



# **Emission measurements at cremation installation Geleen**

DFW

October 9, 2019





# Responsibility

Title

Emission measurements at cremation installation Geleen

| Client                     | DFW Europe B.V.                          |
|----------------------------|------------------------------------------|
| Project leader             | Paul Zijderveld                          |
| Author(s)                  | Paul Zijderveld                          |
| Second reader              | Wim Meijer                               |
| Execution of measuring and | John van Rijn and Boudewijn van den Berg |
| inspection activities      |                                          |
| Project number             | 1271511                                  |
| Number of pages            | 48                                       |
| Date                       | October 9, 2019                          |

# Colophon

Tauw bv Handelskade 37 P.O. Box 133 7400 AC Deventer T +31 57 06 99 911 E info.deventer@tauw.com





# **Table of contents**

| Summary  |                                                         |
|----------|---------------------------------------------------------|
| 1 Intro  | duction7                                                |
| 1.1      | Client details7                                         |
| 1.2      | Purpose of the investigation7                           |
| 1.3      | Changes compared to the previous version7               |
| 2 Desi   | gn and implementation of the research8                  |
| 2.1      | mplementation8                                          |
| 2.2      | Outsourcing8                                            |
| 3 Qual   |                                                         |
| 3.1      | Deviations from the standard9                           |
| 3.2      | Blank criteria9                                         |
| 3.3      | Breakdown criteria9                                     |
| 3.4      | Leak testing10                                          |
| 4 Proc   | ess conditions                                          |
| 5 Resu   | lts                                                     |
| 5.1      | Results measurement plane assessment12                  |
| 5.2      | Results blank and breakdown                             |
| 5.3      | Results                                                 |
| 6 Revi   | ew16                                                    |
|          |                                                         |
|          | 1 Explanation of abbreviations and terms used           |
| ••       | 2 Overview of the measurement and analysis methods used |
| Appendix | 3 Summary measuring plane description and evaluation    |
| Appendix | 4 Measurement uncertainties                             |
| Appendix | 5 Reporting limits                                      |
| Appendix | 6 Copy of the Accreditation Certificate                 |
| Appendix | 7 Overview of waste gas characteristics                 |
| Appendix |                                                         |
| Appendix | 9 Results blancs and doorslag                           |
| Appendix | 10 Certificates of analysis                             |





# Summary

In assignment of DFW Europe B.V. as part of the completion of the electric cremator with abatement system (DFW Electric), Tauw conducted an emission study at cremation installation Geleen.

The measurements were performed on 20 and 21 June 2019.

The aim of the research is to test the measured values against emission limit values. A distinction is thereby made to the limit values according to Dutch Regulations. These limit values have been drawn up for gas-fired cremation installations, where the emissions are based on 11% O<sub>2</sub>.

In Germany, the 27 BImSchV sets requirements for electric cremation installations. The emission limit values from this directive are based on 15%  $O_2$ . In the UK the PG5 sets requirements for electric cremation installations based on 15%  $O_2$ .

This report tests against the general requirements from the Dutch emission regulations and the requirements from 27 BImSch and PG5.

The following components are involved in the emission study:

Dust Mercury (Hg) Dioxins CO HCI SO<sub>2</sub> NO<sub>x</sub>

The tables below show the result of the investigation with a check against the requirements of the German BImSchV , PG5 from the UK and the Dutch emission Regulations.





### Table 0.1 Testing against the emission limit values 27 BlschV

| Component | Unit                                      | Average<br>concentration | Value to be<br>Reviewed<br>corrected for<br>uncertainty | Emission<br>Limit value<br>27 BlmSchV | Review    |
|-----------|-------------------------------------------|--------------------------|---------------------------------------------------------|---------------------------------------|-----------|
| dust      | [mg/m <sup>3</sup> <sub>o 15 vol%</sub> ] | 0,6                      | < 0,5                                                   | 10                                    | Satisfies |
| dioxins   | [ng/m <sup>3</sup> o 15 vol%]             | < 0,01                   | n.a.1                                                   | 0,1                                   | Satisfies |
| Hg        | [mg/m <sup>3</sup> o 15 vol%]             | < 0,002                  | n.a.1                                                   | n.a.                                  | Satisfies |
| СО        | [mg/m³ <sub>o 15 vol%</sub> ]             | 18                       | 16                                                      | 50                                    | Satisfies |

| Component | Unit                          | Average<br>concentration | Value to be<br>Reviewed<br>corrected for<br>uncertainty | Emission<br>Limit value<br>PG5 | Review    |
|-----------|-------------------------------|--------------------------|---------------------------------------------------------|--------------------------------|-----------|
| dust      | [mg/m <sup>3</sup> o 15 vol%] | 0,6                      | < 0,5                                                   | 20                             | Satisfies |
| dioxins   | [ng/m³ <sub>o 15 vol%</sub> ] | < 0,01                   | n.a.1                                                   | 0,1                            | Satisfies |
| Hg        | [ug/m³ <sub>o 15 vol%</sub> ] | < 0,002                  | n.a.1                                                   | 50                             | Satisfies |
| СО        | [mg/m <sup>3</sup> o 15 vol%] | 18                       | 16                                                      | 100                            | Satisfies |
| СО        | [g/h]                         | 18                       | 18                                                      | 150*/300**                     | Satisfies |
| HCI       | [mg/m <sup>3</sup> o 15 vol%] | 3,5                      | 2,6                                                     | 30                             | Satisfies |

\*For the first hour of cremation for 95 % of the cremations

\*\*For the first hour of cremation for 100 % of the cremations

| Component                           | unit         | Maximal<br>average<br>massflow | Value to be<br>reviewed<br>corrected for<br>uncertainty | Emission<br>Limit value<br>Dutch regulations<br>(massflow limit MFL) | Review |
|-------------------------------------|--------------|--------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|--------|
| dust                                | g/h          | < 0,6                          | < 0,5                                                   | 200                                                                  | < MFL  |
| dioxins                             | mg TEQ /year | < 1 E⁻⁵                        | < 1 E <sup>-5</sup>                                     | 20                                                                   | < MFL  |
| Hg                                  | g/h          | 0,002                          | 0,002                                                   | 0,25                                                                 | < MFL  |
| HCI                                 | g/h          | 2,5                            | 2,5                                                     | 15                                                                   | < MFL  |
| SO <sub>2</sub>                     | g/h          | 4,5                            | 4,5                                                     | 2000                                                                 | < MFL  |
| NO <sub>x</sub> als NO <sub>2</sub> | g/h          | 168                            | 168                                                     | 2000                                                                 | < MFL  |

### Table 0.3 Dutch emission regulations: massflow emission

If there is an exceedance of the mass flow limit, a concentration requirement is applicable. A concentration requirement always applies for dust.

<sup>&</sup>lt;sup>1</sup> Not applicable because average is lower than reporting limit





| Component | Unit                                      | Average<br>concentration | Value to be<br>reviewed | Emission<br>Limit value<br>Dutch<br>regulations | Review    |
|-----------|-------------------------------------------|--------------------------|-------------------------|-------------------------------------------------|-----------|
| dust      | [mg/m <sup>3</sup> <sub>o 15 vol%</sub> ] | 0,6                      | < 0,5                   | 20                                              | Satisfies |
| Component | Unit                                      | Average<br>concentration | Value to be<br>reviewed | Emission<br>Limit value<br>Dutch<br>regulations | Review    |
| Dust      | [mg/m <sup>3</sup> o 11 vol%]             | 1,1                      | < 0,5                   | 20                                              | Satisfies |

Table 0.3 Activity Decree concentration review at limit value at 15 %  $O_2$  and 11 %  $O_2$ 

The investigation shows that on the measurement days there is no exceeding of the limit values from the German 27 BImSchV, the PG5 from the UK and the Dutch emission regulations.





# **1** Introduction

In assignment of DFW Europe B.V. as part of the completion of the electric cremator with abatement system (DFW Electric), Tauw conducted an emission study at cremation installation Geleen.

The measurements were performed on 20 and 21 June 2019.

# 1.1 Client details

| Company Name:   | DFW Europe B.V.            |
|-----------------|----------------------------|
| Address:        | Dulleweg 43                |
|                 | 1721 PM Broek op Langedijk |
| Contact person: | Desiree van den Haak       |

## **1.2** Purpose of the investigation

The aim of the research is to test the measured values against emission limit values. A distinction is thereby made to the limit values from the Dutch emission regulations. These limit values have been drawn up for gas-fired cremators, where the emissions are based on 11% O<sub>2</sub>.

In Germany, the 27 BImSchV sets requirements for electric cremation installations. The emission limit values from this directive are based on  $15\% O_2$ .

In the UK the PG5 sets requirements for electric cremation installations based on 15% O2.

This report tests against the general requirements from the Dutch emission regulations and the requirements from the German 27 BImSch and the PG5 from the UK.

The following components are involved in the emission study:

Dust Mercury (Hg) Dioxins CO HCI SO<sub>2</sub> NO<sub>x</sub>

The abbreviations and terms used are explained in Appendix 1

## 1.3 Changes compared to the previous version

This is not applicable as this is a first version.



# 2 Design and implementation of the research

This chapter describes the design of the study and describes the performance of the measurements.

## 2.1 Implementation

Table 2.1 indicates which components are involved in the study. The measurements were taken over 3 cremation. At each cremation two half hour measurements are done.

| Table 2.1 Measuring programme      |                    |     |                         |     |  |  |  |  |
|------------------------------------|--------------------|-----|-------------------------|-----|--|--|--|--|
| Component                          | Measurement method | RvA | Analysis method         | RvA |  |  |  |  |
| Flow                               | NEN-EN-ISO 16911-1 | Q   | -                       | -   |  |  |  |  |
| Sample gasconditioning             | NEN-ISO 10396      | Q   | -                       | -   |  |  |  |  |
| Review plane                       | NEN-EN 15259       | Q   | -                       | -   |  |  |  |  |
| Temperature                        | ISO 8756           | Q   | -                       | -   |  |  |  |  |
| Moisture                           | NEN-EN 14790       | Q   | -                       | -   |  |  |  |  |
| O <sub>2</sub>                     | NEN-EN 14789       | Q   | -                       | -   |  |  |  |  |
| HCI                                | NEN-EN 1911        | Q   | EN-ISO 10304-1          | Q   |  |  |  |  |
| Dioxins and furans (PCDD /         | NEN-EN 1948-1      | Q   | EN 1948-2/3             | Q   |  |  |  |  |
| PCDF)                              |                    |     |                         |     |  |  |  |  |
| со                                 | NEN-EN 15058       | Q   | -                       | -   |  |  |  |  |
|                                    |                    | 0   | destruction: own method | Q   |  |  |  |  |
| Hg                                 | NEN-EN 13211       | Q   | Analysis:EN 13211       | Q   |  |  |  |  |
| NO <sub>X</sub> as NO <sub>2</sub> | NEN-EN 14792       | Q   | -                       | -   |  |  |  |  |
| Dust                               | NEN-EN 13284-1     | Q   | -                       | -   |  |  |  |  |
| SO <sub>2</sub>                    | NEN-ISO 7935       | Q   | -                       | -   |  |  |  |  |

The implementation of the measurements is described in detail in Appendix 2.

# 2.2 Outsourcing

Analysis of the samples are outsourced to AL-West B.V. in Deventer. AL-West is accreditated for analysis of air samples by the Dutch Accreditation Council (RvA) in accordance with NEN-EN-ISO / IEC 17025. Table 2.1 indicates with a Q which laboratory operations are covered by the accreditation.





# 3 Quality

Tauw is accredited by the Accreditation Council (RvA) for performing air measurements in accordance with NEN-EN-ISO / IEC 17025. All equipment used by Tauw is calibrated and traceable to (inter) national standards. Table 2.1 indicates with a Q which transactions are covered by the accreditation. For a copy of the accreditation certificate, reference is made to Appendix 6.

# 3.1 Deviations from the standard

In this section deviations from the standard are given, indicating what the influence of this can be on the measured value. There are no deviations from the standard.

# 3.2 Blank criteria

For mercury and HCl, a field blank was taken prior to the measurement. If the results of the measurements taken are below the reporting limit of the relevant component, the analysis of the blank has no added value and this analysis will not take place. For the field blank, the concentration in the field blank may not exceed 10% of the standard emission limit value (as stated in the Activities Decree Article 5.19). If this value is exceeded, the measurement must be rejected. In the case of dust, a field blank is taken at every measurement series, per measurement location, prior to the measurements. A leakage test is also carried out during the blanking test, so that any dust present in the measuring equipment on the filter is collected. The blank filter undergoes the same treatments as the sample filters taken. The blank is not corrected. The criterion for the blank is a maximum of 10% of the emission limit value. If the emission limit value is  $\leq 5 \text{ mg} / \text{Nm}^3$  (or no emission limit value applies), the blank criterion is 0.5 mg / Nm3.This method is based on the specific accreditation protocol (SAP L001) as drawn up by the Dutch Accreditation Council (RvA) for the implementation of air emission measurements. This specific accreditation protocol (SAP L001) is published on the website of the RvA (www.rva.nl).

# 3.3 Breakdown criteria

For mercury a decisive step has been taken per partial measurement. If the measured concentration in the first impinger (s) is lower than the reporting limit, it is not necessary to analyze the breakdown and this analysis will not take place. If the analysis result is ten times higher than the detection limit, a criterion is used for breakdown (capture efficiency). The applied criterion is stated in table 3.1.

| Component        | Maximal breakdown [%] | breakdown [µg/Nm³] |
|------------------|-----------------------|--------------------|
| Hg²              | 5                     | 2                  |
| other components | 5                     | -                  |

## Table 3.1 Breakdown criteria

<sup>&</sup>lt;sup>2</sup> For mercury a percentage of 5% applies with a minimum of 2 [µg/Nm<sup>3</sup>]





In the event of breakdown, the concentration found is reported as greater than or rejected. This method is based on the specific accreditation protocol (SAP L001) as drawn up by the Dutch Accreditation Council (RvA) for the implementation of air emission measurements. This specific accreditation protocol (SAP L001) is published on the website of the RvA (www.rva.nl).

