GEO-ENVIRONMENTAL ASSESSMENT 29-39 STIRLING ROAD AND 2 - 10 ROSLIN ROAD ACTON, LONDON, W3 VISION CONSTRUCT GEA-22310-21-264 JULY 2021

GEO-ENVIRONMENTAL ASSESSMENT 29-39 STIRLING ROAD AND 2 - 10 ROSLIN ROAD ACTON, LONDON, W3 VISION CONSTRUCT GEA-22310-21-264 JULY 2021

Current Document Details

Authors Rory Horton

Approved by S. Edwards

Simon Edwards

Issued by

Darren Ettritch

Document Revisions					
Rev	Date	Author	Approved	Issued	Remarks

Report issued from DERBYSHIRE Cromford Mills, Mill Lane, Matlock, Derbyshire. DE4 3RQ Tel: 01773 829988

TABLE OF CONTENTS

EXECUTIVE	SUMMARY				
SECTION 1	INTRODUCTION1				
SECTION 2	SITE INVESTIGATION BATIONALE				
SECTION 2	2.1 INTRODUCTION				
	2.2 SITE INVESTIGATION METHODS				
SECTION 3	GROUND CONDITIONS				
SECTION 3	3.1 SURFACE GROUND CONDITIONS4				
SECTION 4	PRELIMINARY GEOTECHNICAL RECOMMENDATIONS				
	4.1 FOUNDATIONS				
	4.2 EXCAVATIONS AND GROUNDWATER				
	4.3 FLOOR SLABS				
	4.4 BURIED CONCRETE				
	4.5 ROADS AND PAVED AREAS				
	4.6 SOAKAWAYS				
SECTION 5	ENVIRONMENTAL ASSESSMENT10				
	5.1 SOIL QUALITY10				
	5.2 GROUNDWATER13				
	5.3 HAZARDOUS GAS				
	5.4 WASTE CLASSIFICATION, OFF-SITE DISPOSAL OR RE-USE 13				
SECTION 6	RISK ASSESSMENT				
SECTION 7	UPDATED CONCEPTUAL MODEL17				
SECTION 8	PRELIMINARY REMEDIATION STRATEGY				
SECTION 9	CONCLUSIONS				
APPENDIX 1					
 Drawings 					
)				
 Explorator 	ry Hole Logs				
APPENDIX 3					
 Soil Chem 	nistry				
 Summary Spreadsheet 					
 Laboratory 	Analysis Certificates				
-					
APPENDIX 4Geotechnical Laboratory Certificates					
 In Situ Test Certificates 					
- 11 310 18					

IDOM

APPENDIX 5.....

- Field Monitoring Records
- Groundwater Level Data
- Hazardous Soil Gas Data

APPENDIX 6

Gas Risk Assessment

APPENDIX 7

WAC Testing Certificates

EXECUTIVE SUMMARY

A Geo-Environmental Assessment was requested by Vision Construct. The purpose of the assessment was to identify any contaminative or geotechnical issues associated with former land use at 29-39 Stirling Road and 2 - 10 Roslin Road, Acton, London, W3 which might impact on the redevelopment of the site.

SITE DETAILS: 29-39 STI	RLING ROAD
Approximate site area	0.14 ha
Current/previous use	Currently commercial building (since 1970s). Previously terraced housing.
Proposed use	Residential apartments over commercial space at ground and first floor levels.
SITE DETAILS: UNIT ON	ROSLIN ROAD
Approximate site area	0.09 ha
Current/previous use	Currently a bookbinding works (since the 1970s). Previously terraced housing. Orchard on pre 1868 – 1896 mapping.
Proposed use	Residential apartments over commercial space at ground floor level.
PHASE 1 NON-INTRUSIV	E INVESTIGATION: BOTH SITES
Expected geology	Made ground over River Terrace Gravels over London Clay.
Groundwater	Secondary A aquifer associated with the superficial gravel geology. The bedrock London Clay is indicated to be an unproductive stratum. Not in a groundwater source protection zone.
Surface water	No surface waters in the vicinity. Site is at very low risk of flooding.
Other	Not in a radon affected area. Numerous current and historic industries in the vicinity.
PHASE 2 EXPLOBATORY	INVESTIGATION: BOTH SITES
Ground Conditions	Limited thicknesses of made ground overlying superficial deposits of Kempton Park Gravel above the London Clay Formation. Groundwater strikes recorded in the superficial gravel and London Clay.
Contamination	Generally low levels of contaminants have been identified but in the context of the proposed development no consequent remedial action has been identified.
Geotechnical issues	No special geotechnical constraints identified.
RECOMMENDATIONS	
Geotechnical	Due to the high-rise nature of the proposed structures, piled foundations will be required.

	Suspended floor slabs should be adopted at the site, whilst for preliminary design purposes, a CBR value of 3 % should be adopted for the made ground.
	Buried concrete classes DS-2 and AC-2 will apply to new foundation concrete.
Remediation	No specific remediation actions are identified.
Waste classification	Made ground arisings are assumed non-hazardous at this stage.

SECTION 1 INTRODUCTION

1.1 Vision Construct proposes to obtain planning for development of two parcels of land in Acton, London W3. The development site is located at 29 – 39 Stirling Road and on 2 – 10 Roslin Road at the northern end of Stirling Road. The building proposed at Stirling Road will comprise two blocks of 8 and 11 storeys set over a two-storey podium. Flexible commercial space will be provided at ground and first floor levels with residential at second floor and above. The building at Roslin Road will extend up to 15 storeys with commercial at ground floor and residential above.

- 1.2 The objectives of the investigation are to:
 - *i.* Assess surface and sub-surface ground conditions present at the site;
 - *ii.* Identify hazards associated with ground contamination which may place constraints on the site and the proposed development;
 - iii. Evaluate the risks associated with any identified hazards;
 - *iv.* Provide preliminary recommendations for the mitigation of any significant risks identified; and
 - v. Provide preliminary geotechnical recommendations.

- 1.3 A Phase 1 (Non-intrusive Investigation), a Phase 2a (Preliminary Exploratory Investigation) and a Phase 2b (Supplementary Investigation) have been undertaken for the subject site.
- 1.3.1 Summary of the Phase 1 (Non-intrusive Investigation):
 - *i.* Historic plans show that the sites were originally woodland (possibly orchard) which were developed into terraced housing by 1915. The residential housing was then demolished and replaced with an Engineering Works on the Stirling Road site and a Bookbinding Works on the Roslin Road site by the 1970s with no significant redevelopment since.
 - *ii.* The surrounding area has numerous industrial land uses. Relevant potentially contaminative land uses within 250 m of the sites include chemical works, a compound factory, several engineering works, two laundries, plastic moulding works, a plastic and ceramics factory, a stationary factory, a button factory, motor repair works, a plating works, a milk depot. The nearby railways and works associated with them are also potential contaminative sources.
- 1.4 This report presents the findings of the geo-environmental investigation and provides an interpretation of the geo-environmental conditions that exist at the site. The contaminative status of the site and the implications with respect to development have been interpreted in accordance with the current government guidance on source-pathway-receptor risk assessment. This report uses a Tier 1 risk assessment to ascribe a conservative qualitative appraisal of the hazards associated with the site.
- 1.5 This report has been prepared for Vision Construct for the sole purpose described above and no extended duty of care to any third party is implied or offered. Third parties making reference to the report should consult Vision Construct and IDOM as to the extent to which the findings may be appropriate for their use.

SECTION 2 SITE INVESTIGATION RATIONALE

2.1 INTRODUCTION

- 2.1.1 A site investigation rationale has been devised in accordance with the findings of the Phase 1 investigation and the resultant preliminary conceptual site model and risk assessment. Made ground and associated anthropogenic contamination likely. Potential for spillage of hydrocarbons on the Stirling Road site. Local groundwater could be affected by diffuse contamination from industry in the vicinity.
- 2.1.2 Intrusive sampling locations were chosen on the basis of providing broad spatial coverage of the site as no obvious features suggesting contaminative use were identified which required targeted investigation. Both sites were occupied by tenant businesses and therefore exploratory holes were not possible inside buildings for Roslin Road and only one hole was inside a building at the Stirling Road site.

2.2 SITE INVESTIGATION METHODS

- 2.2.1 An intrusive investigation was carried out by IDOM between 7 and 12 November 2019 and comprised the following scope of work:
 - *i.* Two cable percussion boreholes (MBH1 and MBH2) to 20 metres below ground level (m bgl); and
 - *ii.* Four shallow windowless sample holes (MWS1 to MWS4) advanced to a maximum depth of 3.6 m bgl;
- 2.2.2 A supplementary investigation was carried out by IDOM between 27 May and 2 June 2021, consisting of the following scope of work:
 - *i.* Two cable percussion boreholes (MBH101 and MBH102) advanced to a maximum depth of 30.45 m bgl;
 - *ii.* Five machine-dug trial pits (MTP01 to MTP05) excavated to a maximum depth of 3.4 m bgl; and
 - *iii.* Five plate load tests (CBR01 to CBR05) to determine California Bearing Ratio (CBR) values.
- 2.2.3 Exploratory hole locations are indicated on Drawing Nos. 22310-304-001 and 22310-304-002 which are presented in Appendix 1. Logging of exploratory holes was undertaken by an IDOM Officer. Exploratory hole logs are contained in Appendix 2.
- 2.2.4 Light cable percussion equipment was used to advance boreholes MBH1 and MBH102 (2-10 Roslin Road) and boreholes MBH2 and MBH101 (29-39 Stirling Road). Standard Penetration Tests (SPTs) were performed at regular intervals throughout the boreholes. The tests involved driving a steel cone tipped series of rods into the ground over a distance of 450 mm using the repeated blows of a 63.5 kg weight allowed to free fall over a distance of 760 mm. The total number of blows

required for the final 300 mm penetration (the 'N' value) is recorded on the borehole logs.

- 2.2.5 A tracked windowless sampling rig was used to advance MWS1-4. This comprised a rig-mounted drop hammer to drive a hollow steel barrel into the ground. The barrel is recovered along with a removable plastic sleeve, which lines the barrel and holds a core of soil which is retracted for logging and sampling. SPTs were performed at approximate 1 m intervals in all windowless sample holes.
- 2.2.6 Boreholes and windowless sample holes were installed for environmental monitoring. A 50 mm diameter groundwater monitoring standpipe with filter sock was placed in the hole to form a response zone. The standpipe was provided with a gravel pack around the slotted section within the response zone and a bentonite seal elsewhere around the plain sections as required. A removable gas tap, 1/4" tail and trafficable flush cover were installed. Both original boreholes were installed for groundwater monitoring purposes: MBH1 (to 3.5 m bgl) and MBH2 (to 5.0 m bgl), whilst standpipes were also installed in MBH101 and MBH102 to depths of 6.0 m bgl. Each windowless sample hole was installed for monitoring purposes with response zones below 0.5 m bgl.
- 2.2.7 Representative soil samples were taken from various depths and strata to assess the contaminative status of the site. Soil samples were submitted to an MCERTS/ UKAS accredited laboratory for chemical analysis of a broad suite of potential contaminants. The results are provided in Appendix 3.
- 2.2.8 A programme of geotechnical laboratory testing was performed on selected soil samples obtained from the boreholes, comprising classification and strength tests. Chemical testing was also undertaken to assess the aggressiveness of the ground with respect to buried concrete. The results are provided in Appendix 4.

SECTION 3 GROUND CONDITIONS

3.1 SURFACE GROUND CONDITIONS

3.1.1 For each exploratory hole, the surface ground conditions were on hardstanding ground. For all locations at the Roslin Road site this consisted of asphalt tarmac. At Stirling Road, this consisted of asphalt tarmac over reinforced concrete (outdoor) and reinforced concrete floor (inside warehouse).

3.2 SUB-SURFACE GROUND CONDITIONS

- 3.2.1 The ground conditions identified by the investigations are consistent with the published geology, with the exception of variable thicknesses of made ground revealed at shallow depth.
- 3.2.2 A summary of the ground conditions encountered is presented in Table 1, whilst a more detailed assessment of the strata is contained in the following sections of the report.

STRATA	DEPTH TO TOP RANGE (m bgl)	THICKNESS RANGE (m)
Made Ground	0.0	0.70 – 2.40
Kempton Park Gravel Member (sand and gravel).	0.70 – 2.40	6.00 - 7.40
London Clay Formation	6.90 - 8.10	>23.10

Table 1: Sun	mary of Sub-surface Ground Conditions
--------------	---------------------------------------

3.2.3 Made Ground

- 3.2.3.1 Made ground was revealed from ground level across the Stirling Road site to depths of up to 2.4 m bgl, whilst on Roslin Road a maximum thickness of 1.2 m was recorded. The base of the made ground was not confirmed in MWS1, MWS2 or MWS3.
- 3.2.3.2 Beneath a surface layer of asphalt or reinforced concrete, the made ground was generally described as dark brown, greenish brown or light brown mottled light grey sandy clay with variable amounts of flint, brick, concrete and asphalt gravel. Occasional fragments of coal were noted in MBH1, whilst occasional dark organic particles were present in MWS3 between 0.7 and 1.0 m bgl. Locally, fragments of slate and metal were observed.
- 3.2.3.3 No significant visual or olfactory evidence of contamination was encountered within the made ground.
- 3.2.3.4 No perched groundwater was observed within the made ground.
- 3.2.4 Natural Ground
- 3.2.4.1 Natural superficial soils of the Kempton Park Gravel Member were present below made ground and ranged in thickness from 6.0 to 7.4 m. The soils generally consisted of light brown and brown, locally mottled orange clayey sandy flint gravel or clayey very gravelly sand with occasional subordinate layers of sandy clay. Borehole MBH102 encountered sandy clay between 2.3 and 5.0 m bgl, with deposits of sandy gravel above and below.
- 3.2.4.2 No significant visual or olfactory evidence of contamination was encountered within the natural superficial soils.
- 3.2.4.3 A groundwater strike was recorded within the Kempton Park Gravel encountered in MBH1 at a depth of 6.0 m bgl.
- 3.2.4.4 Sieve analyses were carried out on two samples of granular soil recovered from borehole MBH1. A sample obtained from a depth of 1.2 m bgl was described as orangish brown sandy clayey gravel, whilst a sample from 5.0 m bgl comprised

yellowish brown clayey sand. A further three samples recovered from MBH101 and MBH102 described the soils as either brown clayey silty very sandy gravel or yellowish brown sandy / very sandy gravel.

- 3.2.4.5 Atterberg limit tests carried out on four samples of superficial clay indicate that the soil can be classified as clay of intermediate and high plasticity. The plasticity index of the soil was found to range between 22 and 35 %, and in accordance with NHBC guidelines, this soil is of medium volume change potential. Two additional samples were found to be non-plastic. Moisture contents were also determined and ranged from 10 to 35 %.
- 3.2.4.6 A triaxial test was performed on a single undisturbed sample of superficial clay obtained from a depth of 3.5 m bgl in MBH102. The test revealed an average undrained shear strength of 39 kN/m², indicative of soft low strength ground conditions.
- 3.2.4.7 SPTs carried out within the superficial granular soils recorded 'N' values typically ranging from 31 to 50, indicating the presence of dense ground conditions. Locally, SPT 'N' values of 14 and 22 were revealed, suggesting medium dense conditions. In MBH1 an SPT 'N' value of 7 was recorded in a layer of superficial clay, indicating this layer as soft low strength in nature. SPTs performed within the superficial clay revealed in MBH102 recorded 'N' values of 15 and 16, indicative of firm medium strength conditions.
- 3.2.4.8 The London Clay Formation was revealed beneath the superficial deposits at depths of between 6.9 and 8.1 m bgl. This typically comprised grey fissured clay with occasional shell fragments.
- 3.2.4.9 A groundwater strike was recorded within the London Clay encountered in MBH1 at a depth of 17.3 m bgl, whilst a standing water level of 9.5 m bgl was recorded in MBH101.
- 3.2.4.10 An Atterberg limit test carried out on a single sample of London Clay indicates that the soil can be classified as clay of very high plasticity. A plasticity index value of 40 % was determined for the soil. A moisture content of 32 % was also determined for this sample.
- 3.2.4.11 Triaxial tests were performed on fourteen undisturbed samples of clay obtained from depths of between 8.0 and 25.5 m bgl in the boreholes. The tests revealed average undrained shear strengths ranging from 103 to 264 kN/m². These results are indicative of stiff and very stiff (high and very high strength) ground conditions. A sample recovered from MBH101 at 10.5 m bgl recorded an average undrained shear strength of 29 kN/m², suggesting soft low strength conditions. This result is likely to be due to sample disturbance.
- 3.2.4.12 SPTs undertaken within the London Clay revealed 'N' values in the range 19 to >50, indicative of stiff high strength and very stiff very high strength ground conditions.

SECTION 4 PRELIMINARY GEOTECHNICAL RECOMMENDATIONS

4.1 FOUNDATIONS

- 4.1.1 The proposed development consists of two separate plots of land which front onto Bollo Lane. The land adjacent to Roslin Road will make way for a new fifteen storey structure with commercial units at ground level and residential apartments above. The second plot of land situated between Bollo Lane and Stirling Road will comprise two blocks (9 and 12 storeys high) with a two-storey podium. Flexible commercial space will be provided at ground and first floor levels with residential apartments above.
- 4.1.2 The recent ground investigation has encountered ground conditions comprising variable thicknesses of made ground (0.7 2.4 m thick) underlain by superficial deposits of the Kempton Park Gravel (6.0 7.4 m thick), whilst superficial clay has been revealed locally. These soils were underlain by the London Clay which was revealed at depths of between 6.9 and 8.1 m bgl.
- 4.1.3 SPTs performed in the granular superficial deposits recorded typically dense ground conditions, whilst locally medium dense conditions were present. Superficial clay was found to be firm medium strength in nature. SPTs undertaken within the underlying London Clay recorded typically stiff high strength and very stiff very high strength ground conditions.
- 4.1.4 In view of the high-rise nature of the new structures, traditional shallow foundations will not be feasible. Similarly, ground improvement is unlikely to be suitable. Therefore, it is recommended that a piled foundation solution is adopted.
- 4.1.5 It is envisaged that either driven or bored / Continuous Flight Auger (CFA) piles could be adopted at the site. Driven piles could possibly be utilised as they have the advantage that no arisings are generated, however, the effects of noise / vibrations are likely to be an issue given the proximity of the existing industrial development and railway.
- 4.1.6 The advantage of using bored / CFA piles is the low noise / vibration of the system, however, arisings are generated by bored / CFA piles. Piles would need to be taken through the made ground and superficial deposits to found within the underlying competent London Clay. Pile lengths will vary depending on the depth of the London Clay beneath each building, however, it is likely that minimum lengths of around 12 m will be required.
- 4.1.7 It is recommended that the advice of a specialist contractor be sought in order to determine the most appropriate / cost effective system and to advise on pile diameters, depths and safe working capacity. A guide to safe working loads for individual bored / CFA piles of varying length and diameter is presented in the table below. Pile calculations have been based on assessing skin friction and end bearing resistance in the undisturbed natural strata. No allowance has been made at this

stage for any potential drag down (negative skin friction). This should be assessed and allowed for by the designer.

4.1.8 The calculations assume a pile penetrating into the stiff / very stiff natural clay, whilst no contribution from existing fill materials has been allowed for. A factor of safety of 2.6 has been applied to the calculated ultimate capacities. Greater safe working capacities would be achievable if piles were taken to greater depth thereby benefiting from increased skin friction contribution and possible greater end bearing resistance. As discussed, these values are for guidance purposes only and should be verified by a specialist contractor. In addition, the safe working loads given are for individual isolated piles. The group effect should be assessed during the design stage.

Pile Diameter (mm)	Length (m)	Safe Working Capacity (kN)
	12	170
300	15	235
	20	390
	12	275
450	15	380
450	20	620
	25	830
	12	395
600	15	535
800	20	870
	25	1155
	12	535
750	15	710
/50	20	1145
	25	1505

Table 2: Safe Working Capacities for bored / CFA Piles

4.2 EXCAVATIONS AND GROUNDWATER

4.2.1 Based on the ground conditions observed at the site, any shallow excavations have the potential to become unstable in the short term, therefore, if man-entry is required, excavations should be supported by shoring or otherwise battered back to a safe angle in order to protect the workforce from possible collapse. 4.2.2 Groundwater was encountered during the intrusive investigation in MBH1 at a depth of 6.0 m bgl within superficial gravel, whilst a water strike was also recorded at 17.3 m bgl within the London Clay. Borehole MBH101 recorded a standing water level of 9.5 m bgl within the London Clay. In view of this, it is considered unlikely that groundwater ingress will occur in shallow excavations, however, provision for dewatering during the construction period should still be considered.

4.3 FLOOR SLABS

4.3.1 In view of the presence of made ground and cohesive soils at shallow depth across the site, and the need for the new structures to be piled, suspended floor slabs will be required for the proposed development.

4.4 **BURIED CONCRETE**

- 4.4.1 Recommendations given in BRE Special Digest 1:2005 *"Concrete in aggressive ground"* have been followed in order to give recommendations with respect to buried concrete.
- 4.4.2 Water soluble sulphate analysis was carried out on nineteen soil samples obtained from depths of between 0.2 and 19.0 m bgl with soil pH determination also carried out on these samples. Water soluble sulphate contents ranged between 0.017 and 2.0 g/l. In accordance with BRE guidelines the characteristic value is calculated by determining the mean of the highest 20 % of results. In this case the characteristic value is 0.74 g/l. On this basis the Design Sulphate Class is DS-2.
- 4.4.3 The pH values in the soil samples varied between 7.5 and 11.2. The mean of the lowest 20 % of values is 7.9 which represents the characteristic value. Mobile groundwater conditions have been assumed and on this basis the Aggressive Chemical Environment for Concrete (ACEC) class for the site is AC-2.

4.5 ROADS AND PAVED AREAS

- 4.5.1 *In situ* plate load tests were performed in five locations (CBR01 to CBR05) in order to determine CBR values at current ground levels. The tests were conducted on predominantly granular made ground and revealed CBR values ranging from 1.3 to 17 %.
- 4.5.2 Based on the test results obtained to date, it is recommended that a California Bearing Ratio (CBR) value of 3 % is adopted for the shallow made ground. Any soft or loose spots would need to be proof rolled and re-tested or possibly excavated and replaced with suitable granular fill.

4.6 SOAKAWAYS

4.6.1 The recent ground investigation has revealed the presence of natural granular soils at relatively shallow depth across the site. The granular nature of these soils suggests that these will be suitable for use as a soakage medium, however, the feasibility of drainage via infiltration methods at this site will depend on the design

criteria and regulatory requirements, which will include consideration of the thickness of the unsaturated zone, i.e. the depth to groundwater.

SECTION 5 ENVIRONMENTAL ASSESSMENT

5.1 SOIL QUALITY

- 5.1.1 A total of thirteen soil samples were submitted to the laboratory for chemical analysis, samples were from made ground and one from natural ground (MWS4 at 1.1 m). The laboratory chemical analysis certificates are contained in Appendix 3. The results of the analysis are summarised in Table 3.
- 5.1.2 An initial screening exercise has been undertaken whereby contaminant concentrations recorded in soils have been assessed against *Suitable for Use Levels* (S4ULs) published in 2015 by LQM/CIEH¹. These precautionary screening levels are designed to be representative of minimal risk to human health in a number of land use scenarios. In this report S4ULs have been selected for residential public open space (POS1) and assuming a soil organic matter of 1 %. For lead the DEFRA Category 4 Screening Level² has been used as this is based on updated toxicological data and a low risk to human health. Given the actual land use proposed the screening levels are considered highly conservative.
- 5.1.3 An additional set of phytotoxin screening levels have been adopted from 'The Code of Agricultural Practice for the Protection of Soil' Ministry of Agriculture, Fisheries and Food (MAFF), 1993, which are protective of healthy plant growth. This is also highly conservative given the proposed use of the site.

CONTAMINANT	UNITS	МАХ	MEAN	No of Tests	SCREENING LEVEL (SL)	No > SL*
	Н	UMAN HEALT	H RISK ASSES	SMENT		
Asbestos in soil	-	nd	nd	16	Detected	0
рН	-	11.2	8.4	13	5 – 10	1 (MWS4@0.2)
Arsenic	mg.kg⁻ ₁	28	15.8	13	79	0
Cadmium	mg.kg ⁻	0.7	0.3	13	120	0
Chromium (total)	mg.kg ⁻	42	31.7	13	1500	0
Hexavalent Chromium	mg.kg⁻ ¹	4	4	13	7.7	0
Lead	mg.kg ⁻	710	249.2	13	630	2 (<u>MWS3@0.3</u> & MTP01@0.5)

 Table 3: Summary of Soils Chemical Analysis Results

¹ Nathanail, C. P., McCaffrey, C., Gillett, A. G., Ogden, R. C. and Nathanail, J. F. 2015. *The LQM/CIEH S4ULs for Human Health Risk Assessment*. Land Quality Press, Nottingham. Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3100. All rights reserved. Including August 2015 nickel update.

² SP1010 Development of Category 4 Screening Levels Main Report (Dec 2013) and SP1010 Policy Companion Document (Mar 2014).

