Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.41 *Printed on 09 June 2021 at 10:01:41* Project Information:

Project informatio	JII.			
Assessed By:	Ben Tunningley (STRO027495)	Building Type:	Mid-terrace House
Dwelling Details:				
NEW DWELLING	AS BUILT		Total Floor Area: 7	4.1m ²
Site Reference :	Albany Farm		Plot Reference:	Plot 031
Address :	11 Buttercup Roa	d , Bishops Waltham, SOUTH	IAMPTON , SO32 1RF	
Client Details:				
Name:	Bargate Homes			
Address :	-	carage Farm Business Par, W	/inchester Road, Fair Oak, S	6050 7HD
•	s items included w te report of regula	vithin the SAP calculations. tions compliance.		
1a TER and DEF	R			
Fuel for main heat	ing system: Mains g	as		
Fuel factor: 1.00 (r	υ,			
•	xide Emission Rate		17.34 kg/m ²	
	Dioxide Emission Ra	te (DER)	13.62 kg/m ²	OK
1b TFEE and DF		=)	$42 \in kM/b/m^2$	
-	rgy Efficiency (TFEE nergy Efficiency (DF		43.6 kWh/m² 36.0 kWh/m²	
	lergy Enclericy (Di		30.0 KW1/11-	ОК
2 Fabric U-value	es			
Element		Average	Highest	
External		0.24 (max. 0.30)	0.24 (max. 0.70)	OK
Party wal	I	0.00 (max. 0.20)	-	ОК
Floor		0.11 (max. 0.25)	0.11 (max. 0.70)	OK
Roof		0.11 (max. 0.20)	0.11 (max. 0.35)	OK
Openings	3	1.40 (max. 2.00)	1.40 (max. 3.30)	OK
2a Thermal brid	ging			
		rom linear thermal transmittar	nces for each junction	
3 Air permeabili	ty			
•	bility at 50 pascals		4.60	
Maximum			10.0	OK
4 Heating efficie	ency			
Main Heatir	ng system:	Database: (rev 478, produc	ct index 017929):	
		Boiler systems with radiato Brand name: Ideal Model: LOGIC COMBI Model qualifier: ESP1 35 (Combi) Efficiency 89.6 % SEDBUK Minimum 88.0 %	rs or underfloor heating - ma	ains gas OK
Secondary	heating system:	None		

Regulations Compliance Report

Cylinder insulation			
Hot water Storage:	No cylinder		
Controls			
Space heating controls	Programmer, room therm	lostat and TRVs	OK
Hot water controls:	No cylinder thermostat		
Boiler interlock:	No cylinder Yes		ОК
Low energy lights	163		OK
Percentage of fixed lights wi	th low-energy fittings	100.0%	
Minimum	0, 0	75.0%	ОК
Mechanical ventilation			
Continuous extract system (decentralised)		
Specific fan power:		0.16 0.18	
Maximum		0.7	OK
Summertime temperature			
Overheating risk (South Eng	land):	Slight	OK
sed on:			
Overshading:		Very Little	
Windows facing: North West		3.06m² 6.51m²	
Windows facing: South East			
Ventilation rate:		4.00 No. 6	
Blinds/curtains:		None	
) Key features			
Roofs U-value		0.11 W/m²K	
Party Walls U-value		0 W/m²K	
Floors U-value		0.11 W/m²K	
Photovoltaic array			

						User D	etails:						
Assesso Software			n Tunnir oma FS	0,			Strom Softwa	are Ver	sion:			027495 on: 1.0.5.41	
		4.4	D	Deed			Address				-		
Address :	dwelling di		Buttercu	o Road ,	, Bisnop	s vvaltna	am, 500	THAMP	TON, S	032 1RI	-		
T. Overall	awening an	nension	5.			Aro	a(m²)			ight(m)		Volume(m ³)	
Ground floo)r							(1a) x		2.4	(2a) =	88.92	(3a)
]]
First floor						3	37.05	(1b) x	2	.67	(2b) =	98.92	(3b)
Total floor a	area TFA =	(1a)+(1l	o)+(1c)+(1d)+(1e	e)+(1r	I)	74.1	(4)					
Dwelling vo	olume					(3a)+(3b))+(3c)+(3d	l)+(3e)+	.(3n) =	187.84	(5)		
2. Ventilat	ion rate:												
			main heating		econdar eating	У	other		total			m ³ per hour	
Number of	chimneys	Ĺ	0] + [0	+	0] = [0	x 4	= 0	0	(6a)
Number of	open flues	Ē	0	- - 	0		0] = [0	x 2	20 =	0](6b)
Number of	intermittent	fans							0	x 1	0 =	0](7a)
Number of	passive vei	nts							0	x 1	0 =	0](7b)
Number of	flueless ga	s fires							0	x 4	- 0	0] (7c)
								L					J
											Air ch	anges per hou	ır
Infiltration o									0		÷ (5) =	0	(8)
	risation test ha				ed, procee	d to (17), d	otherwise o	continue fr	om (9) to ((16)			٦
	of storeys in al infiltration		elling (ns	5)						[(0)	11/0 1	0	(9)
	l infiltration		r staal or	timbor	frame or	0 35 for	r masoni	w constr	uction	[(9)-	1]x0.1 =	0	(10) (11)
if both ty	pes of wall ar	e present,	use the va	lue corres					uction			0](11)
	ng areas of op Ided woode	0 / .			ed) or 0.	1 (seale	ed), else	enter 0				0	(12)
•	ught lobby,					(,,					0	(13)
Percenta	ge of windo	ows and	doors dr	aught st	ripped							0	(14)
Window	infiltration			-			0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)
Infiltration	n rate						(8) + (10)	+ (11) + (1	2) + (13) +	+ (15) =		0	(16)
Air perme	eability valu	ie, q50,	expresse	d in cub	ic metre	s per ho	our per s	quare m	etre of e	nvelope	area	4.5999999046325	(17)
If based on	air permea	bility va	ue, then	(18) = [(1	7) ÷ 20]+(8	3), otherwi	ise (18) = ((16)				0.23	(18)
	bility value ap		ressurisatio	on test has	s been dor	e or a deg	gree air pe	rmeability	is being us	sed			-
Number of		ered					(20) = 1 -	[0 075 v (1	0)1			2	(19)
Shelter fact		ration al		4.0.7					9)] =			0.85	(20)
Infiltration r		•			1		(21) = (18) x (20) =				0.2	(21)
Infiltration r	1	1	<u> </u>			11	Δ	0.0		NI.	Det	1	
Ja		Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly av		· · · · · · · · · · · · · · · · · · ·	<u> </u>				1					1	
(22)m= 5.1	1 5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		

Wind Fa	actor (2	22a)m =	(22)m ÷	4										
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjuste	d infiltr	ation rat	e (allowi	ing for sl	nelter an	d wind s	peed) =	(21a) x	(22a)m					
	0.25	0.24	0.24	0.22	0.21	0.19	0.19	0.18	0.2	0.21	0.22	0.23		
		<i>ctive air</i> al ventila	•	rate for t	he appli	cable ca	se						0.5	(23a)
				endix N. (2	3b) = (23a	a) × Fmv (e	equation (I	N5)) . othe	rwise (23b	(23a) = (23a)		l	0.5	(23a) (23b)
						or in-use fa				()		l	0.5 0	(230) (23c)
			-	-	-					2h)m + (;	23b) x [l 1 – (23c)	-	(200)
(24a)m=	0			0	0	0	0	0	0		0	0	. 100]	(24a)
	alance	l d mecha	L anical ve	entilation	u without	heat rec	L coverv (N	I //V) (24b	m = (2)	1 2b)m + (2	23b)			
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
					•	ve input v				Г (00h	\	11		
	(22b)n 0.5	n < 0.5 ×	r ,	0.5	r i	0); otnerv	0.5	ŕ	0.5 m + 0	.5 × (23b	, 	0.5	l	(24c)
(24c)m=			0.5		0.5			0.5		0.5	0.5	0.5		(240)
						/e input v erwise (2				0.5]				
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24d)
Effect	ive air	change	rate - er	nter (24a) or (24t	o) or (240	c) or (24	d) in boy	(25)	1				
(25)m=	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(25)
3 Hea	t lasse	s and he	at loss i	naramet	≏r.		•	•	•	•		•		
ELEM		Gros		Openin		Net Ar	ea	U-valı	ue	AXU		k-value	e AX	k
		area	(m²)	'n		A ,n	n²	W/m2	K	(W/ł	<)	kJ/m²∙ł	K kJ/ł	<
Doors						2.1	x	1.4	=	2.94				(26)
Window	s Type	e 1				3.06	x1	/[1/(1.4)+	0.04] =	4.06				(27)
Window	s Type	e 2				6.51	x1	/[1/(1.4)+	0.04] =	8.63				(27)
Floor						37.05	5 X	0.11	=	4.0755	\Box [75	2778.75	(28)
Walls		44.6	6	11.6	7	32.99) x	0.24	=	7.92		60	1979.4	(29)
Roof		37.0)5	0		37.05	5 X	0.11	=	4.08		9	333.45	(30)
Total ar	ea of e	elements	, m²			118.70	6							(31)
Party wa	all					85.46	3 X	0	=	0		45	3845.7	(32)
Internal	wall **					59.9					[9	539.136	(32c)
Internal	wall **					90.09)]	9	810.7722	(32c)
Internal	floor					37.05	5				Ī	18	666.9	(32d)
Internal	ceiling	1				37.05	5				ĺ	9	333.45	(32e)
		l roof winde as on both					ated using	formula 1	/[(1/U-valu	ue)+0.04] a	s given in	n paragraph	3.2	_

Fabric heat loss, $W/K = S (A \times U)$	(26)(30) + (32) =	31.7	(33)
Heat capacity $Cm = S(A \times k)$	((28)(30) + (32) + (32a)(32e) =	11287.56	(34)
Thermal mass parameter (TMP = $Cm \div TFA$) in kJ/m ² K	= (34) ÷ (4) =	152.33	(35)

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f

can be ι	used inste	ad of a de	tailed calc	ulation.										
Therm	al bridg	es : S (L	x Y) cal	culated	using Ap	pendix l	<						6.67	(36)
if details	s of therma	al bridging	are not kn	own (36) =	= 0.05 x (3	1)								
Total f	abric he	at loss							(33) +	(36) =			38.37	(37)
Ventila	ation hea	at loss ca	alculated	monthl	y	-			(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	30.99	30.99	30.99	30.99	30.99	30.99	30.99	30.99	30.99	30.99	30.99	30.99]	(38)
Heat ti	ransfer o	coefficie	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	69.36	69.36	69.36	69.36	69.36	69.36	69.36	69.36	69.36	69.36	69.36	69.36		
Heat lo	oss para	ameter (H	· HLP), W/	/m²K						Average = = (39)m ÷	Sum(39)₁. · (4)	12 /12=	69.36	(39)
(40)m=	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94]	
Numbe	er of day	/s in mo	nth (Tab	le 1a)		1				Average =	Sum(40)1.	12 /12=	0.94	(40)
- Turnov	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
(,							-]	
4 10/-	ten bee	(!												
4. 778	ater nea	ting ene	rgy requ	irement:								kWh/ye	ear:	
if TF				[1 - exp	(-0.0003	849 x (TF	FA -13.9)2)] + 0.(0013 x (⁻	TFA -13.		34]	(42)
Annua	l averag	e hot wa						(25 x N) to achieve		se target o		.81]	(43)
		-	person pe			-	-			jo larger e				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
Hot wat			r day for ea	· ·	,			-	000	•••			1	
(44)m=	98.79	95.2	91.6	88.01	84.42	80.83	80.83	84.42	88.01	91.6	95.2	98.79]	
					_			_			m(44) ₁₁₂ =		1077.7	(44)
Energy	content of	^t hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	m x nm x D)))))))))))))))))))						
(45)m=	146.5	128.13	132.22	115.27	110.61	95.45	88.44	101.49	102.7	119.69	130.65	141.88		
										Total = Su	m(45) ₁₁₂ =	=	1413.04	(45)
lf instan	taneous v	vater heati	ng at point	of use (no	hot water	r storage),	enter 0 in	boxes (46) to (61)	-				
(46)m=	21.98	19.22	19.83	17.29	16.59	14.32	13.27	15.22	15.41	17.95	19.6	21.28		(46)
	storage												1	
-		. ,					-	within sa	ame ves	sel		0		(47)
		-	and no ta		-			• •		or (0) in (47)			
	storage		not wate	er (this ir	iciudes i	nstantar	neous co	ombi boil	ers) ente	er 'O' in (47)			
	-		eclared I	oss facto	or is kno	wn (kWł	n/dav).					0	1	(48)
			m Table				"duy).]	(40)
-			r storage		oor			(48) x (49)	_			0]	
b) If m	nanufact	turer's de	eclared o	cylinder l	oss fact		known:	(40) X (49)	-			0]	(50)
		-	factor fr		e 2 (kW	h/litre/da	ay)					0	J	(51)
		ieating s from Ta	see secti	on 4.3									1	
			bie ∠a m Table	2b								0 0		(52) (53)
pc												•	1	(00)

