

PHASE II GEO-ENVIRONMENTAL SITE ASSESSMENT

The Croft
Welton Road
Birkenhead
Wirral
CH62 3PL

Prepared for:

E3P

Heliport Business Park, Liverpool Road, Eccles, Manchester, M30 7RU

Tel: +00 (0) 161 707 9612 http://www.e3p.co.uk

Registered in England No.: 807255262

QUALITY ASSURANCE

REMARKS	Final			
DATE	February 2019			
PREPARED BY	E. Moss			
QUALIFICATIONS	BSc.(Hons), FGS			
SIGNATURE	Emess.			
CHECKED BY	R. Horseman			
QUALIFICATIONS	BSc (Hons), FGS			
SIGNATURE	Morsney			
AUTHORISED BY	M Dyer			
QUALIFICATIONS	BSc, FGS, AIEMA, MIEnvSc, CEnv			
SIGNATURE	HO.D-			
PROJECT NUMBER	13-066			
IMS Template Reference: QR009-5				

EXECUTIVE SUMMAR	RY					
Site Address	Land off of Welton R	Land off of Welton Road, Birkenhead, Wirral, CH62 3PL				
Grid Reference	335020E, 382820N					
Site Area	2.27 Ha	2.27 Ha				
		The site is roughly rectangular in shape and is located to the west of Welton Road on the southern edge of the existing Croft Retail Park.				
	is currently undevelo	The site can be accessed from the north east via Welton Road. The land is currently undeveloped and surfaced by short grassland. The north and south of the site are bordered by mature trees and a metal barrier borders the east of the site.				
Current Site Use		ry brick electrical substation present in the north east by SP Energy Networks.				
	Steel drainage man h	nole covers were identified in the north east and south				
	present in the souther than the remainder of to the site being of	The site is predominantly flat in topography; however embankments are present in the southern and eastern boundaries which are circa 2m higher than the remainder of the site. This change in elevation is likely to be due to the site being cut into the surroundings in the 1980's during the development of the wider Croft Retail and Leisure Park.				
Proposed Development	Redsun Developments are considering the proposed acquisition and future development of the land at Croft Business Park, Brombrough for mixed use commercial and retail buildings with associated roads and utility infrastructure. Drawing 12-999-02 (Appendix III) identifies the proposed development layout.					
	Drift Geology	N/A				
	Bedrock Geology	Chester Formation – Sandstone, Pebbly (Gravelly) of the Sherwood Sandstone bedrock				
Environmental Setting	Hydrogeology	The site is underlain by a Principal Aquifer (Solid). There are 22 groundwater abstraction points situated within 1km of the subject site. The closest five of which are located within 366m of the site, operated by Bromborough Business Park Ltd and utilised for industrial, commercial and public services. The remaining groundwater abstraction points are operated by the following: CSM, Bakemark UK Ltd, Arkady Craigmillar, UML Ltd, Pochin (Bromborough) Limited, Bromborough Business Park Ltd, Unilever Research, UML Ltd, J P Whitter (Waterwell Engineers) Ltd. The water abstracted is generally utilised for food and drink, cooling, manufacturing and construction.				
	Hydrology	There are no surface water features situated within 250m of the site.				
	Flood Risk	Unaffected by flooding from rivers.				
	Subsidence Hazard	No Hazard to very low hazard.				

EXECUTIVE SUMMARY						
Site History	A review of the pertinent Ordnance Survey mapping dating from circa 1876 displayed the site to comprise an undeveloped field with a field boundary intersecting the western sector of the site, which is no longer present in 1899. In 1956 a building (use unknown) and electrical sub-station are located in the north east of the site and a slope present in the south suggesting that the site has been re-profiled as part of redevelopment. In 1980 there is a slope present in the west of the site. In 1988 the building was extended in a southward's direction. In 2000 there is a car park situated in the north east of the site and the building was noted to be a distribution and storage warehouse. A review of google earth imagery displays that the building and adjacent car park are no longer present in 2003.					
Previous Reports	Pertinent points from the previously completed by AECOM Infrastructure and Environment UK limited are summarised in Section 2 and where necessary have been included within the E3P assessment.					
Utility Locations	A full GPR survey has not been undertaken for the site however a review of available online services identified a high voltage power main which intersects the north west of the site, supplying the onsite electrical substation. There is a water main which borders the east and intersects the north west and north eastern sector of the site					
Landfill Sites & Ground Gases	There are no historic or existing landfill sites within 250m of the site.					
Radon	Unaffected – no special precautions required.					
Coal Mining / Land Stability	The site does not lie within a Coal Authority reporting area.					
E3P Intrusive Ground	Investigation					
Site Investigation Works	E3P has completed a supplementary intrusive Ground Investigation comprising mechanically excavated trial pits, window sample boreholes, in-situ CBR, falling head permeability tests and environmental monitoring installations.					
Ground Conditions	Made Ground Made Ground topsoil was identified in the north east, south east, south west and central northern sector of the site in the location of former development. Made Ground topsoil was identified between ground level and 0.30m bgl and comprises brown sandy gravel with frequent cobbles with gravel and cobbles of sandstone and brick. Deeper Made Ground was also identified in the proximity of the former building in the north east of the site (TP101, TP102, TP103 and WS101) and south east of the site (WS102, WS103 and TP105) between 0.30m and 0.80m bgl. Deeper Made Ground between 0.30m and 0.90m bgl was also noted in the central northern sector of the site (TP108, TP115 and WS106) in proximity of the former car park. This Made Ground comprised red sandy gravel with frequent cobbles with gravel of sandstone, brick and concrete and cobbles of sandstone.					
	Topsoil was identified throughout the site between ground level and 0.30m bgl. An isolated area of deeper topsoil was identified in the north of the site (TP109 and TP110) near the bordering trees to depths of 0.60m bgl. Topsoil comprised brown slightly clayey fine to medium SAND with frequent rootlets.					

EXECUTIVE SUMMAR	Υ
	Drift Drift deposits were only encountered within WS105 in the north east and WS111 in the north west of the site between 0.30m and 0.90m bgl. This deposit comprised brown clayey fine to medium SAND.
Ground Conditions	Solid All exploratory hole locations were underlain by weathered SANDSTONE between 0.20m and 2.00m bgl comprising red sandy gravel with frequent cobbles, with gravel and cobbles of sandstone.
	Groundwater There were no groundwater strikes encountered within any of the exploratory hole locations.
	A Tier I Human Health Risk Assessment has been undertaken using the chemical analysis results of the soils and comparing to the relevant Tier I criteria. This assessment has identified the presence of asbestos.
Human Health	Asbestos in the form of loose chrysotile fibres has been identified in the Made Ground topsoil (0.10m bgl) in WS110 at a concentration of at 0.029%.
	A hotspot excavation will be required in the proximity of WS110 to remove the impacted topsoil with placement >1.00m beneath an area of low sensitivity such as public open space or the proposed car park to ensure the contaminant pose no unacceptable risk to the future site users. Site specific control procedures and appropriate validation monitoring will be required to demonstrate the absence of risk to construction workers.
Controlled Waters	A Tier I assessment has included a comparison of leachate analysis from samples of the Made Ground to Drinking Water Standards (DWS) and Environmental Quality Standards (EQS) which did not identify any elevated levels of contaminants. There is considered to be a low risk to controlled waters and the wider environment.
Ground Gas	Ground gas monitoring thus far has indicated the site would be classed as Characteristic Situation 1, suggesting no gas protection measures will be required. However, the final ground gas regime will be confirmed following the completion of the ground gas monitoring programme.
Potable Water Infrastructure	This will need to be confirmed following the completion of a UKWIR Risk Assessment. It is likely the PE pipe would be sufficient for the development.
Geotechnical Assessn	nent
Underground Obstructions & Anomalies	Sub-surface obstructions were not exposed during the intrusive Ground Investigation however; their existence cannot be ruled out, due to the historical development in the north and central sector of the site.
	Based on the assessment of the net ABP, the suitable target founding stratum has been identified as the underlying medium dense to very dense weathered SANDSTONE.
Allowable Bearing Pressure (ABP)	The underlying weathered sandstone has been identified as being medium dense to very dense with an ABP ranging from 192kN/m² to 560kN/m² between 0.40m and 2.45m bgl.
	All window sample probeholes were terminated due to refusals on the bedrock between 0.5m and 2.0m bgl.

EXECUTIVE SUMMARY						
	The site is predominantly flat but embankments are present at the southern and eastern boundaries, which are circa 2m higher than the site. A phase of cut and fill enabling works may be required in order to create a proposed development platform suitable for a commercial development and adjacent car parks. This will generally comprise decreasing levels on south and western side.					
Foundation Options	During a phase of cut fill enabling works to create a developable platform, all below ground obstructions will require grubbing out to the base of the Made Ground to enable the construction of the proposed development.					
	At this time it is not possible to accurately define the foundation types due to the absence of a final development levels, however based on our extensive experience of similar sites we would anticipate that the final foundation solution would be a combination of pad and strip foundations bearing on medium dense to dense GRAVEL (weathered SANDSTONE) or deeper pad and trench fill to support re-enforced strip foundations in areas of variable ground					
Building Floor Slabs	A ground bearing slab will be viable but it will need to be constructed on a granular sub base with the thickness designed by a structural engineer to ensure that settlement tolerances are taken into consideration and that sufficient surface clays have been removed from tree influence areas to mitigate any seasonal volume changes in the clay influence zones.					
Heave Precautions	Due to the presence of granular strata across the entire site, heave precautions will not be required during the construction of the proposed dwellings.					
	Three falling head permeability tests were conducted which displayed varied results. WS101 has poor soakaway potential, WS105 had moderate soakaway potential and WS111 had good soakaway potential.					
Soakaway Drainage	Therefore, it is considering that soakaway drainage may not be suitable for the proposed development. However, the application of soakaway drainage will ultimately be dependent on the specific requirements of the development. All soakaways should be designed in accordance with BRE Special Digest 365 – Soakaway Design.					
Sulphate Assessment	Concrete classification will be DS1 AC1s.					
	Granular soils can be re-engineered to ensure 5% within the sub-grade during favourable climatic conditions.					
CBR Design %	Natural clay soils will provide a CBR in the order of 3-5% during drier climatic periods, however If water is allowed to shed onto the formation, the CBR will reduce to <2% which will require specialist engineering of the sub-grade.					
Waste Characterisation	Any material that is to be disposed to landfill should undergo assessment using Technical Guidance WM3: Waste Classification - Guidance on the classification and assessment of waste.					
Civil Engineering	Shallow Bedrock has been identified throughout the site at depths less than 0.5m below current ground levels. The presence of bedrock will impede excavation for drainage infrastructure using traditional excavation plant and equipment.					

As part of the site enabling works, a process of cut and fill will be required
to construct the optimum development platform.

Organic topsoil's will required segregation and removal from the development areas due to the materials unsuitability for use as an engineering material.

Cut / Fill Earthworks.

The granular materials will largely conform to a Class 1 engineering material and as such can be compacted in accordance with the correct design method or site performance criteria to ensure compaction for ground bearing structures and infrastructure. A site-specific geotechnical design with verification performance testing will be required.

If earthworks are carried out during wetter climatic conditions, it is possible that stabilising agents (lime & OPC) will be required to ensure the control of Moisture Content to achieve the required degree of compaction.

It would be possible to utilise the materials on-site to construct a bound modified sub-base replacement layer to minimise the requirement for import of construction aggregates.

Based on the findings of the intrusive site investigation, the following additional works are recommended to be completed in due course:

Plot Specific Foundation Schedule (upon receipt of the final development levels);

Recommendations

- Materials Management Plan;
- Geotechnical Earthworks Strategy (Infrastructure).
- Remediation & Enabling Works strategy; and
- Full three dimensional earthworks Cut / Fill Model.