CONTAMINANT	UNITS	MAX	MEAN	No of Tests	SCREENING LEVEL (SL)	No > SL*
	н	JMAN HEALT	H RISK ASSES	SMENT		
Mercury	mg.kg⁻ ¹	1.5	0.6	13	120	0
Nickel	mg.kg⁻ ₁	38	22.5	13	230	0
Selenium	mg.kg ⁻	1	1	13	1100	0
TPH Aliphatic >EC5 - EC6	mg.kg⁻ ₁	0.001	0.001	13	570000	0
TPH Aliphatic >EC6 - EC8	mg.kg⁻ ₁	0.001	0.001	13	600000	0
TPH Aliphatic >EC8 - EC10	mg.kg⁻ ₁	0.001	0.001	13	13000	0
TPH Aliphatic >EC10 - EC12	mg.kg⁻ ₁	6.3	1.9	13	13000	0
TPH Aliphatic >EC12 - EC16	mg.kg⁻ ₁	8.8	4.0	13	13000	0
TPH Aliphatic >EC16 - EC21	mg.kg⁻ ₁	16	9.0	13	250000	0
TPH Aliphatic >EC21 - EC35	mg.kg⁻ ₁	49	17	13	250000	0
TPH Aromatic >EC5 - EC7	mg.kg⁻ ₁	0.001	0.001	13	56000	0
TPH Aromatic >EC7 - EC8	mg.kg⁻ ₁	0.001	0.001	13	56000	0
TPH Aromatic >EC8 - EC10	mg.kg ⁻	0.001	0.001	13	5000	0
TPH Aromatic >EC10 - EC12	mg.kg⁻ ₁	3.2	1.2	13	5000	0
TPH Aromatic >EC12 - EC16	mg.kg⁻ ₁	21	5.4	13	5100	0
TPH Aromatic >EC ₁₆ - EC ₂₁	mg.kg⁻ ₁	180	37.9	13	3800	0
TPH Aromatic >EC21 - EC35	mg.kg⁻ ₁	200	49.3	13	3800	0
Benzene	mg.kg ⁻	0.001	0.001	13	72	0
Toluene	mg.kg⁻ ₁	0.001	0.001	13	56000	0
Ethylbenzene	mg.kg ⁻	0.001	0.001	13	24000	0
Xylene	mg.kg⁻ ₁	0.001	0.001	13	41000	0
Acenaphthene	mg.kg⁻ ₁	1.1	0.2	13	15000	0
Acenaphthylene	mg.kg⁻ ₁	0.5	0.1	13	15000	0
Anthracene	mg.kg ⁻	3.4	0.8	13	74000	0
Benzo(a)anthracene	mg.kg ⁻	11	2.8	13	29	0
Benzo(a)pyrene	mg.kg⁻ ₁	13	3.0	13	5.7	2 (MWS1 and MWS2@0.3)
Benzo(b)fluoranthene	mg.kg⁻ ₁	15	3.6	13	7.1	2 (MWS1 and MWS2@0.3)
Benzo(ghi)perylene	mg.kg⁻ ₁	4.7	1.4	13	640	0
Benzo(k)fluoranthene	mg.kg⁻ ₁	3.7	1.1	13	190	0
Chrysene	mg.kg⁻ ₁	7.3	2	13	57	0

CONTAMINANT	UNITS	МАХ	MEAN	No of Tests	SCREENING LEVEL (SL)	No > SL*
	HU	JMAN HEALTI	H RISK ASSES	SMENT		•
Dibenz(ah)anthracene	mg.kg⁻ 1	1.2	0.4	13	0.57	3 (MWS1 and <u>MWS2@0.3</u> & MTP02@0.3)
Fluoranthene	mg.kg⁻ ₁	23	5.6	13	3100	0
Fluorene	mg.kg ⁻	1.3	0.3	13	9900	0
Indeno(123-cd)pyrene	mg.kg⁻ ₁	5.2	1.4	13	82	0
Naphthalene	mg.kg⁻ ₁	0.05	0.05	13	4900	0
Phenanthrene	mg.kg⁻ ₁	17	3.6	13	3100	0
Pyrene	mg.kg⁻ ₁	22	5.2	13	7400	0
Phenol	mg.kg⁻ ₁	1	1	13	440	0
	PH	IYTOTOXICIT	Y RISK ASSES	SMENT		
	Units	Max	Mean	No of Test	Screening Level (SL)	No > SL
Copper	mg.kg⁻ ₁	130	42.7	13	200	0
Nickel	mg.kg⁻ ₁	38	22.5	13	110	0
Zinc	mg.kg ⁻	410	176.3	13 nd = not c	300	3 (<u>MWS3@0.3,</u> <u>MTP01@0.5</u> & MTP02@0.3)

Notes: * Number of samples exceeding screening level

nd = not detected

- 5.1.4 Zootoxic Metals (harmful to human health)
- 5.1.4.1 British Geological Survey 'normal' background concentrations for lead within the urban domain lie at 800 mg.kg⁻¹ and so the elevated levels found at locations MWS3 (0.3 m bgl) and MTP01 (0.5 m bgl) are within the expected range of the urban background concentrations.
- 5.1.5 Phytotoxic Metals (harmful to plant health)
- 5.1.5.1 An exceedance in zinc was found at three locations: MWS3 (0.3 m bgl), MTP01 (0.5 m bgl) and MTP02 (0.3 m bgl). Due to the proposed development having no landscaped areas at ground level this exceedance can be discounted as a risk to future plant health.
- 5.1.6 Organic Contaminants
- 5.1.6.1 Exceedances of benzo(a)pyrene, benzo(b)fluoranthene and dibenzo (a,h)anthracene found at MWS1 (0.4 m bgl) and MWS2 (0.3 m bgl) may be associated with asphalt fragments encountered within the made ground sampled at these locations. Dibenzo (a,h)anthracene was also detected above the screening level in MTP02 (0.3 m bgl).

5.1.7 Inorganic Contaminants

- 5.1.7.1 Elevated levels of pH have found in location MWS4 (0.2 m bgl) can be explained by the sample underlying a concrete layer. It is likely fragments and dust from the breaking of the concrete were incorporated within the sample and therefore increasing the pH of the sample taken.
- 5.1.8 Summary
- 5.1.8.1 Contaminants exceeding highly conservative screening levels were found within the made ground in the upper 0.4 m at three locations across site. Elevated pH levels at MWS4 (0.2 m bgl) are associated with concrete fragments. Exceedances of PAHs at MWS1 (0.4 m bgl) and MWS2 (0.3 m bgl) can be explained by the content of asphalt pieces at these locations, whilst asphalt was not observed in MTP02 which also had a PAH exceedance.
- 5.1.8.2 No visible asbestos or asbestos fibres were detected at any of the sample locations, however the presence of asbestos in made ground across both subject sites cannot be discounted at this stage.
- 5.1.8.3 No visual or chemical contamination was encountered within the natural ground.

5.2 **GROUNDWATER**

5.2.1 Groundwater was not encountered in the installed borehole standpipes for both MBH1 and MBH2. All installed window sample standpipes were also dry during monitoring visits.

5.3 HAZARDOUS GAS

- 5.3.1 Gas monitoring has been undertaken on three occasions 27/11/19, 05/12/19, and 11/12/19. Levels of methane, carbon dioxide and oxygen were recorded in each standpipe, together with associated parameters including borehole flow and ambient air pressure. The results of these gas monitoring rounds are contained in Appendix 5.
- 5.3.2 The monitoring rounds were undertaken at barometric pressures ranging from 981 to 1019 mb. Positive flow was recorded at 0.1l/hr at two locations during one monitoring round. Over the three monitoring rounds no methane (CH₄) was detected, carbon dioxide (CO₂) was detected to a maximum of 11 % v/v with a corresponding depleted oxygen concentration of 12.5 % v/v.

5.4 WASTE CLASSIFICATION, OFF-SITE DISPOSAL OR RE-USE

5.4.1 Waste Considerations

5.4.1.1 WM3 assessment of the chemical results determines that the made ground tested is categorised as non-hazardous. This is due to low levels of contamination in the tested material.

- 5.4.1.2 No visible asbestos was detected throughout the investigation, and no asbestos fibres were detected in tested soil samples.
- 5.4.1.3 Natural as-dug arisings (excluding topsoil) could be classed as inert waste without the requirement for Waste Acceptance Criteria (WAC) testing.
- 5.4.1.4 WAC testing will be required for made ground soils destined for landfill. Initial results of WAC testing from materials destined for disposal has been provided by Vision construct and is attached in Appendix
- 5.4.1.5 Materials, including waste soils which are not to be retained on site, should be removed and disposed of in accordance with all relevant statues including the *Environmental Protection Act 1990* as amended, *The Controlled Waste Regulations 2012* as amended, *The Waste Regulations 2011* as amended, *The Hazardous Waste Regulations 2005* as amended, *The Waste Management Regulations 2006, The Environmental Permitting Regulations 2010* as amended and *The Hazardous Waste (Miscellaneous Amendments) Regulations 2015*.
- 5.4.1.6 It is a requirement of these regulations that waste sent to landfill should have been subject to measures to reduce the amount of waste, reduce harmful or hazardous properties and facilitate recycling. These requirements may be satisfied by measures such as segregation and screening of wastes to recover suitable fill and material for crushing, segregation of inert materials and putrescible wastes.
- 5.4.2 Re-use Considerations
- 5.4.2.1 As a sustainable alternative to off-site disposal, it may be possible to re-use site-won soils provided the following criteria are met:
 - *i.* Use of the material will not create an unacceptable risk of pollution to the environment or harm to human health;
 - *ii.* The material must be chemically and geotechnically suitable without further treatment;
 - *iii.* There must be certainty of use within the scheme;
 - *iv.* Material should only be used in the quantity necessary for that use.
- 5.4.2.2 Provided these criteria are met, the re-use of site-won materials is unlikely to be deemed a waste activity. Production of a *Materials Management Plan* under the industry *CL:AIRE Code of Practice on the Definition of Waste* represents a robust method of demonstrating that the proposed re-use of material meets the criteria and is not liable for landfill tax.

SECTION 6 RISK ASSESSMENT

- 6.1 The potential sources of contamination at the site and the implications with respect to development have been interpreted in accordance with the current government guidance on source-pathway-receptor risk assessment.
- 6.2 The investigations demonstrate that the former uses of the site have resulted in substantial layer of made ground overlying natural sand and gravels. Contamination within the made ground is associated with concrete and asphalt within reworked clay or a sandy gravelly matrix of brick and concrete. These materials are considered for their potential to act as sources for a number of pollutant linkages.
- 6.3 The potential impacts of contamination sources have been considered with respect to the following receptors:
 - *i.* The general public and present site users,
 - *ii.* Residents of future development,
 - *iii.* Construction workers,
 - iv. Adjacent land, and
 - v. Infrastructure.
- 6.4 In each case the existence of a pollutant linkage requires a pathway by which the receptor could be exposed to the source. A qualitative assessment of risk is thus considered in the first instance with respect to the site in its current condition and is summarised in the sections below.
- 6.5 The general public and present site users
- 6.5.1 Current site users have no exposure to ground contamination due to hardstanding surface throughout both subject sites. Unless hardstanding ground is broken there will be no exposure.
- 6.6 Residents of future development
- 6.6.1 Soil contamination (chemical)
- 6.6.1.1 Due to the low levels of ground contamination and the proposed developments on the sites, there is a very low risk to residents and users of the future development. This is due to the entirety of both sites being capped with hardstanding leaving no exposure to soil contamination. Very low risk level.

6.6.2 Asbestos

6.6.2.1 No asbestos was identified during the investigation on either of the subject sites. As both sites are to be capped entirely with hardstanding, there will be no exposure to asbestos from the ground for future users. Very low risk level.

- 6.6.3 Hazardous Soil Gas/Vapours
- 6.6.3.1 CIRIA 665 / BS8485(2015+A1:2019) has been followed to assess the recorded soil gas and flow conditions. Calculations are presented in Appendix 6 which suggest that the site has the Wilson and Card Risk Characteristic Situation 1 (Very low risk), however due to levels of carbon dioxide recorded above 5% at one occasion, Characteristic Situation 2 (low risk) should be considered. The elevated levels of carbon dioxide were found at one location on the Stirling Road site.
- 6.6.3.2 Review of historic plans does not suggest the presence of any significant sources of ground gas in the area and the investigation does not show evidence of deep made ground or putrescible material in the site.
- 6.6.3.3 The investigations have not identified any area in which hydrocarbons/ volatile species are present in significant amounts.
- 6.6.3.4 It is concluded that no significant risk is presented by ground gases to the structure.
- 6.6.3.5 Construction workers
- 6.6.4 Potentially, construction workers are at the greatest risk from exposure to hazardous contamination due to excavation works and during the handling of materials including imported soils. Providing that dust levels are kept within statutory limits and appropriate health and safety procedures are adhered to during the construction phase, the levels of chemical contamination recorded to date are not considered to present an acute risk to human health.
- 6.7 Adjacent land
- 6.7.1 Site derived contamination levels are low and therefore it is considered unlikely to impact adjacent land. Comment on risks to adjacent land from site-derived contamination. No nearby land uses identified are likely to have significant impact the subject sites.
- 6.7.2 Low risk level to adjacent land.
- 6.8 Infrastructure
- 6.8.1 Limited contamination with the potential to permeate polymeric services has been identified by this investigation, however it is recommended that the utility provider is consulted with respect to their requirements for water supply pipes.
- 6.8.2 Utility companies apply strict guideline levels on use of polymeric pipes and may consider all made ground unsuitable for typical plastic pipe materials to be used.

SECTION 7 UPDATED CONCEPTUAL MODEL

7.1 Following completion of phases 1 and 2 of the investigation and a qualitative risk assessment, the conceptual model for the site, with relation to pollutant linkages, has been updated. The revised model is presented in Table 4 below.

Table 4: Revised Conceptual Model

POS	SIBLE POLLUTANT LIN	DIOK	
POTENTIAL SOURCES	PATHWAYS	RECEPTORS	RISK CHARACTERISATION
Heavy metals and	Contact with contaminated soil	Human health (current users)	Very low risk identified Potential for made ground which
hydrocarbons (made ground)	Ingestion and inhalation of contaminated soil and dust	Human health (current users)	can contain elevated metals and hydrocarbons. However, the sites are currently hardstanding.
Asbestos heavy metals and	Contact with contaminated soil	Human health (future residents)	Very low risk identified Development proposals indicate the sites will be covered with
hydrocarbons (made ground)	Ingestion and inhalation of contaminated soil and dust	Human health (future residents)	hardstanding. No exposure to ground contamination for future site users.
Asbestos, heavy metals and	Contact with contaminated soil	Human health (construction workers)	Low risk identified Potential for made ground which can contain elevated metals and
hydrocarbons (made ground)	Ingestion and inhalation of contaminated soil and dust	Human health (construction workers)	hydrocarbons. Cannot rule out the presence of asbestos in the soil.
Contamination (all forms)	Vertical migration to aquifer	Controlled waters	Low risk identified Limited potential for mobile contamination with the potential to affect shallow gravel aquifer.
Contamination (all forms)	Horizontal migration to surface water	Controlled waters	Low risk identified No surface waters in the vicinity
Hydrocarbons	Direct contact	Plastic water pipes	Low risk identified Investigations have not identified hydrocarbons in significant quantities
Hazardous Gas/Vapours In soil	Ingress into buildings and voids	Human health (future residents and construction workers) Roslin Road	Low risk identified Made ground which could act as source of hazardous gas but no significant gas detected
Hazardous Gas/Vapours In soil	Ingress into buildings and voids	Human health (future residents and construction workers) Stirling Road	Low risk identified No significant sources of gas/ vapours identified
Adjacent Land	Migration of contaminated groundwater	Subject Site	Low risk identified Potential for local groundwater quality to be impacted by industrial use

SECTION 8 PRELIMINARY REMEDIATION STRATEGY

- 8.1 The identified risks at the site can be mitigated by removal of either the source, pathway or receptor. With reference to the conceptual model for the site a remediation strategy, based on source or pathway removal, has been designed.
- 8.2 The proposed developments of residential buildings with commercial space provide no pollution pathway for ground contamination as there are no proposed soft landscaped areas. No evidence has been found of volatile or mobile contaminants When the site is capped with hardstanding, it is concluded that there will be no risk to future site users from ground contamination.
- 8.3 No requirement for protection of structures against the ingress of ground gases are proposed. It is recommended that this report is provided to regulators/ building control as required.
- 8.4 Potential risks to construction workers have been identified and the adoption of appropriate Health and Safety procedures will ensure that risks to operatives from hazardous materials at the site are minimised. Operatives should not be allowed to eat, drink or smoke on site except in designated areas and should be required to wash all exposed skin at the end of each shift. Operatives should be informed of the potential hazards at the site and should be required to report any observations of suspect material.
- 8.5 Materials, including waste soils which are not to be retained on site, should be removed and disposed of in accordance with all relevant statues including the *Environmental Protection Act 1990* as amended, *The Controlled Waste Regulations 2012* as amended, *The Waste Regulations 2011* as amended, *The Hazardous Waste Regulations 2005* as amended, *The Waste Management Regulations 2006, The Environmental Permitting Regulations 2010* as amended and *The Hazardous Waste (Miscellaneous Amendments) Regulations 2015*.
- 8.6 It is recommended that this report is submitted to the regulators (Local Authority EHO and Planners, Environment Agency Planning Liaison and NHBC) for approval prior to commencement of the works.
- 8.7 Any observations of ground conditions atypical of those already described should be reported to IDOM immediately so that an assessment of appropriate action can be made which could entail remedial works.

SECTION 9 CONCLUSIONS

9.1 The site investigations undertaken to date encountered ground conditions comprising hardstanding underlain by made ground (0.7 m to 2.4 m in thickness). Beneath the made ground, natural ground consisted of superficial deposits of sand and gravel (locally some clay), with thicknesses of between 6.0 and 7.4 m, whilst these were underlain by the London Clay Formation.

- 9.2 The geotechnical conditions and proposed structures indicate a need to use piled foundations for the new development. Pile depths will depend on the structural loads and pile diameters proposed, but it is not envisaged that piles will penetrate below the base of the London Clay and there is not considered to be a risk of vertical migration of contaminants to any sensitive aquifers.
- 9.3 No significant soil contamination has been identified by the recent investigation however it is acknowledged that site investigation coverage was limited around existing buildings. Risks to all receptors from soil contamination are considered to be very low due to the proposed development removing any exposure to future site users.
- 9.4 Absence of contamination must not be assumed from this investigation and it is recommended that further observation/investigation following demolition in order to confirm site conditions and to limit and potential contaminant exposure during the construction phase.
- 9.5 At this stage it is considered likely that made ground arisings from the site will be categorised as non-hazardous. Some materials may be capable of meeting inert disposal criteria if demonstrated to meet Inert WAC test criteria.

APPENDIX 1

Drawings

•

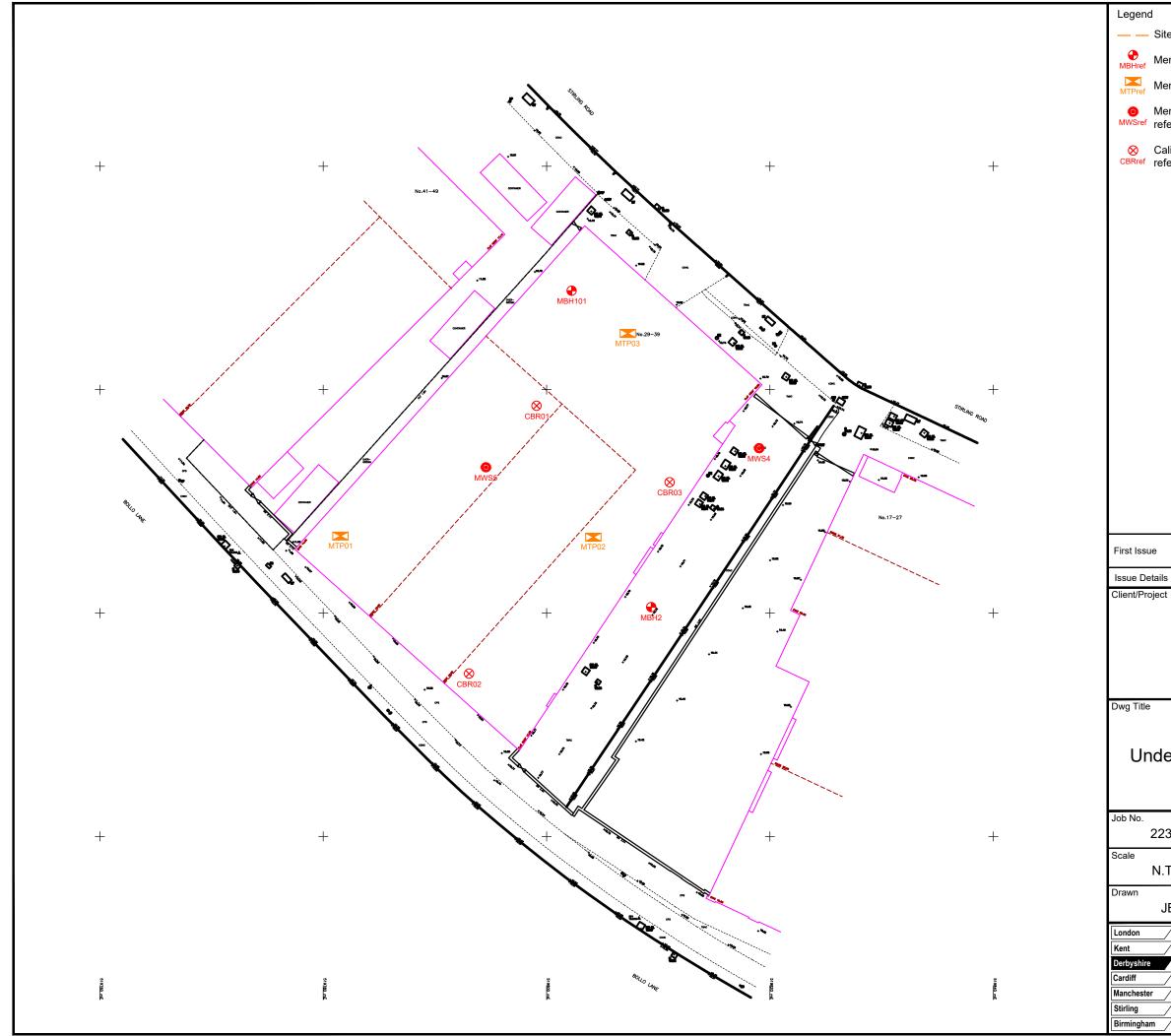
P)
Н	ref
2	

Site boundary

Merebrook window sample with location MWSref reference

Merebrook trial pit with location reference

Merebrook borehole with location reference


& Californian bearing ratio test with location reference

ssue	30-06	-2021	-
ssue	JB	SE	SE
Details	Dwn	Chd	App'd

Vision Construct LTD Roslin Road

Undertaken Site Investigation Locations

).	Dwg No.	Revision
22310	304-001	-
	Date	Frame Dimensions mm
N.T.S	June 2021	(A3) 400 x 280
	Checked	Approved
JB	SE	SE
hire		DM
ster		

- ____ Site boundary
- Merebrook borehole with location reference
 - Merebrook trial pit with location reference
- Merebrook window sample with location
 MWSref reference
- CBRref Californian bearing ratio test with location reference

ssue	30-06	-2021	-
ssue	JB	SE	SE
Details	Dwn	Chd	App'd

Vision Constuct LTD Stirling Road

Undertaken Site Investigation Locations

).	Dwg No.	Revision
22310	304-002	-
	Date	Frame Dimensions mm
N.T.S	June 2021	(A3) 400 x 280
	Checked	Approved
JB	SE	SE
hire		
ester		DM

APPENDIX 2 •

Exploratory Hole Logs

	- 1 K								_		_	Borehole No.	
		D	om						Βοι	rehol	e Log	MBH101	
												Sheet 1 of 4	
oject Name:	Stirling	Road and	Roslin Road	Project I 22310	NO.			Co-ords:				Scale 1:50	
cation:	Acton,	London W	3	I				Level (m):			Logged By RL	
uipment:	CP Rig	- Dando						Dates:	2	27/05/2021	L	Checked By DCE	
Well Wtr	Sam	ple and In	Situ Testing		Co	oring		Depth	Level	Legend	Stra	tum Description	Τ
Strk	Depth (m)	Туре	Results	F	I TCI	R SCR	RQD	(m)	(m)	- Legenu		ightly gravelly slightly sandy medium	\downarrow
	0.20 - 0.30 1.50 - 2.00 1.50	D,J,V B SPT(C)	32 (5,20/32 for 15)	5mm)				0.90 1.20 1.90			locally soft CLAY. Gravel is of chalk, slate, brick and fl Orangish brown slightly gr coarse, Gravel is fine to m Dense orangish brown slig SAND. Gravel is fine to me and quartz.	fine to medium sub-angular to angular int. avelly very sandy CLAY. Sand is fin to edium sub-angular to rounded of flint. htly clayey gravelly medium to coarse dium sub-rounded to angular of flint rown slightly clayey very sandy fine to	_
	2.50 - 3.00 2.50 3.50 - 4.00 3.50	B SPT(C) B SPT(C)	N=19 (2,4/4,4,5 N=14 (3,4/3,3,4										
	4.50 - 5.00 4.50	B SPT(C)	N=33 (4,6/7,8,9	,9)				4.00				dense orangish brown slightly clayey SAND. Gravel is fine to medium sub- and quartz.	
	6.00 - 6.50 6.00	B SPT(C)	N=48 (4,7/10,12,1	2,14)				6.90					
	7.50 - 7.95 7.95 - 8.00	U D	Ublow=50								Stiff nigh strength grey slig fragments. Locally very sti	htly silty CLAY with occasional shell ff.	
×	9.00 9.00	D SPT(S)	N=28 (3,4/6,7,7	.8)							Cor	tinued on Next Sheet	
D = small disturbed sample (tub) HSV = hand shear vane (kPa) J = organic sample (amber glass jar) PP = pocket penetrometer (kg.cm2) V = volatile sample (amber glass vial) PID = photoionisation detector (ppm) B = bulk bag sample TCR = total core recovery SPT(C) = Standard Penetration Test (Split Spoon) SCR = solid core recovery RQD = rock quality designation							<u> </u>	The user i	es and lev s respons	sible for verif	ndicated, must not be used ying all site and setting out start of drilling on second	l for design purposes. dimensions.	

