Ref: CDC-038 Issue: 01 Dated: 30th Jan 2021

use 2 - Pressurised & unrestraned pip		21.52.440
Hoop stress	$\sigma_{\mathbf{h}} \coloneqq \sigma_{\mathbf{h}'}$	$\sigma_h = 21.53 \; MPa$
Circumferential stress (max)	$\sigma_{c} \coloneqq \sigma_{q'} + \sigma_{h'}$	$\sigma_{c} = 34.25 MPa$
Circumferential stress (min)	$\sigma_{c'} := -\sigma_{q'} + \sigma_{h'}$	$\sigma_{c'} = 8.8 MPa$
Longitudinal axial stresses (max)	$\sigma_{a2} := \sigma_{at'} + \sigma_{ax}$	$\sigma_{a2} = 70.43 \ MPa$
Longitudinal axial stresses (min)	$\sigma_{a2'} := -\sigma_{at'} + \sigma_{ax}$	$\sigma_{a2'} = -52.42 \ MPa$
n Mises equivalent stress		
Membrane stresses components	$\sigma_{e1} \coloneqq \sqrt{\sigma_h^2 + \sigma_{a2}^2 - \sigma_h \cdot \sigma_{a2}}$	$\sigma_{e1} = 62.51 MPa$
	$\sigma_{e2} := \sqrt{\sigma_h^2 + \sigma_{a2}^2 - \sigma_h \cdot \sigma_{a2}}$	$\sigma_{e2} = 65.87 \ MPa$
	$\sigma_{e} := \max (\sigma_{e1}, \sigma_{e2})$	$\sigma_{\rm e} = 65.87 \; MPa$
Membrane stress utilisation	$UTL_{m2} := \frac{\sigma_e}{\sigma'_{mem}}$	$UTL_{m2} = 0.28$
Membrane & bending stresses	$\sigma_{e3} := \sqrt{\sigma_c^2 + \sigma_{a2}^2 - (\sigma_c \cdot \sigma_{a2})}$	$\sigma_{e3} = 61 MPa$
	$\sigma_{e4} \coloneqq \sqrt{\sigma_c^2 + \sigma_{a2'}^2 - (\sigma_c \cdot \sigma_{a2'})}$	$\sigma_{e4} = 75.6 \ MPa$
	$\sigma_{e5} \coloneqq \sqrt{\sigma_{c'}^2 + \sigma_{a2}^2 - (\sigma_{c'} \cdot \sigma_{a2})}$	$\sigma_{e5} = 66.47 MPa$
	$\sigma_{e6} := \sqrt{\sigma_{c'}^2 + \sigma_{a2'}^2 - (\sigma_{c'} \cdot \sigma_{a2'})}$	$\sigma_{e6} = 57.33 MPa$
	$\sigma_{eq} := \max \left(\sigma_{e3}, \sigma_{e4}, \sigma_{e5}, \sigma_{e6} \right)$	$\sigma_{\rm eq} = 75.6 MPa$
Membrane & bending stress utilisation	$UTL_{s2} := \frac{\sigma_{eq}}{\sigma'_{stress}}$	$UTL_{s2} = 0.29$

