clay Content Derived Activity Curing time Not analysed Not analysed 70 C=CLAY CL CI CH CV CE 60 BC Volume Change Potential High 50 Plasticity Index 40 % Medium 30 (lp) 20 WO. 10 M=SILT MV ME ML MI MH 0

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

30

20

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.3, 5.3, 5.4

40

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

50

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

60

70

80

90

100

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

Note: Modified Plasticity Index I'p = Ip x (% less than 425microns/100)

0

10

Liquid Limit %

120

110

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 18/12/2019

Contract Starlings, Harwich Serial No. 36265 DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX Borehole Water Depth Sample / Pit No. Content Description Remarks Type Reference (W) % m 1.40 -WS02 D 2 25.1 Soft yellowish brown sandy silty CLAY. Sand is fine. 1.50 **PREPARATION** Liquid Limit 36 % Method of preparation From natural Plastic Limit 18 % Sample retained 0.425mm sieve 0 % Plasticity Index 18 % (Assumed) Corrected water content for material passing 0.425mm Liquidity Index 0.39 Sample retained 2mm sieve (Assumed) 0 % NHBC Modified (I'p) n/a Curing time 100 hrs Clay Content Derived Activity Not analysed Not analysed 70 C=CLAY CL CI CH CV CE 60 NHBC Volume Change Potential High 50 Plasticity Index 40 % Medium (Ip) 30 20 WO. 10 M=SILT MV ME ML MI MH 0 **Liquid Limit %** 0 10 20 30 40 50 60 70 80 90 100 110 120

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.3, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 18/12/2019

Contract Starlings, Harwich Serial No. 36265 DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX Borehole Water Depth Sample / Pit No. Content Description Remarks Type Reference (W) % m Firm yellowish brown CLAY with rare bluish grey mottling, rare orange WS03 2.30 3 42.5 D silt partings, and decayed roots. **PREPARATION** Liquid Limit 84 % Method of preparation From natural Plastic Limit 30 % Sample retained 0.425mm sieve 0 % Plasticity Index 54 % (Assumed) Corrected water content for material passing 0.425mm Liquidity Index 0.23 Sample retained 2mm sieve (Assumed) 0 % NHBC Modified (I'p) n/a Curing time 24 hrs Clay Content Derived Activity Not analysed Not analysed 70 C=CLAY CL CI CH CV CE 60 NHBC Volume Change Potential High X 50 Plasticity Index 40 % Medium (Ip) 30 20 WO. 10 M=SILT MV ME ML MI MH 0 **Liquid Limit %** 0 10 20 30 40 50 60 70 80 90 100 110 120

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.3, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 18/12/2019

Contract Starlings, Harwich Serial No. 36265 DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY INDEX AND LIQUIDITY INDEX Borehole Water Depth Sample / Pit No. Content Description Remarks Type Reference (W) % m 1.70 -Soft yellowish brown sandy silty CLAY with occasional recently active WS04 D 3 18.0 roots. Sand is fine to medium. 1.80 **PREPARATION** Liquid Limit 24 % Method of preparation From natural Plastic Limit 16 % Sample retained 0.425mm sieve 0 % Plasticity Index 8 % (Assumed) Corrected water content for material passing 0.425mm Liquidity Index 0.26 Sample retained 2mm sieve (Assumed) 0 % NHBC Modified (I'p) n/a Curing time 26 hrs Clay Content Derived Activity Not analysed Not analysed 70 C=CLAY CL CI CH CV CE 60 NHBC Volume Change Potential High 50 Plasticity Index 40 % Medium (Ip) 30 20 WO. 10 M=SILT MV ME ML MI MH 0 **Liquid Limit %** 0 10 20 30 40 50 60 70 80 90 100 110 120

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.3, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 18/12/2019

