

SuDS Strategy Report and Flood Risk Assessment

Land at 1 Dukes Close, Shabbington, HP18 9HW

Project Reference: SD2106121

Contents

	Re	evisions and Additional Material	2
Docι	ıme	nt History and Status	2
Docι	ıme	nt Details	2
	Pr	reamble 3	
	1	Introduction	3
	2	Location & Existing Conditions	3
2.1		Site Proposals	3
2.2		Existing Drainage Regime	4
	3	Flood Risk	5
3.1		National Planning Policy	5
3.2		Flooding Assessment	7
3.3		Flooding from Surface Water	7
	3	SuDS Considerations	9
4.1		SuDS Incorporation	9
	5	Surface Water Strategy	13
5.1		Designing for Exceedance	14
	6	Building and Detailed Design	14
6.1		Pollution, Water Quality, and Control Measures	14
	7	Surface Water Drainage Maintenance Schedules	16
7.1		Rainwater Pipes, and Chambers	16
7.2		Flow Control	
7.3		Permeable Paving	17
	8	Conclusions	17
	9	Appendices	18
9.1		Drainage Drawings	
9.2		Surface Water Calculations	
9.3		Exceedance Calculations	20
9.4		Architectural Layout	
9.5		Drainage Records	
9.6		BGS Borehole Record	23

Figures

Figure 1 - Flood Zone Definitions	.5
Figure 2 - Flood Risk Vulnerability Classifications	.6
Figure 3 - Flood Risk Vulnerability and Flood Zone 'Compatibility'	.6
Figure 4 - Floodplain Mapping	.7
Figure 5 - Flood Depth	. 8
Figure 6 CIRIA Table 7.1 SuDS Components	10
Figure 7 Typical car park permeable surfacing	11

Revisions and Additional Material

Document History and Status

Revision	Date	Purpose/Status
-	June 2021	First Issue

Document Details

Project Number	SD2106121
Project Director	David Brunning

Preamble

This report has been prepared by SuDS Designs, a trading name of JMS Consulting Engineers Ltd. on the instructions of the Client and for the sole use and benefit of the Client.

JMS Consulting Engineers Ltd. shall not be responsible for any use of the report or its contents for any purpose other than that for which it was prepared and provided. If the Client wishes to pass copies of the report to other parties for information, the whole of the report should be copied. No professional liability or warranty is extended to other parties by JMS Consulting Engineers Ltd. because of permitting the report to be copied or by any other cause without the express written agreement of JMS Consulting Engineers Ltd.

The conclusions and recommendations made in this report are limited to those that can be made based on the research carried out. The results of the research should be viewed in the context of the work that has been carried out and no liability can be accepted for matters outside of the stated scope of the research. Any comments made based on information obtained from third parties are given in good faith on the assumption that the information is accurate. No independent validation of third-party information has been made by JMS Consulting Engineers Ltd.

1 Introduction

- 1.0.1 SuDS Designs have been appointed to prepare a drainage strategy to accompany a planning application for validation purposes. As part of the proposals, this report will assess the potential impact from alterations to the site drainage, and the surface water characteristics are considered within the scope of the parameters set out in the National Planning Policy Framework (NPPF) and Technical Guidance to the NPPF
- 1.0.2 This report will also review the requirements set out by Aylesbury Vale District, and the report will consider the use of SuDS wherever possible.

2 Location & Existing Conditions

- 2.0.2 The site is specifically located on Dukes Close and equates to a total area of 0.0525ha
- 2.0.3 As per British Geological Survey (BGS) records the naturally occurring subsoil Kimmeridge Clay. A local borehole shows evidence of clay throughout the strata below made ground, with ground water being recorded at approximately 6m below ground level.
- 2.0.5 There are existing drainage connections within the site boundary, and Thames Water will need to be contacted for indirect connection approval.

2.1 Site Proposals

2.1.1 The proposals at the time of writing can be seen in the appended drawing, which consists of the erection of one new dwelling widening of existing access and creation of new access.

2.1.2 Underlying geology does not account for infiltration as a surface water drainage solution, and therefore the existing regime will be followed which is outfall into public sewer., and within the site boundary.

2.2 Existing Drainage Regime

2.2.1 The existing greenfield runoff rates, as found below.

	QBAR	1:1 Year Storm Event	1:30 Year Storm Event	1:100 Year Storm Event	1:100 Year Storm Event (+40% Climate Change)
Greenfield Runoff Rate	0.2	0.2	0.5	0.7	-

3 Flood Risk

3.1 National Planning Policy

- 3.1.0 The National Planning Policy Framework (NPPF) includes government policy on development and in this case meeting the challenge of climate change and flood risk. The policy states; *"Plans should take a proactive approach to mitigating and adapting to climate change, taking into account the long-term implications for flood risk...."*.
- 3.1.1 The location of new developments should consider climate change by planning to avoid increasing the vulnerability on development from the impacts of climate change. Where locations are considered vulnerable from the impacts of climate change, these risks should be managed and where possible mitigated to limit the risk.
- 3.1.2 Development in areas at risk of flooding should be made safe without increasing the flood risk elsewhere. Local Plans should be based on evidence, through a Sequential Test, in selecting the appropriate location for new development within the plan period and thus avoiding where possible flood risk to people and property.
- 3.1.3 Development priorities are based on the specific flood risk zones outlined within Table 1 of the technical guidance, as per **Figure 1** below. For Flood Zone 1 Low probability. Land assessed as having a less than 1 in 1,000-year annual probability of river and sea flooding (<0.1%) in any year.

Flood Zones	Definition
Zone 1	Land having a less than 1 in 1,000 annual probability of river or sea flooding.
Low Probability	(Shown as 'clear' on the Flood Map – all land outside Zones 2 and 3)
Zone 2 Medium Probability	Land having between a 1 in 100 and 1 in 1,000 annual probability of river flooding; or
	Land having between a 1 in 200 and 1 in 1,000 annual probability of sea flooding.
	(Land shown in light blue on Flood Map)
Zone 3a	Land having a 1 in 100 or greater annual probability of river flooding; or
High Probability	Land having a 1 in 200 or greater annual probability of sea flooding
	(Land shown in dark blue on the Flood Map)
Zone 3b	This zone comprises land where water must flow or be stored in times of flood.
The Functional Floodplain	Local planning authorities should identify in their Strategic Flood Risk Assessments
	areas of functional floodplain and its boundaries accordingly, in agreement with the Environment Agency.
	(Not separately distinguished from Zone 3a on the Flood Map)

Figure 1 - Flood Zone Definitions

3.1.4 The Environment Agency (EA) website confirms the site location to be within Flood Zone 1. Further guidance in NPPF classifies residential development schemes to be a 'more vulnerable' land class use in terms of flood risk.