Case 3 - Pressurised & restraned [2] § 8.1.2

Hoop stress	$\sigma_h := \sigma_{h'}$	$\sigma_h = 21.53 MPa$
Circumferential stress (max)	$\sigma_c := \sigma_{q'} + \sigma_{h'}$	$\sigma_{\rm c} = 34.25 \ MPa$
Circumferential stress (min)	$\sigma_{c'} := -\sigma_{q'} + \sigma_{h'}$	$\sigma_{c'} = 8.8 MPa$
Longitudinal axial stresses (max)	$\sigma_{a3} := \sigma_{at'} + \sigma_{ax'}$	$\sigma_{a3} = 67.88 \ MPa$
Longitudinal axial stresses (min)	$\sigma_{a3'} \coloneqq -\sigma_{at'} + \sigma_{ax'}$	$\sigma_{a3'} = -54.97 MPa$
Von Mises equivalent stress		
Membrane stresses components	$\sigma_{e1} := \sqrt{\sigma_h^2 + \sigma_{a3}^2 - \sigma_h \cdot \sigma_{a3}}$	$\sigma_{e1} = 60.08 \ MPa$
	$\sigma_{e2'} := \sqrt{\sigma_h^2 + \sigma_{a3'}^2 - \sigma_h \cdot \sigma_{a3'}}$	$\sigma_{e2'} = 68.32 \ MPa$
	$\sigma_{e'} := \max \left(\sigma_{e1'}, \sigma_{e2'} \right)$	$\sigma_{e'} = 68.32 MPa$
Membrane stress utilisation	$UTL_{m3} \coloneqq \frac{\sigma_{e'}}{\sigma'_{mem}}$	$UTL_{m3} = 0.29$
Membrane & bending stresses	$\sigma_{e3'} \coloneqq \sqrt{\sigma_c^2 + \sigma_{a3}^2 - (\sigma_c \cdot \sigma_{a3})}$	$\sigma_{e3'} = 58.79 \ MPa$
	$\sigma_{e4'} := \sqrt{\sigma_c^2 + \sigma_{a3'}^2 - (\sigma_c \cdot \sigma_{a3'})}$	$\sigma_{e4'} = 77.95 \ MPa$
	$\sigma_{e5'} \coloneqq \sqrt{\sigma_{c'}^2 + \sigma_{a3}^2 - (\sigma_{c'} \cdot \sigma_{a3})}$	$\sigma_{e5'} = 63.94 \ MPa$
	$\sigma_{e6'} \coloneqq \sqrt{\sigma_{c'}^2 + \sigma_{a3'}^2 - (\sigma_{c'} \cdot \sigma_{a3'})}$	$\sigma_{e6} = 59.86 \ MPa$
	$\sigma_{eq'} \coloneqq \max\left(\sigma_{e3'}, \sigma_{e4'}, \sigma_{e5'}, \sigma_{e6'}\right)$	$\sigma_{\rm eq'} = 77.95 \ MPa$
Membrane & bending stress utilisation	$UTL_{s3} := \frac{\sigma_{eq'}}{\sigma'_{stress}}$	$UTL_{s3} = 0.3$

§7.6.1 Operating, depressurised & occasional load cases summary

Membrane stress utilisation	$UTL_{mem} := max (UTL_{m1}, UTL_{m2}, UTL_{m3})$	$UTL_{mem} = 29.4\%$
Membrane & bending stress utilisation	$UTL_{bs} := max \left(UTL_{s1}, UTL_{s2}, UTL_{s3} \right)$	UTL _{bs} =29.9%

As it can be seen the Von Mises equivalent stresses are below the allowable yield utilisation as defined in T/SP/GM/1 [Ref. 2], hence the stresses can be considered acceptable.

Ref: CDC-038 Issue: 01 **Dated**: 30th Jan 2021

§7.7 Cyclic Loading Assessment - [2] §8.1.3

In accordance with T/SP/CE/12 (Ref [2] §8.1.3) the maximum principle stress range due to traffic loadings is calculated based on FLM3 Load Model as presented in BS EN 1991-2 (Ref [1] §4.6.4).

 $H_{\min} = 1.5 \ m$ Pipe cover

Load Model FLM3 [1] §4.6.4

Adjustment factor	$\alpha_{\text{FLM3}} := 1$
,	I LIVI

Axle load (with DAF applied)
$$Q_{FLM3} := 120 \text{ kN} \cdot \alpha_{FLM3}$$
 $Q_{FLM3} = 120 \text{ kN}$

Wheel load
$$q_{FLM3} := \frac{Q_{FLM3}}{2} \qquad q_{FLM3} = 60 \ \textit{kN}$$

Maximum wheel loading, allowing for load case
$$q_{res} \coloneqq \max \left(q_{FLM3}\,, q_{res'}\right) \qquad q_{res} = 114.2 \; \textit{kN}$$
 concidered in section 4

Allowable stress range due to
$$\Delta \sigma_{\rm allow} := 35~MPa$$
 cyclic traffic loading [2] §8.1.3 Where the daily maximum hoop stress is less than 35MPa a full fatigue assessment is not required. Hoop stress

