

Earth Environmental & Geotechnical

148 Station Road Sidcup, Bexley

Flood Risk Statement and Surface Management Report

> Revision B June 2021

> > Earth Environmental & Geotechnical Ltd Houldsworth Mill Business & Arts Centre Houldsworth Street Stockport, Cheshire, SK5 6DA

Tel : 0161 9756088

Email info@earthenvironmental.co.uk www.earthenvironmental.co.uk

CONTENTS

1.	Introduction	1
2.	National Policies and Water Management Guidance	2
3.	Site Setting and Description	5
4.	Potential Sources of Existing Flooding	7
5.	Probability of Flooding from Existing Sources	8
6.	Flood Risk and Vulnerability	9
7.	The Sequential Test and Exception Test	11
8.	Surface Water Management Principles	12
9.	Surface Water Run-Off Destination	13
10.	SuDS Feasibility	14
11.	Development Greenfield Run-Off Rate and Volumes	17
12.	Pre-Development Surface Water Run-Off Rates and Volume	19
13.	Below Ground Drainage Networks and Surface Water Management Calculations	20
14.	Maintenance Requirements	23
15.	Surface Water Design Exceedance	24
16.	Pollution Prevention	24
17.	Development Management and Construction Phase	24
18.	Conclusion / Summary	25

APPENDICES

Appendix A	Site Location Plan
Appendix B	Existing Site Plans
Appendix C	Proposed Site Plans
Appendix D	BGS Data
Appendix E	Existing Drainage Data
Appendix F	Greenfield Run-Off Rates and Volume Calculations
Appendix G	Pre-Development SW Run-Off Rate and Volume Calculations
Appendix H	Surface Water Management Layout

Appendix I Surface Water Management Calculations

Report Title:	148 Station Road, Sidcup, Bexley DA15 7AB
Report Reference:	-
Client:	-
Issue Date:	Revision B – 7 th June 2021
Drafted By:	Mark Symonds
Reviewed By:	John Grace
Authorised By:	John Grace

This document has been prepared for the titled project (or named part thereof) and should not be relied upon or used for any other project without an independent check being carried out as to its suitability and prior written authorisation being obtained from Earth Environmental & Geotechnical. Earth Environmental & Geotechnical accepts no responsibility or liability for the consequences of the use of this document, wholly or in part, for any other purpose than that for which it was commissioned. Any persons so using or relying upon this document for such other purpose do so at their own risk.

This report was prepared for the sole use of the Client and shall not be relied upon or transferred to any other party without the express written authorisation of Earth Environmental & Geotechnical. It may contain material subject to copyright or obtained subject to license; unauthorised copying of this report will be in breach of copyright/license.

The findings and opinions provided in this document are given in good faith and are subject to the limitations imposed by employing site assessment methods and techniques, appropriate to the time of investigation and within the limitations and constraints defined within this document. The findings and opinions are relevant to the dates when the assessment was undertaken, but should not necessarily be relied upon to represent conditions at a substantially later date.

The findings and opinions conveyed in this report are based on information obtained from a variety of sources as detailed and which Earth Environmental & Geotechnical assumes to be reliable, but have not been independently confirmed. Therefore, Earth Environmental & Geotechnical cannot and does not guarantee the authenticity or reliability of third-party information it has relied upon.

Where opinions expressed in this report are based on current available guidelines and legislation, no liability can be accepted by Earth Environmental & Geotechnical for the effects of any future changes to such guidelines and legislation.

The limitations of liability of Earth Environmental & Geotechnical for the contents of this document have been agreed with the Client, as set out in the terms and conditions of offer and related contract documentation.

1. Introduction

Earth Environmental and Geotechnical Ltd have prepared a Flood Risk Statement and Surface Water Management report, for a new retail and residential development at 148 Station Road, Sidcup, DA15 7AB.

This flood risk statement and surface water management report will assess the current flood risks to the development site, and will demonstrate that the surface water run-off rate and volume for the post development site is managed so it adheres to current regulations, and local authority requirements.

Also, this flood risk assessment and surface water management (SuDS) report has been prepared to the guidance and requirements of the:

- National Planning Policy Framework (NPPF) 2019 Paragraphs 149-150 and 155-165;
- National Planning Practice Guidance (NPPG);
- Principles of Sustainable drainage systems (SuDS) set out by DEFRA (2011);
- Ciria SuDS Manual C753 (2015);
- Non-Statutory Technical Standards for Sustainable Drainage Systems (March 2015);
- The London Plan (2016) Policy 5.12 and 5.13;
- New London Plan (2019): Policy G1, SI12 and SI13.
- Greater London Authority: Sustainable Design and Construction Supplementary Planning Guidance Mayor of London (2014);
- London Borough of Bexley Preferred Approached to Planning Policies (February 2019);
- London Borough of Bexley Strategic Flood Risk Assessment Level-1 (August 2010);
- London Borough of Bexley Local Flood Risk Management Strategy (March 2017).

The Lead Local Flood Authority (LLFA) for London Brough of Bexley (LBB); and Thames Water (TW), need to be satisfied that the design and drainage principles of the proposed development will address the surface water management and risk of flooding; will ensure that the drainage is maintained to prevent flooding; and in turn not to increase the risk of flooding to neighbouring land and property.

This flood risk statement and surface water management report has therefore been prepared to identify and evaluate the various possible sources of flood risk to which the proposed site might be subjected to; to identify any mitigation, protection or compensation measures deemed necessary or feasible; ad to manage the surface water so it sustainable, and does not increase the probability of flooding within, or near the site.

2. National Policies and Water Management Guidance

2.1. National Planning Policy Framework (NPPF) and National Planning Practice Guidance (NPPG)

The NPPF 2019 sets out the Government's planning policies for England and how these should be applied. It provides a framework within which locally prepared plans for housing and other development can be produced. This document is used to form this flood risk assessment, with particular attention to Paragraphs 149 to 154 Planning for Climate Change, and Paragraphs 155 to 165 Planning for Flood Risk.

NPPG, Paragraph 030, outlines that the objectives of this FRA is to establish whether a proposed development is likely to be affected by current or future flooding from any source; whether it will increase flood risk elsewhere; whether the measures proposed to deal with these effects and risks are appropriate; whether the evidence for the local planning authority to apply (if necessary) the Sequential Test; and whether the development will be safe and pass the Exception Test, if applicable.

NPPG, Paragraph 051 states that sustainable drainage systems (SuDS) are designed to control surface water run off close to where it falls and mimic natural drainage as closely as possible, where they provide opportunities to reduce the causes and impacts of flooding; remove pollutants from urban run-off at source; and to combine water management with green space with benefits for amenity, recreation, and wildlife.

Further to this NPPG, Paragraph 080 states that the aim should be to discharge surface run off as high up the following hierarchy of drainage options as reasonably practicable which (in order) are into the ground (infiltration); to a surface water body; to a surface water sewer, highway drain, or another drainage system; to a combined sewer.

2.2. Flood and Water Management Act

The Flood and Water Management Act takes forward some of the proposals from three previous strategy documents published by the UK Government - Future Water (2008), Making Space for Water (2008) and the UK Government's response to the Sir Michael Pitt's Review of the summer 2007 floods. In doing so it gives the EA a strategic overview role for flood risk, and gives local authorities responsibility for preparing and putting in place strategies for managing flood risk from groundwater, surface water and ordinary watercourses in their areas.

2.3. London Plan (March 2021)

Policy SI 12 states:

- A. Current and expected flood risk from all sources (as defined in paragraph 9.2.12) across London should be managed in a sustainable and cost-effective way in collaboration with the Environment Agency, the Lead Local Flood Authorities, developers and infrastructure providers.
- B. Development Plans should use the Mayor's Regional Flood Risk Appraisal and their Strategic Flood Risk Assessment as well as Local Flood Risk Management Strategies, where necessary, to identify areas where particular and cumulative flood risk issues exist and develop actions and policy approaches aimed at reducing these risks. Boroughs should cooperate and jointly address cross-boundary flood risk issues including with authorities outside London.
- C. Development proposals should ensure that flood risk is minimised and mitigated, and that residual risk is addressed. This should include, where possible, making space for water and aiming for development to be set back from the banks of watercourses.
- D. Developments Plans and development proposals should contribute to the delivery of the measures set out in Thames Estuary 2100 Plan. The Mayor will work with the Environment Agency and relevant local planning authorities, including authorities outside London, to safeguard an appropriate location for a new Thames Barrier.
- E. Development proposals for utility services should be designed to remain operational under flood conditions and buildings should be designed for quick recovery following a flood.

- F. Development proposals adjacent to flood defences will be required to protect the integrity of flood defences and allow access for future maintenance and upgrading. Unless exceptional circumstances are demonstrated for not doing so, development proposals should be set back from flood defences to allow for any foreseeable future maintenance and upgrades in a sustainable and cost-effective way.
- G. Natural flood management methods should be employed in development proposals due to their multiple benefits including increasing flood storage and creating recreational areas and habitat.

Policy SI 13 states:

- A. Lead Local Flood Authorities should identify through their Local Flood Risk Management Strategies and Surface Water Management Plans – areas where there are particular surface water management issues and aim to reduce these risks. Increases in surface water run-off outside these areas also need to be identified and addressed.
- B. Development proposals should aim to achieve greenfield run-off rates and ensure that surface water runoff is managed as close to its source as possible. There should also be a preference for green over grey features, in line with the following drainage hierarchy:
 - 1) rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation)
 - 2) rainwater infiltration to ground at or close to source
 - 3) rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens)
 - 4) rainwater discharge direct to a watercourse (unless not appropriate)
 - 5) controlled rainwater discharge to a surface water sewer or drain
 - 6) controlled rainwater discharge to a combined sewer.
- C. Development proposals for impermeable surfacing should normally be resisted unless they can be shown to be unavoidable, including on small surfaces such as front gardens and driveways.
- D. Drainage should be designed and implemented in ways that promote multiple benefits including increased water use efficiency, improved water quality, and enhanced biodiversity, urban greening, amenity and recreation.

2.4. LBB Preferred Approached to Planning Policies

DP36 Flood Risk Management – Preferred detailed policy approach to flood risk management states:

- 1. 'Development and re-development must be used as an opportunity to reduce flood risk;
- 2. Development is required to provide a Flood Risk Assessment in line with national policy and Bexley's level 1 and 2 Strategic Flood Risk Assessments (SFRAs);
- 3. New developments in riverside locations are required to help reduce flood risk now and into the future. Development should act on the recommendations of the TE2100 Plan;
- 4. All development that is intended to be occupied within the tidal flood risk zone must include an internal safe refuge with a floor level set above the predicted 1 in 200 year plus climate change maximum predicted floor level;
- 5. any development in an identified flood risk zone must provide compensatory capacity to offset the building footprint;
- 6. Within the residual flood risk area where safe escape cannot be facilitated, a dry refuge within each building must be provided;
- 7. Habitable rooms in residential development, within the fluvial flood zones, should be set above the predicted

1 in 100 year plus climate change peak flood water level;

- 8. Within the fluvial flood risk zones development must include safe access and exit, although for development that is not residential an Emergency Plan may provide an acceptable solution;
- 9. Occupied basements are not considered appropriate in Flood Zones 2 and 3; and,
- 10. Development must not increase flood risk on site or off site, and exceedance flows must be considered and appropriately managed'.

DP37 Sustainable Drainage Systems - Preferred detailed policy approach for sustainable drainage systems states:

- 1. 'All developments should achieve greenfield runoff rates.
- 2. To minimise flood risk, improve water quality and enhance biodiversity and amenity all development proposals will be required to manage surface water through sustainable drainage systems (SuDS).
- 3. Wherever possible the natural drainage of surface water from new developments into the ground will be preferred. Surface water runoff should be managed as close to its source as possible in line with the following drainage hierarchy:
 - a) store rainwater for later use;
 - b) use infiltration techniques, such as porous surfaces;
 - c) attenuate rainwater in ponds, open water features, tanks, or sealed water features for gradual release;
 - d) discharge rainwater direct to a watercourse;
 - e) discharge rainwater to a surface water sewer/drain; and
 - f) discharge rainwater to the combined sewer'.

3. Site Setting and Description

3.1. Site Location

The development site located in a Retail / residential area of Sidcup, which is in the London Brough of Bexley, and approximately 100m north of Sidcup Station.

As detailed in Appendix A, the development site is bound by a car park for Lamorbey Church Hall, leading onto Hurst Road to the north; a commercial building of No. 2 Hurst Road to the east; an attached retail and residential building of No. 146 Station Road to the south; and Station Road to the west.

The full site address of the site is 148 Station Road, Sidcup, Bexley, London, DA15 7AB, and the co-ordinates of the centre of the site are: Easting: 546240, Northing: 172789.

3.2. Existing Site and Topography

As detailed on the existing floor / site plans Appendix B, the development site currently consists of an existing commercial and residential building, with an office unit, a restaurant residential unit, and entrance to a residential unit at ground floor; and a 2-bedroom residential unit on the first floor.

There is a garden area to the rear of the building (east of site), with Station Road being directly adjacent to the front of the building (west of site)

In terms of topography, the development site is relatively flat, with the levels ranging from approximately 33.23m AOD in the garden area to 32.94m AOD to the west, with the finished floor level of the existing building being 33.05m AOD.

3.3. Proposed Development

The full description of the development site is to be stated by the Architect, with a detailed plan shown in Appendix C. In brief, and in relation to this report, the proposed development is reconfiguring and extend the existing building.

The proposed development is to reconfigure the office and restaurant units at ground floor level (west of building); to expand the ground floor to the rear (towards west of site) to create part of a residential unit (access from first floor); and to create two new residential units at first floor level with access to ground flood and a new terrace area to the rear (east of site);

The western roof areas / falls (adjacent to Station Road) will not change as part of the development.

3.4. Ground Conditions

The ground conditions at the development site can be determined by, and sourced from, the British Geological Survey (BGS) website. The BGS data shows the site to have no superficial deposits with a bedrock-strata consisting of a Harwich Formation (sand and gravel).

The BGS data also shows public record borehole logs, within 250m radius of the development site. As detailed in Appendix C, the borehole logs also show that the ground predominantly consists of sands and gravels with occasional clay.

3.5. Waterbody / Rivers / Canals / Reservoirs

There are no known waterbodies, rivers, canals, or reservoirs near the development site, with the nearest main waterbodies being the River Shuttle approximately 1 km to the north, and the River Cray approximately 2.5km to the southeast of the site.

3.6. On-Site Drainage / Public Sewers

As detailed on the Thames Water asset plan in Appendix E, there are 600mm public foul and surface water sewers within Station Road to the west of the site. There is also a foul water sewer running along the rear of the buildings of Station Road, and passes through the development site, before discharging / connecting to the 600mm foul water sewer.

A full drainage survey of the existing site is yet to take place. However, the site survey identifies that there re exiting rainwater pipes to the front and rear (west and east respectively) of the existing building, where it is assumed that the surface water run-off from the western roof areas discharges directly to the surface water sewer, and the surface water run-off from the eastern roof areas is discharging to an on-site drainage network to the rear of the building.

The western roof and associated rainwater pipe locations will not change as part of the proposed development, and therefore the surface water from the western roof areas will continue to discharge to the surface water sewer at the existing rates.

3.7. Development / Surface Water Management Areas

The overall site boundary area is approximately 220m² / **0.022 ha**.

In terms of the surface water management areas of the site, and as stated above, the western roof and associated rainwater pipe locations will not change as part of the proposed development.

Therefore, the western roof areas of the building will not be included in the surface water management area, with the surface water from the western areas continuing to discharge to the same destination and at the same rate as the pre-development scenario.

The garden area to the eastern areas of the site will also remain as permeable, and therefore will also be excluded from the surface water management area, due to the surface water run-off from the garden discharging off the site at a natural / greenfield rate.

The surface water run-off from the eastern roof areas will be affected / changed as part of the development proposals, and therefore the existing roof, proposed roof, and extended areas will form part of the surface water management calculations, where:

Pre-development surface water run-off area (roof area)	=	70m² / 0.007 ha
Post Development surface water run-off area (roof and extended area)	=	100m² / 0.010 ha

4. Potential Sources of Existing Flooding

The potential sources of exiting flooding for the site, that are to be assessed, are as follows:

4.1. Fluvial Flooding

Fluvial flooding is resulted from watercourses / rivers surcharging and flooding the surrounding areas.

4.2. Pluvial Flooding

'Pluvial' flooding is that which results from rainfall generated overland flow before the run-off enters any watercourse, drain or sewer. It is more often linked to high intensity rainfall events (typically more than 30mm per hour). However, it can also result from lower intensity rainfall or melting snow where the ground is saturated, frozen, developed or has low permeability. This results in overland flow and ponding in depressions in the topography. In urban areas 'pluvial' flows are likely to follow the routes of highways and other surface connectivity to low spots where flooding can occur. In some cases, it can deviate from this route into adjacent developments via dropped kerbs (either for access to driveways or disability access).