Table of Contents

1.		RODUCTION	
	1.1	Background	8
	1.2	Proposed Development	
		Objectives	
	1.4	Previous Reports	
	1.5	Limitations	
	1.6	Confidentiality	. 10
2.		DUND INVESTIGATION	
	2.1	Phase I Desk Study Summary	. 11
		General	
		In-Situ Standard Penetration Testing (SPT)	
		In-Situ California Bearing Ratio (CBR)	
		Permeability Tests	
	2.6	Laboratory Analysis	. 13
_	000	NIND AND ODOLINDWATER CONDITIONS	4.4
პ.		OUND AND GROUNDWATER CONDITIONS	
		Ground and Groundwater Conditions	
	3.1.1		
	3.1.2		
	3.1.3		
	3.1.4	•	
	3.1.5		
	3.1.6		
	3.1.7		
	3.1.8	,	
	3.1.9		
	3.1.1	5	
	3.1.1		
		Ground Gas	
	3.2.1		
	3.2.2	Monitoring Methodology	19
	T.E.	A LOUISI ITATIVE CONTANINATED LAND DIOK ACCESSMENT	0.4
4.		R I QUALITATIVE CONTAMINATED LAND RISK ASSESSMENT	
		Human Health Risk Assessment	
		Controlled Waters Risk Assessment	
	4.3	Ground Gas	. 27
	4.4	Sources of Ground Gas	. 28
	4.4.1	Groundwater	28
	4.4.2	Gas Flow	28
	4.4.3		28
	4.4.4	Gas Assessment	28
	4.5	Conceptual Site Model	. 29
		•	
5.	GEC	TECHNICAL ASSESSMENT	. 30
		Proposed Development	
	5.2	Summary of Ground Conditions	
	_	Site Preparation	
	5.4	Foundation Conditions & Assessment of Potential Bearing Capacities	
	5.5	Ground Floor Slabs	
	5.6	Heave Precautions	
	5.7	Pavement Construction	
	5.8	Drainage	. 33

5.9	Concrete Durability	34
5.10	Excavations	34
5.11	Slope Stability	34
5.12	Coal Mining	34
5.13	-	35
5.14	Construction Activity and Inspection	
6. CO	NCLUSIONS AND RECOMMENDATIONS	36
	APPENDICES	
Annondi	v I Limitations	

Appendix I Limitations
Appendix II Glossary
Appendix III Drawings

Drawing No 12-999-001 – Site Location Plan
Drawing No 12-999-002 – Draft Development Layout
Drawing No 12-999-003 – Historical Features Plan
Drawing No 12-999-004 – Exploratory Hole Location Plan
Drawing No 12-999-005 – Depth of Topsoil
Drawing No 12-999-006 – Depth of Made Ground Plan
Drawing No 12-999-007 – Depth of Bedrock Plan
Drawing No 12-999-008 – Depth of Founding Strata
Drawing No 12-999-009 – Gas Assessment Plan
Drawing No 12-999-010 – Concept Foundation Zoning Plan
Drawing No 12-999-011 – Conceptual Site Model

Appendix V E3P Exploratory Hole Logs
Appendix V Chemical Testing Results

Appendix VI Origin of Tier I Generic Assessment Criteria

Appendix VII Geotechnical Testing Results
Appendix VIII In-situ CBR Testing Certificates
Appendix IX Permeability Test Certificates

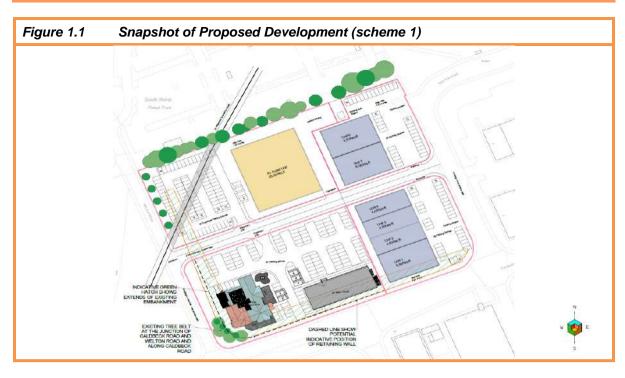
1. INTRODUCTION

1.1 Background

E3P has been commissioned by Redsun Developments to undertake a detailed Phase II Geo-Environmental Site Investigation for a parcel of land situated to the south of Croft Retail and Leisure Park.

This report is required to determine potential contaminated land liabilities, remediation requirements and geotechnical engineering works that will be required as part of the proposed development for mixed use commercial and retail buildings with associated roads and utility infrastructure.

The scope of work consisted of following elements:


- Detailed review of historic information;
- Design of suitable intrusive Ground Investigation:
- Window sample probeholes with and construction of environmental monitoring installations;
- Mechanically excavated trial pits;
- In-situ Geotechnical Testing;
- Chemical & Geotechnical Laboratory analysis:
- Groundwater monitoring and sampling;
- Ground gas monitoring:
- Falling Head permeability tests
- Contamination Risk Assessment & Conceptual Site Model;
- Geotechnical Assessment & Interpretation; and,
- Factual and interpretive reporting.

1.2 Proposed Development

E3P understands that Redsun Developments are considering the proposed acquisition and future development of the land at Croft Business Park, Brombrough for mixed use commercial and retail buildings with associated roads and utility infrastructure. Drawing 12-999-002 (Appendix III) identifies the proposed development layout.

A snapshot of the proposed development layout is indicated in Figure 1.1 overleaf:

1.3 Objectives

The objectives of the Geo-Environmental Investigation are to:

- Undertake a preliminary stage of sampling and analysis to provide an overview of environmental issues identified;
- Assess the implications of any potential environmental risks, liabilities and development constraints associated with the site in relation to the future use of the site and in relation to off-site receptors;

- Assess the geotechnical information and provide preliminary recommendations in relation to foundations, pavement construction and floor slabs; and,
- Provide recommendations regarding future works required.

1.4 Previous Reports

The following reports has previously been completed for the site:

AECOM – Phase 1 Geo-Environmental and Geotechnical Desk- based Assessment. Ref: 60534984, dated April 2018.

The pertinent points of the AECOM report have been included within Section 3.0 of this report.

1.5 Limitations

The limitations of this report are presented in Appendix I.

1.6 Confidentiality

E3P has prepared this report solely for the use of the Client and those parties with whom a warranty agreement has been executed, or with whom an assignment has been agreed. Should any third party wish to use or rely upon the contents of the report, written approval must be sought from E3P; a charge may be levied against such approval.

2. E3P GROUND INVESTIGATION

2.1 Phase I Desk Study Summary - Synopsis

- There are no superficial deposits recorded at the site.
- The bedrock geology beneath the site is indicated to comprise Chester Formation-Sandstone, Pebbly (Gravelly) of the Sherwood Sandstone bedrock. This formation is classified as a Principal Aguifer.
- The online BGS 'Geology of Britain' viewer shows five available boreholes located within 500m radius of the site which display the site to be underlain by a thin veneer of topsoil and residual soil overlying sandstone of the Chester Formation.
- the site does not lay within an area that could be affected by present underground mining or is likely to be affected by any planned future underground coal mining.
- There are 23 entries of water abstractions located within 1km radius of the site.
- There are no active or historical landfills present on site or located within a 250m radius of the site.
- The site has a 'low' risk with respect to flooding from rivers with the probability of less than 1 in 1,000 (0.1%).
- The site was located in an area anticipated to be affected by potential unexploded ordnance.
- The site is located in a lower probability radon area with less than 1% of properties are estimated to be at or above the action level.

2.2 General

IMS Ref: QR012-3

A Ground Investigation has been designed based on the findings of the desk study with exploratory holes advanced to target specific potential contaminant sources summarised in Table 2.1. The investigation has also been used to collect geotechnical information to assist in the design and construction of the proposed development.

Exploratory fieldwork was completed between on the 13th December 2018.

The works are summarised in Table 2.1.

Table 2.1 Summary of Fieldwork

POTENTIAL SOURCE/RATIONALE	LOCATION HOLE	TYPE	MAX DEPTH (mbgl)	MONITORING WELLS RESPONSE ZONE (mbgl)
	TP101	Mechanically	1.00	N/A
Former car park in the	TP109	Excavated Trial Pit	1.50	N/A
north east (1999-2003)	WS105	WS105 Window Sample Probehole		0.5-1.0
	TP102		1.60	N/A
	TP103	Maakaalaalla	1.70	N/A
	TP104	Mechanically Excavated Trial Pit	1.50	N/A
Former unspecified	TP107	Excavated That Pit	0.80	N/A
building in the north east (1956-2003)	TP109		1.50	N/A
(1930-2003)	WS101	Minday, Openia	2.00	0.5-2.0
	WS104	Window Sample Probehole	1.00	N/A
	WS106	Probenole	1.00	0.5-1.0
Former hardstanding area	TP105	Mechanically Excavated Trial Pit	1.10	N/A
in the south east (1990- 2003)	WS102	Window Sample	1.00	0.5-1.0
2003)	WS103	103 Probehole		N/A
Slope south (1980-	TP113	Mechanically Excavated Trial Pit	0.70	N/A
present)	WS108	Window Sample Probehole	0.80	N/A
Slope west (1950- present)	WS109	Window Sample Probehole	0.50	N/A
General ground	TP106 TP110-TP112, TP114-TP115	Mechanically Excavated Trial Pit	1.10	N/A
conditions including the	WS107		1.00	0.5-1.0
presence / nature of obstructions	WS110	Window Sample	1.00	0.5-1.0
บมอนเนบแบบอ	WS111	Probehole	1.00	0.5-1.0
WS112			1.00	0.5-1.0

Mechanically excavated trial pits were advanced to investigate ground conditions and to retrieve environmental samples, spatially distributed to offer the maximum site coverage whilst also being advanced to target specific contaminant sources.

Window sample probeholes were advanced to undertaken in-situ detailed geotechnical testing, obtain environmental samples and install groundwater and ground gas monitoring wells.

The sampling locations are illustrated in Drawing 12-999-004 (Appendix III). The ground conditions encountered are indicated on the logs which are provided in Appendix IV.

Return visits were made to monitor installations for groundwater level and gas concentrations.

2.3 In-Situ Standard Penetration Testing (SPT)

In-situ geotechnical testing was conducted using the Standard Penetration Test (SPT) and where the ground is granular, a 60° cone (SPT(C)) was used instead of the sampling tube.

The results are shown in the probehole logs in Appendix IV and presented in Table 3.2 and discussed in Section 5.0.

2.4 In-Situ California Bearing Ratio (CBR)

In-situ CBR tests were undertaken at selected locations using a plate bearing test. Tests were undertaken at depths of between 300mmm and 1m below ground level in order to intersect the likely pavement sub formation level. The results are presented in Table 3.4 and test certificates are included within Appendix VIII.

2.5 Permeability Tests

Three falling head permeability tests were undertaken within environmental monitoring wells (WS101, WS105 and WS111) in order to assess the likely permeability of the underlying strata to determine the potential suitability for soakaway drainage within the proposed development. The results are presented in Table 3.3 and the test certificates are included within Appendix IX

2.6 Laboratory Analysis

Selected soil samples were submitted for a range of chemical analysis comprising, metals, pH, total sulphate, water soluble sulphate (2:1 extract), sulphide, cyanide, phenols, pesticides, total and speciated poly-aromatic hydrocarbons (PAHs), chlorinated solvents, asbestos and total and speciated petroleum hydrocarbon (TPH).

I2 Analytical undertook the analytical work and the testing results are included in Appendix V and discussed in Section 3.0

Selected samples were submitted to PSL Laboratory where the following geotechnical tests were undertaken:

Particle Size Distribution

Laboratory analysis sheets are included in Appendix VII.

3. GROUND AND GROUNDWATER CONDITIONS

3.1 Ground and Groundwater Conditions

3.1.1 Summary of Ground Conditions

The Ground Investigation generally confirms the published geology and identifies the strata set out in Table 3.1 below:

Table 3.1 Summary of Strata

	DEPTH TO STRATUM (mbgl)						
HOLE	SAND (TOPSOIL)	MADE GROUND- GRAVEL (TOPSOIL)	SAND	MADE GROUND- GRAVEL	SANDSTONE		
TP101		0.00-0.30		0.30-0.40	0.40-1.00		
TP102	0.00-0.30	0.00-0.30		0.30-0.60	0.60-1.60		
TP103		0.00-0.30		0.30-0.80	0.80-1.70		
TP104		0.00-0.30			0.30-1.50		
TP105		0.00-0.30		0.30-0.50	0.50-1.10		
TP106	0.00-0.30				0.30-1.10		
TP107	0.00-0.30				0.30-0.80		
TP108		0.00-0.30		0.30-0.40	0.40-1.00		
TP109	0.00-0.60				0.60-1.50		
TP110	0.00-0.60				0.60-0.50		
TP111	0.00-0.20				0.20-0.70		
TP112	0.00-0.30				0.30-0.70		
TP113	0.00-0.30				0.30-0.70		
TP114	0.00-0.30				0.30-0.60		
TP115		0.00-0.30		0.30-0.50	0.50-1.00		
WS101		0.00-0.20			0.20-2.00		
WS102		0.00-0.10		0.10-0.40	0.40-1.00		
WS103		0.00-0.10		0.10-0.40	0.40-2.00		
WS104	0.00-0.10				0.10-1.00		
WS105	0.00-0.30		0.30-0.50		0.50-1.00		
WS106		0.00-0.20		0.20-0.90			
WS107	0.00-0.30				0.30-1.00		
WS108	0.00-0.20				0.20-0.80		
WS109	0.00-0.30				0.30-0.50		
WS110		0.00-0.20			0.20-1.00		
WS111		0.00-0.30	0.30-0.90		0.90-1.00		
WS112	0.00-0.30				0.30-1.00		

3.1.2 Made Ground

Made Ground topsoil was identified in the north east, south east, south west and central northern sector of the site in the location of former development. Made Ground topsoil was identified between ground level and 0.30m bgl and comprises brown sandy gravel with frequent cobbles with gravel and cobbles of sandstone and brick.

Deeper Made Ground was also identified in the proximity of the former building in the north east of the site (TP101, TP102, TP103 and WS101) and south east of the site (WS102, WS103 and TP105) between 0.30m and 0.80m bgl. Deeper Made Ground between 0.30m and 0.90m bgl was also noted in the central northern sector of the site (TP108, TP115 and WS106) in proximity of the former car park. This Made Ground comprised red sandy gravel with frequent cobbles with gravel of sandstone, brick and concrete and cobbles of sandstone.