§7.7.1 Daily maximum principle stress range

Allowable stress range due to

from FLM3 [Ref 1] is calculated below:

Maximum resultant normal stress on the pipe assuming it is loaded directly above the pipe - Boussinesq Equation [5] Pg 336	$q_{FLM3'} := \frac{3 \cdot q_{res} \cdot H_{min}^{3}}{2 \cdot \pi \cdot H_{max}^{5}}$	$q_{FLM3} = 17.55 \ kPa$
Vertical surcharge loading from traffic loadings [3] §C.5.1	$Q_{FLM3} := q_{FLM3} \cdot OD_{tot}$	$Q_{\text{FLM3}} = 2.03 \ kN \cdot m^{-1}$
Total vertical surcharge (soil, yard & traffic)	$Q_{tot'} := Q_k + Q_{rc} + Q_{FLM3'}$	$Q_{\text{tot'}} = 5.26 \ kN \cdot m^{-1}$
Hoop stress from vertical loads (using FLM3)	$\sigma_{v'} := \frac{Q_{tot'}}{2 \cdot th_{min}}$	$\sigma_{v} = 0.5 MPa$
Utilisation - stress range from traffic loading	$\mathrm{UTS}_{\Delta\sigma} \coloneqq \frac{\sigma_{\mathrm{v'}}}{\Delta\sigma_{\mathrm{allow}}}$	$UTS_{\Delta\sigma} = 0.01$

As the daily maximum hoop stress is less than 35MPa a full fatigue assessment is not required. An assessment looking at vertical variable pressure increase over the pipe is calculated below:

Ref: CDC-038 Issue: 01 Dated: 30th Jan 2021

§7.7.2 Cyclic loadings - vertical variable pressure increase

The cyclic loading from traffic can be considered acceptable when the pressure increase is below:

Allowable pressure increase from traffic loading - [2] §8.1.3

$$\sigma_{\text{allow}} := \frac{64 \text{ } MPa}{\left(\frac{\text{OD}_{\text{pipe}}}{\text{th}_{\text{pipe}}}\right)^2}$$

$$\sigma_{\text{allow}} = 182 \, kPa$$

Fatigue Load model 3 - FLM3 [1] §4.6.4

Wheel load

$$q_{FLM3} := 120 \ kN$$

$$q_{FLM3} = 120 \ kN$$

Contact width

$$B_{FLM3} := 400 \, mm$$

Contact length

$$L_{FLM3} := 400 \, mm$$

Vertical transient pressure -LM3

$$\Delta \sigma \coloneqq \frac{q_{FLM3}}{\left(B_{FLM3} + H_{eq}\right) \cdot \left(L_{FLM3} + H_{eq}\right)}$$

$$\Delta \sigma = 19.77 \ kPa$$

Utilisation - stress range from traffic loading

$$UTS_{\Delta\sigma'} \coloneqq \frac{\Delta\sigma}{\sigma_{allow}}$$

$$UTS_{\Delta\sigma'} = 0.11$$

The cyclic loading from traffic is below the limit set for FLM3, hence the stresses can be considered acceptable.

Ref: CDC-038 **Issue:** 01 **Dated**: 30th Jan 2021

§8 Summary

§8.1 Pipe Utilisation

$$UTL := \max \left(UTL_{hoop}, UTL_{q}, UTL_{q'}, UTL_{mem}, UTL_{bs}, UTS_{\Delta\sigma}, UTS_{\Delta\sigma'}, UTL_{defl}, UTL_{pe} \right)$$

$$UTL = 40.53\%$$

$$\begin{aligned} \text{Check}_{\text{UTL}} &\coloneqq \left\| \text{if } 1 - \text{UTL} > 0 \\ \left\| \text{return "PASS"} \right\| \end{aligned}$$

§8.2 Conclusion of Pipe Analysis

The pipeline has been checked for the following in accordance with the acceptance criteria as listed in T/SP/GM/1.