Figure 2 - Flood Risk Vulnerability Classifications

3.1.6 NPPG Table 3 (para 67 ID 7-067-20140306) determines the appropriate uses by flood zone, in this case a more vulnerable use for residential dwellings are appropriate for a Zone 1.

Flood Zones	ood Zones Flood Risk Vulnerability Classification						
	Essential Infrastructure	Highly Vulnerable	More Vulnerable	Less Vulnerable	Water Compatible		
Zone 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Zone 2	\checkmark	Exception Test Required	\checkmark	\checkmark	\checkmark		
Zone 3a	Exception Test Required	х	Exception Test Requires	\checkmark	\checkmark		
Zone 3b	Exception Test Required	х	х	Х	\checkmark		
✓ Development is appropriate x Development should not be permitted							

Figure 3 - Flood Risk Vulnerability and Flood Zone 'Compatibility'

3.1.7 The EA mapping indicates the proposed developable area of the site is located within Flood Zone 1 and therefore is located to meet the requirements of NPPF.

3.2 Flooding Assessment

- 3.2.1 Fluvial flooding is a result of the capacity of rivers being exceeded by the river flow. In general, rivers have a natural flood plain, which can sometimes be encroached upon by development.
- 3.2.2 Tidal flooding is a result from the sea where high tides and storm surges raise the level of tidal waters above the level of the shore or river bank. These can be sudden and severe.
- 3.2.3 In the case of the proposed development; the site is located within Flood Zone 1 as indicated in the flood mapping as illustrated below.

Figure 4 - Floodplain Mapping

3.3 Flooding from Surface Water

3.3.1 Surface water over land flooding is present in **Figure 5**, however the extent of flooding is not within the site boundary and therefore the risk of surface water flooding is indicated as being low.

Hish
 Medium
 Low
 Very Low
 Location you selected

Figure 5 - Flood Depth

3 SuDS Considerations

3.0.1 Consideration of SuDS are a planning requirement for new developments. SuDS are designed to replicate the natural course of drainage as closely as possible with a view to reducing the impact of flooding, removing pollutants at source, and combining water management with green space.

Developments should utilise SuDS where possible and ensure that surface water run-off is managed as close to its source as possible in line with the following hierarchy:

- 1. Into ground (infiltration).
- 2. To a surface water body.
- 3. To a surface water sewer.
- 4. To a combined sewer.
- 3.0.2 Sustainable Drainage Systems should be included in the design to manage surface water flood risk. SuDS should be inspired by natural drainage processes and manage water as close to its source as possible whilst offering pollution control and landscape benefits.

4.1	SuDS	Incorporation	

Component Type	Description				Desi	ign Criteria			
			Water	Quantity (Ch	apter 3)				
		nism		Runoff \	/olumes	(†		6	ıapter Ref
		Collection Mecha	Peak Runoff Rate	Events (Interceptions)	Large Events	Water Quality (Chapter	Amenity (Chapter 5)	Biodiversity (Chapter 6	Further Information (CF
Rainwater Harvesting Systems	Systems that collect runoff from the roof of a building or other paved surface for use	Ρ		•	•		•		11
Green roofs	Planted soil layers on the roof of buildings that slow and store runoff	S	0	•		•	•	•	12
Infiltration systems	Systems that collect and store runoff, allowing it to infiltrate into the ground	Ρ	•	•	•	•	•	•	13
Proprietary treatment systems	Subsurface structures design to provide treatment to runoff	Ρ				•			14

Filter strips	Grass strips hat promote sedimentation and filtration as runoff is conveyed over the surface	L		•		•	0	0	15
Filter drains	Shallow stone-filled trenches that provide attenuation, conveyance and treatment of runoff	L	•	0		•	0	0	16
Swales	Shallow landscaped depressions that allow runoff to pond temporarily on the surface, before filtering through vegetation and underlying soils	L	•	•	•	•	•	•	17
Bioretention systems	Trees with soil-filled tree pits, tree planters or structural soils used to collect, store and treat runoff	Ρ	•	•	•	•	•	•	18
Trees	Structural paving through which runoff can soak and subsequently be stored in the sub-base beneath, and/or allowed to infiltrate into the ground below	Ρ	•	•		•	•	•	19
Pervious pavements	Structural paving through which runoff can soak and subsequently be stored in the sub-base beneath, and/or allowed to infiltrate into the ground below	S	•	•	•	•	0	0	20
Attenuation storage tanks	Large, below-ground voided spaces used to temporarily store runoff before infiltration-controlled release or use	Ρ	•						21
Detention basins	Vegetated depressions that store and treat runoff	Ρ	•	•		•	•	•	22
Ponds and wetlands	Permanent pools of water used to facilitate treatment of runoff – runoff can also be stored in an attenuation zone above the pool	Ρ	•			•	•	•	23
P-Point L-Lateral S-Surface									

– likely valuable contribution to delivery of design criterion

 ${\ensuremath{ \circ}}$ - some potential contribution to delivery of design criterion, if specifically included in the design

Figure 6 CIRIA Table 7.1 SuDS Components

- 3.1.2 The above table gives examples of various SuDS components, which may offer source control in accordance with the requirements. Water-butts and or rainwater harvesting can be implemented within the design. Section 9.2 of BS 8582:2013 states that the use of rainwater harvesting systems should be evaluated to deliver both water supply and surface water management. Rainwater harvesting can be used for landscaping irrigation purposes as well as other grey water uses and will contribute towards a reduction in runoff volume entering the sewer network. Rainwater harvesting units can incorporate an overflow to the drainage system to cater for extreme events.
- 3.1.3 Section 3.3 of the EA document *Rainfall runoff management for developments* Report SC030219 states that a minimum flow of 5 l/s per second should be used. On that basis, a flow rate should be engineered that reduces flow sufficiently while providing an outflow orifice diameter which is not susceptible to blockage. i.e 1.0 l/s.
- 3.1.4 Consideration has been given to the ODPM document Preparing for Floods which is a *"guide intended for use by developers, local planning authorities and others involved in construction of new buildings,*

and renovation of existing buildings at risk of flooding. If adopted the principles set out within this guide should help reduce the stress and disruption of flooding and provide a more sustainable approach to flood risk².