3.1.3 Topsoil

Topsoil was identified throughout the site between ground level and 0.30m bgl. An isolated area of deeper topsoil was identified in the north of the site (TP109 and TP110) near the bordering trees to depths of 0.60m bgl. Topsoil comprised brown slightly clayey fine to medium SAND with frequent rootlets.

3.1.4 Drift Deposits

Drift deposits were only encountered within WS105 in the north east and WS111 in the north west of the site between 0.30m and 0.90m bgl. This deposit comprised brown clayey fine to medium SAND.

3.1.5 Solid Geology

All exploratory hole locations were underlain by weathered sandstone between 0.20m and 2.00m bgl comprising red sandy gravel with frequent cobbles, with gravel and cobbles of sandstone.

3.1.6 Groundwater

There were no groundwater strikes encountered within any of the exploratory hole location holes.

Monitoring was undertaken using an electronic dip meter and interface probe to record the depth to groundwater and the thickness of any free phase hydrocarbon product. However, no hydrocarbon products were identified and all of the monitoring wells and all wells were noted to have been dry.

3.1.7 Visual and Olfactory Evidence of Contamination

There was no visual or olfactory evidence of potential contamination identified during the site investigation.

3.1.8 Side Stability and Ease of Excavation

The sides of the exploratory trial pit excavations appeared to be stable during excavation, with the exception of TP103 in the north east of the site which was noted to have been unstable at 0.30m bgl due to loose Made Ground gravels.

All excavations were noted to have been slow or terminated due to the dense weathered SANDSTONE.

Table 3.2 Standard/Cone Penetration Test Results

BOREHOLES	DEPTH (mbgl)	MATERIAL FIELD DESCRIPTION	CPT/SPT "N" VALUE	CORRECTED "N" VALUE (N ₁) ₆₀	TERZAGHI & PECK RELATIVE DENSITY (SANDS)	EUROCODE SOIL STRENGTH	CONSISTENCY (BS5930)	TERZAGHI & PECK APPROXIMATE UNDRAINED SHEAR STRENGTH (kN/m²)
WS101	1	Weathered SANDSTONE	19	19.15	Medium Dense	N/A	N/A	N/A
WS101	2	Weathered SANDSTONE	50	45.68	Dense	N/A	N/A	N/A
WS102	1	Weathered SANDSTONE	50	50.41	Very Dense	N/A	N/A	N/A
WS103	1	Weathered SANDSTONE	25	25.20	Medium Dense	N/A	N/A	N/A
WS104	1.5	Weathered SANDSTONE	50	47.51	Dense	N/A	N/A	N/A
WS105	1	Weathered SANDSTONE	50	50.41	Very Dense	N/A	N/A	N/A
WS106	1	Weathered SANDSTONE	50	50.41	Very Dense	N/A	N/A	N/A
WS107	1	Weathered SANDSTONE	50	50.41	Very Dense	N/A	N/A	N/A
WS108	1	Weathered SANDSTONE	50	50.41	Very Dense	N/A	N/A	N/A
WS109	0.5	Weathered SANDSTONE	50	56.02	Very Dense	N/A	N/A	N/A
WS110	0.4	Weathered SANDSTONE	50	57.95	Very Dense	N/A	N/A	N/A
WS111	0.4	Weathered SANDSTONE	50	57.95	Very Dense	N/A	N/A	N/A
WS112	1	Weathered SANDSTONE	50	50.41	Very Dense	N/A	N/A	N/A

3.1.9 Soil Infiltration

In-situ variable (falling) head permeability tests were undertaken within the monitoring well installations located in three probeholes (WS101, WS105 and WS111). All three of the installations were noted to be dry prior to the test being undertaken, therefore the tests were undertaken in the unsaturated zone.

The results are presented in Table 3.3 below and the test certificates are included within Appendix IX.

Table 3.3 Soil Infiltration Results

LOCATION	DEPTH (m)	MATERIAL	TEST NO.	SOIL INFILTRATION RATE (m/s)
WS101	1.78	GRAVEL (weathered sandstone)	Test No.1	8.07E ⁻⁷
WS105	0.82	GRAVEL (weathered sandstone)	Test No.1	3.04E ⁻⁶
WS111	0.96	GRAVEL (weathered sandstone)	Test No.1	2.81E ⁻⁵

Soil infiltration was taken over the wetted area from between 75% and 25% of the effective depth. The test results were fairly varied as WS101 has poor soakaway potential, WS105 has moderate soakaway potential and WS111 had good soakaway potential.

Therefore, it is considering that soakaway drainage may not be suitable for the proposed development. However, the application of soakaway drainage will ultimately be dependent on the specific requirements of the development. All soakaways should be designed in accordance with BRE Special Digest 365 – Soakaway Design.

3.1.10 California Bearing Ratio

The California Bearing Ratio (CBR) for the soils were measured using a plate bearing test. The results are summarised in Table 3.4.

The result sheets are included in Appendix X and the locations are shown on Drawing 12-999-004 (Appendix III).

Table 3.4 Summary of CBR Results

LOCATION	DEPTH (m)	STRATA	IN SITU OR LAB TEST	CBR (%)
DCP101	0.34-0.64	Red Sand/ Bedrock	In-Situ	25%
DCP102	0.24-0.52	Red Sand/ Bedrock	In-Situ	8%
DCP103	0.39-0.49	Red Sand/ Bedrock	In-Situ	7%
DCP104	0.35-0.41	Red Sand/ Bedrock	In-Situ	6%

It should be noted that the CBR's reported herein were obtained from soils in a highly undisturbed state, however if the topsoil and surface cover is removed during periods of wetter climatic condition, the formation will soften reducing the CBR.

3.1.11 pH and Sulphate

Chemical analyses for pH and soluble sulphate content contained in Appendix VII (summarised below in Table 3.10), shows that the soils at the site meet Class DS-1, Aggressive Chemical Environment for Concrete Classification (ACEC) AC-1s in accordance with BRE Special Digest 1 (2005).

Table 3.5 Summary of pH and Sulphate Data

LOCATION	DEPTH (m)	SO ₄ IN 2:1 WATER / SOIL (g/I)	pH VALUE	CLASSIFICATION
WS103	1.2	0.0093	7.9	DS-1/AC-1s
WS107	0.7	0.0046	8.0	DS-1/AC-1s
WS108	0.1	0.0068	7.0	DS-1/AC-1s
TP101	0.5	0.0062	6.9	DS-1/AC-1s
WS107	0.1	0.0062	6.9	DS-1/AC-1s

3.2 Ground Gas

A ground gas assessment has been completed in accordance with guidance provided within CIRIA 665 Assessing risk posed by hazardous ground gases to buildings.

3.2.1 Investigation Rationale

The ICSM has identified that the underlying Made Ground and infilled field boundary may represent a potential source of ground gas generation. Based the identification of these sources, E3P has determined that the site represents a low ground gas source generation potential.

Within the context of the proposed commercial end use and ground gas generation potential, the gas assessment requires 6 visits are required over 3 months with at least two sets of readings at low or falling atmospheric pressure as set out within CIRIA 665 Tables 5.5a and 5.5b.

The spacing requirements for monitoring wells are detailed within CIRIA 665 Table 4.2 this indicates that for low gas hazard sites (*Made Ground with limited degradable material, organic clay of limited thickness*) and a high sensitivity development nominal well spacing should be between 25m and 50m.

Table 3.6 Ground Gas Monitoring Location Rationale

LOCATION	GROUND GAS SOURCE	DEPTH OF MONITORING WELL (m)
WS101	Former Unspecified Building in the north east (1956-2003)/ natural ground/ groundwater well	0.5-2.0
WS102	Former hardstanding area in the south east (1990-2003)/ natural ground/ groundwater well	0.5-1.0
WS105	Former Car Park in the north east (1999-2003)/ natural ground/ groundwater well	0.5-1.0
WS106	Former Unspecified Building in the north east (1956-2003)/ Deep Made Ground	0.5-1.0
WS107	Natural ground/ groundwater well	0.5-1.0
WS110	Natural ground/ groundwater well	0.5-1.0
WS111	Natural ground/ groundwater well	0.5-1.0
WS112	Natural ground/ groundwater well	0.5-1.0

3.2.2 Monitoring Methodology

Concentrations of methane (CH₄), carbon dioxide (CO₂) and oxygen (O₂) were measured using an infra-red gas analyser (GFM435) calibrated to a reference standard (before and after each survey) and gas flow rates were measured using an attached flow pod.

Gas measurements were recorded for a minimum of sixty seconds at each location, at which point the maximum concentration of CH₄ and CO₂ together with the lowest concentration of O₂ were recorded. The results of the ground gas monitoring are presented in Table 3.7 (overleaf).

Table 3.7 Summary of Ground Gas Monitoring Results

WELL	DATE	CH₄ INITIAL %V/V	CH₄ STEADY %V/V	CH₄ GSV I/hr	CO ₂ INITIAL %V/V	CO ₂ STEADY %V/V	CO ₂ GSV I/hr	O2 %V/V	ATMOS(mB)	ATMOS. DYNAMIC	FLOW (I/hr)	RESPONSE ZONE / STRATUM (mbgl)	DEPTH TO BASE (mbgl)	DEPTH TO WATER (mbgl)
WS101	07/1/19	0.1	0.1	0.00026	0.6	0.6	0.00156	19.9	1026	Falling	0.26	0.5-2.0	1.84	Dry
WS105	07/1/19	0.1	0.1	0.00144	1.1	1.1	0.01584	19.3	1026	Falling	1.44	0.5-1.0	0.93	Dry
WS106	07/1/19	0.1	0.1	0.00013	0.6	0.6	0.00078	19.9	1026	Falling	0.13	0.5-1.0	0.92	Dry
WS107	07/1/19	0.1	0.1	0.00026	0.8	0.8	0.00208	19.5	1026	Falling	0.26	0.5-1.0	0.93	Dry
WS110	07/1/19	0.1	0.1	0.00013	0.9	0.9	0.00117	19.5	1026	Falling	0.13	0.5-1.0	0.95	Dry
WS111	07/1/19	0.1	0.1	0.00013	1.6	1.6	0.00208	18.6	1026	Falling	0.13	0.5-1.0	1.09	Dry
WS112	07/1/19	0.1	0.1	0.00026	0.8	0.8	0.00208	20.0	1026	Falling	0.26	0.5-1.0	0.89	Dry

4. TIER I QUALITATIVE CONTAMINATED LAND RISK ASSESSMENT

E3P has undertaken a Tier 1 qualitative risk assessment to determine if any potential contaminants within the underlying soils and groundwater pose an unacceptable level of risk to the identified receptors.

4.1 Human Health Risk Assessment

At a Tier 1 stage the long term (chronic) human health toxicity of the soil has been assessed by comparing the on-site concentrations of organic and inorganic compounds with reference values published in LQM / CIEH S4UL (S4UL3267).

The results of this comparison have been summarised within Table 4.1 (overleaf).

Table 4.1 Summary of Inorganic and Hydrocarbon Toxicity Assessment for a Commercial End Use

DETERMINANT	UNIT	GAC	N	МС	LOC. OF EX	PATH- WAY	ASSESSMENT
Arsenic	mg/kg	170	12	15	N/A	1	No Further Action
Cadmium	mg/kg	532	12	<0.2	N/A	1	No Further Action
Chromium (VI)	mg/kg	220	12	<4.0	N/A	1	No Further Action
Lead	mg/kg	200	12	56	N/A	1	No Further Action
Mercury	mg/kg	30	12	< 0.3	N/A	3	No Further Action
Nickel	mg/kg	3400	12	14	N/A	1	No Further Action
Selenium	mg/kg	1800	12	1.7	N/A	1	No Further Action
Copper	mg/kg	44000	12	35	N/A	1	No Further Action
Zinc	mg/kg	170000	12	50	N/A	1	No Further Action
Cyanide - Total	mg/kg	791	13	<1.0	N/A	1	No Further Action
Phenols - Total.	mg/kg	210	7	<1.0	N/A	1	No Further Action
Asbestos	Fibres	NFD	8	0.029	WS110- 0.10m	4	Further Action
Naphthalene	mg/kg	1200	12	< 0.05	N/A	3	No Further Action
Acenaphthylene	mg/kg	29000	12	<0.05	N/A	2	No Further Action
Acenaphthene	mg/kg	29000	12	< 0.05	N/A	1	No Further Action
Fluorene	mg/kg	20000	12	<0.05	N/A	1	No Further Action
Phenanthrene	mg/kg	6200	12	<0.05	N/A	2	No Further Action
Anthracene	mg/kg	150000	12	<0.05	N/A	2	No Further Action
Fluoranthene	mg/kg	6300	12	<0.05	N/A	2	No Further Action
Pyrene	mg/kg	15000	12	<0.05	N/A	2	No Further Action
Benzo(a)Anthracene	mg/kg	49	12	<0.05	N/A	2	No Further Action
Chrysene	mg/kg	93	12	<0.05	N/A	2	No Further Action
Benzo(b)Fluoranthene	mg/kg	13	12	< 0.05	N/A	2	No Further Action
Benzo(k)Fluoranthene	mg/kg	370	12	<0.05	N/A	2	No Further Action
Benzo(a)Pyrene**	mg/kg	11	12	<0.05	N/A	2	No Further Action
Indeno(123-cd)Pyrene	mg/kg	150	12	<0.05	N/A	2	No Further Action
Dibenzo(a,h)Anthracene	mg/kg	1.1	12	<0.05	N/A	2	No Further Action
Benzo(ghi)Perylene	mg/kg	1400	12	< 0.05	N/A	2	No Further Action
TPH C5-C6 (aliphatic)*	mg/kg	95000	13	<1.0	N/A	3	No Further Action
TPH C6-C8 (aliphatic)*	mg/kg	150000	13	<0.1	N/A	3	No Further Action
TPH C8-C10 (aliphatic)*	mg/kg	14000	13	<0.1	N/A	3	No Further Action
TPH C10-C12 (aromatic)*	mg/kg	9200	13	<2.0	N/A	3	No Further Action
TPH C12-C16 (aromatic)*	mg/kg	10000	13	14	N/A	3	No Further Action
TPH C16-C21 (aromatic)*	mg/kg	7600	13	54	N/A	1	No Further Action
TPH C21-C35 (aromatic)*	mg/kg	7800	13	1000	N/A	1	No Further Action