## 3.4 Leak testing

To check whether the measuring set-up is leak-tight, Tauw carries out a check for each measuring set-up prior to the measurement. Tauw uses a 2% criterion for this check, in accordance with NEN-EN 13284. No leak was found during the checks carried out prior to the measurement. The difference between the gas meter reading before and after the leak test was 0 litres.

Prior to the measurement, the sampling probe is supplied with 100 [vol .-%] nitrogen under atmospheric conditions in order to test the entire measuring system for leak-tightness. For the oxygen monitor, a maximum level of 0.2 [vol.%] Oxygen to be measured applies. The measured difference may not exceed 2%. No leak was found during the tests carried out.





# 4 **Process conditions**

Specific process conditions, which could have influenced the results of the investigation, are mentioned in this section.

The measurements were made during representative operating conditions for the electric cremator (Source: DFW). It should be noted that for the purpose of the experiment an Hg dosage has taken place by placing an ampoule containing a fixed amount of Hg.

The process times and temperature set points are as follows.

| Geleen    | Setpoints |       |       |       |       |       |              |                   |
|-----------|-----------|-------|-------|-------|-------|-------|--------------|-------------------|
| process   |           | 1     | 2     |       |       | 3     | setpoints    | temperature °C    |
| date      | start     | end   | start | end   | start | end   | Main chamber | Secundary chamber |
| 20-6-2019 | 12:20     | 14:18 | 17:08 | 18:41 |       |       | 650          | 750               |
| 21-6-2019 |           |       |       |       | 10:57 | 12:43 | 650          | 800               |





# **5** Results

The results are calculated under normalized conditions (0 [° C], 101.3 [kPa], dry waste gas, with current oxygen and an oxygen content of 15 and 11 [% by volume], respectively). It is noted that Tauw uses reporting limits, in connection with the measurement uncertainty of the measurement (see appendix 4). Lower concentrations (or detection limits) may be specified in the appendix (s).

## 5.1 Results measurement plane assessment

For the complete measuring surface assessment, reference is made to Appendix 3.

## 5.2 Results blank and breakdown

Appendix 9 shows the results of the blanks and breakdowns taken.• In none of the cases did the result of the blank give rise to rejection of the measurement• In none of the cases did the result of the breakdown lead to a report of the result as "greater than".

## 5.3 Results

The measurement results are given in the tables below. The off-gas characteristics are listed in Appendix 7. Appendix 8 shows the underlying measurement data. The analysis certificates are included in Appendix 9.





| Component                           | Unit                              | cremation 1 | cremation 2 | cremation 3 |
|-------------------------------------|-----------------------------------|-------------|-------------|-------------|
| Oven<br>Temperature                 | [oC]                              | 750         | 750         | 800         |
| Date                                | [dd-mm-jjjj]                      | 20-6-2019   | 20-6-2019   | 21-6-2019   |
| Time start                          | [hr:mm]                           | 12:20       | 17:08       | 10:57       |
| Time end                            | [hr:mm]                           | 14:18       | 18:41       | 12:43       |
| O <sub>2</sub>                      | [vol%]                            | 14,2        | 15,7        | 15,7        |
| Dust                                | [mg/Nm <sup>3</sup> ]             | 0,7         | < 0,5       | 0,5         |
|                                     | [mg/m <sup>3</sup> o 15 vol%]     | 0,6         | < 0,5       | 0,6         |
| Dioxins                             | [ng TEQ /Nm <sup>3</sup> ]        | < 0,01      | < 0,01      | < 0,01      |
|                                     | [ng TEQ/m <sup>3</sup> o 15 vol%] | < 0,01      | < 0,01      | < 0,01      |
| HCI                                 | [mg/Nm3]                          | < 0,3       | 3,1         | 1,4         |
|                                     | [mg/m <sup>3</sup> o 15 vol%]     | < 0,3       | 3,5         | 1,6         |
| Hg                                  | [mg/Nm <sup>3</sup> ]             | < 0,002     | 0,003       | < 0,002     |
|                                     | [mg/m <sup>3</sup> o 15 vol%]     | < 0,002     | 0,003       | < 0,002     |
| СО                                  | [mg/Nm <sup>3</sup> ]             | 0,4         | 11,9        | 16,0        |
|                                     | [mg/m <sup>3</sup> o 15 vol%]     | 0,3         | 13,5        | 18,1        |
| SO <sub>2</sub>                     | [mg/Nm <sup>3</sup> ]             | 4,6         | 4,2         | 4,0         |
|                                     | [mg/m <sup>3</sup> o 15 vol%]     | 4,1         | 4,7         | 4,5         |
| NO <sub>x</sub> als NO <sub>2</sub> | [mg/Nm <sup>3</sup> ]             | 139         | 93          | 147         |
|                                     | [mg/m <sup>3</sup> o 15 vol%]     | 123         | 106         | 167         |

Table 5.1 Results emission concentration measurements during 3 cremation processes at 15% O<sub>2</sub>





| Component                           | Unit                              | measurement 1 | measurement 2 | measurement 3 |
|-------------------------------------|-----------------------------------|---------------|---------------|---------------|
| Oven<br>Temperature                 | [oC]                              | 750           | 750           | 800           |
| Date                                | [dd-mm-jjjj]                      | 20-6-2019     | 20-6-2019     | 21-6-2019     |
| Time start                          | [hr:mm]                           | 12:20         | 17:08         | 10:57         |
| Time end                            | [hr:mm]                           | 14:18         | 18:41         | 12:43         |
| O <sub>2</sub>                      | [vol%]                            | 14,2          | 15,7          | 15,7          |
| Dust                                | [mg/Nm <sup>3</sup> ]             | 0,6           | < 0,5         | 0,6           |
|                                     | [mg/m <sup>3</sup> o 11 vol%]     | 0,9           | < 0,5         | 1,1           |
| Dioxins                             | [ng TEQ /Nm <sup>3</sup> ]        | < 0,01        | < 0,01        | < 0,01        |
|                                     | [ng TEQ/m <sup>3</sup> o 11 vol%] | < 0,01        | < 0,01        | < 0,01        |
| HCI                                 | [mg/Nm3]                          | < 0,3         | 3,1           | 1,4           |
|                                     | [mg/m <sup>3</sup> o 11 vol%]     | < 0,3         | 5,9           | 2,7           |
| Hg                                  | [mg/Nm <sup>3</sup> ]             | < 0,002       | 0,003         | < 0,002       |
|                                     | [mg/m <sup>3</sup> o 11 vol%]     | < 0,002       | 0,006         | < 0,002       |
| СО                                  | [mg/Nm <sup>3</sup> ]             | 0,4           | 11,9          | 16,0          |
|                                     | [mg/m <sup>3</sup> o 11 vol%]     | 0,6           | 22,6          | 30,3          |
| SO <sub>2</sub>                     | [mg/Nm <sup>3</sup> ]             | 4,6           | 4,2           | 4,0           |
|                                     | [mg/m <sup>3</sup> o 11 vol%]     | 6,8           | 7,9           | 7,5           |
| NO <sub>x</sub> als NO <sub>2</sub> | [mg/Nm <sup>3</sup> ]             | 139           | 93            | 147           |
|                                     | [mg/m <sup>3</sup> o 11 vol%]     | 205           | 176           | 279           |

Table 5.2 Results emission concentration measurements during 3 cremation processes at 11 % O<sub>2</sub>

According to the Dutch emission regulations, emissions must be presented as half-hourly averages. Reports R001-1271511V01 and R002-1271511V01 show these half-hourly resources for the components that are applicable within the activity decree (dust and Hg) with measured values based on 11% and 15% respectively.





| I able 5.1 Emission massflow        |              |                      |                      |                      |
|-------------------------------------|--------------|----------------------|----------------------|----------------------|
| Component                           | Unit         | measurement<br>1     | measurement<br>2     | measurement<br>3     |
| Oven<br>Temperature                 | [oC]         | 750                  | 750                  | 800                  |
| Date                                | [dd-mm-jjjj] | 20-6-2019            | 20-6-2019            | 21-6-2019            |
| Time start                          | [hr:mm]      | 12:20                | 17:08                | 10:57                |
| Time end                            | [hr:mm]      | 14:18                | 18:41                | 12:43                |
|                                     |              |                      |                      |                      |
| Dust                                | [g/h]        | 0,6                  | < 0,6                | 0,6                  |
| Dioxins                             | [mg(TEQ/h]   | < 1 <sup>E</sup> -05 | < 1 <sup>E</sup> -05 | < 1 <sup>E</sup> -05 |
| HCI                                 | [g/h]        | 0,32                 | 2,5                  | 1,6                  |
| Hg                                  | [g/h]        | < 0,002              | 0,002                | < 0,002              |
| со                                  | [g/h]        | 0,4                  | 9,8                  | 18,2                 |
| SO <sub>2</sub>                     | [g/h]        | 4,4                  | 3,4                  | 4,5                  |
| NO <sub>x</sub> als NO <sub>2</sub> | [g/h]        | 132                  | 76                   | 168                  |

#### Table 5.1 Emission massflow

The residence time of gases in the oven is 2.4 seconds at a flue gas flow rate of 4044 m<sup>3</sup> / h at 750 °C and an oven volume of 2.65 m<sup>3</sup>.

In accordance with the Dutch emission regulations, the following applies to a gas-fired cremator: for a good and complete combustion, the waste gases in the post-combustion chamber must have a residence time of at least 1.5 seconds.

The temperature of the flue gases must always be higher than 800 °C. For this the burner must be equipped with an automatic control. The cremation installation must continuously monitor the oxygen content and temperature because these parameters indicate whether the cremation oven is functioning properly. The oxygen content in the after-burning room must be at least 6%.

A short-term exceedance is permitted, but may not be lower than 3% and not longer than 1 minute.

Six months after commissioning and annually the proper functioning of the installation must be checked by an expert, for example an installer.

This is the cremator including the abatement installation.

This electric cremator meets the  $O_2$  requirement ( $O_2 => 13.7\%$ ) and the residence time requirement (2.4 seconds). The oven can be set at a lower temperature than a gas-fired cremator because the emissions of dioxins, dust, Hg, HCl, CO, NO<sub>x</sub> meet the Dutch, UK and German limit values.





# 6 Review

In this chapter the measurement results presented in chapter 5 are tested against the emission limit values for the relevant components from the German BlmschV, the UK PG5 and the Dutch emission regulations.

The 95% confidence interval is calculated for the average measured emission concentration per emission component. The lower value of the 95% confidence interval (value to be tested) has been compared with the emission limit values. Appendix 4 provides an explanation of the measurement inaccuracies used by Tauw.

| Table 6.1 7 | Testing against the | emission limit | values 27 BlschV |
|-------------|---------------------|----------------|------------------|
| Table ett 1 | oothig againot the  |                | Valabo ET Bioont |

| Component | Unit                                      | Average concentration | Value to be<br>reviewed | Emission<br>Limt value<br>27 BlmSchV | Review    |
|-----------|-------------------------------------------|-----------------------|-------------------------|--------------------------------------|-----------|
| Dust      | [mg/m <sup>3</sup> <sub>o 15 vol%</sub> ] | 0,6                   | < 0,5                   | 10                                   | Satisfies |
| Dioxins   | [ng/m³ <sub>o 15 vol%</sub> ]             | < 0,01                | na. <sup>3</sup>        | 0,1                                  | Satisfies |
| Hg        | [mg/m <sup>3</sup> o 15 vol%]             | < 0,002               | na. <sup>3</sup>        | na                                   | Satisfies |
| СО        | [mg/m³ <sub>o 15 vol%</sub> ]             | 18                    | 16                      | 50                                   | Satisfies |

| Component | Unit                                      | Average<br>concentration | Value to be<br>Reviewed<br>Corrected for<br>uncertainty | Emission<br>Limt value<br>PG5 | Review    |
|-----------|-------------------------------------------|--------------------------|---------------------------------------------------------|-------------------------------|-----------|
| Dust      | [mg/m <sup>3</sup> o 15 vol%]             | 0,6                      | < 0,5                                                   | 20                            | Satisfies |
| Dioxins   | [ng/m³ <sub>o 15 vol%</sub> ]             | < 0,01                   | n.a. <sup>3</sup>                                       | 0,1                           | Satisfies |
| Hg        | [ug/m <sup>3</sup> <sub>o 15 vol%</sub> ] | < 0,002                  | n.a. <sup>3</sup>                                       | 50                            | Satisfies |
| со        | [mg/m <sup>3</sup> o 15 vol%]             | 18                       | 16                                                      | 100                           | Satisfies |
| со        | [g/h]                                     | 18                       | 18                                                      | 150*/300**                    | Satisfies |
| HCI       | [mg/m <sup>3</sup> o 15 vol%]             | 3,5                      | 2,6                                                     | 30                            | Satisfies |

\*For the first hour of cremation for 95 % of the cremations

\*\*For the first hour of cremation for 100 % of the cremations

<sup>&</sup>lt;sup>3</sup> Not applicable because average is lower than reporting limit