- 3.1.5 Private roads, and drives offer an opportunity to apply permeable surfacing which can be considered a method of source control. As per table 7.1 (**Figure 1**), surface water is slowed at source by soaking through the surfacing before discharging to the drainage network. Permeable surfacing offers the added benefit of filtering the runoff as it drains through, hence improving the quality.
- 3.1.6 In accordance with Table 26.2 of CIRIA Report C753, the pollution hazard level can be classified as 'Low'. Using table 26.3 of the same document, the mitigation indices values for permeable surfacing exceed the pollution hazard values taken from the previous table. This ensures that proposals offer enough pollution risk mitigation.
- 3.1.7 Despite low levels of permeability, permeable surfacing can offer the opportunity for both infiltration and attenuation. The flow control is to be set to an allowable discharge rate with the attenuation sized appropriately.

Figure 7 Typical car park permeable surfacing

- 3.1.8 Where flow controls are applied attenuation volume is required to provide storage during varying storm events.
- 3.1.9 The **Figure 1** proposals ensure that an 'at source' SuDS measure is applied, and betterment is provided in terms of surface water runoff velocity and quality. Pollution indices from different land types can be found per as per table 26.15 CIRIA SuDS Manual 2015, below.

Land use surface type (Lust)	Impermeability (IMP _{RF})	Total suspended solids pollution index (PI _{TSS})	Organic pollution index (Pl _{org})	Hydrocarbon pollution index (Pl _{PAD})	Metals Pollution index (PI)	
Roofs						
Industrial / Commercial	1.0	0.3	0.3-0.4	0.2	0.4-0.8	
Residential	0.9	0.4-0.5	0.6-0.7	0.1	0.2-0.5	
<u>Highways</u>						
Motorways	0.8-0.9	0.9	0.7	0.9	0.8	
Major arterial highways	0.7-0.8	0.8	0.7	0.8	0.8	
Urban distributor roads	0.6-0.7	0.7-0.8	0.5	0.8	0.7	
Residential Street	0.4-0.6	0.4	0.6	0.6	0.6	
Pavements	0.5-0.6	0.4	0.6	0.3	0.3	
Car Parks / Hardstanding						
Industrial/Commercial	0.6-0.8	0.6-0.7	0.6-0.7	0.7	0.4-0.5	
Driveways (Residential)	0.5	0.5	0.6	0.4	0.3	
Open Areas						
Gardens (All types)	0.1	0.3	0.2-0.3	0	0.01	
Parks/Golf Courses	0.2	0.2-0.3	0.2	0	0.02	
Grassed Areas (including verges, all types)	0.1	0.2-0.3	0.2-0.3	0.05	0.05	
Note 1 Pollution index values are based on reported land use two EMC distributions and impact potential thresholds from House at al (1001) Luker and						

Montague (1994), Butler and Clark (1995), D'Arcy et al (2000), Mitchell (2005) and Moy et al (2003)

Figure 8 Impermeability and pollution indices for different land use types

3.1.10 The appended drainage calculation allows for a 1:100-year storm plus 40% climate change. Safety factors have been cautiously applied to demonstrate the effectiveness of this development in reducing flood risk. The safety factors that have been applied are referenced from Table 25.2 of CIRIA SuDS Manual 2015.

5 Surface Water Strategy

The surface water strategy is based upon the SuDS implementation as outlined above along with the hierarchy for surface water disposal as follows:

A. Store rainwater for later use:

Rainwater storage is to be utilised where possible. The layout offers an opportunity to utilise rainwater storage for landscape irrigation with the added benefit of reducing the volume of runoff entering the public drainage network.

B. Use infiltration techniques, such as porous surfaces:

The ground strata does not permit the use of infiltration, and is not inline with the current outfall regime

C. Attenuate rainwater in ponds or open water features for gradual release:

The site layout does not permit the use of open water features.

D. Attenuate rainwater by storing in tanks or sealed water features for gradual release:

As per the appended greenfield run-off calculations, an outfall rate of QBAR 0.2 l/s is not suitable for this development, therefore a proposal of 1.0 l/s has been made.

In addition to this, the appended exceedance calculations show that the system can accommodate a critical event of the 1 in 200 year storm, plus 40% climate change allowance.

E. Direct rainwater direct to the watercourse:

N/A

F. Discharge rainwater to a surface water sewer/drain

N/A

G. Discharge rainwater to combined sewer:

N/A

H. Discharge rainwater to foul sewer:

Following existing regime, throttled to 1.0 l/s as above

5.1 Designing for Exceedance

- 4.1.0 Consideration should be given to external levels to ensure they are set above overland flood risk levels, and low points are created to direct water away from the building footprints during exceedance events. Please see appended drawing for exceedance flow directions.
- 4.1.1 CIRIA document C635 *Designing for exceedance in urban drainage good practice* states that "at present there are no guidelines on the return period of event (extreme event) that should be used for design exceedance". However, Section 3.4 also states that "it is suggested that return periods of 1 in 30, to 1 in 100 or 1 in 200-year events would form a suitable framework for most applications".
- 4.1.2 In accordance with the above, the drainage network has been modelled using a 1 in 200-year event, and the calculations are appended to show the capability and resilience of the network.
- 4.1.3 Whilst the development proposal will limit the potential for extension to the dwellings, an allowance of
 10% to the building area has been added to the impermeable area in line with BS8582:2013 Code of
 practice for surface water management for development sites for urban creep.

6 Building and Detailed Design

5.0.2 Consideration should be given to external levels to ensure they are set above overland flood risk levels. Therefore, low points are required to direct water away from the building footprints during exceedance events (above the 100yr +40% (cc) event)

6.1 Pollution, Water Quality, and Control Measures

- 5.1.0 Consideration for surface water needs to be taken during the construction process, and how it is managed including flood risk and pollution control.
- 5.1.1 For the permeable surfacing surface water is slowed at source by soaking through the surfacing before discharging to the drainage solution. Permeable surfacing offers the added benefit of filtering the runoff as it drains through, hence improving the quality. Furthermore, the sub-base can be used to attenuate surface water when used in conjunction with controlled discharge rates.
- 5.1.2 On completion of the permanent drainage system the network will be relied upon to control pollution and water quality for the remainder of the construction works.
- 5.1.3 Wheel and plant washing will take place at the temporary entrance to minimise the pollutants being transferred to, or from site, and is also located to minimise the risk of pollutants entering the permeable surfacing and other drainage elements.
- 5.1.4 Pollution incident potential involving plant and machinery can be contained by simple measures:

- Use of drip trays
- Emergency spill kits
- Regular maintenance/checks of plant and machinery including checks for wear, oil leaks and immediate decommissioning when faults occur
- Procedures for refuelling areas, with spillage kits

7 Surface Water Drainage Maintenance Schedules

- 6.0.1 This section of the report gives guidance on the maintenance of the drainage system and outlines the responsible party as the freeholder within plot boundaries.
- 6.0.2 The design life of the development is likely to exceed the design life of each of the SuDS components listed above. During the routine inspections of any drainage components, it may become apparent that they have reached the end of their functional lifetime. In the interest of sustainability, repairs should be the first-choice solution where practicable. If this is not the case, then it will be necessary for the property owners to undertake complete replacement of the component in question.