Notes

IMS Ref: QR012-3

Main Exposure Pathways: 1 = Soil Ingestion, 2 = Dermal Contact & Ingestion, 3 = Vapour Inhalation (indoor), 4 = Dust Inhalation. Abbreviations: GAC = General Assessment Criteria, n = number of samples, MC = Maximum Concentration; Loc of Ex = Location of Exceedance; NFD = No Fibres Detected

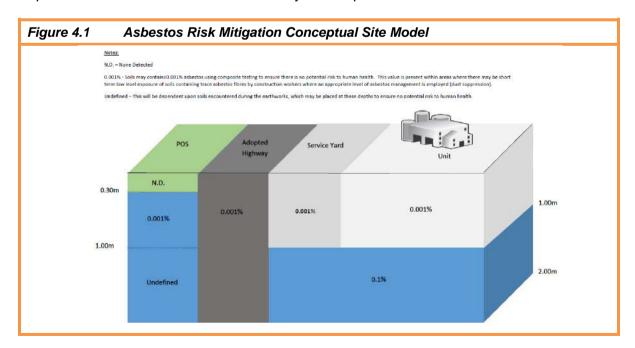
^{*} The Tier 1 GAC for the hydrocarbon fraction is derived from the CIEH assessment for petroleum hydrocarbons Criteria Working Group (CWG) for both aliphatic and aromatic compounds. E3P has utilised the Tier 1 values for aliphatic compounds for the volatile and semi volatile fractions (C_5 - C_{12}) and the Tier 1 values for aromatic compound for the non-volatile fractions (C_{12} - C_{35}). The comparison of a total (aliphatic/aromatic) compounds to an individual fraction is considered to be a conservative approach and satisfactory for the protection of human health.

Referring to Table 4.1, the results of this direct comparison indicates that asbestos was the only contaminant of concern. All other contaminants did not exceed the screening criteria for commercial end use without plant uptake.

Asbestos in the form of loose chrysotile fibres have been identified in the Made Ground topsoil (0.10m bgl) in WS110 at a concentration of at 0.029%.

No significant concentrations of elevated VOC's were identified in the soils submitted for chemical analysis.

In relation to this exceedance the main exposure pathway based on the Tier I exceedances is fibre dust inhalation.


Risk Assessment and Mitigation

The identified elevated concentration of asbestos has a primary exposure pathway related to the fibre dust inhalation. The risk to chronic human health associated with the elevated concentration of loose chrysotile fibres can be mitigated through the installation of a suitable cover system in all proposed landscaping and hardstanding to remove any potential for direct exposure to impacted soils.

The specific design and installation process for the appropriate cover systems will be clearly defined within the Site remediation & Enabling Works Strategy, however industry best practice (as outlined within BRE 465) will require the following minimum depths of certified clean cover:

- Landscaped areas 300mm
- Public Open Space 300mm

A hotspot excavation will be required in the proximity of WS110 to remove the impacted topsoil with placement >1.00m beneath an area of low sensitivity such as public open space or the proposed car park to ensure the contaminant pose no unacceptable risk to the future site users (Figure 4.1). Site specific control procedures and appropriate validation monitoring will be required to demonstrate the absence of any unacceptable risk to construction workers.

4.2 Controlled Waters Risk Assessment

The site sensitivity with respect to controlled waters is summarised within Table 4.2

Table 4.2 Controlled Waters Sensitivity Profile

RISK PROFILE	DISCUSSION	SENSITIVITY RATING
Groundwater Source Protection Zone or Drinking Water Safeguard Zone	The site is not located in a Groundwater Source Protection Zone or Drinking Water Safeguard Zone	LOW
	There are 22 groundwater abstraction points situated within 1km of the subject site. The closest five of which are located within 366m of the site, operated by Bromborough Business Park Ltd and utilised for industrial, commercial and public services.	
Distance to the closest groundwater abstraction point.	The remaining groundwater abstraction points are operated by the following: CSM, Bakemark UK Ltd, Arkady Craigmillar, UML Ltd, Pochin (Bromborough) Limited, Bromborough Business Park Ltd, Unilever Research, UML Ltd, J P Whitter (Waterwell Engineers) Ltd. The water abstracted is generally utilised for food and drink, cooling, manufacturing and construction.	HIGH
Aquifer Classification in Superficial Drift Deposits.	The site is not underlain by Superficial Drift Deposits.	N/A
Aquifer classification in Bedrock.	Chester Formation – Sandstone (Principal Aquifer)	HIGH
Viability for Anthropogenic soil in direct contact with aquifer (drift or bedrock).	Variable Made Ground has been identified between ground level and 0.90m bgl in the location of the former building and adjacent car park. However, the chemical analysis results of these deposits did not exceed screening criteria for any of the contaminants of concern.	MODERATE
Is the site located within 50m of a surface watercourse?	The risk to a surface water is negligible given the absence of a viable receptor within influencing distance of the site.	LOW

Summary

The ICSM developed within the context of the site setting has identified viable pollutant risks which would be the downward migration of potentially mobile phase soluble contaminants towards the underlying Principle Aquifer. There are also 22 groundwater abstraction points situated within 1km of the site utilised for food and drink, cooling, manufacturing and construction.

To further refine the ICSM, E3P has undertaken an initial qualitative assessment of the soil data analysis to assess the potential for a source of separate phase or dissolved phase contamination originating from either a defined on-site source or from impacted soils. This assessment is summarised in Table 4.3.

Table 4.3 Qualitative Risk to Controlled Waters from Soil Analytical Results

BTEX - >1mg/kg	The soil data analysis has not identified any levels of VOCs above
Total VOC - > 1mg/kg	the LOD or detectable concentrations of TPH C5 to C6 that might otherwise be indicative of VOC impact.
Total SVOC - > 1 mg/kg	PAH analysis recorded concentrations to be below the laboratory LOD.
C5-C10 - > 5mg/kg	All concentrations are below the laboratory LOD.
C10-C12 - > 10mg/kg	All concentrations are below the laboratory LOD.
C12-C16 - > 50mg/kg	All concentrations are below 50mg/kg.
Phenols - > 2mg/kg	All concentrations are below the laboratory LOD.
Naphthalene - > 2mg/kg	Naphthalene has been not identified at concentrations greater than 2mg/kg.
Total PAH - > 10mg/kg	All concentrations are below the laboratory LOD
PCB - > 1mg/kg	An electric substation is located in the north east of the site dated circa 1956. This substation may be a potential source of PCB, however E3P were unable to investigate this area due to live electrical services. It is recommended that further assessment should be undertaken during the remediation.
Heavy metals - > 500mg/kg	Concentrations of heavy metals are all below 500mg/kg.

The ICSM which has identified a potential pollutant linkage associated with the migration towards the underlying Principal Aquifer. There are also 22 groundwater abstraction points situated within 1km of the site utilised for food and drink, cooling, manufacturing and construction. E3P has undertaken a Tier I controlled waters risk assessment. The Tier I assessment has included a comparison of leachate analysis from samples of the Made Ground to Drinking Water Standards in the first instance and where absent Environmental Quality Standards (EQS). Groundwater samples were not chemically assessed for the subject site due to the insufficient volumes of water within the monitoring wells.

These are presented in Table 4.4 (overleaf).

Table 4.4 Comparison of Groundwater Analysis with Tier 1 Screening Levels

DETERMINAND	UNITS	EQ SCREE VALUE	NING	DWS 3,4,5	N (L-Leachate, GW –Groundwater)	МС	LOC OF EX	ASSESSMENT	
		AA	MAC		GW –Groundwater)				
Arsenic	μg/l	50	-	10	2 L	<1.0	N/A	No Further Action	
Cadmium	µg/l	0.08	0.45	5	2 L	<0.08	N/A	No Further Action	
Chromium (VI)	μg/l	3.4	-	-	2 L	<5.0	N/A	No Further Action	
Chromium (III)	μg/l	4.7	_	50	2 L	<1.7	N/A	No Further Action	
Copper (hardness)	μg/l	1-28		2000	2 L	17	N/A	No Further Action	
					2 L	<1.0	N/A	No Further Action	
Total Cyanide	μg/l	1	-	50	2 L	1.7	N/A	No Further Action	
Lead	μg/l	1.2	14	10					
Mercury	μg/l	-	0.07	1.0	2 L	<0.5	N/A	No Further Action	
Nickel	μg/l	4	34	20	2 L	0.4	N/A	No Further Action	
Selenium	μg/l		-	10	2 L	<4.0	N/A	No Further Action	
Zinc(hardness)	µg/l	8-125	-	-	2 L	8.7	N/A	No Further Action	
рН		6-9)		2 L	6.9-8.2	N/A	No Further Action	
PAH									
Naphthalene	μg/l	2	130		2 L	<0.01	N/A	No Further Action	
Anthracene	μg/l	0.1	0.1		2 L	<0.01	N/A	No Further Action	
Benzo[b]fluoranthene	µg/l	1.7-4	0.017		2 L 2 L	<0.01	N/A	No Further Action	
Benzo[k]fluoranthene	µg/l	1.7 ⁻⁴	0.017 0.27	10*	2 L	<0.01	N/A N/A	No Further Action No Further Action	
Benzo(a)pyrene Flouranthene	µg/l	0.0063			2 L	<0.01	N/A N/A	No Further Action	
	µg/l		8.2-3		2 L	<0.01	N/A	No Further Action	
Benzo(ghi)perylene	µg/l	1.7-4	0.2		2 L	<0.01	IN/A	No Futther Action	
TPH-Aromatic	/1	40	50		0.1	4.0	N 1/A	NI E (I A (
TPH C5-C6 (benzene)	μg/l	10	50	1	2 L	<1.0	N/A	No Further Action	
TPH C6-C8 (toluene)	μg/l	50	-	700	2 L	<1.0	N/A	No Further Action	
TPH C8-C10 (ethyl Benzene)	μg/l	20	-	300	2 L	<1.0	N/A	No Further Action	
TPH C10-C12 (xylene)	μg/l	30	-	500	2 L	<10	N/A	No Further Action	
TPH C12-C16	μg/l	2	130	905	2 L	<10	N/A	No Further Action	
TPH C16-C35	μg/l	50#	50#	905	2 L	<10	N/A	No Further Action	
TPH Aliphatic ⁵	P9'	00	00			1.0			
TPH C5-C6	μg/l	-	-	15000	2 L	<1.0	N/A	No Further Action	
TPH C6-C8	μg/l	-	-	15000		<1.0	N/A	No Further Action	
TPH C8-C10	μg/l	-	-	300	2 L	<1.0	N/A	No Further Action	
TPH C10-C12	μg/l	-	-	300	2 L	<1.0	N/A	No Further Action	
TPH C12-C16	μg/l	-	-	300	2 L	<10	N/A	No Further Action	
TPH C16 – C21	μg/l	-	-	300**	2 L	<10	N/A	No Further Action	
TPH C21-C35	μg/l	-	-	300**	2 L	<10	N/A	No Further Action	
voc	10								
Tetrachloroethylene	μg/l	0.4	-	10	2 L	N/A	N/A	No Further Action	
Trichloroethylene	μg/l	10	-	10	2 L	N/A	N/A	No Further Action	
Trichlorobenzene	μg/l	0.4	-	-	2 L	N/A	N/A	No Further Action	
Trichloromethane	μg/l	2.5	-	-	2 L	N/A	N/A	No Further Action	
Dichloromethane	μg/l	20	-	200	2 L	N/A	N/A	No Further Action	
Carbon Tetrachloride	μg/l	12	-	3	2 L	N/A	N/A	No Further Action	
Vinyl Chloride	μg/l	-	-	0.3	2 L	N/A	N/A	No Further Action	

Notes

Solubility <0.01μg/l AA – Annual Average

IMS Ref: QR012-3

MAC- Maximum Admissible Concentration

- 1. The Water Environment (Water Framework Directive) (England and Wales) (Amendment) Regulations (2015)
- 2. Council Directive on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community (Dangerous Substances Directive) List II substances
- 3. Council Directive on the quality of water intended for human consumption (Drinking Water Directive)
- 4. WHO Guidelines for Drinking Water Quality. Third edition (2004)

For the purposes of the Tier 1 assessment E3P has compared the laboratory test data directly to the DWS values for the protection of drinking water and where absent DWS values, which are for the protection of surface water quality.