4.3. Groundwater Flooding

Groundwater flooding is caused by the emergence of water from sub-surface permeable strata. Fluctuations in the groundwater table can cause flooding should the table rise above the existing ground level. Groundwater flooding events tend to have long durations, lasting days, or weeks.

4.4. Flooding from Drains and Sewers

Flooding from drains and sewers is caused when the capacity of the drains and sewers is exceeded, and will result in flooding from the manholes.

4.5. Canals, Reservoirs and Other Artificial Sources

Flooding from canals, reservoirs and artificial sources is caused when the capacity of the sources is exceeded, or if there is an infrastructure failure.

5. Probability of Flooding from Existing Sources

5.1. Fluvial Flooding

The fluvial flood map (Risk of Flooding from Rivers and Sea) on the EA website (see Figure 1 below) suggests that the all the site lies within Flood Zone 1, which has a **low** probability of flooding

Figure 1 – EA Fluvial Flood Map

5.2. Pluvial / Surface Water Flooding

The pluvial flood map (Risk of Flooding from Surface Water) on the EA website (see Figure 2 below) identifies that all the development areas have a very low probability of pluvial / surface water flooding. Therefore, the probability of pluvial flooding is deemed to be **low**.

High Medium Low Very Low Cocation you selected

Figure 2 – EA Puvial / Surface Water Flood Map

5.3. Ground Water Flooding

The ground at the development is believed to consist of sands and gravels with occasional clay. The BGS borehole logs show there are water strike at a depth of 0.50m, but this was over a land drain system. The other borehole logs show either no water strikes or strikes to be 4.80m below ground

Therefore, as the ground is deemed to have high infiltration values (sands and gravels), and the no or deep water strikes have only be recorded (with exception of land drain) and there are 1.17m below ground in one location, with other location showing deeper water strikes. It is therefore deemed that the ground water level is relatively low, with the probability of ground water flooding at the development site is also being **low**.

5.4. Flooding from Drains and Sewers

The nearest drain / sewers to the development site are in the Station Road to the east of the development. The roads are at a lower level to the proposed site eastern boundary (back of footpath level). and the roads have upstand kerbs which will contain any surface water flooding. Therefore, the probability of flooding is deemed to be **low**.

5.5. Canals, Reservoirs and Other Artificial Sources

There are no canals, reservoirs, or other artificial sources within the vicinity of the site. Therefore, based on this data the probability of flooding from canals, reservoirs or artificial sources for the site is deemed to be **low**

6. Flood Risk and Vulnerability

The NPPG Paragraphs 065 to 067 sets out the flood risk for a site by assessing the flood zones, flood risk vulnerability classification, and flood risk vulnerability and flood zone 'compatibility'.

6.1. Flood Zones

NPPG Paragraph 065, Table 1 indicates that the flood zones are:

Flood Zones				
Flood Zone	Definition			
Zone 1 Low Probability	Land having a less than 1 in 1,000 annual probability of river or sea flooding. (Shown as 'clear' on the Flood Map – all land outside Zones 2 and 3)			
Zone 2 Medium Probability	Land having between a 1 in 100 and 1 in 1,000 annual probability of river flooding; or Land having between a 1 in 200 and 1 in 1,000 annual probability of sea flooding. (Land shown in light blue on the Flood Map)			
Zone 3a High Probability	Land having a 1 in 100 or greater annual probability of river flooding; or Land having a 1 in 200 or greater annual probability of sea flooding. (Land shown in dark blue on the Flood Map)			

The EA flood map data has identified that the development site is in Flood Zone 1, which has a low probability of flooding.

6.2. Flood Risk Vulnerability Classification

NPPG Paragraph 066, Table 2 stated the flood risk vulnerability classifications as:

Flood Risk Vulnerability Classification

Essential Infrastructure

Essential transport infrastructure (including mass evacuation routes) which should cross the area at risk; Essential utility infrastructure which has to be located in a flood risk area for operational reasons, including electricity generating power stations and grid and primary substations; and water treatment works that need to remain operational in times of flood; Wind turbines.

Highly Vulnerable

Police and ambulance stations; fire stations and command centers; telecommunications installations required to be operational during flooding; Emergency dispersal points; **Basement dwellings**; Caravans, mobile homes and park homes intended for permanent residential use; Installations requiring hazardous substances consent.

More Vulnerable

Hospitals; Residential institutions such as residential care homes, children's homes, social services homes, prisons and hostels; Buildings used for dwelling houses, student halls of residence, drinking establishments, nightclubs and hotels; Non–residential uses for health services, nurseries and educational establishments; Landfill* and sites used for waste management facilities for hazardous waste; Sites used for holiday or short-let caravans and camping, subject to a specific warning and evacuation plan.

Less Vulnerable

Police, ambulance and fire stations which are not required to be operational during flooding; Buildings used for shops; financial, professional and other services; restaurants, cafes and hot food takeaways; offices; general industry, storage and distribution; non-residential institutions not included in the 'More Vulnerable' class; and assembly and leisure; Land and buildings used for agriculture and forestry; Waste treatment (except landfill* and hazardous waste facilities); Minerals working and processing (except for sand and gravel working); Water treatment works which do not need to remain operational during times of flood.

Water-Compatible Development

Flood control infrastructure; Water transmission infrastructure and pumping stations; Sewage transmission infrastructure and pumping stations; Sand and gravel working; Docks, marinas, and wharves; Navigation facilities.

This development is classed as a 'Highly Vulnerable' as the development is to be used for basement dwellings.

6.3. Flood Risk Vulnerability and Flood Zone 'Compatibility'

NPPG Paragraph 067 Table 3, gives guidance on flood risk vulnerability compared with flood zone, to determine the compatibility.

Flood Risk Vulnerability and Flood Zone 'Compatibility'					
Flood Zones	Flood Risk Vulnerability Classification				
	Essential Infrastructure	Highly Vulnerable	More Vulnerable	Less Vulnerable	Water Compatible
Zone 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Zone 2	\checkmark	Exception Test required	\checkmark	\checkmark	\checkmark
Zone 3a †	† Exception Test required	X	Exception Test required	\checkmark	\checkmark
Zone 3b*	* Exception Test required	X	Х	X	√*

In accordance with Table 3 of the NPPF if the site is in Flood Zone 1, is classed as 'Highly Vulnerable', the development is appropriate.

7. The Sequential Test and Exception Test

7.1. Sequential and Exception Test Guidance

Paragraph 101 of the NPPG states that: The aim of the Sequential Test is to steer new development to areas with the lowest probability of flooding. Development should not be allocated or permitted if there are reasonably available sites appropriate for the proposed development in areas with a lower probability of flooding. The Strategic Flood Risk Assessment will provide the basis for applying this test. A sequential approach should be used in areas known to be at risk from any form of flooding.

Paragraph 102 of the NPPG states that: *If, following application of the Sequential Test, it is not possible, consistent with wider sustainability objectives, for the development to be located in zones with a lower probability of flooding, the Exception Test can be applied if appropriate. For the Exception Test to be passed:*

- *it must be demonstrated that the development provides wider sustainability benefits to the community that outweigh flood risk, informed by a Strategic Flood Risk Assessment where one has been prepared; and*
- a site-specific flood risk assessment must demonstrate that the development will be safe for its lifetime taking account of the vulnerability of its users, without increasing flood risk elsewhere, and, where possible, will reduce flood risk overall.

7.2. Sequential and Exception Test Requirement for Development

The development site has passed the sequential and exception test as it is in Flood Zone 1, and in accordance with NPPF guidelines is classed as 'Highly Vulnerable', and therefore is an appropriate development.

8. Surface Water Management Principles

8.1. Run-Off Destination

Surface water run-off is to discharge to one or more of the following in the order of priority shown: Discharge into the ground (infiltration); Discharge to a surface water body; Discharge to a surface water sewer, highway drain or other drain; Discharge to combined sewer.

8.2. The Management Train

A concept fundamental to implementing a successful SuDS scheme is the management train. This is a sequence of SuDS components that serve to reduce run-off rates and volumes and reduce pollution. The hierarchy of techniques that are to be used for the surface water management of the development are: Prevention - Prevention of run-off by good site design and reduction of impermeable areas; Source Control - Dealing with water where and when it falls (e.g. infiltration techniques); Site Control - Management of water in the local area (e.g. swales, detention basins); Regional Control - Management of run-off from sites (e.g. balancing ponds, wetlands).

8.3. Design Principles

The design principles for the surface water management of the development will be to: Ensure that people, property and critical infrastructure are protected from flooding; Ensure that the development does not increase flood risk off site; Ensure that SuDS can be economically maintained for the development.

8.4. Peak Surface Water Flow

The post development surface water drainage system will aim to restrict the surface water to the equivalent greenfield run-off rate (to adhere to LBB preferred policies) with a betterment of the pre-development surface water run-off (including climate change) being the maximum discharge rate for all storm events.

8.5. Flood Risk

The drainage system will be designed so that, unless an area is designed to hold and/or convey water, flooding does not occur on any part of the site for a 1 in 30-year rainfall event.

The drainage system will also be designed so that, unless an area is designed to hold and/or convey water, flooding does not occur during a 1 in 100-year rainfall event in any part of a building (including a basement) or in any utility plant susceptible to water (e.g. pumping station or electricity substation) within the development.

The design of the site will ensure that flows resulting from rainfall more than a 1 in 100-year rainfall event are managed in exceedance routes that avoid risk to people and property both on and off site.

8.6. Pollution

The SuDS design for the development site will ensure that the quality of any receiving water body is not adversely affected and preferably enhanced in accordance with Ciria SuDS Manual C753, Chapter 4.

8.7. Designing for Exceedance

The development site design will be such that when SuDS features fail or are exceeded, exceedance flows do not cause flooding of properties on or off site. This is achieved by completely containing the surface water within the drainage system (including areas designed to hold or convey water) for all events up to a 1 in 30-year event. The design of the site ensures that flows from rainfall more than a 1 in 100-year rainfall event are managed in exceedance routes that avoid risk to people and property both on and off site.

9. Surface Water Run-Off Destination

The destination of the surface water run-off from the post development site has been assessed against the prioritisation set by the Approved Document H (2010). The feasibility of the surface water run-off to the priority receptors are as follows:

Run-Off Destination	Feasible	Description
Discharge to Ground	No	The BGS data identifies the ground at the site to predominantly consist of sands and gravels. Therefore, based on the ground conditions alone surface water discharge to ground will be feasible. However, Approved Document Part H states that soakaways can not be within 5m of any structure. Given the that the only area for a soakaway is in the garden, which is relatively small, no soakaway / infiltration structure can be installed without being within the 5m perimeter. Therefore, based on the small area of external land, the discharge of surface water to ground is not feasible.
Discharge to Surface Water Body	No	There are no know waterbodies near the development site, and therefore discharge to a waterbody is not a feasible destination.
Discharge to Surface Water Sewer	Yes	As there are no suitable areas to discharge the surface water to ground, and there are no water bodies near to the development site, the only alternative is to discharge the surface water to the existing 600mm surface water sewer within Station Road. This will match the surface water discharge destination of the pre-development eastern roof areas.
Discharge to Highway Drain or Other	No	There are no know highway drains or other drains near the development site, and therefore discharge to a highway or other drain is not a feasible destination.
Discharge to Combined Water Sewer	No	There are no know combined sewers near the development site, and therefore discharge to a combined sewer is not a feasible destination.

10. SuDS Feasibility

To reduce the surface water run-off to the greenfield rate, SuDS methods are to be introduced to the post development design.

SuDS methods as per the Sustainable Drainage System (SuDS) hierarchy, and the Non-Statutory Technical Standards for Sustainable Drainage Systems – March 2015, that can be used are detailed below:

	Description	Setting	Required area
Green roofs	A planted soil layer is constructed on the roof of a building to create a living surface. Water is stored in the soil layer and absorbed by vegetation.	Building	Building integrated.
Rainwater	Rainwater is collected from the roof of a building or from other paved surfaces and stored in an overground or underground tank for treatment and reuse locally. Water could be used for toilet flushing and irrigation.	Building	Water storage (underground or above ground).
Soakaway	A soakaway is designed to allow water to quickly soak into permeable layers of soil. Constructed like a dry well, an underground pit is dug filled with gravel or rubble. Water can be piped to a soakaway where it will be stored and allowed to gradually seep into the ground.	Open space	Dependant on runoff volumes and soils.
Filter Strip	Filter strips are grassed or planted areas that runoff is allowed to run across to promote infiltration and cleansing.	open space	Minimum length 5 metres.
Permeable paving	Paving which allows water to soak through. Can be in the form of paving blocks with gaps between solid blocks or porous paving where water filters through the block itself. Water can be stored in the sub-base beneath or allowed to infiltrate into ground below.	space	Can typically drain double its area.
Bioretention area	A vegetated area with gravel and sand layers below designed to channel, filter and cleanse water vertically. Water can infiltrate into the ground below or drain to a perforated pipe and be conveyed elsewhere. Bioretention systems can be integrated with tree-pits or gardens.	Street/open space	Typically surface area is 5-10% of drained area with storage below.

	Description	Setting	Required area
Swale	Swales are vegetated shallow depressions designed to convey and filter water. These can be 'wet' where water gathers above the surface, or 'dry' where water gathers in a gravel layer beneath. Can be lined or unlined to allow infiltration.	Street/open space	Account for width to allow safe maintenancce typically 2-3 metres wide.
Hardscape storage	Hardscape water features can be used to store run-off above ground within a constructed container. Storage features can be integrated into public realm areas with a more urban character.	Open space	Could be above or below ground and sized to storage need.
Pond / Basin	Ponds can be used to store and treat water. 'Wet' ponds have a constant body of water and run-off is additional, while 'dry' ponds are empty during periods without rainfall. Ponds can be designed to allow infiltration into the ground or to store water for a period of time before discharge.	Open space	Dependant on runoff volumes and soils.
Wetland	Wetlands are shallow vegetated water bodies with a varying water level. Specially selected plant species are used to filter water. Water flows horizontally and is gradually treated before being discharged. Wetlands can be integrated with a natural or hardscape environment.	Open space	Typically 5-15% of drainage area to provide good treatment.
Underground storage	Water can be stored in tanks, gravel or plastic crates beneath the ground to provide attenuation.	Open space	Dependant on runoff volumes and soils.

The feasibility of the above SuDS methods for the post developed site are summarised in the table below:

SuDS Method	Feasible Use	Description
Green Roofs	Potential	There is potential to have soft landscaping areas at the terrace at first floor of the extended building. The soft landscaping will reduce the surface water run-off from the terrace area, add biodiversity to the development, and also act as pollutant control. Note that the extent of soft landscaping / green roof is to be confirmed at detailed design stage, and will not be taken into consideration within the surface water management calculations.
Rainwater Harvesting	Yes	Rainwater harvesting for water re-use has not been considered for the development due to the cost of a dual pipe network. However, water butts could be installed in the garden areas to be used for irrigation.
Soakaway	No	As stated in Section 9, the BGS data identifies the ground at the site to predominantly consist of sands and gravels. Therefore, based on the ground conditions alone the use

		of soakaways will be feasible.
		However, Approved Document Part H states that soakaways cannot be within 5m of any structure. Given the that the only area for a soakaway is in the garden, which is relatively small, no soakaway / infiltration structure can be installed without being within the 5m perimeter. Therefore, based on the small area of external land, soakaways are not feasible.
Filter Strips	Yes	A filter rain can be installed along the wall line to the rear of the extended building, and will take the surface water run-off (via rainwater pipe) from the extended and reformed roof areas. The filter drain will not discharge the surface water to ground (due to close proximity to building), but will convey the surface water to the main drainage network, reduce the surface water run-off rate, and act as a pollutant control
Permeable Paving / Surfacing	No	There are no external surfing where permeable paving can be installed. Therefore, the use of this SuDS method is not feasible
Bioretention Area / Swales / Ponds / Basins	No	All external soft landscape areas are relatively small and are to be used for as private garden areas. Therefore, as there are no areas for these SuDS methods, they are no feasible
Underground Storage	Yes	The surface water run-off from the development site will discharge off the site at a reduced rate. As the surface water run-off has been reduced, there will be a requirement for underground storage. This will prevent flooding for storm events up to the 1 in 30-year; and to suitable sized so that the volume of water during the 1 in 100-year storm event is kept a minimum at surface level, where it can be contained on site.

11. Development Greenfield Run-Off Rate and Volumes

To minimise the surface water run-off from the new development areas of the site, it is preferred that the post development surface water run-off be restricted to the equivalent greenfield run-off rate and volumes.