7.1 Rainwater Pipes, and Chambers

Maintenance Schedule	Required Action	Recommended Frequency
Regular Maintenance	Inspection of silt trap chamber and removal of debris when necessary	Quarterly or as required following monitoring
Remedial Actions	Check for blockages in manholes and pipes. Rodding and jetting of pipes to be carried out. CCTV survey can be carried out to inspect condition of pipework	Quarterly or as required following monitoring
Monitoring	Inspect collection apparatus for debris and litter. Remove where necessary to prevent blockages in the system.	Monthly or after periods of heavy rainfall

Table 1- Rainwater Pipes, and Chambers: System storage operation and maintenance requirements

7.2 Flow Control

Table 2- Flow Control: System storage operation and maintenance requirements

Maintenance Schedule	Required Action	Recommended Frequency
Regular Maintenance	Remove litter and debris and grass cuttings from upstream to prevent being washed into the flow control. Inspection of the flow control chamber and the removal of any sediment/debris when required.	Quarterly or as required following monitoring
Remedial Actions	Check flow control is functional	Quarterly or as required following monitoring
Monitoring	Inspect flow control and check flows are not impeded	Monthly or after periods of heavy rainfall

7.3 Permeable Paving

Table 3 – Permeable Paving: System operation and maintenance requirements

Maintenance Schedule	Required Action	Recommended Frequency
Regular Maintenance	Sweeping. [NOTE: Any jointing material between the blocks that is lost or displaced as a result of sweeping must be replaced. New jointing material must be the same type as that removed or a suitable replacement]	 3 no. times a year: - At the end of Winter; Mid-summer; and After autumn leaf fall. required based on site specific observations
Occasional Maintenance	Stabilise and mow contributing and adjacent areas to prevent excess sediment being washed into the paving	As required
Remedial actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users	As required

8 Conclusions

- 7.0.1 An existing combined sewer provides an outfall in accordance with the hierarchy.
- 7.0.2 Connection should be made subject to Thames Water approval.
- 7.0.3 It can be concluded that the above sustainable drainage strategy is compliant with local and national policy and can be accommodated within the site boundary.

9 Appendices

9.1 Drainage Drawings

Ø450mm (Light Loading B125) Scale 1:20

Note:

3m maximum depth. Up to Ø150mm pipework for 450mm shaft, or up to 300mm pipework on 500mm shaft. B125 maximum Loading, suitable for car parks and private drives

Original Sheet Size: A1

9.2 Surface Water Calculations

JMS Chelmsford Ltd		Page 1
BIC110 - The MedBIC		
Alan Cherry Drive		
Chelmsford CM1 1SQ		Micro
Date 25/06/2021 10:21	Designed by DavidBrunning(JMSEng	
File Attenuation.SRCX	Checked by	Diamacje
XP Solutions	Source Control 2018.1	1

ICP SUDS Mean Annual Flood

Input

Return Period (years) 1 SAAR (mm) 648 Urban 0.000 Area (ha) 0.053 Soil 0.450 Region Number Region 6

Results 1/s

QBAR Rural 0.2 QBAR Urban 0.2

Q1 year 0.2

Q1 year 0.2 Q30 years 0.5 Q100 years 0.7

JMS Chelmsford Ltd		Page 1
BIC110 - The MedBIC		
Alan Cherry Drive		
Chelmsford CM1 1SQ		Micro
Date 25/06/2021 10:20	Designed by DavidBrunning(JMSEng	
File Attenuation.SRCX	Checked by	Diamade
XP Solutions	Source Control 2018.1	

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 55 minutes.

	Storm Event	L	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min S	Summer	9.609	0.609	0.0	0.8	0.8	3.1	ОК
30	min S	Summer	9.655	0.655	0.0	0.8	0.8	3.7	0 K
60	min S	Summer	9.670	0.670	0.0	0.8	0.8	4.0	0 K
120	min S	Summer	9.656	0.656	0.0	0.8	0.8	3.7	0 K
180	min S	Summer	9.631	0.631	0.0	0.8	0.8	3.4	0 K
240	min S	Summer	9.604	0.604	0.0	0.8	0.8	3.0	O K
360	min S	Summer	9.548	0.548	0.0	0.8	0.8	2.3	O K
480	min S	Summer	9.340	0.340	0.0	0.8	0.8	1.6	O K
600	min S	Summer	9.233	0.233	0.0	0.8	0.8	1.1	O K
720	min S	Summer	9.165	0.165	0.0	0.8	0.8	0.8	O K
960	min S	Summer	9.095	0.095	0.0	0.7	0.7	0.5	O K
1440	min S	Summer	9.058	0.058	0.0	0.6	0.6	0.3	O K
2160	min S	Summer	9.042	0.042	0.0	0.4	0.4	0.2	O K
2880	min S	Summer	9.035	0.035	0.0	0.3	0.3	0.2	O K
4320	min S	Summer	9.028	0.028	0.0	0.2	0.2	0.1	O K
5760	min S	Summer	9.025	0.025	0.0	0.2	0.2	0.1	O K
7200	min S	Summer	9.022	0.022	0.0	0.2	0.2	0.1	O K
8640	min S	Summer	9.020	0.020	0.0	0.1	0.1	0.1	O K
10080	min S	Summer	9.019	0.019	0.0	0.1	0.1	0.1	O K
15	min V	Winter	9.640	0.640	0.0	0.8	0.8	3.5	O K
30	min V	Winter	9.695	0.695	0.0	0.8	0.8	4.3	O K
60	min V	Winter	9.715	0.715	0.0	0.9	0.9	4.6	Flood Risk
120	min V	Winter	9.693	0.693	0.0	0.8	0.8	4.3	O K
180	min V	Winter	9.655	0.655	0.0	0.8	0.8	3.7	O K