Referring to Table 4.4, the results of this direct comparison indicates that the data does not exceed the screening criteria for any of the contaminants of concern.

4.3 Ground Gas

The potential impact on the development from ground gases has been assessed with reference to standards and guidelines published in CIRIA Report 665 (Assessing risks posed by hazardous ground gases to buildings, 2007). However, it is recommended that the full ground gas assessment and recommended protection measures are agreed with the local authority prior to their adoption on-site. Furthermore, all protection measures adopted should be validated by a suitably qualified engineer.

CIRIA C665 provide assessments for carbon dioxide and methane based upon Gas Screening Values (GSVs) utilising flow rates and concentrations. The site based GSVs for steady state methane and carbon dioxide are based upon the following equation:

$$GSV = \frac{concentration (by vol)}{100} \times flowrate (1/hr)$$

The GSVs within CIRA C665 are based upon all buildings other than standard residential houses.

The thresholds for GSVs based upon CIRIA guidance are provided within Table 4.5 (below)

Table 4.5 Commercial Thresholds for Gas Screening Values (GSV) in accordance with CIRIA C665– Commercial End Use

CIRIA – NO SUB-FLOOR VOID									
CLASSIFICATION	GSV (METHANE AND CARBON DIOXIDE)								
CS1	<0.07								
CS2	<0.70								
CS3	<3.5								
CS4	<15								
CS5	<70								
CS6	>70								

^{*} Sum of The specified compounds are benzo[b]fluoranthene (CAS 205-99-2), benzo[k]fluoranthene (CAS 207-08-9), benzo[g,h,i]perylene (CAS 191-24-2) and indeno[1,2,3-c,d]pyrene (CAS 193-39-5)

4.4 Sources of Ground Gas

The Phase I report and subsequent Ground Investigation has identified the following potential sources of ground gas:

- Made Ground deposits
- Infilled field boundary

4.4.1 Groundwater

All wells were noted to have been dry during the first monitoring visit.

4.4.2 Gas Flow

During the monitoring a positive flow was noted in all monitoring wells. Positive flow is considered to be due to low levels of gas production.

4.4.3 Gas Concentrations

No methane was recorded within any of the monitoring wells above the limit of detection (0.1%) during the first monitoring visit. However, low levels of Carbon Dioxide were identified within all monitoring wells as concentrations ranged from 0.6% v/v (LOD) and 1.1% v/v. The maximum Carbon Dioxide concentrations were also associated with low oxygen concentrations and appear to be associated with the natural strata within WS105 (1.1% v/v).

4.4.4 Gas Assessment

In accordance with the methodology outlined with the CIRIA publication C665, E3P have utilised the results of the ground gas monitoring surveys to calculate a tentative Gas Screening Value (GSV). The GSVs for the monitoring positions are summarised in Table 4.6.

Table 4.6	Gas	Risk	Profile	R 1	Location
I UDIC TIO	UU 3	111311		•	_0044011

1 4.0.0	Out mon	i i cinic di Eccui	0		
LOCATION	MAX CO ₂	GSV	MAX CH ₄	GSV	CLASSIFICATION
WS101	0.6	0.00156	0.1	0.00026	CS1
WS105	1.1	0.01584	0.1	0.00144	CS1
WS106	0.6	0.00078	0.1	0.00013	CS1
WS107	0.8	0.00208	0.1	0.00026	CS1
WS110	0.9	0.00117	0.1	0.00013	CS1
WS111	1.6	0.00208	0.1	0.00013	CS1
WS112	0.8	0.00208	0.1	0.00026	CS1

The GSV has been compared to the criteria outlined with CIRIA C665 to determine the level of risk to the proposed development and to ensure the appropriate remedial options are incorporated into any future building design in this area.

Preliminary ground gas monitoring suggests that the site can be classified as CS1 and it is considered that gas protection measures will not be required.

4.5 Conceptual Site Model

Following the completion of the intrusive site investigation, chemical analysis and risk assessment the conceptual model shown in Table 4.7 has been prepared for the site.

Table 4.7 Conceptual Model

POLLUTANT LINKAGE	PATHWAY	RECEPTOR	CONTAMINANT (SOURCE)	PROBABILITY	RISK	ASSESSMENT AND RECOMMENDATIONS	RESIDUAL RISK AFTER MITIGATION
PL2	Inhalation of dust	Future site users. Offsite receptors	ACM identified in Made Ground	Likely	Moderate	Assessment: Asbestos in the form of loose chrysotile fibres has been identified in the Made Ground topsoil (0.10m bgl) in WS110 at a concentration of at 0.029%. Recommendation: Localised impacted soils will be either placed at depth or removed from site during a carefully managed and regulatory authority approved phase of enabling works, under strict construction phase health and safety controls. Upon placement of asbestos impacted soils at depth beneath hardstanding or public open space, no	LOW
						unacceptable risk to the future site users will remain.	

5. GEOTECHNICAL ASSESSMENT

5.1 Proposed Development

Redsun Developments are considering the proposed acquisition and future development of the land at Croft Business Park, Brombrough for mixed use commercial and retail buildings with associated roads and utility infrastructure. Drawing 12-999-002 (Appendix III) identifies the proposed development layout.

5.2 Summary of Ground Conditions

Made Ground

Made Ground topsoil was identified in the north east, south east, south west and central northern sector of the site in the location of former development. Made Ground topsoil was identified between ground level and 0.30m bgl and comprises brown sandy gravel with frequent cobbles with gravel and cobbles of sandstone and brick.

Deeper Made Ground was also identified in the proximity of the former building in the north east of the site (TP101, TP102, TP103 and WS101) and south east of the site (WS102, WS103 and TP105) between 0.30m and 0.80m bgl. Deeper Made Ground between 0.30m and 0.90m bgl was also noted in the central northern sector of the site (TP108, TP115 and WS106) in proximity of the former car park. This Made Ground comprised red sandy gravel with frequent cobbles with gravel of sandstone, brick and concrete and cobbles of sandstone.

Topsoil

Topsoil was identified throughout the site between ground level and 0.30m bgl. An isolated area of deeper topsoil was identified in the north of the site (TP109 and TP110) near the bordering trees to depths of 0.60m bgl. Topsoil comprised brown slightly clayey fine to medium SAND with frequent rootlets.

Drift

Drift deposits were only encountered within WS105 in the north east and WS111 in the north west of the site between 0.30m and 0.90m bgl. This deposit comprised brown clayey fine to medium SAND.

Solid

All exploratory hole locations were underlain by weathered sandstone between 0.20m and 2.00m bgl comprising red sandy gravel with frequent cobbles, with gravel and cobbles of sandstone.

5.3 Site Preparation

The site should be cleared and any vegetation below areas of proposed development stripped in accordance with Series 200 of the Specification for Highway Works. This should include:

- Roots present below the footprint of proposed structures and infrastructure should be grubbed out and the resulting void infilled with suitable compacted engineered fill;
- Redundant services should be sealed off and grubbed out and replaced with suitable compacted engineered fill; and,

Removal of Made Ground and buried structures (concrete). These should be excavated.

5.4 Foundation Conditions & Assessment of Potential Bearing Capacities

In due consideration of the identified ground conditions, in-situ and laboratory geotechnical testing, E3P has undertaken an assessment of the net safe Allowable Bearing Pressure (ABP) within the underlying natural stratum to assist in the detailed design of foundations and infrastructure and determine the target founding stratum. The assessment of ABP is summarised in Table 5.1.

Table 5.1 Summary of ABP Assessment

GRANULAR SOILS				
Description	Depth (range bgl)	Relative Density	Allowable Bearing Pressure (kN/m²)	
Weathered SANDSTONE	0.40-0.95	Very Dense	560	
Weathered SANDSTONE	1.00-1.45	Medium Dense	192-504	
Weathered SANDSTONE	1.50-1.95	Dense	475	
Weathered SANDSTONE	2.00-2.45	Dense	457	

Based on the assessment of the net ABP, the suitable target founding stratum has been identified as the underlying medium dense to very dense weathered sandstone.

The underlying weathered sandstone has been identified as being medium dense to very dense with an ABP ranging from 192kN/m² to 560kN/m² between 0.40m and 2.45m bgl.

All window sample probeholes were terminated due to refusals on very dense weathered sandstone between 0.5m and 2.0m bg.

At this time it is not possible to accurately define the foundation types due to the absence of a final development levels, however based on our experience of similar sites we would anticipate that the final foundation solution would be a combination of the following:

- Shallow strip foundations bearing on medium dense to dense gravel (weathered sandstone);
- Trench fill to support re-enforced strip foundations in areas of variable ground.

The anticipated foundation options are summarised in Table 5.2.

IMS Ref: QR012-3

Page **31** of **36**

Table 5.2 Anticipated Foundations

i abie 5.2	Anticipated Foundations				
LOCATION	ANTICIPATED FOUNDING STRATA DEPTH	GROUND WATER	FOUNDATION TYPE	TYPE OF CONCRETE	REMARKS
TP101	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	
TP102	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	
TP103	1.15	N/A	TRAD. STRIP	DS-1 AC-1S	
TP104	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	
TP105	0.85	N/A	TRAD. STRIP	DS-1 AC-1S	
TP106	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	
TP107	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	
TP108	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	
TP109	0.95	N/A	TRAD. STRIP	DS-1 AC-1S	
TP110	0.95	N/A	TRAD. STRIP	DS-1 AC-1S	
TP111	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	
TP112	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	
TP113	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	NI/A
TP114	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	N/A
TP115	0.85	N/A	TRAD. STRIP	DS-1 AC-1S	
WS101	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	
WS102	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	
WS103	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	
WS104	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	
WS105	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	
WS106	1.25	N/A	TRAD. STRIP	DS-1 AC-1S	
WS107	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	
WS108	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	
WS109	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	
BH101	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	
BH102	0.75	N/A	TRAD. STRIP	DS-1 AC-1S	

In addition to the above the, E3P has also undertaken an assessment of the site investigation findings in order to confirm if the ground conditions are suitable to facilitate ground improvement.

Table 5.3 Ground Improvement Design Risk Matrix

RISK ITEM	COMMENT	PASS / FAIL
Soft clays with an undrained shear strength less than 30kN/m²	Not identified.	PASS
Ground with peat layers close to foundation level or the base of the stone column, or where intermediate layers of peat are thicker than 200mm either as a single layer or the sum of the thicknesses of individual layers throughout the length of the stone column.	Not identified.	PASS
Voided filled ground, eg old water tanks, pottery, glass bottles, concrete rubble or brick fill of unsuitable grading	Not identified.	PASS

RISK ITEM	COMMENT	PASS / FAIL
Loose or non-engineered fill not previously subject to rising or fluctuating water levels saturation	None identified	PASS
Filled ground still settling or expected to settle under its own weight or due to the effects of surcharging/up-filling where there is a high organic content or where decay is continuing.	Not identified.	PASS
Fill, containing degradable material where organic material forms more than 15% of fill by volume	None Identified	PASS
Clays with a plasticity index greater than 40%	None Identified	PASS
Highly sensitive soils liable to collapse or remoulding	None Identified	PASS
Cohesive soils with trees in influencing distance.	Not identified.	PASS
Overall Risk Rating & Suitability for	PASS	

A Concept Foundation Zoning Plan is included as Drawing 12-999-010 in Appendix III.

5.5 Ground Floor Slabs

Current building control regulations require that where infilled ground is present to depths in excess of 600mm or where the sub-stratum is variable in terms of the structure and settlement potential or where clay soils are present within the influence of existing or proposed trees, a suspended floor slab is required.

In this instance it is considered that, the underlying stratum would have in-excess of 600mm of infill and as such a suspended floor slab will be required.

5.6 Heave Precautions

Due to the presence of granular strata across the entire site, heave precautions will not be required during the construction of the proposed dwellings.

5.7 Pavement Construction

A programme of remediation and enabling works will be required to remediate the proposed road sub-grade in accordance with the requirements of the highways design manual (series 600) for a Method Compaction.

It is considered that the material can be re-engineered to a method to achieve a CBR in excess of 5% if works are completed in favourable climatic conditions.

5.8 Drainage

The underlying weathered sandstone was granular. Three falling head permeability tests were conducted which displayed varied results. WS101 has poor soakaway potential, WS105 had moderate soakaway potential and WS111 had good soakaway potential.