11.1. Greenfield Run-Off Rate

The Flood Estimation Handbook (FEH) is often used for the calculation of the greenfield run-off rate, however, relevant documents state that to calculate the greenfield run-off rates on small catchments less than 25km², the IH 124 QBAR equation (and the equation for the instantaneous time to peak for the unit hydrograph approach) is to be used. The IH method is based on the Flood Studies Report (FSR) approach and is developed for use on catchments less than 25km². It yields the Mean Annual Maximum Flood (QBAR). This reference also recommends the use Ciria C753 Table 24.2 to generate Growth Factors. These are used to convert QBAR to different return periods for different regions in the UK.

The input variables to establish QBAR are:

Return Period (years)	Results based on a range of return periods and the specified RP;
Area	Catchment Area (ha) which is adjusted to km2 for use in the equation;
SAAR	Average annual rainfall in mm (1941-1970) from FSR figure II.3.1;
Soil	Procedure Volume 3. Soil classes 1 to 5 have Soil Index values of 0.15, 0.3, 0.4, 0.45 and 0.5 respectively;
Urban	Proportion of area urbanised expressed as a decimal;
Region Number	Region number of the catchment based on FSR Figure I.2.4.

QBAR(I/s)

The output variables to establish QBAR are calculated using the following formula (equation yields m³/s):

QBAR

= 0.00108 x AREA^{0.89} x SAAR^{1.17} x SOIL^{2.17}

The IH 124 Variables (taken from FSR) that are specific to this site are as follows:

Area	=	50.00 ha (required area for calculation)
SAAR	=	600
Soil	=	0.300
Urban Factor	=	0.75
Region Number	=	6

The calculations in Appendix F, show the rate for 50.00ha is 282.8 l/s, but is to be reduced to reflect the surface water catchment area (0.010 ha) of the development site. Therefore, the QBAR (greenfield run-off) for development area has been calculated to be:

QBAR = <u>0.06 l/s (5.65 l/s/ha)</u>

Ciria C753 Table 24.2 identifies the growth factors for each of the storm events, based on the known QBAR figure. The growth factors from the table vary depending on the site location. In this case hydrometric area (Region Number) is 6.

Based on the figures shown in the table, the growth factors, and the existing greenfield run-off rates for each of the storm events for the development areas of the site are as follows:

Storm Event	QBAR	Growth Factor (C753 Table 24.2)	Greenfield Run-off Rate
Q ₁	0.06 l/s	0.85	0.1 l/s
Q30	0.06 l/s	2.40	0.2 l/s
Q100	0.06 l/s	3.19	0.2 l/s

11.2. Greenfield Run-Off Volume

The greenfield run-off volume for the 100-year, 6-hour storm event has also been calculated in the MicroDrainage software using the data from the Flood Estimation Handbook (FEH), with the results shown in Appendix F.

The FEH data and variables used to calculate the greenfield run-off volume at the development site locations are as follows:

Site Location	=	GB 546300 172900 TQ 46300 72900
C (1km)	=	-0.023
D1 (1km)	=	0.307
D2(1km)	=	0.368
D3 (1km)	=	0.368
E (1km)	=	0.313
F (1km)	=	2.594
Areal Reduction Factor	=	1.000
Area	=	61.500 ha
SAAR	=	627
CWI	=	91.860
SPR Host	=	16.280
URBTEXT	=	0.50

Based on these variables, and the calculation results provided by the WinDes computer software (Appendix F), the greenfield run-off volume for the overall catchment area at the site location is:

Q_{100 (6-Hour)} = 15,567.750m³

This figure is for the catchment area of 61.500 ha, and is to be reduced to reflect the surface water catchment area of the development site which is 0.010 ha. Therefore, the greenfield run-off volume for the development site area has been calculated to be:

Q_{100 (6-Hour)} = <u>2.53m³ (253.13m³/ha)</u>

12. Pre-Development Surface Water Run-Off Rates and Volume

The pre-development surface water run-off rates and volumes are to be calculated, so that the post development rates, and volume are a betterment.

The calculations to determine the pre-development surface water run-off rates and volume are based on the predevelopment surface water run-off area of 0.007 ha (eastern roof areas only), and the data given by the Flood Estimation Handbook (FEH).

The pre-development surface water run-off rates and volume have also been simulated in the MicroDrainage software (Appendix G), where the variables used (FEH data) to calculate the surface water run-off rates and volumes are as follows:

Pre-Development Area	=	0.007 ha
Site Location	=	GB 546300 172900 TQ 46300 72900
C (1km)	=	-0.023
D1 (1km)	=	0.307
D2(1km)	=	0.368
D3 (1km)	=	0.368
E (1km)	=	0.313
F (1km)	=	2.594

Based on the above variables and computer software results, the pre-development surface water run-off rates will be as follows:

Q ₁	=	1.0 l/s (15-minute storm duration*)
Q30	=	3.6 l/s (15-minute storm duration*)
Q ₁₀₀	=	5.3 l/s (15-minute storm duration*)

*The critical storm duration for each of the return period is 15 minutes.

Based on the above variables for the surface water run-off from the pre-development impermeable area, it has been calculated that the pre-development surface water discharge volume for the pre-development site (at 6-hour storm events) are as follows:

 Q_{100} = 4.26m³ (360-minute storm duration)

13. Below Ground Drainage Networks and Surface Water Management Calculations

13.1. Climate Change

The NPPF makes it a planning requirement to account for climate change in the proposed design. The recommended allowances are taken from the Environment Agency guidance (Table 2) summarised in Table 4 below.

Applies across all of England	Total change anticipated for the 2020's	Total change anticipated for the 2050's	Total change anticipated for the 2080's
Upper End	10%	20%	40%
Central	5%	10%	20%

The baseline year is 1961 to 1990. It is anticipated the life span of the proposed retail and residential building will be approximately 80 years, and therefore will fall at least into the 2080's and will have rainfall intensity increase of 40%.

This increase in rainfall is to be taken into consideration for the surface water management of the proposed development site (100-year event), to ensure that the probability of flooding remains low.

13.2. Surface Water Network Calculations

The FEH data and variables used to calculate the required below ground attenuation network and attenuation volumes at the development site are as follows:

SW Catchment Area	=	0.010 ha
Site Location	=	GB 546300 172900 TQ 46300 72900
C (1km)	=	-0.023
D1 (1km)	=	0.307
D2(1km)	=	0.368
D3 (1km)	=	0.368
E (1km)	=	0.313
F (1km)	=	2.594
Time of Entry	=	5 minutes

13.3. Surface Water Drainage Networks

As shown on the below ground drainage layout drawing in Appendix H, the surface water drainage network will consist of 450mm diameter inspection chambers; 150mm a diameters pipes; a filter drain system; a flow control chamber; and a below ground attenuation tank in the formed of cellular units.

The surface water run-off from the reconfigured and extended roof areas will discharge to the network via rainwater pipes and filter drain system, and the surface water run-off from the lightwell area will be pumped to the main drainage network. The surface water within the network will be restricted by the flow control chamber, with the surcharged water being attenuated within the cellular units. The proposed surface water network is to flow along the rear of the new building before discharging under the building and into the existing 600mm surface water sewer in Station Road (either direct connection or via existing lateral drain).

13.4. Surface Water Run-Off Rate

For the surface water run-off from the entire development site to be at the greenfield run-off rate, the surface water run-off rate for post development site is to be restricted by a flow control to 0.1 l/s for the 1 in 1-year storm event; 0.2 l/s for the 1 in 30-year storm event, and 0.2 l/s for the 1 in 100-year storm event including 40% rainfall intensity increase (climate change).

For the surface water run-off from the entire development site to be a betterment of the pre-development rates, the surface water run-off from the post development site is to be restricted by a flow control to at least 1.0 l/s for the 1 in 1-year storm event; 3.6 l/s for the 1 in 30-year storm event; and 5.3 l/s for the 1 in 100-year storm event including 40% rainfall intensity increase / climate change.

An assessment of the suitable flow control opening, and subsequent surface water discharge needs to assessed, where Ciria document C753 – The SuDS Manual states that: *'the flow controls / orifice design should be designed so that it has simplicity on operation, and has resistance to clogging, blocking or mechanical failure'.*

The flow control (hydro-brake) therefore is to be a suitable diameter where the surface water run-off discharge form the development area of the site is as close to the greenfield rates as possible, is at least a betterment of the predevelopment 1 in 1-year run-off rate, and will be a size where the likelihood of blockage and subsequent flooding is reduced.

For this development, and based on the guidance, the suitable / minimum size of the flow control opening is deemed to be 30mm. As shown in the output calculation from the MicroDrainage computer software in Appendix I, if the orifice opening is set at 30mm, the maximum surface water run-off rates for each storm event will be as follows:

Strom	-	Rate	-	Critical Storm Event
Q ₁	-	0.5 l/s	-	30-minute winter storm duration
Q ₃₀	-	1.0 l/s	-	30-minute winter storm duration
Q ₁₀₀	-	1.6 l/s	-	30-minute winter storm duration

A summary of the post development surface water run-off rates compared to the greenfield and pre-development rates are as follows:

Greenfield Rate to Post Development Rate

Strom	-	Greenfield	-	Post Dev	-	Difference
Q ₁	-	0.1 l/s	-	0.5 l/s	-	5.0 x Greenfield
Q30	-	0.2 l/s	-	1.0 l/s	-	5.0 x Greenfield
Q100	-	0.2 l/s	-	1.6 l/s	-	8.0 x Greenfield

Pre-Development Rate to Post Development Rate

Strom	-	Pre-Dev	-	Post Dev	-	Difference
Q ₁	-	1.0 l/s	-	0.5 l/s	-	0.50 x Pre-Development / 50% Betterment
Q ₃₀	-	3.6 l/s	-	1.0 l/s	-	0.28 x Pre-Development / 72% Betterment
Q100	-	5.3 l/s	-	1.6 l/s	-	0.30 x Pre-Development / 70% Betterment

The surface water run-off rates are greater than the equivalent greenfield rates. Greenfield rates cannot be achieved due the rates being too low for a flow control to suitably restrict, without having a too small opening that will increase

the risk of block and subsequent flooding. However, the surface water run-off rates are between a 50% to 72% betterment of the pre-development surface water run-off rates. Therefore, the restricted rates will reduce the probability of flooding to the Thames water surface water sewer system, which is deemed to be acceptable.

13.5. Surface Water Run-Off Volume

The surface water run-off volumes for the post development site have also been calculated for 1 in 100-Year the 6-hour duration (Inc. 40% RII), within the MicroDrainage computer software in Appendix I, where:

Q100 (6-hour) - 9.50m³

A summary of the post development surface water run-off volume compared to the greenfield and pre-development volumes are as follows:

Greenfield Volume to Post Development Volume

Strom	-	Greenfield	-	Post Dev	-	Difference	
Q100	-	2.53m³	-	9.50m³	-	3.75 x Greenfield	
Pre-Deve	Pre-Development Volume to Post Development Volume						
Strom	-	Pre-Dev	-	Post Dev	-	Difference	
Q ₁₀₀	-	4.26m ³	-	9.50m³	-	2.23 x Greenfield	

The surface water run-off volume for the 100-year, 6-hour storm event is a greater than the greenfield and predevelopment run-off volume for the same storm event. However, the surface water run-off rates are between a 50% to 72% betterment of the pre-development surface water run-off rates. Therefore, the restricted volume discharge off the site at reduced rate for most system events, and will reduce the probability of flooding to the Thames water surface water sewer system, which is deemed to be acceptable.

13.6. Surface Water Attenuation Calculations

As the positively drained areas of the post development site are being restricted, there will be a requirement for below ground attenuation to prevent flooding. Ciria SuDS Manual 2015, Paragraph 10.2.4 where it states that: 'Exceedance flows (i.e. flows more than those for which the system is designed) should be managed safely in aboveground space such that risks to people and property are acceptable'.

The surface water attenuation for the development site will be within the below ground attenuation tank (comprising of cellular units), filter drain and pipe network. As detailed in the MicroDrainage calculations (Appendix I) and surface water management layout (Appendix H), the attenuation volumes for each of the SuDS methods re as follows:

Cellular Units			Infiltration Tre	nch (Filt	ter Drain)
Area	-	4.00m ²	Length	-	11.50m
Depth	-	0.80m	Width	-	0.30m
Porosity	-	0.95	Depth	-	0.50m
Volume	-	3.05m³	Porosity	-	0.030
			Volume	-	0.52m³

The MicroDrainage calculations (Appendix I) show that with these SuDs methods and volumes, no flooding will occur for all storms up to and including the 1 in 100-year event + 40% climate change.

14. Maintenance Requirements

Details of the maintenance required, and the parties to carry out the maintenance of all drainage aspects, to ensure that the SuDS methods are working affectively, and subsequently reducing the risk of flooding on the site are as follows:

The management and maintenance of the surface water drainage networks and SuDS features will be by contractors appointed by the owners / residents of the new residential / retail units, where payments of the works will form part of the property deeds and / or rental agreements, and will be carried out as follows:

14.1. Surface Water Drainage Network

The required maintenance for the drainage network will be as follows:

Operation	Frequency
Inspect and identify any areas that are not operating	Monthly for 3 months, then six monthlies
correctly, if required, take remedial actions	
Debris removal from manholes (where may cause risk	Monthly
performance)	
Where rainfall into network from above, check surface or filter	As required, but at least twice a year
for blockage or silt, algae, or other matter by jetting	
Remove sediment from pipework by jetting.	Annually or as required
Repair/check all inlets, outlets, and overflow pipes	As required
Inspect/check all inlets, outlets, and overflow pipes to ensure	Annually and after large storms
that they are in good condition and operating as designed	

14.2. Flow Control and Attenuation Tank

Operation	Frequency
Inspect and identify any areas that are not operating correctly, if required, take remedial actions	Monthly for 3 months, then six monthlies
Debris removal from flow control chamber and attenuation tank (where may cause risk performance)	Monthly
Where rainfall into flow control chamber and attenuation tank from above, check surface or filter for blockage or silt, algae, or other matter by jetting	As required, but at least twice a year
Remove sediment from upstream surface water network by jetting.	Annually or as required
Repair/check all inlets, outlets, and overflow pipes	As required
Inspect/check all inlets, outlets, and overflow pipes to ensure that they are in good condition and operating as designed	Annually and after large storms

14.3. Filter Drain

Operation	Frequency
Inspect and identify any areas that are not operating correctly, if required, take remedial actions	Monthly for 3 months, then six monthlies
Debris removal from catchment of areas near filter drain (where may cause risk performance)	Monthly
Where rainfall infiltration into filter drain, check surface for blockage or silt, algae, or other matter by jetting	As required, but at least twice a year

14.4. Linked and Further Maintenance and Maintenance Activities

The maintenance of the drainage network and SuDS features are to be linked with the wider site maintenance for the new residential landscaped / garden areas.

A log of all maintenance activities is to be kept and made available to the local planning authority (LPA) and / or the Lead Local Flood Authority (LLFA) on request.

15. Surface Water Design Exceedance

In the event of an extreme storm event (greater than 100-year + 40% climate change), or poor maintenance of the pipework potentially flooding of the drainage network could occur. Surface water will be contained within the garden area due the garden being flat.

The flood volume will also less than the pre-development scenario, due to additional attenuation volumes within the ground. Therefore, due to the new SuDS methods, the flood risk to land or properties within or outside the development would not increase even in an extreme (greater than 1% AEP + 40% cc) storm event.

16. Pollution Prevention

Also, as shown on drawing 609-DR-100, and described in this report, the surface water run-off within the development site will be from roof and lightwell areas only.

The roof areas will have very little pollutants, and the surface water run-off discharging through a filter drain system. The filter drain will act as a pollutant control, and therefore there will be a betterment of water quality from the post development site.

17. Development Management and Construction Phase

All existing drainage within the site, is to be maintained during the construction of the new buildings and external hard standing areas. The flow control and attenuation tank are to be the first parts of the drainage network to be built. This will ensure that the surface water discharge from any phase of the network will be discharged to ground.

18. Conclusion / Summary

18.1. Existing Flood Probability

All potential sources of flooding to the development site have assessed, and it is deemed that the probability of flooding from all existing sources is **low**. In accordance with NPPF, the site is less and more vulnerable, but as it is in Flood Zone 1 it is appropriate for development with no requirement for a sequential or exception test.

18.2. SuDS Principles

All feasible SuDS methods, and surface water discharge destination have been assessed, with the feasible SuDS methods being; a filter drain system; flow control and attenuation tank, and the surface water destination being to a Thames Water 600mm surface water sewer within Station Road (which replicates the pre-development surface water discharge destination).