	1		DM						Bor	eho	le Log	Borehole No. MBH101	
									20.		<u>-</u>	Sheet 2 of 4	
ject Name:	Stirling	Road and I	Roslin Road	roject N	0.			Co-ords:				Scale	
			4	2310								1:50 Logged By	
ation:	Acton,	London W3	3					Level (m):			RL	
ipment:	CP Rig -	- Dando						Dates:	2	7/05/202	1	Checked By DCE	
/ell Wtr Strk			Situ Testing			ring		Depth (m)	Level (m)	Legend	Strat	um Description	
Sti k	Depth (m)	Туре	Results	FI	TCR	SCR	RQD	(11)	(11)	××		htly silty CLAY with occasional shell	
	10.50 10.05		1161-00 70							× ×	fragments. Locally very stif	t.	
	10.50 - 10.95	U	Ublow=70							××			
	10.95 - 11.00	D								×× ×××			
										× ×			
										××			
	12.00	D								×× ×			
	12.00	SPT(S)	N=21 (2,4/4,5,5,7)						× ×			
										××			
										×× ×			
										××			
	13.50 - 13.95	U	Ublow=85							××			
										×× ×××			
	14.00	D								× ×			
										×_^_×			
										×× ×××			
	15.00 15.00	D SPT(S)	N=27 (5,6/6,7,7,7)						××			
										××			
										×× ×*×			
										××			
	16.50 - 16.85	U	Ublow=85							××			
	10.50 - 10.85	0	UDIOW=85							×× ×××			
	16.90	D								××			
										×			
										×× ×××			
	18.00	D								××			
	18.00	SPT(S)	N=36 (5,5/8,9,9,1	0)						××			
										×× ×*×			
										××			
										××			
	19.50 - 19.95	U	Ublow=100							××			
	20.00	5											
	20.00	D						Derry 1		×	Cont	tinued on Next Sheet	
rganic sample	d sample (tub) (amber glass jar)		HSV = hand : PP = pocket PID = photoi	penetrome	ter (kg.				es and lev		indicated, must not be used fying all site and setting out		
	e (amber glass vial)	ne)	FI = fracture TCR = total c	index		(hhiii)					t start of drilling on second o		

	1		mc						Bor	eho	le Log	Borehole No. MBH101		
										CIIO	ic Log	Sheet 3 of 4		
ect Name:	Stirling	Road and	Roslin Road	oject N	0.			Co-ords:				Scale		
			2	2310								1:50 Logged By		
ation:	Acton,	London W	3					Level (m)):		RL			
pment:	CP Rig	- Dando						Dates:	2	7/05/202	1	Checked By DCE		
vell Wtr Strk	Sam	ple and In	Situ Testing			oring		Depth	Level	Legend	Strat	um Description		
SUR	Depth (m)	Туре	Results	FI	TCR	SCR	RQD	(m)	(m)	×_^		htly silty CLAY with occasional shell		
											fragments. Locally very stif	f.		
										××				
	21.00	D												
	21.00	SPT(S)	N=33 (4,6/7,8,8,10)										
											-			
										××				
	22.50 - 22.95	U	Ublow=100											
										××				
	23.00	D												
	24.00	D								××	From 24.0 m: very stiff very hig	th strength		
	24.00	SPT(S)	N=39 (6,6/9,9,10,1	.)							(From 24.0 m. very sun very mg	<u>in suen</u> gui.		
										×				
	25.50 - 25.95	U	Ublow=100								-			
	25.95	D									-			
										××				
											-			
	27.00	D												
	27.00	SPT(S)	N=50 (7,10/50 for 290mm)							××				
										××				
	28.50 - 28.75	U	Ublow=100							××	-			
	28.80	D												
										××				
										××				
	30.00	D						30.00		××	Cont	tinued on Next Sheet		
			HSV = hand sl	ear vane	(kPa)		L	Remarks		<u> </u>	<u> </u>			
rganic sample	d sample (tub) (amber glass jar) e (amber glass vial)		PP = pocket p PID = photoio	enetrome nisation d	ter (kg.						indicated, must not be used fying all site and setting out			
olatile sample oulk bag sampl			FI = fracture i TCR = total co		v			Standing v	vater leve	l at 9.5 m a	t start of drilling on second o	day.		

	100 C											Borehole No.	
		D	MC						Bor	eho	le Log	MBH101	
											Ŭ	Sheet 4 of 4	
roject Name:	Stirling	Road and R	toslin Road	Project N 22310	0.			Co-ords:				Scale 1:50	
o ostion.	Aston	Landan W/2		22310				Level (m	· · ·			Logged By	
ocation:	Acton,	London W3						Level (m):			RL Charked Dy	
quipment:	CP Rig -	Dando						Dates:	2	7/05/202	1	Checked By DCE	
Well Wtr	Sam	ple and In S	Situ Testing		Со	ring		Depth	Level	Legend	Stratum Description		
Strk	Depth (m) 30.00	Type SPT(S)	Results N=50 (7,9/5	Fl	TCR	SCR	RQD	(m) (m)	(m)		End of Borehole at 30.00m		
small disturbed s organic sample (a volatile sample bulk bag sample [(C) = Standard Pe	mber glass jar) Imber glass vial)	ne)	PP = poo PID = ph FI = frac TCR = to	and shear vane ket penetrome otoionisation d uure index tal core recove lid core recove	ter (kg.c etector (ry	m2) ppm)		The user i	es and lev s responsi	ible for veri	indicated, must not be used fying all site and setting out t start of drilling on second	dimensions.	

			om					Boi	eho	le Log	MBH102	
											Sheet 1 of 4	
oject Name:	Stirling	Road and	Roslin Road	roject N	Э.		Co-ords:				Scale	
-	_			2310							1:50 Logged By	
cation:	Acton,	London W	3				Level (m):			NJA	
uipment:	CP Rig	- Dando					Dates:	(01/06/202	1	Checked By DCE	
Vell Wtr		-	Situ Testing		Corir	-	Depth (m)	Level (m)	Legend	Stra	atum Description	
	Depth (m)	Туре	Results	FI	TCR S	CR RQD	()	()			ing soft dark brown to brown slightly	
										concrete, flint and slate.	els are fine to coarse angular brick, Sand is fine to coarse.	
							0.80			Soft brown sandy CLAY. S	and is fine to coarse.	
							1.30			Donco brown slightly slav	yey sandy fine to coarse sub-rounded to	
	1.50 - 2.00 1.50	B SPT(C)	N=41 (7,9/10,10,9,	12)						rounded GRAVEL of flint.		
	1.50	511(0)										
	2.50	SPT(S)	N=15 (4,4/3,4,4,4)			2.30			Firm medium strength br	rown and grey mottled sandy CLAY.	
	3.00 - 3.50	В										
	2.50. 2.05											
	3.50 - 3.95	U	Ublow=30									
	4.00	D										
	4.50	SPT(S)	N=16 (2,3/3,4,3,6)								
							5.00 5.20			SAND. Gravels are fine to	brown slightly gravelly fine to coarse medium sub-rounded to rounded flint.	
										Dense yellowish brown s rounded to rounded flint	andy GRAVEL of fine to coarse sub- Sand is fine to coarse.	
	6.00 - 6.50 6.00	B SPT(C)	N=41 (7,8/9,9,11,1	2)								
	7.50 - 8.00 7.50	B SPT(C)	N=49 (6,8/10,12,12,	15)								
							7.90		××	Stiff light grey slightly silt	y CLAY.	
							8.30		××			
	8.50 - 9.00	В					5.50		××	Stiff high strength becom	ning very stiff grey slightly silty CLAY.	
	9.00	SPT(S)	N=19 (2,3/4,4,5,6)					××			
									××			
									××			
									××	Ca	ontinued on Next Sheet	
mall disturbed	sample (tub)	1	HSV = hand s				Remarks					
rganic sample (amber glass jar) (amber glass vial)		PP = pocket p PID = photoio FI = fracture	onisation de			The user i	s respons	sible for verif	ndicated, must not be use ying all site and setting ou	ut dimensions.	
oulk bag sample			TCR = total c SCR = solid c	ore recover			Service Pl	ans chec	ked and loca	ation C.A.T prior to drilling	. Groundwater was not encountered.	

													Borehole No.	
		D(DM							Bor	eho	le Log	MBH102	
													Sheet 2 of 4	
roject Name:	Stirling	Road and I	Roslin Road	Project 22310		•			Co-ords:				Scale 1:50	
ocation:	Acton	London Wa	3						Level (m).			Logged By	
													NJA Checked By	
quipment:	CP Rig ·	Dando							Dates:	0	1/06/202	1	DCE	
Well Wtr Strk		-	Situ Testing				ing	1	Depth (m)	Level (m)	Legend	Strat	tum Description	
	Depth (m)	Туре	Results		FI	TCR	SCR	RQD	(11)	(111)	<u></u>	Stiff high strength becomin	ng very stiff grey slightly silty CLAY.	
											××			
	10.50 - 10.95	U	Ublow=40								××			
	11.00	D									××			11
											××			
											××			
	12.00	SPT(S)	N=20 (3,4/4,5,5	6)										12
	12.00	511(5)	11-20 (3,4/4,3,3	,0)							××			12
											××			
											××			
											×_×_×			13
	13.50 - 13.95	U	Ublow=55								××			
											××			
	14.00	D									××			14
											××			
											<u>×_×</u> _×			
	15.00	SPT(S)	N=32 (6,7/7,8,8	,9)							××			15
											××			
											<u>×_×</u> _×			
														16
											××			
	16.50 - 16.60 16.65	U D	Ublow=100								××	From 16.6 to 16.75 m: Claysto	ne.	
		-												
											<u>^×</u> ×			17
											××			
	18.00	SPT(S)	N=40 (6,7/8,10,12	2,10)							××	From 18.0 m: very stiff very hig	gh strength.	18
											××			
											××			
											××			19
											××			
	19.50 - 19.80 19.55	U D	Ublow=100								××			
									-		××	Con	itinued on Next Sheet	20
			1107 -	l choor :	ana //	-Do1			Remarks			Con	Auroca on NEXL SHEEL	
= volatile sample = bulk bag sampl PT(C) = Standard I	(amber glass jar) (amber glass vial)	ne) it Spoon)	HSV = hand PP = pocke PID = phot FI = fractur TCR = total SCR = solid RQD = rock	t penetro pionisatio e index core reco core reco	omete on det overy overy	er (kg.ci ector (Coordinat The user i	es and lev s respons	ible for veri	indicated, must not be used fying all site and setting out ation C.A.T prior to drilling.		

												Borehole No.	
		D	DM						Bor	ehol	le Log	MBH102	
												Sheet 3 of 4	
Project Name:	Stirling	Road and	Roslin Road	roject No 2310).			Co-ords:				Scale 1:50	
Location:	Acton,	London W						Level (m)	:			Logged By NJA	
Equipment:	CP Rig	Dando						Dates:	0	1/06/2021	1	Checked By DCE	
Well Wtr	Sam	ple and In	Situ Testing		Cor	ing		Depth	Level	Legend	Strat	um Description	
Strk	Depth (m)	Туре	Results	FI	TCR	SCR	RQD	(m)	(m)	×_^×		ng very stiff grey slightly silty CLAY.	
	21.00	SPT(S)	N=33 (4,5/7,9,8,9)									21 -
	22.50 - 22.80	U	Ublow=100										
	22.85	D											23 -
	24.00	SPT(S)	N=37 (7,8/9,8,9,1	1)									24 -
	25.50	U	Ublow=100										25 -
	26.00	D											26 -
	27.00	SPT(S)	N=48 (7,9/11,11,13,	13)									27 -
	28.50 - 28.95	U	Ublow=100										
	29.00	D											29 -
D = small disturbed J = organic sample V = volatile sample B = bulk bag sampl SPT(C) = Standard F	(amber glass jar) e (amber glass vial)	SPT(S) ne) it Spoon)	N=49 (9,11/13,14,14) HSV = hand i PID = photoin FI = fracture TCR = total c SCR = solid c RQD = rock c	hear vane (penetromet phisation de index pre recovery pre recovery	er (kg.cr tector (j /			The user is	es and lev s responsi	ble for verif	ndicated, must not be used ying all site and setting out		30 -

IDOM Project No.											Bor	eho	le Log	Borehole No. MBH102	
													Ŭ	Sheet 4 of 4	
Project I	Name:	Stirling	Road and F	Roslin Roa	id Proje).			Co-ords:				Scale 1:50	
Location	1:	Acton.	London W3	3						Level (m):			Logged By	
														NJA Checked By	
Equipme	ent:	CP Rig -	Dando							Dates:	C	1/06/202	1	DCE	
Well	Wtr Strk		ple and In			FI		ring	RQD	Depth (m)	Level (m)	Legend	Stra	tum Description	
		Depth (m)	Туре	ĸ	esults	FI	TCR	SCK	KQD			<u>×_^</u> ×	Stiff high strength becomi	ng very stiff grey slightly silty CLAY.	
										30.45			End	of Borehole at 30.45m	
													LIU	or borehole at 30.45m	
															31 -
															-
															32 -
															-
													33 —		
															-
															34 —
															35 —
															36 —
															-
															37 —
															-
															38 —
															-
															39 —
															-
						E	L		L						40 -
J = organic V = volatile B = bulk ba SPT(C) = St	D = small disturbed sample (tub) HSV = hand shear vane (kPa) PP = pocket penetrometer (kg.cm2) PID = photoionisation detector (ppm) FI = fracture index SPT(C) = Standard Penetration Test (Split Spoon) FI = Standard Penetration Test (Split Spoon)								The user i	es and lev s respons	sible for veri	indicated, must not be used fying all site and setting out ation C.A.T prior to drilling.	d for design purposes. t dimensions. Groundwater was not encountered.		

		ID		Π			TRIAL PIT LOG	TrialPit No MTP01 Sheet 1 of 1
Project	Qti	rling Road a	nd Roslin Road		Project	t No.	Co-ords: 519787.00 - 179202.00	Date
Name:					2231	10	Level: 2.50	01/06/2021
_ocation:			Acton, Londor	ו W3			Dimensions (m):	Scale 1:25
Equipment:			13 ton excav	ator			Depth O 3.00	Logged Check NJA
Water Strike	-	les & In Situ		Depth (m)	Level (m)	Legend	Stratum Description	
	0.50 2.00 2.75	D,J D,J	Results	1.80			MADE GROUND comprising soft dark brown sli sandy gravelly clay. Gravels are fine to cobble a brick, concrete and metal. Sand is fine to coarse MADE GROUND comprising soft brown sandy g clay. Gravels are fine to coarse angular to round concrete and flint. Sand is fine to coarse. Brownish orange sandy GRAVEL of fine to coar rounded to rounded flint. Sand is fine to coarse. End of Pit at 3.000m	gravelly ded brick, 2
= organic sa / = volatile sa 8 = bulk bag s ISV = hand s P = pocket p	urbed sample (ample (amber g ample (amber g sample shear vane (kPa benetrometer (k nisation detect	lass jar) lass vial) a) g.cm2)		Stability Pit walls re	emained s	table.	Remarks Coordinates and levels, where indicated, in design purposes. The user is responsible setting out dimensions. Services plans checked and location excavation.	for verifying all site and

		IC	DON	Π			TRIAL PIT LOG	TrialPit No MTP02
Project					Project	t No.	Co-ords: 519806.00 - 179204.00	Sheet 1 of 1 Date
Name:	Sti	irling Road a	nd Roslin Road		2231	10	Level:	01/06/2021
_ocation:			Acton, London	n W3			Dimensions (m):	Scale 1:25
Equipment	:		13 ton excava	ator			Depth 0 3.00	Logged Check
Water Strike	Samp	les & In Situ	Testing	Depth	Level	Lagand		
Stri	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
	0.30	D,J					MADE GROUND comprising soft dark brown sl sandy gravelly clay. Gravels are fine to cobble a brick, concrete and metal. Sand is fine to coars	angular
	1.50	D,J		1.20			Soft orangish brown slightly sandy gravelly CLA Gravels are fine to coarse sub rounded to round	Y. Jed flint.
	2.50	D,J		2.30			Brownish orange slightly gravelly fine to coarse Gravels are fine to medium rounded flint.	SAND.
				2.80			Brownish orange sandy GRAVEL of fine to coa	se sub
				3.00			Brownish orange sandy GRAVEL of fine to coal rounded to rounded flint. Sand is fine to coarse End of Pit at 3.000m	30 305
								4
								5
I = organic s / = volatile s 3 = bulk bag HSV = hand PP = pocket	sturbed sample (sample (amber g sample (amber g sample shear vane (kPa penetrometer (k onisation detect	ilass jar) ilass vial) a) (g.cm2)		Stability Pit walls re	emained s	table.	Remarks Coordinates and levels, where indicated, design purposes. The user is responsible setting out dimensions. Services plans checked and location excavation.	for verifying all site and

		ID		n			TRIAL PIT LOG	TrialPit No MTP03 Sheet 1 of 1
Project Name:	Sti	rling Road a	nd Roslin Road		Project		Co-ords: 519807.00 - 179217.00	Date
					2231	10	Level: 2.80	01/06/2021 Scale
Location:			Acton, Londor	n W3			Dimensions (m):	1:25 Logged Check
Equipmen			13 ton excav	ator	1		Depth O 3.00	NJA
Water Strike	Samp Depth	les & In Situ Type	Testing	Depth (m)	Level (m)	Legend	Stratum Description	
	0.40	D,J					MADE GROUND comprising soft brown slightly gravelly clay. Gravels are fine to cobble angular concrete and metal. Sand is fine to coarse.	sandy brick,
	1.30	D,J		1.10			Brownish oragnge slightly clayey sandy GRAVE to coarse sub rounded to rounded flint. Sand is coarse.	L of fine fine to
				1.50			Brownish orange slightly gravelly fine to coarse Gravels are fine to medium rounded flint.	SAND. 2
				2.40			Brownish orange sandy GRAVEL of fine to coars rounded to rounded flint. Sand is fine to coarse.	se sub
				3.00			End of Pit at 3.000m	3
								4
								5
J = organic V = volatile B = bulk bag HSV = hand PP = pocke	isturbed sample (sample (amber g sample (amber g g sample d shear vane (kPa d shear vane (kPa t penetrometer (k	lass jar) lass vial) a) g.cm2)		Stability Pit walls re		table.	Remarks Coordinates and levels, where indicated, r design purposes. The user is responsible setting out dimensions. Services plans checked and locations excavation.	nust not be used for for verifying all site and

		IC		Π			TrialPit No TRIAL PIT LOG MTP04 Sheet 1 of 1	
Project					Project	t No.	Co-ords: 519730.00 - 179321.00 Date	
Name:	5	tirling Road a	nd Roslin Road		2231	10	Level: 02/06/2021	
Location	:		Acton, London	n W3			Dimensions (m): 3.40 Scale	
Equipme	ent:		13 ton excava	ator			Depth C Logged Check	kec
Water Strike	Sam	ples & In Situ	Testing	Depth	Level	Lanad		
Wa Stri	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
	0.20	D,J					MADE GROUND comprising soft brown and grey slightly sandy gravelly clay. Gravels are fine to cobble angular brick, concrete and slate.	-
	0.90	D,J		0.65			MADE GROUND comprising soft brown slightly sandy slightly gravelly clay. Gravels are fine to coarse angular brick and flint. Sand is fine to coarse.	1 -
				1.20			Orangish brown clayey sandy GRAVEL of fine to coarse	
	1.50	D,J		2.40			Soft to firm brown slightly sandy gravelly CLAY. Gravels are fine to coarse.	2 -
				3.00			End of Pit at 3.000m	3 -
								-
				Stability			Remarks	5 -
J = organi V = volatil B = bulk b HSV = ha PP = pock	disturbed sample ic sample (amber e sample (amber pag sample nd shear vane (kF et penetrometer (btoionisation detec	glass jar) glass vial) Pa) kg.cm2)		Pit walls re	emained s	table.	Coordinates and levels, where indicated, must not be used for design purposes. The user is responsible for verifying all site and setting out dimensions. Services plans checked and locations C.A.T prior to excavation.	đ

		IC	DON	Π			TRIAL PIT LOG	TrialPit No MTP05
Project					Project	t No.	Co-ords: 519709.00 - 179307.00	Sheet 1 of 1 Date
Name:	S	tirling Road a	nd Roslin Road		2231	10	Level:	02/06/2021
_ocation:			Acton, London	W3			Dimensions (m):	Scale 1:25
Equipment	t:		13 ton excava	ator				ogged Checke
Water Strike	Sam	ples & In Situ	Testing	Depth	Level	Legend	Stratum Description	
Str &	Depth	Туре	Results	(m)	(m)	- Legend	MADE GROUND comprising soft brown and grey	
	0.30	D,J		0.50			MADE GROUND comprising soft brown slightly sand MADE GROUND comprising soft brown slightly sand slightly gravelly clay. Gravels are fine to coarse angubrick and flint. Sand is fine to coarse.	dy
	0.80	D,J		1.10			Orangish brown clayey sandy GRAVEL of fine to coa sub rounded to rounded flint. Sand is fine to coarse.	
	2.00	D,J		2.60			Soft to firm brown slightly sandy gravelly CLAY. Grav are fine to coarse rounded flint. Sand is fine to coars	2 vels se.
				3.00			End of Pit at 3.000m	3
								4
	-4	(4.4.)		Stability			Remarks	5
I = organic s / = volatile s 3 = bulk bag HSV = hand PP = pocket	small disturbed sample (tub) organic sample (amber glass jar) volatile sample (amber glass vial) pulk bag sample = hand shear vane (kPa) = pocket penetrometer (kg.cm2) = photoionisation detector (ppm)				emained s	table.	Coordinates and levels, where indicated, must r design purposes. The user is responsible for ver setting out dimensions. Services plans checked and locations C.A excavation.	rifying all site and

	1.1							Da	aha		Borehole No.	
			DM					DUI	eno	le Log		
	Cticling	Dood Ast		Project N	0.		Co. ordo.				Sheet 1 of 3 Hole Type	
oject Name:	Suming	Road, Acto		21849			Co-ords:				CP Scale	
ation:	Acton,	London					Level (m)	:			1:50	
ipment:	Cable F	Percussion	Drilling Rig				Dates:	C	08/11/2019	9	Logged By RMH	
/ell Wtr	Sam	ple and In	Situ Testing		Coring		Depth	Level	Legend	Stra	atum Description	
Strk	Depth (m)	Туре	Results	FI	TCR SCR	RQD	(m) 0.10	(m)			ng hardstanding layer of tarmac/asphalt.	
	0.50 - 0.70	D,J,V,B					0.70			MADE GROUND. Orangey occasional brick fragmen	y brown reworked sandy clay with ts and coal gravel.	
	1.00	D					0.70			Light brown mottled orar organic particles.	nge sandy CLAY with occasional dark	
	1.20 - 1.50	В					1.20			Brown clayey very sandy	sub-angular flint GRAVEL.	
	1.50	SPT(C)	N=34 (19,6/16,10,	1,4)							0	
	1.80 - 2.00	В										
	2.50											
	2.50 2.50	D SPT(C)	N=32 (7,9/11,9,8	4)								
	3.00	В										
	2.40						3.20			Reddish brown mottled g	rey sandy CLAY.	-
	3.40 3.50	D SPTLS	N 7 /1 0/1 1 2 7	、								
	3.50	SPT(S)	N=7 (1,0/1,1,2,3)			1.00					
	4.20 - 4.50	В					4.00			Brown mottled orange cla angular flint gravel.	ayey fine SAND with occasional sub-	
	4.50	SPTLS					4.60					
	4.50	SPT(S)	N=31 (2,3/4,9,8,1	0)			4.60			Medium dense to very de sub-angular flint gravel.	ense brown sand SAND with abundant	
	5.00	В										
							5.20			Dense brown sandy sub-a	angular flint GRAVEL.	
	6.00	В										
	6.00	SPT(C)	N=43 (5,7/8,9,11,	15)								
	7.50	В										
	7.50	SPT(C)	N=50 (2,6/8,12,15)	15)								
	0.20	В					8.10			Grev firm to stiff fissured	CLAY with occasional shell traces.	_
	8.20	D										
	8.50											
	9.00	SPTLS										
	9.00	SPT(S)	N=20 (1,2/3,5,5,	7)					E-I-I			
	10.00	D										
	10.00						Domenter			Cc	ontinued on Next Sheet	_
	amber glass jar)			penetrome	(kPa) ter (kg.cm2) etector (ppm)		Remarks R M Fost					
ulk bag sample		201	FI = fracture TCR = total of	index								
	enetration Test (Co enetration Test (Sp		SCR = solid o RQD = rock	ore recover	γ.							