Therefore, it is considering that soakaway drainage may not be suitable for the proposed development. However, the application of soakaway drainage will ultimately be dependent on the specific requirements of the development. All soakaways should be designed in accordance with BRE Special Digest 365 – Soakaway Design

5.9 Concrete Durability

Based upon the results of the chemical analyses summarised in it is considered that subsurface concrete can be designed in accordance with Design Sulphate Class DS-1, Aggressive Chemical Environment for Concrete Classification (ACEC) AC-1s in accordance with the recommendations provided in BRE Special Digest 1 (2005).

5.10 Excavations

The sides of the exploratory trial pit excavations appeared to be stable during excavation, with the exception of TP103 in the north east of the site which was noted to have been unstable at 0.30m bgl due to loose Made Ground gravels.

All excavations were noted to have been slow or prematurely terminated due to the dense weathered sandstone.

If local pumping of groundwater is required during the advancement of excavations for the proposed foundations. Consideration should be given for the potential for dewatering gravels in the surrounding areas to the subject site that may cause structural damage to buildings substructures in close proximity to the site.

Table 5.4 Civil Engineering Excavation Risk Matrix

Risk Item	Present	Comment
Running Sands	No	Running sands were not identified during the site investigation.
Minor Water ingress	No	There was no groundwater identified during borehole and Trial Pit excavations.
Shallow Bedrock	Yes	Shallow Bedrock has been identified throughout the site at depths less than 0.5m below current ground levels. The presence of bedrock will impede excavation for drainage infrastructure using traditional excavation plant and equipment.

5.11 Slope Stability

The site is predominantly flat but embankments are present in the southern and eastern boundaries which are circa 2m higher than the remainder of the site.

As and when detailed topographic information is available and in due consideration of the proposed development design, structural and infrastructure loading, a detailed slope stability model may be required. This model will seek to determine the potential for newly imposed loadings to generate a risk of instability or failure within the off-site embankment and the need for any mitigation measures such as piled foundation to transfer loadings below the base of the slope.

5.12 Coal Mining

The site is not located in a coal mining affected area.

5.13 Further Works

Based on the findings of the intrusive site investigation, the following additional works are recommended to be completed in due course:

- Plot Specific Foundation Schedule (upon receipt of the final development levels);
- Materials Management Plan;
- Geotechnical Earthworks Strategy (Infrastructure).
- Remediation & Enabling Works strategy; and
- Full three dimensional earthworks Cut / Fill Model.

5.14 Construction Activity and Inspection

The following activities and inspections should be incorporated in to the site works:

- Excavations where access is required should be subject to a risk assessment from a competent person and where appropriate mitigation measures such as benching back the sides or use of support systems in accordance with CIRIA R97 utilised;
- It is considered that de-watering may be required, especially following periods of heavy rainfall. Removal of surface water and water within trenches should be possible with conventional sump pumping. Discharge of any water should be agreed with the relevant regulatory body and be undertaken under a trade effluent discharge, where required. Measures to remove silt and suspended solids may be required and consideration should be given to provision of space for settling tanks or an attenuation pond;
- Where access to confined spaces is required appropriate mitigation measures should be addressed within the Construction Stage Health and Safety Plan. Particular account should be taken of the gas results; and,
- The presence of potential contamination and mitigation measures should be addressed as part of the Construction Stage Health and Safety Plan and should include measures to design out the risks, reduce their impact and finally the use of Personnel Protective Equipment (PPE).

6. CONCLUSIONS AND RECOMMENDATIONS

Contaminated Land	I
	A Tier I Human Health Risk Assessment has been undertaken using the chemical analysis results of the soils and comparing to the relevant Tier I criteria. This assessment has identified the presence of asbestos. Asbestos in the form of loose chrysotile fibres have been identified in the Made
I I I I III	Ground topsoil (0.10m bgl) in WS110 at a concentration of at 0.029%.
Human Health	A hotspot excavation will be required in the proximity of WS110 to remove the impacted topsoil with placement >1.00m beneath an area of low sensitivity such as public open space or the proposed car park to ensure the contaminant pose no unacceptable risk to the future site users. Site specific control procedures and appropriate validation monitoring will be required to demonstrate the absence of any unacceptable risk to construction workers.
Controlled Waters	A Tier I assessment has included a comparison of leachate analysis from samples of the Made Ground to Drinking Water Standards (DWS) and Environmental Quality Standards (EQS) which did not identify any elevated levels of contaminants. There is considered to be a low risk to controlled waters and the wider environment.
Ground Gas	Ground gas monitoring thus far has indicated the site would be classed as Characteristic Situation 1, suggesting no gas protection measures will be required. However, the final ground gas regime will be confirmed following the completion of the ground gas monitoring programme.
Potable Water	This will need to be confirmed following the completion of a UKWIR Risk Assessment. Post remediation and enabling works ground conditions may be different from those identified during this site investigation.

Geotechnical Issues

The site is predominantly flat in topography; however embankments are present in the southern and eastern boundaries which are circa 2m higher than the remainder of the site, a phase of cut and fill enabling works may be required in order to create a proposed development platform suitable for a commercial development and adjacent car parks. This will generally comprise decreasing levels on south and western side.

During a phase of cut fill enabling works to create a developable platform, all below ground obstructions will require grubbing out to the base of the Made Ground to enable the construction of the proposed development.

Based on the assessment of the net Allowable Bearing Pressure, the suitable target founding stratum has been identified as the underlying medium dense to very dense weathered SANDSTONE.

The underlying weathered SANDSTONE has been identified as being medium dense to very dense with an ABP ranging from 192kN/m² to 560kN/m² between 0.40m and 2.45m bgl.

All window sample probeholes were terminated due to refusals on shallow sandstone bedrock between 0.5m and 2.0m bgl. The presence of bedrock will impede excavation for drainage infrastructure using traditional excavation plant and equipment.

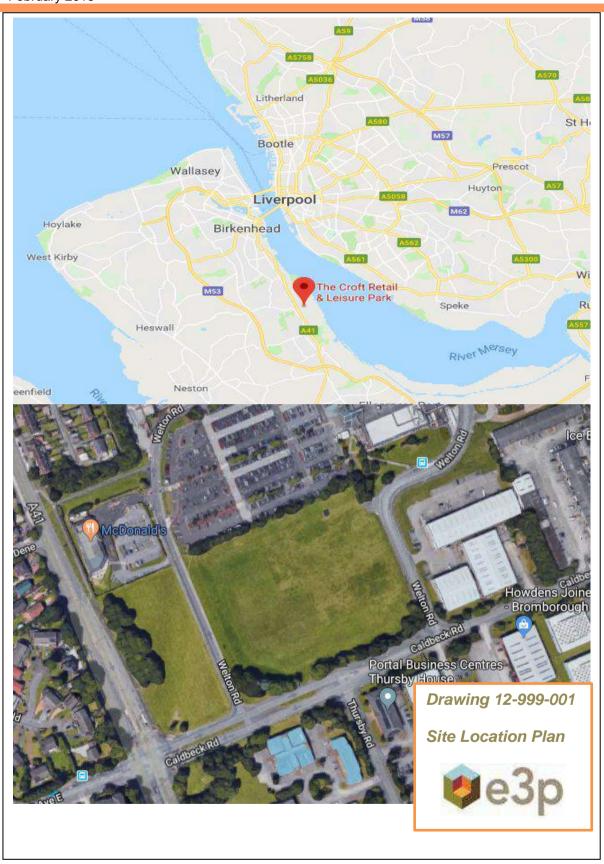
At this time it is not possible to accurately define the foundation types due to the absence of a final development levels, however based on our extensive experience of similar sites we would anticipate that the final foundation solution would be a combination of shallow strip foundations bearing on medium dense to dense gravel (weathered SANDSTONE) or trench fill to support re-enforced strip foundations in areas of variable ground