•••		m water (54) in (5	-	, kWh/ye	ear			(47) x (51)	x (52) x (53) =		0		(54) (55)
Water s	storage	loss cal	culated f	or each	month			((56)m = (55) × (41)ı	m	L		I	
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
` ´	r contains	s dedicated	d solar sto	rage, (57)ı	m = (56)m	x [(50) – (L H11)] ÷ (50	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primary	v circuit	loss (an	nual) fro	om Table								0		(58)
		loss cal	,			59)m = ((58) ÷ 36	5 × (41)	m					
(moc	lified by	factor fr	om Tab	le H5 if t	here is s	solar wat	er heatir	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	lculated	for each	month ((61)m =	(60) ÷ 36	65 × (41)	m						
(61)m=	13.76	12.43	13.76	13.31	13.76	13.31	13.76	13.76	13.31	13.76	13.31	13.76		(61)
Total h	eat requ	uired for	water he	eating ca	alculated	for eacl	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	160.26	140.56	145.98	128.59	124.36	108.76	102.2	115.25	116.02	133.45	143.96	155.64		(62)
Solar DH	IW input o	calculated	using App	endix G or	Appendix	H (negati	ve quantity	v) (enter '0	if no sola	r contributi	on to wate	er heating)		
(add ad	dditiona	l lines if	FGHRS	and/or V	WWHRS	applies	, see Ap	pendix (G)	-				
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
FHRS	0	0	0	0	0	0	0	0	0	0	0	0		(63) (G2)
Output	from wa	ater hea	ter											
(64)m=	160.26	140.56	145.98	128.59	124.36	108.76	102.2	115.25	116.02	133.45	143.96	155.64		_
								Outp	out from wa	ater heatei	r (annual)₁	12	1575.01	(64)
Heat ga	ains froi	m water	heating,	kWh/mo	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m] + 0.8 ×	(46)m	+ (57)m	+ (59)m]	
(65)m=														
(/	52.15	45.71	47.4	41.66	40.22	35.06	32.85	37.18	37.48	43.24	46.77	50.61		(65)
		45.71 m in calc											eating	(65)
inclu	de (57)ı		ulation o	of (65)m	only if c								eating	(65)
inclu 5. Inte	de (57)ı ernal ga	m in calc ains (see	culation of Table 5	of (65)m and 5a)	only if c								eating	(65)
inclu 5. Inte	de (57)ı ernal ga	m in calc	culation of Table 5	of (65)m and 5a)	only if c								eating	(65)
inclu 5. Inte	de (57)i ernal ga blic gain	m in calc ains (see s (Table	culation of Table 5	of (65)m and 5a) ts	only if c):	ylinder i	s in the c	dwelling	or hot w	ater is fr	om com	munity h	eating	(65)
inclu 5. Inte Metabo (66)m=	de (57)i ernal ga blic gain Jan 140.48	m in calc ains (see s (Table Feb	culation of Table 5 5), Wat Mar 140.48	of (65)m and 5a ts Apr 140.48	only if c): May 140.48	ylinder is Jun 140.48	s in the c Jul 140.48	dwelling Aug 140.48	or hot w Sep 140.48	ater is fr Oct	om com Nov	munity h Dec	eating	
inclu 5. Inte Metabo (66)m=	de (57)i ernal ga blic gain Jan 140.48	m in calc ains (see s (Table Feb 140.48	culation of Table 5 5), Wat Mar 140.48	of (65)m and 5a ts Apr 140.48	only if c): May 140.48	ylinder is Jun 140.48	s in the c Jul 140.48	dwelling Aug 140.48	or hot w Sep 140.48	ater is fr Oct	om com Nov	munity h Dec	eating	
inclu 5. Inte Metaboo (66)m= Lighting (67)m=	de (57)i ernal ga blic gain Jan 140.48 g gains 48.32	m in calc ains (see s (Table Feb 140.48 (calculat	Table 5 5), Wat Mar 140.48 ted in Ap 34.91	of (65)m and 5a ts Apr 140.48 opendix 26.43	only if c): May 140.48 L, equati 19.75	Jun 140.48 ion L9 of 16.68	Jul 140.48 r L9a), a 18.02	Aug 140.48 Iso see 23.42	or hot w Sep 140.48 Fable 5 31.44	Oct 140.48 39.92	om com Nov 140.48	Dec	eating	(66)
inclu 5. Inte Metaboo (66)m= Lighting (67)m=	de (57)i ernal ga blic gain Jan 140.48 g gains 48.32	m in calc ains (see s (Table Feb 140.48 (calculat 42.92	Table 5 5), Wat Mar 140.48 ted in Ap 34.91	of (65)m and 5a ts Apr 140.48 opendix 26.43	only if c): May 140.48 L, equati 19.75	Jun 140.48 ion L9 of 16.68	Jul 140.48 r L9a), a 18.02	Aug 140.48 Iso see 23.42	or hot w Sep 140.48 Fable 5 31.44	Oct 140.48 39.92	om com Nov 140.48	Dec	eating	(66)
inclu 5. Internet of the second secon	de (57)i ernal ga blic gain Jan 140.48 g gains 48.32 nces ga 308.46	m in calc ains (see s (Table Feb 140.48 (calculat 42.92 ins (calc	Table 5 5), Wat Mar 140.48 ted in Ap 34.91 ulated in 303.6	of (65)m and 5a ts Apr 140.48 opendix 26.43 Append 286.43	only if c): 140.48 L, equati 19.75 dix L, eq 264.75	ylinder is Jun 140.48 ion L9 of 16.68 uation L 244.38	Jul 140.48 r L9a), a 18.02 13 or L1 230.77	Aug 140.48 Iso see 23.42 3a), also 227.57	or hot w Sep 140.48 Table 5 31.44 see Tal 235.63	ater is fr Oct 140.48 39.92 ble 5 252.8	om com Nov 140.48 46.59	Dec 140.48 49.67	eating	(66) (67)
inclu 5. Internet of the second secon	de (57)i ernal ga blic gain Jan 140.48 g gains 48.32 nces ga 308.46	m in calc ains (see s (Table Feb 140.48 (calculat 42.92 ins (calc 311.67	Table 5 5), Wat Mar 140.48 ted in Ap 34.91 ulated in 303.6	of (65)m and 5a ts Apr 140.48 opendix 26.43 Append 286.43	only if c): 140.48 L, equati 19.75 dix L, eq 264.75	ylinder is Jun 140.48 ion L9 of 16.68 uation L 244.38	Jul 140.48 r L9a), a 18.02 13 or L1 230.77	Aug 140.48 Iso see 23.42 3a), also 227.57	or hot w Sep 140.48 Table 5 31.44 see Tal 235.63	ater is fr Oct 140.48 39.92 ble 5 252.8	om com Nov 140.48 46.59	Dec 140.48 49.67	eating	(66) (67)
inclu 5. Int Metabo (66)m= Lighting (67)m= Appliar (68)m= Cookin (69)m=	de (57) ernal ga blic gain Jan 140.48 g gains 48.32 nces ga 308.46 g gains 51.39	m in calc ains (see s (Table Feb 140.48 (calculat 42.92 ins (calc 311.67 (calcula	culation of Table 5 5), Wat Mar 140.48 ted in Ap 34.91 ulated in 303.6 ted in Ap 51.39	of (65)m and 5a ts Apr 140.48 opendix 26.43 Append 286.43 opendix 51.39	only if c): 140.48 L, equati 19.75 dix L, eq 264.75 L, equat	ylinder is Jun 140.48 ion L9 of 16.68 uation L 244.38 ion L15	Jul 140.48 r L9a), a 18.02 13 or L1 230.77 or L15a)	Aug 140.48 Iso see 23.42 3a), also 227.57	or hot w Sep 140.48 Table 5 31.44 see Tal 235.63 ee Table	ater is fr Oct 140.48 39.92 ble 5 252.8 5	om com Nov 140.48 46.59 274.48	munity h Dec 140.48 49.67 294.85	eating	(66) (67) (68)
inclu 5. Int Metabo (66)m= Lighting (67)m= Appliar (68)m= Cookin (69)m=	de (57) ernal ga blic gain Jan 140.48 g gains 48.32 nces ga 308.46 g gains 51.39	m in calc ains (see Feb 140.48 (calculat 42.92 ins (calc 311.67 (calcula 51.39	culation of Table 5 5), Wat Mar 140.48 ted in Ap 34.91 ulated in 303.6 ted in Ap 51.39	of (65)m and 5a ts Apr 140.48 opendix 26.43 Append 286.43 opendix 51.39	only if c): 140.48 L, equati 19.75 dix L, eq 264.75 L, equat	ylinder is Jun 140.48 ion L9 of 16.68 uation L 244.38 ion L15	Jul 140.48 r L9a), a 18.02 13 or L1 230.77 or L15a)	Aug 140.48 Iso see 23.42 3a), also 227.57	or hot w Sep 140.48 Table 5 31.44 see Tal 235.63 ee Table	ater is fr Oct 140.48 39.92 ble 5 252.8 5	om com Nov 140.48 46.59 274.48	munity h Dec 140.48 49.67 294.85	eating	(66) (67) (68)
inclu 5. Int Metabo (66)m= Lighting (67)m= Appliar (68)m= Cookin (69)m= Pumps (70)m=	de (57) ernal ga Jan 140.48 g gains 48.32 nces ga 308.46 g gains 51.39 and far 3	m in calc ains (see Feb 140.48 (calculat 42.92 ins (calc 311.67 (calcula 51.39 ns gains	Culation of Table 5 5), Wat Mar 140.48 ted in Ap 34.91 ulated in 303.6 ted in Ap 51.39 (Table 5 3	of (65)m and 5a ts Apr 140.48 opendix 26.43 Appendix 286.43 opendix 51.39 5a) 3	only if c): 140.48 L, equati 19.75 dix L, eq 264.75 L, equat 51.39	ylinder is Jun 140.48 ion L9 of 16.68 uation L 244.38 ion L15 51.39	Jul 140.48 r L9a), a 18.02 13 or L1: 230.77 or L15a) 51.39	Aug 140.48 Iso see 23.42 3a), also 227.57 , also se 51.39	or hot w Sep 140.48 Table 5 31.44 see Tal 235.63 ee Table 51.39	ater is fr Oct 140.48 39.92 ble 5 252.8 5 51.39	om com Nov 140.48 46.59 274.48 51.39	Munity h	eating	(66) (67) (68) (69)
inclu 5. Int Metabo (66)m= Lighting (67)m= Appliar (68)m= Cookin (69)m= Pumps (70)m=	de (57) ernal ga Jan 140.48 g gains 48.32 nces ga 308.46 g gains 51.39 and far 3	m in calo ains (see s (Table Feb 140.48 (calculat 42.92 ins (calc 311.67 (calcula 51.39 ns gains 3	Culation of Table 5 5), Wat Mar 140.48 ted in Ap 34.91 ulated in 303.6 ted in Ap 51.39 (Table 5 3	of (65)m and 5a ts Apr 140.48 opendix 26.43 Appendix 286.43 opendix 51.39 5a) 3	only if c): 140.48 L, equati 19.75 dix L, eq 264.75 L, equat 51.39	ylinder is Jun 140.48 ion L9 of 16.68 uation L 244.38 ion L15 51.39	Jul 140.48 r L9a), a 18.02 13 or L1: 230.77 or L15a) 51.39	Aug 140.48 Iso see 23.42 3a), also 227.57 , also se 51.39	or hot w Sep 140.48 Table 5 31.44 see Tal 235.63 ee Table 51.39	ater is fr Oct 140.48 39.92 ble 5 252.8 5 51.39	om com Nov 140.48 46.59 274.48 51.39	Munity h	eating	(66) (67) (68) (69)
inclu 5. Intr Metaboo (66)m= (66)m= [Lighting (67)m= (67)m= [Appliar (68)m= (69)m= [Pumps (70)m= Losses (71)m=	de (57) ernal ga blic gain Jan 140.48 g gains 48.32 nces ga 308.46 g gains 51.39 and far 3 e.g. ev -93.66	m in calc ains (see Feb 140.48 (calculat 42.92 ins (calc 311.67 (calcula 51.39 ns gains 3 raporatio	Culation of Table 5 5), Wat Mar 140.48 ted in Ap 34.91 ulated in 303.6 ted in Ap 51.39 (Table 5 3 n (negat -93.66	of (65)m and 5a ts Apr 140.48 opendix 26.43 Appendix 286.43 opendix 51.39 5a) 3 tive valu	only if c): 140.48 L, equat 19.75 dix L, equat 264.75 L, equat 51.39 3 es) (Tab	ylinder is Jun 140.48 ion L9 of 16.68 uation L 244.38 ion L15 51.39 3 le 5)	Jul 140.48 r L9a), a 18.02 13 or L1 230.77 or L15a) 51.39 3	Aug 140.48 Iso see 23.42 3a), also 227.57 , also se 51.39 3	or hot w Sep 140.48 Table 5 31.44 see Tal 235.63 se Table 51.39 3	ater is fr Oct 140.48 39.92 ble 5 252.8 5 51.39 3	om com Nov 140.48 46.59 274.48 51.39 3	munity h Dec 140.48 49.67 294.85 51.39 3	eating	 (66) (67) (68) (69) (70)
inclu 5. International inclusion Metabox (66)m= Lighting (67)m= Appliar (68)m= Cookin (69)m= Pumps (70)m= Lossess (71)m= Water I	de (57) ernal ga blic gain Jan 140.48 g gains 48.32 nces ga 308.46 g gains 51.39 and far 3 e.g. ev -93.66	m in calc ains (see Feb 140.48 (calculat 42.92 ins (calc 311.67 (calcula 51.39 ns gains 3 raporatio -93.66	Culation of Table 5 5), Wat Mar 140.48 ted in Ap 34.91 ulated in 303.6 ted in Ap 51.39 (Table 5 3 n (negat -93.66	of (65)m and 5a ts Apr 140.48 opendix 26.43 Appendix 286.43 opendix 51.39 5a) 3 tive valu	only if c): 140.48 L, equat 19.75 dix L, equat 264.75 L, equat 51.39 3 es) (Tab	ylinder is Jun 140.48 ion L9 of 16.68 uation L 244.38 ion L15 51.39 3 le 5)	Jul 140.48 r L9a), a 18.02 13 or L1 230.77 or L15a) 51.39 3	Aug 140.48 Iso see 23.42 3a), also 227.57 , also se 51.39 3	or hot w Sep 140.48 Table 5 31.44 see Tal 235.63 se Table 51.39 3	ater is fr Oct 140.48 39.92 ble 5 252.8 5 51.39 3	om com Nov 140.48 46.59 274.48 51.39 3	Munity h	eating	 (66) (67) (68) (69) (70)
inclu 5. Intr Metabor (66)m= Lighting (67)m= Appliar (68)m= Cookin (69)m= Pumps (70)m= Lossess (71)m= Water I (72)m=	de (57) ernal ga blic gain Jan 140.48 g gains 48.32 nces ga 308.46 g gains 51.39 and far 3 e.g. ev -93.66 heating 70.1	m in calc ains (see Feb 140.48 (calculat 42.92 ins (calc 311.67 (calcula 51.39 ns gains 3 raporatio -93.66 gains (T	Culation of Table 5 5), Wat Mar 140.48 ted in Ap 34.91 ulated in 303.6 ted in Ap 51.39 (Table 5 3 n (negat -93.66 fable 5) 63.71	of (65)m and 5a ts Apr 140.48 opendix 26.43 opendix 286.43 opendix 51.39 5a) 3 tive valu -93.66	only if c): 140.48 L, equati 19.75 Jix L, equati 264.75 L, equati 51.39 3 es) (Tab -93.66	ylinder is Jun 140.48 ion L9 of 16.68 uation L 244.38 ion L15 51.39 3 le 5) -93.66 48.7	Jul 140.48 r L9a), a 18.02 13 or L1 230.77 or L15a) 51.39 3 -93.66	Aug 140.48 Iso see 23.42 3a), also 227.57 , also se 51.39 3 -93.66 49.98	or hot w Sep 140.48 Table 5 31.44 see Tal 235.63 ee Table 51.39 3 -93.66 52.05	ater is fr Oct 140.48 39.92 ble 5 252.8 5 51.39 3 -93.66 58.11	om com Nov 140.48 46.59 274.48 51.39 3 -93.66 64.96	munity h Dec 140.48 49.67 294.85 51.39 3 -93.66 68.03	eating	 (66) (67) (68) (69) (70) (71)

6. Solar gains:

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

-	e calculated using Access Facto Table 6d		Area m²	Table 6a	a and	Flu		ations		g_ able 6b	е аррис	FF Table 6c	lion.		Gains (W)	
Southeast 0.9x	1	x	6.5	1	x	3	6.79	x		0.45	x	1.11		= [107.79	(77)
Southeast 0.9x	1	×	6.5	1	x	6	2.67	×		0.45	x	1.11		= [183.6	(77)
Southeast 0.9x	1	×	6.5	1	x	8	5.75	x		0.45	×	1.11		= [251.21	(77)
Southeast 0.9x	1	×	6.5	1	x	10	06.25	Īx		0.45	×	1.11		= [311.26	(77)
Southeast 0.9x	1	×	6.5	1	x	1	19.01	×		0.45	x	1.11		= [348.64	(77)
Southeast 0.9x	1	×	6.5	1	x	1'	18.15	x		0.45	×	1.11		= [346.12	(77)
Southeast 0.9x	1	×	6.5	1	x	1	13.91	x		0.45	×	1.11		= [333.7	(77)
Southeast 0.9x	1	×	6.5	1	x	10	04.39	x		0.45	×	1.11		= [305.81	(77)
Southeast 0.9x	1	x	6.5	1	x	9	2.85	x		0.45	×	1.11		= [272.01	(77)
Southeast 0.9x	1	×	6.5	1	x	6	9.27	X		0.45	×	1.11		= [202.92	(77)
Southeast 0.9x	1	×	6.5	1	x	4	4.07	x		0.45	x	1.11		= [129.1	(77)
Southeast 0.9x	1	×	6.5	1	x	3	1.49	x		0.45	×	1.11		= [92.24	(77)
Northwest 0.9x	1	×	3.0	6	x	1	1.28	×		0.45	×	1.11		= [15.54	(81)
Northwest 0.9x	1	×	3.0	6	x	2	2.97	x		0.45	x	1.11		= [31.63	(81)
Northwest 0.9x	1	×	3.0	6	x	4	1.38	x		0.45	×	1.11		= [56.98	(81)
Northwest 0.9x	1	×	3.0	6	x	6	7.96	×		0.45	×	1.11		= [93.58	(81)
Northwest 0.9x	1	×	3.0	6	x	9	1.35	x		0.45	x	1.11		= [125.78	(81)
Northwest 0.9x	1	×	3.0	6	x	9	7.38] x		0.45	×	1.11		= [134.1	(81)
Northwest 0.9x	1	×	3.0	6	x	9	91.1] ×		0.45	×	1.11		= [125.45	(81)
Northwest 0.9x	1	×	3.0	6	x	7	2.63	x		0.45	×	1.11		= [100.01	(81)
Northwest 0.9x	1	×	3.0	6	x	5	0.42] x		0.45	×	1.11		= [69.43	(81)
Northwest 0.9x	1	×	3.0	6	x	2	8.07] ×		0.45	×	1.11		= [38.65	(81)
Northwest 0.9x	1	×	3.0	6	x	1	4.2	x		0.45	x	1.11		= [19.55	(81)
Northwest 0.9x	1	×	3.0	6	x	9	9.21] ×		0.45	×	1.11		= [12.69	(81)
Color going i			for a cal		L			(0.2)~						-		
(83)m= 123.32	n watts, calcu	8.19	404.84	474.43	1	80.22	459.14	405		m(74)m . 341.44	241.5		104.9	33		(83)
	internal and									-				_		
(84)m= 651.43	3 739.05 81	1.63	876.77	914.2	8	91.19	853.3	808	.01	761.78	693.6	2 635.9	618.7	7		(84)
7. Mean inte	ernal tempera	ture (heating	seaso	n)								1			
	e during heat	```	Ŭ		<i>.</i>	area f	rom Tal	ble 9	, Th1	(°C)				Γ	21	(85)
•	actor for gains	• •			•					()				L		
Jan	- I - I	/lar	Apr	May	ТÌ.	Jun	Jul	A	ug	Sep	Oct	Nov	De	с		
(86)m= 0.95	0.93 0.	.88	0.78	0.64	1	0.48	0.35	0.3	39	0.59	0.82	0.93	0.96	;		(86)
Mean intern	al temperatur	e in li	ving are	ea T1 (follo	w ste	os 3 to 7	7 in T	able	9c)		-				
(87)m= 19.96		0.43	20.7	20.89	-	20.97	20.99	20.		20.94	20.7	20.27	19.89	9		(87)
Temperatur	e during heat	ina ne	eriods in	resto	f dw	/ellina	from T:	able (Э. Th	 2 (°C)						
(88)m= 20.14	<u> </u>	0.14	20.14	20.14	-	20.14	20.14	20.	<u> </u>	20.14	20.14	20.14	20.14	4		(88)
L	I												I			