			DM						Bor	eho	e Log	MBH1	
									201		0 209	Sheet 2 of 3	
ect Name:	Stirling	Road, Acto	n l	ect No).			Co-ords:				Hole Type	
			218	49								CP Scale	
ation:	Acton,	London						Level (m):			1:50	
pment:	Cable P	Percussion I	Drilling Rig					Dates:	0	8/11/2019)	Logged By RMH	
ell Wtr	Sam	ple and In	Situ Testing		-	ring		Depth	Level	Legend	Strat	um Description	
ell Strk	Depth (m)	Туре	Results	FI	TCR	SCR	RQD	(m)	(m)			LAY with occasional shell traces.	
	10.50 - 10.90	U	Ublow=50										
	10.90	D											
	11.50	D											
	12.00 12.00	SPTLS SPT(S)	N=30 (4,5/6,7,8,9)										
	13.00	D											
	13.50 - 13.90	U	Ublow=80										
	13.90	D											
	14.50	D											
	15.00												
	15.00 15.00	SPTLS SPT(S)	N=29 (2,4/6,7,7,9)										
	16.00	D											
	16.50 - 16.90	U	Ublow=90										
	10.50 - 10.50	0	0010w-30										
	16.90	D											
	17.50	D											
	18.00	SPTLS											
	18.00	SPT(S)	N=36 (4,6/9,9,9,9)										
		_											
	19.00	D								[]			
	19.50 - 19.90	U	Ublow=100							<u> </u>			
	19.90	D											
	20.00	SPTLS						20.00			Cont	tinued on Next Sheet	
	d sample (tub) (amber glass jar)		HSV = hand shea PP = pocket pene	tromet	er (kg.o			Remarks R M Fost					
olatile sample ulk bag sampl	e (amber glass vial) le		PID = photoionis FI = fracture inde	x		(ppm)							
) = Standard	Penetration Test (Co Penetration Test (Spl	ne) it Spoon)	TCR = total core SCR = solid core RQD = rock quali	recover	/								

	<u>10</u> _00										Bo	orehole No.	
			DM					Bor	ehol	e Log		MBH1	
											Sł	neet 3 of 3	
oject Name:	Stirling	Road, Acto	on	Project N	0.		Co-ords:					Hole Type	
				21849								CP Scale	
cation:	Acton,	London					Level (m):				1:50	
uipment:	Cable F	Percussion I	Drilling Rig				Dates:	0	8/11/2019	Э	L	ogged By RMH	
Well Wtr	Sam	ple and In	Situ Testing		Cor	ing	Depth	Level	Legend		Stratum Description		Τ
Strk	Depth (m) 20.00	Type SPT(S)	Results N=35 (6,5/7,9,9	FI	TCR	SCR R	_{QD} (m)	(m)	Legend		End of Borehole at 20.00m		_
volatile sample bulk bag sample (C) = Standard F	(amber glass jar) (amber glass vial)	ne) lit Spoon)	PP = pock PID = pho FI = fractu TCR = tota SCR = soli	nd shear vane et penetrome toionisation d ire index al core recover d core recover k quality desig	eter (kg.cr letector (ry ry	m2) ppm)	Remarks R M Fosi						

ing Road, Act on, London le Percussion	2 2	roject No 1849	o. Coring		Co-ords: Level (m) Dates:	:	eno	e Log	MBH2 Sheet 1 of 2 Hole Type CP Scale	
on, London	on 2 Drilling Rig	1849	Coring		Level (m)				Hole Type CP Scale	_
on, London	on 2 Drilling Rig	1849	Coring		Level (m)				Scale	
ample and Ir	n Situ Testing	FI	-							
ample and Ir Type	n Situ Testing	FI	-		Dates:				1:50	
ample and Ir Type	n Situ Testing	FI	-	1		0	7/11/2019	9	Logged By	_
Туре	-	FI	-		Depth	Level			RMH	-
SPT(S)				RQD	(m)	(m)	Legend		um Description	
SPT(S)					0.10 0.20			CONCRETE with metal reba	pale brown clayey gravelly sand with	
	N=22 (7,7/3,3,4,12	2)			1.20			Light brownish pale yellow angular and sub-rounded f	clayey sandy GRAVEL. Gravel is sub- lint.	
SPT(S)	N=33 (2,3/7,7,7,12	2)			3.00			Medium dense to very der sub-angular flint gravel.	se brown sand SAND with abundant	
SPT(C)	N=50 (6,8/12,12,14,	12)								
SPT(C)	N=50 (6,7/12,13,13,	12)								
SPT(C)	N=16 (4,7/5,4,3,4)								
U	Ublow=38				7.50			Grey firm to stiff fissured C	LAY with occasional shell traces.	
SPT(S)	N=20 (4,4/4,5,5,6)						Con	tinued on Next Sheet	
)		SPT(S) N=20 (4,4/4,5,5,6 HSV = hand si PP = pocket p PID = photoic FI = fracture i TCR = total co SCR = solid cc	SPT(S) N=20 (4,4/4,5,5,6) HSV = hand shear vane PP = pocket penetromet PID = photoionisation du FI = fracture index TCR = total core recover SCR = solid core recover SCR = solid core recover	SPT(S) N=20 (4,4/4,5,5,6) HSV = hand shear vane (kPa) PP = pocket penetrometer (kg.cm2) PID = photoionisation detector (ppm) FI = fracture index TCR = total core recovery SCR = solid orce recovery	SPT(S) N=20 (4,4/4,5,5,6) HSV = hand shear vane (kPa) PP = pocket penetrometer (kg.cm2) PID = photoionisation detector (ppm) FI = fracture index TCR = total core recovery SCR = solid core recovery	U Ublow=38 SPT(S) N=20 (4,4/4,5,5,6) HSV = hand shear vane (kPa) PP = pocket penetrometer (kg.cm2) PID = photoinisation detector (ppm) FI = fracture index TCR = total core recovery SCP = solid core recovery	U Ublow=38 SPT(S) N=20 (4,4/4,5,5,6) HSV = hand shear vane (kPa) PP = pocket penetrometer (kg.cm2) PID = photoinsiation detector (ppm) FI = fracture index TCR = total core recovery SCR = solid orce recovery	U Ublow=38 SPT(S) N=20 (4,4/4,5,5,6) HSV = hand shear vane (kPa) PP = pocket penetrometer (kg.cm2) PID = photoionisation detector (ppm) FI = fracture index TCR = total core recovery SCR = solid core recovery	U Ublow=38 SPT(S) N=20 (4,4/4,5,5,6) HSV = hand shear vane (kPa) PP = pocket penetrometer (kg.cm2) PID = photoionisation detector (ppm) F1 = fracture index TCR = total core recovery SCR = solid core recovery	U Ublow=38 SPT(S) N=20 (4,4/4,5,5,6) HSV = hand shear vane (kPa) PP = pocket penetrometer (kg.cm2) PID = photoionisation detector (ppm) FI = fracture index TCR = total core recovery SCR = solid core r

			DM						Bor	ehol	e Log	MBH2	
									_			Sheet 2 of 2	
ject Name:	Stirling	Road, Acto	n l	ect No	Э.			Co-ords:				Hole Type	
			218	49								CP Scale	
ation:	Acton,	London						Level (m	:			1:50	
pment:	Cable F	ercussion I	Drilling Rig					Dates:	C	07/11/2019)	Logged By RMH	
ell Wtr Strk			Situ Testing		Cor			Depth (m)	Level (m)	Legend	Stra	tum Description	
	Depth (m)	Туре	Results	FI	TCR	SCR	RQD	(,	()		Grey firm to stiff fissured	CLAY with occasional shell traces.	
	11.00 - 11.45	U	Ublow=56										
	12.50	SPT(S)	N=22 (4,5/5,6,5,6)										
	12.50	511(5)	11-22 (4,5,5,5,5,5,5,5)										
	11.00 11.15												
	14.00 - 14.45	U	Ublow=63										
	15.50	SPT(S)	N=28 (4,5/6,7,7,8)										
	17.00 - 17.45	U	Ublow=100										
										<u> </u>			
	18.50	SPT(S)	N=29 (4,5/6,7,8,8)							<u> </u>]			
										E			
										<u> </u>			
	20.00 - 20.45	U	Ublow=72					20.00		<u> </u>	Fnd	of Borehole at 20.00m	
			HSV = hand shea	r vano /	kPa)			Remarks					
rganic sample	d sample (tub) (amber glass jar)		PP = pocket pene PP = pocket pene PID = photoionis	etromet	er (kg.cı			South Ea		illing			
oulk bag samp	e (amber glass vial) le)	FI = fracture inde TCR = total core	x									
ے) = standard 3) = Standard	Penetration Test (Co Penetration Test (Spl	it Spoon)	SCR = solid core RQD = rock quali	recover	y								

			D	om				Windowless Sample Log	Borehole N MWS1 Sheet 1 of	
Projec	ct Nam	ne: Stirli	ng Road, <i>i</i>	ACION	oject No. 849		Co-ords:		Hole Type WLS	
Locati	on:	Acto	n, London		049		Level (m)	:	Scale	
Equip	ment:	Trac	ked Windo	owless Sample Rig			Dates:	08/11/2019	1:25 Logged By	y
Well	Wtr	Samp	ole and In	Situ Testing	Depth	Level	Logond	Stratura Description	RMH	
Await aiting	Strk	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
		0.40	D,J SPT(C)	N=50 (1,2/6,11,16,17)	0.10			MADE GROUND. Overlying hardstand tarmac/asphalt. MADE GROUND. Light brown mottled reworked sandy gravelly clay with occ concrete and asphalt fragments. Grav flint. End of Borehole at 1.20m	l light grey asional brick,	
										5 —
J = orga	inic sam atile san	rbed sample (tub) pple (amber glass nple (amber glass mple	jar)	SPT(C) = Standard Penetra SPT(S) = Standard Penetra HSV = hand shear vane (kf PP = pocket penetrometer PID = photoionisation dete	tion Test (Split Pa) • (kg.cm2)		Remarks	1		1

		I	D	om				Windowless Sample Log	Borehole N MWS2 Sheet 1 of	
Projec	ct Nan	ne: Stirli	ng Road, <i>I</i>	acton	Project No. 21849		Co-ords:		Hole Type WLS	
Locati	ion:	Acto	n, London				Level (m)	:	Scale 1:25	
Equip	ment:	Trac	ked Windo	wless Sample Rig			Dates:	08/11/2019	Logged By RMH	ý
Well	Wtr Strk	-	le and In	Situ Testing	Depth	Level (m)	Legend	Stratum Descriptior		
	Suk	Depth (m)	Туре	Results	(m) 0.10	(11)		MADE GROUND. Overlying hardstand tarmac/asphalt.	ling layer of	
Awaiti aiting Imag nage Awaiti aiting Imag nage Awaiti aiting	а. а.	0.30	D,J		0.10			MADE GROUND. Dark brown sandy c concrete and asphalt fragments.	ay with brick,	-
Imag hage Avaitati stating Imag hage Avaitati stating		0.70	D,J		0.40			MADE GROUND. Light brown mottled reworked sandy gravelly clay with occ concrete and asphalt fragments. Grave flint.	asional brick,	1
Awaiti iaiting Imog noge Awaiti iaiting	3.				1.20			End of Borehole at 1.20m		
				SPT(C) = Standard Pene	tration Test (Cone		Remarks			
J = orga	inic sam atile sar	rbed sample (tub) pple (amber glass j nple (amber glass mple	jar)	SPT(C) = Standard Pene SPT(S) = Standard Penel HSV = hand shear vane PP = pocket penetrome PID = photoionisation d	tration Test (Split (kPa) ter (kg.cm2)		Initial hand	dug pit obstruction hit at 1.2m - CAT scanner ssalled. No SPT value taken.	giving off electrical c	urrent.

		I	D	om				Windowless Sample Log	Borehole N MWS3 Sheet 1 of	
Projec	t Nam	e: Stirli	ng Road, A	Acton	oject No. 1849		Co-ords:		Hole Type WLS	
Locati	on:	Acto	n, London				Level (m)	:	Scale 1:25	
Equipr	nent:	Trac	ked Windo	wless Sample Rig			Dates:	08/11/2019	Logged B RMH	у
Well	Wtr Strk	-		Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptior	1	
Awaiti alting Imag nage	Suk	Depth (m)	Туре	Results				Rebarred CONCRETE flooring with or flooring tiles	verlying plastic	
• • •		0.30	D,J		0.15 0.25			MADE GROUND. Sandy matrix of frag concrete and pale yellowish/orange st MADE GROUND. Friable dark brown reworked sandy clay with frequnt brick	tone blocks.	
		0.70	D,J SPT(C)	50 (7,17/50 for	0.70			MADE GROUND. Light brown mottlec reworked sandy gravelly clay with occ and concrete. Gravel is sub-angular fl dark organic particles present.	asional brick int. Occasional	_
J = orga	nic sam	bed sample (tub)) jar)	SPT(C) = Standard Penetr. SPT(S) = Standard Penetr. SPT(S) = Standard Penetr.	ation Test (Cone		Remarks	End of Borehole at 1.00m		
J = orga	nic sam itile sam	ple (amber glass ple (amber glass) jar)	SPT(S) = Standard Penetra	ation Test (Split Pa) er (kg.cm2)					

		D	om				Windowless Sample Log	Borehole N MWS4 Sheet 1 of	1
roject Nan	ne: Stirli	ng Road, <i>i</i>		oject No. 849		Co-ords:		Hole Type WLS	Э
ocation:	Acto	n, London		040		Level (m):	:	Scale 1:25	
quipment:	Trac	ked Windo	wless Sample Rig			Dates:	08/11/2019	Logged By	у
Well Wtr	Samp	ole and In	Situ Testing	Depth	Level	Logond	Stratum Dopprintio	RMH	
Strk	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Descriptio		
iaiting. ag	0.20	D,J		0.10 0.20			tarmac/asphalt. CONCRETE with metal rebar.	/	
ag nage atting.	0.20	2,0		0.30			MADE GROUND. Greenish brown fri with fragments of brick and concrete.	/	
nage isiting, nage isiting,	0.50	D,J					MADE GROUND. Dark stained reword brick fragments.	rked clay with	
ag nage ith isiting- ag nage	0.00	2,0		0.60			MADE GROUND. Brown mottled dar	k brown	-
ti alting. nage ti alting.	0.70	D,J					reworked sandy clay. Occasional bric	k fragments.	
g hage ta iaiting. kg hage									
	1.00 1.10	SPT(C) D,J	N=32 (1,4/10,10,8,4)	1.00			Greyish brown sandy gravelly CLAY.		1
				1.20			Light brownish orange clayey SAND sub rounded flint gravel.	with occasional	
							sub rounded him gravel.		
	1.60	D,J							
-	1.00	D,3							
	2.00	SPT(C)	N=39 (2,5/11,10,8,10)						
	2.70	D,J							
-									
	3.00	SPT(C)	N=26 (5,7/8,4,6,8)						
	3.10	D,J							
-									
	3.60	SPT(C)	50 (10,10/50 for 150mm)	3.60			End of Borehole at 3.60n	1	
organic san	irbed sample (tub) nple (amber glass mple (amber glass ample	jar)	SPT(C) = Standard Penetra SPT(S) = Standard Penetra HSV = hand shear vane (k PP = pocket penetromete PID = photoionisation det	ation Test (Split Pa) r (kg.cm2)		Remarks			1

APPENDIX 3

- Soil Chemistry
- Summary Spreadsheet
- Laboratory Analysis Certificates

Simon Edwards

Merebrook Cromford Mills Mill Lane Cromford Derbyshire DE4 3RQ i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

- **t:** 01923 225404
- f: 01923 237404
- e: reception@i2analytical.com

e: sedwards@idom.com

Analytical Report Number : 21-79517

Project / Site name:	Bollo, Acton	Samples received on:	03/06/2021
Your job number:	22310	Samples instructed on/ Analysis started on:	07/06/2021
Your order number:	21-2-FDO-LABS	Analysis completed by:	14/06/2021
Report Issue Number:	1	Report issued on:	14/06/2021
Samples Analysed:	7 soil samples		

Signed: Keroline Harel

Karolina Marek PL Head of Reporting Team For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland. Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation. Standard sample disposal times, unless otherwise agreed with the laboratory, are : Standard sample disposal times, unless otherwise agreed with the laboratory, are : Standard sample disposal times, unless otherwise agreed with the laboratory, are : Standard sample disposal times, unless otherwise agreed with the laboratory, are : Standard sample disposal times, unless otherwise agreed with the laboratory, are : Standard sample disposal times, unless otherwise agreed with the laboratory, are : Standard sample disposal times, unless otherwise agreed with the laboratory, are : Standard sample disposal times, unless otherwise agreed with the laboratory, are : Standard sample disposal times, unless otherwise agreed with the laboratory, are : Standard sample disposal times, unless otherwise agreed with the laboratory, are : Standard sample disposal times, unless otherwise agreed with the laboratory, are : Standard sample disposal times, unless otherwise agreed with the laboratory, are : Standard sample disposal times, unless otherwise agreed with the laboratory, are : Standard sample disposal times, unless otherwise agreed with the laboratory, are : Standard sample disposal times, unless otherwise agreed with the laboratory, are : Standard sample disposal times, unless otherwise agreed with the laboratory, are : Standard sample disposal times, unless otherwise agreed with the laboratory, are : Standard sample disposal times, unless otherwise agreed with the laboratory, are : Standard sample disposal times, unless otherwise agreed with the laboratory agreed wit

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1894468	1894469	1894470	1894471	1894472
Sample Reference				MTP01	MTP01	MTP02	MTP03	MTP04
Sample Number				None Supplied				
Depth (m)				0.50	2.00	0.30	0.40	0.20
Date Sampled				01/06/2021	01/06/2021	01/06/2021	01/06/2021	02/06/2021
Time Taken				None Supplied				
		Ξ.						
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	-	< 0.1	-	< 0.1
Moisture Content	%	0.01	NONE	12	-	9.4	-	12
Total mass of sample received	kg	0.001	NONE	0.80	-	0.70	-	0.70
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.3	-	7.6	-	8.2
Total Cyanide	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	1.8	-	0.59	-	0.18
Sulphide	mg/kg	1	MCERTS	23	-	< 1.0	-	19
Organic Matter	%	0.1	MCERTS	1.6	-	3.5	-	2.2
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
						<u> </u>		_
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	0.50	-	0.22
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	0.22	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	1.4	-	4.5	-	1.3
Anthracene	mg/kg	0.05	MCERTS	0.44	-	0.74	-	0.37
Fluoranthene	mg/kg	0.05	MCERTS	3.8	-	10	-	3.6
Pyrene	mg/kg	0.05	MCERTS	3.2	-	8.5	-	3.6
Benzo(a)anthracene	mg/kg	0.05	MCERTS	2.3	-	5.9	-	2.7
Chrysene	mg/kg	0.05	MCERTS	1.5	-	4.1	-	1.8
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	2.2	-	6.6	-	2.9
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.86	-	2.2	-	1.2
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.6	-	4.7	-	2.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.91	-	2.7	-	1.2
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.29	-	0.83	-	0.43
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.1	-	3.3	-	1.6
Total PAH	•	-	-	-				
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	19.4	-	55.0	-	23.0
openated 1001 ETA 10 17113	5. 5		-	17.7	-	55.0	-	20.0

Lab Sample Number				1894468	1894469	1894470	1894471	1894472
Sample Reference				MTP01	MTP01	MTP02	MTP03	MTP04
Sample Number				None Supplied				
Depth (m)				0.50	2.00	0.30	0.40	0.20
Date Sampled				01/06/2021	01/06/2021	01/06/2021	01/06/2021	02/06/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-		-					-
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	18	-	28	-	19
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	-	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	-	< 4.0	-	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	29	-	34	-	25
Copper (aqua regia extractable)	mg/kg	1	MCERTS	45	-	130	-	60
Lead (aqua regia extractable)	mg/kg	1	MCERTS	710	-	520	-	280
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	1.0	-	1.5	-	1.1
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	23	-	38	-	26
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	410	-	410	-	210
Monoaromatics & Oxygenates	µg/kg	1	MCERTS	.10		< 1.0	-	< 1.0
Benzene	µg/kg	1	MCERTS	< 1.0	-		-	
Toluene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Ethylbenzene	μg/kg μg/kg	1	MCERTS		-		-	< 1.0
p & m-xylene	μg/kg μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
o-xylene	μg/kg μg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons		0.001	MCERTS	< 1.0		< 1.0		< 1.0
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg			< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg		MCERTS	< 2.0	-	< 2.0	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	< 8.0	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8 10	MCERTS	< 8.0	-	< 8.0	-	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	< 10	-	< 10
		0.001	MCEDTC	0.001		0.001		0.001
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	3.2	-	< 1.0	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	12	-	< 2.0	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	30	-	29	-	23
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	54	-	50	-	46
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	98	-	80	-	68

U/S = Unsuitable Sample I/S = Insufficient Sample

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Lab Sample Number				1894473	1894474
Sample Reference				MTP04	MTP05
Sample Number				None Supplied	None Supplied
Depth (m)				0.90	0.30
Date Sampled				02/06/2021	02/06/2021
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	-	< 0.1
Moisture Content	%	0.01	NONE	-	12
Total mass of sample received	kg	0.001	NONE	-	0.70
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	-	7.5
Total Cyanide	mg/kg	1	MCERTS	-	< 1.0
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	0.12
Sulphide	mg/kg	1	MCERTS	-	< 1.0
Organic Matter	%	0.1	MCERTS	-	1.0

Total Phenols

Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0

Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05
Total PAH					
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	< 0.80

				1001170	1001171
Lab Sample Number				1894473	1894474
Sample Reference				MTP04	MTP05
Sample Number				None Supplied	None Supplied
Depth (m)				0.90	0.30
Date Sampled				02/06/2021	02/06/2021
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Heavy Metals / Metalloids					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	13
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	-	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	38
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	19
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	41
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	22
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	78

Monoaromatics & Oxygenates

Benzene	µg/kg	1	MCERTS	-	< 1.0
Toluene	µg/kg	1	MCERTS	-	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	-	< 1.0
p & m-xylene	µg/kg	1	MCERTS	-	< 1.0
o-xylene	µg/kg	1	MCERTS	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10

TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	< 10

 ${\sf U}/{\sf S}={\sf Unsuitable \ Sample}\qquad {\sf I}/{\sf S}={\sf \ Insufficient \ Sample}$

Analytical Report Number : 21-79517 Project / Site name: Bollo, Acton

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1894468	MTP01	None Supplied	0.5	Brown clay and loam with gravel and vegetation.
1894470	MTP02	None Supplied	0.3	Brown clay and loam with gravel and vegetation.
1894472	MTP04	None Supplied	0.2	Brown loam and clay with gravel and brick.
1894474	MTP05	None Supplied	0.3	Brown clay and sand with gravel.

Analytical Report Number : 21-79517 Project / Site name: Bollo, Acton

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soll by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
BTEX and MTBE in soil (Monoaromatics	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in sol by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	w	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Rory Horton Merebrook Cromford Mills Mill Lane Cromford Derbyshire DE4 3RQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: rhorton@idom.com

Analytical Report Number : 19-71937

Project / Site name:	Stirling Road, Acton	Samples received on:	11/11/2019
Your job number:	21849	Samples instructed on:	14/11/2019
Your order number:	19-S2-FDO-LABS	Analysis completed by:	21/11/2019
Report Issue Number:	1	Report issued on:	21/11/2019
Samples Analysed:	8 soil samples		

Signed: <

Zina Abdul Razzak Senior Quality Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :	soils leachates waters asbestos	 4 weeks from reporting 2 weeks from reporting 2 weeks from reporting 6 months from reporting
Excel copies of reports are only valid when accompanied by this PDF certificate.		