END OF REPORT

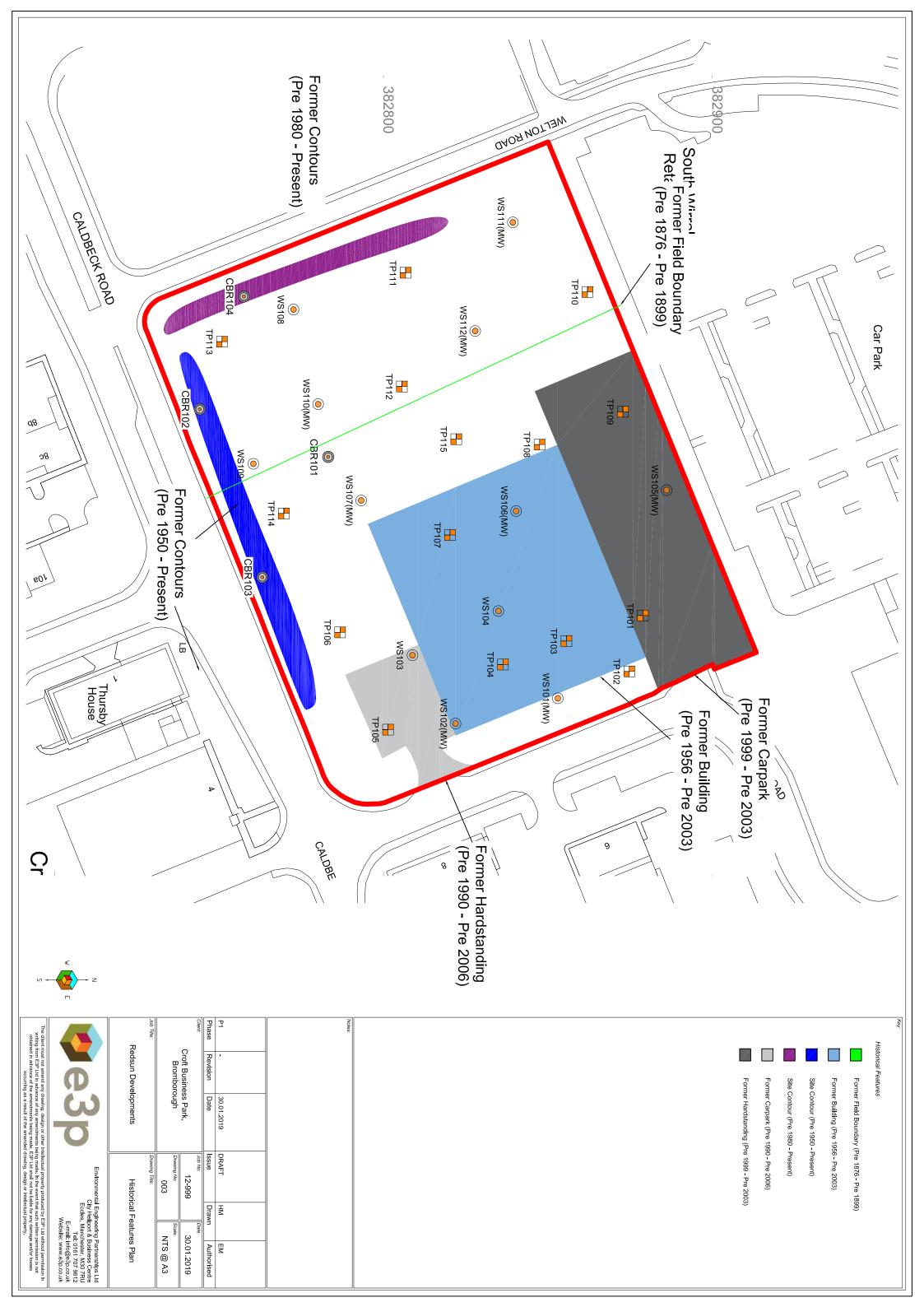
APPENDIX I LIMITATIONS

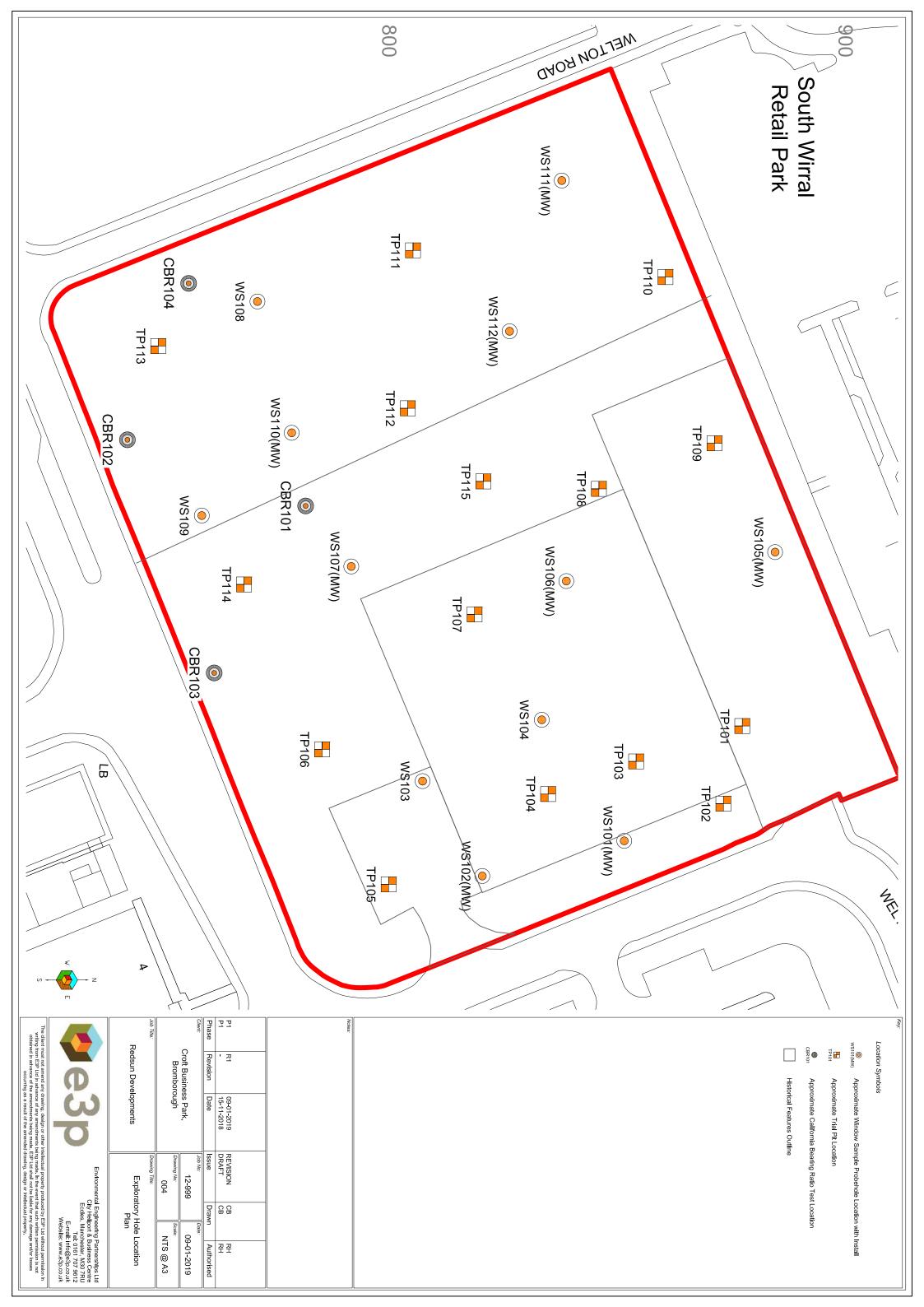
- 1. This report and its findings should be considered in relation to the terms of reference and objectives agreed between E3P and the Client as indicated in Section 1.2.
- 2. For the work, reliance has been placed on publicly available data obtained from the sources identified. The information is not necessarily exhaustive and further information relevant to the site may be available from other sources. When using the information it has been assumed it is correct. No attempt has been made to verify the information.
- 3. This report has been produced in accordance with current UK policy and legislative requirements for land and groundwater contamination which are enforced by the local authority and the Environment Agency. Liabilities associated with land contamination are complex and requires advice from legal professionals.
- 4. During the site walkover reasonable effort has been made to obtain an overview of the site conditions. However, during the site walkover no attempt has been made to enter areas of the site that are unsafe or present a risk to health and safety, are locked, barricaded, overgrown, or the location of the area has not be made known or accessible.
- 5. Access considerations, the presence of services and the activities being carried out on the site limited the locations where sampling locations could be installed and the techniques that could be used.
- 6. Site sensitivity assessments have been made based on available information at the time of writing and are ultimately for the decision of the regulatory authorities.
- 7. Where mention has been made to the identification of Japanese Knotweed and other invasive plant species and asbestos or asbestos-containing materials this is for indicative purposes only and do not constitute or replace full and proper surveys.
- 8. The executive summary, conclusions and recommendations sections of the report provide an overview and guidance only and should not be specifically relied upon without considering the context of the report in full.
- 9. E3P cannot be held responsible for any use of the report or its contents for any purpose other than that for which it was prepared. The copyright in this report and other plans and documents prepared by E3P is owned by them and no such plans or documents may be reproduced, published or adapted without written consent. Complete copies of this may, however, be made and distributed by the client as is expected in dealing with matters related to its commission. Should the client pass copies of the report to other parties for information, the whole report should be copied, but no professional liability or warranties shall be extended to other parties by E3P in this connection without their explicit written agreement there to by E3P.
- 10. New information, revised practices or changes in legislation may necessitate the re-interpretation of the report, in whole or in part.