Storm		Rain	Flooded	Discharge	Time-Peak				
	Event		(mm/hr)	Volume	Volume	(mins)			
				(m³)	(m³)				
15	min	Summer	138.153	0.0	3.6	17			
30	min	Summer	90.705	0.0	4.9	31			
60	min	Summer	56.713	0.0	6.1	50			
120	min	Summer	34.246	0.0	7.5	84			
180	min	Summer	25.149	0.0	8.2	118			
240	min	Summer	20.078	0.0	8.8	152			
360	min	Summer	14.585	0.0	9.6	216			
480	min	Summer	11.622	0.0	10.2	276			
600	min	Summer	9.738	0.0	10.7	330			
720	min	Summer	8.424	0.0	11.1	384			
960	min	Summer	6.697	0.0	11.7	494			
1440	min	Summer	4.839	0.0	12.7	734			
2160	min	Summer	3.490	0.0	13.7	1084			
2880	min	Summer	2.766	0.0	14.4	1456			
4320	min	Summer	1.989	0.0	15.4	2188			
5760	min	Summer	1.573	0.0	16.2	2848			
7200	min	Summer	1.311	0.0	16.7	3568			
8640	min	Summer	1.129	0.0	17.2	4320			
10080	min	Summer	0.994	0.0	17.5	5000			
15	min	Winter	138.153	0.0	4.1	17			
30	min	Winter	90.705	0.0	5.5	31			
60	min	Winter	56.713	0.0	6.9	56			
120	min	Winter	34.246	0.0	8.4	90			
180	min	Winter	25.149	0.0	9.2	128			
	©1982-2018 Innovyze								

JMS Chelmsford Ltd		Page 2
BIC110 - The MedBIC		
Alan Cherry Drive		
Chelmsford CM1 1SQ		Micro
Date 25/06/2021 10:20	Designed by DavidBrunning(JMSEng	
File Attenuation.SRCX	Checked by	Digitige
XP Solutions	Source Control 2018.1	

Summary of Results for 100 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (l/s)	Max Volume (m³)	Status
240	min Wi	nter	9.614	0.614	0.0	0.8	0.8	3.1	ОК
360	min Wi	nter	9.518	0.518	0.0	0.8	0.8	2.1	ОК
480	min Wi	nter	9.224	0.224	0.0	0.8	0.8	1.1	ΟK
600	min Wi	nter	9.126	0.126	0.0	0.8	0.8	0.6	ΟK
720	min Wi	nter	9.082	0.082	0.0	0.7	0.7	0.4	ΟK
960	min Wi	nter	9.058	0.058	0.0	0.6	0.6	0.3	ΟK
1440	min Wi	nter	9.042	0.042	0.0	0.4	0.4	0.2	ΟK
2160	min Wi	nter	9.033	0.033	0.0	0.3	0.3	0.2	ΟK
2880	min Wi	nter	9.028	0.028	0.0	0.2	0.2	0.1	ΟK
4320	min Wi	nter	9.023	0.023	0.0	0.2	0.2	0.1	ОК
5760	min Wi	nter	9.021	0.021	0.0	0.1	0.1	0.1	ΟK
7200	min Wi	nter	9.019	0.019	0.0	0.1	0.1	0.1	ΟK
8640	min Wi	nter	9.017	0.017	0.0	0.1	0.1	0.1	ОК
10080	min Wi	nter	9.016	0.016	0.0	0.1	0.1	0.1	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
240		1.7.1 to	20 070	0 0	0.0	1.04
240	mın	Winter	20.078	0.0	9.9	164
360	min	Winter	14.585	0.0	10.7	232
480	min	Winter	11.622	0.0	11.4	280
600	min	Winter	9.738	0.0	12.0	328
720	min	Winter	8.424	0.0	12.4	378
960	min	Winter	6.697	0.0	13.2	490
1440	min	Winter	4.839	0.0	14.2	722
2160	min	Winter	3.490	0.0	15.4	1068
2880	min	Winter	2.766	0.0	16.2	1420
4320	min	Winter	1.989	0.0	17.4	2176
5760	min	Winter	1.573	0.0	18.2	2904
7200	min	Winter	1.311	0.0	18.9	3592
8640	min	Winter	1.129	0.0	19.4	4392
10080	min	Winter	0.994	0.0	19.8	4952

JMS Chelmsford Ltd		Page 3
BIC110 - The MedBIC		
Alan Cherry Drive		
Chelmsford CM1 1SQ		Micco
Date 25/06/2021 10:20	Designed by DavidBrunning(JMSEng	
File Attenuation.SRCX	Checked by	Diamage
XP Solutions	Source Control 2018.1	1
E	Rainfall Details	
Rainfall Model	FSR Winter Storms Yes	
Return Period (years)	100 Cv (Summer) 0.750	
Region Eng	gland and Wales Cv (Winter) 0.840	
M5-60 (mm)	20.000 Shortest Storm (mins) 15	
Ratio R	0.400 Longest Storm (mins) 10080	
Summer Storms	Yes Climate Change % +40	
<u>T</u>	ime Area Diagram	
Тс	otal Area (ha) 0.015	
	Time (mins) Area From: To: (ha)	
	0 0 015	
	0 4 0.015	