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Stirling Road, Acton

Your Order No: 19-S2-FDO-LABS

Lab Sample Number		1362521	1362522	1362523	1362524	1362525		
Sample Reference				MWS1	MWS2	MWS2	MWS3	MWS3
Sample Number				None Supplied	None Supplied 0.30	None Supplied 0.70	None Supplied	None Supplied
Depth (m)				0.40			0.30	0.60
Date Sampled				08/11/2019	08/11/2019	08/11/2019	08/11/2019	08/11/2019
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
			A					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	16	14	17	14	16
Total mass of sample received	kg	0.001	NONE	2.0	2.0	2.0	2.0	2.0
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.1	9.4	7.5	9.6	7.9
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.044	0.11	0.047	2.0	0.26
Sulphide	mg/kg	1	MCERTS	1.1	1.2	< 1.0	4.7	< 1.0
Organic Matter	%	0.1	MCERTS	1.9	2.1	0.8	1.7	0.9
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	iiig/ikg	-	HIGERIG	1.0	\$ 1.0	\$ 1.0	\$ 1.0	\$ 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	0.36	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	0.88	1.1	0.42	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	0.90	1.3	0.37	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	16	1.5	5.5	0.95	< 0.05
Anthracene	mg/kg	0.05	MCERTS	3.3	3.4	0.99	0.16	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	23	22	6.6	2.3	< 0.05
Pyrene	mg/kg	0.05	MCERTS	23	20	6.3	2.3	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	11	9.7	2.6	1.5	< 0.05
Chrysene	mg/kg	0.05	MCERTS	7.3	6.5	2.0	1.3	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	15	13	2.9	2.4	< 0.05
Benzo(b)nuoranthene	mg/kg	0.05	MCERTS	3.7	3.4	1.0	0.85	< 0.05
Benzo(k)huorantilene Benzo(a)pyrene	mg/kg ma/ka	0.05	MCERTS	13	12	2.6	2.1	< 0.05
indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	5.2	5.1	1.2	0.95	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	1.2	1.1	0.24	0.95	< 0.05
	0. 0	0.05		4.7	4.6	1.2	1.1	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	4./	4.0	1.2	1.1	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	127	120	34.0	16.0	< 0.80
	iiig/kg	0.0	INCLINI 3	127	120	54.0	10.0	< 0.00

Project / Site name: Stirling Road, Acton Your Order No: 19-S2-FDO-LABS

Lab Sample Number				1362521	1362522	1362523	1362524	1362525
Sample Reference				MWS1	MWS2	MWS2	MWS3	MWS3
Sample Number				None Supplied				
Depth (m)		0.40	0.30	0.70	0.30	0.60		
Date Sampled	08/11/2019	08/11/2019	08/11/2019	08/11/2019	08/11/2019			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-	-	-		-	-	-	-
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	16	15	11	21	8.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.3	0.4	< 0.2	0.7	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	29	30	39	26	29
Copper (aqua regia extractable)	mg/kg	1	MCERTS	37	67	8.7	76	11
Lead (aqua regia extractable)	mg/kg	1	MCERTS	190	320	20	690	35
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.5	0.6	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	20	21	22	21	13
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	150	250	68	400	52

Monoaromatics & Oxygenates

Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	2.0	3.0	6.3	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	8.8	7.0	5.2	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	16	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	49	23	< 8.0	19	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	76	41	12	22	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	12	21	7.3	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	110	180	43	17	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	130	200	35	55	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	260	400	85	72	< 10

Project / Site name: Stirling Road, Acton

Your Order No: 19-S2-FDO-LABS

Lab Sample Number				1362526	1362527	1362528	
Sample Reference				MWS4	MWS4	MBH1	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				0.20	0.50	0.50	
Date Sampled				08/11/2019	08/11/2019	08/11/2019	
Time Taken				None Supplied	None Supplied	None Supplied	
	1						
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	
Moisture Content	%	N/A	NONE	11	18	18	
Total mass of sample received	kg	0.001	NONE	2.0	2.0	2.0	
· · ·							
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	
General Inorganics		1					
pH - Automated	pH Units	N/A	MCERTS	11.2	8.0	8.1	
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.12	0.26	0.042	
Sulphide	mg/kg	1	MCERTS	< 1.0	5.3	< 1.0	
Organic Matter	%	0.1	MCERTS	0.4	2.3	1.2	
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.30	
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.0	
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.1	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.81	
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.65	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.95	
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.29	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.94	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.53	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.58	
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	7.16	

Project / Site name: Stirling Road, Acton Your Order No: 19-S2-FDO-LABS

Lab Sample Number				1362526	1362527	1362528		
Sample Reference		MWS4	MWS4	MBH1				
Sample Number				None Supplied	None Supplied	None Supplied		
Depth (m)				0.20	0.50	0.50		
Date Sampled				08/11/2019	08/11/2019	08/11/2019		
Time Taken				None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids					-	-	_	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	16	14	11		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2		
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	27	30	34		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	31	42	24		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	98	260	61		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	1.0	< 0.3		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	18	20	19		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	68	79	62		

Monoaromatics & Oxygenates

Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	1.6	2.0	2.8	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	6.0	4.2	6.3	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	13	< 8.0	8.3	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	40	15	19	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	61	28	36	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	21	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	32	

Project / Site name: Stirling Road, Acton

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1362521	MWS1	None Supplied	0.40	Brown clay and sand.
1362522	MWS2	None Supplied	0.30	Brown clay and sand.
1362523	MWS2	None Supplied	0.70	Brown clay.
1362524	MWS3	None Supplied	0.30	Brown clay and sand with gravel.
1362525	MWS3	None Supplied	0.60	Brown clay and sand.
1362526	MWS4	None Supplied	0.20	Brown sand with rubble and gravel
1362527	MWS4	None Supplied	0.50	Brown clay.
1362528	MBH1	None Supplied	0.50	Brown clay and sand.

Project / Site name: Stirling Road, Acton

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In-house method based on BS1377 Part 2, 1990, Classification tests	L019-UK/PL	w	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
MBH1		S	19-71937	1362528	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MBH1		S	19-71937	1362528	b	TPHCWG (Soil)	L088/76-PL	b
MWS1		S	19-71937	1362521	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MWS1		S	19-71937	1362521	b	TPHCWG (Soil)	L088/76-PL	b
MWS2		S	19-71937	1362522	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MWS2		S	19-71937	1362522	b	TPHCWG (Soil)	L088/76-PL	b
MWS2		S	19-71937	1362523	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MWS2		S	19-71937	1362523	b	TPHCWG (Soil)	L088/76-PL	b
MWS3		S	19-71937	1362524	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MWS3		S	19-71937	1362524	b	TPHCWG (Soil)	L088/76-PL	b
MWS3		S	19-71937	1362525	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MWS3		S	19-71937	1362525	b	TPHCWG (Soil)	L088/76-PL	b
MWS4		S	19-71937	1362526	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MWS4		S	19-71937	1362526	b	TPHCWG (Soil)	L088/76-PL	b
MWS4		S	19-71937	1362527	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MWS4		S	19-71937	1362527	b	TPHCWG (Soil)	L088/76-PL	b

Rory Horton Merebrook Cromford Mills Mill Lane Cromford Derbyshire DE4 3RQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: rhorton@idom.com

Analytical Report Number : 19-72241

Project / Site name:	Stirling Road, Acton	Samples received on:	14/11/2019
Your job number:	21849	Samples instructed on:	15/11/2019
Your order number:	19-S2-FDO-LABS	Analysis completed by:	22/11/2019
Report Issue Number:	1	Report issued on:	22/11/2019
Samples Analysed:	1 soil sample		

Signed: Karoline Harel

Karolina Marek Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Iss No 19-72241-1 Stirling Road, Acton 21849

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Stirling Road, Acton

Your Order No: 19-S2-FDO-LABS

Lab Sample Number				1364177				
Sample Reference				MWS4				
Sample Number				None Supplied			1	
Depth (m)				1.10			1	
Date Sampled				08/11/2019				
Time Taken				None Supplied				
	Т	1		None Supplied				
		۹_	Accreditation Status					
Analytical Parameter	ç	Limit of detection	creditat Status					
(Soil Analysis)	Units	요란	ita lita					
		3 5	° tio					
Stone Content	%	0.1	NONE	< 0.1				
Moisture Content	%	N/A	NONE	6.8				
Total mass of sample received	kg	0.001	NONE	1.0				
· · · · · · · · · · · · · · · · · · ·		·	·	·	ı — — — — — — — — — — — — — — — — — — —	r	r	r
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected				
General Inorganics	1			a -	1	T	r	T
pH - Automated	pH Units	N/A	MCERTS	8.0		 	}	}
Total Cyanide Water Soluble SO4 16br extraction (2:1 Leachate	mg/kg	1	MCERTS	< 1		 	ł	
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.094				
Sulphide		1	MCERTS	< 1.0		1	1	1
Organic Matter	mg/kg %	0.1	MCERTS	0.6		}	1	1
	%	0.1	PICERTS	0.0				
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0				
	тіу/ку	1	PICERTS	< 1.0				
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05		1	1	
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05				
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05				
Fluorene	mg/kg	0.05	MCERTS	< 0.05				
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05				
Anthracene	mg/kg	0.05	MCERTS	< 0.05				
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05				
Pyrene	mg/kg	0.05	MCERTS	< 0.05			1	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05			1	
Chrysene	mg/kg	0.05	MCERTS	< 0.05				
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05				
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05		İ	1	İ
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05			1	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05			1	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05			1	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05		l .		Ī
					•	-	-	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80				
	- 3, 3				•	•	•	•
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15				
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2				
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0				
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	42		1	1	1
Copper (aqua regia extractable)	mg/kg	1	MCERTS	3.9				
Lead (aqua regia extractable)	mg/kg	1	MCERTS	14				
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	1	1		1
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	30	1	1		1
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	1	1		1
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	55	1		1	
						8		n

Project / Site name: Stirling Road, Acton

Your Order No: 19-S2-FDO-LABS

Lab Sample Number			1364177				
Sample Reference				MWS4		 	
Sample Number				None Supplied			
Depth (m)				1.10		 	
Date Sampled				08/11/2019			
Time Taken				None Supplied	-		
				None Supplied		 	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics & Oxygenates		-					
Benzene	µg/kg	1	MCERTS	< 1.0			
Toluene	µg/kg	1	MCERTS	< 1.0			
Ethylbenzene	µg/kg	1	MCERTS	< 1.0			
p & m-xylene	µg/kg	1	MCERTS	< 1.0			
o-xylene	µg/kg	1	MCERTS	< 1.0			
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0			

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10		

Project / Site name: Stirling Road, Acton

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Samp Number	e Sample Reference	Sample Number	Depth (m)	Sample Description *
1364177	MWS4	None Supplied	1.10	Brown loam and clay with gravel.

Project / Site name: Stirling Road, Acton

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

					1
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In-house method based on BS1377 Part 2, 1990, Classification tests	L019-UK/PL	w	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
For mothod numbers anding in 'll	K' analysis have been carried out in our labora	tony in the United Kingdom		1	I

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
MWS4		S	19-72241	1364177	bc	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
MWS4		S	19-72241	1364177	bc	Sulphide in soil	L010-PL	С
MWS4		S	19-72241	1364177	bc	TPHCWG (Soil)	L088/76-PL	b
MWS4		S	19-72241	1364177	bc	Total cyanide in soil	L080-PL	С

BASIC STATISTICAL RESULTS SUMMARY

Participante de la colspan="2">Participante de la colspan="2" Participante de la colspan="2" Part																	level from	POSr	resi		
colscols </th <th></th> <th>0</th> <th></th> <th>dropdown -></th> <th></th> <th></th> <th></th> <th></th>		0															dropdown ->				
Part of a second secon			rling Rd/Roslin R	d Acton												L				J	
Sumport <				u, Acton																	
<tt> <th< <th<="" th=""> <th></th><th>•</th><th></th><th></th><th>MWS2</th><th>MWS2</th><th>MWS3</th><th>MWS3</th><th>MWS4</th><th>MWS4</th><th>MWS4</th><th>MBH1</th><th>MTP01</th><th>MTP02</th><th>MTP04</th><th>MTP05</th><th></th><th></th><th></th><th></th><th></th></th<></tt>		•			MWS2	MWS2	MWS3	MWS3	MWS4	MWS4	MWS4	MBH1	MTP01	MTP02	MTP04	MTP05					
anise anise		Depth	0.40		0.30	0.70	0.30	0.60	0.20	0.50	1.10	0.50	0.5	0.3	0.2	0.3					
with the second secon																		Maximum	Mean	Screening	
membra membra GA Math <	Determinand																Number of Tests	1		Level (mg.kg	No. > SL
non-sector non-sector </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1)</td> <td></td>																				1)	
bit bit <td>rsenic</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>16</td> <td></td> <td>0</td>	rsenic								16												0
mam mam max ax max <td>admium</td> <td></td> <td></td> <td></td> <td>0.4</td> <td>0.2</td> <td>0.7</td> <td>0.2</td> <td>0.2</td> <td>0.2</td> <td></td> <td>0.2</td> <td>0.2</td> <td>0.2</td> <td>0.2</td> <td>0.2</td> <td></td> <td></td> <td></td> <td></td> <td>0</td>	admium				0.4	0.2	0.7	0.2	0.2	0.2		0.2	0.2	0.2	0.2	0.2					0
ser ser </td <td></td> <td></td> <td></td> <td>-</td> <td>4</td> <td>4</td> <td>4</td> <td>4</td> <td>4</td> <td>4</td> <td></td> <td>4</td> <td>4</td> <td>4</td> <td>4 25</td> <td>4 20</td> <td></td> <td></td> <td></td> <td></td> <td>0</td>				-	4	4	4	4	4	4		4	4	4	4 25	4 20					0
i i <td>opper</td> <td></td> <td>0</td>	opper																				0
mark mark <t< td=""><td>ad</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td></t<>	ad																				2
IndexImage	ercury			0.5	0.6	0.3	0.3	0.3	0.3	1	0.3	0.3	1	1.5	1.1	0.3	13		0.60		0
bit b	ickel			20	21	22	21	13	18	20	30	19	23	38	26	22	13	38			0
vertexvert	elenium			1	1	1	1	1	1	1	1	1	1	1	1	1					0
weished scales scales scales<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<	nc H									79	55										0
with signature with s			< 1	8.1						ہ < 1	ہ < 1							11.2			-
<tt>besize of the series of t</tt>		ent)	× 1.		· ±.	▲.	× ⊥ ,	× ±.	▲.	▲.	▲.	× ⊥ ,	> ⊥.	▲.	× ±.	× ±.	0	0			-
sci sci <td>/ater Soluble Sulphate as SO4 (2:1)</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>-</td> <td>-</td>	/ater Soluble Sulphate as SO4 (2:1)																0	0		-	-
minimizedvicit <td></td> <td></td> <td>< .044</td> <td></td> <td>< .11</td> <td>< .047</td> <td>< 2.</td> <td>< .26</td> <td>< .12</td> <td>< .26</td> <td>< .094</td> <td>< .042</td> <td>1.8</td> <td>0.59</td> <td>0.18</td> <td>0.12</td> <td>13</td> <td>< 2.</td> <td>0.44</td> <td>-</td> <td>-</td>			< .044		< .11	< .047	< 2.	< .26	< .12	< .26	< .094	< .042	1.8	0.59	0.18	0.12	13	< 2.	0.44	-	-
namen	phide					< 1.	< 4.7	< 1.	< 1.		< 1.	< 1.	< 23.			< 1.				-	-
marcescher			< 1.9													1					-
base-scaleindex <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>																					0
harded characterimage charac																					0
which Cachewhich Cac	phatic C10-C12			2	3		1	1	1.6	2	1		1	1	1	1	10				0
<table-container><tt> name n</tt></table-container>	phatic C12-C16			8.8	7	5.2	2	2	6	4.2	2	6.3	2	2	2	2	13				0
marce C-C3eval <td>phatic C16-C21</td> <td></td> <td></td> <td>16</td> <td>8</td> <td>8</td> <td>8</td> <td>8</td> <td>13</td> <td>8</td> <td>8</td> <td>8.3</td> <td>8</td> <td>8</td> <td>8</td> <td>8</td> <td>13</td> <td>< 16.</td> <td>9.02</td> <td></td> <td>0</td>	phatic C16-C21			16	8	8	8	8	13	8	8	8.3	8	8	8	8	13	< 16.	9.02		0
matc Crip00	phatic C21-C35			49		8		8			8		8	8	8	8				250000	0
matcr2c100 </td <td></td> <td></td> <td>< 76.</td> <td>0.001</td> <td></td> <td>-</td>			< 76.	0.001																	-
match ch																					0
minicid (1) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>																					0
match (2-1)(1) </td <td>omatic C10-C12</td> <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>0</td>	omatic C10-C12			1	1	1	1	1	1	1	1	1		1	1	1					0
mather classesmather	omatic C12-C16			12	21	7.3	2	2	2	2	2	2	12	2	2	2	13	< 21.	5.41		0
math C3G3 <td>omatic C16-C21</td> <td></td> <td>0</td>	omatic C16-C21																				0
and densent <i><i><ii<< th=""><ii<< th=""><ii><<ii><<<ii><<ii<< th=""><t< td=""><td></td><td></td><td>< 200</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></t<></ii<<></ii></ii></ii></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></ii<<></i></i>			< 200																		0
ihence(-1)																					-
ener<																					-
interce <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1. <1.	iene																			-	-
Since Since <th< td=""><td>m-xylene</td><td></td><td>< 1.</td><td></td><td>< 1.</td><td>< 1.</td><td>13</td><td>< 1.</td><td>1.00</td><td>-</td><td>-</td></th<>	m-xylene		< 1.		< 1.	< 1.	< 1.	< 1.	< 1.	< 1.	< 1.	< 1.	< 1.	< 1.	< 1.	< 1.	13	< 1.	1.00	-	-
ene0.0010.																				-	-
bitscare0.001<			< 1.	0.001																	-
ene0.0010.																					0
xylene 0.000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></t<>																					0
hthalene 0.05																					0
aphthylene 0.05			< .001																		-
naphthene0.881.10.420.05 <t< td=""><td>phthalene</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></t<>	phthalene																				0
rene0.91.30.370.05																					0
nambre 16 17 5.5 0.95 0.05 0.05 0.05 0.05 0.44 4.5 1.3 0.05 1.3 0.16 1.7 3.63 3.40 0.99 0.16 0.05 0.05 0.05 0.05 0.44 0.74 0.37 0.05 1.3 3.4 0.75 74000 0 rancene 23 22 6.6 2.3 0.05 0.05 0.05 1 3.8 10 3.6 0.05 13 3.6 0.31 2.3 5.58 3.100 0 rancene 23 22 6.6 2.3 0.05 0.05 0.05 1.3 3.8 10 3.6 0.3 1.3 2.3 5.58 3.100 0.55 rancene 13 9.7 6.6 2.3 0.05 0.05 0.05 0.11 3.2 5.6 0.3 1.3 2.0 1.3 2.0 0.55 0.55 1.5 1.4 1.8 0.05 1.3 1.4 1.8 0.05 0.3 0.13 1.3 1.6																					0
hracene3.33.40.990.160.050.050.050.050.440.740.370.05133.40.75740000ranhene23226.62.30.050.050.050.13.8103.60.0513235.831000rene22206.32.30.050.050.050.113.28.53.60.0513225.774000colphantracene119.72.61.50.050.050.150.113.28.53.60.0513112.8290colphantracene139.72.61.50.050.050.651.54.11.80.0513131.95.77.100colphantracene139.72.61.50.050.050.650.550.550.550.551.11.80.551.31.31.60.551.31.41.80.51.31.31.60.651.31.41.80.51.31.31.60.651.31.41.80.51.31.31.60.5 <td>enanthrene</td> <td></td> <td>0</td>	enanthrene																				0
ane 22 20 6.3 2.3 0.05 0.05 0.05 1.1 3.2 8.5 3.6 0.05 13 22 5.17 7400 0 zo(a)anthracene 11 9.7 2.6 1.5 0.05 0.05 0.05 0.81 2.3 5.9 2.7 0.05 13 11 2.83 2.9 0 zo(a)anthracene 7.3 6.5 2.1 1.3 0.05 0.05 0.05 0.55 1.5 4.1 1.8 0.05 13 1.9 5.5 7.1 2.0 zo(b)fluoranthene 13 2.9 2.4 0.05 0.05 0.05 0.5 0.5 0.5 0.5 1.0 1.3 1.0 3.55 7.1 2.0 zo(k)fluoranthene 3.7 3.4 1 0.85 0.05 0.05 0.94 1.6 4.7 2.1 0.05 1.3 1.2 0.05 1.3 1.2 0.05 1.3 1.1 0.0 1.3 3.02 5.7 2.0 0.0 0.0 0.05	thracene				3.4																0
xo(a)anthracene 11 9.7 2.6 1.5 0.05 0.05 0.81 2.3 5.9 2.7 0.05 13 11 2.83 2.9 0 ysene 7.3 6.5 2.1 1.3 0.05 0.05 0.05 0.55 1.5 4.1 1.8 0.05 13 7.3 1.96 5.7 0 xo(b)fluoranthene 15 13 2.9 2.4 0.05 0.05 0.05 0.5 2.2 6.6 2.9 0.05 13 15 3.55 7.1 2 xo(b)fluoranthene 3.7 3.4 1 0.85 0.05 0.05 0.95 0.22 6.6 2.9 0.05 13 3.7 1.06 190 0 xo(a)pyrene 3.7 3.4 1 0.85 0.05 0.05 0.94 0.6 4.7 0.05 13 1.2 0.3 3.02 5.7 2 xo(a)pyrene 5.2 5.1 1.2 0.95 0.05 0.05 0.55 0.91 0.7 0.25	uoranthene			23	22	6.6	2.3	0.05	0.05	0.05	0.05	1	3.8	10	3.6	0.05	13	23	5.58	3100	0
ysene7.36.52.11.30.050.050.050.051.54.11.80.05137.31.96570zo(b)fluoranthene15132.92.40.050.050.050.952.26.62.90.0513153.557.12zo(k)fluoranthene3.73.410.850.050.050.050.952.26.62.90.0513153.557.12zo(k)fluoranthene3.73.410.850.050.050.050.941.64.72.10.05133.025.72zo(a)pyrene13122.62.10.050.050.050.941.64.72.10.05133.025.72eno(1,2,3-c,d)pyrene5.25.11.20.950.050.050.940.912.71.20.05133.025.7330.9130.912.71.20.05131.20.360.57330.9130.910.950.950.920.830.430.05131.20.360.57330.911.20.051.31.20.050.930.910.71.20.051.31.20.360.57331.91.20.360.57331.91.20.91.9<	rene				-												-				0
20(b)fluoranthene 15 13 2.9 2.4 0.05 0.05 0.95 2.2 6.6 2.9 0.05 13 15 3.55 7.1 2 20(b)fluoranthene 3.7 3.4 1 0.85 0.05 0.05 0.95 0.29 0.86 2.2 1.2 0.05 13 3.7 1.06 190 0 20(a)pyrene 13 12 2.6 2.1 0.05 0.05 0.94 1.6 4.7 2.1 0.05 13 3.7 1.06 190 0 20(a)pyrene 5.2 5.1 1.2 0.95 0.05 0.95 0.94 1.6 4.7 2.1 0.05 13 3.02 5.7 2 20(a)pyrene 5.2 5.1 1.2 0.95 0.05 0.55 0.94 0.91 2.7 1.2 0.05 1.3 3.02 5.2 1.39 8.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>																					0
xo(k)fluoranthene 3.7 3.4 1 0.85 0.05 0.05 0.29 0.86 2.2 1.2 0.05 13 3.7 1.06 190 0 xo(a)pyrene 13 12 2.6 2.1 0.05 0.05 0.94 1.6 4.7 2.1 0.05 13 3.02 5.7 2 eno(1,2,3-c,d)pyrene 5.2 5.1 1.2 0.95 0.05 0.05 0.94 1.6 4.7 2.1 0.05 13 3.02 5.7 2 eno(1,2,3-c,d)pyrene 5.2 5.1 1.2 0.95 0.05 0.05 0.93 0.91 2.7 1.2 0.05 13 5.2 1.39 82 0 eno(1,2,3-c,d)pyrene 1.2 1.1 0.24 0.25 0.05 0.05 0.05 0.29 0.83 0.43 0.05 13 1.2 0.36 0.57 3 eno(a,h)anthracene 4.7 4.6 1.2 1.1 0.05 0.05 0.58 1.1 3.3 1.6 0.05 1.4 <td>•</td> <td></td> <td>0</td>	•																				0
zo(a)pyrene 13 12 2.6 2.1 0.05 0.05 0.05 0.94 1.6 4.7 2.1 0.05 13 3.02 5.7 2 zo(1,2,3-c,d)pyrene 5.2 5.1 1.2 0.95 0.05 0.05 0.05 0.91 2.7 1.2 0.05 1.39 82 0 zo(a,h)anthracene 1.2 1.1 0.24 0.25 0.05 0.05 0.05 0.05 0.91 2.7 1.2 0.05 1.3 1.2 1.39 82 0 zo(g,h,i)perylene 4.7 4.6 1.2 1.1 0.05 0.05 0.05 0.05 0.43 0.05 13 1.2 0.36 0.57 3 zo(g,h,i)perylene 4.7 4.6 1.2 1.1 0.05 0.05 0.05 0.58 1.1 3.3 1.6 0.55 1.33 4.7 1.42 640 0	enzo(k)fluoranthene					2.9															0
eno(1,2,3-c,d)pyrene 5.2 5.1 1.2 0.95 0.05 0.05 0.05 0.05 0.53 0.91 2.7 1.2 0.05 13 5.2 1.39 82 0 enzo(a,h)anthracene 1.2 1.1 0.24 0.25 0.05 0.05 0.05 0.05 0.05 0.05 0.29 0.83 0.43 0.05 13 1.2 0.36 0.57 3 4.7 4.6 1.2 1.1 0.05 0.05 0.05 0.05 0.05 1.1 3.3 1.6 0.05 13 4.7 1.42 640 0	enzo(a)pyrene					2.6															2
zo(g,h,i)perylene 4.7 4.6 1.2 1.1 0.05 0.05 0.05 0.58 1.1 3.3 1.6 0.05 1.3 4.7 1.42 640 0	deno(1,2,3-c,d)pyrene																	5.2		82	0
	ibenzo(a,h)anthracene																				3
=	enzo(g,h,i)perylene								-	0.05							-				0
	otal PAH - USEPA 16 henol - Monohydric		< 127.	1	< 120.	< 34. 1	< 16.	< .8	< .8 1	< .8	< .8	< /.16	19.4	55	< 23. 1	< .8		127			-
	nenoi - wononyunc			T	T	T	T	T	T	T	T	1	T	T	T	T	13	1	1.00	440	0

choose screening	
level from	POSresi
dropdown ->	

APPENDIX 4

- Geotechnical Laboratory Certificates
- In Situ Test Certificates

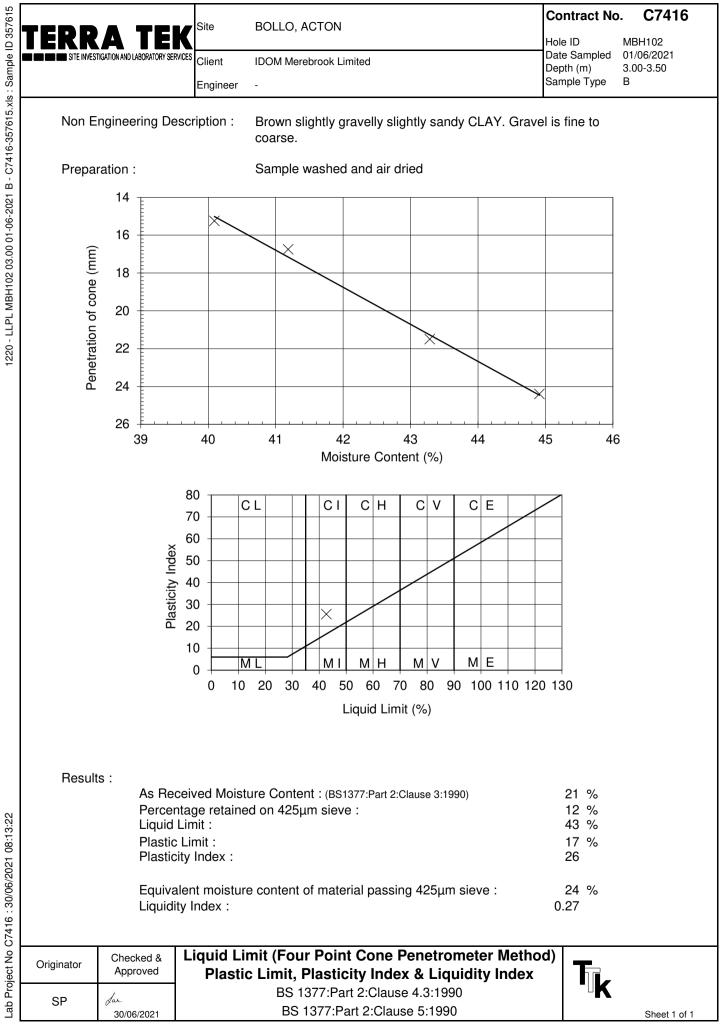
IDOM Merebrook Limited

0126

Cromford Mills Mill Lane Cromford Derbyshire DE4 3RQ For the attention of Simon Edwards