18.3. Peak Flow Control

The surface water run-off rates are greater than the equivalent greenfield rates. Greenfield rates cannot be achieved due the rates being too low for a flow control to suitably restrict, without having a too small opening that will increase the risk of block and subsequent flooding. However, the surface water run-off rates are between a 50% to 72% betterment of the pre-development surface water run-off rates. Therefore, the restricted rates will reduce the probability of flooding to the Thames water surface water sewer system, which is deemed to be acceptable.

18.4. Volume Control

The surface water run-off volume for the 100-year, 6-hour storm event is a greater than the greenfield and predevelopment run-off volume for the same storm event. However, the surface water run-off rates are between a 50% to 72% betterment of the pre-development surface water run-off rates. Therefore, the restricted volume discharge off the site at reduced rate for most system events, and will reduce the probability of flooding to the Thames water surface water sewer system, which is deemed to be acceptable.

18.5. Flood Risk within the Development

The drainage network and below ground attenuation tank has been suitably sized so that no flooding occurs within the network during the 1 in 1-year; 1 in 30-year; and 1 in 100-year storm event + 40% climate change.

18.6. Management and Maintenance

The management and maintenance of the surface water drainage networks and SuDS features will be by contractors appointed by the owners / residents of the new residential / retail units, where payments of the works will form part of the property deeds and / or rental agreements,

18.7. Exceedance Event

In the event of an extreme storm event (greater than 100-year + 40% climate change), or poor maintenance of the pipework potentially flooding of the drainage network could occur. Surface water will be contained within the garden area due the garden being flat. The flood volume will also less than the pre-development scenario, due to additional attenuation volumes within the ground. Therefore, due to the new SuDS methods, the flood risk to land or properties within or outside the development would not increase even in an extreme (greater than 1% AEP + 40% cc) storm event.

18.8. Water Quality

Surface water run-off within the development site will be from roof and lightwell areas only. The roof areas will have very little pollutants, and the surface water run-off discharging through a filter drain system. The filter drain will act as a pollutant control, and therefore there will be a betterment of water quality from the post development site.

Appendix A Site Location Plan

*Crown Copyright. All rights reserved. Licence no. 100019980

PROJECT 148 STATION ROAD, LONDON, DA15 7AB			90 BOROUGH HIGH STREET LONDON SE1 1LL Tet 020 7407 3700 - Fax: 020 7407 3800 email- proun@proun.co.uk	PROUN	
DRAWING TITLE			ARCHITECTS • DESIGNERS • PLANNERS		
LOCATION PLAN			This drawing is the Copyright of the opproval in writing of Proun commencement of works. This dr conjunction with all associated an	Proun Architects. Any copying in part or whole must be with Architects. All dimensions to be checked on site prior to coming should not be scaled . This drawing is to be read in ritten specifications	
SCALE 1:1250 @ A4	DATE : MARCH 2020	DRAWING No. 3377 / L / 01	REV.		

Appendix B Existing Site Plans

Appendix C Proposed Site Plans

 Outline of development granted planning permission 27 November 2019 (1902130FUL) shown dotted red

NORTH SCALE 0 1 2 3 4 5m 0 5 10 15ft			
REV. PROJECT 148 -	- 148A STATION BOAD	DATE	
LONDON DA15 7AB DRWMM THE PROPOSED SITE PLAN			
SCALE 1:200 (a) DATE MAY 2021 DRAWING No. 3377 / P / 21 REV. The basis by English the Addition & Andread by Lange of the and the addition of the and the addition of			
Tet too 7407 3700 Flor 200 1407 3800 			

SCALE 0 1.0 2.0 3.0m 0 2 4 6 8 10ft
INFO.ECT DATE IMD.ECT 148A STATION ROAD LONDON DATE DATE DATE
PROPOSED ELEVATIONS SCALE 11000 (P) TORONKO NA: 3377 / P / 25 Ref. Wanted State Mark to the state of
LONDON SEI 11L PRODUCTION THE GO THE BOO THE SALE OF T

New pitched				
	Loft	Loft		
	3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2	FF Level		
	148 STATION 148A STATION ROAD Hall			
	148-148A STATION RUAD	MI46 STATION ROAD		
SECTION A-A				
New part 1, part 2				
Outline of development permission 27 Novemb (1902130FUL) shown do	granted planning			
Ra il ings to enclose —— roof terrace		Flat 148B	<u>a wana wanan wana wana wana na </u>	3831 - 28300 - 28300 - 28300 - 28300 - 2830 - 2830 - 2830 - 2830 - 2830
	Garden	Flat 148B		3530 3561 356 35.00 3506 3536 148A
μ				
Κ		148-148A STATION ROAD		
SECTION B-B				

Appendix D BGS Data

ice Jegical Survey	British Geologie Contract No. <u>T1175/F1090</u>	IOLS SITE 5-7, cal Survey	ST & INVESTIG NEW Y LEED	CO. ATION ORK OS, 2	LT DEPT ROAD	D. TQ478 British Geolo Boreho	E 14.1 64440 - jical Survey ole No	7273 C	0	
· · · · · · ·	Location Hatherley Road,	Berley			-	Groun	d Level . 14th]	Febru	arv 19	6
	Client John of John of J	BO	REHO		LOG	Date				
	STRATA	Legend	Depth below Ground Level	Thickness of Strata	Type of Sample	c lb/sq.ft.	ø deg.	m.c %	y lb/cu. ft.	
	Top Soil		2'0"	2'0"						-
	Soft brown grey sandy clay			3'6"						
Contonical Sumau	Driich Aceleri	ol Cunyau	5.'6"			Fritish Gaala	iral Qurvay			
renogen omrej	Sand and gravel with traces of clay	ai oancy	810"	2'6"						
	Moist grey brown sandy silt with occasional bands of gravel			5'0"						
			13'0"							
Geological Survey	British Geologia	I Survey				British Geolog	cal Survey			
•								-		
							-			
Geological Survey	British Geologia	al Survey				Etilish Geolog	jcal Suivey			

Client London Boroug	*** 9	igirai su lla E E E	onk 95, 2	ROAD	Boreh Groun	British Geol ole No d Level,	ogical Survey		
	gh of Be	xley		-	Date	14th 1	ebrua	ry 19	69
	BO	REHO	LE	LOG					
STRAŤA	Legend	Depth below Ground Level	Thickness of Strata	Type of Sample	c ib/sq. ft.	ø deg.	m.c %	y lb/cu. ft.	<u> </u>
Top Soil		1168	1'6"						
Brown sandy clay and gravel			3'3"						
Geological Survey	hiiish Geolo	ical Sunev				British Geo	odical Survei		
		4'9"					-		
Loose brown fine/medium Silty sand	n								
			5'3"						
		10'0"							
Geological Survey	Sriiish Geolo	ical Survey				British Geo	ogical Surve		
Geological Survey	British Geolo	tical Survey				British Geo	ogical Surve		

WEST KENT MAIN SEWERAGE BOARD

· I W W / / L / X/1. 6 Kent & ME

TQ 47-/72

British Geological Survey

<u>Record of Strata</u> met with during the construction of a manhole in June, 1994, at Hurst Road, Sidcup, 1100 feet E.N.E. of Sidcup Station. National Grad Reference T Q 465 727.

Road level 100.25 Newlyn datum TO41 SE 23 Depth below road level 4661 7279 0 - 9" Concrete 9" = 21-6" Stiff brown clay 21-0" - 121-0" Compact yellow sandy gravel 12'-0" - 14'-0" Hoggin 14'-0" - 20'-0" Fine sand with a little clay, gray and black \checkmark 20'-0" - 24'-0" Gray ballast 🕚 24'-0" - 27'-0" Black gravel. Partly uncemented but partly with quantitie. of cemented shells 271-0" - 311-0" Fine, gray band, some shell and small stones 311-0" - 421-0" Very firm clay, black, gray and yellow 42'-0" - 40'-0" Glay and samuy clay, gray "ن-نو4 - "ט-י6 Green sand, very firm End of excavation

<u>Water</u> was found at a depth of 15'-0" but ceased at about 32'-0" below road level.

British Geological Survey

- British Geological Survey

British Geological Sume

Cf. West Kend Lewerge No 4 b.k. (2 apart 190) hi W/s. Kent, p. 249. The top 10/ g this brekle, very close to a above, is unemaker, the elevel.

\$156.

British Geological Survey

Sited by Am Kand 8" & NEIW. + 1"271.

British Geological Sume

Appendix E Thames Water Asset Plans

Based on the Ordnance Survey Man with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Convright Reserved

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Manhole Reference	Manhole Cover Level	Manhole Invert Level
18DH	n/a	n/a
18DI	n/a	n/a
2707 2801	n/a n/a	n/a n/a
2706	n/a	n/a
2802	n/a	n/a
2703	n/a	n/a
271D	n/a	n/a
271B	n/a	n/a
2/1A 2802	n/a n/a	n/a n/a
2805	n/a	n/a
2804	n/a	n/a
3801	n/a	n/a
17BE	n/a	n/a
17BC	n/a	n/a
1/GF 1707	n/a p/a	n/a n/a
1707	n/a	n/a
1708	n/a	n/a
1711	n/a	n/a
171B	n/a	n/a
1709	n/a	n/a
171A 181C	n/a n/a	n/a
18DG	n/a	n/a
18DD	n/a	n/a
18DJ	n/a	n/a
181G	n/a	n/a
18EA	n/a	n/a
181F 191B	n/a n/a	n/a n/a
181D	n/a	n/a
181E	n/a	n/a
1825	n/a	n/a
1826	n/a	n/a
1807	31.102	28.212
1808	n/a n/a	n/a n/a
1806	31.402	29.372
1820	n/a	n/a
1805	n/a	n/a
1804	n/a	n/a
1802	31.39	n/a n/a
17CI	n/a	n/a
17DB	n/a	n/a
17DA	n/a	n/a
17CJ	n/a	n/a
1/CE 17DE	n/a n/a	n/a
17DE 17CH	n/a	n/a
17CG	n/a	n/a
17CF	n/a	n/a
17CD	n/a	n/a
1701	n/a	n/a
1704	n/a	n/a
1706	n/a	n/a
1702	n/a	n/a
1705	n/a	n/a
17BD	n/a	n/a
17BG	n/a n/a	n/a
17GE	n/a	n/a
17GD	n/a	n/a
17DD	n/a	n/a
17DC	n/a	n/a
2703	n/a n/a	n/a
2704	n/a	n/a
2701	n/a	n/a
2709	n/a	n/a
2710	n/a	n/a
2708	n/a	n/a
The position of the apparatus shown on this plan	is given without obligation and warranty, and the acc	uracy cannot be guaranteed. Service pipes are not
shown but their presence should be anticipated. No of mains and services must be verified and establish	liability of any kind whatsoever is accepted by Thames ned on site before any works are undertaken.	Water for any error or omission. The actual position

ALS Sewer Map Key

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

- Air Valve Dam Chase Fitting
- ≥ Meter

Π

0 Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

X Control Valve Ф Drop Pipe Ξ Ancillary Weir

Outfall

Inlet

Undefined End

End Items

いし

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

- **Other Symbols**
- Symbols used on maps which do not fall under other general categories
- ****/ Public/Private Pumping Station
- * Change of characteristic indicator (C.O.C.I.)
- Ø Invert Level
- < Summit

Areas

Lines denoting areas of underground surveys, etc.

Agreement **Operational Site** :::::: Chamber Tunnel Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Notes:

hames

Water

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plans are metric.
- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Appendix F Greenfield Run-Off Rates and Volume Calculations

Flo Consult UK Ltd		Page 1
4 Market Square	148 Station Raod	
Old Amersham	Greenfield Run-Off	
Buckinghamshire, HP7 0D0	Rate Calculations	Micco
Date 03/07/2020	Designed by MDS	
File	Checked by MDS	Drainage
Innovvze	Source Control 2018.1.1	
<u>IH 124</u>	Mean Annual Flood	
	Input	
Return Period (year	rs) 1 Soil 0.300	
Area (h	na) 50.000 Urban 0.750	
SAAR (r	nm) 600 Region Number Region 6	
	Results 1/s	
	QBAR Rural 76.1	
	QBAR Urban 282.8	
	Q1 year 240.4	
	01 1000 240 4	
	QI year 240.4 O2 years 287.1	
	Q5 years 380.6	
	Q10 years 429.6	
	Q20 years 471.7	
	Q25 years 402.5 Q30 years 491.1	
	Q50 years 518.9	
	Q100 years 566.9	
	2200 years 605.1	
0	1000 vears 685.4	
~	···· 2··· · ···	

©1982-2018 Innovyze

Flo Consult UK Ltd		Page 1
4 Market Square	148 Station Road	
Old Amersham	Greenfield Run-Off	
Buckinghamshire, HP7 0DQ	Volume Calculations	Micco
Date 03/07/2020	Designed by MDS	
File	Checked by MDS	Dialitage
Innovyze	Source Control 2018.1.1	
Greenf	ield Runoff Volume	
	FEH Data	
Return Period (year Storm Duration (min FEH Rainfall Versi Site Locati C (1k D1 (1k D2 (1k D2 (1k D3 (1k E (1k F (1k Areal Reduction Fact Area (h SAAR (m C SPR Ho URBEXT (200	s) 100 s) 360 on 1999 on GB 546300 172900 TQ 46300 72900 m) -0.023 m) 0.307 m) 0.368 m) 0.313 m) 0.3500 m] 0.35000 m] 0.3500 m] 0.35000 m] 0.3500	
Greenfield Ru	entage Runoff (%) 31.25 inoff Volume (m ³) 15567.750	
©198	32-2018 Innovyze	

Appendix G

Pre-Development SW Run-Off Rates and Volume Calculations

Flo Consult UK Ltd		Page 1
4 Market Square	148 Station Road	
Old Amersham	Pre-Development	
Buckinghamshire, HP7 0DQ	Run-Off Calculations	Micro
Date 03/07/2020	Designed by MDS	Dcainago
File	Checked by MDS	Diamage
Innovyze	Network 2018.1.1	
STORM SEWER DESIG	N by the Modified Rational Method	1
Desig	gn Criteria for Storm	
Pipe Sizes S	STANDARD Manhole Sizes STANDARD	
	FEH Rainfall Model	
Return Pe	riod (years)	100
FEH Rain	fall Version	1999
5	C (1km) - C (1km)	0.023
	D1 (1km)	0.307
	D2 (1km)	0.368
	E (1km)	0.313
	F (1km)	2.594
Maximum Rain	fall (mm/hr)	50
Maximum Time of Concentr Foul Sew	ation (mins) age (l/s/ha)	0.000
Volumetric R	unoff Coeff.	0.750
	PIMP (%)	100
Minimum Backdro	e Change (%) p Height (m)	0.200
Maximum Backdro	p Height (m)	1.500
Min Design Depth for Opti	misation (m)	1.200
Min Vel for Auto Desig Min Slope for Optimi	n only (m/s) sation (1:X)	500
Desi	gned with Level Soffits	
Network	Design Table for Storm	
PN Length Fall Slope I.Area (m) (m) (1:X) (ha) (T.E. Base k HYD DIA Section mins) Flow (1/s) (mm) SECT (mm)	on Type Auto Design
1.000 5.000 0.050 100.0 0.004 1.001 5.000 0.050 100.0 0.003	5.00 0.0 0.600 o 100 Pipe/0 0.00 0.0 0.600 o 100 Pipe/0	Conduit 🗗 Conduit 🗗
Net	twork Results Table	-
PN Rain T.C. US/IL E	I.Area Σ Base Foul Add Flow Vel	Cap Flow
(mm/hr) (mins) (m)	(ha) Flow (1/s) (1/s) (1/s) (m/s) 0.004	(1/s) (1/s)
1.001 50.00 5.22 31.450	0.007 0.0 0.0 0.0 0.77	6.0 0.9
<u></u>	1982-2018 Incourse	
U.	TIMONÀSE	

Flo Consult UK Ltd		Page 2
4 Market Square	148 Station Road	
Old Amersham	Pre-Development	
Buckinghamshire, HP7 0DQ	Run-Off Calculations	Micco
Date 03/07/2020	Designed by MDS	
File	Checked by MDS	Urainage
	Network 2018 1 1	
11110 1 9 2 0	Network 2010.1.1	
Simulat	ion Criteria for Storm	
Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (l/s) Number of Input Hydrod Number of Online Con	E 0.750 Additional Flow - % of Total Fl a 1.000 MADD Factor * 10m³/ha Stora 0 Inlet Coefficie 0 Flow per Person per Day (1/per/da 0.500 Run Time (mir 0.000 Output Interval (mir graphs 0 Number of Storage Structures 0 ntrols 0 Number of Time/Area Diagrams 0 ntrols 0 Number of Real Time Controls 0	low 0.000 age 2.000 ent 0.800 ay) 0.000 as) 60 as) 1
Synthe	etic Rainfall Details	
Rainfall Mo Return Period (yea FEH Rainfall Vers Site Locat C (1 D1 (1 D2 (1 D3 (1 E (1) F (1 Summer Sto Winter Sto Winter Sto Cv (Summ Cv (Wint Storm Duration (mi	bdel FEH ars) 100 sion 1999 cion GB 546300 172900 TQ 46300 72900 lkm) 0.023 lkm) 0.307 lkm) 0.368 lkm) 0.313 lkm) 0.313 lkm) 2.594 orms Yes orms Yes ner) 0.750 cer) 0.840 ins) 30	