Contract		Starlir	ngs, Harwi	h						
Serial No.		36265								
		DET					9	AND PLASTIC LIMIT A	ND	
Borehole / Pit No.	epth		Sample	Water Content Description						ks
W/S05	m 1.80 - 1.90	D	Reference 2	(W) % 38.4	Soft olive yel rare recently					
	PREPARATION Liquid Limit									75 %
Method of p	orepa	aration		Fron	natural/	gravel picke	d out by hand	Plastic Limit		25 %
Sample reta	ined	0.425	mm sieve	(Assun	ned)		0 %	Plasticity Index		50 %
Corrected w	/ater	conte	nt for mate	rial passing	g 0.425mn	n		Liquidity Index		0.27
Sample reta	ined	2mm	sieve	(Assun	ned)		<1 %	NHBC Modified (I'p)		n/a
Curing time			25	hrs	Clay Co	ontent No	t analysed	Derived Activity	Not a	nalysed
C=CLAY		70 60 50		CL	СІ	СН	cv	CE	High	Change Potential
Plasticity Inc	dex	40							Ε	10.75.25
(lp)		30							Medium	NHBC Volume
		10							Low	~
M=SILT		0	10 2	ML 0 30	MI 40 5	MH 0 60	MV 70 80	ME 90 100 110 12	Liquid	Limit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.3, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments:

Appendix E

Gas monitoring results & calibration certificates

Title: GROUND INVESTIGATION REPORT
Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

Ground Gas Monitoring

60275 - Starlings, Milton Road, Harwich

Date: 13/01/2020 Weather: Cold, sunny, dry, windy Instrument No: 10820 / MiniRAE 2000 Engineer: MB

Exploratory Hole	CO ₂ Conc. (% by volume)		(% by (% by		O₂ Conc. (% by volume)	Length of monitoring (mins)	VOC Conc. (ppm)	Flow Rate (I/hr)	Atmospheric Pressure (mb)	Standing Water Level	Depth to base (m bgl)	Time of Reading	Remarks
	Р	S	Р	S	s					(m bgl)			
WS03	1.7	1.6	0.0	0.0	10.5	10	0.0	0.0	998	1.39	4.97	10:00	DP=0, LEL=0
WS04	1.9	1.9	0.0	0.0	16.2	08	0.0	0.0	1004	1.82	2.91	10:50	DP=0, LEL=0
WS05	1.2	0.7	1.2	0.0	19.7	10	0.0	0.0	1002	2.10	4.96	10:20	DP=0, LEL=0

P = Peak, S = Steady, DP = Differential Pressures, LEL = Lower Explosive Limit

Atmospheric Pressure 13/01/2020 (World Weather Online): 12am: 1020mb, 3am: 1017mb, 6am: 1016mb, 9am: 1013mb, 12pm: 1009mb, 3pm: 1004mb, 6pm: 999mb.

TEST DATE AND	CONDITIONS
Date	27/09/19
Atmospheric Pressure	982 mB
Ambient Temperature	21.5 °C
Environics Serial No.	5089

GFM430 Final Inspection & Calibration Check Certificate

Customer	Richard Jackson Ltd
Certificate Number	121289
Order Number	323968

Serial Number	10820
Software Version	G430-00.0024/0013

Recalibration DUE Date 27/09/20

Instrument Checks										
Keyboard		1	Display Contrast	- ·						
Pump Flow In	400	Accept > 200 cc/min	Pump Flow @ -200mB	250	Accept > 200 cc/min					
Clock Set / Running		1	Labels Fitted	1						

			Gas Checks	10000			
	CH .		CO 2		02	-	
	Instrument Gas	True Gas	Instrument Gas	True Gas	Instrument Gas	True Gas Value %	
37.	Readings %	Value %	Readings %	Value %	Readings %		
Sensor	60	60	40.7	40	20.9	20.9	
# 200	Accept ±3.0	00	Accept ±3.0	40	Accept ±0.5	20.9	
	5	- 5	5.1	-	6	6	
5 0	Accept ±0.3	3	Accept ±0.3	5	Accept ±0.3		
Zero Reading	0	0	0	0	0		
100% N2	Accept ±0.0	0	Accept ±0.0	U	Accept ±0.1	0	

		Pressur	e Checks				
Atmos	pheric Pressure [AP]	Static Pressu	ire [SP] (m	B)			
Current Atmospheric	Instrume	nt Atmospher	ic		Instrument Pressure		
Pressure (mB)	Pressure	Reading (mB)	- Applied Pressure (mB)	(mB)		
All Ports	Open Parts	981	Accept ±2.0	0.0mB	N/A	Accept ±0.0	
AP Port (Internal)	+800 mB	800	Accept ±5.0	+50mB	N/A	Accept ±2.0	
AP Port (Internal)	+1200mb	1200	Accept ±5.0	-100mB	N/A	Accept ±2.0	