> C7416 Report No: Issue No 01

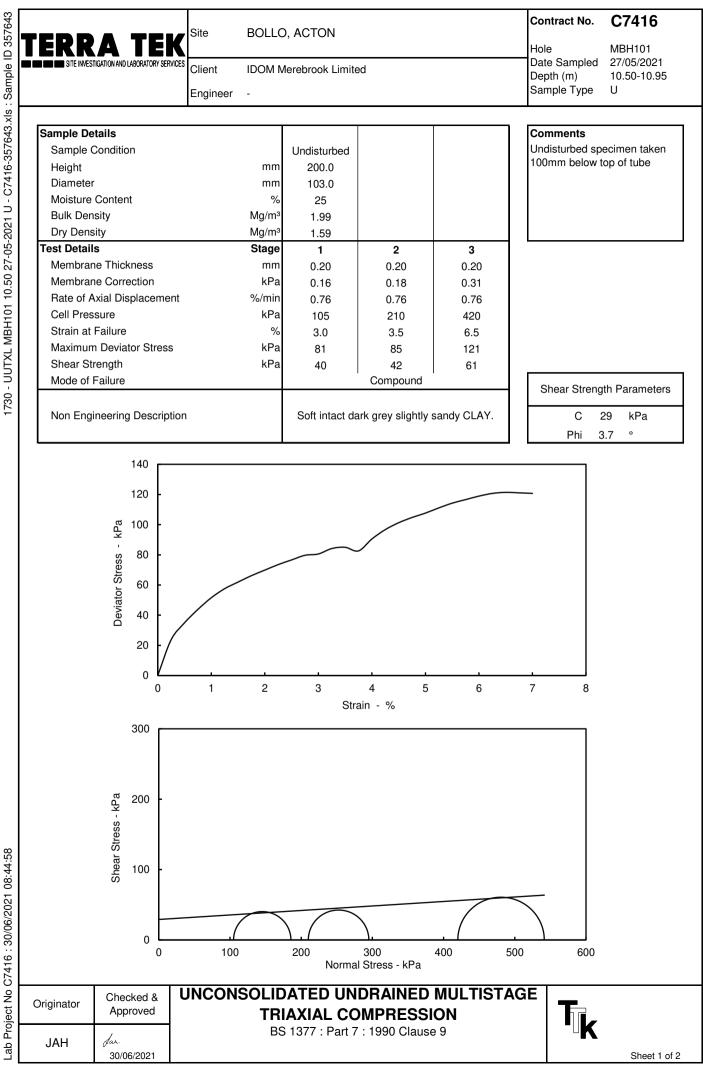
LABORATORY TEST REPORT


Project Nar	mo	BOLLO, ACTON			
Project Nar Project Nur		C7416	Date samples received		Various
Your Ref			Date written instructions recei	ived	08/06/2021
Purchase C	Order		Date testing commenced		14/06/2021
		Please find enclosed the re		ow	
	Test			•	10.0 (70.07
Item No	Test Quantity		Description		ISO 17025 Accredited
2.11	2	Moisture Content			Yes
2.11	1	Four point liquid and plastic limits			Yes
2.23	1	Non-plastic Atterberg limit			Yes
2.60	3	Particle Size Distribution			Yes
7.34	6	Multistage quick undrained triaxial			Yes
_	_	<u> </u>			
Remarks :	•	·			•
Issued by :	J Hopkins	Date of Issue :	30/06/2021		used in this report
		Jan.		S/C : Testing wa	s sub-contracted
Approved Signat	tories :	30/06/2021			
		J.Hopkins (Laboratory Coordinator), M D Brown	n (Senior Quality Manager), R Norris (Su	pervisor)	
	All re This rep	e notified to the contrary, samples will b The results reported relate to sam esults contained in this report are provis ort should not be reproduced except in	ples received in the laboratory o ional unless signed by an approv full without the written approval of	nly. ved signatory of the laboratory.	
	nultisite accre	ditation the testing contained in this repo	ort may have been performed at	another Terra Tel	
Only those	results indic	ated in this report are UKAS accredit		retations express	ed are outside
		•	AS accreditation.		
		Feedback on the this report may be left			
	ala -		College Road	North, Aston Clinton	
				astanclintar	Tel: 01494 810136 Moterrartek.co.uk
<i>m</i> CERT <i>s</i>				WW	w.terratek.co.uk

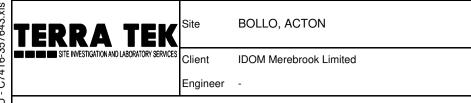
Page 1 of 1

ſERF) A TEV	Site	BOLLO, ACTON	Contract N	
	RA TEK ESTIGATION AND LABORATORY SERVICE		IDOM Merebrook Limited	Hole ID Date Sampled Depth (m)	MBH102 06/01/2021 1.50-2.00
		Engineer	-	Sample Type	B
Non	Engineering Desc	ription :	Brown slightly clayey sandy fine to coarse	e GRAVEL.	
Prep	aration :		Sample washed and air dried		
Sam	nle was determine	ad to be N	on-Plastic after preparation		
Resu	-				
	As Rece		ure Content:(BS1377:Part 2:Clause 3:1990) ed on 425μm sieve:	2.5 % 94 %	
	E an de se l	ot pe = ! = t.	e content of metarial accession 405 mm		
	Equivale	nt moistur	e content of material passing 425µm sieve	: 39 %	
Originator	Checked &				
Originator	Checked & Approved		Plastic Limit BS 1377:Part 2:Clause 5:1990	Tk	

Version 046 - 06/03/2020


Version 046 - 06/03/2020

TER	RA TEK	Site BOLLO, A	ACTON			Contract No	C7416			
	INVESTIGATION AND LABORATORY SERVICES	· •	ebrook Limited			Hole Date Sampled Depth (m) Sample Type	MBH101 27/05/2021 2.50-3.00 B			
[Particle Size	% Passing]	Ν	lon Engineering	Description				
	125.0 mm 90.0 mm 75.0 mm	100 100 100		Brown claye	y silty very sandy	fine to coarse	GRAVEL.			
	63.0 mm 50.0 mm	100 100			Sample Propo	ortions - %				
	37.5 mm	94		(Cobbles		.0			
	28.0 mm 20.0 mm	89 85			Gravel		5.6			
	14.0 mm	79			Sand	3	5.5			
	10.0 mm 6.30 mm	72 64			Silt	9	.5			
	5.00 mm	62			Clay	9	.3			
	3.35 mm 2.00 mm	57 54			Particle Diam	eter - mm				
	1.18 mm	52			D100		50			
	630 μm 425 μm	49 42			D60	4	.3			
	300 µm	32			D10	0.0	028			
	200 μm 150 μm	24 21			nity Coefficient	153	35.7			
	63 µm	19			Note	•				
	20 μm 6 μm	14 11			NOLE	5				
	2 μm	9 Iedium Coarse I	Fine Mediun	n Coarse	Fine Medi	ium Coarse]			
	Clay	Silt	Sand	l Obarac	Gra		Cobbles			
100										
90										
80										
. 70										
~ D										
09 guissing										
Percentage Passing - % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
04 enta										
Dero 30										
20										
10										
0										
U	0.002 0.006	0.02 0.06	0.2 Particle S	0.6 2 ize - mm	2 6	20	60			
Originato	Checked & Approved	PARTICLE SIZE DISTRIBUTION								
JAH	Lar. 30/06/2021	BS EN ISO 1789 BS EN ISO 1789					Sheet 1 of			


ample ID 357638	TE		RA Investigation			K	Site				ACTO										Hole			MBI	'416 +101)5/2021	
6-357638.xls : S							Client Engine			1 Mei	ebroo	k Lim	ited								Dep	oth (m) nple T)	4.50)-5.00	
2021 B - C741		ſ	Par	ticle	Size		c	% Pa	ssing	J				F			No	n Er	ngin	eerin	g De	scrip	tion]
1263 - PSD - BS EN 17892 MBH101 04.50 27-05-2021 B - C7416-557638.xls : Sample ID 357638				125.0 90.0 75.0	mm mm			1 1	00 00 00						٢	ellow	vish t	orowi	n sar	ndy fii	ne to	coars	e GR	AVE	L.	
N 17892				63.0 50.0					00 00									Sam	nle	Prop	ortio	ns - %	6			1
- BS EI				37.5	mm				96									bbles	-).0		1
- PSD				28.0 20.0					85 70									ravel						0.5		
1263				14.0	mm				55								S	and				19.0				
				10.0 6.30 5.00	mm mm				44 32 29								Silt a	& Cla	ау				0).5		
				3.35 2.00					23 19					Г				Part	icle	Dian	neter	mn	n			1
				1.18	mm				17 15					┢				100						50		1
) μm 5 μm				9					D60							16					
				300) µm				3					D10 Uniformity Coefficient							0.46					
) μm) μm				1 1						(S	Unite HW serie							34	4.8		J
							0				Note							29	s			1				
		100 90	Clay	Fin	e		edium Silt	Cc	barse		Fine		lediu Sanc		Co	barse		Fine	9		dium avel			- c	Cobbles	
	% -	80 70																								
	- sing	60				+++			+	++							+	_			-/	/				_
	Percentage Passing	50				$\left \right \right $				$\left \right $				_		<u> </u>	+	_			\vdash	_				_
	ıtage	40														<u> </u>					/					_
	arcer	30																								
2:23	Ľ																				_					
08:1		20													#		1									1
2021		10															+									1
Lab Project No C7416 : 30/06/2021 08:12:23		0	0.00)2	0.00	<u> </u> D6	0	.02	0	0.06		0.2 Part	icle	0. Size		 m	2		e	<u> </u> 3		20		60		
oject No (Orig	ginator		neckeo pprove		n	PARTICLE SIZE DISTRIBUTION										T	L								
Lab Prc	J	AH	das 30)/06/20	21	BS EN ISO 17892-4 2016 Clause 5.2 - Sieving Method							of 1													

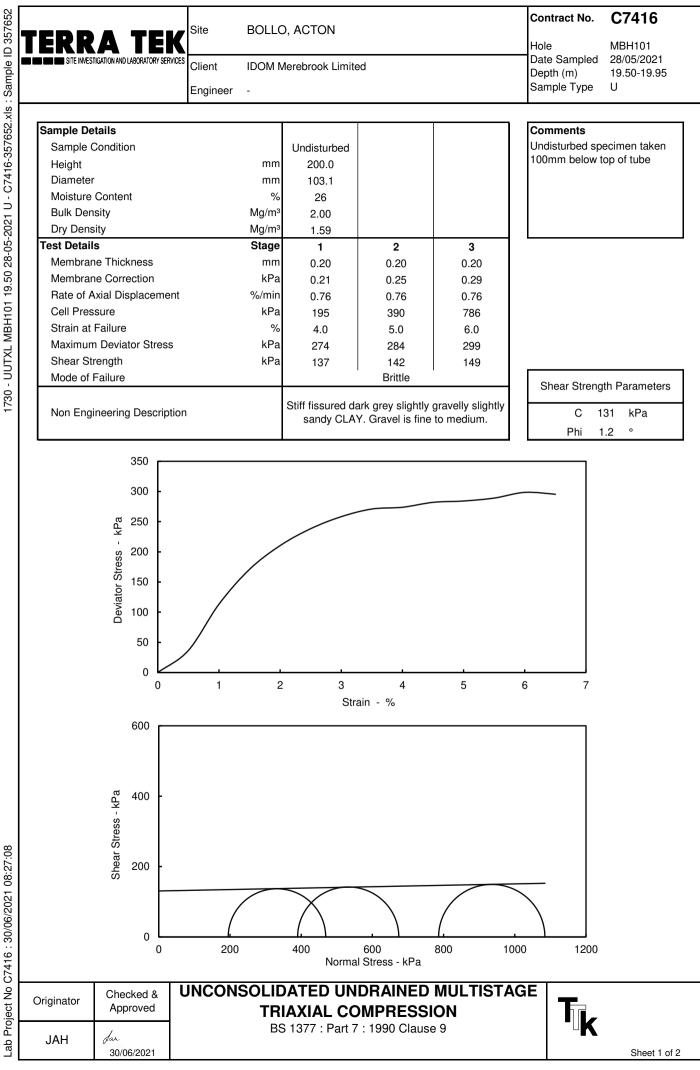
Engineer -	Sample Type B
Particle Size % Passing	Non Engineering Description
125.0 mm 100 90.0 mm 100 75.0 mm 100	Yellowish brown very sandy fin to coarse GRAVEL with rare small pockets of clay.
63.0 mm 100 50.0 mm 100	Sample Proportions - %
37.5 mm 96 28.0 mm 89	Cobbles 0.0
20.0 mm 73	Gravel 71.2
 [∞] 14.0 mm 60 10.0 mm 48 6.30 mm 38 5.00 mm 35 	Sand 27.1 Silt & Clay 1.7
3.35 mm 32 2.00 mm 29	Destista Diserector and
1.18 mm 25	Particle Diameter - mm D100 50
630 μm 19 425 μm 13	D60 14
300 μm 8 200 μm 4	D10 0.34 Uniformity Coefficient 41.2
150 µm 3	(SHW series 600, Table 6/1, footnote 5) 41.2
63 μm 2	Notes
Silt S	edium Coarse Fine Medium Coarse Cobbles
90	
80	
~ 70	
60 60 40 30 30 50 50 50 50 50 50 50 50 50 5	
φ 30 30 30	
9: 10 20 10 10 0 0.002 0.006 0.02 0.06 0.2 0 0.002 0.006 0.02 0.06 0.2 Parti Originator Checked & Approved PARTICLE SIZE JAH Jac. 30/06/2021 BS EN ISO 17892-4 2016	0.6 2 6 20 60 cle Size - mm
2 Originator Checked & Approved PARTICLE SIZE	
JAH Jar 30/06/2021 BS EN ISO 17892-4 2016	Clause 5.2 - Sieving Method Sheet 1 of 1

Version 059 - 28/02/2019

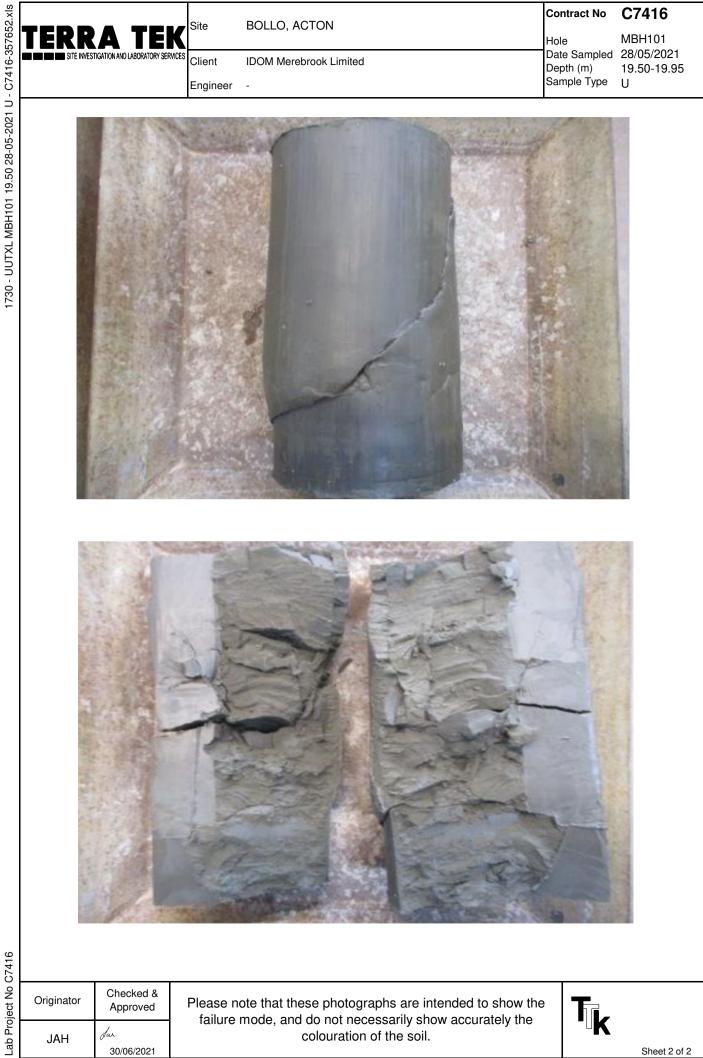
Version 034 - 22/11/2012

Hole Date Sampled 27/05/2021 Depth (m) Sample Type

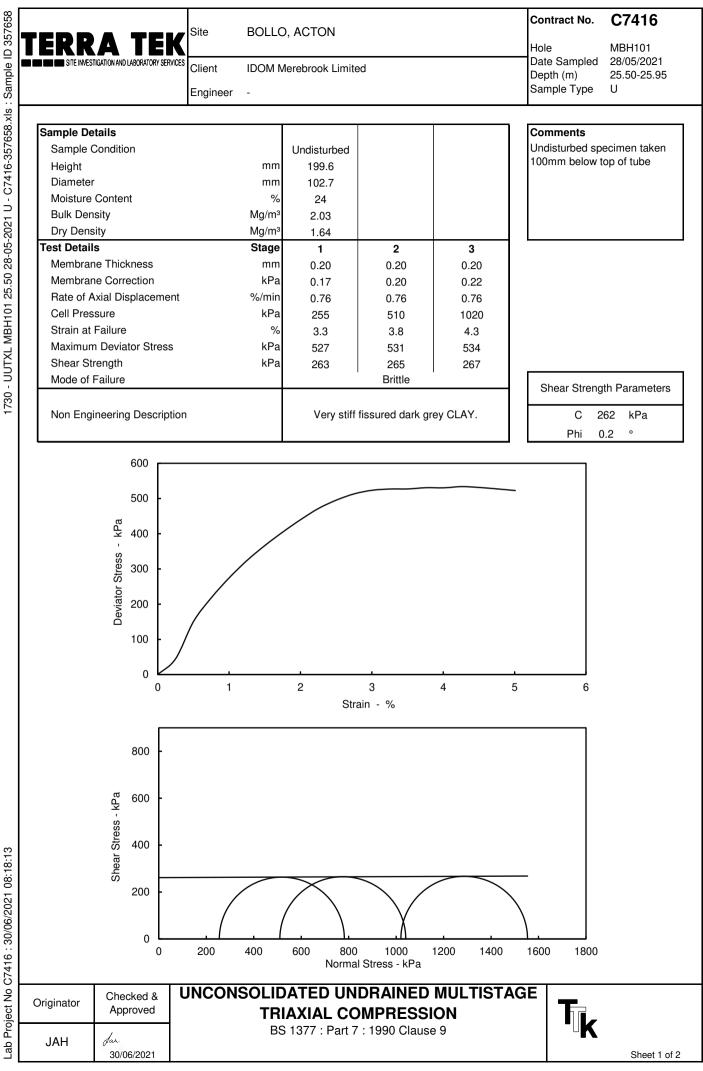
MBH101 10.50-10.95 U


#REF!

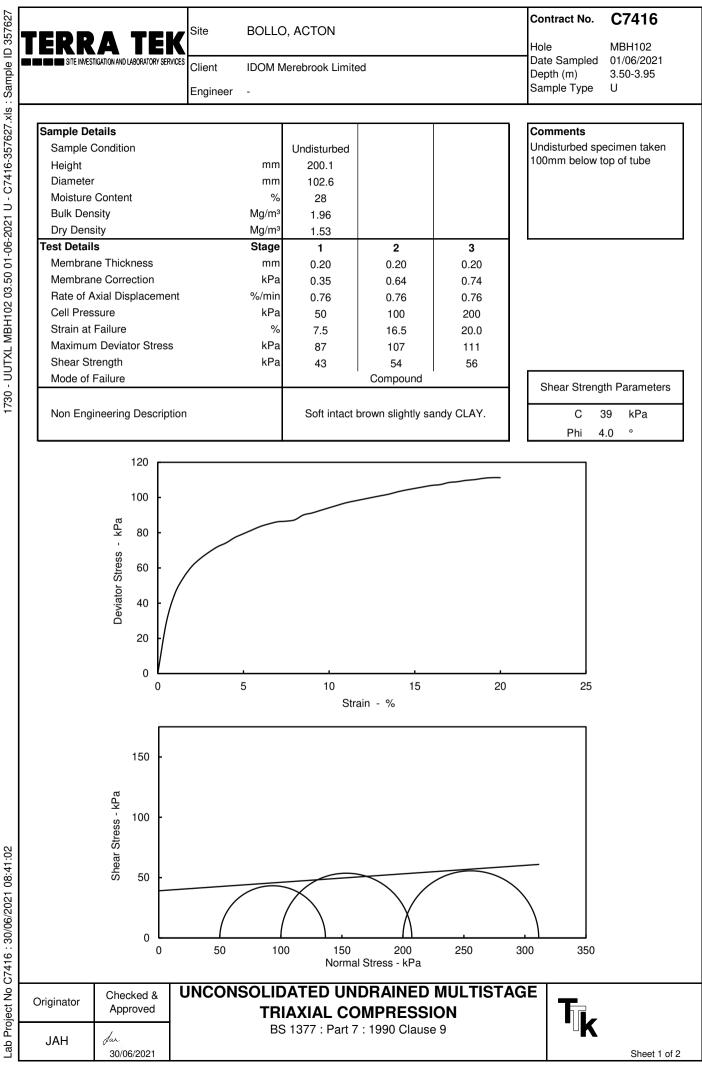
Lab Project No C7416


Checked & Originator Approved Lar. JAH 30/06/2021

Please note that these photographs are intended to show the failure mode, and do not necessarily show accurately the colouration of the soil.

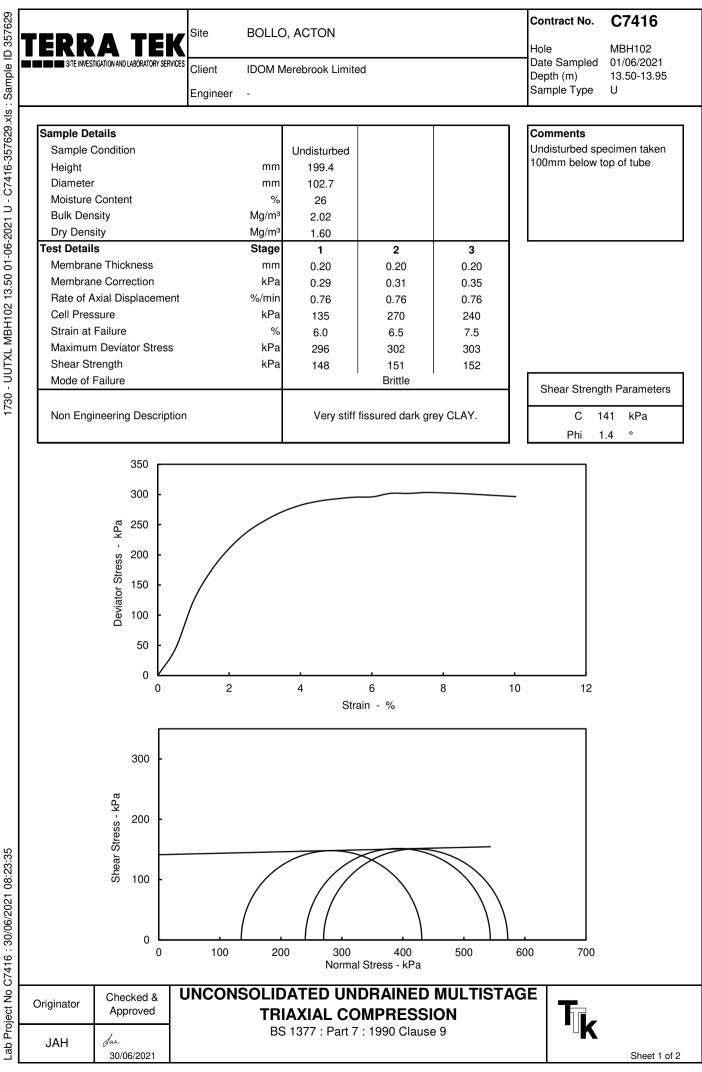


Version 034 - 22/11/2012


#REF!