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$fLA = \text{Living area} \div (4) = 0.2 (91)$ Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$ $(92)\text{m} = 19.35 19.55 19.81 20.07 20.23 20.3 20.31 20.31 20.27 20.07 19.66 19.29 (92)$ Apply adjustment to the mean internal temperature from Table 4e, where appropriate $(93)\text{m} = 19.2 19.4 19.66 19.92 20.08 20.15 20.16 20.16 20.12 19.92 19.51 19.14 (93)$
Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$ (92)m= 19.35 19.55 19.81 20.07 20.23 20.31 20.31 20.27 20.07 19.66 19.29 (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 19.2 19.4 19.66 19.92 20.08 20.15 20.16 20.16 20.12 19.92 19.51 19.14 (93)
(92)m= 19.35 19.55 19.81 20.07 20.23 20.3 20.31 20.31 20.27 20.07 19.66 19.29 (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 19.2 19.4 19.66 19.92 20.08 20.15 20.16 20.16 20.12 19.92 19.51 19.14 (93)
(92)m= 19.35 19.55 19.81 20.07 20.23 20.3 20.31 20.31 20.27 20.07 19.66 19.29 (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 19.2 19.4 19.66 19.92 20.08 20.15 20.16 20.16 20.12 19.92 19.51 19.14 (93)
(93)m= 19.2 19.4 19.66 19.92 20.08 20.15 20.16 20.16 20.12 19.92 19.51 19.14 (93)
8 Space beating requirement
o. Space neating requirement
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate
the utilisation factor for gains using Table 9a
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Utilisation factor for gains, hm: (94)m= 0.94 0.9 0.84 0.74 0.59 0.42 0.29 0.32 0.53 0.77 0.9 0.95 (94)
Useful gains, hmGm , W = (94) m x (84) m
(95)m= 609.55 666.75 685.48 650.6 542.92 377.08 245.75 258.83 400 534.96 572.85 584.69 (95)
Monthly average external temperature from Table 8
(96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 (96)
Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m– (96)m]
(97)m= 1033.82 1005.91 912.73 764.06 581.26 384.7 246.96 260.72 417.81 646.22 861.06 1036.33 (97)
Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m
(98)m= 315.66 227.91 169.08 81.69 28.53 0 0 0 0 82.78 207.51 336.02
Total per year (kWh/year) = Sum(98) _{15,912} = 1449.18 (98)
Space heating requirement in kWh/m²/year 19.56 (99)
9a. Energy requirements – Individual heating systems including micro-CHP)
Space heating:
Fraction of space heat from secondary/supplementary system 0 (201)
Fraction of space heat from main system(s) $(202) = 1 - (201) =$ 1(202)
Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$ 1(204)
Efficiency of main space heating system 1 90.5 (206)
Efficiency of secondary/supplementary heating system, %
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year
Space heating requirement (calculated above)
315.66 227.91 169.08 81.69 28.53 0 0 0 0 82.78 207.51 336.02
$(211)m = \{[(98)m \times (204)] \} \times 100 \div (206) $ (211)
348.79 251.84 186.83 90.26 31.52 0 0 0 91.47 229.29 371.3
Total (kWh/year) =Sum(211) _{15,1012} = 1601.3 (211)
Space heating fuel (secondary), kWh/month
$= \{ [(98)m \times (201)] \} \times 100 \div (208)$
(215)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total (kWh/year) =Sum(215) ₁₅₁₀₁₂ = 0 (215)

Water heating

Output	t from wa	ater heat	ter (calc	ulated at	oove)									
	160.26	140.56	145.98	128.59	124.36	108.76	102.2	115.25	116.02	133.45	143.96	155.64		_
	ncy of wa												87.3	(216)
(217)m=		89.25	88.99	88.52	87.88	87.3	87.3	87.3	87.3	88.5	89.16	89.46		(217)
	or water I n = (64)r	-												
. ,	179.27	157.48	164.04	145.27	141.52	124.58	117.07	132.01	132.89	150.79	161.47	173.97]	
								Tota	l = Sum(2	19a) ₁₁₂ =		-	1780.35	(219)
	al totals	fuelues	d modia	o	4					k'	Wh/year	r	kWh/year	7
•	•			system	1								1601.3	
	heating												1780.35	
Electric	city for p	umps, fa	ans and	electric l	keep-ho	t							_	
mech	anical ve	entilatior	n - balan	iced, ext	ract or p	ositive ir	nput fror	n outside	Э			49.6]	(230a)
centra	al heatin	g pump:										30]	(230c)
boiler	with a fa	an-assis	ted flue									45		(230e)
Total e	electricity	for the	above, ł	(Wh/yea	r			sum	of (230a).	(230g) =			124.6	(231)
Electric	city for lig	ghting											341.37	(232)
Electric	city gene	erated by	y PVs										-240.96	(233)
Total d	lelivered	energy	for all us	ses (211)(221)	+ (231)	+ (232)	(237b)	=				3606.67	(338)
10a. I	Fuel cos	ts - indiv	vidual he	eating sy	stems:									
											_			
						Fu kW	el /h/year			Fuel P (Table			Fuel Cost £/year	
Space	heating	- main s	system 1			kW	-				12)	x 0.01 =		(240)
	heating heating					kW (211	/h/year			(Table	12) ¹⁸	x 0.01 = x 0.01 =	£/year](240)](241)
Space	-	- main s	system 2			kW (211 (213	/h/year 1) x			(Table	12) ¹⁸		£/year 55.73	
Space Space	heating	- main s - secon	system 2 dary			kW (211 (213	/h/year 1) x 3) x 5) x			(Table 3.4	12) ¹⁸ 19	x 0.01 =	£/year 55.73 0	(241)
Space Space Water	heating heating	- main s - secone cost (oth	system 2 dary her fuel)	2		kW (211 (213 (215	/h/year 1) x 3) x 5) x 9)			(Table 3.4 0 13.	12) 18 19 18	x 0.01 = x 0.01 =	£/year 55.73 0](241)](242)
Space Space Water Pumps (if off-p	heating heating heating s, fans ar beak tarif	- main s - secone cost (oth nd electi ff, list ea	system 2 dary ner fuel) ric keep-	2 -hot	230g) se	kW (211 (213 (215 (215 (234 (234	/h/year 1) x 3) x 5) x 9) 1) / as app	licable a	nd apply	(Table 3.4 0 13. 3.4 13. / fuel prin	12) 18 19 19 19 19 ce accor	$\begin{array}{l} x \ 0.01 = \\ \end{array}$	£/year 55.73 0 0 61.96 16.43 Table 12a](241)](242)](247)](249)
Space Space Water Pumps (if off-p Energy	heating heating heating s, fans ar beak tarif y for light	- main s - secone cost (oth nd electu ff, list ea ting	dary dary ner fuel) ric keep- ch of (23	2 -hot 30a) to (2	230g) se	kW (211 (213 (215 (215) (231	/h/year 1) x 3) x 5) x 9) 1) / as app	licable a	nd apply	(Table 3.4 0 13. 3.4 13.	12) 18 19 19 19 19 ce accor	x 0.01 = x 0.01 = x 0.01 = x 0.01 =	£/year 55.73 0 0 61.96 16.43	(241) (242) (247) (249) (250)
Space Space Water Pumps (if off-p Energy	heating heating heating s, fans ar beak tarif	- main s - secone cost (oth nd electu ff, list ea ting	dary dary ner fuel) ric keep- ch of (23	2 -hot 30a) to (2	230g) se	kW (211 (213 (215 (215 (234 (234	/h/year 1) x 3) x 5) x 9) 1) / as app	licable a	nd apply	(Table 3.4 0 13. 3.4 13. 7 fuel prin	12) 18 19 19 19 19 ce accor	$\begin{array}{l} x \ 0.01 = \\ \end{array}$	£/year 55.73 0 0 61.96 16.43 Table 12a](241)](242)](247)](249)
Space Space Water Pumps (if off-p Energy	heating heating heating s, fans ar beak tarif y for light	- main s - secone cost (oth nd electu ff, list ea ting	dary dary ner fuel) ric keep- ch of (23	2 -hot 30a) to (2	230g) se	kW (211 (213 (215 (215 (237 eparately (237	/h/year 1) x 3) x 5) x 9) 1) / as app		nd apply	(Table 3.4 0 13. 3.4 13. 7 fuel prin	12) 18 19 18 19 19 19 ce accor 19	$\begin{array}{l} x \ 0.01 = \\ \end{array}$	£/year 55.73 0 0 61.96 16.43 Table 12a 45.03	(241) (242) (247) (249) (250)
Space Space Water Pumps (if off-p Energy Additio	heating heating heating s, fans ar beak tarif y for light onal stan	- main s - secone cost (oth nd electr ff, list ea ting ding cha	dary her fuel) ric keep- ch of (23 arges (Ta	2 -hot 30a) to (2		kW (211 (213 (215 (215 (232 eparately (232 one	<pre>/h/year 1) x 3) x 5) x 9) 1) / as app of (233) to</pre>		nd apply	(Table 3.4 0 13. 3.4 13. 7 13. 7 13.	12) 18 19 18 19 19 19 ce accor 19	$\begin{array}{l} x \ 0.01 = \\ \hline \begin{array}{l} x \ 0.01 = \\ x \ 0.01 = \end{array}$	£/year 55.73 0 0 61.96 16.43 Table 12a 45.03 120	(241) (242) (247) (249) (250) (250)
Space Space Water Pumps (if off-p Energy Additio	heating heating heating s, fans ar beak tarif y for light onal stan	- main s - second cost (oth nd electu ff, list ea ting ding cha	dary dary ner fuel) ric keep- ch of (23 arges (Tr eat lines	2 -hot 30a) to (able 12)	nd (254)	kW (21) (21) (21) (21) (23) eparately (23) one as need	<pre>/h/year 1) x 3) x 5) x 9) 1) / as app of (233) to</pre>	o (235) x)	nd apply	(Table 3.4 0 13. 3.4 13. 7 13. 7 13.	12) 18 19 18 19 19 19 ce accor 19	$\begin{array}{l} x \ 0.01 = \\ \hline \begin{array}{l} x \ 0.01 = \\ x \ 0.01 = \end{array}$	£/year 55.73 0 0 61.96 16.43 Table 12a 45.03 120	(241) (242) (247) (249) (250) (250)
Space Space Water Pumps (if off-p Energ) Additio Additio	heating heating heating s, fans an beak tarif y for light onal stan dix Q ite energ	- main s - second cost (oth nd electr ff, list ea ting ding cha ms: repe y cost	dary dary ner fuel) ric keep- ch of (23 arges (Ta eat lines	2 -hot 30a) to (able 12)	nd (254) (245)(kW (21) (21) (21) (21) (23) eparately (23) one as need	/h/year 1) x 3) x 5) x 9) 1) / as app of (233) to ded	o (235) x)	nd apply	(Table 3.4 0 13. 3.4 13. 7 13. 7 13.	12) 18 19 18 19 19 19 ce accor 19	$\begin{array}{l} x \ 0.01 = \\ \hline \begin{array}{l} x \ 0.01 = \\ x \ 0.01 = \end{array}$	£/year 55.73 0 0 61.96 16.43 Table 12a 45.03 120 -31.78	(241) (242) (247) (249) (250) (251) (252)
Space Space Water Pumps (if off-p Energy Additio Additio Appen Total	heating heating heating s, fans an beak tarif y for light onal stan dix Q ite energ	- main s - second cost (oth nd electu ff, list ea ting ding cha ms: repe y cost ng - indir	dary dary ner fuel) ric keep- ch of (23 arges (Tr eat lines vidual he	-hot 30a) to (: able 12) (253) ar eating sy	nd (254) (245)(kW (21) (21) (21) (21) (23) eparately (23) one as need	/h/year 1) x 3) x 5) x 9) 1) / as app of (233) to ded	o (235) x)	nd apply	(Table 3.4 0 13. 3.4 13. 7 13. 7 13.	12) 18 19 18 19 19 19 ce accor 19	$\begin{array}{l} x \ 0.01 = \\ \hline \begin{array}{l} x \ 0.01 = \\ x \ 0.01 = \end{array}$	£/year 55.73 0 0 61.96 16.43 Table 12a 45.03 120 -31.78	(241) (242) (247) (249) (250) (251) (252)
Space Space Water Pumps (if off-p Energy Additio Appen Total 11a. S Energy	heating heating heating s, fans an beak tarif y for light onal stan dix Q ite energ SAP ratin	- main s - second cost (oth nd electu ff, list ea ting ding cha ms: repe y cost ng - indiv	dary dary ner fuel) ric keep- ch of (2: arges (T arges (T eat lines vidual he	-hot 30a) to (: able 12) (253) ar eating sy	nd (254) (245)(rstems	kW (211 (213 (214 (214 (214 (214 (214 (214 (214)	/h/year 1) x 3) x 5) x 9) 1) / as app of (233) to ded	o (235) x) =	nd apply	(Table 3.4 0 13. 3.4 13. 7 13. 7 13.	12) 18 19 18 19 19 19 ce accor 19	$\begin{array}{l} x \ 0.01 = \\ \hline \begin{array}{l} x \ 0.01 = \\ x \ 0.01 = \end{array}$	£/year 55.73 0 0 61.96 16.43 Table 12a 45.03 120 -31.78 267.36	(241) (242) (247) (249) (250) (250) (251) (252) (255)

12a. CO2 emissions – Individual heating systems	s including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	345.88 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216 =	384.56 (264)
Space and water heating	(261) + (262) + (263) + (264) =	730.44 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519 =	64.67 (267)
Electricity for lighting	(232) x	0.519 =	177.17 (268)
Energy saving/generation technologies Item 1		0.519 =	-125.06 (269)
Total CO2, kg/year		sum of (265)(271) =	847.22 (272)
CO2 emissions per m ²		(272) ÷ (4) =	11.43 (273)
EI rating (section 14)			90 (274)
13a. Primary Energy			
roa. r hinary Energy			
Tou. T finary Enorgy	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)		•	
	kWh/year	factor	kWh/year
Space heating (main system 1)	kWh/year (211) x	factor =	kWh/year 1953.59 (261)
Space heating (main system 1) Space heating (secondary)	kWh/year (211) x (215) x	factor = 1.22 = 3.07 = 1.22 =	kWh/year 1953.59 (261) 0 (263)
Space heating (main system 1) Space heating (secondary) Energy for water heating	kWh/year (211) x (215) x (219) x	factor = 1.22 = 3.07 = 1.22 =	kWh/year 1953.59 (261) 0 (263) 2172.03 (264)
Space heating (main system 1) Space heating (secondary) Energy for water heating Space and water heating	kWh/year (211) x (215) x (219) x (261) + (262) + (263) + (factor = 1.22 = 3.07 = 1.22 = 264) =	kWh/year 1953.59 (261) 0 (263) 2172.03 (264) 4125.62 (265)
Space heating (main system 1) Space heating (secondary) Energy for water heating Space and water heating Electricity for pumps, fans and electric keep-hot	kWh/year (211) x (215) x (219) x (261) + (262) + (263) + ((231) x	factor = 1.22 = 3.07 = 1.22 = 264) = 3.07 =	kWh/year 1953.59 (261) 0 (263) 2172.03 (264) 4125.62 (265) 382.52 (267)
Space heating (main system 1) Space heating (secondary) Energy for water heating Space and water heating Electricity for pumps, fans and electric keep-hot Electricity for lighting Energy saving/generation technologies	kWh/year (211) x (215) x (219) x (261) + (262) + (263) + ((231) x	factor 1.22 = 3.07 = 1.22 = 264) = 3.07 = 0 =	kWh/year 1953.59 (261) 0 (263) 2172.03 (264) 4125.62 (265) 382.52 (267) 1048.01 (268)