JMS Chelmsford Ltd				Page 4
BIC110 - The MedBIC				
Alan Cherry Drive				
Chelmsford CM1 1SQ				Micro
Date 25/06/2021 10:20	Designed by	DavidBrunning(C	MSEng	Dcainago
File Attenuation.SRCX	Checked by			Diamage
XP Solutions	Source Contr	col 2018.1		
	<u>Model Detail</u>	<u>s</u>		
Storage is	Online Cover Le	zel (m) 10.000		
		- ()		
<u>C</u>	Complex Struct	ure		
	Cellular Stor			
In	vert Level (m)	9.000 Safety Fact	or 2.0	
Infiltration Coefficien	nt Base (m/hr) 0	.00000 Porosi	ty 0.95	
	it side (m/mi) o	.00000		
Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m²) Inf	. Area (m²) Depth	(m) Area (m²)	Inf. Area (m²)
0.000 5.0 5.0 0.40	0 5.0	8.6 0.	401 0.0	8.6
		I		
	Porous Car Pa	<u>rk</u>		
Infiltration Coefficient Bas	e (m/hr) 0.00000) Wid	dth (m) 4.8	
Membrane Percolation	(mm/hr) 1000) Leng	gth (m) 10.0	
Max Percolati	on (1/s) 13.3	Slope	e (1:X) 80.0	
Salet	y Factor 2.0 Porosity 0.30) Depression Stora) Evaporation (r	ge (mm) 5 nm/dav) 3	
Invert I	evel (m) 9.465	Cap Volume Der	oth (m) 0.325	
<u>Hydro-Brak</u>	e® Optimum Out	<u>tilow Control</u>		
Ur	it Reference MD	-SHE-0047-1000-1000	0-1000	
Des	ign Head (m)		1.000	
Desig	n Flow (l/s) Flush-Flo™	Calc	1.0 Nated	
	Objective M	inimise upstream st	corage	
	Application	Si	urface	
Su T	mp Available Diameter (mm)		Yes 47	
Inve	ert Level (m)		9.000	
Minimum Outlet Pipe I	Diameter (mm)		75	
Suggested Mannole L	lameter (mm)		1200	
Control Points Head (m) F	low (l/s)	Control Points	Head (m) Fl	ow (1/s)
Design Point (Calculated) 1.000	1.0	Kick-Flo	® 0.415	0.7
Flush-Flo™ 0.205	0.8 Mean F	low over Head Rang	e –	0.8
The hydrological calculations have been by	ased on the Head	/Discharge relation	nshin for the	Hudro-Brake®
Optimum as specified. Should another type	e of control dev	ice other than a H	ydro-Brake Opt	imum® be
utilised then these storage routing calcul	lations will be	invalidated		
Depth (m) Flow (l/s) Depth (m) Flow (l/s)	epth (m) Flow (L/s) Depth (m) Flo	w (l/s) Depth	(m) Flow (l/s)
0.100 0.8 0.800 0.9	2.000	1.4 4.000	1.9 7	.000 2.4
0.200 0.8 1.000 1.0	2.200	1.4 4.500	2.0 7	.500 2.5
0.300 0.8 1.200 1.1	2.400	1.5 5.000	2.1 8	.000 2.6
0.500 0.7 1.400 1.2	3.000	1.6 6.000	2.3 9	.000 2.7
0.600 0.8 1.800 1.3	3.500	1.8 6.500	2.3 9	.500 2.8

©1982-2018 Innovyze

9.3 Exceedance Calculations

JMS Chelmsford Ltd		Page 1
BIC110 - The MedBIC		
Alan Cherry Drive		
Chelmsford CM1 1SQ		Micro
Date 25/06/2021 10:19	Designed by DavidBrunning(JMSEng	
File Attenuation.SRCX	Checked by	Diamage
XP Solutions	Source Control 2018.1	

Summary of Results for 200 year Return Period (+40%)

Half Drain Time : 65 minutes.

	Storm Event	n :	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (l/s)	Max Volume (m³)	Status
15	min :	Summer	9.650	0.650	0.0	0.8	0.8	3.7	ОК
30	min :	Summer	9.709	0.709	0.0	0.9	0.9	4.5	Flood Risk
60	min :	Summer	9.733	0.733	0.0	0.9	0.9	4.9	Flood Risk
120	min :	Summer	9.720	0.720	0.0	0.9	0.9	4.7	Flood Risk
180	min :	Summer	9.694	0.694	0.0	0.8	0.8	4.3	0 K
240	min :	Summer	9.665	0.665	0.0	0.8	0.8	3.9	0 K
360	min :	Summer	9.611	0.611	0.0	0.8	0.8	3.1	0 K
480	min :	Summer	9.562	0.562	0.0	0.8	0.8	2.4	O K
600	min :	Summer	9.382	0.382	0.0	0.8	0.8	1.8	0 K
720	min :	Summer	9.264	0.264	0.0	0.8	0.8	1.3	O K
960	min :	Summer	9.142	0.142	0.0	0.8	0.8	0.7	O K
1440	min :	Summer	9.069	0.069	0.0	0.7	0.7	0.3	O K
2160	min :	Summer	9.047	0.047	0.0	0.5	0.5	0.2	O K
2880	min :	Summer	9.038	0.038	0.0	0.4	0.4	0.2	O K
4320	min :	Summer	9.031	0.031	0.0	0.3	0.3	0.1	O K
5760	min :	Summer	9.027	0.027	0.0	0.2	0.2	0.1	O K
7200	min :	Summer	9.024	0.024	0.0	0.2	0.2	0.1	O K
8640	min :	Summer	9.022	0.022	0.0	0.2	0.2	0.1	O K
10080	min :	Summer	9.020	0.020	0.0	0.1	0.1	0.1	O K
15	min N	Winter	9.686	0.686	0.0	0.8	0.8	4.2	0 K
30	min N	Winter	9.757	0.757	0.0	0.9	0.9	5.2	Flood Risk
60	min N	Winter	9.790	0.790	0.0	0.9	0.9	5.7	Flood Risk
120	min N	Winter	9.771	0.771	0.0	0.9	0.9	5.4	Flood Risk
180	min N	Winter	9.731	0.731	0.0	0.9	0.9	4.8	Flood Risk

	Stor	m	Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	160.526	0.0	4.3	17	
30	min	Summer	105.910	0.0	5.7	31	
60	min	Summer	66.391	0.0	7.2	52	
120	min	Summer	40.078	0.0	8.8	86	
180	min	Summer	29.375	0.0	9.7	120	
240	min	Summer	23.398	0.0	10.3	154	
360	min	Summer	16.938	0.0	11.2	220	
480	min	Summer	13.466	0.0	11.8	284	
600	min	Summer	11.262	0.0	12.4	346	
720	min	Summer	9.727	0.0	12.8	398	
960	min	Summer	7.712	0.0	13.5	502	
1440	min	Summer	5.551	0.0	14.6	734	
2160	min	Summer	3.987	0.0	15.7	1088	
2880	min	Summer	3.149	0.0	16.5	1468	
4320	min	Summer	2.254	0.0	17.6	2160	
5760	min	Summer	1.776	0.0	18.4	2920	
7200	min	Summer	1.476	0.0	19.0	3624	
8640	min	Summer	1.268	0.0	19.4	4360	
10080	min	Summer	1.114	0.0	19.8	4984	
15	min	Winter	160.526	0.0	4.8	17	
30	min	Winter	105.910	0.0	6.4	31	
60	min	Winter	66.391	0.0	8.1	58	
120	min	Winter	40.078	0.0	9.8	92	
180	min	Winter	29.375	0.0	10.8	130	
		©.	1982-20	18 Inno	vvze		

JMS Chelmsford Ltd		Page 2
BIC110 - The MedBIC		
Alan Cherry Drive		
Chelmsford CM1 1SQ		Micro
Date 25/06/2021 10:19	Designed by DavidBrunning(JMSEng	
File Attenuation.SRCX	Checked by	Digitige
XP Solutions	Source Control 2018.1	

Summary of Results for 200 year Return Period (+40%)