### Table 6.3 Dutch emission regulations: massflow

| Component                           | unit         | Maximal<br>average<br>massflow | Value to be<br>reviewed | Emission<br>Limit value<br>Dutch emission<br>regulations<br>(massflow limit<br>MFL) | Review |
|-------------------------------------|--------------|--------------------------------|-------------------------|-------------------------------------------------------------------------------------|--------|
| Dust                                | g/h          | < 0,6                          | < 0,5                   | 200                                                                                 | < MFL  |
| Dioxins                             | mg TEQ /year | < 1 E <sup>-5</sup>            | < 1 E <sup>-5</sup>     | 20                                                                                  | < MFL  |
| Hg                                  | g/h          | 0,002                          | 0,002                   | 0,25                                                                                | < MFL  |
| HCI                                 | g/h          | 2,5                            | 2,5                     | 15                                                                                  | < MFL  |
| SO <sub>2</sub>                     | g/h          | 4,5                            | 4,5                     | 2000                                                                                | < MFL  |
| NO <sub>x</sub> als NO <sub>2</sub> | g/h          | 168                            | 168                     | 2000                                                                                | < MFL  |

If there is an exceedance of the mass flow limit, a concentration requirement is applicable. A concentration requirement always applies for dust.

| Component | Unit                                      | Average concentration | Value to be<br>reviewed | Emission<br>Limit value<br>Activitity Decree | Review    |
|-----------|-------------------------------------------|-----------------------|-------------------------|----------------------------------------------|-----------|
| Dust      | [mg/m <sup>3</sup> <sub>o 15 vol%</sub> ] | 0,6                   | < 0,5                   | 20                                           | Satisfies |
| Component | Unit                                      | Average concentration | Value to be<br>reviewed | Emission<br>Limit value<br>Activitity Decree | Review    |
| Dust      | [mg/m <sup>3</sup> o 11 vol%]             | 1,1                   | < 0,5                   | 20                                           | Satisfies |

**Table 6.4** Dutch emission regulation: concentration review at limit value at 15 %  $O_2$  and 11 %  $O_2$ 

The investigation shows that on the measurement days there is no exceeding of the limit values from the 27 BImSchV, the PG5 and the Dutch emission regulations.





# Appendix 1 Explanation of abbreviations and terms used

| abbreviation    | Explanation                                                                                  |
|-----------------|----------------------------------------------------------------------------------------------|
| BI              | Confidence interval                                                                          |
| °C              | Degrees Celsius                                                                              |
| dd              | Day                                                                                          |
| Dh              | Hydraulic diameter (4 x surface measuring surface / circumference measuring surface)         |
| EGW             | Emission limit value                                                                         |
| jijj            | Year                                                                                         |
| К               | Kelvin                                                                                       |
| m <sup>3</sup>  | Cubic meter (operating conditions)                                                           |
| m³₀             | Cubic meter, based on standard conditions; 0 [° C], 101.3 [kPa] with dry waste gas corrected |
|                 | for plant specific oxygen content                                                            |
| mg              | Milligram                                                                                    |
| mm              | Minute / month                                                                               |
| n.a.            | Not applicable                                                                               |
| Nm <sup>3</sup> | Cubic meter, based on standard conditions; 0 [° C], 101.3 [kPa] with dry waste gas (actual   |
|                 | oxygen)                                                                                      |
| O <sub>2</sub>  | Oxygen                                                                                       |
| Ра              | Pascal                                                                                       |
| Q               | Operation falls under RvA accreditation                                                      |
| RvA             | Dutch Accreditation Council                                                                  |
| hr / h          | Hour                                                                                         |
| VKL             | Association of Air Measurement Quality                                                       |
| vol%            | Volume percent                                                                               |







# Appendix 2 Overview of the measurement and analysis methods used

# Sample conditioning

| Determination method | NEN-ISO-10396, heated lance (titanium) with heated take-off filter<br>and heated measuring gas pipe (inner pipe: PTFE). The system is<br>set to a temperature of 180 ° C. The measuring gas line is<br>connected to a cooler (approximately 4 ° C) |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Connection to stack  | Standard flange                                                                                                                                                                                                                                    |
| Tauw.Leak testing    | Prior to the measurements, a leak test was performed in accordance with standard Tauw working instructions.                                                                                                                                        |

## Nitrogen oxides (NOx)

| Nill Ogen Oxides (NOX) |                                                                            |
|------------------------|----------------------------------------------------------------------------|
| Determination method   | NEN-EN 14792                                                               |
| Principle              | Chemoluminescence                                                          |
| Interferents:          | CO <sub>2</sub> (> 30 [vol%]), this is not applicable here                 |
|                        | H <sub>2</sub> O (no influence on measured value due to the use of cooler) |
|                        | $NH_3 0.1\%$ of the range at 20 mg / $Nm^3 NH_3$                           |
| Analyzer type          | 42C HL                                                                     |
| Manufacturer           | Thermo Electron                                                            |
| Converter efficiency   | > 95%                                                                      |
| Response time          | <200 [s]                                                                   |
| Datalog                | frequency 60 [s]                                                           |
| Calibration            | The monitors are calibrated with an (inter) nationally traceable           |
|                        | gas.                                                                       |
| Check with control gas | Prior to the measurements, the monitor was checked with control            |
|                        | gases (zero and span). The gases used by Tauw can be traced to             |
|                        | (inter) national standards.                                                |
| Drift                  | After the measurement, the monitor was checked with control                |
|                        | gases (zero and span). The drift over the specified zero and span          |
|                        | points is determined and these should be $\leq$ 5% of the set span         |
|                        | value.                                                                     |
|                        |                                                                            |





| Oxygen (O2)              |                                                                     |
|--------------------------|---------------------------------------------------------------------|
| Determination method     | NEN-EN 14789                                                        |
| Principle                | paramagnetism                                                       |
| Type of analyzer         | Servomex MiniMP 5200 / 410i / Xentra 4900                           |
| Manufacturer             | Servomex / Thermo Electron                                          |
| Measuring range          | 0 - 25 [vol.%]                                                      |
| Response time            | <200 [s]                                                            |
| Datalog frequency        | 60 [s]                                                              |
| Calibration              | The monitors are calibrated and adjusted with (for zero) nitrogen   |
|                          | (5.0) used and (for the clamping point) dried outside air (20.95    |
|                          | [vol.%]).                                                           |
| Check with control gas   | Prior to the measurements, the monitor was checked with a           |
|                          | control gas. The deviation may amount to a maximum of 0.20          |
|                          | [vol.%].                                                            |
| Drift                    | After the measurement, the monitor was checked with zero and        |
|                          | span gas. The drift over the specified zero and span points is      |
|                          | determined, and these should be $\leq$ 5 [%] of the set span value. |
| Carbon monoxide (CO)     |                                                                     |
| Determination method     | NEN-EN 15058                                                        |
| Principle                | gas filter correlation                                              |
| Analyzer type            | 48C HL                                                              |
| Manufacturer             | Thermo Electron                                                     |
| Response time            | <200 [s]                                                            |
| Datalog frequency        | 60 [s]                                                              |
| Calibration              | The monitors are calibrated with an (inter) nationally traceable    |
|                          | gas.                                                                |
| Control with control gas | Prior to the measurements, the monitor was checked with control     |
|                          | gases (zero and span). The gases used by Tauw are traceable to      |
|                          | (inter) national standards.                                         |
| Drift                    | After the measurement, the monitor was checked with control         |
|                          | gases (zero and span). The drift over the specified zero and span   |
|                          | points is determined and these should be $\leq$ 5% of the set span  |
|                          | value.                                                              |
| Sulfur dioxide (SO2)     |                                                                     |
| Determination method     | NEN-ISO 7935                                                        |
| Basically                | pulsed fluorescence                                                 |
| Analyzer type            | 43C                                                                 |
| Manufacturer             | Thermo Electron                                                     |
|                          |                                                                     |

<200 [s]

60 [s]

Response time Datalog frequency





| Calibration                   | The monitors are calibrated with an (inter) nationally traceable gas.                                                                                                                                    |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Check with control gas        | Prior to the measurements, the monitor was checked with control gases (zero and span). The gases used by Tauw can be traced to (inter) national standards.                                               |
| Drift                         | After the measurement, the monitor was checked with control gases (zero and span). The drift over the specified zero and span points is determined and these should be $\leq 5\%$ of the set span value. |
| Discontinuous measurement     | ts:                                                                                                                                                                                                      |
| General:                      | For all components, the sampling takes place at the traverse points (NEN-EN 15259). The sampling parts are made of titanium, PTFE or glass. The following provisions can be combined.                    |
| Flow rate                     | Determination method NEN-EN-ISO 16911-1                                                                                                                                                                  |
| Principle                     | pressure difference                                                                                                                                                                                      |
| Measurement                   | S-pitot analyzer type                                                                                                                                                                                    |
| Measuring range               | 0 - 2,500 [Pa]                                                                                                                                                                                           |
| Measuring plane<br>assessment |                                                                                                                                                                                                          |
| Determination method          | NEN-EN 15259                                                                                                                                                                                             |
| Execution                     | Criteria are checked with a thermocouple, a pitot and a precision pressure gauge.                                                                                                                        |
| Dust                          |                                                                                                                                                                                                          |
| Determination method          | NEN-EN 13284-1                                                                                                                                                                                           |
| Execution                     | A partial flow of the waste gas is isokinetically extracted and                                                                                                                                          |
|                               | passed over a dust filter (quartz).                                                                                                                                                                      |
| Analysis method               | NEN-EN 13284-1                                                                                                                                                                                           |
| Temperature                   |                                                                                                                                                                                                          |
| determination method          | ISO 8756                                                                                                                                                                                                 |
| Principle                     | thermocouple                                                                                                                                                                                             |
| analyzer type                 | Type K                                                                                                                                                                                                   |
| Measuring range               | -200 - 1,370 [° C]                                                                                                                                                                                       |
| Water (H2O)                   |                                                                                                                                                                                                          |
| Determination method          | NEN-EN 14790                                                                                                                                                                                             |
| Execution                     | Here, a partial flow of the off-gas is suctioned isokinetically heated and passed over a dust filter. After the filter, the gas is                                                                       |
|                               |                                                                                                                                                                                                          |





| Analysis method               | cooled in impingers placed in a water bath (where the temperature is lower than 20 [° C]).<br>NEN-EN 14790                                                                                                                                                                                                                         |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water (H2O) – psychrometric   |                                                                                                                                                                                                                                                                                                                                    |
| Determination method          | NEN-EN 14790                                                                                                                                                                                                                                                                                                                       |
| Execution                     | The moisture content is determined from the so-called wet and                                                                                                                                                                                                                                                                      |
|                               | dry bulb method.                                                                                                                                                                                                                                                                                                                   |
| Analysis method               | NEN-EN 14790                                                                                                                                                                                                                                                                                                                       |
| Mercury                       |                                                                                                                                                                                                                                                                                                                                    |
| Determination method          | NEN-EN 13211                                                                                                                                                                                                                                                                                                                       |
| Execution                     | A partial flow of the waste gas is isokinetically aspirated and passed over a dust filter. After the filter, a partial flow was extracted from this and the gas was cooled in impingers (placed                                                                                                                                    |
|                               | in a water bath (where the temperature is lower than 20 [° C]).<br>The impingers are filled with a known amount of 20% HNO <sub>3</sub> with                                                                                                                                                                                       |
|                               | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub>                                                                                                                                                                                                                                                                                      |
| Analysis method for filter    | destruction: own method<br>analysis: NEN-EN 13211                                                                                                                                                                                                                                                                                  |
|                               |                                                                                                                                                                                                                                                                                                                                    |
| Hydrochloric acid (HCI)       |                                                                                                                                                                                                                                                                                                                                    |
| Determination method          | NEN-EN 1911                                                                                                                                                                                                                                                                                                                        |
| Execution                     | Here, a partial flow of the off-gas is suctioned isokinetically<br>heated and passed over a dust filter. After the filter, the gas is<br>cooled in impingers placed in a water bath (where the<br>temperature is lower than 20 [° C]). The impingers are filled with                                                               |
|                               | a known amount of demi water                                                                                                                                                                                                                                                                                                       |
| Analysis method               | NEN-EN-ISO 10304-1 (ion chromatography)                                                                                                                                                                                                                                                                                            |
|                               |                                                                                                                                                                                                                                                                                                                                    |
| PCDD / F Determination method |                                                                                                                                                                                                                                                                                                                                    |
| Implementation                | NEN-EN 1948-1<br>The samples of dibenzodioxins and dibenzofurans (PCDD / F)                                                                                                                                                                                                                                                        |
|                               | have been carried out according to the cooled lance method (in accordance with NEN-EN 1948-1) and will take place by isokinetic extraction and cooling of a partial flow of the flue gas                                                                                                                                           |
|                               | by means of a water-cooled probe . The condensate, together<br>with the extracted off-gas, was collected in impingers placed in a<br>water bath (with a temperature lower than 20 [° C]) and then<br>passed over a layer of fiberglass and XAD-2 (cartouche). The<br>dust-like PCDD / Fs are trapped both in the liquid and on the |
|                               |                                                                                                                                                                                                                                                                                                                                    |





glass fiber layer. The gaseous PCDD / Fs are adsorbed at the XAD-2 In accordance with NEN-EN 1948-2 / 3 (GC / HRMS)

Analysis method



# Appendix 3 Summary measuring plane description and evaluation

## Description of measuring plane

| parameter                                      | unit     | value    |
|------------------------------------------------|----------|----------|
| Number of measurement ports                    | [-]      | 4        |
| corner of measurement ports                    | [degree] | 90       |
| Position stack                                 | [-]      | vertical |
| Diameter stack                                 | [cm]     | 25       |
| Distance of disturbance before measuring plane | [m]      | 6        |
| Distance of disturbance before measuring plane | [m]      | 0,5      |
| Type of disturbance before measuring plane     | [-]      | bend     |
| Type of disturbance after measuring plane      | [-]      | outlet   |

| parameter                                           | assessment     |
|-----------------------------------------------------|----------------|
| Number of measurement ports                         | meets criteria |
| location measurement ports                          | meets criteria |
| Corner between measurement ports                    | meets criteria |
| No negative gas velocities                          | meets criteria |
| Pressure difference > 5 Pa                          | meets criteria |
| Ratio between highest and lowest gas velocity < 3:1 | meets criteria |
| Result of measuring place assessment                | meets criteria |





# Appendix 4 Measurement uncertainties

#### **Measurement uncertainties**

The measurement uncertainty indicates the uncertainty of a measured value of a certain quantity. Every measurement taken has a certain degree of uncertainty. Every measurement is attempted to determine the "true" value. However, the measured value is always an approximation of this true value. Thus, the result of each measurement consists of the measured value and the uncertainty of this measured value.