					User D	Details:						
Assessor Name: Software Name:		n Tunnir oma FS	•••			Softwa	a Num are Ver	rsion:			027495 on: 1.0.5.41	
						Address						
Address :		Buttercu	p Road ,	, Bishops	s Waltha	am, SOU	ITHAMP	TON , S	032 1RI	F		
1. Overall dwelling d	imension	IS:			_							
One word file on						a(m²)			ight(m)	1	Volume(m ³)	٦
Ground floor					3	37.05	(1a) x	2	2.4	(2a) =	88.92	(3a)
First floor					3	37.05	(1b) x	2	.67	(2b) =	98.92	(3b)
Total floor area TFA =	: (1a)+(1	b)+(1c)+((1d)+(1e	e)+(1r)	74.1	(4)					
Dwelling volume							(3a)+(3b))+(3c)+(3d	d)+(3e)+	.(3n) =	187.84	(5)
2. Ventilation rate:												
		main heating		econdar leating	у	other		total			m ³ per hour	
Number of chimneys	Г	0	<u></u> ד ר	0] + [0	=	0	x 4	40 =	0	(6a)
Number of open flues	Ē	0	- +	0	- +	0	ī - Г	0	x 2	20 =	0	(6b)
Number of intermitten	t fans							0	x 1	0 =	0	(7a)
Number of passive ve	nts						Г	0	x 1	0 =	0	(7b)
Number of flueless ga	s fires						Ē	0	x 4	40 =	0	(7c)
							L					1
										Air ch	anges per hou	ır
Infiltration due to chim	•							0		÷ (5) =	0	(8)
If a pressurisation test h				ed, procee	d to (17),	otherwise o	continue fr	om (9) to ((16)			٦
Number of storeys Additional infiltration		elling (ne	5)						[(0)	41-0-4	0	(9)
Structural infiltration		r stool or	timbort	frama ar	0 25 fo	r macani	av constr	uction	[(9)-	1]x0.1 =	0	(10)
if both types of wall a							•	uction			0	(11)
deducting areas of op	enings); if	equal user	0.35									-
If suspended wood			•	ed) or 0.	1 (seale	ed), else	enter 0				0	(12)
If no draught lobby,											0	(13)
Percentage of wind	ows and	doors dr	aught st	ripped		0.25 10.2	$(\sqrt{14}) \cdot 1$	001 -			0	(14)
Window infiltration Infiltration rate						0.25 - [0.2 (8) + (10)			+ (15) -		0	(15)
Air permeability val	10, 050	ovproced	d in cub	via motro	e nor he					oroo	0	(16)
If based on air perme						•	•		invelope	alea	4.5999999046325	4
Air permeability value a	•							is being u	sed		0.23	(18)
Number of sides shell						5	,	J			2	(19)
Shelter factor						(20) = 1 -	[0.075 x (1	9)] =			0.85	(20)
Infiltration rate incorpo	orating sl	nelter fac	tor			(21) = (18) x (20) =				0.2	(21)
Infiltration rate modifie	ed for mo	onthly win	d speed	1								
Jan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind	speed f	rom Tabl	e 7						i			
(22)m= 5.1 5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		

Wind F	actor (2	22a)m =	(22)m ÷	4										
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjuste	ed infiltr	ation rat	e (allow	ing for sł	nelter an	d wind s	speed) =	: (21a) x	(22a)m					
	0.25	0.24	0.24	0.22	0.21	0.19	0.19	0.18	0.2	0.21	0.22	0.23		
		<i>ctive air</i> al ventila	•	rate for t	he appli	cable ca	ise		-		-			
				endix N (2	3h) - (23a	a) x Emv (e	equation (N5)) , othe	rwise (23h	(23a)			0.5	(23a)
								n Table 4h) = (200)			0.5	(23b) (23c)
			-	-	-					2h)m + (23h) 🗙 [1 – (23c)	0 	(230)
(24a)m=	0			0	0	0						0	. 100]	(24a)
· · I	balance	d mecha	i anical ve	entilation	without	L heat rec	L coverv (l	1 MV) (24b	(2) m = (2)	1 2b)m + ()	1 23b)			
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
,					•	•		on from œ .c) = (22t		.5 × (23b)			
(24c)m=	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(24c)
								on from l 0.5 + [(2		0.5]				
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24d)
Effec	ctive air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	ld) in bo	x (25)	-				
(25)m=	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(25)
3. Hea	at losse	s and he	eat loss	paramet	er:									
ELEN		Gros area	SS	Openin m	gs	Net Ar A ,r		U-val W/m2		A X U (W/I	K)	k-value kJ/m²·ł		A X k kJ/K
Doors			、			2.1	x	1.4	=	2.94	, 			(26)
Window	ws Type	e 1				3.06	x1	/[1/(1.4)+	0.04] =	4.06	=			(27)
Windov	ws Type	2				6.51		/[1/(1.4)+	0.04] =	8.63	=			(27)
Floor						37.05	5 X	0.11	=	4.0755		75	27	78.75 (28)
Walls		44.6	6	11.6	7	32.99	Э х	0.24		7.92		60	\dashv	79.4 (29)
Roof		37.0		0	=	37.05		0.11		4.08		9	\exists	3.45 (30)
Total a	rea of e	lements		L]	118.7	6	L			I			(31)
Party w						85.46		0	=	0		45	38	45.7 (32)
-	l wall **					59.9					I	9	\dashv	9.136 (32c)
	l wall **					90.09						9	\dashv	.7722 (32c)
Interna						37.05					[18	\dashv	66.9 (32d)
Interna	l ceiling	l				37.05					[9	\dashv	3.45 (32e)
* for wind	dows and	roof wind		effective wi nternal wal		alue calcul		g formula 1	/[(1/U-valu	ue)+0.04] a	as given in	n paragraph		

Fabric heat loss, $W/K = S (A \times U)$ (26)...(30) + (32) =31.7(33)Heat capacity $Cm = S(A \times k)$ ((28)...(30) + (32) + (32a)...(32e) =11287.56(34)Thermal mass parameter (TMP = $Cm \div TFA$) in kJ/m²K= (34) ÷ (4) =152.33(35)

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f

details of themal bridging are not known (36) = 0.0 × (31) (33) + (86) = (33) + (86) = (37) (details in heat loss (33) + (86) = (33) + (86) = (37) (details in heat loss calculated monthly (39) = 0.03 × (25) m × (5) (38) (a)	can be used instead of a detailed calculation.		
fold fabric heat loss (3) + (36) = (38) / (36) = (38) / (36) / (3	Thermal bridges : S (L x Y) calculated using Appendix K	6.67 (36)	
Approximation heat loss calculated monthly (38) m = 0.33 × (25) m × (5) 30) m. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 30) m. 30.98 30.98 30.98 30.98 30.98 30.98 30.98 30.98 30.99<	if details of thermal bridging are not known (36) = $0.05 \times (31)$		
$ \frac{Jan}{30.99} \frac{Feb}{30.99} \frac{Mar}{30.99} \frac{Apr}{30.99} \frac{May}{30.99} \frac{Jun}{30.99} \frac{Jun}{30.99}$	Total fabric heat loss (33) + (36) =	38.37 (37)	
$ \frac{39,99}{30,99} \frac{30,99}{30,99} \frac{30,99}{30$	Ventilation heat loss calculated monthly $(38)m = 0.33 \times (25)m \times (5)$		
Heat transfer coefficient, W/K (39)m = (37) + (38)m 39)m = (9:38 69:36	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov [ec	
agima 69.36 <t< td=""><td>(38)m= 30.99 <t< td=""><td>99 (38)</td></t<></td></t<>	(38)m= 30.99 <t< td=""><td>99 (38)</td></t<>	99 (38)	
Average = Sum(39)x/12= (39) (40)m = (39)m + (4) (40)m = (39)m + (4) (40)m = (39)m + (4) Average = Sum(39)x/12= (39) (40)m = (39)m + (4) Average = Sum(40)x/12= (40) Average = Sum(40)x/12= (42) Average = Sum(40)x/12= (40) Average = Sum(40)x/12= (40) Average Not Water usage in litres per day Vd, average = (25 x N) + 36 (42) Average Not Water usage in litres per day Vd, average = (25 x N) + 36 (43)	Heat transfer coefficient, W/K (39)m = (37) + (38)m		
(40)m = (39)m + (4) (40)m = (39)m + (4) Average = Sum(40)	(39)m= 69.36 69.36 69.36 69.36 69.36 69.36 69.36 69.36 69.36 69.36 69.36 69.36 69.36 69.36 69.36	36	
40)m 0.94		2= 69.36 (39)	
Average = Sum(40)/12=0.94Aumber of days in month (Table 1a)Average = Sum(40)/12=0.9441)m= $\frac{1}{31}$ $\frac{1}{28}$ $\frac{1}{31}$ $\frac{1}{30}$ $\frac{1}{31}$ $\frac{1}{31}$ $\frac{1}{30}$ $\frac{1}{31}$ $\frac{1}{30}$ $\frac{1}{31}$ $\frac{1}{30}$ $\frac{1}{31}$ $\frac{1}{31}$ $\frac{1}{31}$ $\frac{1}{31}$			
Number of days in month (Table 1a) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 31 28 31 30 31 30 31 30 31 30 31 30 31(41) 4. Water heating energy requirement:WWhyear:A. Mar Apr May Jun Jul Aug Sep Oct Nov DecAug Mar Apr May Jun Jul Aug Sep Oct Nov DecAug Mar Apr May Jun Jul Aug Sep Oct Nov DecAug Mar Apr May Jun Jul Aug Sep Oct Nov DecAug Mar Apr May Jun Jul Aug Sep Oct Nov DecAug Mar Apr May Jun Jul Aug Sen Oct 			
41 me3128313031313233 <th< td=""><td>Average = $Sum(40)_{112}/1$ Number of days in month (Table 1a)</td><td>2= 0.94 (40)</td></th<>	Average = $Sum(40)_{112}/1$ Number of days in month (Table 1a)	2= 0.94 (40)	
4. Water heating energy requirement: KWh/year: Assumed occupancy, N 2.34 (42) if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA - 13.9)2)] + 0.0013 x (TFA - 13.9) if TFA > 13.9, N = 1 Annual average hot water usage in litres per day Vd, average = $(25 \times N) + 36$ 89.81 Reduce the annual average hot water usage in litres per day Vd, average = $(25 \times N) + 36$ 89.81 Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of lot more that 125 litres per parson per day (all water use, hot and cold) (43) Image in litres per day for each month Vd, m = factor from Table 1c x (43) Total = \$00000000000000000000000000000000000	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov [ec	
Assumed occupancy, N 2.34 (42) if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) if TFA £ 13.9, N = 1 (43) Annual average hot water usage in litres per day Vd,average = (25 x N) + 36 (89.81) (43) educe the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold) $\boxed{ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec}$ for water usage in litres per day for each month Vd,m = factor from Table 1c x (43) (44)m= 98.79 95.2 91.6 88.01 84.42 80.83 80.83 84.42 88.01 91.6 95.2 98.79 Total = Sum(41) = 1077.7 (44) Total = Sum(41) = 1077.7 (44) 46)m= 146.5 128.13 132.22 115.27 110.61 95.45 88.44 101.49 102.7 119.69 130.65 141.88 Total = Sum(45) = 1413.04 (45) t instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) 46)m= 21.98 19.22 19.83 17.29 16.59 14.32 13.27 15.22 15.41 17.95 19.6 21.28 (46) Nater storage loss: Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47) the construct of hot water (this includes instantaneous combi bioliers) enter '0' in (47) Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day): 0 (49) Energy lost from water storage loss factor is not known: hot water storage loss factor from Table 2b (48) (49) = 0 (50) b) If manufacturer's declared close factor is not known: hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51) formmunity heating see section 4.3 (41) Mater storage loss factor from Table 2 (kWh/litre/day) 0 (51) formounity heating see section 4.3 (42) (43) (44) = 0 (45) (43) (44) = 0 (45) (44) (45) (45) (45) (45) (45) (45) (45)	(41)m= 31 28 31 30 31 30 31 31 30 31 30 31 30 31 30 31	1 (41)	
Assumed occupancy, N 2.34 (42) if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) if TFA £ 13.9, N = 1 (43) Annual average hot water usage in litres per day Vd,average = (25 x N) + 36 (89.81) (43) educe the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold) $\boxed{ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec}$ for water usage in litres per day for each month Vd,m = factor from Table 1c x (43) (44)m= 98.79 95.2 91.6 88.01 84.42 80.83 80.83 84.42 88.01 91.6 95.2 98.79 Total = Sum(41) = 1077.7 (44) Total = Sum(41) = 1077.7 (44) 46)m= 146.5 128.13 132.22 115.27 110.61 95.45 88.44 101.49 102.7 119.69 130.65 141.88 Total = Sum(45) = 1413.04 (45) t instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) 46)m= 21.98 19.22 19.83 17.29 16.59 14.32 13.27 15.22 15.41 17.95 19.6 21.28 (46) Nater storage loss: Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47) the construct of hot water (this includes instantaneous combi bioliers) enter '0' in (47) Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day): 0 (49) Energy lost from water storage loss factor is not known: hot water storage loss factor from Table 2b (48) (49) = 0 (50) b) If manufacturer's declared close factor is not known: hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51) formmunity heating see section 4.3 (41) Mater storage loss factor from Table 2 (kWh/litre/day) 0 (51) formounity heating see section 4.3 (42) (43) (44) = 0 (45) (43) (44) = 0 (45) (44) (45) (45) (45) (45) (45) (45) (45)			
Assumed occupancy, N 2.34 (42) if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) if TFA £ 13.9, N = 1 (43) Annual average hot water usage in litres per day Vd,average = (25 x N) + 36 (89.81) (43) educe the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold) $\boxed{ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec}$ for water usage in litres per day for each month Vd,m = factor from Table 1c x (43) (44)m= 98.79 95.2 91.6 88.01 84.42 80.83 80.83 84.42 88.01 91.6 95.2 98.79 Total = Sum(41) = 1077.7 (44) Total = Sum(41) = 1077.7 (44) 46)m= 146.5 128.13 132.22 115.27 110.61 95.45 88.44 101.49 102.7 119.69 130.65 141.88 Total = Sum(45) = 1413.04 (45) t instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) 46)m= 21.98 19.22 19.83 17.29 16.59 14.32 13.27 15.22 15.41 17.95 19.6 21.28 (46) Nater storage loss: Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47) the construct of hot water (this includes instantaneous combi bioliers) enter '0' in (47) Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day): 0 (49) Energy lost from water storage loss factor is not known: hot water storage loss factor from Table 2b (48) (49) = 0 (50) b) If manufacturer's declared close factor is not known: hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51) formmunity heating see section 4.3 (41) Mater storage loss factor from Table 2 (kWh/litre/day) 0 (51) formounity heating see section 4.3 (42) (43) (44) = 0 (45) (43) (44) = 0 (45) (44) (45) (45) (45) (45) (45) (45) (45)	4 Water heating energy requirement:	/h/vear:	
if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) if TFA £ 13.9, N = 1 Annual average hot water usage in litres per day Vd,average = (25 x N) + 36 annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of intermediate that 125 litres per person per day (all water use, hot and cold) <u>Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec</u> tot water usage in litres per day for each month Vd,m = factor from Table 1c x (43) 44)m= 98.79 95.2 91.6 88.01 84.42 80.83 80.83 84.42 88.01 91.6 95.2 98.79 <u>Total = Sum(44)</u>			
if TFA £ 13.9, N = 1 Annual average hot water usage in litres per day Vd, average = $(25 \times N) + 36$ 89.81 (43) reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold) <u>Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec</u> iot water usage in litres per day for each month Vd, m = factor from Table 1c x (43) Total = Sum (44) _{L-12} 1077.7 (44) Energy content of hot water used - calculated monthly = 4.190 x Vd, m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d) Total = Sum (44) _{L-12} (44) Total = Sum (45) _{L-12} 110.61 95.45 88.44 101.49 102.7 119.69 130.65 141.88 Total = Sum (45) _{L-12} (44) Total = Sum (45) _{L-12} 1413.04 (45) Total = Sum (45) _{L-12} (46) Total = Sum (45) _{L-12} (46) Total = Sum (45) _{L-12} (47) Total = Sum (45) _{L-12} (46) Total = Sum (45) _{L-12} (46) Total = Sum (45) _{L-12} (47) Total = Sum (45) _{L-12} (46) Total = Sum (45) _{L-12} (47) Total = Sum (45) _{L-12} (48) Total = Sum (45) _{L-12} (46) Total = Sum (45) _{L-12} (47) Total = Sum (45) _{L-12} (48) Total = Sum (45) _{L-12} (46) Total = Sum (45) _{L-12} (47) Total = Sum (45) _{L-12} (48) Total = Sum (45) _{L-12} (46) Total = Sum (45) _{L-12} (46) Total = Sum (45) _{L-12} (47) Total = Sum (45) _{L-12} (48) Total = Sum (45) _{L-12} (46) Total = Sum (45) _{L-12} (47) Total = Sum (45) _{L-12} (48) Total = Sum (45) _{L-12} (46) Total = Sum (45) _{L-12} (47) Total = Sum (45) _{L-12} (48) Total = Sum ((42)	
Annual average hot water usage in litres per day Vd,average = $(25 \times N) + 36$ Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of the annual average hot water uses by 5% if the dwelling is designed to achieve a water use target of the annual average hot water uses by 5% if the dwelling is designed to achieve a water use target of the average hot water uses by 5% if the dwelling is designed to achieve a water use target of the average hot water uses by 5% if the dwelling is designed to achieve a water use target of the average hot water uses by 5% if the dwelling is designed to achieve a water use target of the average hot water uses by 5% if the dwelling is designed to achieve a water use target of the average hot water uses by 5% if the dwelling is designed to achieve a water use target of the average hot water uses by 5% if the dwelling is designed to achieve a water use target of the average hot water uses by 5% if the dwelling is designed to achieve a water use target of the average hot water uses by 5% if the dwelling is designed to achieve a water use target of the average hot water uses are used to achieve a water use target of the average hot water uses by 5% if the dwelling is designed to achieve a water use target of the average hot water uses by 5% if the dwelling is designed to achieve a water use target of the average hot water uses by 5% if the dwelling is designed to achieve a water use target of the average hot water uses by 5% if the dwelling is designed to achieve a water uses target of the average hot water uses by 5% if the dwelling is designed to achieve a water uses target of the average hot water uses target of the average hot water for a hot by the average hot water the average hot water the average hot water storage, enter 0 in boxes (46) to (61). The second target is the average hot water the average hot water storage hot water the average hot water (this includes instantaneous combi boilers) enter '0' in (47). Water storage lo			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(43)	
JanFebMarAprMayJunJulAugSepOctNovDectot water usage in litres per day for each month $Vd,m = factor from Table 1c x (43)$ 44)m=98.7995.291.688.0184.4280.8380.8384.4288.0191.695.298.79Total = Sum(44)e =1077.7(44)Total = Sum(44)1077.7(44)Total = Sum(44)1077.7(44)Total = Sum(44)1077.7(44)Total = Sum(44)Total = Sum(45)Total = Sum(45) <td colsp<="" td=""><td>Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of</td><td></td></td>	<td>Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of</td> <td></td>	Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of	
tot water usage in litres per day for each month Vd, m = factor from Table 1 c x (43) $\begin{array}{c c c c c c c c c c c c c c c c c c c $	not more that 125 littres per person per day (all water use, not and cold)		
$\begin{array}{c} 44) \text{m} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ec	
$Total = Sum(44)_{1.12} = 1077.7$ (44) $Total = Sum(44)_{1.12} = 1077.7$ (44) $Total = Sum(44)_{1.12} = 1077.7$ (44) $Total = Sum(45)_{1.12} = 1077.7$ (45) $Total = Sum(45)_{1.12} = 1077.7$ (46) $Total = Sum(45)_{1.12} = 1077.7$ (47) $Total = Sum(45)_{1.12} = 1077.7$ (48) $Total = Sum(45)_{1.12} = 1077.7$ (49) $Total = Sum(45)_{1.12} = 1077.7$ (41) $Total = Sum(45)_{1.12} = 1077.7$ (42) $Total = Sum(45)_{1.12} = 1077.7$ (43) $Total = Sum(45)_{1.12} = 1077.7$ (44) $Total = Sum(45)_{1.12} = 1077.7$ (45) $Total = Sum(45)_{1.12} = 1077.7$ (45) $Total = Sum(45)_{1.12} = 1077.7$ (46) $Total = Sum(45)_{1.12} = 1077.7$ (47) $Total = Sum(45)_{1.12} = 1077.7$ (48) $Total = Sum(45)_{1.12} = 1077.7$ (48) $Total = Sum(45)_{1.12} = 1077.7$ (48) $Total = Sum(45)_{1.12} = 1077.7$ (49) $Total = Sum(45)_{1.12} = 1077.7$ (40) $Total = Sum(45)_{1.12} = 1077.7$ (41) $Total = Sum(45)_{1.12} = 1077.7$ (42) $Total = Sum(45)_{1.12} = 1077.7$ (43) $Total = Sum(45)_{1.12} = 1077.7$ (44) $Total = Sum(45)_{1.12} = 1077.7$ (45) $Total = Sum(45)_{1.12} = 1077.7$ (46) $Total = Sum(45)_{1.12} = 1077.7$ (47) $Total = Sum(45)_{1.12} = 1077.7$ (48) $Total = Sum(45)_{1.12} = 100.7$ (50) (51) Total = Sum(45)_{1.12} = 100.7 (51)	Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43)		
Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d) 45)m= 146.5 128.13 132.22 115.27 110.61 95.45 88.44 101.49 102.7 119.69 130.65 141.88 Total = Sum(45):tz = 1413.04 (45) f instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) 46)m= 21.98 19.22 19.83 17.29 16.59 14.32 13.27 15.22 15.41 17.95 19.6 21.28 (46) Water storage loss: Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47) Dtherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day): 0 (48) Femperature factor from Table 2b (48) x (49) = 0 (49) Energy lost from water storage, kWh/year (48) x (49) = 0 (50) b) If manufacturer's declared cylinder loss factor is not known: Hot water storage loss factor from Table 2 (kWh/litre/day) (51) f community heating see section 4.3 (56)	(44)m= 98.79 95.2 91.6 88.01 84.42 80.83 80.83 84.42 88.01 91.6 95.2 96	79	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Total = Sum(45)Total = Sum(45)Total = Sum(45)1413.04(45)f instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)Total = Sum(45)1413.04(45)46)m=21.9819.2219.8317.2916.5914.3215.4117.9519.621.9819.2219.8317.2916.5914.3215.4117.9519.621.9819.2219.8317.2916.5914.3215.4117.9519.621.28(46)Alter colspan="2">(47)O(47)O(47)O(48)(47)O(48)(48)(48)(49)(48)(49)(48)			
f instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) $46)m=$ 21.98 19.22 19.83 17.29 16.59 14.32 13.27 15.22 15.41 17.95 19.6 21.28 (46)Water storage loss:Storage volume (litres) including any solar or WWHRS storage within same vessel0(47)f community heating and no tank in dwelling, enter 110 litres in (47)0(47)Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)0(48)Nater storage loss:0(48)(48) × (49) =0(49)a) If manufacturer's declared loss factor is known (kWh/day):0(49)(49)(50)Femperature factor from Table 2b0(49)(50)(50)b) If manufacturer's declared cylinder loss factor is not known:0(51)(51)Hot water storage loss factor from Table 2 (kWh/litre/day)0(51)(51)			
46)m= 21.98 19.22 19.83 17.29 16.59 14.32 13.27 15.22 15.41 17.95 19.6 21.28 (46)Water storage loss:Storage volume (litres) including any solar or WWHRS storage within same vessel0(47)f community heating and no tank in dwelling, enter 110 litres in (47)0(47)Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)0(48)Water storage loss:0(49)0(49)a) If manufacturer's declared loss factor is known (kWh/day):0(49)(49)Femperature factor from Table 2b0(50)(50)b) If manufacturer's declared cylinder loss factor is not known:0(51)(51)Hot water storage loss factor from Table 2 (kWh/litre/day)0(51)f community heating see section 4.30(51)		141304 (45)	
Water storage loss: 0 (47) Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47) f community heating and no tank in dwelling, enter 110 litres in (47) 0 (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss: 0 (48) a) If manufacturer's declared loss factor is known (kWh/day): 0 (48) (49) Femperature factor from Table 2b 0 (49) (49) Energy lost from water storage, kWh/year (48) × (49) = 0 (50) b) If manufacturer's declared cylinder loss factor is not known: 0 (51) Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51) f community heating see section 4.3 0 (51)		1410.04 (10)	
Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47) f community heating and no tank in dwelling, enter 110 litres in (47) 0 (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) 0 (48) Water storage loss: 0 (48) (49) a) If manufacturer's declared loss factor is known (kWh/day): 0 (49) Femperature factor from Table 2b 0 (49) Energy lost from water storage, kWh/year (48) × (49) = 0 b) If manufacturer's declared cylinder loss factor is not known: 0 (51) Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51)			
f community heating and no tank in dwelling, enter 110 litres in (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day): Cemperature factor from Table 2b Energy lost from water storage, kWh/year b) If manufacturer's declared cylinder loss factor is not known: Hot water storage loss factor from Table 2 (kWh/litre/day) f community heating see section 4.3 (48)			
Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day): 0 (48) remperature factor from Table 2b 0 (49) Energy lost from water storage, kWh/year (48) x (49) = 0 (50) b) If manufacturer's declared cylinder loss factor is not known: 0 (51) Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51) f community heating see section 4.3 0 (51)	Storage volume (litres) including any solar or WWHRS storage within same vessel	28 (46)	
a) If manufacturer's declared loss factor is known (kWh/day): 0 (48) Cemperature factor from Table 2b 0 (49) Energy lost from water storage, kWh/year (48) x (49) = 0 (50) b) If manufacturer's declared cylinder loss factor is not known: 0 (50) Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51) f community heating see section 4.3 0 (51)		28 (46)	
Temperature factor from Table 2b 0 (49) Energy lost from water storage, kWh/year (48) x (49) = 0 (50) b) If manufacturer's declared cylinder loss factor is not known: 0 (51) Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51) f community heating see section 4.3 0 (51)	Storage volume (litres) including any solar or WWHRS storage within same vessel 0 If community heating and no tank in dwelling, enter 110 litres in (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)	28 (46)	
Energy lost from water storage, kWh/year (48) x (49) = 0 (50) b) If manufacturer's declared cylinder loss factor is not known: Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51) f community heating see section 4.3	If community heating and no tank in dwelling, enter 110 litres in (47)	28 (46)	
b) If manufacturer's declared cylinder loss factor is not known: Hot water storage loss factor from Table 2 (kWh/litre/day) f community heating see section 4.3 (51)	If community heating and no tank in dwelling, enter 110 litres in (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss:	28 (46)	
Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51) f community heating see section 4.3 0 (51)	If community heating and no tank in dwelling, enter 110 litres in (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day): 0	28 (46) (47)	
f community heating see section 4.3	If community heating and no tank in dwelling, enter 110 litres in (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day): 0 Temperature factor from Table 2b 0 Energy lost from water storage, kWh/year (48) x (49) = 0	28 (46) (47) (47) (48) (49)	
	If community heating and no tank in dwelling, enter 110 litres in (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day): Temperature factor from Table 2b Energy lost from water storage, kWh/year b) If manufacturer's declared cylinder loss factor is not known:	28 (46) (47) (47) (48) (49) (50)	
	If community heating and no tank in dwelling, enter 110 litres in (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day): 0 Temperature factor from Table 2b 0 Energy lost from water storage, kWh/year (48) x (49) = 0 Hot water storage loss factor from Table 2 (kWh/litre/day)	28 (46) (47) (47) (48) (49) (50)	
Temperature factor from Table 2b 0 (53)	If community heating and no tank in dwelling, enter 110 litres in (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day): Temperature factor from Table 2b Energy lost from water storage, kWh/year b) If manufacturer's declared cylinder loss factor is not known: Hot water storage loss factor from Table 2 (kWh/litre/day) If community heating see section 4.3	28 (46) (47) (47) (48) (49) (50) (51)	