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
240	min Wi	nter	9.688	0.688	0.0	0.8	0.8	4.2	ОК
360	min Wi	nter	9.607	0.607	0.0	0.8	0.8	3.0	ΟK
480	min Wi	nter	9.514	0.514	0.0	0.8	0.8	2.0	ΟK
600	min Wi	nter	9.225	0.225	0.0	0.8	0.8	1.1	ΟK
720	min Wi	nter	9.132	0.132	0.0	0.8	0.8	0.6	ΟK
960	min Wi	nter	9.069	0.069	0.0	0.7	0.7	0.3	ΟK
1440	min Wi	nter	9.048	0.048	0.0	0.5	0.5	0.2	ΟK
2160	min Wi	nter	9.036	0.036	0.0	0.4	0.4	0.2	ΟK
2880	min Wi	nter	9.031	0.031	0.0	0.3	0.3	0.1	ΟK
4320	min Wi	nter	9.025	0.025	0.0	0.2	0.2	0.1	ΟK
5760	min Wi	nter	9.022	0.022	0.0	0.2	0.2	0.1	ΟK
7200	min Wi	nter	9.020	0.020	0.0	0.1	0.1	0.1	ΟK
8640	min Wi	nter	9.018	0.018	0.0	0.1	0.1	0.1	ΟK
10080	min Wi	nter	9.017	0.017	0.0	0.1	0.1	0.1	ΟK

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
240	min	Winter	23 398	0 0	11 5	166
360	min	Winter	16.938	0.0	12.5	236
480	min	Winter	13.466	0.0	13.3	302
600	min	Winter	11.262	0.0	13.9	346
720	min	Winter	9.727	0.0	14.4	392
960	min	Winter	7.712	0.0	15.2	490
1440	min	Winter	5.551	0.0	16.4	736
2160	min	Winter	3.987	0.0	17.6	1092
2880	min	Winter	3.149	0.0	18.5	1444
4320	min	Winter	2.254	0.0	19.8	2160
5760	min	Winter	1.776	0.0	20.7	2936
7200	min	Winter	1.476	0.0	21.4	3600
8640	min	Winter	1.268	0.0	21.9	4472
10080	min	Winter	1.114	0.0	22.3	4856

JMS Chelmsford Ltd		Page 3
BIC110 - The MedBIC		
Alan Cherry Drive		
Chelmsford CM1 1SQ		Micro
Date 25/06/2021 10:19	Designed by DavidBrunning(JMSEng	
File Attenuation.SRCX	Checked by	Diamage
XP Solutions	Source Control 2018.1	·
	<u>Rainfall Details</u>	
Rainfall Mode	l FSR Winter Storms Yes	
Return Period (years) 200 Cv (Summer) 0.750	
Regio	n England and Wales Cv (Winter) 0.840	
Batio	R 0.400 Longest Storm (mins) 10080	
Summer Storm	s Yes Climate Change % +40	
	<u>Time Area Diagram</u>	
	Total Area (ha) 0.015	
	Time (mins) Area	
	From: To: (ha)	
	0 4 0.015	

JMS Chel	msford	Ltd											Page	4
BIC110 -	The Me	dBIC												
Alan Che	rry Dri	ve												
Chelmsfo	rd CM1	1SQ											Mi	
Date 25/	06/2021	10:1	9			Desi	gned	by Dav	/idBrum	nning(JMSEnc	1		
File Att	enuatio	n.SRC	Х			Chec	ked]	су						anaye
XP Solut	ions					Sour	ce Co	ontrol	2018.2	1				
						Mode	l Det	ails						
				0+			0		() 10	000				
				Stora	ge is C	niine	Cove	r rever	(m) 10.	000				
					Co	omplex	x Sti	ucture	2					
						-			_					
					<u>C</u>	ellul	ar S	<u>torage</u>						
					-		- (0		
		Tnf	iltrati	on Coef	Inve fficient	ert Le [.] E Base	vel (1 (m/h	n) 9.0 r) 0.000)00 Saie)00	ety Fac Poros	tor 2. itv 0.9	.U 95		
		Inf	iltrati	on Coef	ficient	t Side	(m/h	r) 0.000	000	10105	109 0.1			
								_						
Depth (m)	Area (m²) Inf	Area	(m²) De	pth (m)	Area	(m²)	Inf. Ar	ea (m²)	Depth	(m) Ar	cea (m²)	Inf.	Area (m²)
0.000	5.	0		5.0	0.400		5.0		8.6	5 0	.401	0.0		8.6
								_						
					<u>+</u>	Porous	s Car	<u>Park</u>						
	In	filtra	tion Co	efficie	nt Base	(m/hr	c) 0.0	0000		Wi	idth (m) 4.8		
		1	Membran	e Perco	lation	(mm/hr	;) ;)	1000		Ler	ngth (m) 10.0		
			1	Max Per	colatio	n (1/s	5)	13.3		Slop	be (1:X) 80.0		
					Safety	' Facto Porosit	or V	2.0 De	pressio Evapor	n Stora	age (mm (mm/dav) 5		
				In	vert Le	vel (m	n) <u>s</u>	0.465	Cap Vo	lume De	epth (m) 0.325		
				<u>Hydro</u>	-Brake	® Opt	imum	Outflo	ow Con	trol				
					Uni	+ Pofe	ronge	MD_QUE	-0047-1	000-100	0-1000			
					Desi	an Hea	ad (m)	: MD-SHE	.=0047=1	000-100	1.000			
					Design	Flow	(l/s)				1.0			
						Flush	n-Flom	4		Calc	culated			
						obje Applia	catior	e Minin 1	use ups	tream s	storage Surface			
					Sum	np Avai	ilable	9			Yes			
					Di -	ametei	c (mm)				47			
		М	inimum	Outlet	Pipe Di	ametei	e⊥ (m) c (mm)				9.000			
			Sugges	ted Man	hole Di	ameter	c (mm)				1200			
	G and the set	1			() 71		- 1	6				1 () 5		(-)
	Contro	DI POII	ITS	неас	(m) F.T.	OW (1/	s)	Cont	rol Pol	nts	неас	1 (M) F1	10W (1	./S)
Des	ign Poin	t (Cal	culated) 1.	000	1	.0		I	Kick-Fl	o® (0.415		0.7
		Fl	ush-Flo	тм О.	205	0	.8 Me	an Flow	over He	ead Ran	ge	-		0.8
The hydr	rological	calcu	lations	have b	been bas	sed on	the	Head/Dis	charge	relatio	onship	for the	Hydro	o-Brake®
Optimum	as speci	fied.	Should	l anothe	er type	of co	ntrol	device	other t	han a B	Hydro-B	rake Op	timum@) be
utilised	d then th	lese st	orage r	outing	calcula	ations	will	be inva	alidated	1				
Depth (m)	Flow (1/	s) Dep	oth (m)	Flow (l/s) De	epth (n	n) Fla	ow (l/s)	Depth	(m) Fl	ow (1/s) Depth	(m)	Flow (l/s)
0 100	~		0 000			0.07			-	0.0.0	-		0.00	
0.100	0	.8	1.000		1.0	2.00	00	1.4	4.	.500	⊥. 2	9 / 0 7	.500	2.4
0.300	0	.8	1.200		1.1	2.40	00	1.5	5.	.000	2.	1 8	.000	2.0
0.400	0	.7	1.400		1.2	2.60	00	1.5	5.	500	2.	2 8	.500	2.7
0.500	0	.7	1.600		1.2	3.00	00	1.6	6.	.000	2.	3 9	.000	2.7
0.600	0	• ¤	T.800		1.3	3.50	0	1.8	6.	00C	2.	3 9	.500	2.8