This appendix lists the measurement uncertainties of the measurements performed by Tauw.

| Performance characteristic    | Criteria EN 15058     | Tauw                              |
|-------------------------------|-----------------------|-----------------------------------|
| Response time                 | ≤ 200 s               | 50 s                              |
| Detection limit               | ≤ 2 % of range        | 0,05 ppm (0,02 % of range)        |
| Linearity                     | ≤ 2 % of range        | 5 ppm (2 % of range)              |
| Zero drift                    | ≤ 2 % of range/24h    | 0,1 ppm (0,04 % of range / 24h)   |
| Span drift                    | ≤ 2 % of range/24h    | 2,5 ppm (1 % of range / 24h)      |
| Flow sensitivity              | ≤ 1 % of range        | 0,5 ppm (0,2 % of range)          |
| Pressure sensitivity          | ≤ 3 % of range        | 0,2 ppm (0,08 % of range)         |
| Temperature sensitivity       | ≤ 3 % of range / 10 K | 0,25 ppm (0,01 % of range / 10 K) |
| Voltage sensitivity           | ≤ 2 % of range / 10 V | 0,3 ppm (0,1 % of range / 10 V)   |
| Interference CO <sub>2</sub>  | ≤ 4 % of range        | 2 ppm (0,8 % of range)            |
| Interference CH <sub>4</sub>  |                       | 3,6 ppm (1,4 % of range)          |
| Interference H <sub>2</sub> O |                       | 0,14 ppm (0,06 % of range)        |
| Repeatability span            | ≤ 2 % of range        | 0,9 ppm ( 0,4 % of range)         |
| [including loss in lines]     |                       |                                   |
| Measuring uncentainty         | 6 % of ELV            | 5,8 % of ELV                      |

#### Tabel B5.2 Specification CO measurement: gasfilter correlation, range 250 ppm





#### Tabel B4.2 Specification NO<sub>X</sub> measurement: chemoluminescence, range 250 ppm

| Performance characteristic    | Criteria EN 14792     | Tauw                                                                |
|-------------------------------|-----------------------|---------------------------------------------------------------------|
| Response time                 | ≤ 200 s               | 80 s                                                                |
| Detection limit               | ≤ 2 % of range        | 0,5 ppm (0,2 % van de range)                                        |
| Linearity                     | ≤ 2 % of range        | 5 ppm (2 % of range)                                                |
| Zero drift                    | ≤ 2 % of range/24h    | 0,4 ppb (0,0002 % of range / 24h)                                   |
| Span drift                    | ≤ 2 % of range/24h    | 2,5 ppm (1 % of range / 24h)                                        |
| Flow sensitivity              | ≤ 1 % of range        | 0,5 ppm (0,2 % of range)                                            |
| Pressure sensitivity          | ≤ 3 % of range 2 kPa  | 4 ppm ( 1,6 % of range)                                             |
| Temperature sensitivity       | ≤ 3 % of range /10 K  | 0,25 ppm (0,1 % of range / 10 K)                                    |
| Voltage sensitivity           | ≤ 2 % of range / 10 V | 0,3 ppm (0,12 % of range / 10 V)                                    |
| Interference CO <sub>2</sub>  | ≤ 4 % of range        | 7,5 ppm (3 % of range at 93 % CO <sub>2</sub> )                     |
| Interference CH <sub>4</sub>  |                       | 0,25 ppm (0,1 % of range at 20 mg/Nm <sup>3</sup> NH <sub>3</sub> ) |
| Interference H <sub>2</sub> O |                       | 0,25 ppm (0,1 % of range at 20 vol.% $H_2O$ )                       |
| Convertor efficiency          | ≥ 95 %                | >95 %                                                               |
| Repeatability span            | ≤ 2 % of range        | 1,7 ppm (0,68 % of range)                                           |
| [including loss in lines]     |                       |                                                                     |
| Measuring uncentainty         | 10 % of ELV           | 9 % of ELV                                                          |

### Tabel B4.3 Specifications $O_2$ measurement: paramagnetism, range 25 vol. %

| Performance characteristic    | Criteria EN 14789     | Tauw                             |
|-------------------------------|-----------------------|----------------------------------|
| Response time                 | ≤ 200 s               | 30 s                             |
| Detection limit               | ≤ 2 % of range        | 0,05 vol.% (0,2 % of range)      |
| Linearity                     | ≤ 0,3 vol.%           | 0,3 vol.%                        |
| Zero drift                    | ≤ 0,2 vol.%/24h       | 0,05 vol.% / 24h                 |
| Span drift                    | ≤ 0,2 vol.%/24h       | 0,15 vol. % / 24h                |
| Flow sensitivity              | ≤ 1 % of range        | 0,2 vol.% / (0,8 % of range)     |
| Pressure sensitivity          | ≤ 3 % of range        | 0,25 vol.% / (1 % of range)      |
| Temperature sensitivity       | ≤ 0,3 % of range/10 K | 0,0006 vol.%/10°C / 0,003 %/10 K |
| Voltage sensitivity           | ≤ 0,1 vol % / 10 V    | ≤ 0,1 vol % / 10 V               |
| Interference CO <sub>2</sub>  | ≤ 0,2 vol%            | 0,03 vol.% (0,1 % of range)      |
| Interference CH <sub>4</sub>  |                       | 0,03 vol.% (0,1 % of range)      |
| Interference H <sub>2</sub> O |                       | 0,01 vol.% (0,04 % of range)     |
| Repeatability span            | ≤ 0,4 % of range      | 0,1 vol.% (0,4 % of range)       |
| [including loss in lines]     |                       |                                  |
| Measuring uncentainty         | 6 % of measured value | 6 % of measured value            |





#### Tabel B4.4 Specifications SO<sub>2</sub> measurement, wet chemical sampling

| Performance characteristic      | Criterium NEN-EN 14791     | Tauw                       |
|---------------------------------|----------------------------|----------------------------|
| Determination absorption volume | ≤ 1 % of volume            | ≤ 1 % van volume           |
| Gasmeter                        |                            |                            |
| Volume                          | ≤ 2 % of volume            | ≤ 2 % of volume            |
| Temperature                     | ≤ 2,5 K                    | ≤ 2,5 K                    |
| Pressure                        | ≤ 1 % of absolute pressure | ≤ 1 % of absolute pressure |
| Absorption-efficiency           | > 95 %                     | > 99 %                     |
| Leak                            | ≤ 2 % of flow              | ≤ 2 % of flow              |
| Field blanc                     | ≤ 10 % of ELV              | ≤ 10 % of ELV              |
| Measurement uncertainty         | ≤ 20 % of ELV              | 11 % of ELV                |

#### Tabel B4.5 Specifications moisture measurement, gravimetric sampling

| Performance characteristic | Criterium NEN-EN 14790     | Tauw                       |
|----------------------------|----------------------------|----------------------------|
| Gasmeter                   |                            |                            |
| Volume                     | ≤ 2 % of volume            | ≤ 2 % of volume            |
| Temperature                | ≤ 2,5 °C                   | ≤ 2,5 °C                   |
| Pressure                   | ≤ 1 % of absolute pressure | ≤ 1 % of absolute pressure |
| Leak                       | ≤ 2 % of flow              | ≤ 2 % of flow              |
| Measurement uncertainty    | 20 % of measured value     | 11 % of measured value     |

## Tabel B4.6 Specifications HCI measurement wet chemical sampling

| Performance characteristic      | Criterium, NEN-EN 1911 | Tauw                                 |
|---------------------------------|------------------------|--------------------------------------|
| Determination absorption volume | ≤ 1 % of volume        | ≤ 1 % of volume                      |
| Gasmeter                        |                        |                                      |
| Volume                          | ≤ 2 % of volume        | ≤ 2 % of volume                      |
| Temperature                     | ≤ 2,5 K                | ≤ 2,5 K                              |
| Pressure                        | ≤ 1 kPa                | ≤ 10 mbar (1 % of absolute pressure) |
| Absorption-efficiency           | > 95 %                 | > 98 %                               |
| Leak                            | ≤ 2 % of flow          | ≤ 2 % of flow                        |
| Field blanc                     | ≤ 10 % of ELV          | ≤ 10 % of ELV                        |
| Measurement uncertainty         | 30 % of measured value | 25 % of measured value               |





### Tauw measurement uncertainties established by Tauw

Tauw has determined the measurement uncertainties for the parameters below based on validation research or the uncertainties have been taken from the measurement standard. The measurement uncertainties for these parameters are shown in Table B4.1.

| Parameter       | Guideline      | Principe         | Values of guideline   | Tauw |
|-----------------|----------------|------------------|-----------------------|------|
| Adsorption      | -              | Adsorption       | -                     | 40 % |
| Measurement     |                |                  |                       |      |
| Flow            | EN-ISO 16911-1 | Pressure         | 3 – 5 %               | 20 % |
|                 |                | measurement      |                       |      |
| Hg              | EN 13211       | CVAAS            | 4 – 10 µg/Nm3: 46 %   | 46 % |
|                 |                |                  | 40 – 100 µg/Nm3: 27 % |      |
| PCDD/F          | EN 1948        | GC/HRMS          | 0,041 ± 0,011         | 45 % |
|                 |                |                  | $0,13 \pm 0,02$       |      |
|                 |                |                  | $0,035 \pm 0,05$      |      |
| SO <sub>2</sub> | EN-ISO 7935    | Pulsfluorescence | -                     | 20 % |
| Dust            | EN 13284-1     | Gravimetry       | 20 – 39 %             | 30 % |

#### Tabel B4.7 Uncentainty

### Application of measurement uncertainties and testing against the emission limit value

A separate measurement consists of three partial measurements of half an hour, unless a longer sampling time results from the measurement method or the representative method of sampling. The result of the individual emission measurement is the average of the partial measurements, reduced by the reported measurement uncertainty or by a standard value for the measurement uncertainty.

The competent authority determines the measurement uncertainty based on the 95% confidence interval of individual observations. When determining the measurement uncertainty, the average of the partial measurements is corrected for the number of partial measurements. The measurement uncertainty is calculated as a percentage of the limit value.





# Appendix 5 Reporting limits

### Determination of reporting limits

The reporting limits used by Tauw are mentioned in the tables below. The determination of the reporting limits is based on the reporting as used by the laboratory (in case of analysis).

| Component                          | Reporting limit               | Assumption                                                          |
|------------------------------------|-------------------------------|---------------------------------------------------------------------|
| HCI                                | < 0,2 [mg/Nm³]                | Sampled volume: 0,2 Nm <sup>3</sup> volume absorption fluid: 200 ml |
| Hg                                 | < 0,002 [mg/Nm <sup>3</sup> ] | Sampled volume: 0,2 Nm <sup>3</sup> volume absorption fluid: 200 ml |
| Dust                               | < 0,5 [mg/Nm³]                | Sampled volume: 1 Nm <sup>3</sup>                                   |
| NO <sub>x</sub> as NO <sub>2</sub> | < 2 [mg/Nm <sup>3</sup> ]     | 1 ppm lowest reading                                                |
| СО                                 | < 2 [mg/Nm <sup>3</sup> ]     | 1 ppm lowest reading                                                |
| SO <sub>2</sub>                    | < 3 [mg/Nm <sup>3</sup> ]     | 1 ppm lowest reading                                                |

#### Table B5.1 reporting limits

| Component          | Reporting limit     | Assumption                        |
|--------------------|---------------------|-----------------------------------|
| Dioxins and furans | < 0,01 [ng TEQ/Nm³] | Sampled volume: 6 Nm <sup>3</sup> |

#### Table B5.2 reporting limits dioxins and furans





#### Appendix 6 **Copy of the Accreditation Certificate**

RAAD VOOR ACCREDI Dutch Accreditation Council RvA PO Box 2768 NL-3500 GT Utrecht

De Stichting Raad voor Accreditatie, bij wet aangewezen als de nationale accreditatie-instantie voor Nederland, verklaart hierbij accreditatie te hebben verleend aan:

## Tauw B.V. **Business Unit Meten, Inspecties en Advies** Metingen en Monsterneming Deventer

De instelling heeft aangetoond in staat te zijn op technisch bekwame wijze valide resultaten te leveren en te werken volgens een managementsysteem.

Deze accreditatie is gebaseerd op een beoordeling tegen de vereisten zoals vastgelegd in NEN-EN-ISO/IEC 17025:2005.

De accreditatie is van toepassing op de activiteiten zoals gespecificeerd in de gewaarmerkte bijlage die is voorzien van het registratienummer.