Flo Consult UK Ltd	l				Page 3
4 Market Square		148 Statio	n Road		
Old Amersham		Pre-Develo	pment		
Buckinghamshire,	HP7 ODQ	Run-Off Ca	lculations		Micco
Date 03/07/2020		Designed b	y MDS		
File		Checked by	MDS		Digiliada
Innovyze		Network 20	18.1.1		
<u>1 year Return Per</u> Areal F Hot S Manhole Headloss Foul Sewage pe Number Number FE	iod Summary of Si eduction Factor lot Start (mins) ttart Level (mm) coeff (Global) rr hectare (l/s) of Input Hydrogr er of Online Cont r of Offline Cont Synthe Rainfall Mode H Rainfall Versic C (1km	Critical F for Storm mulation Crit 1.000 Addit 0 M 0.500 Flow pe 0.000 Caphs 0 Number crols 0 Number	eria ional Flow - 9 ADD Factor * 1 r Person per 1 c of Storage S c of Time/Area c of Real Time Details	aximum Leve dof Total Flo 10m³/ha Storage of Coefficcier Day (1/per/day tructures 0 Diagrams 0 Controls 0 FEH 1999 0 72900 -0 023	1 (Rank 1) ww 0.000 ge 2.000 ot 0.800 v) 0.000
D1 (1km) 0.307 D2 (1km) 0.368 D3 (1km) 0.212 E (1km) 0.313 F (1km) 2.594 Cv (Summer) 0.750 Cv (Winter) 0.840					
Dur Return Pe Cli	Profile(s) Analy ation(s) (mins) f riod(s) (years) mate Change (%)	Warning (mm) sis Timestep DTS Status 15, 30, 60, 12	450.0 DVD Fine Inertia ON Sum 20, 240, 360,	Status OFF Status OFF mer and Winte 480, 960, 144 1, 30, 10 0, 0,	r 0 0 0
US/MH PN Name Stor	Return Clima rm Period Chan	ate First (X) ge Surcharge	First (Y) Fin Flood Ov	rst (Z) Overfl erflow Act.	Water .ow Level (m)
1.000 1 15 Win 1.001 2 15 Win	nter 1 + nter 1 +	-0% -0%			31.523 31.480
US/MI PN Name	Surcharged Floo H Depth Vol (m) (m	oded ume Flow / Ov ³) Cap.	Pipe verflow Flow (l/s) (l/s)	Leve Status Exceed	l led
1.000	-0.077 0. 2 -0.070 0.	000 0.12 000 0.19	0.6 1.0	OK OK	
	©19	82-2018 Inn	ovyze		

Flo Consult U	K Ltd							I	Page 4
4 Market Squa	re		14	8 Static	on Road			ſ	
Old Amersham			Pre	e-Develo	opment				
Buckinghamshi	re, HP7	0 DQ	Rui	n-Off Ca	alculat	ions			Micco
Date 03/07/20	20		Des	signed k	by MDS				
File			Che	ecked by	7 MDS				Dialitaye
Innovyze			Net	twork 20	018.1.1				
<u>30 year Retu</u>	n Period	Summary	of Cr	ritical	Results	s by I	Maximu	m Level	l (Rank 1)
			fc	or Storm	<u>l</u>				
			Simula	tion Crit	eria				
A	real Reduc	tion Fact	or 1.00	0 Addit	cional Fi	low -	% of To	tal Flow	0.000
	Hot Start	tart (min	S) m)	0 N	1ADD Fact	tor * i	10m³/ha	Storage	2.000
Manhole He	adloss Coe	ff (Globa	u) 1) 0.50	0 0 Flow pe	er Person	n per i	Day (1/j	per/day)	0.000
Foul Sew	age per he	ctare (1/	s) 0.00	0		-			
	Tumbon of	Toost II.d.		0 Numbe	m of Cto		+		
	Number of	прис нуdr f Online C	ographs	s o Numbe s O Numbe	r of Tim	ı⊥aye S Ne/Area	Diagra	ums O	
	Number of	Offline C	ontrols	0 Numbe	r of Rea	l Time	Contro	ols O	
		C	thatic	Dainfall	Detaila				
		<u>sy</u> Rainfall N	iodel	Natiitatt	DELATIS	-	FEH	I	
	FEH Ra	infall Ve	sion				1999)	
		Site Loca	tion GH	3 546300	172900 T	'Q 4630	0 72900)	
C (1km) -0.023									
	D2 (1km) 0.3					0.368	}		
		D3	(1km)				0.212	2	
	E (1km)				2.594	5			
		Cv (Sur	mer)				0.750)	
		Cv (Wir	iter)				0.840)	
	Margin for	Flood Ri	sk Warn	ing (mm)	450.0	DVD	Status	OFF	
	2	An	alysis '	Timestep	Fine Ir	nertia	Status	OFF	
			DT	S Status	ON				
		Profile(s	5)	20 60 1	~ ~ ~ ~ ~	Sum	mer and	Winter	
Ret	Duratio urn Period	n(s) (mins (s) (vears	s) 15, 1 s)	30, 60, I	20, 240,	360,	480, 96	30, 1440	
100	Climate	Change (5)				- /	0, 0, 0	
									Water
US/MH		Return Cl	imate 1	First (X)	First ((Y) Fi	st (Z)	Overflo	w Level
PN Name	Storm	Period C	hange S	Surcharge	Flood	l Ov	erflow	Act.	(m)
1.000 1	15 Winter	30	+0%						31.543
1.001 2	15 Winter	30	+0%						31.511
	Sur	charged F	looded			Pipe			
	US/MH	Depth	Volume	Flow / O	verflow	Flow		Level	
PN	Name	(m)	(m³)	Cap.	(l/s)	(1/s)	Status	Exceede	d
1.000	1	-0.057	0.000	0.38		2.0	OK		
1.001	2	-0.039	0.000	0.67		3.6	OK		
		(F	1982-3	018 Thr	000070				
		G		- 0 T 0 T T I I I	. UVY4C				

Flo Consult UK Ltd		Page 5					
4 Market Square	148 Station Road						
Old Amersham	Pre-Development						
Buckinghamshire, HP7 0DQ	Run-Off Calculatio	ons Micro					
Date 03/07/2020	Designed by MDS						
File	Checked by MDS	Diamage					
Innovyze	Network 2018.1.1						
<u>100 year Return Period S</u> Areal Reduction Hot Start Hot Start Leve Manhole Headloss Coeff (0 Foul Sewage per hectard Number of Input Number of Onl Number of Offl Rainf FEH Rainfal Site	Summary of Critical Result 1) for Storm Simulation Criteria Factor 1.000 Additional Flor (mins) 0 MADD Factor el (mm) 0 Global) 0.500 Flow per Person per (1/s) e (1/s) 0.000 Hydrographs 0 Number of Stora ine Controls 0 Number of Real Synthetic Rainfall Details 5all Model l Version 546300 172900 TQ	s by Maximum Level (Rank w - % of Total Flow 0.000 r * 10m ³ /ha Storage 2.000 Inlet Coefficcient 0.800 per Day (1/per/day) 0.000 age Structures 0 /area Diagrams 0 Time Controls 0 FEH 1999 46300 72900					
Cv Cv	-0.023 0.307 0.368 0.212 0.313 2.594 0.750 0.840						
Margin for Floo Prof Duration(s)	Margin for Flood Risk Warning (mm) 450.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Profile(s) Summer and Winter						
Return Period(s) (Climate Char	years) ge (%)	1, 30, 100 0, 0, 0					
US/MH Retu PN Name Storm Peri	rn Climate First (X) First (Y) od Change Surcharge Flood	Water First (Z) Overflow Level Overflow Act. (m)					
1.000 1 15 Winter 1 1.001 2 15 Winter 1	00 +0% 00 +0%	31.557 31.541					
Surchar	ged Flooded P	ipe					
US/MH Depth	N Volume Flow / Overflow F	low Level					
PN Name (m)	(m^{-}) Cap. (1/s) (1	L/S/ STATUS EXCEEDED					
1.000 1 -0. 1.001 2 -0.	043 0.000 0.57 009 0.000 1.00	3.0 OK 5.3 OK					
	©1982-2018 Innovyze						