©1982-2018 Innovyze

9.4 Architectural Layout

Proposed Site Location Plan

The use of this data by the recipient acts as an agreement of the following statements. Do not use this data if you do not agree with any of the following statements:-

All drawings are based upon site information supplied by third parties and as such their accuracy cannot be guaranteed. All features are approximate and subject to darification by a detailed topographical survey, statutory service enquiries and confirmation of the legal boundaries.

The controlled version of this drawing should be viewed in DWF or PDF format not DWG or other formats. All prints of this drawing must be made in full colour.

Check all dimensions on site. Report any discrepancies in writing to CBLS Consultants before proceeding.

Amendmen Status

Construction

Project

Mr Matthew Phillips New Build Residential Land at 1 Dukes Close, HP18 9HW___ Drawing

Proposed Site Information Proposed Site Location Plan

Drawing No. Project ID Originator Zone Level Type Role Number DUKE1 - CBLS -00-ZZ-DR-A-0005 CBLS Project No. Scale at A3 Drawn By Status Revision D_0191-__1:200__LS__A1__C01_ CBLS info@cblsconsultants.co.uk www.cblsconsultants.co.uk EBNEULTÁNTS

The use of this data by the recipient acts as an agreement of the following statements. Do not use this data if you do not agree with any of the following statements:-All drawings are based upon site information supplied by third parties and as such their accuracy cannot be guaranteed. All features are approximate and subject to clarification by a detailed topographical survey, statutory service enquiries and confirmation of the legal boundaries. The controlled version of this drawing should be viewed in DWF or PDF format not DWG or other formats. All prints of this drawing must be made in full colour. Use figured dimensions in all cases. Check all dimensions on site. Report any discrepancies in writing to CBLS Consultants before proceeding.

COBBLE BLOCK PAVING - BRACKEN

INDIAN SANDSTONE MIXED SIZED PAVING SLABS WITH MORTAR JOINTS

TURF AREAS

Revision Date CO1 04.05.2021 Construction Issue Drawn By LS

Amendment Purpose of Issue Construction Proiect

Project Mr Matthew Phillips New Build Residential Land at 1 Dukes Close, HP18 9HW Drawing Proposed Site Information Proposed Landscaping Plan

Drawing No. Proiect ID Originator Zone Level Type Role Number DUKE1 - CBLS - 00 - ZZ - DR - A -0010
 CBLS Project No.
 Scale at A0
 Drawn By
 Status
 Revision

 D_0191 1:50
 LS
 A1
 C01
 CRS info@cblsconsultants.co.uk www.cblsconsultants.co.uk

9.5 Drainage Records

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Manhole Reference	Manhole Cover Level	Manhole Invert Level
691K	n/a	n/a
691J	n/a	n/a
591G	n/a	n/a
591B	n/a	n/a
591F	n/a	n/a
591A	n/a	n/a
481C	n/a	n/a
4803	68.54	66.89
481A	n/a	n/a
481B	n/a	n/a
4802	69.27	n/a
4902	68.46	65.9
4903	67.44	65.85
581D	n/a	n/a
581B	n/a	n/a
581A	n/a	n/a
6801	69.83	n/a
4801	69.39	66.14
4901	69.13	66.04
6901	69.31	66.75
591E	n/a	n/a
591D	n/a	n/a
591H	n/a	n/a
591C	n/a	n/a
691L	n/a	n/a
481E	n/a	n/a
5801	69.76	68.36
581E	n/a	n/a
4804	69.16	67.66
581C	n/a	n/a
5911	n/a	n/a
The position of the apparatus shown on this pla	n is given without obligation and warranty, and the a	ccuracy cannot be guaranteed. Service pipes are not
shown but their presence should be anticipated. N of mains and services must be verified and establi	o liability of any kind whatsoever is accepted by Thame shed on site before any works are undertaken.	es Water for any error or omission. The actual position

NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

Sewer Fittings

Other Symbols

Symbols used on maps which do not fall under other general categories

Change of characteristic indicator (C.O.C.I.) -68 Invert Level < Summit Areas Lines denoting areas of underground surveys, etc. Aareement Operational Site /// Chamber Tunnel Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Notes:

1) All levels associated with the plans are to Ordnance Datum Newlyn.

2) All measurements on the plans are metric.

3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.

 Most private pipes are not shown on our plans, as in the past, this information has not been recorded.

5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Searches on 0800 009 4540.

Undefined End

Inlet

A

9.6 BGS Borehole Record

ika interpulse	tription of Strata		LES	WATER	DEPTH		
Description of Strata	LEGEND	DEPTH	N-VALUE	DEPTH M	TYPE	LEVEL	CASIN
TOPSOIL	1116	444					
KIMMERIDGE CLAY Firm dark brown silty CLAY with occasional shell fragments	2 	1.00		1.00	J		
– dark grey	<u> </u>	2.00		2.00	U. 100		
		utuulu		ine be	1319		
- stiff blue/grey		3,00		3.00	J		
- shell fragments with occasional shell partings		4.00		4.00	в		
		5,00		5.00	в		
- shell partings				6.00	J	_∇_	-
i Tanga Sanga S		nten huitaadaan taadaa taa haalaa taa		jitel (sa	ja ke		
NOREHOLE DIAMETER : 150mm LINING TUBES : 150mm GROUND LEVEL : REMARKS : slight seepage of g	round w	ater	I - I - W - SPL - CPL -	Water str Water (sta Water Sa Bulk/Jar Standard Cone Pen	ike nding level note Sample Penetration Tenetration Te	i) Test	