De accreditatie is van kracht, onder voorwaarde dat de instelling blijft voldoen aan de vereisten.

De accreditatie voor registratienummer:

L 429

is verleend op 29 september 2016

Deze verklaring is geldig tot 1 november 2020

De accreditatie is voor het eerst verleend op 27 oktober 2004



De Stichting Raad voor Accreditatie is ondertekenaar van de European co-operation for Accreditation (EA) Multilateral Agreement voor accreditatie in dit werkgebied.





Bijlage bij accreditatieverklaring (scope van accreditatie) Normatief document: EN ISO/IEC 17025:2005 Registratienummer: L 429

van Tauw B.V.

Business Unit Meten, Inspecties en Advies, Metingen en Monsternemingen

Deze bijlage is geldig van: 12-09-2018 tot 01-11-2020

Vervangt bijlage d.d.: 27-09-2017

Locatie(s) waar activiteiten onder accreditatie worden uitgevoerd

|             |                                                       | Hoofdkantoor                                              |         |
|-------------|-------------------------------------------------------|-----------------------------------------------------------|---------|
| 741<br>Dev  | nperstraat 21<br>8 CA<br>enter<br>ierland             |                                                           |         |
| ő           | Locat                                                 | ie Afkorting                                              |         |
| 7414<br>Dev | nperstraat 21<br>8 CA<br>enter<br>lerland             | D                                                         |         |
| 290<br>Cap  | nspoor 209<br>1 LB<br>velle aan den IJssel<br>lerland | C                                                         |         |
| Nr.         | Materiaal of product                                  | Verrichting / Onderzoeksmethode 1 Intern referentienummer | Locatie |

Monsterneming lucht (CEN/TS 15675 kwaliteitsborging volgens NEN-EN 14181)

| a. | Geëmitteerde lucht- en<br>procesgassen | Het bemonsteren van gasvormige<br>componenten voor het bepalen van de<br>gehalten aan HCI, HF, NH <sub>3</sub> , SO <sub>x</sub> ;<br>absorptiemethode | WV2.6.3.11 en WV2.6.3.9<br>conform:<br>- NEN-EN 1911 (HCI)<br>- NEN-ISO 15713 (HF)<br>- NEN 2826 (NHs)<br>- NEN-ISO 11632 (SOX)<br>- NEN-EN 14791 (SO <sub>2</sub> ) | D, C |  |
|----|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
|----|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|

Deze bijlage is goedgekeurd door het bestuur van de Raad voor Accreditatie, namens deze, mr. J.A.W.M. de Haas

**Operationeel Directeur** 

Indien wordt verwezen naar een codering beginnende met NAW, NAP, EA of IAF dan betreft het een schema opgenomen in de RvA-BR010 lijst (https://www.na.nikiocumenbidownioad/BR010-Inden geen datum of versienummenis vermeid betreft de accreditate de actuele versie van het document of schema. Raad voor Accreditatie

Pagina 1 van 3





Bijlage bij accreditatieverklaring (scope van accreditatie) Normatief document: EN ISO/IEC 17025:2005 Registratienummer: L 429

van Tauw B.V.

#### Business Unit Meten, Inspecties en Advies, Metingen en Monsternemingen

Deze bijlage is geldig van: 12-09-2018 tot 01-11-2020

Vervangt bijlage d.d.: 27-09-2017

| Nr.                                                         | Materiaal of product                   | Verrichting / Onderzoeksmethode 1                                                                                                      | Intern referentienummer                                                                                                                                                                                           | Locatie |
|-------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| <ul> <li>Geëmitteerde lucht- en<br/>procesgassen</li> </ul> |                                        | Het bemonsteren van totaal<br>stofgebonden en gasvormige<br>componenten voor het bepalen van het<br>gehalte aan zware metalen en PAK's | WV2.6.3.11 en WV2.6.3.9<br>conform:<br>- NEN-EN 13284-1 (stof)<br>- NEN-EO 9096 (stof)<br>- NEN-EN 13211 (kwik)<br>- NWN 2817 (1996) (zware metalen)<br>- NEN-ISO 11338-1 (PAK)<br>- NEN-EN 14385 (zware metalen) | D, C    |
| c.                                                          | Geëmitteerde lucht- en<br>procesgassen | Het bemonsteren voor het bepalen van<br>het gehalte aan stofgebonden en<br>gasvomige PCDD/PCDF's                                       | WV2.6.3.13<br>conform:<br>- NEN-EN 1948-1                                                                                                                                                                         | D, C    |

Monsternemingen lucht (CEN/TS 15675 kwaliteitsborging volgens NEN-EN 14181) en in het kader van NTA 9065

| d. | Lucht en<br>(proces)gassen | Monsterneming ten behoeve van de<br>bepaling van de emissie uit<br>gekanaliseerde bronnen voor de<br>component geur (concentratie en/of<br>vracht). (De bijbehorende testen worden<br>uitbesteed) | WV2.6.3.15<br>conform CEN/TS 15675<br>conform NEN-EN 15259<br>conform ISO 10780 | D, C |
|----|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------|
|----|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------|

Luchtmetingen (CEN/TS 15675 kwaliteitsborging volgens NEN-EN 14181)

| 1.                                                          | Geëmitteerde lucht- en<br>procesgassen | Het bepalen van de afgaskarakteristieken<br>debiet, temperatuur en vochtgehalte;<br>drukmeting, thermokoppel, gravimetrisch<br>en psychrometrisch                                                                          | WV2.6.3.3<br>conform:<br>- ISO 10780 en<br>NEN-EN-ISO 16911-1 (debiet)<br>- ISO 8756 (temperatuur)<br>- EPA methode 4 (vocht)<br>- NEN-EN 14790 (vocht)<br>- NEN-ISO 9096 (1994) (debiet)                                                                                                                     | D, C |
|-------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2. Geëmitteerde lucht- en<br>procesgassen                   |                                        | Het bepalen van de geschiktheid van het<br>meetvlak (t.b.v. het bepalen van het<br>gehalte aan de gasvormige<br>componenten)                                                                                               | WV 2.6.3.3<br>conform:<br>- NEN-EN 15259                                                                                                                                                                                                                                                                      | D, C |
| <ol> <li>Geëmitteerde lucht- en<br/>procesgassen</li> </ol> |                                        | Het bepalen van het gehalte aan de<br>gasvormige componenten SO <sub>2</sub> , NO <sub>x</sub> , CO<br>en CO <sub>2</sub> (continue meting);<br>pulsfluorescentie, chemoluminescentie,<br>gasfiltercorrelatie en infrarood | WV2.6.3.5<br>conform:<br>- NEN-ISO 10396<br>- NEN-ISO 10395 (SO <sub>2</sub> )<br>- NEN-ISO 10849 (NO <sub>4</sub> )<br>- NEN-ISO 10849 (NO <sub>4</sub> )<br>- NEN-ISO 12039 (O <sub>2</sub> , CO <sub>2</sub> )<br>- NEN-ISO 12039 (O <sub>2</sub> , CO <sub>2</sub> )<br>- NEN-ISO 12039 (O <sub>2</sub> ) | D, C |
| 4.                                                          | Geëmitteerde lucht- en<br>procesgassen | Het bepalen van het gehalte aan zuurstof<br>(continue meting); paramagnetisme                                                                                                                                              | WV2.6.3.6<br>conform:<br>- NEN-ISO 12039<br>- NEN-EN 14789                                                                                                                                                                                                                                                    | D, C |

Raad voor Accreditatie

Pagina 2 van 3



Bijlage bij accreditatieverklaring (scope van accreditatie) Normatief document: EN ISO/IEC 17025:2005 Registratienummer: L 429

van Tauw B.V.

### Business Unit Meten, Inspecties en Advies, Metingen en Monsternemingen

Deze bijlage is geldig van: 12-09-2018 tot 01-11-2020

Vervangt bijlage d.d.: 27-09-2017

| Nr.                                       | Materiaal of product                   | Verrichting / Onderzoeksmethode 1                                                                   | Intern referentienummer                                                         | Locatie                                                                   |  |
|-------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| 5. Geëmitteerde lucht- en<br>procesgassen |                                        | Het bepalen van het gehalte aan totaal<br>stof; gravimetrie<br>(inclusief bijbehorende monstername) | WV2.6.3.11<br>conform:<br>- NEN-EN 13284-1<br>- NEN-ISO 9096                    | D, C<br>gehalte-<br>bepaling<br>wordt alleer<br>in Deventer<br>uitgevoerd |  |
| 6.                                        | Geëmitteerde lucht- en<br>procesgassen | Het bepalen van het totale gehalte aan koolwaterstoffen ( $C_xH_y$ ) (continue meting); FID         | WV 2.6.3.7<br>conform:<br>- NEN-EN 12619<br>- VDI 3481/1 (1975)<br>- VDI 3481/3 | D, C                                                                      |  |

\* Naast de in deze scope opgenomen geur activiteiten, welke onder accreditatie uitgevoerd kunnen worden, kunnen een aantal specifieke werkzaamheden niet onder de accreditatie uitgevoerd worden. Deze zijn:

Geuremissie door natuurlijke ventilatie;
Loef-lijzijdemethode;

- Verspreiding van geur;
   Verspreiding van geur;
   Monsterneming ten behoeve van de bepaling van de emissie uit actieve oppervlakte bronnen.

Raad voor Accreditatie

Pagina 3 van 3





# Appendix 7 Overview of waste gas characteristics

| Flow measurement     | Unit     |         |         |         |
|----------------------|----------|---------|---------|---------|
| Date                 | dd-mm-yy | 20-6-19 | 20-6-19 | 21-6-19 |
| Atmospheric pressure | [hPa]    | 1006    | 1006    | 1006    |
| Static pressure      | [Pa]     | 50      | 50      | 50      |
| Moisture content     | [vol %]  | 10      | 10      | 9       |
| Temperature          | [°C]     | 82,9    | 94,5    | 88,1    |
| Velocity             | [m/s]    | 7,8     | 7,0     | 9,4     |
| Flow (actual)        | [m³/h]   | 1387    | 1236    | 1664    |
| Flow (normalised)    | [Nm³/h]  | 950     | 821     | 1137    |





# Appendix 8 Underlying measurement data

| general data                        |                         |                          |                  |
|-------------------------------------|-------------------------|--------------------------|------------------|
| In assigment of                     |                         | DFW                      |                  |
| projectnumber                       |                         | 1271511                  |                  |
| projectcode                         |                         | D19-146                  |                  |
| date                                |                         | 20-06-2019               |                  |
| technician                          |                         | rhi                      |                  |
| reporting                           |                         | Zijderveld, Paul         |                  |
| check                               |                         | pzx                      |                  |
| location                            |                         | Schoorsteen DFW Electric |                  |
| general sampling information        |                         | Stof                     | Stof             |
| sample code                         | [-]                     | D19-146/Stof/201         | D19-146/Stof/202 |
| date                                | [dd:mm:yy]              | 20-06-2019               | 20-06-2019       |
| start                               | [dd:hhn:yy]<br>[hh:min] | 14:27                    | 14:59            |
| eind                                | [hh:min]                | 14:57                    | 15:33            |
| delay                               | [hh:min]                | 00:00                    | 00:00            |
| neasuring time                      | [hh:min]                | 00:30                    | 00:34            |
| nozzle diameter                     | [nn.min]<br>[mm]        | 8                        | 8                |
|                                     | [mm]<br>[m/s]           | 9.1                      | 9.0              |
| average velocity                    |                         | 49                       | 9,0<br>49        |
| static pressure<br>moisture content | [Pa]                    | 49<br>9.8                | 9.8              |
|                                     | [vol%]                  | 9,8                      | 9,8              |
| atmospheric pressure                | [hPa]                   |                          | 3,7(5)           |
| emperature<br>D2                    | [°C]                    | 83,0<br>14,7             | 87,0             |
|                                     | [vol%]                  | 14,7                     | 14,5             |
| master                              |                         | A                        |                  |
| sampling information                | measurement             | A B                      | A B              |
| iltercode                           | [-]                     | DA10271                  | DA10221          |
| mass of filter before measurements  | [9]                     | 33,9611                  | 34,1944          |
| mass of filter after measurements   | [9]                     | 33,9613                  | 34,1948          |
| value gasmeter start                | [m <sup>s</sup> ]       | 6,430                    | 6,939            |
| values gasmeter end                 | [m <sup>s</sup> ]       | 6,940                    | 7,502            |
| temperature gasmeter                | [°C]                    | 25                       | 25               |
| slave 1                             |                         | HCL                      | HCL              |
| sampling info                       | measurement             | A B                      | A B              |
| sample code                         | [-]                     | D19-146/HCL/201/A        |                  |
| volume sample                       | [ml]                    | 226 96                   | 216 95           |
| value gasmeter start                | [m <sup>s</sup> ]       | 1,561                    | 1,643            |
| values gasmeter end                 | [m³]                    | 1,643                    | 1,748            |
| temperature gasmeter                | [°C]                    | 25                       | 25               |
| sample volume                       | [Nm <sup>s</sup> ]      | 0,0741                   | 0,0949           |
| slave 2                             |                         | HG                       | HG               |
| sampling info                       | measurement             | A B                      | A B              |
| sample code                         | [-]                     | D19-146/HG/201/A         | D19-146/HG/202/A |
| volume monster                      | [ml]                    | 226 104                  | 211 107          |
| value gasmeter start                | [m³]                    | 9,343                    | 9,427            |
| values gasmeter end                 | [m <sup>s</sup> ]       | 9,427                    | 9,532            |
| emperature gasmeter                 | [°C]                    | 25                       | 25               |
| sample volume                       | [Nm <sup>3</sup> ]      | 0,0759                   | 0,0949           |
| alculated parameters                |                         | A CONTRACTOR             | 0                |
| sampled volume master               | [Nm <sup>s</sup> ]      | 0,4608                   | 0,5092           |
| sampled volume slave 1              | [Nm <sup>s</sup> ]      | 0,0741                   | 0,0949           |
| sampled volume slave 1              | [Nm³]                   | 0,0759                   | 0,0949           |
| total sampled volume                | [Nm <sup>s</sup> ]      | 0,6108                   | 0,6990           |
| volume theroretical                 | [Nm <sup>s</sup> ]      | 0,5618                   | 0,6227           |
| sokinetic                           | [%]                     | 9                        | 12               |