	lastfra							(47) (54)		50)			I	
		m water (54) in (5	-	, KVVN/Y6	ear			(47) x (51)) X (52) X (53) =		<u>כ</u> כ		(54) (55)
	. ,	loss cal		for each	month			((56)m = (55) x (41)	m		5		(00)
							r			-	0	0	I	(56)
(56)m= If cylinde	0 er contains	0 s dedicate	0 d solar sto	0 rage (57)	0 = (56)m	$0 \times [(50) - ($	0 H11)1 ∸ (5	0 0) else (5	0 = (56)	0 m where (0 H11) is fro	0 m Append	ix H	(30)
-				- · ·	 I	1								
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
	-	loss (an										0		(58)
	•	loss cal			`	,	· ·	• • •						
•		i		1	1	i	i	<u> </u>		r thermo	,	-	l	(50)
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	lculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m=	13.76	12.43	13.76	13.31	13.76	13.31	13.76	13.76	13.31	13.76	13.31	13.76		(61)
Total h	eat requ	uired for	water he	eating ca	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	160.26	140.56	145.98	128.59	124.36	108.76	102.2	115.25	116.02	133.45	143.96	155.64		(62)
Solar Dł	HW input o	calculated	using App	endix G or	Appendix	H (negati	ve quantity	v) (enter '0	' if no sola	r contributi	on to wate	r heating)		
(add a	dditiona	l lines if	FGHRS	and/or V	WWHRS	applies	, see Ap	pendix C	G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
FHRS	0	0	0	0	0	0	0	0	0	0	0	0		(63) (G2)
Output	from w	ater hea	ter											
(64)m=	160.26	140.56	145.98	128.59	124.36	108.76	102.2	115.25	116.02	133.45	143.96	155.64		
								Outp	out from wa	ater heater	(annual)	12	1575.01	(64)
Heat g	ains fro	m water	heating,	kWh/mo	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 x	((46)m	+ (57)m	+ (59)m]	
(65)m=	52.15	45.71	47.4	41.66	40.22	35.06	32.85	37.18	37.48	43.24	46.77	50.61		(65)
inclu	ide (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
	. ,	ains (see		. ,	-			U				•		
		s (Table												
Melab	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	117.07	117.07	117.07	117.07	117.07	117.07	117.07	117.07	117.07	117.07	117.07	117.07		(66)
		(calcula												
(67)m=	20.12	17.87	14.53	11	8.22	6.94	7.5	9.75	13.09	16.62	19.4	20.68	l	(67)
											10.4	20.00		(0.)
••		ins (calc 208.82	203.41	191.91	177.38	163.73	13 OF L1	3a), aisc 152.47	157.87	169.38	183.9	197.55	l	(68)
(68)m=											163.9	197.55		(00)
		(calcula		-	· · ·		, 						l	(00)
(69)m=		34.71	34.71	34.71	34.71	34.71	34.71	34.71	34.71	34.71	34.71	34.71		(69)
•		ns gains	· · · · · · · · · · · · · · · · · · ·	· ·	r	r	r			· · · · · ·			I	
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	s e.g. ev	aporatio	n (nega	tive valu	es) (Tab	le 5)								
(71)m=	-93.66	-93.66	-93.66	-93.66	-93.66	-93.66	-93.66	-93.66	-93.66	-93.66	-93.66	-93.66		(71)
Water	heating	gains (T	able 5)											
(72)m=	70.1	68.02	63.71	57.86	54.05	48.7	44.15	49.98	52.05	58.11	64.96	68.03		(72)
Total i	nternal	gains =				(66)	m + (67)m	ı + (68)m +	+ (69)m + ((70)m + (7	1)m + (72)	m		
(73)m=	358.01	355.83	342.78	321.89	300.78	280.5	267.39	273.32	284.14	305.23	329.38	347.38		(73)
						-							•	

6. Solar gains:

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	e calculated usin Access Fact Table 6d	-	Area m²	adie 6a	anda	Flux Flux Tabl		itions	g			FF Table 6c	uon.		Gains (W)	
Southeast 0.9x	0.77	×	6.51		×	36.	.79	x	0	.45	x	1.11		=	83	(77)
Southeast 0.9x	0.77	×	6.51		×	62.	.67	x	0	.45	x	1.11		=	141.37	(77)
Southeast 0.9x	0.77	×	6.51		×Ī	85.	.75	x	0	.45	x	1.11		=	193.43	(77)
Southeast 0.9x	0.77	×	6.51		×	106	6.25	x	0	.45	x	1.11		=	239.67	(77)
Southeast 0.9x	0.77	×	6.51		×Ī	119	9.01	x	0	.45	x	1.11		=	268.45	(77)
Southeast 0.9x	0.77	×	6.51		×	118	3.15	x	0	.45	x	1.11		=	266.51	(77)
Southeast 0.9x	0.77	×	6.51		×	113	8.91	x	0	.45	x	1.11		=	256.95	(77)
Southeast 0.9x	0.77	×	6.51		×	104	.39	x	0	.45	x	1.11		=	235.48	(77)
Southeast 0.9x	0.77	×	6.51		×	92.	.85	x	0	.45	x	1.11		=	209.45	(77)
Southeast 0.9x	0.77	×	6.51		×	69.	.27	x	0	.45	x	1.11		=	156.25	(77)
Southeast 0.9x	0.77	×	6.51		×	44.	.07	x	0	.45	x	1.11		=	99.41	(77)
Southeast 0.9x	0.77	×	6.51		×	31.	.49	x	0	.45	x	1.11		=	71.03	(77)
Northwest 0.9x	0.77	×	3.06	3	×	11.	.28	x	0	.45	x	1.11		=	11.96	(81)
Northwest 0.9x	0.77	×	3.06	6	×	22.	.97	x	0	.45	x	1.11		=	24.35	(81)
Northwest 0.9x	0.77	×	3.06	6	×	41.	.38	x	0	.45	x	1.11		=	43.87	(81)
Northwest 0.9x	0.77	×	3.06	3	×	67.	.96	x	0	.45	x	1.11		=	72.05	(81)
Northwest 0.9x	0.77	×	3.06	3	×	91.	.35	x	0	.45	x	1.11		=	96.85	(81)
Northwest 0.9x	0.77	×	3.06	6	×	97.	.38	x	0	.45	x	1.11		=	103.26	(81)
Northwest 0.9x	0.77	×	3.06	3	×	91	.1	x	0	.45	x	1.11		=	96.59	(81)
Northwest 0.9x	0.77	×	3.06	6	×	72.	.63	x	0	.45	x	1.11		=	77.01	(81)
Northwest 0.9x	0.77	×	3.06	3	×	50.	.42	x	0	.45	x	1.11		=	53.46	(81)
Northwest 0.9x	0.77	×	3.06	3	×	28	.07	x	0	.45	x	1.11		=	29.76	(81)
Northwest 0.9x	0.77	×	3.06	6	×	14	.2	x	0	.45	x	1.11		=	15.05	(81)
Northwest 0.9x	0.77	×	3.06	3	×	9.2	21	x	0	.45	x	1.11		=	9.77	(81)
Solar gains i	n watts, calcu	<u> </u>	for each	month	_			(83)m) = Sum	(74)m	(82)m			-		
(83)m= 94.96		7.31	311.73	365.31	1	9.77	353.54	312	-	62.91	186.0	1 114.46	80.	8		(83)
Total gains -	internal and	solar	(84)m =	(73)m	+ (8	3)m , v	watts			Į			I			
(84)m= 452.9	7 521.55 58	0.09	633.61	666.09	65	0.27	620.93	585	5.8 5	47.04	491.24	4 443.84	428.	.18		(84)
7. Mean inte	ernal tempera	ature (heating	seasor	1)					•		•				
	e during heat	```	Ŭ		<i>.</i>	area fro	om Tab	ole 9,	, Th1 ((°C)					21	(85)
Utilisation fa	actor for gains	s for li	ving area	a, h1,m	n (se	e Tab	le 9a)			. ,				I		
Jan		Mar	Apr	May	T È	Jun	Jul	A	ug	Sep	Oct	Nov	De	ес		
(86)m= 0.99	0.97 0	.95	0.9	0.79	0	.63	0.48	0.5	52	0.74	0.92	0.98	0.9	9		(86)
Mean intern	al temperatu	re in li	ving are	a T1 (f	ollov	v step	s 3 to 7	r in T	able 9			•				
(87)m= 19.62	I	0.12	20.47	20.77	1	0.93	20.98	20.	-	20.86	20.48	19.97	19.5	56		(87)
	e during heat				I		rom Ta			(°C)			I			
(88)m= 20.14	<u> </u>	0.14	20.14	20.14	-	D.14	20.14	20.	· ·	20.14	20.14	20.14	20.1	14		(88)
	_II				1	I		I					I			

Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	
(89)m= 0.98 0.97 0.94 0.87 0.75 0.56 0.39 0.43 0.68 0.9 0.97 0.99	(89)
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)	
	(90)
$fLA = Living area \div (4) = 0.2$	(91)
Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$	
	(92)
Apply adjustment to the mean internal temperature from Table 4e, where appropriate	
(93)m= 18.87 19.07 19.36 19.71 19.98 20.12 20.15 20.15 20.06 19.72 19.22 18.81	(93)
8. Space heating requirement	
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate	
the utilisation factor for gains using Table 9a	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	
Utilisation factor for gains, hm: (94)m= 0.98 0.96 0.93 0.86 0.74 0.56 0.39 0.43 0.68 0.89 0.96 0.98	(94)
Useful gains, hmGm , W = (94) m x (84) m	(34)
	(95)
Monthly average external temperature from Table 8	()
	(96)
Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m– (96)m]	
(97)m= 1010.66 982.81 892.27 749.55 574.23 382.72 246.53 260.08 413.72 632.36 840.66 1013.55	(97)
Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m	
(98)m= 422.48 323.46 262.59 146.61 61.89 0 0 0 0 146.22 297.82 441.39	
Total per year (kWh/year) = Sum(98) ₁₅₉₁₂ = 2102.45	(98)
Space heating requirement in kWh/m²/year 28.37	(99)
9a. Energy requirements – Individual heating systems including micro-CHP)	
Space heating:	
Fraction of space heat from secondary/supplementary system 0	(201)
Fraction of space heat from main system(s)(202) = 1 - (201) =1	(202)
Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$	(204)
Efficiency of main space heating system 1 90.5	(206)
Efficiency of secondary/supplementary heating system, %	(208)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year	
Space heating requirement (calculated above)	
422.48 323.46 262.59 146.61 61.89 0 0 0 0 146.22 297.82 441.39	
$(211)m = \{[(98)m \times (204)]\} \times 100 \div (206)$	(211)
466.83 357.42 290.15 162 68.38 0 0 0 161.57 329.08 487.72	. ,
Total (kWh/year) =Sum(211) _{15,1012} = 2323.15	(211)
Space heating fuel (secondary), kWh/month	
$= \{ [(98)m \times (201)] \} \times 100 \div (208) $	
(215)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Total (kWh/year) =Sum(215) _{15,1012} = 0	(215)

Water heating

Output	from w	ater hea	ter (calc	ulated a	oove)									
160.26 140.56 145.98 128.59 124.36 108.76 102.2 115.25 116.02 133.45 143.96 155.6														_
Efficien	cy of w	ater hea	ter										87.3	(216)
(217)m=	89.6	89.51	89.33	88.98	88.34	87.3	87.3	87.3	87.3	88.94	89.43	89.64		(217)
		heating,												
· · ·		m x 100			4.40.70	404.50	447.07	400.04	400.00	450.00	400.00	470.00	I	
(219)m=	178.87	157.04	163.41	144.52	140.78	124.58	117.07	132.01	132.89	150.03	160.98	173.62		1
								Tota	I = Sum(2				1775.8	(219)
Annua										k\	Wh/year	•	kWh/year	1
Space	heating	fuel use	ed, main	system	1								2323.15	
Water heating fuel used												1775.8]	
Electric	ity for p	oumps, fa	ans and	electric	keep-ho	t								
mecha	anical v	entilatior	n - balan	ced, ext	ract or p	ositive ir	nput fron	n outside	Ð			49.6		(230a)
centra	l heatin	g pump:										30		(230c)
boiler	with a f	an-assis	ted flue									45		(230e)
Total el	ectricity	/ for the	above, ł	(Wh/yea	r			sum	of (230a).	(230g) =			124.6	(231)
Electric	ity for li	ghting											355.33	(232)
Electric	ity gene	erated by	y PVs										-240.96	(233)
Total de	eliverec	l energy	for all us	ses (211)(221)	+ (231)	+ (232).	(237b)	=				4337.92	(338)
12a. C	CO2 em	issions -	– Individ	ual heati	ng syste	ems inclu	iding mi	cro-CHP)					

	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	501.8 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216 =	383.57 (264)
Space and water heating	(261) + (262) + (263) + (264) =		885.37 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519 =	64.67 (267)
Electricity for lighting	(232) x	0.519 =	184.42 (268)
Energy saving/generation technologies Item 1		0.519 =	-125.06 (269)
Total CO2, kg/year	sum	of (265)(271) =	1009.4 (272)
Dwelling CO2 Emission Rate	(272	2) ÷ (4) =	13.62 (273)
EI rating (section 14)			89 (274)

						User D	etails:						
Assesso Software			n Tunniı oma FS	•••			Strom Softwa	are Vei	rsion:			027495 on: 1.0.5.41	
							Address						
Address			Buttercu	p Road ,	, Bishops	s Waltha	am, SOU	THAMP	TON , S	032 1RI	F		
1. Overall	dwelling di	mension	S:										
0 14							a(m²)	I	Av. He	ight(m)	1	Volume(m ³)	-
Ground flo	or					3	37.05	(1a) x	2	2.4	(2a) =	88.92	(3a)
First floor						3	37.05	(1b) x	2	.67	(2b) =	98.92	(3b)
Total floor	area TFA =	(1a)+(1l	o)+(1c)+((1d)+(1e	e)+(1r	n)	74.1	(4)					
Dwelling vo	olume							(3a)+(3b))+(3c)+(3d	l)+(3e)+	.(3n) =	187.84	(5)
2. Ventilat	tion rate:												_
			main heating		econdar neating	у	other		total			m ³ per hour	
Number of	chimneys	Ľ	0	+	0	+	0] = [0	x 4	40 =	0	(6a)
Number of	open flues	Γ	0] + [0] + [0] = [0	x 2	20 =	0	(6b)
Number of	intermittent	fans						- F	3	x 1	10 =	30	(7a)
Number of	passive ver	nts						Ē	0	x 1	10 =	0	(7b)
Number of	flueless ga	s fires						Г	0	x 4	40 =	0	(7c)
								_			A :=		_
Infiltration	dua ta abima	a a sua di s			a) . (6b) . (7	(a) . (7 b) . (70) -	Г				hanges per ho	-
	due to chim risation test ha							continue fr	30 om (9) to (÷ (5) =	0.16	(8)
	of storeys in				.,,				- (-) - (-/		0	(9)
	al infiltration		Ū (,						[(9)-	-1]x0.1 =	0	(10)
Structura	al infiltration	: 0.25 fo	r steel or	timber t	frame or	0.35 fo	r masoni	ry constr	ruction			0	(11)
-	pes of wall ar				ponding to	the great	ter wall are	a (after					
	nded woode	0 //	,		ed) or 0.	1 (seale	ed), else	enter 0				0	(12)
If no dra	ught lobby,	enter 0.0)5, else e	enter 0								0	(13)
Percenta	age of windo	ows and	doors dr	aught st	ripped							0	(14)
Window	infiltration						0.25 - [0.2	2 x (14) ÷ 1	= [00			0	(15)
Infiltratio	n rate						(8) + (10)	+ (11) + (1	2) + (13) -	+ (15) =		0	(16)
	eability valu	•	-			•	•	•	etre of e	nvelope	area	5	(17)
	air permea	-							. , .			0.41	(18)
	ability value ap sides shelte		ressurisatio	on test has	s been don	ie or a de	gree air pe	rmeability	is being us	sed			(19)
Shelter fac		sieu					(20) = 1 -	[0.075 x (1	9)] =			2 0.85	(19)
	ate incorpo	rating sh	nelter fac	tor			(21) = (18) x (20) =				0.35	(21)
	ate modifie	•			ł								J`
	an Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly av	erage wind	speed f	rom Tabl	e 7			-	-	-		-	•	
(22)m= 5.		4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		

Wind F	actor (2	22a)m =	(22)m ÷	4										
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjuste	ed infiltra	ation rate	e (allowi	ng for sh	nelter an	d wind s	speed) =	= (21a) x	(22a)m					
[0.44	0.44	0.43	0.38	0.37	0.33	0.33	0.32	0.35	0.37	0.39	0.41		
		ctive air d	•	rate for t	he appli	cable ca	se	•		•				
		al ventila		" N (0) – (. (00)) (22)			0	(23a)
			• • •		, ,	, ,	•	(N5)) , othe		o) = (23a)			0	(23b)
			-	-	-			m Table 4h					0	(23c)
ŕ				i	1	· · · · · ·	<u> </u>	′HR) (24a	ŕ	1 (r <u>, -</u>	r í í	÷ 100]	
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24a)
b) If I	balance	d mecha	anical ve	entilation	without	heat rec	overy (MV) (24b	o)m = (2	2b)m + (2	23b)		L	
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
,					•	•		on from c 4c) = (22t		.5 x (23b))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
	natural	ventilatio	on or wh	l ole hous	L	l /e input :	L ventilat	ion from l	l	I				
,						•		0.5 + [(2		0.5]				
(24d)m=	0.6	0.59	0.59	0.57	0.57	0.55	0.55	0.55	0.56	0.57	0.58	0.58		(24d)
Effec	tive air	change	rate - er	nter (24a) or (24t	o) or (24	c) or (2 [,]	4d) in box	x (25)			-		
(25)m=	0.6	0.59	0.59	0.57	0.57	0.55	0.55	0.55	0.56	0.57	0.58	0.58		(25)
2.110							•	•	•	•	1			
		s and he				Net Ar	~~~	U-valı		AXU		k-value		AXk
ELEM		Gros area		Openin m	-	A,r		W/m2		(W/I	K)	kJ/m ² ·ł		kJ/K
Doors						2.1	×	1	=	2.1				(26)
Window	vs Type	e 1				3.06	x	1/[1/(1.4)+	0.04] =	4.06				(27)
Window	vs Type	2				6.51	×	1/[1/(1.4)+	0.04] =	8.63				(27)
Floor						37.05		0.13		4.8165	ı آ			(28)
Walls		44.6	6	11.6	7	32.99		0.18	=	5.94	= i		\dashv	(29)
Roof		37.0		0		37.05		0.13	=	4.82			\dashv	(30)
	rea of e	lements				118.7		0110			L		L	(31)
Party w			,			85.46		0		0				(32)
-	I wall **					59.9				Ŭ	L [\dashv	(32c)
	I wall **					90.09					L		\dashv	(32c)
Interna						37.05					l ſ		\dashv	(32d)
													\dashv	
mema	l ceiling					37.05	5							(32e)

Fabric heat loss, $W/K = S (A \times U)$	(26)(30) + (32) =	30.36	(33)
Heat capacity $Cm = S(A \times k)$	((28)(30) + (32) + (32a)(32e) =	11287.56	(34)
Thermal mass parameter (TMP = Cm \div TFA) in kJ/m ² K	Indicative Value: Medium	250	(35)
For design assessments where the details of the construction are not linear	a number of the indication of the first of		-

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f

can be u	sed inste	ad of a de	tailed calc	ulation.										
Therma	al bridg	es : S (L	x Y) cal	culated	using Ap	pendix l	<						8.44	(36)
if details	of therma	al bridging	are not kn	own (36) =	= 0.05 x (3	1)								
Total fa	abric he	at loss							(33) +	(36) =			38.79	(37)
Ventila	tion hea	at loss ca	alculated	monthl	y	-	-	-	(38)m	= 0.33 × (25)m x (5)	-		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	37.1	36.87	36.63	35.54	35.34	34.39	34.39	34.21	34.75	35.34	35.75	36.18		(38)
Heat tr	ansfer o	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	75.9	75.66	75.43	74.34	74.13	73.18	73.18	73	73.55	74.13	74.55	74.98		
Heat lo	ss para	ımeter (H	HP)W	/m²K	1		1			Average = = (39)m ÷	Sum(39)1.	12 /12=	74.34	(39)
(40)m=	1.02	1.02	1.02	1	1	0.99	0.99	0.99	0.99	1	1.01	1.01	1	
(10)	1.02	1.02				0.00	0.00	0.00			Sum(40)1		1	(40)
Numbe	er of day	/s in moi	nth (Tab	le 1a)						Tronago				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
													1	
4. Wa	ter hea	ting enei	rav reau	irement:								kWh/ye	ear:	
			3)											
if TF	A > 13.			[1 - exp	(-0.0003	849 x (TF	-13.9)2)] + 0.()013 x (⁻	TFA -13.		34		(42)
Annual	averag							(25 x N)				.81		(43)
		al average litres per j				-	-	to achieve	a water us	se target o	f			
		- · ·				i	·		-		1		1	
Hot wate	Jan	Feb n litres per	Mar day for e	Apr Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
								 I					1	
(44)m=	98.79	95.2	91.6	88.01	84.42	80.83	80.83	84.42	88.01	91.6	95.2	98.79		
Energy o	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x D	0Tm / 3600			m(44) ₁₁₂ = ables 1b, 1		1077.7	(44)
(45)m=	146.5	128.13	132.22	115.27	110.61	95.45	88.44	101.49	102.7	119.69	130.65	141.88		
lf instant	aneous v	, vater heatii	ng at point	of use (no	o hot water	r storage),	enter 0 in	boxes (46		Total = Su	m(45) ₁₁₂ =	=	1413.04	(45)
(46)m=	21.98	19.22	19.83	17.29	16.59	14.32	13.27	15.22	15.41	17.95	19.6	21.28	1	(46)
· · ·	storage		10.00	17.20	10.00	14.02	10.21	10.22	10.41	17.00	10.0	21.20		()
Storage	e volum	e (litres)	includir	ng any so	olar or W	/WHRS	storage	within sa	me ves	sel		0		(47)
If comr	nunity ł	neating a	ind no ta	nk in dw	velling, e	nter 110	litres in	(47)					1	
Otherw	vise if no	o stored	hot wate	er (this ir	ncludes i	nstantar	neous co	mbi boil	ers) ente	ər '0' in (47)			
Water	storage	loss:												
a) If m	anufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	rature f	actor fro	m Table	2b								0		(49)
•••		m water	-	-				(48) x (49)	=			0		(50)
,		urer's de		•									1	
		age loss neating s			e 2 (KW	n/litre/da	iy)					0	ļ	(51)
	-	from Ta		011 4.3								0	1	(52)
		actor fro		2b								0		(52)