4 Market Square 148 Station Road Old Amersham Pre-Development Buckinghamshire, HP7 ODQ Designed by MDS File Checked by MDS Tnnovyze Network 2018.1.1 STORM SEWER DESIGN by the Modified Rational Method Designed by MDS Tnnovyze Network 2018.1.1 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Pipe Sizes STANDARD Manhole Sizes STANDARD FEH Rainfall Model Return Period (years) 100 C (1km) 0.300 DE (1km) Site Location GB 546300 172900 TQ 46300 72900 C (1km) DE (1km) Site Location GB 546300 172900 TQ 46300 72900 C (1km) 0.300 C (1km) 0.300 C (1km) 0.300 DE (1km) 0 Networe (1km) <td <="" colspan="2" th=""><th>÷ 1</th></td>	<th>÷ 1</th>		÷ 1
Old Amersham Pre-Development Buckinghamshire, HP7 ODQ Designed by MDS Date 03/07/2020 Pesigned by MDS File Checked by MDS Innovyze Network 2018.1.1 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Pipe Sizes STANDARD Manhole Sizes STANDARD FEH Rainfall Wodel Return Period (years) 100 C (1km) 0.307 D2 (1km) C C (1km) National Return Period (years) C (1km)			
Buckinghamshire, HP7 0DQ Run-Off Calculations Date 03/07/2020 Pesigned by MDS File Checked by MDS File Checked by MDS Tnnovyze Network 2018.1.1 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Fipe Sizes STANDARD Manhole Sizes STANDARD FEH Rainfall Model Return Period (years) I00 FEH Rainfall Version C (1km) C.220 E (1km) C.212 E (1km) C.212 E (1km) C.213 Kaximum Rainfall (mm/hr) Stolumetric Runoff Coeff (1/s/ha) Volumetric Runoff Coeff (1/s/ha) Min Volumetric Runoff Coeff (1/s/ha) Min Slope for Optimisation (1:X) Designed with Level Soffits Simulation Criteria for Storm Volumetric Runoff Coeff (1/s/ha) Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Input Hydrographs 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Offline Controls 0 Number of Painter Co			
Date 03/07/2020 Designed by MDS Checked by MDS File Network 2018.1.1 Innovyze Network 2018.1.1 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Pipe Sizes STANDARD Manhole Sizes STANDARD FER Rainfall Model Return Period (years) 100 IFER Rainfall Version 1999 Site Location GB 546300 172900 TQ 46300 72900 C (1km) C (1km) 0.307 D1 (1km) 0.307 D2 (1km) 0.313 F (1km) 2.594 Maximum Rainfall (mm/hr) 50 Maximum Time of Concentration (mins) 30 FDMP (%) 100 Add Flow / Climate Change (%) 0 Mainimum Backdrop Height (m) 1.500 Minimum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Slope for Optimisation (1:x) 500 Designed with Level Soffits Simulation Criteria for Storm Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0 Areal Reduction Factor 1.000 MADD Factor * 10m*			
File Checked by MDS Innovyze Network 2018.1.1 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Pipe Sizes STANDARD Manhole Sizes STANDARD FEH Rainfall Model Return Period (years) Site Location GB 546300 172900 TQ 46300 72900 C (lkm) DI (lkm) O (lkm) DI (lkm) O (lkm) DI (lkm) O (lkm) O (lkm) O (lkm) O (lkm) O (lkm) DI (lkm) O (lkm)			
Innovyze Network 2018.1.1 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Fipe Sizes STANDARD Manhole Sizes STANDARD FEH Rainfall Model Return Period (years) 100 FEH Rainfall Version Site Location GE 546300 172900 TQ 46300 72900 C (1km) O (2) D (1km) C (1km) D (1km) <tr< td=""><td>llidye</td></tr<>	llidye		
STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Fipe Sizes STANDARD Manhole Sizes STANDARD FEH Rainfall Model Return Period (years) 100 FEH Rainfall Version 1999 Site Location GB 546300 172900 TQ 46300 72900 c (1km) C (1km) 0.307 D2 (1km) 0.307 D2 (1km) 0.313 F (1km) 2.554 Maximum Rainfall (mm/hr) 50 Maximum Time of Concentration (mins) 30 F (1km) 0.452 Maximum Backdrop Height (m) 0.000 Volumetric Runoff Coeff. 0.750 Minimum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:x) 500 Designed with Level Soffits Simulation Criteria for Storm Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0. Areal Reduction Factor 1.000 MAD Factor * 100"/ha Storage 2. Hot Start (ms) 0 Inlet Coefficient 0. Hot Start (ms) 0 Inlet Co			
STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Pipe Sizes STANDARD Manhole Sizes STANDARD FEH Rainfall Model Return Period (years) 100 FEH Rainfall Version Site Location GB 546300 172900 TQ 46300 72900 C (lkm) O (2 (lkm) D (lkm) D (lkm) D (lkm) D (lkm) D (lkm) C C (lkm) D (lkm)			
Design Criteria for StormFipe Sizes STANDARD Manhole Sizes STANDARDFEH Rainfall ModelReturn Period (years)100FEH Rainfall Version1999Site Location GB 546300 172900 TQ 46300 72900C (1km)0.023D1 (1km)0.021E (1km)0.021E (1km)0.031F (1km)0.031F (1km)0.030Foul Sewage (1/s/ha)0.000Volumetric Runoff Coeff.0.010Maximum Rainfall (mm/hr)50Maximum Backdrop Height (m)0.200Maximum Backdrop Height (m)0.200 <td< td=""><td></td></td<>			
Fipe Sizes STANDARD Manhole Sizes STANDARD FEH Rainfall Model Return Period (years) 100 FEH Rainfall Version 1999 Site Location GB 546300 172900 TQ 46300 72900 C (1km) -0.023 D1 (1km) 0.307 D2 (1km) 0.313 Foul Sewage (1/s/ha) 0.000 Volumetric Runoff Coeff. 0 Maximum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 0.200 <			
FEH Rainfall Model Return Period (years) 100 FEH Rainfall Version 1999 Site Location GB 546300 172900 TQ 46300 72900 C (1km) C (1km) -0.023 D1 (1km) 0.307 D2 (1km) 0.368 D3 (1km) 0.212 E (1km) 0.313 F (1km) 2.594 Maximum Rainfall (mm/hr) 50 Maximum Time of Concentration (mins) 30 Foul Sewage (1/s/ha) 0.000 Volumetric Runoff Coeff. 0.750 PIMP (%) 100 Add Flow / Climate Change (%) 0 Minimum Backdrop Height (m) 1.200 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Simulation Criteria for Storm Wolumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0. Areal Reduction Factor 1.000 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Simulation Criteria for Storm Volumetric Runo			
Return Period (years) 100 FFH Rainfall Version 1999 Site Location GB 546300 172900 TQ 46300 72900 C (1km) -0.023 D1 (1km) 0.307 D2 (1km) 0.368 D3 (1km) 0.212 E (1km) 0.313 F (1km) 2.594 Maximum Rainfall (mm/hr) 50 Maximum Time of Concentration (mins) 30 Foul Sewage (1/s/ha) 0.000 Volumetric Runoff Coeff. 0.750 PIMP (%) 100 Add Flow / Climate Change (%) 0 Minimum Backdrop Height (m) 1.200 Min Design Depth for Optimisation (m/s) 1.00 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits 500 Designed with Level Soffits 500 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) Manhole Headloss Coeff (Global) 0.500 Run Time (mins) Final Reduction Factor 1.000 MADD Factor * 10m*/ha Storage 2. Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0. Manhole Headloss Coeff (Global) 0.500 Run Time (mins) F			
FEH Rainfall Version 1999 Site Location GB 546300 172900 TQ 46300 72900 C (1km) -0.023 D1 (1km) 0.307 D2 (1km) 0.368 D3 (1km) 0.212 E (1km) 0.313 F (1km) 2.594 Maximum Rainfall (mm/hr) 50 Maximum Time of Concentration (mins) 30 Foul Sewage (1/s/ha) 0.000 Volumetric Runoff Coeff. 0.750 PIMP (%) 100 Add Flow / Climate Change (%) 0 Minimum Backdrop Height (m) 1.200 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits 500 Designed with Level Soffits 500 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) Foul Sewage per hectare (1/s) 0.000 Output Interval (mins)			
Site Location GB 546300 1/2900 TQ 46300C (1km)-0.023D1 (1km)0.307D2 (1km)0.368D3 (1km)0.212E (1km)0.313F (1km)2.594Maximum Time of Concentration (mins)30Foul Sewage (1/s/ha)0.000Volumetric Runoff Coeff.0.750Matinum Backdrop Height (m)0.200Minimum Backdrop Height (m)1.500Min Design Depth for Optimisation (m)1.200Min Vel for Auto Design only (m/s)1.00Min Slope for Optimisation (1:X)500Designed with Level SoffitsSimulation Factor 1.000MADD Factor * 10m³/ha Storage 2.Hot Start Level (mm)0 Flow per Person per Day (1/per/day) 0.Manhole Headloss Coeff (Global) 0.500Run Time (mins)Foul Sewage per hectare (1/s) 0.000Output Interval (mins)Number of Input Hydrographs 0 Number of Storage Structures 0Number of Offline Controls 0 Number of Real Time Controls 0			
D1 (1km) 0.307 D2 (1km) 0.368 D3 (1km) 0.212 E (1km) 0.313 F (1km) 2.594 Maximum Rainfall (mm/hr) 50 Maximum Time of Concentration (mins) 30 Foul Sewage (1/s/ha) 0.000 Volumetric Runoff Coeff. 0.750 PIMP (%) 100 Add Flow / Climate Change (%) 0 Minimum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Simulation Criteria for Storm Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0. Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2. Hot Start (mins) 0 Inlet Coefficient 0. Hot Start (mins) 0 Flow per Person per Day (1/per/day) 0. Manhole Headloss Coeff (Global) 0.500 Run Time (mins) Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Real Time Controls 0			
D2 (1km)0.368D3 (1km)0.212E (1km)0.313F (1km)2.594Maximum Time of Concentration (mins)30Foul Sewage (1/s/ha)0.000Volumetric Runoff Coeff.0.750PIMP (%)100Add Flow / Climate Change (%)0Maximum Backdrop Height (m)1.500Minimum Backdrop Height (m)1.500Min Design Depth for Optimisation (m)1.200Min Slope for Optimisation (1:X)500Designed with Level SoffitsSimulation Criteria for StormVolumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 0.Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 2.Hot Start (mins)0Inlet Coefficient 0.Hot Start (mins)0Flow per Person per Day (1/per/day) 0.Manhole Headloss Coeff (Global) 0.500Run Time (mins)Foul Sewage per hectare (1/s) 0.000Output Interval (mins)Number of Input Hydrographs 0 Number of Storage Structures 0Number of Offline Controls 0 Number of Real Time Controls 0			
D3 (1km) 0.212 E (1km) 0.313 F (1km) 2.594 Maximum Rainfall (mm/hr) 50 Maximum Time of Concentration (mins) 30 Foul Sewage (1/s/ha) 0.000 Volumetric Runoff Coeff. 0.750 PIMP (%) 100 Add Flow / Climate Change (%) 0 Minimum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0. Areal Reduction Factor 1.000 MaDD Factor * 10m³/ha Storage 2. Hot Start (mins) 0 Inlet Coefficient 0. Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0. Manhole Headloss Coeff (Global) 0.500 Run Time (mins) Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Real Time Controls 0			
E (1km) 0.313 F (1km) 2.594 Maximum Rainfall (mm/hr) 50 Maximum Time of Concentration (mins) 30 Foul Sewage (1/s/ha) 0.000 Volumetric Runoff Coeff. 0.750 Add Flow / Climate Change (%) 0 Minimum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Simulation Criteria for Storm Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0. Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2. Hot Start (mins) 0 Inlet Coefficient 0. Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0. Manhole Headloss Coeff (Global) 0.500 Run Time (mins) Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Real Time Controls 0			
Maximum Rainfall (mm/hr) 50 Maximum Time of Concentration (mins) 30 Foul Sewage (1/s/ha) 0.000 Volumetric Runoff Coeff. 0.750 PIMP (%) 100 Add Flow / Climate Change (%) 0 Maximum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits 500 Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0. Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2. Hot Start (mins) 0 Inlet Coefficient 0. Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0. Manhole Headloss Coeff (Global) 0.500 Run Time (mins) Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0			
Maximum Time of Concentration (mins) 30 Foul Sewage (1/s/ha) 0.000 Volumetric Runoff Coeff. 0.750 PIMP (%) 100 Add Flow / Climate Change (%) 0 Minimum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0. Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2. Hot Start (mins) 0 Inlet Coefficient 0. Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0. Manhole Headloss Coeff (Global) 0.500 Run Time (mins) Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0			
Foul Sewage (1/s/ha)0.000Volumetric Runoff Coeff.0.750PIMP (%)100Add Flow / Climate Change (%)0Minimum Backdrop Height (m)0.200Maximum Backdrop Height (m)1.500Min Design Depth for Optimisation (m)1.200Min Vel for Auto Design only (m/s)1.00Min Slope for Optimisation (1:X)500Designed with Level SoffitsVolumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 0.Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 2.Hot Start (mins)0Inlet Coefficient 0.Hot Start Level (mm)0 Flow per Person per Day (1/per/day) 0.Manhole Headloss Coeff (Global) 0.500Run Time (mins)Foul Sewage per hectare (1/s) 0.000Output Interval (mins)Number of Input Hydrographs 0 Number of Storage Structures 0Number of Offline Controls 0 Number of Real Time Controls 0			
Volumetric Runoff Coeff. 0.750 PIMP (%) 100 Add Flow / Climate Change (%) 0 Minimum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits <u>Simulation Criteria for Storm</u> Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0. Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2. Hot Start (mins) 0 Inlet Coefficient 0. Hot Start (mins) 0 Inlet Coefficient 0. Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0. Manhole Headloss Coeff (Global) 0.500 Run Time (mins) Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Real Time Controls 0			
Add Flow / Climate Change (%) 0 Minimum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0. Areal Reduction Factor 1.000 Math Start (mins) 0 Inlet Coefficient 0. Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0. Manhole Headloss Coeff (Global) 0.500 Run Time (mins) Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0			
Minimum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0. Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2. Hot Start (mins) O Inlet Coefficcient 0. Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0. Manhole Headloss Coeff (Global) 0.500 Run Time (mins) Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Real Time Controls 0			
Maximum Backdrop Height (m)1.500Min Design Depth for Optimisation (m)1.200Min Vel for Auto Design only (m/s)1.00Min Slope for Optimisation (1:X)500Designed with Level SoffitsSimulation Criteria for StormVolumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 0.Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 2.Hot Start (mins)OInlet Coefficient 0.Hot Start Level (mm)O Flow per Person per Day (1/per/day) 0.Manhole Headloss Coeff (Global) 0.500Run Time (mins)Foul Sewage per hectare (1/s) 0.000Output Interval (mins)Number of Input Hydrographs 0 Number of Storage Structures 0Number of Offline Controls 0 Number of Real Time Controls 0			
Min Design Depth for Optimisation (m) Min Vel for Auto Design only (m/s) Min Slope for Optimisation (1:X) Designed with Level Soffits <u>Simulation Criteria for Storm</u> Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0. Areal Reduction Factor 1.000 MADD Factor * 10m ³ /ha Storage 2. Hot Start (mins) 0 Inlet Coefficient 0. Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0. Manhole Headloss Coeff (Global) 0.500 Run Time (mins) Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Real Time Controls 0			
Min ver for Auto Design only (m/S) Min Slope for Optimisation (1:X) Designed with Level Soffits <u>Simulation Criteria for Storm</u> Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0. Areal Reduction Factor 1.000 MADD Factor * 10m ³ /ha Storage 2. Hot Start (mins) 0 Inlet Coefficient 0. Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0. Manhole Headloss Coeff (Global) 0.500 Run Time (mins) Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Offline Controls 0 Number of Real Time Controls 0			
Designed with Level Soffits <u>Simulation Criteria for Storm</u> Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0. Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2. Hot Start (mins) 0 Inlet Coefficient 0. Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0. Manhole Headloss Coeff (Global) 0.500 Run Time (mins) Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Real Time Controls 0			
Simulation Criteria for StormVolumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 0.Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 2.Hot Start (mins)0Inlet Coefficient 0.Hot Start Level (mm)0 Flow per Person per Day (1/per/day) 0.Manhole Headloss Coeff (Global)0.500Foul Sewage per hectare (1/s)0.000Number of Input Hydrographs0 Number of Storage Structures 0Number of Offline Controls0 Number of Real Time Controls 0			
Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0. Areal Reduction Factor 1.000 MADD Factor * 10m ³ /ha Storage 2. Hot Start (mins) 0 Inlet Coefficient 0. Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0. Manhole Headloss Coeff (Global) 0.500 Run Time (mins) Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Real Time Controls 0			
Hot Start (mins)0Inlet Coefficcient 0.Hot Start Level (mm)0 Flow per Person per Day (l/per/day)0.Manhole Headloss Coeff (Global)0.500Run Time (mins)Foul Sewage per hectare (l/s)0.000Output Interval (mins)Number of Input Hydrographs0 Number of Storage Structures 0Number of Online Controls0 Number of Real Time Controls 0	000		
Hot Start Level (mm) 0 Flow per Person per Day (l/per/day) 0. Manhole Headloss Coeff (Global) 0.500 Run Time (mins) Foul Sewage per hectare (l/s) 0.000 Output Interval (mins) Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0	800		
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) Foul Sewage per hectare (l/s) 0.000 Output Interval (mins) Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Real Time Controls 0	000		
Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0	60 1		
Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0	Ţ		
Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0			
Number of Offline Controls 0 Number of Real Time Controls 0			
Synthetic Rainfall Details			
Rainfall Model FEH			
Return Period (years) 100			
FEH Rainfall Version 1999			
Site Location GB 546300 172900 TQ 46300 72900			
D1 (1 km) = 0.023			
D2 (1km) 0.368			
D3 (1km) 0.212			
E (1km) 0.313			
©1982-2018 Innovvze			

Flo Consult UK Ltd		Page 2
4 Market Square	148 Station Road	
Old Amersham	Pre-Development	
Buckinghamshire, HP7 0DQ	Run-Off Calculations	Mirro
Date 03/07/2020	Designed by MDS	Dcainago
File	Checked by MDS	Diamage
Innovyze	Network 2018.1.1	

Synthetic Rainfall Details

F (1km)	2.594
Summer Storms	Yes
Winter Storms	Yes
Cv (Summer)	0.750
Cv (Winter)	0.840
Storm Duration (mins)	30

Flo Consult UK Ltd	Page 3									
4 Market Square	148 Station Road									
Old Amersham	Pre-Development									
Buckinghamshire, HP7 0DQ	Run-Off Calculations									
Date 03/07/2020	Designed by MDS									
File	Checked by MDS									
Innovyze	Innovyze Network 2018.1.1									
Innovyze <u>100 year Return Period Summary</u> <u>Sim</u> Areal Reduction Factor 1 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) C Foul Sewage per hectare (1/s) C Number of Input Hydrogra Number of Online Contr Number of Offline Contr Number of Offline Contr Synthe Rainfall Mode. FEH Rainfall Versio: Site Locatio: C (1km D1 (1km D2 (1km D3 (1km E (1km F (1km Cv (Summer Cv (Winter Margin for Flood Risk W Analys	Network 2018.1.1 of Critical Results by Maximum Level (Rank) for Storm ulation Criteria .000 Additional Flow - % of Total Flow 0.000 0 MADD Factor * 10m³/ha Storage 2.000 0 Inlet Coefficient 0.800 .500 Flow per Person per Day (1/per/day) 0.000 .000 phs 0 Number of Storage Structures 0 ols 0 Number of Real Time Controls 0 									
Duration Return Period(Climate	Profile(s) Summer and Winter (s) (mins) 360 (years) 100 Change (%) 0									
US/MH PN Name Event	Water Surcharged Flooded US/CL Level Depth Volume Flow / (m) (m) (m) (m ³) Cap.									
1.000 1 360 minute 100 year Sum	ner I+0% 33.000 31.519 -0.081 0.000 0.08									
1.001 2 360 minute 100 year Sum	ner I+0% 33.000 31.475 -0.075 0.000 0.14									
US/MH Ove PN Name (. 1.000 1 1.001 2	rflow Discharge Flow //s) Vol (m ³) (1/s) Status 2.430 0.4 OK 4.255 0.7 OK									
©198	2-2018 Innovyze									

Appendix H Below Ground Drainage Management Layout

	_			
Below Ground Attenuation Tank				
Type - Cellular Uni	ts			
Area - 4.00m ²				
Porosity - 0.95				
Porosity - 0.95 Volume - 3.05m ³				
Porosity - 0.95 Volume - 3.05m ³				
Porosity - 0.95 Volume - 3.05m ³				
Porosity - 0.95 Volume - 3.05m ³				
Porosity - 0.95 Volume - 3.05m ³				
Porosity - 0.95 Volume - 3.05m ³				
Porosity - 0.95 Volume - 3.05m ³				
Porosity - 0.95 Volume - 3.05m ³				
Porosity - 0.95 Volume - 3.05m ³				
Porosity - 0.95 Volume - 3.05m ³				
Porosity - 0.95 Volume - 3.05m ³				
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan	ning	MDS NC	07.06.21
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description	ning	MDS NC MDS NC Drn Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client	ning	MDS NC MDS NC Drn Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client -	ning	MDS NC MDS NC Drn Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client -	ning	MDS NC MDS NC Drn Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client -	ning	MDS NC MDS NC Dm Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client - - - Project -	ning	MDS NC MDS NC Drn Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client - - - Project 148 Station R Cidaura David	ning ning	MDS NC MDS NC Drn Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client - - - Project 148 Station R Sidcup, Bexlet	ning ning Ning	MDS NC MDS NC Drn Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client - - - Project 148 Station R Sidcup, Bexlet	ning ning 20ad	MDS NC MDS NC Drn Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client - - - Project 148 Station R Sidcup, Bexlet - Drawing Surface Wate	ning ning Road Py	MDS NC MDS NC Dm Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client - - - Project 148 Station R Sidcup, Bexlet - Drawing Surface Wate Management -	ning ning Road Py	MDS NC MDS NC Dm Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client - - - Project 148 Station R Sidcup, Bexlet - Drawing Surface Wate Management -	ning ning Road Py	MDS NC MDS NC Drn Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client - - - Project 148 Station R Sidcup, Bexlet - Drawing Surface Wate Management -	ning ning Road 20 20 20 20 20 20 20 20 20 20 20 20 20	MDS NC MDS NC Drn Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client - - - Project 148 Station R Sidcup, Bexlet - Drawing Surface Wate Management - Scale 1:50@A1 / 1:100()	ning ning Noad Soad Sy Pr Layout Date @A3 Jul '20	MDS NC MDS NC Drn Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client - - - Project 148 Station R Sidcup, Bexlet - Drawing Surface Wate Management - Scale 1:50@A1 / 1:100(Status -	ning ning Ning Ning Ning Ning Ning Ning	MDS NC MDS NC Drn Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client - - - Project 148 Station R Sidcup, Bexlet - Drawing Surface Wate Management - Scale 1:50@A1 / 1:100(Status P	ning ning ning Road Py Pr Layout Pate QA3 Jul '20	MDS NC MDS NC Drn Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client - - - Project 148 Station R Sidcup, Bexlet - Drawing Surface Wate Management - Scale 1:50@A1 / 1:1000 Status P	ning ning Road Pr Layout Pr Layout Date @A3 Jul '20	MDS NC MDS NC Dm Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client - - - Project 148 Station R Sidcup, Bexlet - Drawing Surface Wate Management - Scale 1:50@A1 / 1:1000 Status P	ning ning Road Road Road Road Road Road Road Road	MDS NC MDS NC Dm Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client - - - Project 148 Station R Sidcup, Bexlet - Drawing Surface Wate Management - Scale 1:50@A1 / 1:100(Status P	ning ning Noad 20 20 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	MDS NC MDS NC Drn Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client - - - Project 148 Station R Sidcup, Bexlet - Drawing Surface Wate Management - Scale 1:50@A1 / 1:100(Status P	ning ning Road Road Road Road Road Road Road Road	MDS NC MDS NC Drn Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client - - - Project 148 Station R Sidcup, Bexlet - Drawing Surface Wate Management - Scale 1:50@A1 / 1:100(Status P	ning ning Road Road Road Road Road Road Road Road	MDS NC MDS NC Dm Chk Dm Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client - - - Project 148 Station R Sidcup, Bexlet - Drawing Surface Wate Management - Scale 1:50@A1 / 1:1000 Status P	ning ning Road Road Road Road Road Road Road Road	MDS NC MDS NC Dm Chk Dm Chk	07.06.21 06.07.20 Date
Porosity - 0.95 Volume - 3.05m ³	P2 Issued for Plan P1 Issued for Plan Rev Description Client - - - Project 148 Station R Sidcup, Bexlet - Drawing Surface Wate Management - Scale 1:50@A1 / 1:1000 Status P Job No. COO	ning ning Road Road Road Road Road Road Road Road	MDS NC MDS NC Dm Chk Dm Chk	07.06.21 06.07.20 Date