| general data                       | T                                                                                                               |                      |                  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|------------------|
| In assigment of                    |                                                                                                                 | FW                   |                  |
| projectnumber                      |                                                                                                                 | 271511               |                  |
| projectcode                        |                                                                                                                 | 19-146               |                  |
| date                               |                                                                                                                 | 0-06-2019            |                  |
| echnician                          | rh                                                                                                              |                      |                  |
| reporting                          | Zi                                                                                                              | jderveld, Paul       |                  |
| check                              | 0                                                                                                               |                      |                  |
| ocation                            | S                                                                                                               | tack cremator Geleen |                  |
| general sampling information       | 10 Mar | Stof                 | Stof             |
| sample code                        | - El                                                                                                            | D19-146/Stof/301     | D19-146/Stof/302 |
| date                               | [dd:mm:yy]                                                                                                      | 20-06-2019           | 20-06-2019       |
| start                              | [hh:min]                                                                                                        | 17:09                | 17:42            |
| eind                               | [hh:min]                                                                                                        | 17:39                | 18:22            |
| delay                              | [hh:min]                                                                                                        | 00:00                | 00:00            |
| measuring time                     | [hh:min]                                                                                                        | 00:30                | 00:40            |
| nozzle diameter                    | [mm]                                                                                                            | 8                    | 8                |
| average velocity                   | [m/s]                                                                                                           | 11,2                 | 7,7              |
| static pressure                    | [Pa]                                                                                                            | 49                   | 49               |
| moisture content                   | [vol%]                                                                                                          | 9.8                  | 9,8              |
| atmospheric pressure               | [hPa]                                                                                                           | 999                  | 999              |
| temperature                        | [°C]                                                                                                            | 94.0                 | 97.0             |
| 02                                 | [vol%]                                                                                                          | 15.2                 | 14.9             |
| master                             | [v0176]                                                                                                         | 15,2                 | 14,5             |
|                                    | massurament                                                                                                     | A B                  | A B              |
| sampling information<br>filtercode | measurement                                                                                                     | A B<br>DA10248       |                  |
|                                    | [-]                                                                                                             |                      | DA10249          |
| mass of filter before measurements | [9]                                                                                                             | 35,4213              | 33,0981          |
| mass of filter after measurements  | [9]                                                                                                             | 35,4216              | 33,0983          |
| value gasmeter start               | [m <sup>s</sup> ]                                                                                               | 7,502                | 8,080            |
| values gasmeter end                | [m²]                                                                                                            | 8,080                | 8,618            |
| temperature gasmeter               | [°C]                                                                                                            | 25                   | 25               |
| slave 1                            |                                                                                                                 | HCL                  | HCL              |
| sampling info                      | measurement                                                                                                     | A B                  | A B              |
| sample code                        | [-]                                                                                                             | D19-146/HCL/301/A    |                  |
| volume sample                      | [ml]                                                                                                            | 200 97               | 215 110          |
| value gasmeter start               | [m³]                                                                                                            | 1,748                | 1,842            |
| values gasmeter end                | [m³]                                                                                                            | 1,842                | 1,934            |
| temperature gasmeter               | [°C]                                                                                                            | 25                   | 25               |
| sample volume                      | [Nm <sup>s</sup> ]                                                                                              | 0,0849               | 0,0831           |
| slave 2                            |                                                                                                                 | HG                   | HG               |
| sampling info                      | measurement                                                                                                     | A B                  | A B              |
| sample code                        | 6                                                                                                               | D19-146/HG/301/A     |                  |
| volume monster                     | [m]                                                                                                             | 189 7110             | 228 115          |
| value gasmeter start               | [m <sup>3</sup> ]                                                                                               | 9,532                | 9,628            |
| values gasmeter end                | [m <sup>s</sup> ]                                                                                               | 9,628                | 9,719            |
| emperature gasmeter                | [°C]                                                                                                            | 25                   | 25               |
| sample volume                      | [Nm <sup>s</sup> ]                                                                                              | 0.0867               | 0.0822           |
| calculated parameters              | pan ]                                                                                                           | 0,0001               | 5,0022           |
| sampled volume master              | [Nm <sup>s</sup> ]                                                                                              | 0.5222               | 0.4861           |
| sampled volume slave 1             | [Nm <sup>s</sup> ]                                                                                              | 0.0849               | 0,4881           |
|                                    |                                                                                                                 |                      |                  |
| sampled volume slave 1             | [Nm <sup>s</sup> ]                                                                                              | 0,0867               | 0,0822           |
| total sampled volume               | [Nm <sup>s</sup> ]                                                                                              | 0,6939               | 0,6514           |
| volume theroretical                | [Nm <sup>s</sup> ]                                                                                              | 0,6707               | 0,6098           |
| sokinetic rating                   | [%]                                                                                                             | 3                    | 7                |





| general data                       |                    |                          |                  |
|------------------------------------|--------------------|--------------------------|------------------|
| In assigment of                    | D                  | FW                       |                  |
| projectnumber                      | 12                 | 271511                   |                  |
| projectcode                        | Ъ                  | 19-146                   |                  |
| date                               | 2                  | 1-06-2019                |                  |
| technician                         | Th                 | i an an an               |                  |
| reporting                          | Ži                 | jderveld, Paul           |                  |
| check                              | 0                  | Constraints and a second |                  |
| location                           | Si                 | tack cremator Geleen     |                  |
| general sampling information       |                    | Dust                     | Dust             |
| sample code                        | [-]                | D19-146/Stof/401         | D19-146/Stof/402 |
| date                               | [dd:mm:yy]         | 21-06-2019               | 21-06-2019       |
| start                              | [hh:min]           | 10:54                    | 11:29            |
| eind                               | [hh:min]           | 11:24                    | 11:59            |
| delay                              | [hh:min]           | 00:00                    | 00:00            |
| measuring time                     | [hh:min]           | 00:30                    | 00:30            |
| nozzle diameter                    | [mm]               | 8                        | 8                |
| average velocity                   | [m/s]              | 10,7                     | 9,2              |
| static pressure                    | [Pa]               | 49                       | 49               |
| moisture content                   | [vol%]             | 9,2                      | 8,7              |
| atmospheric pressure               | [hPa]              | 1.006                    | 1.006            |
| temperature                        | [20]               | 67.0                     | 82.0             |
| 02                                 | [vol%]             | 16.3                     | 14.3             |
| master                             | •                  | 35452-017                |                  |
| sampling information               | measurement        | A B                      | A B              |
| filtercode                         | - El               | DA10127                  | DA10129          |
| mass of filter before measurements | [9]                | 0,1692                   | 0,1688           |
| mass of filter after measurements  | [g]                | 0,1695                   | 0,1689           |
| value gasmeter start               | [m <sup>s</sup> ]  | 8,618                    | 9,205            |
| values gasmeter end                | [m <sup>s</sup> ]  | 9,205                    | 9,758            |
| temperature gasmeter               | [°C]               | 28                       | 28               |
| slave 1                            |                    | HCL                      | HCL              |
| sampling information               | measurement        | A B                      | A B              |
| sample code                        | - El               |                          |                  |
| volume sample                      | [ml]               | 212 112                  | 233 112          |
| value gasmeter start               | [m <sup>s</sup> ]  | 1,934                    | 2,031            |
| values gasmeter end                | [m <sup>s</sup> ]  | 2,031                    | 2,120            |
| temperature gasmeter               | [°C]               | 30                       | 30               |
| sample volume                      | [Nm <sup>®</sup> ] | 0,0868                   | 0,0796           |
| slave 2                            |                    | HG                       | HG               |
| sampling info                      | measurement        | A B                      | A B              |
| sample code                        |                    | -                        |                  |
| volume monster                     | [ml]               | 194 📕 107                | 215 123          |
| value gasmeter start               | [m³]               | 9,719                    | 9,818            |
| values gasmeter end                | [m³]               | 9,818                    | 9,908            |
| temperature gasmeter               | [°C]               | 30                       | 30               |
| sample volume                      | [Nm <sup>a</sup> ] | 0,0886                   | 0,0805           |
| calculated parameters              |                    |                          | T                |
| sampled volume master              | [Nm <sup>3</sup> ] | 0,5287                   | 0,4981           |
| sampled volume slave 1             | [Nm <sup>s</sup> ] | 0,0868                   | 0,0796           |
| sampled volume slave 1             | [Nm <sup>s</sup> ] | 0,0886                   | 0,0805           |
| total sampled volume               | [Nm <sup>s</sup> ] | 0,7041                   | 0,6583           |
| volume theroretical                | [Nm <sup>s</sup> ] | 0,7009                   | 0,5808           |
| isokinetic rating                  | [%]                | 0                        | 13               |





| Sampling of dioxins and<br>general data | furans accordin    | ig to EN 1948:2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tauw |
|-----------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| In assigment of                         |                    | DFW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| projectnumber                           |                    | 1271511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| projectcode                             |                    | D19-146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| date                                    |                    | 20-06-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| technician                              |                    | rhj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| reporting                               |                    | Zijderveld, Paul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| check                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| location                                |                    | Stack cremator Gelee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| sampling information                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| sample code                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9-146/PCDD/F/102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| number cartouch                         |                    | d1040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d1089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| date                                    | [dd:mm:yy]         | 20-06-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20-06-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| start                                   | [hh:min]           | 12:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13:03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| eind                                    | [hh:min]           | 13:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13:33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| delay                                   | [hh:min]           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>F</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| measuring time                          | [hh:min]           | 00:41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| nozzle diameter                         | [mm]               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| average velocity                        | [m/s]              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| static pressure                         | [Pa]               | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| moisture content                        | [vol%]             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| atmospheric pressure                    | [hPa]              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| temperature                             | [°C]               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 02                                      | [vol%]             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| value gasmeter start                    | [m <sup>s</sup> ]  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| values gasmeter end                     | [m <sup>s</sup> ]  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4,060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| temperature gasmeter                    | [°C]               | 20,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| calculated parameters                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the second se |      |
| sampled volume                          | [Nm <sup>s</sup> ] | 1 Contraction (1997)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| volume theroretical                     | [Nm <sup>s</sup> ] | a second s | 0,377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| isokinetic rating                       | [%]                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |





| In assigment of       | : DF                 | DFW                 |  |  |
|-----------------------|----------------------|---------------------|--|--|
| projectnumber         | 71511                |                     |  |  |
| projectcode           | : D1                 | 9-146               |  |  |
| date                  | : 436                | 536                 |  |  |
| technician            | : rhj                |                     |  |  |
| reporting             | : Zijo               | lerveld, Paul       |  |  |
| check                 | : PZ                 | x                   |  |  |
| location              | : Sta                | ack cremator Geleen |  |  |
| sampling information  |                      |                     |  |  |
| sample code           | : D                  | 19-146/PCDD/F/401   |  |  |
| number cartouch       |                      | d1094               |  |  |
| date                  | [dd:mm:yy]:          | 21-06-2019          |  |  |
| start                 | [hh:min]:            | 10:54               |  |  |
| eind                  | [hh:min]:            | 11:57               |  |  |
| delay                 | [hh:min] :           |                     |  |  |
| measuring time        | [hh:min]:            | 01:03               |  |  |
| nozzle diameter       | [mm] : 💆             | 7                   |  |  |
| average velocity      | [m/s]:               | 10,5                |  |  |
| static pressure       | [Pa]:                | 49                  |  |  |
| moisture content      | [vol%]:              | 9,2                 |  |  |
| atmospheric pressure  | [hPa]:               | 1.006               |  |  |
| temperature           | [°C]:                | 75,0                |  |  |
| 02                    | [vol%]:              | 15,1                |  |  |
| value gasmeter start  | [m <sup>s</sup> ] :  | 6,284               |  |  |
| values gasmeter end   | [m <sup>s</sup> ] :  | 7,552               |  |  |
| temperature gasmeter  | [°C]:                | 25,0                |  |  |
| calculated parameters | 100                  |                     |  |  |
| sampled volume        | [Nm <sup>s</sup> ]:  | 1,154               |  |  |
| volume theroretical   | [Nm <sup>s</sup> ] : | 1,080               |  |  |
| isokinetic rating     | [%]:                 | 7                   |  |  |