-								(47) (54)	(50) (50)			I	(= .)
		m water (54) in (5	-	, KVVN/Ye	ear			(47) x (51)) x (52) x (53) =		0 0		(54) (55)
	. ,	loss cal		for each	month			((56)m = (55) x (41)	m		0	i	(33)
	-	0					r			0	0	0	I	(56)
(56)m= If cylinde	0 er contains	-	0 d solar sto	0 rage, (57)r	0 m = (56)m	0 x [(50) – (0 H11)] ÷ (5	0 0). else (5	0 7)m = (56)	m where (0 H11) is fro	0 m Append	j lix H	(30)
-				- · ·	 I	1							l	(57)
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
		loss (an										0		(58)
	•	loss cal			`		· ·	. ,						
•	· ·	1		1	i	r	i	<u> </u>	· ·	r thermo	,	0	I	(59)
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0	l .	(59)
Combi	loss ca	lculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m=	50.34	43.82	46.68	43.4	43.02	39.86	41.19	43.02	43.4	46.68	46.95	50.34		(61)
Total h	eat requ	uired for	water he	eating ca	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	196.84	171.95	178.9	158.68	153.63	135.31	129.63	144.51	146.11	166.37	177.6	192.22		(62)
Solar DH	HW input of	calculated	using App	endix G or	· Appendix	H (negati	ve quantity	v) (enter '0	' if no sola	r contributi	on to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or V	WWHRS	applies	, see Ap	pendix (G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
FHRS	0	0	0	0	0	0	0	0	0	0	0	0		(63) (G2)
Output	from w	ater hea	ter											
(64)m=	196.84	171.95	178.9	158.68	153.63	135.31	129.63	144.51	146.11	166.37	177.6	192.22		
								Outp	out from wa	ater heater	r (annual)₁	12	1951.74	(64)
Heat g	ains fro	m water	heating,	kWh/mo	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 >	k [(46)m	+ (57)m	+ (59)m]	
(65)m=	61.3	53.56	55.63	49.18	47.53	41.7	39.7	44.5	45	51.47	55.18	59.76		(65)
inclu	de (57)	m in calc	culation	of (65)m	only if c	ylinder i:	s in the a	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Int	ernal ga	ains (see	Table 5	and 5a):									
		s (Table												
metab	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	117.07	117.07	117.07	117.07	117.07	117.07	117.07	117.07	117.07	117.07	117.07	117.07		(66)
	n dains	(calculat		nendix	L equat	ion I 9 o	riga)a	lso see	L Table 5				ł	
(67)m=	20.12	17.87	14.53	11	8.22	6.94	7.5	9.75	13.09	16.62	19.4	20.68	1	(67)
		ins (calc									-		i	. ,
70000000000000000000000000000000000000		208.82	203.41	191.91	177.38	163.73	154.61	152.47	157.87	169.38	183.9	197.55	1	(68)
											100.0	107.00	Í	()
		(calcula		-	L, equal 34.71		, 				24 71	24 71	I	(69)
(69)m=	34.71	34.71	34.71	34.71	34.71	34.71	34.71	34.71	34.71	34.71	34.71	34.71	l	(03)
-		ns gains	· · · · · · · · · · · · · · · · · · ·	· ·				-			-	_	I	(70)
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
	-	aporatio	· •	· · · · · ·	· · · ·	· · ·	·						I	
(71)m=	-93.66	-93.66	-93.66	-93.66	-93.66	-93.66	-93.66	-93.66	-93.66	-93.66	-93.66	-93.66		(71)
Water	heating	gains (T	able 5)	i	i	i	i			i			1	
(72)m=	82.39	79.7	74.78	68.3	63.89	57.92	53.37	59.81	62.5	69.18	76.64	80.32		(72)
Total i	nternal	gains =				(66)	m + (67)m	ı + (68)m +	+ (69)m + ((70)m + (7	1)m + (72)	m		
(73)m=	370.3	367.51	353.84	332.33	310.62	289.72	276.61	283.16	294.58	316.3	341.06	359.68		(73)

6. Solar gains:

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	e calculated usir Access Fac Table 6d	•	Area m ²	I adle 6a	a and	Flu		ations	g	J_ Die 6b		FF Table 6c	lion.		Gains (W)	
Southeast 0.9x	0.77	x	6.5	1	x	3	6.79	x	(0.63	x	0.7		=	73.2	(77)
Southeast 0.9x	0.77	x	6.5	1	x	6	2.67	x	(0.63	x	0.7		=	124.69	(77)
Southeast 0.9x	0.77	x	6.5	1	x	x 85.75		x	(0.63	x	0.7		=	170.61	(77)
Southeast 0.9x	0.77	x	6.5	1	x	10	06.25	x	(0.63	x	0.7		=	211.39	(77)
Southeast 0.9x	0.77	x	6.5	1	x	1	19.01	x	(0.63	×	0.7		=	236.78	(77)
Southeast 0.9x	0.77	x	6.5	1	x	1	18.15	x	(0.63	×	0.7		=	235.06	(77)
Southeast 0.9x	0.77	x	6.5	1	x	1	13.91	x	(0.63	x	0.7		=	226.63	(77)
Southeast 0.9x	0.77	x	6.5	1	x	10	04.39	x	(0.63	×	0.7		=	207.69	(77)
Southeast 0.9x	0.77	x	6.5	1	x	9	2.85	x	(0.63	×	0.7		=	184.73	(77)
Southeast 0.9x	0.77	x	6.5	1	x	6	9.27	x	(0.63	x	0.7		=	137.81	(77)
Southeast 0.9x	0.77	x	6.5	1	x	4	4.07	x	(0.63	×	0.7		=	87.68	(77)
Southeast 0.9x	0.77	x	6.5	1	x	3	1.49	x	(0.63	x	0.7		=	62.65	(77)
Northwest 0.9x	0.77	x	3.0	6	x	1	1.28	x	(0.63	×	0.7		=	10.55	(81)
Northwest 0.9x	0.77	x	3.0	6	x	2	2.97	x	(0.63	x	0.7		=	21.48	(81)
Northwest 0.9x	0.77	x	3.0	6	x	4	1.38	x	(0.63	x	0.7		=	38.7	(81)
Northwest 0.9x	0.77	x	3.0	6	x	6	7.96	x	(0.63	×	0.7		=	63.55	(81)
Northwest 0.9x	0.77	x	3.0	6	x	9	1.35	x	(0.63	x	0.7		=	85.42	(81)
Northwest 0.9x	0.77	x	3.0	6	x	9	7.38	x	(0.63	×	0.7		=	91.07	(81)
Northwest 0.9x	0.77	x	3.0	6	x	9	91.1	x	(0.63	×	0.7		=	85.2	(81)
Northwest 0.9x	0.77	x	3.0	6	x	7	2.63	x	(0.63	x	0.7		=	67.92	(81)
Northwest 0.9x	0.77	x	3.0	6	x	5	0.42	x	(0.63	×	0.7		=	47.15	(81)
Northwest 0.9x	0.77	x	3.0	6	x	2	8.07	x	(0.63	×	0.7		=	26.25	(81)
Northwest 0.9x	0.77	x	3.0	6	x		14.2	x	(0.63	×	0.7		=	13.28	(81)
Northwest 0.9x	0.77	x	3.0	6	x	9	9.21	x	(0.63	×	0.7		=	8.62	(81)
Solar gains i	n watte calci		for each	a mont	h			- (83)m) – Sum	า(74)m	(82)m					
(83)m= 83.75		T I	274.94	322.2	-	26.14	311.82	275	ī	231.88	164.06	3 100.96	71	.26		(83)
Total gains -	internal and	l solar	(84)m =	: (73)m	+ (8	83)m	, watts									
(84)m= 454.00	6 513.68 50	63.15	607.28	632.82	6	15.85	588.43	558	.76 5	526.47	480.36	6 442.02	430	0.94		(84)
7. Mean inte	ernal tempera	ature (heating	seaso	n)											
Temperatur	e during hea	ting pe	eriods ir	n the liv	ring	area f	from Tab	ole 9	, Th1	(°C)					21	(85)
Utilisation fa	actor for gain	ns for li	ving are	ea, h1,r	n (s	ее Та	ble 9a)	-					_			
Jan	Feb	Mar	Apr	May		Jun	Jul	A	ug	Sep	Oct	Nov		Dec		
(86)m= 1	1 (0.99	0.96	0.88	(0.71	0.54	0.5	59	0.83	0.97	1		1		(86)
Mean intern	al temperatu	ure in li	ving are	ea T1 (†	follo	w ste	ps 3 to 7	7 in T	able	9c)						
(87)m= 19.94		20.3	20.59	20.83	_	20.96	20.99	20.		20.91	20.6	20.22	19	.92		(87)
Temperatur	e during hea	tina pe	eriods ir	n rest o	f dw	vellina	from Ta	able 9	9. Th2	2 (°C)						
(88)m= 20.06		20.07	20.08	20.08	-	20.09	20.09	20	·	20.09	20.08	20.08	20	0.07		(88)
		I					L					-!				