Appendix I Surface Water Management Calculations

Flo Consult	UK	Ltd								Page 1	
4 Market Sc	luare	Э			148	Statio	n Road				
Old Amersha	ım				SW Management						
Buckinghams	hire	e, HP	7 0DO		Calc	ulatio	ns			Micco	
Date 07/06/2021 Designed by MDS											
Filo SW MANACEMENT CALCUALTI Chocked by MDS										Drainac	
FILE SW MAR	AGEI		ALCOAL	11	Chec	.Keu by		0 1 0			
Source Control 2020.1.3											
		a				1					
		Summ	lary oi	Resul	LTS I	oriye	ear Reti	irn Perio	<u>ba</u>		
			F	Half Dra	ain Ti	.me : 10	minutes.				
	Stor	m	Max	Max	M	lax	Max	Max	Max	Status	
	Even	t	Level	Depth	Infil	tration	Control	E Outflow	Volume		
			(m)	(m)	(1	./s)	(1/s)	(1/s)	(m³)		
15	min	Summer	31.566	0.066		0.0	0.4	0.4	0.3	ΟK	
30	min	Summer	31.573	0.073		0.0	0.5	0.5	0.4	ΟK	
60	min	Summer	31.572	0.072		0.0	0.4	0.4	0.4	ΟK	
120	min	Summer	31.562	0.062		0.0	0.4	0.4	0.3	ОК	
180	min	Summer	31.553	0.053		0.0	0.4	0.4	0.3	ОК	
240	min	Summer	31.547	0.047		0.0	0.3	0.3	0.2	O K	
360	min	Summer	31.539	0.039		0.0	0.3	0.3	0.2	O K	
480	min	Summer	31.535	0.035		0.0	0.2	0.2	0.2	O K	
600	min	Summer	31.532	0.032		0.0	0.2	0.2	0.2	O K	
720	min	Summer	31.530	0.030		0.0	0.2	0.2	0.1	O K	
960	min	Summer	31.527	0.027		0.0	0.2	0.2	0.1	O K	
1440	min	Summer	31.524	0.024		0.0	0.1	0.1	0.1	O K	
2160	min	Summer	31.520	0.020		0.0	0.1	0.1	0.1	O K	
2880	min	Summer	31.518	0.018		0.0	0.1	0.1	0.1	0 K	
4320	min	Summer	31.515	0.015		0.0	0.1	0.1	0.1	0 K	
5760	min	Summer	31.514	0.014		0.0	0.1	0.1	0.1	0 K	
7200	min	Summer	31.513	0.013		0.0	0.0	0.0	0.1	0 K	
8640	min	Summer	31.512	0.012		0.0	0.0	0.0	0.1	0 K	
10080	min	Summer	31.511	0.011		0.0	0.0	0.0	0.1	0 K	
15	min	Winter	31.575	0.075		0.0	0.5	0.5	0.4	ΟK	
			Storm	т	Rain	Flooded	Dischar	Te Time-De	ak		
			Event		m/hr)	Volumo	Volumo	(mino))		
			LVEIL	(111	,)	(m ³)	(m ³)	(11118	,		
						()	(

	Stor	m	Rain	FTOOded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	34.977	0.0	0.7	22
30	min	Summer	21.636	0.0	0.8	30
60	min	Summer	13.383	0.0	1.0	44
120	min	Summer	8.278	0.0	1.2	76
180	min	Summer	6.251	0.0	1.4	106
240	min	Summer	5.121	0.0	1.5	134
360	min	Summer	3.866	0.0	1.7	194
480	min	Summer	3.168	0.0	1.9	254
600	min	Summer	2.714	0.0	2.0	314
720	min	Summer	2.392	0.0	2.2	374
960	min	Summer	1.994	0.0	2.4	494
1440	min	Summer	1.543	0.0	2.8	736
2160	min	Summer	1.194	0.0	3.2	1104
2880	min	Summer	0.996	0.0	3.6	1460
4320	min	Summer	0.723	0.0	3.9	2152
5760	min	Summer	0.577	0.0	4.2	2928
7200	min	Summer	0.484	0.0	4.4	3656
8640	min	Summer	0.419	0.0	4.5	4400
10080	min	Summer	0.371	0.0	4.7	5088
15	min	Winter	34.977	0.0	0.7	22
		0	1982-20	20 Inno	vvze	

Flo Consult UK Ltd		Page 2
4 Market Square	148 Station Road	
Old Amersham	SW Management	
Buckinghamshire, HP7 0DQ	Calculations	Mirro
Date 07/06/2021	Designed by MDS	Desinado
File SW MANAGEMENT CALCUALTI	Checked by MDS	Diamage
Innovyze	Source Control 2020.1.3	

Summary of Results for 1 year Return Period

	Storm Event	1 :	Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
			(111)	(111)	(1/5)	(1/5)	(1/5)	(111-)	
30	min N	Winter	31.582	0.082	0.0	0.5	0.5	0.4	ОК
60	min N	Winter	31.576	0.076	0.0	0.5	0.5	0.4	ΟK
120	min N	Winter	31.558	0.058	0.0	0.4	0.4	0.3	ОК
180	min N	Winter	31.546	0.046	0.0	0.3	0.3	0.2	ΟK
240	min N	Winter	31.540	0.040	0.0	0.3	0.3	0.2	ОК
360	min N	Winter	31.534	0.034	0.0	0.2	0.2	0.2	ΟK
480	min N	Winter	31.530	0.030	0.0	0.2	0.2	0.1	ΟK
600	min N	Winter	31.527	0.027	0.0	0.2	0.2	0.1	ΟK
720	min N	Winter	31.525	0.025	0.0	0.1	0.1	0.1	ΟK
960	min N	Winter	31.523	0.023	0.0	0.1	0.1	0.1	ΟK
1440	min N	Winter	31.519	0.019	0.0	0.1	0.1	0.1	ΟK
2160	min N	Winter	31.517	0.017	0.0	0.1	0.1	0.1	ΟK
2880	min N	Winter	31.515	0.015	0.0	0.1	0.1	0.1	ΟK
4320	min N	Winter	31.513	0.013	0.0	0.0	0.0	0.1	ΟK
5760	min N	Winter	31.512	0.012	0.0	0.0	0.0	0.1	ΟK
7200	min N	Winter	31.511	0.011	0.0	0.0	0.0	0.1	ΟK
8640	min N	Winter	31.510	0.010	0.0	0.0	0.0	0.0	ΟK
10080	min N	Winter	31.509	0.009	0.0	0.0	0.0	0.0	ΟK

Storm		Rain	Flooded	Discharge	Time-Peak	
Event			(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	mın	Winter	21.636	0.0	0.9	30
60	min	Winter	13.383	0.0	1.1	46
120	min	Winter	8.278	0.0	1.4	76
180	min	Winter	6.251	0.0	1.6	106
240	min	Winter	5.121	0.0	1.7	134
360	min	Winter	3.866	0.0	1.9	194
480	min	Winter	3.168	0.0	2.1	256
600	min	Winter	2.714	0.0	2.3	316
720	min	Winter	2.392	0.0	2.4	378
960	min	Winter	1.994	0.0	2.7	500
1440	min	Winter	1.543	0.0	3.1	740
2160	min	Winter	1.194	0.0	3.6	1116
2880	min	Winter	0.996	0.0	4.0	1468
4320	min	Winter	0.723	0.0	4.4	2192
5760	min	Winter	0.577	0.0	4.6	3024
7200	min	Winter	0.484	0.0	4.9	3488
8640	min	Winter	0.419	0.0	5.1	4416
10080	min	Winter	0.371	0.0	5.2	5144

©1982-2020 Innovyze

Flo Consult UK Ltd					Page 3
4 Market Square	148 Stat	tion Road			
Old Amersham	SW Manag	gement			
Buckinghamshire, HP7 0DQ	Calculat	tions			Mirro
Date 07/06/2021		Drainage			
File SW MANAGEMENT CALCUALTI		bidindge			
Innovyze	Source (Control 20	20.1.3		
Ra	infall De	<u>etails</u>			
Rainfall Mode	el			FEH	
Return Period (years	5)			1	
FEH Rainfall Versio	on CP 5463	00 172000 7	1	999 900	
C (1kr	n)	00 172900 1	-0.	023	
D1 (1kr	n)		0.	307	
D2 (1kr	n) n)		0.	368 212	
E (1kr	n)		0.	212 313	
F (1kr	n)		2.	594	
Summer Storr	ns			Yes	
Cv (Summer			0.	750	
Cv (Winter	c)		0.	840	
Shortest Storm (mins Longest Storm (mins	3)		1.0	15 080	
Climate Change	9 8		10	+0	
<u> </u>	ne Area D	Diagram			
Tota	al Area (h	a) 0.010			
Time (mins) Area Time (mins) From: To: (ha) From: To:	Area Ti (ha) Fr	ime (mins) om: To:	Area Tim (ha) From	e (mins) n: To:	Area (ha)
0 4 0.003 4 8	0.003	8 12	0.002	L2 16	0.002

Flo Consult UK Ltd		Page 4					
4 Market Square	148 Station Road						
Old Amersham	SW Management						
Buckinghamshire, HP7 ODQ	Calculations	Mirro					
Date 07/06/2021	Designed by MDS	Dcainago					
File SW MANAGEMENT CALCUALTI	Checked by MDS	Drainacje					
Innovyze	Source Control 2020.1.3	•					
Storage is Online Cover Level (m) 33.000 <u>Complex Structure</u>							
Pipe							
Diameter (m) Slope (1:X) 10	0.150 Length (m) 1.000 0.000 Invert Level (m) 31.500						
Се	llular Storage						

Invert Level (m) 31.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²) In	f. Area (m²)	Depth (m)	Area (m²) Inf	. Area (m²)
0.000	4.0	0.0	2.600	0.0	0.0
0.200	4.0	0.0	2.800	0.0	0.0
0.400	4.0	0.0	3.000	0.0	0.0
0.600	4.0	0.0	3.200	0.0	0.0
0.800	4.0	0.0	3.400	0.0	0.0
1.000	0.0	0.0	3.600	0.0	0.0
1.200	0.0	0.0	3.800	0.0	0.0
1.400	0.0	0.0	4.000	0.0	0.0
1.600	0.0	0.0	4.200	0.0	0.0
1.800	0.0	0.0	4.400	0.0	0.0
2.000	0.0	0.0	4.600	0.0	0.0
2.200	0.0	0.0	4.800	0.0	0.0
2.400	0.0	0.0	5.000	0.0	0.0

Infiltration Trench

Infiltration Coefficient Base (m/hr)0.00000Trench Width (m)0.3Infiltration Coefficient Side (m/hr)0.00000Trench Length (m)11.5Safety Factor2.0Slope (1:X)0.0Porosity0.30Cap Volume Depth (m)0.000Invert Level (m)32.500Cap Infiltration Depth (m)0.000

Orifice Outflow Control

Diameter (m) 0.030 Discharge Coefficient 0.600 Invert Level (m) 31.500

Flo Consult	t UK	Ltd								Page 1	1
4 Market Square					148	148 Station Road					
Old Amersham					SW M	SW Management					
Buckinghamshire, HP7 0D0											() ···
Date 07/06/2021						gnea p	y MDS			Drain	nade
File SW MAN	NAGEI	MENT C.	ALCUAL	TI	Chec	ked by	MDS				
Innovyze					Sour	ce Con	trol 2020	0.1.3			
		Summa	ary of	Resul	ts fo	or 30 y	ear Retu	rn Peri	od		
			F	Half Dra	ain Ti	me : 17	minutes.				
	Stor	m	Max	Max	м	ax	Max	Max	Max	Status	
	Even	it	Level	Depth	Infilt	ration	Control E	Outflow	Volume		
			(m)	(m)	(1	/s)	(1/s)	(1/s)	(m³)		
1 =	imin	Summer	31 765	0 265		0 0	09	ΛQ	1 २	Οĸ	
30) min	Summer	31.783	0.283		0.0	1.0	1.0	1.4	0 K	
60) min	Summer	31.763	0.263		0.0	0.9	0.9	1.3	ОК	
120) min	Summer	31.720	0.220		0.0	0.9	0.9	1.1	ΟK	
180) min	Summer	31.684	0.184		0.0	0.8	0.8	0.9	ОК	
240) min	Summer	31.656	0.156		0.0	0.7	0.7	0.8	ОК	
360) min	Summer	31.617	0.117		0.0	0.6	0.6	0.6	ОК	
480) min	Summer	31.593	0.093		0.0	0.5	0.5	0.5	ОК	
600) min	Summer	31.577	0.077		0.0	0.5	0.5	0.4	ΟK	
720) min	Summer	31.565	0.065		0.0	0.4	0.4	0.3	ΟK	
960) min	Summer	31.551	0.051		0.0	0.4	0.4	0.3	ΟK	
1440) min	Summer	31.540	0.040		0.0	0.3	0.3	0.2	ΟK	
2160) min	Summer	31.533	0.033		0.0	0.2	0.2	0.2	ΟK	
2880) min	Summer	31.529	0.029		0.0	0.2	0.2	0.1	ΟK	
4320) min	Summer	31.524	0.024		0.0	0.1	0.1	0.1	ΟK	
5760) min	Summer	31.520	0.020		0.0	0.1	0.1	0.1	ΟK	
7200) min	Summer	31.517	0.017		0.0	0.1	0.1	0.1	ΟK	
8640) min	Summer	31.516	0.016		0.0	0.1	0.1	0.1	ΟK	
10080) min	Summer	31.515	0.015		0.0	0.1	0.1	0.1	ОК	
15	min	Winter	31.801	0.301		0.0	1.0	1.0	1.5	ΟK	
			Storm	I	Rain	Flooded	l Discharge	e Time-Pe	eak		
			Event	(m	m/hr)	Volume (m³)	Volume (m³)	(mins)		
		15	min Sur	nmer 11	2.381	0.0	2.1		23		
		30	min Sur	nmer 6	5.864	0.0	2.5	ò	32		
		60	min Sur	nmer 3	8.601	0.0	2.9)	48		
		120	min Sur	nmer 2	2.623	0.0	3.4	L	78		
		180	min Sur	nmer 1	6.551	0.0	3.7	' 1	L10		
		240	min Sur	nmer 1	3.259	0.0	4.0) 1	L40		
1		2.60			0	0.0					

	120	min	Summer	22.623	0.0	3.4	78
	180	min	Summer	16.551	0.0	3.7	110
	240	min	Summer	13.259	0.0	4.0	140
	360	min	Summer	9.700	0.0	4.4	200
	480	min	Summer	7.771	0.0	4.7	260
	600	min	Summer	6.543	0.0	4.9	320
	720	min	Summer	5.685	0.0	5.1	378
	960	min	Summer	4.635	0.0	5.6	498
	1440	min	Summer	3.476	0.0	6.3	736
	2160	min	Summer	2.606	0.0	7.0	1100
	2880	min	Summer	2.125	0.0	7.6	1468
	4320	min	Summer	1.496	0.0	8.1	2204
	5760	min	Summer	1.166	0.0	8.4	2872
	7200	min	Summer	0.961	0.0	8.6	3672
	8640	min	Summer	0.821	0.0	8.9	4296
1	0800	min	Summer	0.718	0.0	9.0	5056
	15	min	Winter	112.381	0.0	2.4	23
			©1	1982-2020	Innovyze		
					-		

Flo Consult UK Ltd		Page 2
4 Market Square	148 Station Road	
Old Amersham	SW Management	
Buckinghamshire, HP7 0DQ	Calculations	Mirro
Date 07/06/2021	Designed by MDS	Desinado
File SW MANAGEMENT CALCUALTI	Checked by MDS	Diamage
Innovyze	Source Control 2020.1.3	