# Appendix 9 Results blancs and doorslag

| Breaktrough Gelee                                                                                                                                                          |                                                                                                                      |                                                                                                                            |                       |                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------|
| general sampling                                                                                                                                                           |                                                                                                                      |                                                                                                                            |                       |                                    |
| Date                                                                                                                                                                       | [dd-mm=yy]                                                                                                           | 20-06-2019                                                                                                                 |                       |                                    |
| start                                                                                                                                                                      | [hr-min]                                                                                                             | 14:27                                                                                                                      |                       |                                    |
| eind                                                                                                                                                                       | [hr-min]                                                                                                             | 14:57                                                                                                                      |                       |                                    |
| component                                                                                                                                                                  | breaktrough                                                                                                          | concentration<br>[mg/Nm3]                                                                                                  | concentration         | result                             |
| kwik                                                                                                                                                                       | no                                                                                                                   | 0,004                                                                                                                      | n.a                   | n.a                                |
| waterstofchloride                                                                                                                                                          | no                                                                                                                   | 0,3                                                                                                                        | n.a                   | n.a                                |
| Breaktrough Gelee                                                                                                                                                          | en l                                                                                                                 |                                                                                                                            |                       |                                    |
| general sampling                                                                                                                                                           | data                                                                                                                 |                                                                                                                            |                       |                                    |
| Date                                                                                                                                                                       | [dd-mm=yy]                                                                                                           | 20-06-2019                                                                                                                 |                       |                                    |
| start                                                                                                                                                                      | [hr-min]                                                                                                             | 14:59                                                                                                                      |                       |                                    |
| eind                                                                                                                                                                       | [hr-min]                                                                                                             | 15:33                                                                                                                      |                       |                                    |
| component                                                                                                                                                                  | breaktrough                                                                                                          | concentration<br>[mg/Nm3]                                                                                                  | concentration         | result                             |
| kwik                                                                                                                                                                       | no                                                                                                                   | < 0,003                                                                                                                    | n.a                   | n.a                                |
|                                                                                                                                                                            |                                                                                                                      |                                                                                                                            |                       |                                    |
| waterstofchloride                                                                                                                                                          | no                                                                                                                   | 0,7                                                                                                                        | n.a                   | n.a                                |
| Breaktrough Gelee                                                                                                                                                          | en                                                                                                                   | 0,7                                                                                                                        | n.a                   | n.a                                |
| waterstorchioride<br>Breaktrough Gelee<br>general sampling o<br>Date                                                                                                       | en<br>data                                                                                                           | 0,7<br>20-06-2019                                                                                                          | n.a                   | n.a                                |
| Breaktrough Gelee<br>general sampling<br>Date                                                                                                                              | en<br>data<br>[dd-mm=yy]                                                                                             |                                                                                                                            | n.a                   | n.a                                |
| Breaktrough Gelee<br>general sampling<br>Date<br>start                                                                                                                     | en<br>data                                                                                                           | 20-06-2019                                                                                                                 | n.a                   | n.a                                |
| <mark>Breaktrough Gelee<br/>general sampling d</mark><br>Date<br>start<br>eind                                                                                             | en<br>data<br>[dd-mm=yy]<br>[hr-min]                                                                                 | 20-06-2019<br>17:09<br>17:39<br>concentration                                                                              | n.a<br>concentration  | n.a<br>result                      |
| Breaktrough Gelee<br>general sampling o<br>Date<br>start<br>eind<br>component                                                                                              | en<br>data<br>[dd-mm=yy]<br>[hr-min]<br>[hr-min]                                                                     | 20-06-2019<br>17:09<br>17:39                                                                                               |                       |                                    |
| Breaktrough Gelee<br>general sampling o<br>Date<br>start<br>eind<br>component<br>kwik                                                                                      | en<br>data<br>[dd-mm=yy]<br>[hr-min]<br>[hr-min]<br>breaktrough                                                      | 20-06-2019<br>17:09<br>17:39<br>concentration<br>[mg/Nm3]                                                                  | concentration         | result<br>n.v.t.                   |
| Breaktrough Gelee<br>general sampling o<br>Date<br>start<br>eind<br>component<br>kwik<br>waterstofchloride                                                                 | en<br>data<br>[dd-mm=yy]<br>[hr-min]<br>[hr-min]<br>breaktrough<br>no<br>yes                                         | 20-06-2019<br>17:09<br>17:39<br>concentration<br>[mg/Nm3]<br>0,005                                                         | concentration         | result<br>n.v.t.                   |
| Breaktrough Gelee<br>general sampling<br>Date<br>start<br>eind<br>component<br>kwik<br>waterstofchloride<br>Breaktrough Gelee                                              | en<br>data<br>[dd-mm=yy]<br>[hr-min]<br>[hr-min]<br>breaktrough<br>no<br>yes                                         | 20-06-2019<br>17:09<br>17:39<br>concentration<br>[mg/Nm3]<br>0,005                                                         | concentration         | result<br>n.v.t.                   |
| Breaktrough Gelee<br>general sampling<br>Date<br>start<br>eind<br>component<br>kwik<br>waterstofchloride<br>Breaktrough Gelee<br>general sampling                          | en<br>data<br>[dd-mm=yy]<br>[hr-min]<br>[hr-min]<br>breaktrough<br>no<br>yes                                         | 20-06-2019<br>17:09<br>17:39<br>concentration<br>[mg/Nm3]<br>0,005                                                         | concentration         | result<br>n.v.t.                   |
| Breaktrough Gelee<br>general sampling<br>Date<br>start<br>eind<br>component<br>kwik<br>waterstofchloride<br>Breaktrough Gelee<br>general sampling<br>Date                  | en<br>data<br>[dd-mm=yy]<br>[hr-min]<br>[hr-min]<br>breaktrough<br>no<br>yes<br>en<br>data                           | 20-06-2019<br>17:09<br>17:39<br>concentration<br>[mg/Nm3]<br>0,005<br>4,4                                                  | concentration         | result<br>n.v.t.                   |
| Breaktrough Gelee<br>general sampling<br>Date<br>start<br>eind<br>component<br>kwik<br>waterstofchloride<br>Breaktrough Gelee<br>general sampling<br>Date<br>start         | en<br>data<br>[dd-mm=yy]<br>[hr-min]<br>[hr-min]<br>breaktrough<br>no<br>yes<br>en<br>data<br>[dd-mm=yy]             | 20-06-2019<br>17:09<br>17:39<br>concentration<br>[mg/Nm3]<br>0,005<br>4,4<br>20-06-2019                                    | concentration         | result<br>n.v.t.                   |
| Breaktrough Gelee<br>general sampling<br>Date<br>start<br>eind<br>component<br>kwik<br>waterstofchloride<br>Breaktrough Gelee<br>general sampling<br>Date<br>start<br>eind | en<br>data<br>[dd-mm=yy]<br>[hr-min]<br>[hr-min]<br>breaktrough<br>no<br>yes<br>en<br>data<br>[dd-mm=yy]<br>[hr-min] | 20-06-2019<br>17:09<br>17:39<br>concentration<br>[mg/Nm3]<br>0,005<br>4,4<br>20-06-2019<br>17:42<br>18:22<br>concentration | concentration         | result<br>n.v.t.                   |
| Breaktrough Gelee<br>general sampling                                                                                                                                      | n<br>[data<br>[dd-mm=yy]<br>[hr-min]<br>breaktrough<br>no<br>yes<br>n<br>data<br>[dd-mm=yy]<br>[hr-min]<br>[hr-min]  | 20-06-2019<br>17:09<br>17:39<br>concentration<br>[mg/Nm3]<br>0,005<br>4,4<br>20-06-2019<br>17:42<br>18:22                  | concentration<br>n.a. | result<br>n.v.t.<br>no breaktrough |





| Breaktrough Gele                                              |                                                  |                                               |                      |        |
|---------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|----------------------|--------|
| general sampling                                              | data                                             |                                               |                      |        |
| Date                                                          | [dd-mm=yy]                                       | 21-06-2019                                    |                      |        |
| start                                                         | [hr-min]                                         | 10:54                                         |                      |        |
| eind                                                          | [hr-min]                                         | 11:24                                         |                      |        |
| component                                                     | breaktrough                                      | concentration<br>[mg/Nm3]                     | concentration        | result |
| kwik                                                          | no                                               | < 0,003                                       | n.a                  | n.a    |
| waterstofchloride                                             |                                                  |                                               |                      |        |
| waterstoicnionde                                              | no                                               | 2,0                                           | n.a                  | n.a    |
| Breaktrough Gele<br>general sampling                          | en                                               | 2,0                                           | n.a                  | n.a    |
| Breaktrough Gele                                              | en                                               | 2,0 21-06-2019                                | n.a                  | n.a    |
| Breaktrough Gele<br>general sampling                          | en<br>data                                       |                                               | n.a                  | n.a    |
| Breaktrough Gele<br>general sampling<br>Date                  | en<br>data<br>[dd-mm=yy]                         | 21-06-2019                                    | n.a                  | n.a    |
| <b>Breaktrough Gele<br/>general sampling</b><br>Date<br>start | en<br>data<br>[dd-mm=yy]<br>[hr-min]             | 21-06-2019<br>11:29                           | n.a<br>concentration | n.a    |
| Breaktrough Gele<br>general sampling<br>Date<br>start<br>eind | en<br>data<br>[dd-mm=yy]<br>[hr-min]<br>[hr-min] | 21-06-2019<br>11:29<br>11:59<br>concentration |                      |        |





# Appendix 10 Certificates of analysis

Tauw Nederland B.V. Paul Zijderveld POSTBUS 133 7400 AC DEVENTER

|                                                 |                                  | Datum                                                                                                                     | 27.06.2019               |
|-------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                                                 |                                  | Relatienr                                                                                                                 | 35003840                 |
|                                                 |                                  | Opdrachtnr.                                                                                                               | 863618                   |
| ANALYSERA                                       | PPORT                            |                                                                                                                           |                          |
| Opdracht 863618 Ga                              | as/Lucht                         |                                                                                                                           |                          |
| Opdrachtgever                                   | 35003840 Tauw Nederland B.V      | Ι.                                                                                                                        |                          |
| Uw referentie                                   | 1271511 DFW, crematorium G       | eleen 411093                                                                                                              |                          |
| Opdrachtacceptatie                              | 24.06.19                         |                                                                                                                           |                          |
| Monstememer                                     | Opdrachtgever                    |                                                                                                                           |                          |
| Geachte heer, mevrou                            | iw,                              |                                                                                                                           |                          |
| De analyses zijn, tenzi<br>overeenkomstig de on | ij anders vermeld, geaccrediteer | evraagde laboratoriumonderzoek<br>d volgens NEN-EN-ISO/IEC 1702<br>genoemd in de meest actuele ver<br>ditatienummer L005. | 25 en uitgevoerd         |
| Indien u gegevens we                            | nst over de meetonzekerheden     | van een methode, kunnen wij u d                                                                                           | eze op verzoek verstrekk |
| Dit rapport mag alleen                          | in zijn geheel worden gereprod   | uceerd. Eventuele biilagen zijn on                                                                                        | derdeel van het ranoort  |
|                                                 | • • •                            |                                                                                                                           |                          |
| Indien u nog vragen he<br>Klantenservice.       | eeft of aanvullende informatie w | enst, verzoeken wij u om contact                                                                                          | op te nemen met          |
| Wij vertrouwen erop u                           | met de toegezonden informatie    | van <mark>dienst te zi</mark> jn.                                                                                         |                          |
| Met vriendelijke groet,                         |                                  |                                                                                                                           |                          |
|                                                 |                                  |                                                                                                                           |                          |
|                                                 |                                  |                                                                                                                           |                          |
|                                                 |                                  |                                                                                                                           |                          |
| AL-West B.V. Dhr. Ja<br>Klantenservice          | n Godlieb, Tel. 31/570788113     |                                                                                                                           |                          |
|                                                 |                                  |                                                                                                                           |                          |
|                                                 |                                  |                                                                                                                           |                          |
|                                                 |                                  |                                                                                                                           |                          |
| Kamer van Koophandel Direc                      |                                  |                                                                                                                           | Blad 1 van 6             |

DOC 3.5 1286 PHSCAL PT





Opdracht 863618 Gas/Lucht

AL-West B.V. Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl



| Monsternr. | Monsteromschrijving | Monstername | Monsternamepunt |  |
|------------|---------------------|-------------|-----------------|--|
| 278855     | D19-146/HCL/201/A   | 20.06.2019  |                 |  |
| 278856     | D19-146/HCL/001/A   | 20.06.2019  |                 |  |
| 278857     | D19-146/HCL/002/A   | 20.06.2019  |                 |  |
| 278859     | D19-146/HCL/202/A   | 20.06.2019  |                 |  |
| 278860     | D19-146/HCL/301/A   | 20.06.2019  |                 |  |

|                             | Eenheid | 278855<br>D19-146/HCL/201/A | 278856<br>D19-146/HCL/001/A | 278857<br>D19-146/HCL/002/A | 278859<br>D19-146/HCL/202/A | 278860<br>D19-146/HCL/301/A |
|-----------------------------|---------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Klassiek Chemische Analyses |         |                             |                             |                             |                             |                             |
| Chloride (impinger)         | mg/l    | 0,1                         | <0,1                        | <0,1                        | 0,3                         | 1,8                         |
| Metalen                     |         |                             |                             |                             |                             |                             |
| Kwik (Hg) (impinger)        | µg/l    | <u></u>                     |                             |                             | 8423                        |                             |

Opdracht 863618 Gas/Lucht

AL-West B.V. Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl



| Monsternr. | Monsteromschrijving | Monstername | Monsternamepunt |  |
|------------|---------------------|-------------|-----------------|--|
| 278861     | D19-146/HCL/302/A   | 20.06.2019  |                 |  |
| 278862     | D19-146/HCL/401/A   | 21.06.2019  |                 |  |
| 278863     | D19-146/HCL/402/A   | 21.06.2019  |                 |  |
| 278864     | D19-146/HCL/501/A   | 21.06.2019  |                 |  |
| 278865     | D19-146/HCL/502/A   | 21.06.2019  |                 |  |

|                             | Eenheid | 278861<br>D19-146/HCL/302/A | 278862<br>D19-146/HCL/401/A | 278863<br>D19-146/HCL/402/A | 278864<br>D19-146/HCL/501/A | 278865<br>D19-146/HCL/502/A |
|-----------------------------|---------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Klassiek Chemische Analyses |         |                             |                             |                             |                             |                             |
| Chloride (impinger)         | mg/l    | 1,1                         | 0,8                         | 0,3                         | 0,5                         | 1,1                         |
| Metalen                     |         |                             |                             |                             |                             |                             |
| Kwik (Hg) (impinger)        | µg/l    |                             |                             |                             |                             | 2752                        |