1. Internal Pressure [6] - §8.1.1

 $\sigma_{\text{hoop}} \leq \text{SMYS} * 0.72$

2. Operating, Depressurised & Occasional Load Cases [6] - §8.1.2

a. Membrane and Bending

 $\sigma_{\rm e} \leq 0.9 \, {\rm x \, SMYS}$

b. Membrane

 $\sigma_e \leq 0.8 \times SMYS$

3. Cyclic Loading - §8.1.3

$$\Delta \sigma < \frac{64 MPa}{\left(\frac{OD_{pipe}}{th_{pipe}}\right)^2}$$

4. Over-deflection (Ovality) - §8.2

 $\delta_{\rm v} \leq 5\%$ x Pipe diameter

5. Buckling Stability - §8.3

Elastic FOS > 3.0

The assessment has confirmed that all the above acceptance criteria are satisfied based on the assessment methodology and assumptions defined in §1.5, and the input data defined in §2, hence the crossing proposed is deemed fit for purpose.

SURCHARGE LOAD ASSESSMENT 4.5" STEEL HP GAS MAIN WHITE HOUSE FARM, TRUNCH

Appendix B – Design Residual Risk Register

Security Classification: Project Confidential

DESIGNER'S RESIDUAL RISK REGISTER

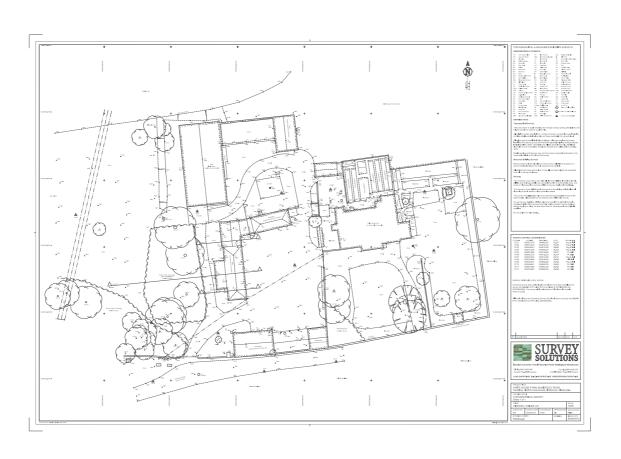
PROJECT NAME:	WHITE HOUSE FARM, HOUSING DEVELOPMENT	DESIGN REQUIRED:	SURFACE LOAD CALCULATION OVER AN EXISTING GAS MAIN
CUENT:	TIDSWELL CHILD	DESIGN No.	CDC-038
Designer:	A GRADY	DATE:	30/01/2020

Ref	Hazard	Control Measures	Owner
1	Inaccurate information provided for calculation	Client to review the information provided and used within the calculation to confirm that information is correct.	Construction Team
2	Damage to the asset and other services during construction of the road	No excavation will be required around the main.	Construction Team
3	Ground conditions and depths vary from design.	Trial pits have been dug in the vicinity of the main which correspond with historic borehole records in the area, both are contain within Appendix E.	Construction Team
4	Vehicle loadings exceed designed loading.	Load assessments to be carried out in compliance with design guidance and standards. Loadings have been assessed as per BS EN 1991-2 (2003).	Construction Team
5	Exposure to contaminated soils.	Appropriate contamination investigation to have been undertaken previous to works. Correct PPE requirements met for ground types	Construction Team
6	Surrounding environment	Separation of work area from pedestrians and vehicles. Water courses to be protected from spills/ contamination (if applicable).	Construction Team

Issue: 01 Document Number: COC-038 Status: Issued for Acceptance Security Classification: Project Confidential Page 1 of 2

DESIGNER'S RESIDUAL RISK REGISTER

7	Slips, trips and falls	Good housekeeping to be maintained on site. Maintain good access and egress at working area at all times. All work to be carried out in daylight hours or to be risk assessed for lighting.	Construction Team
---	------------------------	---	----------------------



SURCHARGE LOAD ASSESSMENT 4.5" STEEL HP GAS MAIN WHITE HOUSE FARM, TRUNCH

Appendix $\mathbb{C}-\mathbb{S}ite$ Drawings and Construction Detail

Issue: 01 Document No: CDC-038-SL-001 Page 8 Security Classification: Project Confidential