(89)m= 1 0.99 0.98 0.95 0.84 0.63 0.43 0.48 0.77 0.96 0.99 1 (89) Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (00) 18.65 18.85 19.18 19.91 20.07 20.09 20.02 19.62 19.07 18.63 (00) Mean internal temperature (for the whole dwelling) = fLA x T1 + (1 - fLA) x T2 (20) 19.82 19.31 18.89 (02) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (33) (33) (35) S. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a (94) Using atom factor for gains using Table 9a (94) (94) (95) (95) Monthly average external temperature from Table 8 (95) (96) (96) (97) (94) (95)m= 45.11 50.81 51.85 52.81 53.89 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 (95) Monthly average external temperature	(89)m=	ion factor for g	ains for i	rest of d	velling, l	h2,m (se	e Table	9a)						
(90)me 18.85 19.18 19.59 19.91 20.07 20.09 20.02 19.62 19.07 18.63 (90) ItA = Living area + (4) = 0.2 (91) Mean internal temperature (for the whole dwelling) = fLA x T1 + (1 - fLA) x T2 (92) (92) 19.81 19.11 18.49 (92) Apply adjustment to the mean internal temperature form Table 4e, where appropriate (93) 18.89 (93) 8. Space heating requirement So 1 20.2 20.28 20.2 19.82 19.31 18.89 (93) 8. Space heating requirement Set T1 to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains, hm: (94) (94) 10.49 0.84 0.85 0.5 0.77 0.95 0.99 1 (94) Useful gains, hmGm, W = (94)m x (84)m (96)me 43.2 43.9 51.43 51.43 51.43 51.43 51.43 51.43 51.43 51.43 51.43 51.43 51.43 51.43 51.62 267.29 279.99 407.78 458.66 438 429.54 (95) Monthl		1 0.99	0.98	0.95	0.84	0.63	0.43	0.48	0.77	0.96	0.99	1		(89)
(90)me 18.85 19.18 19.59 19.91 20.07 20.09 20.02 19.62 19.07 18.63 (90) ItA = Living area + (4) = 0.2 (91) Mean internal temperature (for the whole dwelling) = fLA x T1 + (1 - fLA) x T2 (92) (92) 19.81 19.11 18.49 (92) Apply adjustment to the mean internal temperature form Table 4e, where appropriate (93) 18.89 (93) 8. Space heating requirement So 1 20.2 20.28 20.2 19.82 19.31 18.89 (93) 8. Space heating requirement Set T1 to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains, hm: (94) (94) 10.49 0.84 0.85 0.5 0.77 0.95 0.99 1 (94) Useful gains, hmGm, W = (94)m x (84)m (96)me 43.2 43.9 51.43 51.43 51.43 51.43 51.43 51.43 51.43 51.43 51.43 51.43 51.43 51.43 51.62 267.29 279.99 407.78 458.66 438 429.54 (95) Monthl	Mean ii	nternal tempe	rature in	the rest	of dwelli	ng T2 (fo	ollow ste	eps 3 to 7	7 in Tabl	e 9c)				
Mean internal temperature (for the whole dwelling) = fLA x T1 + (1 - fLA) x T2 (a) (a) 18.91 19.11 19.41 19.8 20.1 20.28 20.28 20.2 19.82 19.31 18.89 (a) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (a) (a) (a) (a) (a) Space heating requirement Total temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a (a) (a) (a) Unised tor for gains, hm: (a) (a) (b) (b) (c) (c) (b) (b) 0.99 0.94 0.84 0.65 0.5 0.77 0.95 0.99 1 (c) (c) (c) 0.99 0.98 0.84 0.65 0.5 0.77 0.95 0.99 1 (c)		·	1			<u> </u>		. <u> </u>		, 	19.07	18.63		(90)
(92)m 18.91 19.11 19.41 19.8 20.2 20.28 20.2 19.82 19.31 18.89 (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m 18.91 19.11 19.41 19.8 20.1 20.25 20.28 20.2 19.82 19.31 18.89 (93) 3. Space heating requirement 19.41 19.4 19.4 20.1 20.25 20.28 20.2 19.82 19.31 18.89 (93) 3. Space heating requirement 19.41 19.4 20.1 20.25 20.28 20.2 19.82 19.31 18.89 (93) 3. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains, hm: (94)m- 1 0.99 0.98 0.94 0.85 0.45 0.5 0.77 0.95 0.99 1 (94) Useful gains, hm: (94)m 19.94 0.84 0.85 0.45 0.5 0.77 0.95 0.99 1 (94) Useful gains, hm: (94)m	L	Į							f	LA = Livin	g area ÷ (4	4) =	0.2	(91)
(92)m 18.91 19.11 19.41 19.8 20.2 20.28 20.2 19.82 19.31 18.89 (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m 18.91 19.11 19.41 19.8 20.1 20.25 20.28 20.2 19.82 19.31 18.89 (93) 3. Space heating requirement 19.41 19.4 19.4 20.1 20.25 20.28 20.2 19.82 19.31 18.89 (93) 3. Space heating requirement 19.41 19.4 20.1 20.25 20.28 20.2 19.82 19.31 18.89 (93) 3. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains, hm: (94)m- 1 0.99 0.98 0.94 0.85 0.45 0.5 0.77 0.95 0.99 1 (94) Useful gains, hm: (94)m 19.94 0.84 0.85 0.45 0.5 0.77 0.95 0.99 1 (94) Useful gains, hm: (94)m	Mean ii	nternal tempe	rature (fo	r tha wh	مام طيبها	lina) – fl	Δ 🗸 Τ1	⊥ (1 _ fl	Δ) ~ T2			I		
Apply adjustment to the mean internal temperature from Table 4e, where appropriate (3) (3) 18.91 19.11 19.41 19.8 20.1 20.25 20.28 20.2 19.82 19.31 18.89 (93) Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a (94) (94) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94) (94) (94) (94) (94) (94) (94) Useful gains, hmGm, W = (94)m x (84)m (95) (95) (96) (96) (96) (96) (96) (96) (96) (96) (96) (96) (96) (97) (96) (96) (97) (97) (96) (97) (97) (96) (97) (97) (98) (97) (97) (98) (97) (98) (98) (97) (97) (98) (98) (98) (97) (97) (98) (97) (97) (98) (98)	_	<u>·</u>	r `					<u> </u>		19.82	19.31	18.89		(92)
(83)m 18.91 19.11 19.41 19.8 20.1 20.2 20.2 19.82 19.31 18.89 (93) 8. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a (94) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94) (94)ma 1 0.99 0.98 0.94 0.84 0.65 0.45 0.5 0.77 0.95 0.99 1 (94) Useful gains, hmGm, W = (94)m x (84)m (95)me (452.11 50.91.3 551.43 571.85 532.98 398.42 267.29 279.99 407.78 458.66 438 429.54 (95) Monthly average external temperature from Table 8 (96)me 4.3 4.9 6.5 8.9 11.7 14.6 16.4 14.1 10.6 7.1 4.2 (96) Heat toss rate for mean internal temperature from Table 8 (96)me (97)m = (95)m] x (41)m (97)m = (95)m] x (41)m			he mear	internal	tempera	ature fro	m Table	4e, whe		L				
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a.JanFebMarAprMayJunJulAugSepOctNovDecUtilisation factor for gains, hm:(94)m10.990.940.840.650.450.50.770.950.991(94)Useful gains, hmGm, W = (94)m x (84)m(95)m =(452.11509.13551.43571.85532.98398.42267.29279.99407.78458.66438429.54(95)Monthly average external temperature from Table 8(96)m =(43)4.96.58.911.714.616.616.414.110.67.14.2(96)Heat loss rate for mean internal temperature, Lm, W =[(39)m x [(93)m - (96)m](97)m [97)m [97)m [1109.251074.84973.4581062.75413.59269282.91448.6663.6690.9.61110.5(97)Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m(98)m =488.9130.15313.99171.4766.8000167.4339.81499.94Total per year (kWh/year) = Sum(98)sc =2428.47(98)Space heating requirement in kWh/m²/year32.77(99)9a. Energy requirements - Individual heating systems including micro-CHP)Space heating:0(201) =1(202) x [1 - (201) =	· · · · · -		1		· ·			i	<u> </u>	r <u> </u>	19.31	18.89		(93)
the utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94)m= 1 0.99 0.98 0.94 0.84 0.65 0.45 0.5 0.77 0.95 0.99 1 (94) Useful gains, hmGm, W = (94)m x (84)m (95)m 452.11 501.13 571.85 532.98 398.42 267.29 279.99 407.78 458.66 438 429.54 (95) Monthly average external temperature from Table 8 (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 (96) Heat loss rate for mean internal temperature, Lm, W =[(39)m x [(93)m- (96)m] (97)m (95)m] x (41)m (98)m = 488.91 380.15 313.99 171.47 66.8 0 0 0 167.4 339.41 499.94 Total per year (kWhyear) = Sum(98)s.ve = 2428.47 (98) 32.77 (99) Fraction of space	8. Spac	ce heating req	uirement											
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94)m = 1 0.99 0.98 0.94 0.84 0.65 0.45 0.5 0.77 0.95 0.99 1 (94) Useful gains, hmGm, W = (94)m x (84)m (95)m = 452.11 509.13 551.34 571.86 532.98 398.42 267.29 279.99 407.78 458.66 438 429.54 (95) Monthly average external temperature from Table 8 (96)m = 4.3 4.9 6.5 8.9 11.7 14.6 16.4 14.1 10.6 7.1 4.2 (96) Heat loss rate for mean internal temperature, Lm, W =[(39)m x [(93)m x [(93)m x [(93)m x] 109.5 (97) Space heating requirement for each month, kWh/moth = 0.024 x [(97)m - (95)m] x (41)m (97) Space heating requirement in kWh/m ² /year 32.77 (98) Space heating requirement in kWh/m ² /year 32.77 (99) 32.77 (99) 32.77 (99)				•		ed at ste	ep 11 of	Table 9t	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
Utilisation factor for gains, hm: (94)m= 1 0.99 0.98 0.94 0.65 0.45 0.5 0.77 0.95 0.99 1 (94) Useful gains, hmGm, W = (94)m x (84)m (95) (95) (95) (95) (95) (95) Monthly average external temperature from Table 8 (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 (96) Heat loss rate for mean internal temperature, Lm, W = ((39)m x ((93)m - (96)m) (97) (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (97) (98)m= 48.91 380.15 31.99 171.47 66.8 0 0 0 167.4 339.81 499.94 Total per year (kWh/year) = Sum(98)s.u = 2428.47 (98) Space heating requirement in kWh/m ² /year 99 90 10 0 167.4 339.81 499.94 Total per year (kWh/year) = Sum(98)s.u = 2428.47 (98) 2/year </td <td>the utili</td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>	the utili		<u> </u>									_		
(94)m= 1 0.99 0.94 0.84 0.65 0.45 0.5 0.77 0.95 0.99 1 (94) Useful gains, hmGm, W = (94)m x (84)m (95)m 452.11 509.13 551.43 571.85 532.98 398.42 267.29 279.99 407.78 458.66 438 429.54 (95) Monthly average external temperature from Table 8 (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 (96) Heat loss rate for mean internal temperature, Lm, W = ((39)m x [(93)m - (96)m] (97)m = (109.25 1074.84 973.45 810 622.75 413.59 269 282.91 448.66 683.66 909.96 1101.5 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m = 488.91 380.15 313.99 171.47 66.8 0 0 167.4 339.81 499.94 100.101.5 (98) Space heating requirement in kWh/m2/year 32.77 (99) 32.77 (99) 32.77 (99) 32.77					May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Useful gains, hmGm, W = (94)m x (84)m (95)m= 452.11 509.13 551.43 571.85 532.98 398.42 267.29 279.99 407.78 458.66 438 429.54 (95) Monthly average external temperature from Table 8 (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 (96) Heat loss rate for mean internal temperature, Lm, W =[(39)m x [(93)m - (96)m] (97)m= 1109.25 1074.84 973.45 810 622.75 413.59 269 282.91 448.66 683.66 909.96 1101.5 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m= 488.91 380.15 313.99 171.47 66.8 0 0 0 167.4 339.81 499.94 (98)m= 488.91 380.15 313.99 171.47 66.8 0 0 0 167.4 339.81 499.94 108.5 52.77 (98) Space heating requirement in kWh/m²/year 32.77 (99) 93.4 200 (201) 1 <t< td=""><td></td><td></td><td>1</td><td></td><td>0.94</td><td>0.65</td><td>0.45</td><td>0.5</td><td>0.77</td><td>0.05</td><td>0.00</td><td>4</td><td></td><td>(04)</td></t<>			1		0.94	0.65	0.45	0.5	0.77	0.05	0.00	4		(04)
(95)m= 452.11 509.13 551.43 571.85 532.98 398.42 267.29 279.99 407.78 458.66 438 429.54 (95) Monthly average external temperature from Table 8 (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 (96) Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m - (96)m] (97)m = 1109.25 1074.84 973.45 810 622.75 413.59 269 282.91 448.66 683.66 909.96 1101.5 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m 488.91 380.15 313.99 171.47 66.8 0 0 0 167.4 338.81 499.94 Cotal per year (kWh/year) = Sum(98)se.re 2428.47 (98) Space heating requirements - Individual heating systems including micro-CHP) Space heating: 0 (202) = 1 - (201) = 1 (202) Fraction of space heat from main system 1 (204) = (202) x [1 - (203)] = 1 (204) 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.65</td> <td>0.45</td> <td>0.5</td> <td>0.77</td> <td>0.95</td> <td>0.99</td> <td>1</td> <td></td> <td>(94)</td>						0.65	0.45	0.5	0.77	0.95	0.99	1		(94)
Monthly average external temperature from Table 8 (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 (96) Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m- (96)m] (96)m= (97)m= 1109.25 1074.84 973.45 810 622.75 413.59 269 282.91 448.66 683.66 909.96 1101.5 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m= 488.91 380.15 313.99 171.47 66.8 0 0 0 167.4 339.81 499.94 Total per year (kWh/year) = Sum(98)se.rz 2428.47 (98) Space heating requirement in kWh/m²/year 32.77 (99) Space heating: Fraction of space heat from secondary/supplementary system 0 (201) Fraction of space heat from main system 1 (204) = (202) x [1 - (203)] = 1 (204) Efficiency of main space heating system 1 (204) = (202) x [1 - (203)] = 1 (204) Genetating requirement (calculated	_	-	1			398 42	267 29	279 99	407 78	458 66	438	429 54		(95)
(96)me 4.3 4.9 6.5 8.9 11.7 14.6 16.4 14.1 10.6 7.1 4.2 (96) Heat loss rate for mean internal temperature, Lm, W =[(39)m × [(93)m – (96)m] (97)me 1109.25 1074.84 973.45 810 622.75 413.59 269 282.91 448.66 683.66 909.96 1101.5 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m – (95)m] x (41)m (98)me 488.91 380.15 313.99 171.47 66.8 0 0 167.4 339.81 499.94 Total per year (kWh/year) = Sum(98).58.12 2428.47 (98) Space heating requirement in kWh/m²/year 32.77 (99) 9a. Energy requirements – Individual heating systems including micro-CHP) Space heating: Fraction of space heat from main system(s) (202) = 1 – (201) = 1 (202) Fraction of total heating from main system 1 (204) = (202) × [1 – (203]] = 1 (204) Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar							201.20	210.00	407.70	400.00	400	420.04		()
Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m - (96)m](97)m=1109.251074.84973.45810622.75413.59269282.91448.66683.66909.961101.5(97)Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m(98)m=488.91380.15313.99171.4766.8000167.4339.81499.94Total per year (kWh/year) = Sum(98)so.122428.47(98)Space heating requirement in kWh/m²/year32.77(99)9a. Energy requirements - Individual heating systems including micro-CHP)Space heating:Fraction of space heat from secondary/supplementary system0(201)Fraction of space heat from main system(s) $(202) = 1 - (201) =$ 1(202)Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$ 1(204)Efficiency of secondary/supplementary heating system, %0(208)JanFebMarAprMayJunJulAugSepOctNovDeckWh/yearSpace heating requirement (calculated above)		· · · · ·	r	· · · · · ·			16.6	16.4	14.1	10.6	7.1	4.2		(96)
(97)me 1109.25 1074.84 973.45 810 622.75 413.59 269 282.91 448.66 683.66 909.96 1101.5 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)me 488.91 380.15 313.99 171.47 66.8 0 0 0 167.4 339.81 499.94 Total per year (kWh/year) = Sum(98)so12 2428.47 (98) Space heating requirement in kWh/m²/year 32.77 (99) 9a. Energy requirements - Individual heating systems including micro-CHP) Space heating: Fraction of space heat from secondary/supplementary system Fraction of space heat from main system(s) (202) = 1 - (201) = 1 (202) Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204) Efficiency of main space heating system 1 93.4 (206) 0 (208) Image: the store of secondary/supplementary heating system, % 0 (208) KWh/year			an intern	al tempe	erature, l	Lm , W =	L =[(39)m :	L x [(93)m·	– (96)m	1				
$(98)_{m} = 488.91 380.15 313.99 171.47 66.8 0 0 0 0 167.4 339.81 499.94$ $Total per year (kWh/year) = Sum(98)_{5012} = 2428.47 (98)$ Space heating requirement in kWh/m ² /year $32.77 (99)$ 9a. Energy requirements – Individual heating systems including micro-CHP) Space heating: Fraction of space heat from secondary/supplementary system $0 (201)$ Fraction of space heat from main system(s) (202) = 1 - (201) = 1 (202) Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204) Efficiency of main space heating system 1 93.4 (206) Efficiency of secondary/supplementary heating system, % 0 (208) $Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year$			1								909.96	1101.5		(97)
Total per year (kWh/year) = Sum(98) _{1.55.12} = 2428.47 (98) Space heating requirement in kWh/m²/year 32.77 (99) 9a. Energy requirements – Individual heating systems including micro-CHP) Space heating: Fraction of space heat from secondary/supplementary system 0 (201) Fraction of space heat from main system(s) (202) = 1 - (201) = 1 (202) Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204) Efficiency of main space heating system 1 93.4 (206) [Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 5 5 5 6	Space	heating requir	ement fo	r each m	nonth, kV	Nh/mont	th = 0.02	24 x [(97))m – (95)m] x (4′	1)m			
Space heating requirement in kWh/m²/year 32.77 (99) 9a. Energy requirements – Individual heating systems including micro-CHP) 5 Space heating: 0 (201) Fraction of space heat from secondary/supplementary system 0 (201) Fraction of space heat from main system(s) (202) = 1 - (201) = 1 (202) Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204) Efficiency of main space heating system 1 93.4 (206) 1 (208) Image: The secondary/supplementary heating system, % 0 (208) (208) (208) Image: Space heating requirement (calculated above) 1 Jun Jul Aug Sep Oct Nov Dec kWh/year	(98)m=	488.91 380.15	313.99	171.47	66.8	0	0	0	0	167.4	339.81	499.94		
9a. Energy requirements – Individual heating systems including micro-CHP) Space heating: Fraction of space heat from secondary/supplementary system 0 (201) Fraction of space heat from main system(s) (202) = 1 - (201) = 1 (202) Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204) Efficiency of main space heating system 1 93.4 (206) Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) End En			-				_	Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	2428.47	(98)
Space heating: Fraction of space heat from secondary/supplementary system 0 (201) Fraction of space heat from main system(s) (202) = 1 - (201) = 1 (202) Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204) Efficiency of main space heating system 1 93.4 (206) Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) <td>Space</td> <td>heating requir</td> <td>ement in</td> <td>kWh/m²</td> <td>/year</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>32.77</td> <td>(99)</td>	Space	heating requir	ement in	kWh/m ²	/year								32.77	(99)
Space heating: Fraction of space heat from secondary/supplementary system 0 (201) Fraction of space heat from main system(s) (202) = 1 - (201) = 1 (202) Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204) Efficiency of main space heating system 1 93.4 (206) Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) <td>9a. Ener</td> <td>rgy requireme</td> <td>nts – Indi</td> <td>vidual h</td> <td>eating sy</td> <td>/stems i</td> <td>ncluding</td> <td>micro-C</td> <td>CHP)</td> <td></td> <td></td> <td></td> <td></td> <td></td>	9a. Ener	rgy requireme	nts – Indi	vidual h	eating sy	/stems i	ncluding	micro-C	CHP)					
Fraction of space heat from main system(s) (202) = 1 - (201) = 1 (202) Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204) Efficiency of main space heating system 1 93.4 (206) Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) Image: space from the space from the space heating system (calculated above) Image: space from the space from the space from the space heating space heating requirement (calculated above) Image: space from the space from the space from the space heating requirement (calculated above) Image: space from the space from the space from the space from the space heating space heating requirement (calculated above) Image: space from the spac							0		,					
Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204) Efficiency of main space heating system 1 93.4 (206) Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above)	Fractio	n of space he	at from s	econdar	//supple	mentary	system						0	(201)
Efficiency of main space heating system 1 93.4 (206) Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) Image: Construction of the system of th	Fractio	n of space he	at from m	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) Image: Calculated above	Fractio	n of total heat	ng from	main sys	stem 1			(204) = (20	02) × [1 –	(203)] =			1	(204)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) Image: Calculated above Image: Calculated above Image: Calculated above Image: Calculated above	Efficien	ncy of main sp	ace heat	ing syste	em 1								93.4	(206)
Space heating requirement (calculated above)		ncy of seconda	rv/supple	omontor	, hooting		n %						0	(208)
Space heating requirement (calculated above)	Efficien		u ji oʻqppi	emeniai	y nealing	y system	1, 70							
	Efficien	Jan Feb						Αυα	Sep	Oct	Nov	Dec	kWh/ve	_l ar
488.91 380.15 313.99 171.47 66.8 0 0 0 0 167.4 339.81 499.94			Mar	Apr	May	Jun		Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
$(211)m = \{[(98)m \times (204)] \} \times 100 \div (206) $ (211)	Space	heating requir	Mar	Apr alculated	May d above)	Jun	Jul						kWh/ye	ar
523.46 407.02 336.18 183.58 71.52 0 0 0 179.23 363.83 535.27	Space	heating requir 488.91 380.15	Mar ement (c 313.99	Apr alculated 171.47	May d above) 66.8	Jun	Jul						kWh/ye	
Total (kWh/year) =Sum(211) _{15,1012} = 2600.08 (211)	Space (211)m =	heating requir 488.91 380.15 = {[(98)m x (20	Mar ement (c 313.99)4)] } x 1	Apr alculated 171.47 00 ÷ (20	May d above) 66.8	Jun 0	Jul	0	0	167.4	339.81	499.94	kWh/ye	ar (211)
Space heating fuel (secondary), kWh/month	Space (211)m =	heating requir 488.91 380.15 = {[(98)m x (20	Mar ement (c 313.99)4)] } x 1	Apr alculated 171.47 00 ÷ (20	May d above) 66.8	Jun 0	Jul	0	0	167.4 179.23	339.81 363.83	499.94 535.27		(211)
$= \{ [(98)m \times (201)] \} \times 100 \div (208) $	 Space (211)m = 	heating requir 488.91 380.15 = {[(98)m x (20 523.46 407.02	Mar ement (c 313.99)4)] } x 1 336.18	Apr alculated 171.47 00 ÷ (20 183.58	May d above) 66.8 (6) 71.52	Jun 0	Jul	0	0	167.4 179.23	339.81 363.83	499.94 535.27		(211)
(215)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Space (211)m =	heating requir 488.91 380.15 = {[(98)m x (20 523.46 407.02 heating fuel (s	Mar ement (c 313.99 04)] } x 1 336.18	Apr alculated 171.47 00 ÷ (20 183.58 y), kWh/	May d above) 66.8 (6) 71.52	Jun 0	Jul	0	0	167.4 179.23	339.81 363.83	499.94 535.27		(211)
Total (kWh/year) =Sum(215) _{15,1012} = 0 (215)	Space (211)m = (211)m = ((98)n	heating requir 488.91 380.15 = {[(98)m x (20 523.46 407.02 heating fuel (s m x (201)] } x 1	Mar ement (c 313.99)4)] } x 1 336.18 secondar 00 ÷ (20	Apr alculated 171.47 00 ÷ (20 183.58 y), kWh/ 8)	May d above) 66.8 (6) 71.52 month	Jun 0 0	Jul 0 0	0 Tota 0	0 I (kWh/yea	167.4 179.23 ar) =Sum(2	339.81 363.83 211) _{15,1012} 0	499.94 535.27 = 0		(211)

Water heating

Water neuting									
Output from water heater (calculated above)			r				r	I	
196.84 171.95 178.9 158.68 153.63	135.31	129.63	144.51	146.11	166.37	177.6	192.22		_
Efficiency of water heater			-	-		-		80.3	(216)
(217)m= 87.25 86.99 86.45 85.25 83.11	80.3	80.3	80.3	80.3	85.07	86.66	87.35		(217)
Fuel for water heating, kWh/month									
(219)m = (64)m x 100 ÷ (217)m					· · · · ·		I	I	
(219)m= 225.61 197.66 206.93 186.14 184.84	168.5	161.44	179.96	181.95	195.58	204.94	220.06		-
			Tota	I = Sum(2	19a) ₁₁₂ =			2313.61	(219)
Annual totals					k	Wh/yea	r	kWh/year	-
Space heating fuel used, main system 1								2600.08	
Water heating fuel used								2313.61]
Electricity for pumps, fans and electric keep-hot									
central heating pump:							30		(230c)
boiler with a fan-assisted flue							45		(230e)
Total electricity for the above, kWh/year		sum	75	(231)					
Electricity for lighting								355.33	(232)
Total delivered energy for all uses (211)(221)	+ (231)	+ (232).	(237b)	=				5344.02	(338)
12a. CO2 emissions – Individual heating syste	ms inclu	uding mi	cro-CHF)					-
	Emissions								
	hergy Emission fa Vh/year kg CO2/kWl						kg CO2/yea	ır	
Space heating (main system 1)	(211	l) x			0.2	16	=	561.62	(261)
Space heating (secondary)	(215	5) x			0.5	19	=	0	(263)
Water heating	(219	9) x			0.2	16	=	499.74	(264)
Space and water heating	(261) + (262)	+ (263) + (264) =				1061.36	(265)
Electricity for pumps, fans and electric keep-hot	(231	l) x			0.5	19	=	38.93	(267)
Electricity for lighting	(232	2) x			0.5	19	=	184.42	(268)
									_
Total CO2, kg/year				sum o	of (265)(2	271) =		1284.7	(272)

TER =

17.34 (273)