		Flow	Checks		
Borehole Flow			Differential Pressure		
Applied Reading (1/h)	Instrument Reading (1/h)		Applied Pressure (Pa)	Instrument Reading (Pa)	
-30	-29.7	Accept ±3.0	-267	-263	Accept ±50
-3	-3	Accept ±1.0	-13	-13	Accept ±6.0
0	0	Accept ±0.0	0	0	Accept ±0.5
3	3	Accept ±0.5	13	13	Accept ±3.0
30	29.4	Accept ±3.0	276	270	Accept ±50
60	59.1	Accept ±6.0	816	809	Accept ±130
90	89.4	Accept ±9.0	1612	1620	Accept ±250

Temperature Checks				
Calibration Temperature	to Atalya			
Applied Temperature ⁰ C	pplied Temperature ⁰ C			
-10	-10	Accept ±2.0		
0	0	Accept ±1.0		
30	30	Accept ±1.0		
60	60	Accept ±1.0		
100	100	Accept ±1.0		

Technician:	
Jack Rutland	


Date Tested:	
30/09/19	

The instrument identified by the serial number stated above has been tested by Gas Data personnel for calibration accuracy on the date and under the ambient conditions stated. Gas Data Ltd internal BS EN ISO9001:2015 compliant workshop procedures were followed to apply known calibration lest gases, gas flow rates, pressures and temperatures of the values stated. The results displayed on the instrument at each stage are recorded above.

Gas Data Ltd is certified to BS EN ISO9001:2015. Certificate NQA 8374. Valid until 21/03/2022

TEST DATE AND CONDITIONS

Date 27.9.19
Atmospheric Pressure 982 mB
Ambient Temp 21.5 °C
Environics Serial No. 5889

GFM430 -1 OUTWARD INSPECTION & QUALITY CHECK SHEET

		INSTRUMENT DETAILS	
SO Number	Instrument Typ	e Instrument Serial Number + SW Version	Job Number(s)
323 968	GFM430	10820 G43D-24/13	121289
Calibration Tec	hnician	•••••	Date 27:9./9
nspection Tech	nician	*****	Date 30.9.19

	INSTRUMENT CHECKS	Pass (P), Fail (F) or not applicable (NA)	INSTRUMENT PACKING LIST	Tick if included
Function	Dust Caps Fitted	P	Instrument	
Tests	Keyboard Test (All Keys)	P	P Leather Case	
	Backlight	P	Instrument Strap	1
	Clock Set / Running	P	AC Battery Charger (UK)	×
	Comms Test	P.	AC Battery Charger (EURO)	×
	Pump Flow Test (In & Out)	P	AC Battery Charger (US)	×
	Overall Leak Test (30mB)	n/a	AC Battery Charger (AUS)	K
	Battery Charge Test	P	Hard Carry Case	X
	Service Date set to?	27.9.20	Gas Sample Tube - (new issue)	/
Channel	Data Logging Enabled?	P	Flow Sample Tube - (new issue)	
Test	Verify CH4/LEL	P	Spares Pot	X
	Verify CO2	P	Allen Key	×
	Verify O2	P	Temperature Probe	8
	Verify LEL	φ'	Vane Anemometer	X
	Verify 1st Option Gas	N/A	USB Cable	
	Verify 2 nd Option Gas	NA	USB Memory stick	X
	Verify 3rd Option Gas	11/A.	SiteMan Software Ver 4:15	×
	Verify 4 th Option Gas	ML	Internal Filter Pack Qty	x
	Verify Atmospheric pressure	P	External Filter Pack Qty	X
	Verify static pressure	11/4	Field Guide	×
	Verify differential pressure	P	Operation Manual (hard copy)	X
	Verify flow	P	Extra Items:	1.4
	Verify temperature probe input	0	1	
	Verify vane anemometer input	P		
DataBase	Jobcard(s) completed and signed	P		
Checks	Jobcard(s) booked off database	P		
	Calibration certificate completed	1		
	Complete & print QI record	n/a	Comments:	
Label	No. of Calibration label fitted	GDC 08727		
Checks	Warranty label fitted	P		
H2S Range	H2S Range from Sales Order	NA ppm	1	
	H2S Range from Cal Cert	N/A ppm		
	Over-range value correct?	WA		