Summary of Results for 30 year Return Period

	Storm Event	1	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (l/s)	Max Volume (m³)	Status
30	min 1	Winter	31,820	0.320	0.0	1.0	1.0	1.6	ОК
60	min N	Winter	31.789	0.289	0.0	1.0	1.0	1.4	0 K
120	min T	Winter	31.721	0.221	0.0	0.9	0.9	1.1	0 K
180	min N	Winter	31.670	0.170	0.0	0.7	0.7	0.8	0 K
240	min N	Winter	31.635	0.135	0.0	0.7	0.7	0.7	0 K
360	min N	Winter	31.592	0.092	0.0	0.5	0.5	0.5	0 K
480	min N	Winter	31.569	0.069	0.0	0.4	0.4	0.3	0 K
600	min N	Winter	31.555	0.055	0.0	0.4	0.4	0.3	0 K
720	min V	Winter	31.546	0.046	0.0	0.3	0.3	0.2	ΟK
960	min N	Winter	31.539	0.039	0.0	0.3	0.3	0.2	ОК
1440	min N	Winter	31.532	0.032	0.0	0.2	0.2	0.2	0 K
2160	min V	Winter	31.527	0.027	0.0	0.2	0.2	0.1	ОК
2880	min V	Winter	31.524	0.024	0.0	0.1	0.1	0.1	ОК
4320	min N	Winter	31.519	0.019	0.0	0.1	0.1	0.1	ОК
5760	min N	Winter	31.516	0.016	0.0	0.1	0.1	0.1	ОК
7200	min N	Winter	31.515	0.015	0.0	0.1	0.1	0.1	ОК
8640	min V	Winter	31.514	0.014	0.0	0.1	0.1	0.1	ОК
10080	min V	Winter	31.513	0.013	0.0	0.0	0.0	0.1	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	65.864	0.0	2.8	32
60	min	Winter	38.601	0.0	3.2	48
120	min	Winter	22.623	0.0	3.8	82
180	min	Winter	16.551	0.0	4.2	114
240	min	Winter	13.259	0.0	4.5	144
360	min	Winter	9.700	0.0	4.9	204
480	min	Winter	7.771	0.0	5.2	262
600	min	Winter	6.543	0.0	5.5	320
720	min	Winter	5.685	0.0	5.7	380
960	min	Winter	4.635	0.0	6.2	494
1440	min	Winter	3.476	0.0	7.0	736
2160	min	Winter	2.606	0.0	7.9	1104
2880	min	Winter	2.125	0.0	8.6	1476
4320	min	Winter	1.496	0.0	9.0	2168
5760	min	Winter	1.166	0.0	9.4	2952
7200	min	Winter	0.961	0.0	9.7	3704
8640	min	Winter	0.821	0.0	9.9	4152
10080	min	Winter	0.718	0.0	10.1	5088

©1982-2020 Innovyze

Flo Consult UK Ltd	Page 3							
4 Market Square 1	148 Station Road							
Old Amersham SI	SW Management							
Buckinghamshire, HP7 0DQ C	Calculations Mirro							
Date 07/06/2021	Designed by MDS							
File SW MANAGEMENT CALCUALTI C	Checked by MDS							
Innovyze So	Source Control 2020.1.3							
Rain	nfall Details							
Rainfall Model	FEH							
Return Period (years)	30							
FEH Rainfall Version 1999 Site Location CB 546300 172900 TO 46300 72900								
Site Location GB 546300 172900 TQ 46300 72900 C (1km) -0.023								
D1 (1km)	0.307							
D2 (1km)	0.368							
E (1km)	0.212							
F (1km)	2.594							
Summer Storms	Yes Yos							
Cv (Summer)	0.750							
Cv (Winter)	0.840							
Shortest Storm (mins)	15							
Climate Change %	+0							
Time	e Area Diagram							
Total	Area (ha) 0.010							
Time (mins) Area Time (mins) From: To: (ha) From: To:	Area Time (mins) Area Time (mins) Area (ha) From: To: (ha) From: To: (ha)							
0 4 0.003 4 8 0	0.003 8 12 0.002 12 16 0.002							
1								
Flo Consult UK Ltd		Page 4						
--	---	----------	--	--				
4 Market Square	148 Station Road							
Old Amersham	SW Management							
Buckinghamshire, HP7 0DQ	Calculations	Mirro						
Date 07/06/2021	Designed by MDS	Dcainago						
File SW MANAGEMENT CALCUALTI	Checked by MDS	Diamage						
Innovyze	Source Control 2020.1.3							
Storage is Online Cover Level (m) 33.000 <u>Complex Structure</u>								
	Pipe							
Diameter (m) Slope (1:X) 10	0.150 Length (m) 1.000 0.000 Invert Level (m) 31.500							
Ce	llular Storage							

Invert Level (m) 31.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²)	Inf. Area (m²)	Depth (m)	Area (m²) Inf	. Area (m²)
0.000	4.0	0.0	2.600	0.0	0.0
0.200	4.0	0.0	2.800	0.0	0.0
0.400	4.0	0.0	3.000	0.0	0.0
0.600	4.0	0.0	3.200	0.0	0.0
0.800	4.0	0.0	3.400	0.0	0.0
1.000	0.0	0.0	3.600	0.0	0.0
1.200	0.0	0.0	3.800	0.0	0.0
1.400	0.0	0.0	4.000	0.0	0.0
1.600	0.0	0.0	4.200	0.0	0.0
1.800	0.0	0.0	4.400	0.0	0.0
2.000	0.0	0.0	4.600	0.0	0.0
2.200	0.0	0.0	4.800	0.0	0.0
2.400	0.0	0.0	5.000	0.0	0.0

Infiltration Trench

Infiltration Coefficient Base (m/hr)	0.00000	Trench Width (m)	0.3
Infiltration Coefficient Side (m/hr)	0.00000	Trench Length (m)	11.5
Safety Factor	2.0	Slope (1:X)	0.0
Porosity	0.30	Cap Volume Depth (m)	0.000
Invert Level (m)	32.500	Cap Infiltration Depth (m)	0.000

Orifice Outflow Control

Diameter (m) 0.030 Discharge Coefficient 0.600 Invert Level (m) 31.500 $\,$

Flo Consult UK Ltd							Page 1	
4 Market Square 148 Station Road								
Old Amersham SW Management								
Buckinghamshire, HP7 0D0 Calculations								
Date 07/06/2021 Designed by MDS								Drainage
File SW MANAGEMEN'I (CALCUAL	1'1	Chec	ked by	MDS			
Innovyze			Sour	ce Con	trol 2020	0.1.3		
Summary	of Resu	ults f	or 10	0 year	Return 1	Period	(+40%)	_
	H	Half Dra	ain Ti	me : 23	minutes.			
								.
Storm	Max	Max	M 	ax	Max	Max	Max	Status
Event	Level	Depth	Infilt	tration	Control 2	Outflow	Volume	
	(m)	(m)	(1	/s)	(1/5)	(1/5)	(m-)	
15 min Summer	32.148	0.648		0.0	1.5	1.5	3.1	ОК
30 min Summer	32.184	0.684		0.0	1.5	1.5	3.3	O K
60 min Summer	32.143	0.643		0.0	1.5	1.5	3.1	O K
120 min Summer	32.049	0.549		0.0	1.4	1.4	2.7	O K
180 min Summer	31.970	0.470		0.0	1.3	1.3	2.3	O K
240 min Summer	31.907	0.407		0.0	1.2	1.2	2.0	O K
360 min Summer	31.814	0.314		0.0	1.0	1.0	1.5	ОК
480 min Summer	31.751	0.251		0.0	0.9	0.9	1.2	ОК
600 min Summer	31.706	0.206		0.0	0.8	0.8	1.0	ОК
720 min Summer	31.672	0.172		0.0	0.7	0.7	0.8	ОК
960 min Summer	31.631	0.131		0.0	0.6	0.6	0.6	ОК
1440 min Summer	31.587	0.087		0.0	0.5	0.5	0.4	ОК
2160 min Summer	31.558	0.058		0.0	0.4	0.4	0.3	ОК
2880 min Summer	31,544	0.044		0.0	0.3	0.3	0.2	0 K
4320 min Summer	31.534	0.034		0.0	0.2	0.2	0.2	0 K
5760 min Summer	31.529	0.029		0.0	0.2	0.2	0.1	0 K
7200 min Summer	31.526	0.026		0.0	0.1	0.1	0.1	0 K
8640 min Summer	31,523	0.023		0.0	0.1	0.1	0.1	0 K
10080 min Summer	31.521	0.021		0.0	0.1	0.1	0.1	0 K
15 min Winter	32.234	0.734		0.0	1.6	1.6	3.5	0 K
	Storm	F	Rain	Flooded	l Discharge	e Time-Pe	eak	
	Event	(m	m/hr)	Volume	Volume	(mins)	
				(m³)	(m³)			
1	5 min Sur	nmer 23	9.295	0 0	. 4 5		24	
21) min Sur	nmer 13	7.553	0.0	, 1 ,0 , 5,0	, ,	33	
) min qur	nmer 7	9 069	0.0	, J.2 1 5 0		50	
120) min Sur	nmer A	5 451	0.0	. J.3		82	
1 1 20) min Sur	nmer ?	2 876	0.0	, 0.0	, L 1	14	
240) min Sur	nmer ?	6 126	0.0	, , , ,) 7 9	 ; 1	44	
240) min Sur	nmer 1	8.898	0.0	, , , , , , , , , , , , , , , , , , ,		206	
100) min qur	nmer 1	5 01 A	0.0) 2	200	
400) min Sul	nmer 1	2 566	0.0			326	
100) min Sur	nmer 1	0.863	0.0	, 9.7		384	
061) min Sur	nmer 1	8.786	0.0	10 5		504	
1 1 1 1 1) min Sur	nmer	6 514	0.0	11 7		742	
2144) min Cirr	nmer	7 83U	0.0	· ±±•/) 11	04	
2100) min Cr	nmor	3 00C	0.0	, ±3.0	لــــــــــــــــــــــــــــــــــــ	168	
2000) min Cur	nmer	2 710	0.0	1 1 1 T	. 14 / 01	100	
4320) min Cirr	nmer	2 · / ± ୬ 2 · 1 ∩ 2	0.0	· ±4./	21	736	
2200) min Cirr	nmer	2.102 1 722	0.0	, 15.1 15.5	. 25	524	
9641) min qur	nmer	1 463	0.0	15 9	. 50 . //	100	
10080) min Sur	nmer	1 275	0.0	16 1	, 45 5(180	
1	5 min Wir	nter 23	9.295	0.0	, ±0,1		2.4	
1 1				0.0	0.0			

©1982-2020 Innovyze

Flo Consult UK Ltd							Page 2	
4 Market Square 148 Station Road								
Old Amersham SW Management								
Buckinghamshire, HP7 0D0 Calculations							Micco	
D_{2} = 07/06/2021								
Date 07/06/2021 Designed by MDS							Drainage	
FILE SW MANAGEMENI C	ALCUALII		cked by		. 1			
Innovyze Source Control 2020.1.3								
		C 1/		Del		(
Summary	OI RESULTS	IOT I	JU year	Return .	Period	(+40종)		
Storm	May May		lav	Maw	May	Maw	Statue	
Event	Level Depth	. Infil	tration	Control E	Outflow	Volume	blatus	
	(m) (m)	()	/s)	(1/s)	(1/s)	(m ³)		
30 min Winter	32.275 0.775	5	0.0	1.6	1.6	3.7	O K	
60 min Winter 120 min Winter	32.219 0.719))	0.0	1.6	1.6	3.5	OK	
180 min Winter	31.966 0.466	,	0.0	⊥•4 1.3	1 3	2.0 2 3	O K	
240 min Winter	31.880 0.380)	0.0	1.1	1.1	1.8	O K	
360 min Winter	31.766 0.266	5	0.0	0.9	0.9	1.3	O K	
480 min Winter	31.696 0.196	5	0.0	0.8	0.8	1.0	O K	
600 min Winter	31.651 0.151		0.0	0.7	0.7	0.7	O K	
720 min Winter	31.621 0.121		0.0	0.6	0.6	0.6	O K	
960 min Winter	31.588 0.088	3	0.0	0.5	0.5	0.4	O K	
1440 min Winter	31.556 0.056	5	0.0	0.4	0.4	0.3	ОК	
2160 min Winter	31.540 0.040) -	0.0	0.3	0.3	0.2	OK	
2880 Min Winter 4320 min Winter	31.535 0.035	2	0.0	0.2	0.2	0.2	OK	
5760 min Winter	31 524 0 024	l	0.0	0.2	0.2	0.1	0 K	
7200 min Winter	31.521 0.021		0.0	0.1	0.1	0.1	0 K	
8640 min Winter	31.518 0.018	}	0.0	0.1	0.1	0.1	ОК	
10080 min Winter	31.517 0.017	7	0.0	0.1	0.1	0.1	O K	
	~ .	_ ·	_, , ,	-· ·				
	Storm	Rain	Flooded	Discharge	Time-Pe	ak		
	Event	(1111/111)	(m ³)	(m ³)	(mins)	,		
			()	()				
30	min Winter 1	37.553	0.0	5.8	3	33		
60	min Winter	79.069	0.0	6.6)	52		
120	min Winter	45.451	0.0	7.6)) 1	86 10		
180	min Winter	26 126	0.0	۵.3 م م	, ⊥ , 1	10 50		
360	min Winter	18.898	0.0	9,5	, <u>1</u> ; 2	12		
480	min Winter	15.018	0.0	10.1	. 2	72		
600	min Winter	12.566	0.0	10.6	5 3	30		
720	min Winter	10.863	0.0	10.9) 3	88		
960	min Winter	8.786	0.0	11.8	5 5	06		
1440	min Winter	6.514	0.0	13.1	. 7	42		
2160	min Winter	4.830	0.0	14.6) 11	12		
2880	min Winter	3.906	0.0	15./ 16 /	14	5∠ 36		
4320	min Winter	2.102	0.0	17 C	. 22	72		
7200	min Winter	1.722	0.0	17.4	36	32		
8640	min Winter	1.463	0.0	17.7	44	08		
10080	min Winter	1.275	0.0	18.0	51	76		

©1982-2020 Innovyze

Flo Consult UK Ltd		Page 3						
4 Market Square	148 Station Road							
Old Amersham	SW Management							
Buckinghamshire, HP7 0DQ	Mirro							
Date 07/06/2021	Designed by MDS							
File SW MANAGEMENT CALCUALTI	Checked by MDS	bidindge						
Innovyze	Source Control 2020.1.3							
Ra	infall Details							
Rainfall Mode	l FEH							
Return Period (years) 100							
FEH Rainfall Versic	n 1999 n CR 546300 172800 TO 46300 72800							
C (1km	$\begin{array}{c} 11 \ \text{GB} \ 540300 \ 172900 \ 10 \ 40300 \ 72900 \\ -0.023 \end{array}$							
D1 (1km	0.307							
D2 (1km	0.368							
E (1km	a) 0.212 0.313							
F (1km	2.594							
Summer Storn	s Yes							
Cv (Summer) 0.750							
Cv (Winter	0.840							
Shortest Storm (mins) 15							
Climate Change	% +40							
Tin	e Area Diagram							
Tota	l Area (ha) 0.010							
Time (mins) Area Time (mins) From: To: (ha) From: To:	Area Time (mins) Area Time (min (ha) From: To: (ha) From: To	s) Area : (ha)						
0 4 0.003 4 8	0.003 8 12 0.002 12	16 0.002						
©198	2-2020 Innovyze							

Flo Consult UK Ltd		Page 4
4 Market Square	148 Station Road	
Old Amersham	SW Management	
Buckinghamshire, HP7 0DQ	Calculations	Mirro
Date 07/06/2021	Designed by MDS	Dcainago
File SW MANAGEMENT CALCUALTI	Checked by MDS	Diamage
Innovyze	Source Control 2020.1.3	•
<u>N</u> Storage is On	<u>Model Details</u> line Cover Level (m) 33.000	

Complex Structure

Pipe

Diameter (m) 0.150 Length (m) 1.000 Slope (1:X) 100.000 Invert Level (m) 31.500

Cellular Storage

Invert Level (m) 31.500 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²)	Inf. Area (m	²) Depth	(m) Area	(m²)	Inf. Area	(m²)
0 000	4 0	0	0 2	600	0 0		0 0
0.000	4.0	0	.0 2.	800	0.0		0.0
0.200	4.0	0	.0 2.		0.0		0.0
0.400	4.0	0	.0 3.	.000	0.0		0.0
0.600	4.0	0	.0 3.	200	0.0		0.0
0.800	4.0	0	.0 3.	400	0.0		0.0
1.000	0.0	0	.0 3.	600	0.0		0.0
1.200	0.0	0	.0 3.	800	0.0		0.0
1.400	0.0	0	.0 4.	000	0.0		0.0
1.600	0.0	0	.0 4.	200	0.0		0.0
1.800	0.0	0	.0 4.	400	0.0		0.0
2.000	0.0	0	.0 4.	600	0.0		0.0
2.200	0.0	0	.0 4.	800	0.0		0.0
2.400	0.0	0	.0 5.	000	0.0		0.0

Infiltration Trench

Infiltration Coefficient Base (m/hr)0.00000Trench Width (m)0.3Infiltration Coefficient Side (m/hr)0.00000Trench Length (m)11.5Safety Factor2.0Slope (1:X)0.0Porosity0.30Cap Volume Depth (m)0.000Invert Level (m)32.500Cap Infiltration Depth (m)0.000

Orifice Outflow Control

Diameter (m) 0.030 Discharge Coefficient 0.600 Invert Level (m) 31.500