Opdracht 863618 Gas/Lucht

AL-West B.V. Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl



| Monsternr. | Monsteromschrijving | Monstername | Monsternamepunt |  |
|------------|---------------------|-------------|-----------------|--|
| 278866     | D19-146/HCL/601/A   | 21.06.2019  |                 |  |
| 278867     | D19-146/HCL/602/A   | 21.06.2019  |                 |  |
| 278868     | D19-146/HG/001/A    | 06.04.7793  |                 |  |
| 278869     | D19-146/HG/002/A    | 20.06.2019  |                 |  |
| 278870     | D19-146/HG/201/A    | 20.06.2019  |                 |  |

| Eenheid | 278866<br>D19-146/HCL/601/A | 278867<br>D19-146/HCL/602/A        | 278868<br>D19-146/HG/001/A                               | 278869<br>D19-146/HG/002/A                                          | 278870<br>D19-146/HG/201/A                                                           |
|---------|-----------------------------|------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| S       |                             |                                    |                                                          |                                                                     |                                                                                      |
| mg/l    | 5,9                         | 7,3                                |                                                          |                                                                     |                                                                                      |
|         |                             |                                    |                                                          |                                                                     |                                                                                      |
| µg/l    |                             | 3 <b></b> -7.                      | 0,8                                                      | <0,5                                                                | 1,6                                                                                  |
|         | s<br>mg/l                   | D19-146/HCL/601/A<br>s<br>mg/l 5,9 | D19-146/HCL/601/A D19-146/HCL/602/A<br>s<br>mg/l 5,9 7,3 | D19-146/HCL/601/A D19-146/HCL/602/A D19-146/HG/001/A S mg/l 5,9 7,3 | D19-146/HCL/601/A D19-146/HCL/602/A D19-146/HG/001/A D19-146/HG/002/A S mg/l 5,9 7,3 |







Opdracht 863618 Gas/Lucht

AL-West B.V. Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl



Monsternr. Monsteromschrijving Monstername Monsternamepunt 278871 D19-146/HG/202/A 07.04.7857 278872 D19-146/HG/301/A 20.06.2019 278873 D19-146/HG/302/A 20.06.2019 D19-146/HG/401/A D19-146/HG/402/A 278874 21.06.2019 278875 21.06.2019

|         |                             | Eenheid | 278871<br>D19-146/HG/202/A | 278872<br>D19-146/HG/301/A | 278873<br>D19-146/HG/302/A | 278874<br>D19-146/HG/401/A | 278875<br>D19-146/HG/402/A |
|---------|-----------------------------|---------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
|         | Klassiek Chemische Analyses |         |                            |                            |                            |                            |                            |
| bler    | Chloride (impinger)         | mg/l    |                            | 1.000                      | 8 <del>73</del>            | <b>1</b> 12                |                            |
| ~       | Metalen                     |         |                            |                            |                            |                            |                            |
| staat v | Kwik (Hg) (impinger)        | µg/l    | <0,5                       | 2,4                        | <0,5                       | 1,2                        | <0,5                       |

AL-West B.V. Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl



Opdracht 863618 Gas/Lucht

| Monsternr. | Monsteromschrijving | Monstername | Monsternamepunt |  |
|------------|---------------------|-------------|-----------------|--|
| 278876     | D19-146/HG/501/A    | 21.06.2019  |                 |  |
| 278877     | D19-146/HG/502/A    | 21.06.2019  |                 |  |
| 278878     | D19-146/HG/601/A    | 21.06.2019  |                 |  |
| 278879     | D19-146/HG/602/A    | 21.06.2019  |                 |  |

|                             | Eenheid | 278876<br>D19-146/HG/501/A | 278877<br>D19-146/HG/502/A | 278878<br>D19-146/HG/601/A | 278879<br>D19-146/HG/602/A |
|-----------------------------|---------|----------------------------|----------------------------|----------------------------|----------------------------|
| Klassiek Chemische Analyses |         |                            |                            |                            |                            |
| Chloride (impinger)         | mg/l    | 377                        | F / <del>Ser</del> S       |                            |                            |
| Metalen                     |         |                            |                            |                            |                            |
| Kwik (Hg) (impinger)        | µg/l    | 0,9                        | <0,5                       | <0,5                       | 0,6                        |

Vorbla "" of n a hotokont dat hot aphalta van de component lager is dan



Opdracht 863653 Gas/Lucht

AL-West B.V. Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl



| Monsternr. | Monsteromschrijving | Monstername | Monsternamepunt |  |
|------------|---------------------|-------------|-----------------|--|
| 278990     | D19-146/stof/101    | 20.06.2019  |                 |  |
| 278991     | D19-146/stof/102    | 20.06.2019  |                 |  |
| 278992     | D19-146/stof/201    | 20.06.2019  |                 |  |
| 278993     | D19-146/stof/202    | 20.06.2019  |                 |  |
| 278994     | D19-146/stof/301    | 20.06.2019  |                 |  |

|                                   | Eenheid   | 278990<br>D19-146/stof/101 | 278991<br>D19-146/stof/102 | 278992<br>D19-146/stof/201 | 278993<br>D19-146/stof/202 | 278994<br>D19-146/stof/301 |
|-----------------------------------|-----------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Voorbehandeling metalen           | analyse   |                            |                            |                            |                            |                            |
| Waterstoffluoride-ontsluiting (Hg | )         | ++                         | ++                         | ++                         | ++                         | ++                         |
| Metalen                           |           |                            | 10000                      | 1000                       |                            | 0                          |
| Kwik (Hg) (HF) (filter)           | ua/filter | < 0.010                    | < 0.010                    | < 0.010                    | < 0.010                    | <0.010                     |

AL-West B.V. Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl



### Opdracht 863653 Gas/Lucht

| Monsternr. | Monsteromschnjving | Monstername | Monsternamepunt |  |
|------------|--------------------|-------------|-----------------|--|
| 278995     | D19-146/stof/302   | 20.06.2019  |                 |  |
| 278996     | D19-146/stof/401   | 20.06.2019  |                 |  |
| 278997     | D19-146/stof/402   | 20.06.2019  |                 |  |
| 278998     | D19-146/stof/501   | 20.06.2019  |                 |  |
| 278999     | D19-146/stof/502   | 20.06.2019  |                 |  |

|                                    | Eenheid   | 278995<br>D19-146/stof/302 | 278996<br>D19-146/stof/401 | 278997<br>D19-146/stof/402 | 278998<br>D19-146/stof/501 | 278999<br>D19-146/stoff502 |
|------------------------------------|-----------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Voorbehandeling metalen ana        | lyse      | 1 m d d 1                  | 11.75                      | 14 ( 17 V                  |                            |                            |
| Waterstoffluoride-ontsluiting (Hg) | 2.22      | ++                         | ++                         | ++                         | ++                         | ++                         |
| Metalen                            |           |                            |                            |                            |                            |                            |
| Kwik (Hg) (HF) (filter)            | µg/filter | <0,010                     | 0,010                      | <0,010                     | <0,010                     | <0,010                     |

8





AL-West B.V. Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110, Fax +31(0)570 788108 e-Mail: info@al-west.nl, www.al-west.nl



Opdracht 863653 Gas/Lucht

| Monsternr. | Monsteromschrijving | Mons    | tername          | Monsternamepunt  |  |
|------------|---------------------|---------|------------------|------------------|--|
| 279000     | D19-146/stof/601    | 20.06   | .2019            |                  |  |
| 279001     | D19-146/stof/602    | 20.06   | .2019            |                  |  |
|            |                     |         |                  |                  |  |
|            |                     |         |                  |                  |  |
|            |                     |         |                  |                  |  |
|            |                     | Eenheid | 279000           | 279001           |  |
|            |                     |         | D19-146/stof/601 | D19-146/stof/602 |  |

|           | - 15,17 P - 10 P - 10 |               |
|-----------|-----------------------|---------------|
| analyse   |                       |               |
| Ú         | ++                    | ++            |
|           |                       |               |
| µg/filter | <0,010                | <0,010        |
|           |                       | analyse<br>++ |





AL-West B.V. Dortmundstraat 168, 7416 BH Deventer, the Netherlands. Tel. +31(0)570 768106 e-Mail: Info@al-west.nl, www.at-west.nl e-Mail info@al-west.nl, www.at-west.m



| Monsternr, | Monsteromschnjving      | Monstername | Monatemamepunt |  |
|------------|-------------------------|-------------|----------------|--|
| 278891     | D19-146/PCDD/F/101      | 20.06.2019  |                |  |
| 278892     | D19-146/PCDD/F/102      | 20.06.2019  |                |  |
| 278893     | D19-146/PCDD/F/201/SPOE | 20.06.2019  |                |  |
| 278894     | D19-146/PCDD/F/301/SPOE | 20.06.2019  |                |  |
| 278895     | D19-146/PCDD/F/401      | 20.05.2019  |                |  |

|                                                 | Eenheid     | 278891<br>D19-146/PCD0F/101 | 278892<br>015-146PC00#1102 | 278895<br>D15-146PCDD#140 |
|-------------------------------------------------|-------------|-----------------------------|----------------------------|---------------------------|
| Dioxinen en Dibenzofuranen                      |             |                             |                            |                           |
| 2,3,7,8 Tetra CDD (filter)                      | ng/titler   | <0,0030                     | <0,0030                    | <0,0030                   |
| 1,2,3,7,8 Penta CDD (Filter)                    | ng/Siter    | <0,0060                     | <0,0060                    | <0,0060                   |
| 1,2,3,4,7,8 Hexa CDD (Filter)                   | rig/filter  | <0,010                      | <0,010                     | <0,010                    |
| 1,2,3,6,7,8 HexaCDD (filter)                    | ngritter    | <0,010                      | <0,010                     | <0,010                    |
| 1,2,3,7,8,9 Hexa CDD (Filter)                   | ngititer    | <9,010                      | <0,010                     | <0,010                    |
| 1,2,3,4,6,7,8-Hepta CDD (filter)                | ng/filter   | <0,050                      | <0,050                     | <0,050                    |
| Octa CDD (filter)                               | rigifiker   | <0,10                       | <0,10                      | <0,10                     |
| 2.3.7,8-Tetrachiloondiberizofuraari<br>(filter) | rigifiliter | <0,010                      | <0,010                     | <0,010                    |
| 1,2,3,7,8 Penta CDF (Filter)                    | ng/titer    | <9,010                      | <9,010                     | <0,010                    |
| 2,3,4,7,8-Penta CDF (fitter)                    | ng/titler:  | <0,0060                     | <0,0060                    | <0,006                    |
| 1,2,3,4,7,8 Hexa CDF (Filter)                   | ng/filter   | <0,010                      | <0,010                     | <0.01                     |
| 1,2,3,6,7,8 Hexa CDF (Filter)                   | rig/filter  | <0,010                      | <0,010                     | <0,01                     |
| 1,2,3,7,8,9 Hexa CDF (Filler)                   | ing/Sitter  | <0,010                      | <0,010                     | <0,01                     |
| 2,3,4,6,7,8 - Hexa CDF (filter)                 | ngifilter   | <0,010                      | <0,010                     | <0,01                     |
| 1,2,3,4,7,8,9 -Hepta CDF (filter)               | ng/filter   | <0,050                      | <0,050                     | <0,05                     |
| 1,2,3,4,6,7,8 Hepta CDF (Filter)                | ngifiller   | <0,050                      | <0,050                     | <0,05                     |
| Octa CDF (Filter)                               | ng/filter   | <0,10                       | <0,10                      | <0,1                      |
| TEQ volgens NATO/CCMS Upper<br>bound (filter)   | ngifilter   | 0,0192**                    | 0.0192**                   | 0,0192                    |
| TEQ volgens NATO/CCMS (filter)                  | rig/filter  | n.a.                        | n.a.                       | n.a                       |
| Bemonsteringsstandaard                          |             |                             |                            |                           |
| 13C12-1,2,3,7,8-PeCDF                           | %           | 100 *                       | 89 *                       | 110                       |
| 13C12-1,2,3,7,8,9-HxCDF                         | %           | 90 *                        | 83 *                       | 98                        |
| 13C12-1.2.3.4.7.8.9-HpCDF                       | %           | 120 *                       | 110 *                      | 96                        |
| Extractiestandaard                              |             |                             |                            |                           |
| 13C12-2,3,7,8-TeCDD                             | %           | 78 *                        | 85 *                       | 74                        |
| 13C12-1,2,3,7,8-PeCDD                           | %           | 84 *                        | 89 *                       | 76                        |
| 13C12-1,2,3,4,7,8-HxCDD                         | %           | 82 *                        | 89 *                       | 91                        |
| 13C12-1,2,3,6,7,8-HxCDD                         | %           | 81 *                        | 86 *                       | 78                        |
| 13C12-1,2,3,4,6,7,8-HpCDD                       | %           | 73 *                        | 77 *                       | 73                        |
| 13C12-OCDD                                      | %           | 81 *                        | 11.                        | 73                        |
| 13C12-2,3,7,8-TeCDF                             | %           | 82 *                        | 98 *                       | 74                        |
| 13C12-2.3,4,7,8-PeCDF                           | %           | 79 *                        | -94 *                      | 68                        |