Version 034 - 22/11/2012

20 | || |TV| MBH101 25 50 28 05 2021 || CZ115 257558 v/s. Scmalz



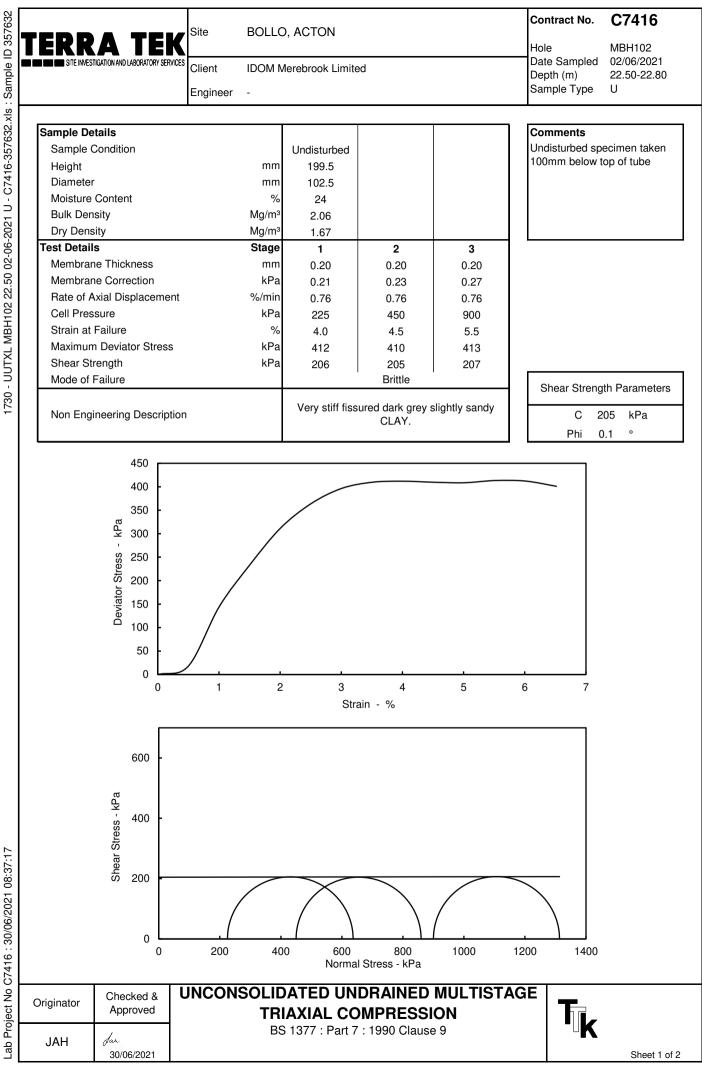
Version 034 - 22/11/2012

200 | || |TV| MPH102 02 50 01 05 2021 | | CZ115 257627 20 52201

#REF!

Version 034 - 22/11/2012

1 ULTEVI MBU100 12 E0 01 06 2021 11 CZ116 257620 Vio Science



JAH JAH JOriginator JAH JORICAL Approved JORICAL JAL JORICAL JAL

Checked &

Please note that these photographs are intended to show the failure mode, and do not necessarily show accurately the colouration of the soil.

#REF!

JAH

30/06/2021

colouration of the soil.

1140 - BRE	TERF		EK ^{si}	ite		BOLLO	D, ACT	ON									Contract N	• C7416	
E Suite Soil - C7416 01.xls	In the set of site inve	STIGATION AND LABORATO	C	lient ngineer		IDOM N	/lerebroo	ok Limite	ed										
- C74	S	ample Identifi	cation				_	as											
16 01.xls	Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Hd	Sulphate (soluble in 2:1 water extract) as SO4	Sulphate (acid soluble as SO4)	Total Sulphur										
							g/l	%	%										<u> </u>
	MBH102	11.00		D	357620	8.0	0.41	0.10	0.47										
	MBH102	16.65		D	357622	8.1	0.29	0.09	0.17										
	MBH101	7.95		D	357641	8.3	0.32	0.07	0.43										
	MBH101	16.90		D	357650	8.7	0.31	0.10	0.40										
	MBH101	23.00		D	357656		0.35	0.10	0.31										
Lab Project No C7416 : 22/06/2021 07:12:02																			
C7416 :			Terra	a Tek Analy	of Detection	TP019	0.01 TP169	0.01 TP171	0.01 TP129										
22/06/2021 07	Acc Originator	Checked Approve	certs U=UK/	AS N=No a	ccreditation	reditation M M M M M									T		<u> </u>		
7:12:02	DAB	S. Langre 22/06/202	m 21															Sheet 1	of 1

Version 011 - 26/07/2012

6 01.xls	TEDE) A TI	EK s	ite	BOLLO,	ACTON				Contract No	C7416	
S1 - Descriptions - C7416 01.xls	SITE INV	ESTIGATION AND LABORATO	RY SERVICES C	lient	IDOM Me	rebrook Limi	ited			_		
criptic			E	ngineer		[]			I		1	
8050 - App S1 - Des	Exploratory Hole	Sample Identifi Depth m	cation Sample Ref	Sample Type	Lab Sample ID	Date Sampled	Temperature on receipt °C	PRIMARY MATRIX	Secondary Matrix	Additional matrix	% Loss at 30C	% Retained 2mm
	MBH102	11.00		D	357620	Deviating	15.6	CLAY			16.9	39.1
	MBH102	16.65		D	357622	Deviating	15.6	SANDSTONE			6.5	51.0
	MBH101	7.95		D	357641	Deviating	15.6	CLAY			22.9	27.2
	MBH101	16.90		D	357650	Deviating	15.6	CLAY			18.6	36.0
	MBH101	23.00		D	357656	Deviating	15.6	CLAY			18.1	34.9
-	Notes											
		Other coars	se granu e expres	ılar mate	erials suc	ch as grav	el, are no	t accredited where	e they constitute the n e they comprise the m ccept where stated. Sa	ajor component o	of the sar	nple.
:12:05		With the ex	ception						oves any material > 2 ix types in the above t		/sis. The	quantity
Lab Project No C7416 : 22/06/2021 07:12:05		possible. To chosen. Wi	a UKAS/MCERTS ac cted tests and the per ular parameter, a labo ent, will be selected.	formance of the	subcontr	actor						
roject No C	Originator	Checked Approve	ed			SAM	PLE DE	ESCRIPTIONS		Арре	ndix S1	
Lab P	DAB	5. Langre 22/06/202	m 21							Shee	et 1 of 1	

Moor Lane, Witton, Birmingham, B6 7HG Lab Project No C7416 : 22/06/2021 07:12:

Version 017 - 22/01/2015

- C7416 01.xls	TERF	RA TI	EK s	ite	BOLLO,	ACTON					Co	ontract No	C7416	
-ID - C74		ESTIGATION AND LABORATO	RY SERVICES C	lient	IDOM Me	rebrook Limited	1							
s - SOL				ngineer				<u> </u>				Ι		
sample		Sample Identifi	cation				۲ ۲		ting con	ditions		-		
8051 - App S2 - Deviating samples - SOLID	Exploratory Hole	Depth m	Sample Ref	Sample Type	Lab Sample ID	Date Sampled	Sampling date has not been provided	Exceeded maximium holding time for selected test(s)	Presence of headspace in sample vial	Poorly fitting cap or lid	Damaged container			Preservatives used
	MBH102	11.00		D	357620	Deviating								
	MBH102	16.65		D	357622	Deviating								
	MBH101	7.95		D	357641	Deviating								
	MBH101	16.90		D	357650	Deviating								
	MBH101	23.00		D	357656	Deviating								
Project No C7416 : 22/06/2021 07:12:07	NOTES	2 The abser3 Deviations	ice of "X" o due to use	r "Yes" in th of incorrec	ie table abo	eviating may be co ve indicates no re ntainer are showr ables.	ported de	eviations.	tion type:	s are sho	wn as ">	(" or "Yes" in the	e table above	
roject No C	Originator	Checked Approve	d		DEVIATING SAMPLES - SOIL							T _k	Appendi	ix S2
Lab P	DAB	S. Lorga 22/06/202	سر 1									Sheet 1 of 1		

Version 017 - 22/01/2015

Moor Lane, Witton, Birmingham, B6 7HG

6 01.xls	TEDE	A TEK	Site BOLLO	, ACTON	Contract N	• C741	6
- C741		STIGATION AND LABORATORY SERVICE	.e	erebrook Limited			
s Soil -			Engineer				
8100 - App S3 - Test Methods Soil - C7416 01.xls	Method Code	Ref	erence	Description of Method	ISO17025 Accredited	MCERTS Accredited	Wet/Dry Sample Tested
App S3 -	GPO01	BS1377, Part 3, 1990: - Purposes.	Soils for Civil Engineering	Preparation of soil samples for chemical analysis	Yes	Yes	N/A
8100	GP012	BS EN 12457-3: Chara Compliance test for lea materials and sludges (ching of granular waste	Preparation of soil samples for two-stage leachate test			Dry
	1P019	BS1377, Part 3, 1990: Purposes.	Soils for Civil Engineering	Determination of pH in 2.5:1 water/soil extract using pH meter.	Yes	Yes	Dry
	1 PU 37	MAFF Book 427: The Materials: Method 8	Analysis of Agricultural	Determination of water soluble boron by ICP-OES	Yes		Dry
	TP040	APHA/AWWA, 19th ed	ition: Method 3500Cr-D	Determination of hexavalent chromium by colorimetry.	Yes		Dry
	1P041	BS1377, Part 3, 1990: Purposes.	Soils for Civil Engineering	Determination of organic matter by titrimetry.	Yes		Dry
	1P042	BS1377, Part 3, 1990: Purposes.	Soils for Civil Engineering	Determination of loss on ignition at 50-440°C by gravimetry	Yes	Yes	Dry
	12045	GACHAMJA A.M. Chro 1992 9-11 (modified)	matography and Analysis:	Determination of polyaromatic hydrocarbons extractable in dichloromethane, by GC/MS	Yes	Yes	Dry
	IP046	MEWAM method: Pher 4-aminoantipyrine meth	nols in water and Effluents: nod	Determination of monohydric phenols by steam distillation/colorimetry	Yes	Yes	Dry
	TP047 I	MEWAM method: Cyar	nide in Waters etc	Determination of free cyanide by steam distillation/colorimetry	Yes		Dry
	TP048	MEWAM method: Cyar	nide in Waters etc	Determination of total cyanide by steam distillation/colorimetry.	Yes	Yes	Dry
	TP049 I	MEWAM method: Cyar	ide in Waters etc	Determination of complex cyanide by calculation	Yes		Dry
	I P050	MEWAM method: Dete 1985	rmination of Thiocyanate	Determination of thiocyanate by colorimetry	Yes	Yes	Dry
	TP051 I	USEPA Method 9030B		Determination of acid soluble sulphides by steam distillation/colorimetry.	Yes	Yes	Wet
	TP067	TNRCC Method 1005:	2001 (modified)	Determination of pentane/acetone extractable petroleum hydrocarbons (C8 - C40) by GC/FID	Yes	Yes	Wet
	TP072 I	In-house documented r	nethod	Determination of ammoniacal nitrogen by colorimetry			Dry
	TP074 I	In-house documented r	nethod	Determination of water soluble fluoride by ion selective electrode			Dry
	1 PU98	BS1377, Part 3, 1990: Purposes.	Soils for Civil Engineering	Determination of acid soluble chloride by titrimetry			Dry
	I PU99	BS1377, Part 3, 1990: Purposes.	Soils for Civil Engineering	Determination of water soluble chloride by titrimetry	Yes	Yes	Dry
2:09	TP100 f	TP100 Wisconsin DNR Modified GRO method, Methor for Determining Gasoline Range Organics		Determination of Volatile Petroleum Hydrocarbons/GRO.	Yes	Yes	Wet
Lab Project No C7416 : 22/06/2021 07:12:09	mat 2. R 3. V sam 4. T 5. T San	erials, ie gravel, are not ac Results are expressed on a Vith the exception of samp uples is recorded and the ii The laboratory records the The test results pertain only	ccredited where they comprise dry-weight basis (samples dri- les analysed for asbestos, the information is available on requ date of analysis of each paran v to the samples provided and	sand & loam matrix types only, where they constitute the major comp the major component of the sample. ed at <30°C) except where stated. laboratory removes any material >2mm prior to analysis. The quantity lest. neter. This information is available on request. is not guaranteed to be representative of the parent material in whole are included where provided by the client, Terra Tek accepts no resp	and nature of ar or part from whic	ny material remo	oved from as taken.
roject No (Originator	Checked & Approved	SUMMARY OF I	N-HOUSE ANALYTICAL TEST METHOD	s T	Арра	endix S3
Lab P	N/A	N/A		(SOIL)			et 1 of 2

Version 026 - 21/05/2009

Moor Lane, Witton, Birmingham, B6 7HG

3 01.xls	TEDI) A TEM	Site BOLLO,	ACTON	Contract N	• C741	6
ds Soil - C7416 01.xls		RA TEK VESTIGATION AND LABORATORY SERVIC	nce .	erebrook Limited			
8100 - App S3 - Test Methods Soil	Method Code	Re	eference	Description of Method	ISO17025 Accredited	MCERTS Accredited	Wet/Dry Sample Tested
App S3 -	TP110	USEPA Methods 8082	2A & 3665A	Determination of Total & Speciated 7 PCB Congeners by GC/MS SIM	Yes	Yes	Wet
8100 - /	TP114	BS1377, Part 3, 1990: Purposes.	Soils for Civil Engineering	Determination of carbonate in soil (rapid titration method)			Dry
	TP126	TNRCC Method 1006	(modified)	Extracted petroleum hydrocarbons from TP067 split into aromatic and aliphatic fractions. Analysed by GC/FID.	Yes		Wet
	TP129	In-house documented	method	Determination of total sulphur by ICP-OES spectroscopy	Yes	Yes	Dry
	TP134	In-house documented	method	Determination of water soluble chloride by titrimetry	Yes	Yes	Dry
	TP135	USEPA Methods 8100 In-house method TP04		Determination of polyaromatic hydrocarbons extractable in dichloromethane, by GC/MS (with concentration stage)			Dry
	TP137	BS7755: Section 3.9:	1995/ISO 11466:1995	Determination of acid extractable metals in soil by ICP- OES	Selected	Selected	Dry
	TP145	USEPA Methods 3550)C & 8270D	Determination of Semi-Volatile Organic Compounds by GC/MS	Yes	Yes	Wet
	TP147	USEPA Methods 8082	2A & 3665A	Determination of total & speciated WHO 12 PCB Congeners by GC/MS SIM.			Wet
	TP150	USEPA Methods 8081	B & 8141B	Determination of pesticides and herbicides in soil by GC/MS SIM			Dry
	TP152	USEPA Method 556		Determination of carbonyls by GC/MS.			Wet
	TP154	USEPA Method 5021. GRO method	Wisconsin DNR modified	Determination of volatiles in by GC/MS headspace	Yes	Selected	Wet
	TP158	USEPA Method 1671		Determination of glycols by GC/FID DI			Wet
	TP169	In-house documented	method	Determination of water soluble sulphate in 2:1 water/soil extract by ICP-OES spectroscopy	Yes	Yes	Wet
	TP171	In-house documented	method	Determination of acid soluble sulphate by ICP-OES spectroscopy	Yes	Yes	Dry
	TP174	In-house documented	method	Determination of Total Organic Carbon in soils by high temperature combustion & NDIR detection	Yes		Dry
	TP178	In-house documented	method	Determination of water soluble nitrate by ion selective electrode			Dry
	TP181	HSG 248 Asbestos: T (Appendix 2)	he Analysts Guide	Asbestos Identification in bulk materials	Yes	No	Dry
	TP183		he Analysts Guide ng Committee of Analysts: Asbestos in Soil (2017)	Asbestos Identification & Quantification in soils	Yes	No	Dry
2:10	TP185	In-house documented		Determination of loss on ignition at 150-440°C by gravimetry	No	No	Dry
C7416:22/06/202107:12:10	ma 2. 3. sa 4. 5. Sa	aterials, ie gravel, are not a Results are expressed on With the exception of sam imples is recorded and the The laboratory records the The test results pertain on	accredited where they comprise to a dry-weight basis (samples drie ples analysed for asbestos, the information is available on requi- date of analysis of each param ly to the samples provided and is	sand & loam matrix types only, where they constitute the major comp the major component of the sample. ed at <30°C) except where stated. laboratory removes any material >2mm prior to analysis. The quantity est. eter. This information is available on request. s not guaranteed to be representative of the parent material in whole are included where provided by the client, Terra Tek accepts no resp	and nature of a or part from whi	ny material remo ch the sample w	oved from as taken.
Lab Project No C7	Originator	Checked & Approved	SUMMARY OF I	N-HOUSE ANALYTICAL TEST METHOD	s T	Арре	endix S3
Lab Pr	N/A	N/A		(SOIL)		She	et 2 of 2

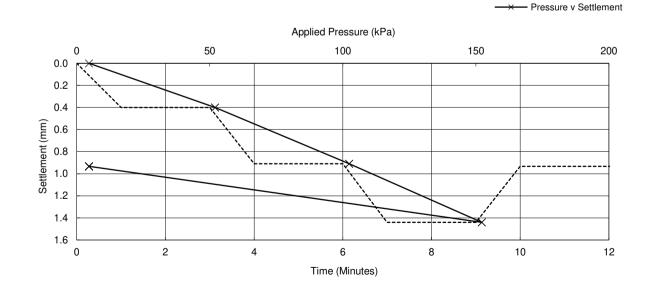
Version 026 - 21/05/2009

IDOM Merebrook Limited

Cromford Mills Mill Lane Cromford Derbyshire DE4 3RQ For the attention of Simon Edwards

> Report No: Issue No

C7409 01


ACTON Project Name C7409 **Project Number** Date samples received Your Ref Date written instructions received 01/06/2021 Purchase Order Date testing commenced 01/06/2021 Please find enclosed the results as summarised below Test ISO 17025 Description Item No Accredited Quantity 10.06 Plate bearing test 5 Yes Remarks : Key to symbols used in this report Issued by : J Hopkins Date of Issue : 03/06/2021 S/C : Testing was sub-contracted Lar. Approved Signatories : 03/06/2021 J.Hopkins (Laboratory Coordinator), M D Brown (Senior Quality Manager), R Norris (Supervisor) Unless we are notified to the contrary, samples will be disposed after a period of one month from this date. The results reported relate to samples received in the laboratory only. All results contained in this report are provisional unless signed by an approved signatory This report should not be reproduced except in full without the written approval of the laboratory. Under multisite accreditation the testing contained in this report may have been performed at another Terra Tek laboratory. Only those results indicated in this report are UKAS accredited and any opinions or interpretations expressed are outside the scope of UKAS accreditation. Feedback on the this report may be left via our website terratek.co.uk/feedback College Road North, Aston Clinton, Bucks, HP22 5E Tel: 01494 810136 astonclinton@terrartek.co.uk www.terratek.co.uk Terra Tek Ltd is registered in Scotland No. 121594 es in Airdrie, Birmingham, Belfast and Aston Clinton 0126

LABORATORY TEST REPORT

Head Office : 62 Rochsolloch Road, Airdrie, ML6 9BG

Page 1 of 1

	S	Site	ACTON			Contract No	C7409
TERRA '	ТЕК		ABTON				
Site Investigation & Labo	oratory Services	Client	IDOM Merebrook	< Limited			
	E	Inginee	r				
Description :		MA	DE GROUND (B	rown silty very sa	andy fine to coars	e crushed con	crete).
T		-					
Test Area			st 1. 06/2021				
Date of Test Weather Co		Cle					
Temperature			ximum 19.2°C N	linimum 18 /°C			
Reaction load			cavator	Viinintiani 10.4 O			
Plate Diame			ōmm				
Requested I		50		0 kPa			
TERRATEK ACTON Client IDOM Merebrook Limited Engineer Engineer Description : MADE GROUND (Brown silty very sandy fine to coarse crushed concrete Test Area Test 1. Date of Test 01/06/2021 Weather Conditions Clear Temperature (°C) Maximum 19.2°C Minimum 18.4°C Reaction load Excavator Plate Diameter 455mm Requested Increment 50 100 150 KPa							
Thickness of layer N/A mm							
	Selecte	þ	Applied	Cumulative	Ground	Total Time	
	Pressu		Pressure	Ground	Settlement per	Taken	
			Increment (kPa)	Settlement (mm)	Load Increment (mm)	(mins)	
	0			. ,	0	0	
	0 50		5 50	0.00	-	0	
	100		50 100	0.40 0.91	0.40 0.51	3 6	
	150		150	1.44	0.53	9	
	100						
	0		5	0.93	-0.51	12	

Equivalent CBR Value 15%

Checked &

Approved

03/06/2021

Lar.

IN-SITU PLATE LOADING TEST California Bearing Ratio In-House Procedure TP175

Sheet 1 of 1

Version 33 February 2021 MDB

03/06/2021 12:22 www.terra-tek.co.uk

TEPPA	Site	ACTON			Contract No	o C7409
Site Investigation & Labo	Client		k Limited			
Description :		IADE GROUND (V oarse).	ery dark grey slig	htly sity very grav	velly sand. G	ravel is fine to
Test Area Date of Test Weather Con Temperature (Reaction load Plate Diame Requested In Load Offset Thickness of	nditions C (°C) M ter 4 ncrement 2	est 2. 1/06/2021 Clear Maximum 21.7°C M Excavator 55mm 5 50 0 kPa I/A mm	∕linimum 20.7°C kPa			
	Selected Pressure	Applied Pressure a) Increment (kPa)	Cumulative Ground Settlement (mm)	Ground Settlement per Load Increment (mm)	Total Time Taken (mins)	
	0	2	0.00	0	0	1

Settlement versus Time and Applied Pressure

0.98

1.88

1.08

0.98

0.89

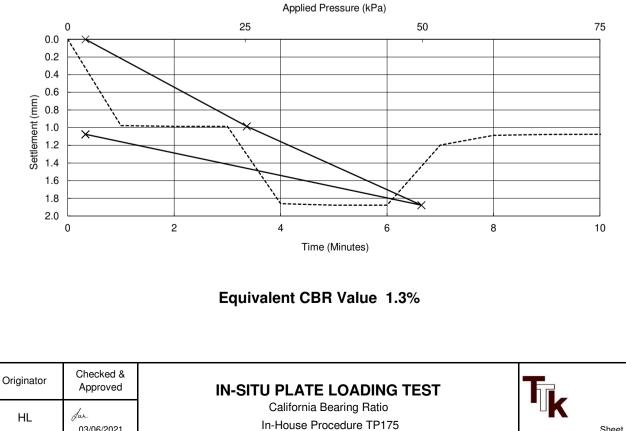
-0.80

25

50

0

25


50

2

----- Time v Settlement - Pressure v Settlement

3 6

10

Version 33 February 2021 MDB

www.terra-tek.co.uk 03/06/2021 12:22

03/06/2021

Sheet 1 of 1

	Site	ACTON			Contract No	C7409						
Site Investigation & Labo	Client	IDOM Merebrook	Limited									
	Enginee		Linited									
Description :	MA	DE GROUND (B	rown slightly silty	very sandy fine t	o coarse crust	ned concrete).						
	_											
Test Area Date of Test		st 3. /06/2021										
Weather Co												
Temperature (Clear Maximum 27.2°C Minimum 26°C										
Reaction load	,	Excavator										
Plate Diamet		455mm										
Requested I			0 kPa									
Load Offset	2k											
Thickness of		A mm										
	-											
	Selected	Applied	Cumulative	Ground	Total Time							
	Pressure	Applied Pressure	Ground	Settlement per	Taken							
		Increment (kPa)	Settlement	Load Increment	(mins)							
			(mm)	(mm)								
	0	2	0.00	0	0							
	50	50	0.26	0.26	3							
	100	100	0.79	0.53	6							
	150 0	150 2	1.29 0.92	0.49 -0.37	9 12							
	0	۷.	0.92	-0.37	12							
		0	. Time and Analia									
		Settlement versu	is Time and Applied	Pressure								
	Time v Se											
						v Settlement						
		A	oplied Pressure (kPa)								
0 0.0 r×~~		50	100	150		200						

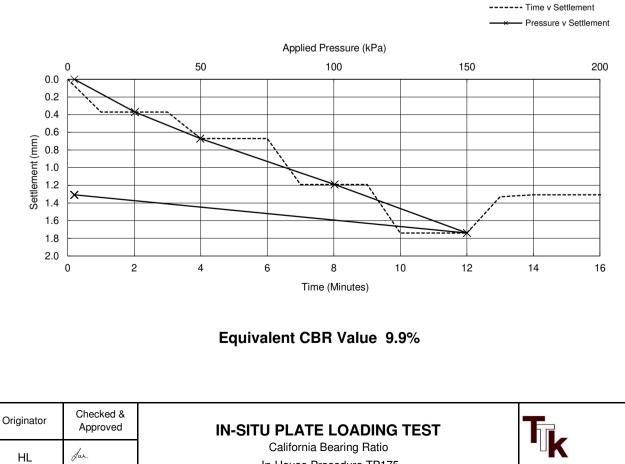
0.4 Settlement (mm) 0.6 0.8 1.0 1.2 1.4 0 2 4 6 8 10 12 Time (Minutes) Equivalent CBR Value 17% Checked & T_k Originator Approved IN-SITU PLATE LOADING TEST California Bearing Ratio Lar. HL