CERTIFICATE OF CALIBRATION MiniRAE 2000

CALIBRATION CERTIFICATE NO:

66861

ISSUED BY:

SHAWCITY LIMITED

DATE:

08/10/2019

APPROVED SIGNATORY

NAME:

Dave Godfrey

CUSTOMER:

Richard Jackson Ltd

INSTRUMENT:

MiniRAE 2000

SERIAL NUMBER:

110-006049

CALIBRATION METHOD: CM03

AMBIENT CONDITIONS: 20°C ± 2°C and 50% (± 20%) RH

Prior to calibration the instrument was allowed to stabilise in the laboratory for at least 30 minutes.

The instrument was calibrated by exposing the sensor to known values of gas concentrations.

All gases were sampled through the complete probe and in line filter, where applicable.

The reference value is that generated by the certified source and the indicated value is that measured by the instrument

CALIBRATION RESULTS

GAS	LOT No	REF. VALUE	INDICATED VALUE	
Isobutylene	WO216315-1	100 ppm	100 ppm	

COMMENTS:

The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor of k=2.

This provides a level of confidence of uncertainty of approximately 95%.

The uncertainty of measurement is ±2 %.

The results indicate that the instrument conforms to the applicable parts of the published specification.

Appendix F

Limitations of use

Title: GROUND INVESTIGATION REPORT
Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

Limitations of Use

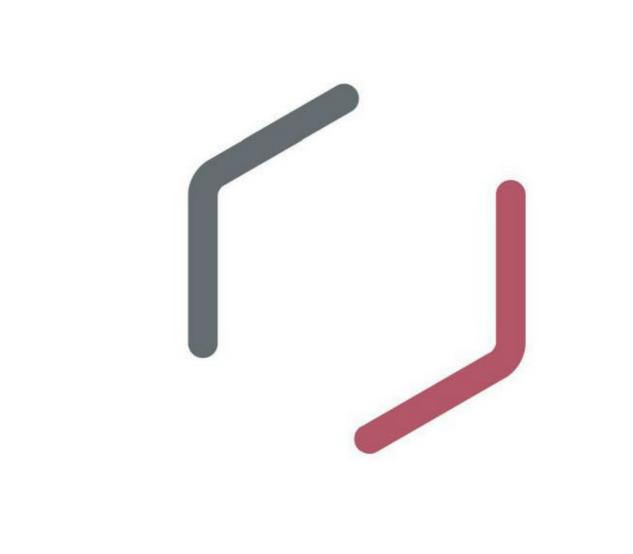
This report is based on the results of the exploratory boreholes, the laboratory testing carried out on samples recovered from those boreholes and on details of the scheme provided by the Client.

This report has been prepared for the benefit of Tendring District Council, and its contents should not be relied upon by others without the written authority of Richard Jackson Ltd. If any unauthorised third party makes use of this report they do so at their own risk and Richard Jackson Ltd owes them no duty of care or skill.

All information provided by others is taken as being in good faith as being accurate, but Richard Jackson Ltd cannot, and does not, accept any liability for the detailed accuracy, errors or omissions in such information.

Subsoils are by their nature hidden from view and no investigation can be exhaustive to the extent that all soil conditions are revealed. Conditions may well be present beneath the site which was not evident from the investigations carried out.

Geological data, with the exception of geological maps held by Richard Jackson Ltd, Ordnance Survey maps and aerial photographs have not been inspected, nor has any other data relating to site conditions past or present, or any information regarding underground services, other than as indicated.


Groundwater levels can be subject to considerable seasonal variations, and the conditions encountered in the exploratory holes may not reflect long-term conditions.

There can be no guarantee that the samples analysed represent the highest concentrations of contamination present beneath the site. The chemical analysis results have been assessed to standards appropriate at the time of investigation.

Unless a greater period of retention of samples is agreed, it is our normal practice to discard all samples one month after submission of our final report.

Title: GROUND INVESTIGATION REPORT
Project: Starlings, Milton Road, Harwich, Essex

Client: Tendring District Council