In-House Procedure TP175

03/06/2021

www.terra-tek.co.uk 03/06/2021 12:22

Sheet 1 of 1


P22 5EZ	TERR	A TEK	Site	ACTON			Contract No	C7409
ylesbury, HP22 5EZ	Site Investigati		('liont	IDOM Merebrool	k Limited		_	
" on, Ayl	Descrip	otion :	MA	ADE GROUND (B	rown slightly silty	very sandy fine t	o coarse crush	ned concrete).
www.renarten.ce College Road North, Aston Clinton, Aylesbury, HP22	Temper Reaction Plate D Reques Load C	[:] Test er Conditions ature (°C) n load Diameter sted Incremer	01/ Cle Ma Ex 45: nt 25 2kl	uximum 27.2°C M cavator 5mm 50 0	Minimum 26°C kPa			
		Pre	ected ssure ent (kPa)	Applied Pressure Increment (kPa)	Cumulative Ground Settlement (mm)	Ground Settlement per Load Increment (mm)	Total Time Taken (mins)	
			0	2	0.00	0	0	
			25 50	25 50	0.69 1.45	0.69 0.76	3 6	
			0	2	0.98	-0.47	9	
				Settlement versi	us Time and Appliec	d Pressure	Time v Se Pressure	ettlement v Settlement
				A	pplied Pressure (kPa)		
	(0.0) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		25		50		75
	0.2							
	0.4							
	6.0 mt	``````````````````````````````````````		, ×				
	6.0 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	×				,		
	0.2 Seft			<u>``</u>				
	1.4			· · · · ·		\searrow		
	1.6)	2	4		6	8	10
		-	-	-	Time (Minutes)	-	-	
Version 33 February 2021 MDB				Equivalen	t CBR Value	2.1%		
ו 33 Febru	Originator	Checked & Approved					Ta	
Versior	HL	Jar. 03/06/2021			fornia Bearing Rationus Procedure TP1			Sheet 1 of 1

www.terra-tek.co.uk 03/06/2021 12:21

lesbury, HP22 5EZ	TERRA TEK Site Investigation & Laboratory Services	Site Client Engineer	ACTON	k Limited		Contract No	o C7409
Aston Clinton, Aylesbury	Description :	MA	DE GROUND (B	rown slighty silty	very sandy fine to	coarse crus	hed concrete).
on Cli	Test Area	Tes	t 5.				
Aste	Date of Test	01/0	06/2021				
Road North,	Weather Conditions	Clea	ar				
d Nc	Temperature (°C)	Max	kimum 26°C Mi	nimum 25.4°C			
Road	Reaction load	Exc	avator				
ge I	Plate Diameter	455	mm				
College	Requested Increment	25	50 100	150 0 kP	a		
0	Load Offset	2kP	а				
	Thickness of layer	N/A	mm				
	Selec	ted	Applied	Cumulative	Ground Settlement per	Total Time	

Selected Pressure Increment (kPa)	Applied Pressure Increment (kPa)	Cumulative Ground Settlement (mm)	Ground Settlement per Load Increment (mm)	Total Time Taken (mins)
0	2	0.00	0	0
25	25	0.37	0.37	3
50	50	0.67	0.30	6
100	100	1.19	0.52	9
150	150	1.74	0.55	12
0	2	1.31	-0.43	15

Settlement versus Time and Applied Pressure

Lar. 03/06/2021

California Bearing Ratio In-House Procedure TP175

Sheet 1 of 1

IDOM

APPENDIX 5

- Field Monitoring Records
- Groundwater Level Data
- Hazardous Soil Gas Data

GAS MONITORING RECORD ROUND 1

		FI	ow and Press	ure Measureme	nts			Gas Meas	surements			VOC Mea	surements	Dip Meas	surements	
Location		F	low	Atmospheric Pressure	Differential Pressure	Methane	Methane LEL	Carbon Dioxide	Oxygen	Carbon Monoxide	Hydrogen Sulphide	Hexane	PID	Depth to Water	Depth to Base	
Reference	Time	max	steady	Tressure	Tressure			DIOXIG		MOTOXICE	oupnice					Comments
			hr ⁻¹	mb	Pa	%	%	%	%	ppm	ppm	%	ppm	m	m	
MBH1	07:30	0.1	0.1	981	0	0	0	0.1	18.4	0	0	0.009	nr	3.19	3.21	flush
MBH2	09:00	-0.1	-0.1	981	0	0	0	3.6	12.5	0	0	0.007	nr	4.92	4.94	flush
MWS1	07:10	-0.2	0	981	0	0	0	0.1	19.4	0	0	0.010	nr	dry	1.03	flush. 0.02 m of silty sediment at base, otherwise dry
MWS2	07:00	0	0	982	0	0	0	0.4	19.6	0	0	0.012	nr	dry	1.19	flush
MWS3	08:30	0.1	0.1	981	0	0	0	2.4	14.4	0	0	0.008	nr	dry	1.37	flush
MWS4	08:15	-0.3	-0.3	981	-1	0	0	2	13.8	0	0	0.008	nr	dry	3.87	flush. 0.02 m of silty sediment at base, otherwise dry
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
							nr = not recorded	1	Gas A	nalyser	P	ID			Site:	Stirling Road, Acton
Weat	thor		Ivercast mild d	ccasional show	ers			Model:	GFN	M435		-		Pro	ject Number:	21849
Weat			vereast, mild, t	ocasional show	010		Sei	rial Number:	11	839	-	-		N	Ionitored By:	Andrew Harris
							Date of Last	Calibration:	21/06	6/2019		-			Date:	27/11/2019

GAS MONITORING RECORD ROUND 2

		Fl	ow and Pressu	re Measureme	ents			Gas Meas	urements			VOC Meas	surements	Dip Meas	urements	
Location		FI	low	Atmospheric Pressure	Differential Pressure	Methane	Methane LEL	Carbon Dioxide	Oxygen	Carbon Monoxide	Hydrogen Sulphide	Hexane	PID	Depth to Water	Depth to Base	
Reference	Time	max	steady	Tressure	Tressure			DIOXIG		MONOXICE	oupnide					Comments
			hr ⁻¹	mb	Pa	%	%	%	%	ppm	ppm	%	ppm	m	m	
MBH1	07:30	0	0	1018	0	0	0	0.2	19.9	0	0	0.013	nr	dry	3.12	Flush, silty
MBH2	08:15	0	0	1019	0	0	0	0.7	18.2	0	0	0.011	nr	dry	4.90	Flush, silty
MWS1	07:00	0	0	1019	0	0	0	0.1	20	0	0	0.015	nr	dry	1.03	Flush
MWS2	07:15	0	0	1019	0	0	0	0.3	19.9	0	0	0.012	nr	dry	1.18	Flush
MWS3	08:30	0	0	1019	0	0	0	2.3	15.5	0	0	0.011	nr	dry	1.36	Flush
MWS4	08:00	0	0	1019	0	0	0	0.6	17.8	0	0	0.011	nr	dry	3.87	Flush
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
							nr = not recorded	d	Gas A	nalyser	P	ID			Site:	Stirling Road, Acton
Weat	ther:		Drv. ove	cast, cold				Model:	GFN	/435		-		Pro	ject Number:	21849
			2.9, 300				Se	rial Number:	11	839		-		N	lonitored By:	Andrew harris
							Date of Last	Calibration:	21/06	6/2019		-			Date:	05/12/2019

GAS MONITORING RECORD ROUND 3

		FI	ow and Pressu	re Measureme	nts			Gas Meas	urements			VOC Meas	surements	Dip Meas	urements	
Location		F	low	Atmospheric Pressure	Differential Pressure	Methane	Methane LEL	Carbon Dioxide	Oxygen	Carbon Monoxide	Hydrogen Sulphide	Hexane	PID	Depth to Water	Depth to Base	
Reference	Time	max	steady	Tressure	Tressure			DIOXIG		MONOXICE	oulpinde					Comments
			hr ⁻¹	mb	Pa	%	%	%	%	ppm	ppm	%	ppm	m	m	
MBH1	07:30	0	0	1004	0	0	0	0.6	18	0	0	0.014	nr	3.08	3.12	Flush
MBH2	08:15	-0.1	0	1005	0	0	0	11	17.8	0	0	0.014	nr	dry	4.93	Flush
MWS1	07:00	-0.1	0	1006	0	0	0	0.3	18.3	0	0	0.018	nr	dry	1.05	Flush
MWS2	07:15	0	0	1005	0	0	0	0.3	19.5	0	0	0.015	nr	dry	1.19	Flush. Headworks flooded
MWS3	08:30	0	0	1004	0	0	0	1.7	17	0	0	0.014	nr	dry	1.38	Flush
MWS4	08:00	0	0	1005	0	0	0	1.8	15	0	0	0.014	nr	dry	3.88	Flush
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
							nr = not recorded	tt	Gas A	nalyser	P	D			Site:	Stirling Road, Acton
Weat	ther:		Drv co	ld, clear				Model:	GFN	1435				Pro	ject Number:	21849
			2.,, 00	,			Se	rial Number:	11	839		-		N	lonitored By:	Andrew Harris
							Date of Last	Calibration:	21/06	/2019		-			Date:	11/12/2019

APPENDIX 6

Gas Risk Assessment

MODIFIED WILSON AND CARD GAS CHARACTERISTIC SITUATION

SITE:	Stirling Road, Acton		JOB NUMBER: 21849		20/12/2019				
	Carbon Dioxide Maximum Gas Concentration Maximum Measured Steady Flow Gas Screening Value Characteristic Situation 1		carbon dioxide concentration greater than 5% consider Characteristic Situation 2		<u>Methane</u> Maximum Gas Concentration Maximum Measured Peak Flow Gas Screening Value	0.10 % 0.10 L hr ⁻¹ 0.00 L hr ⁻¹			
			if measured values are zero then resolut e carbon dioxide or methane characteristic		Characteristic Situation of instrument is used for calculation of GS n value defines overall characterstic situati				

Modified Wilson and Card Classification

					BS 8485:2015+A1:2019 Gas Protection Scores - refer to standard for full guidance Minimum Gas Protection Score Required					
Characteristic Situation	Risk Classification	Gas Screening Value Threshold (L hr ⁻¹)	Additional Factors	Typical Source of Generation	Type A Building	Type B Building	Type C Building	Type D Building		
1	very low risk	<0.07	typically methane not to exceed 1% and/or carbon dioxide 5% otherwise consider increase to situation 2	natural soils with low organic content; 'typical' made ground	0	0	0	0		
2	low risk	0.07 to <0.7	borehole air flow rate not to exceed 70 L hr ⁻¹ otherwise consider increase to situation 3	natural soils with high peat/organic content; 'typical' made ground	ntent; 3.5 3.5		2.5	1.5		
3	moderate risk	0.7 to <3.5		old landfill, inert waste, mineworking flooded	4.5	4	3	2.5		
4	moderate to high risk	3.5 to <15	quantitative risk assessment required to evaluate scope of protective measures	mineworking susceptible to flooding, completed landfill	6.5 ^{A)}	5.5 ^{A)}	4.5	3.5		
5	high risk	15 to <70		mineworking unflooded inactive with shallow workings near surface	hazard too high for this method to define protection measures	6 ^{A)}	5.5	4.5		
6	very high risk	>70		recent landfill site	hazard too high for this method to define protection measures	hazard too high for this method to define protection measures	hazard too high for this method to define protection measures	6		

			ection Measures - refer to star ypes of protection to achieve		full guidance Iy one element per type permitted)	
Structural Barrier	Score ^{A)}	Vent	ilation Measures	Score	Gas Resistant Membrane	Score
Precast suspended segmental subfloor (i.e. beam and block)	0	fines gravel or with a	Pressure relief pathway (usually formed of low following criteria: fines gravel or with a thin geocomposite blanket or 0.5 strips terminating in a gravel trench external to the 0.5 building) 1. sufficiently impervice were good performance 2.5 Very good performance 2.5 Very good performance 2.5		Gas resistant membrane meeting all of the following criteria: 1. sufficiently impervious, both in the sheet material and in the sealing of sheets and sealing around sheet penetrations, to prevent any significant passage of methane and/or carbon	
Cast in situ ground-bearing floor slab (with only	0.5	Passive sub floor			dioxide through the membrane. A membrane with a methane gas transmission rate <40.0 ml/day/m2/atm (average) for sheets and joints (tested in accordance with BS ISO 15105-1:2007 manometric method) is regarded as sufficiently	
nominal mesh reinforcement)	0.5	dispersal layer	Good performance ^{E)}	1.5	 sufficiently durable to remain serviceable for the anticipated life of the building and duration of gas emissions 	
Cast in situ monolithic reinforced ground bearing raft or reinforced cast in situ suspended floor slab with minimal penetrations	1 or 1.5 ^{B)}	active abstraction (s layer, with roof level comprise a clear vo	Active dispersal layer, usually comprising fans with		 sufficiently strong* to withstand the installation process and following trades until covered (e.g. penetration from steel fibres in fibre reinforced concrete, penetration of reinforcement ties, tearing due to working above it, dropping tools, etc) and to withstand in-service stresses (e.g. settlement if placed below a floor slab) capable, after installation, of providing a 	2
Basement floor and walls conforming to BS 8102:2009, Grade 2 waterproofing ^{C) D)}	2	blanket of external fresh air beneath the building floor slab by pumps supplying air to points across the central footprint of the building into a permeable layer, usually formed of a thin concernent to blanket of 1.5 to 2.5		complete barrier to the entry of the relevant gas 6. verified in accordance with CIRIA C735 * For example, reinforced LDPE (virgin polymer) membranes having a minimum mass per unit area of 370 g/m2 and not significantly less than 0.4 mm thickness between the		
Basement floor and walls conforming to BS 8102:2009, Grade 3 waterproofing ^{C) D)}		4	reinforcement scrim (tested in accordance with Procedure D (2 mm diameter tip) of BS EN ISO 9863-1:2016) installed above floor slabs are considered sufficiently strong to meet the performance criteria (see also C.3). Thicker and more robust membranes or an additional membrane protection layer should be installed directly beneath cast-in-situ floor slabs			

A) The scores are conditional on breaches of floor slabs, etc., being effectively sealed

C) The score is conditional on the waterproofing being provided by a suitable structural barrier with the design and detailing of the walls and floor meeting the requirements for Type B protection. The score cannot be assigned for Type A (waterproof membrane) or Type C (drained cavity wall).

E) Refer to BS 8485:2015 Annex B to determine performance and assign score

Building Types

Type A

Private ownership with no building management controls on alterations to the internal structure, the use of rooms, the ventilation of rooms or the structural fabric of the building. Some small rooms present. Probably conventional building construction (rather than civil engineering). Examples include private housing and some retail premises.

FOR TYPE A BUILDINGS ACTIVE VENTILATION MEASURES ARE INAPPROPRIATE

Type B

Private or commercial property with central building management control of any alterations to the building or its uses but limited or no central building management control of the maintenance of the building, including the gas protection measures. Multiple occupancy. Small to medium size rooms with passive ventilation of rooms and other internal spaces throughout ground floor and basement areas. May be conventional building or civil engineering construction. Examples include managed apartments, multiple occupancy offices, some retail premises and parts of some public buildings (such as schools, hospitals, leisure centres) and parts of hotels. B) To achieve a score of 1.5 the raft or suspended slab should be well reinforced to control cracking and have minimal penetrations cast in

D) If a membrane is installed beneath and around the basement to provide Type A waterproofing (BS 8102:2009), it can be assigned a gas protection score in accordance with Table 7, if it meets all the criteria for a gas resistant membrane in that table

F) Assumes that the car park is vented to deal with car exhaust fumes, designed to Buildings Regulations 2000, Approved Document F

<u>Type C</u> Commercial building with central building management control of any alterations to the building or its uses and central of ground floor and basement areas. Small to large size rooms with active ventilation or good passive ventilation of all rooms and other internal spaces throughout ground floor and basement areas. Probably civil engineering construction. Examples include offices, some retail premises, and parts of some public buildings (such as schools, hospitals, leisure centres and parts of hotels).

Type D

Industrial style building having large volume internal space(s) that are well ventilated. Corporate ownership with building management controls on alterations to the ground floor and basement areas of the building and on maintenance of ground gas protective measures. Probably civil engineering construction. Examples are retail park sales buildings, factory shop floor areas, warehouses. (Small rooms within these style buildings should be separately categorized as Type B or Type C). APPENDIX 7 • WAC Testing Certificates

kerry Howard Hesus UK Ltd Wework 199 Bishopsgate London EC2M 3TY

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404

f: 01923 237404

e: reception@i2analytical.com

e: k.howard@hesus.co.uk

Analytical Report Number : 21-74606

Project / Site name:	Bollo Road	Samples received on:	13/05/2021
Your job number:		Samples instructed on/ Analysis started on:	13/05/2021
Your order number:		Analysis completed by:	20/05/2021
Report Issue Number:	1	Report issued on:	20/05/2021
Samples Analysed:	2 10:1 WAC Samples		

Signed: Keroline Harel

Karolina Marek PL Head of Reporting Team For & on behalf of i2 Analytical Ltd.

 Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

 Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

 Standard sample disposal times, unless otherwise agreed with the laboratory, are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory, are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory, are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory, are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory, are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory are :
 soils
 - 4 weeks from reporting leachates

 St

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:	Results	21-	74606				
					Client:	HESUS	
					-		
Location		Boll	o Road		Law Jen		
Lab Reference (Sample Number)		1869279	/ 1869280		Landriii	Waste Acceptano Limits	e Criteria
Sampling Date		13/0	5/2021			Stable Non-	
Sample ID			FH1		Inert Waste	reactive	Hazardous
Depth (m)		:	1.00		Landfill	HAZARDOUS waste in non- hazardous Landfill	Waste Landfill
Solid Waste Analysis							
TOC (%)**	0.5				3%	5%	6%
Loss on Ignition (%) **	3.1						10%
BTEX (µg/kg) **	< 10				6000		
Sum of PCBs (mg/kg) **	< 0.007		-	+	1		
Mineral Oil (mg/kg) Total PAH (WAC-17) (mg/kg)	< 10		+		500 100		
Price PAH (WAC-17) (mg/kg) pH (units)**	< 0.85 7.8		+	+		>6	
Acid Neutralisation Capacity (mol / kg)	0.56					To be evaluated	To be evaluated
Eluate Analysis	10:1			10:1		es for compliance le	
(BS EN 12457 - 2 preparation utilising end over end leaching	mg/l			mg/kg	using BS EN	l 12457-2 at L/S 10	l/kg (mg/kg)
procedure)						I	
Arsenic *	0.0037			0.0330	0.5	2	25
Barium *	0.0201			0.179	20	100	300
Cadmium *	< 0.0001 0.0015			< 0.0008 0.014	0.04	1 10	5 70
Chromium * Copper *	0.0015		-	0.014	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0023			0.0206	0.5	10	30
Nickel *	0.0032			0.028	0.4	10	40
Lead *	< 0.0010			< 0.010	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.0086			0.077	4	50	200
Chloride *	1.8			16	800	15000	25000
Fluoride	0.50			4.4	10	150	500
Sulphate *	47			410	1000	20000	50000
TDS*	110			980	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	6.46			57.3	500	800	1000
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.2						
Dry Matter (%)	88						
Moisture (%)	12						
					<u> </u>		
Results are expressed on a dry weight basis, after correction for moi	sture content when	e applicable.			*= UKAS accredit	ed (liquid eluate ana	ilysis only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		21-	-74606				
					Client:	HESUS	
		_					
Location		Bol	lo Road				
Lab Reference (Sample Number)		186928	1 / 1869282		Landfill	Waste Acceptand Limits	e Criteria
Sampling Date		13/	05/2021			Stable Non-	
Sample ID			TH2		1	reactive	
Depth (m)			1.00		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
Solid Waste Analysis							
TOC (%)**	1.0				3%	5%	6%
Loss on Ignition (%) **	3.7						10%
BTEX (µg/kg) **	< 10				6000		
Sum of PCBs (mg/kg) **	< 0.007	ļ	4		1		
Mineral Oil (mg/kg)	< 10	L			500		
Total PAH (WAC-17) (mg/kg)	13.5		_		100		
pH (units)**	7.9					>6	
Acid Neutralisation Capacity (mol / kg)	4.1					To be evaluated	To be evaluate
Eluate Analysis	10:1			10:1	Limit valu	es for compliance le	eaching test
					using BS EN	12457-2 at L/S 10	l/kg (mg/kg)
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg			, , , , ,
Arsenic *	0.0076			0.0637	0.5	2	25
Barium *	0.0148			0.125	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0041			0.035	0.5	10	70
Copper *	0.011			0.088	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0110			0.0926	0.5	10	30
Nickel *	0.0019			0.016	0.4	10	40
Lead *	0.0045			0.038	0.5	10	50
Antimony *	< 0.0017 < 0.0040			< 0.017 < 0.040	0.06	0.7	5
Selenium * Zinc *	< 0.0040			< 0.040	4	50	200
Chloride *	3.3	ł	-	28	800	15000	25000
Fluoride	0.24			2.0	10	15000	500
Sulphate *	100			870	1000	20000	50000
TDS*	160			1400	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	6.38			53.8	500	800	1000
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.2	ļ	4				
Dry Matter (%)	85				ļ		
Moisture (%)	15		+				
						[
Results are expressed on a dry weight basis, after correction for mo					* LIKAC dit	ed (liquid eluate ana	husis only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Analytical Report Number : 21-74606 Project / Site name: Bollo Road

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1869279	TH1	None Supplied	1	Brown clay and loam with gravel.
1869281	TH2	None Supplied	1	Brown clay and loam with gravel.

Analytical Report Number : 21-74606 Project / Site name: Bollo Road

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance""	L046-PL	w	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	oisture Content Moisture content, determined gravimetrically. (30 oC) In house method.		L019-UK/PL	w	NONE
Speciated WAC-17 PAHs in soil	ated WAC-17 PAHs in soil Determination of PAH compounds in soil by extraction in In-house method based on USEPA 8270. MCERT dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	NONE
PCB's By GC-MS in soil	s By GC-MS in soil Determination of PCB by extraction with acetone and In-house method based on USEPA 8082 hexane followed by GC-MS.		L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	w	MCERTS
Stones content of soil	es content of soil Standard preparation for all samples unless otherwise In-house method based on British Standard detailed. Gravimetric determination of stone > 10 mm as Methods and MCERTS requirements. % dry weight.		L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	w	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	w	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by EC probe using a factor of 0.6.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	w	ISO 17025

Analytical Report Number : 21-74606 Project / Site name: Bollo Road

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

kerry Howard Hesus UK Ltd Wework 199 Bishopsgate London EC2M 3TY

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404

f: 01923 237404

e: reception@i2analytical.com

e: k.howard@hesus.co.uk

Analytical Report Number : 21-74596

Project / Site name:	Bollo Road	Samples received on:	13/05/2021
Your job number:		Samples instructed on/ Analysis started on:	13/05/2021
Your order number:		Analysis completed by:	19/05/2021
Report Issue Number:	1	Report issued on:	19/05/2021
Samples Analysed:	2 soil samples		

Signed: Keroline Harel

Karolina Marek PL Head of Reporting Team For & on behalf of i2 Analytical Ltd.

 Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

 Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

 Standard sample disposal times, unless otherwise agreed with the laboratory, are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory, are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory, are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory, are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory, are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory are :
 soils
 - 4 weeks from reporting leachates

 Standard sample disposal times, unless otherwise agreed with the laboratory are :
 - 6 months from reporting

 Standard sample disposal times</

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 21-74596 Project / Site name: Bollo Road

Lab Sample Number				1869214	1869215
Sample Reference				TH1	TH2
Sample Number	None Supplied	None Supplied			
Depth (m)				1.00	1.00
Date Sampled	13/05/2021	13/05/2021			
Time Taken				1130	1130
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	12	15
Total mass of sample received	kg	0.001	NONE	1.2	1.2
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.1	8.7
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	1400	2500
Total Sulphate as SO4	%	0.005	MCERTS	0.145	0.249
Organic Matter	%	0.1	MCERTS	0.8	1.7
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.5	1.0

Total Phenols

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.24	0.70
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.34	2.0
Pyrene	mg/kg	0.05	MCERTS	0.29	1.8
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	1.2
Chrysene	mg/kg	0.05	MCERTS	< 0.05	1.0
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	1.3
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.78
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	1.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.61
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.71

Total PAH					
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	0.87	11.2

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	16	15
Boron (water soluble)	mg/kg	0.2	MCERTS	1.7	3.5
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.6
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	37	25
Copper (aqua regia extractable)	mg/kg	1	MCERTS	21	52
Lead (aqua regia extractable)	mg/kg	1	MCERTS	93	310
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	0.9
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	24	19
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	61	45
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	90	200

Analytical Report Number: 21-74596 Project / Site name: Bollo Road

Lab Sample Number				1869214	1869215
Sample Reference				TH1	TH2
Sample Number				None Supplied	None Supplied
Depth (m)				1.00	1.00
Date Sampled				13/05/2021	13/05/2021
Time Taken				1130	1130
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Petroleum Hydrocarbons	-		_		
TPH C10 - C40	mg/kg	10	MCERTS	< 10	35

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 21-74596 Project / Site name: Bollo Road

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1869214	TH1	None Supplied	1	Brown clay and loam with gravel.
1869215	TH2	None Supplied	1	Brown clay and loam with gravel.

Analytical Report Number : 21-74596 Project / Site name: Bollo Road

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	w	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

Analytical Report Number : 21-74596 Project / Site name: Bollo Road

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analysis Status	Analytical Test Name Analytical Method Description Analytical Method Reference Method number Analysis
-----------------	---

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

IDOM Cromford Mills, Mill Lane, Matlock, Derbyshire DE4 3RQ t +44 (0)1773 829 988 f +44 (0)1773 829 393 e info.derbyshire@idom.com idom.com Registered in England No. 02740216 Registered office: as above offices Birmingham London Kent Derbyshire Cardiff Manchester Stirling