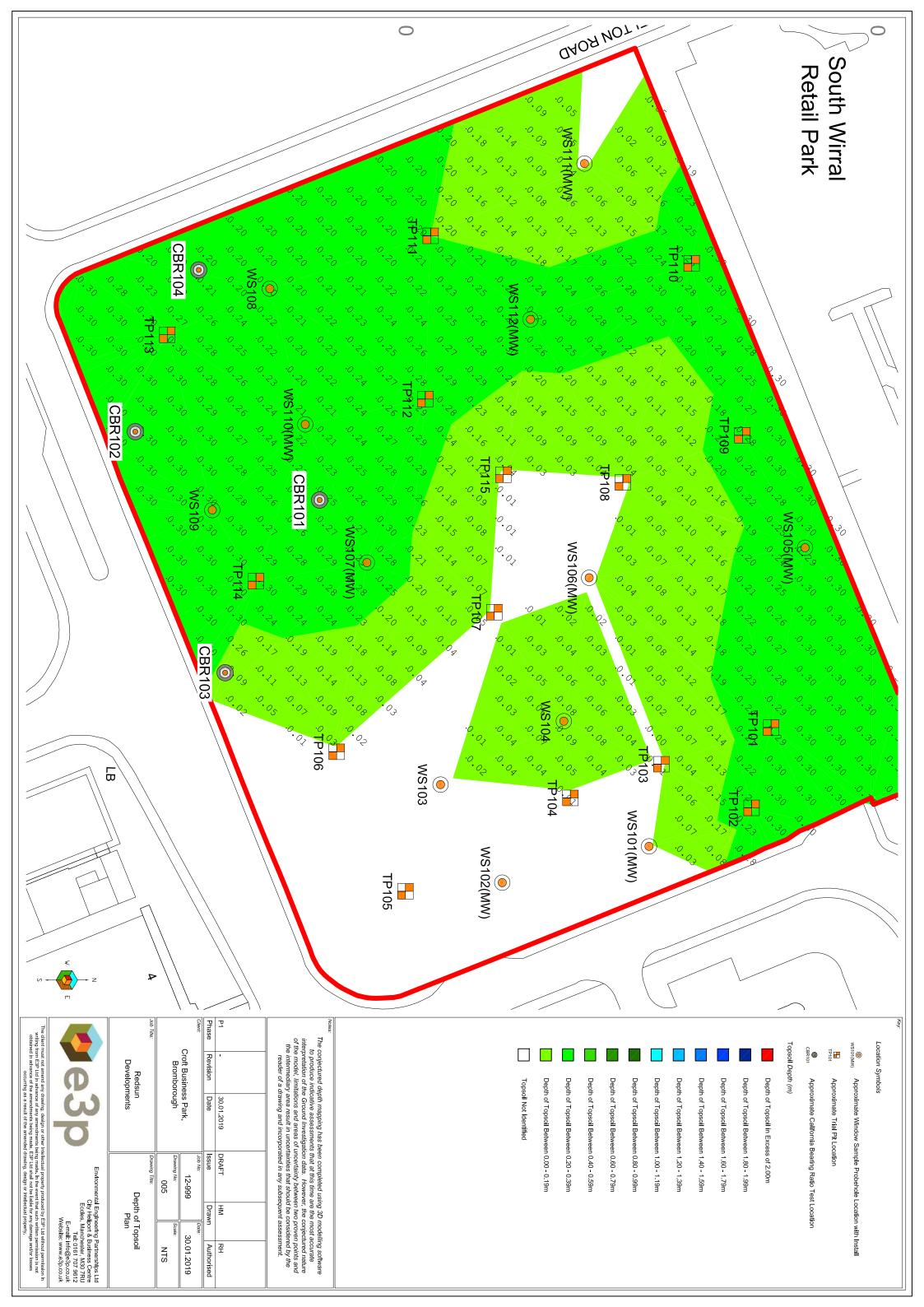
APPENDIX II GLOSSARY

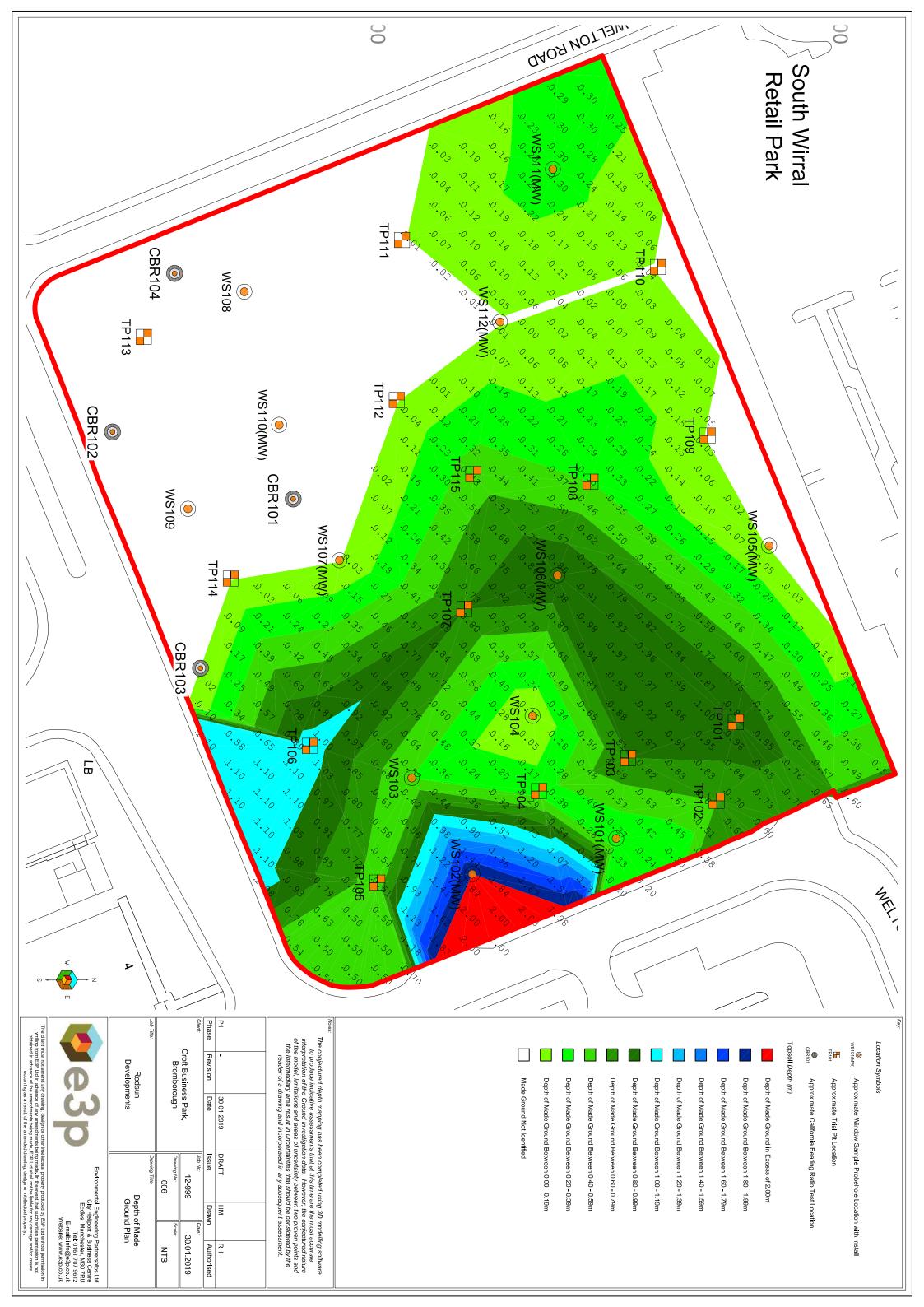

TERMS

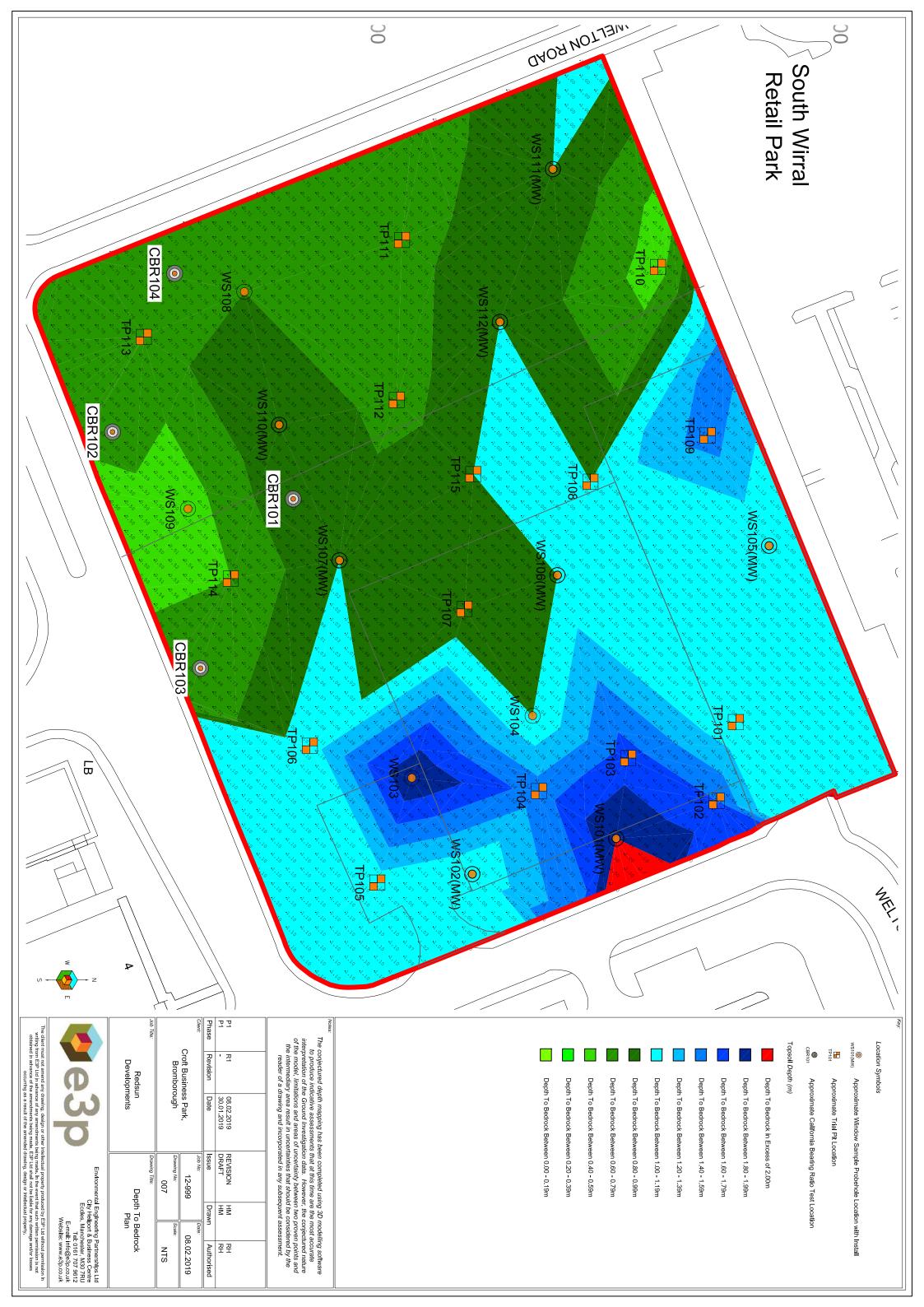
AST	Above Ground Storage Tank	SGV	Soil Guideline Value
BGS	British Geological Survey	SPH	Separate Phase Hydrocarbon
BSI	British Standards Institute	TPH CWG	Total Petroleum Hydrocarbon (Criteria Working Group)
BTEX	Benzene, Toluene, Ethylbenzene, Xylenes	SPT	Standard Penetration Test
CIEH	Chartered Institute of Environmental Health	svoc	Semi Volatile Organic Compound
CIRIA	Construction Industry Research Association	UST	Underground Storage Tank
CLEA	Contaminated Land Exposure Assessment	VCCs	Vibro Concrete Columns
CSM	Conceptual Site Model	voc	Volatile Organic Compound
DNAPL	Dense Non-Aqueous Phase Liquid (chlorinated solvents, PCB)	WTE	Water Table Elevation
DWS	Drinking Water Standard	m	Metres
EA	Environment Agency	km	Kilometres
EQS	Environmental Quality Standard	%	Percent
GAC	General Assessment Criteria	%v/v	Percent volume in air
GL	Ground Level	mb	Milli Bars (atmospheric pressure)
GSV	Gas Screening Value	l/hr	Litres per hour
HCV	Health Criteria Value	μg/l	Micrograms per Litre (parts per billion)
ICSM	Initial Conceptual Site Model	ppb	Parts Per Billion
LNAPL	Light Non-Aqueous Phase Liquid (petrol, diesel, kerosene)	mg/kg	Milligrams per kilogram (parts per million)
ND	Not Detected	ppm	Parts Per Million
LMRL	Lower Method Reporting Limit	mg/m³	Milligram per metre cubed
NR	Not Recorded	m bgl	Metres Below Ground Level
PAH	Polycyclic Aromatic Hydrocarbon	m bcl	Metre Below Cover Level
РСВ	Poly-Chlorinated Biphenyl	mAOD	Metres Above Ordnance Datum (sea level)
PID	Photo Ionisation Detector	kN/m²	Kilo Newtons per metre squared
QA	Quality Assurance	μm	Micro metre
SGV	Soil Guideline Value		

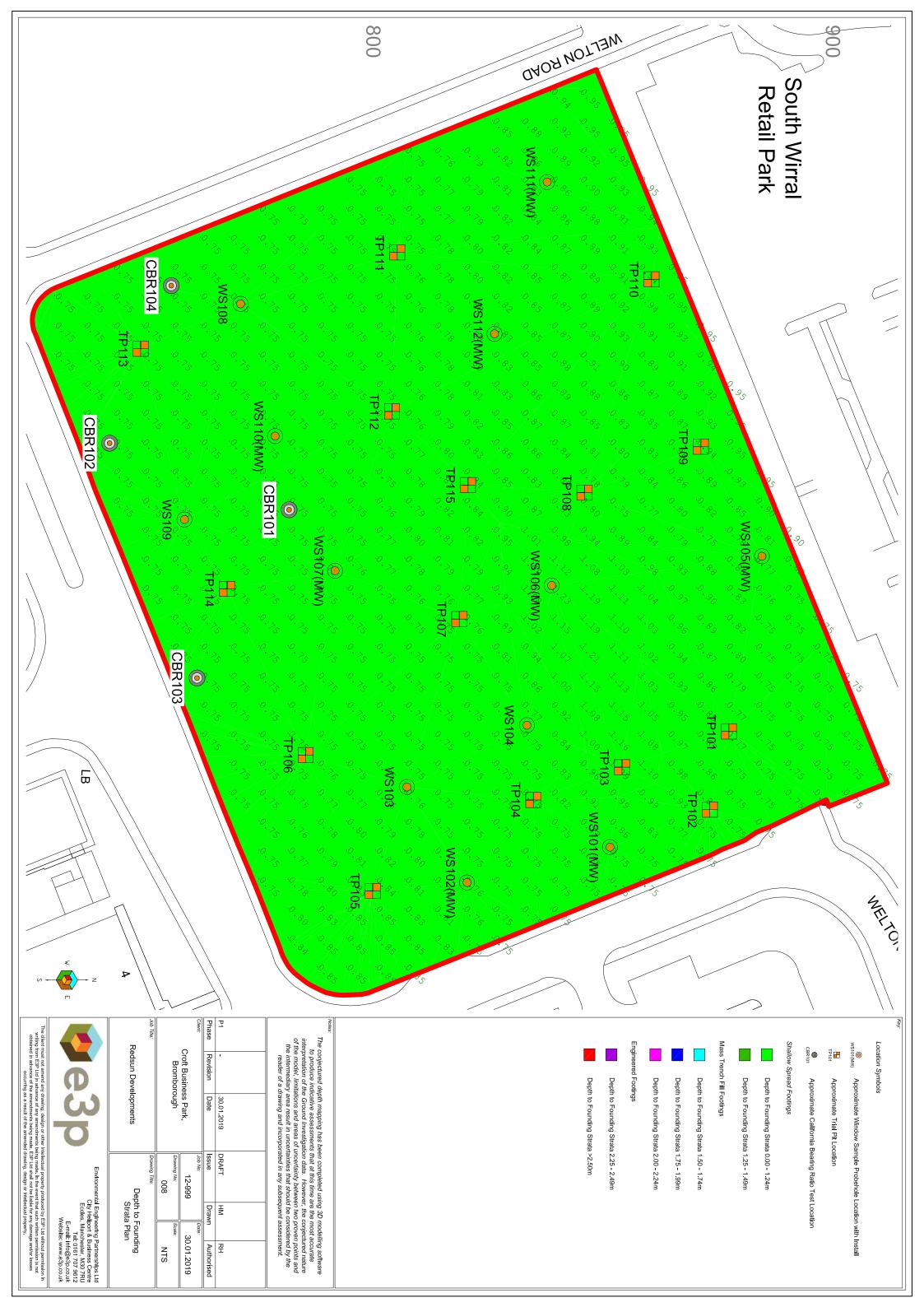

APPENDIX III DRAWINGS

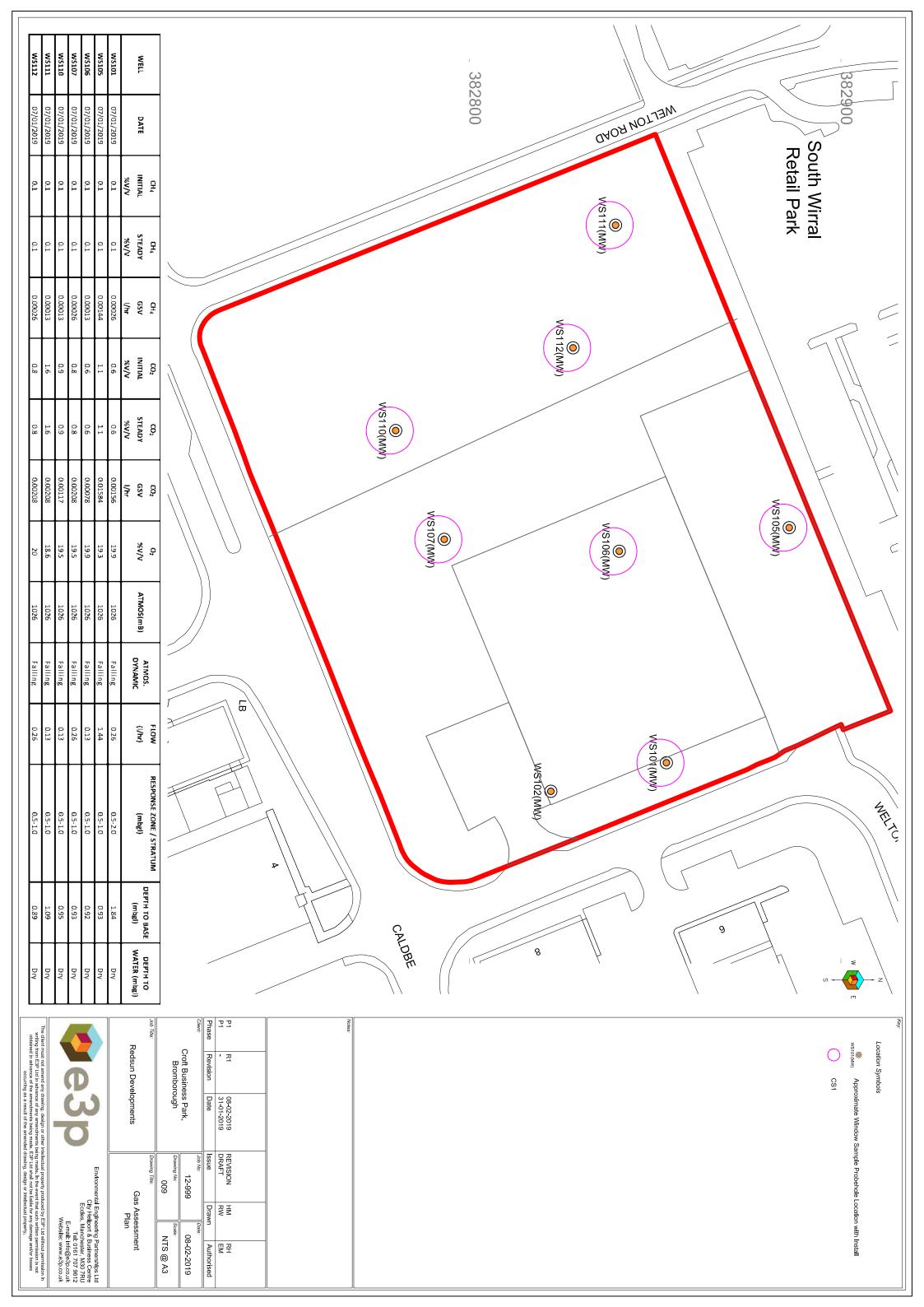


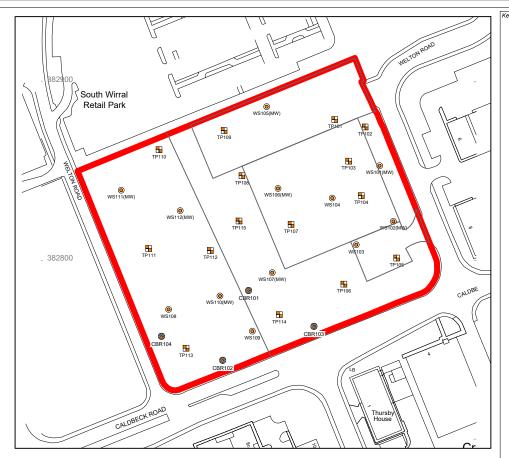


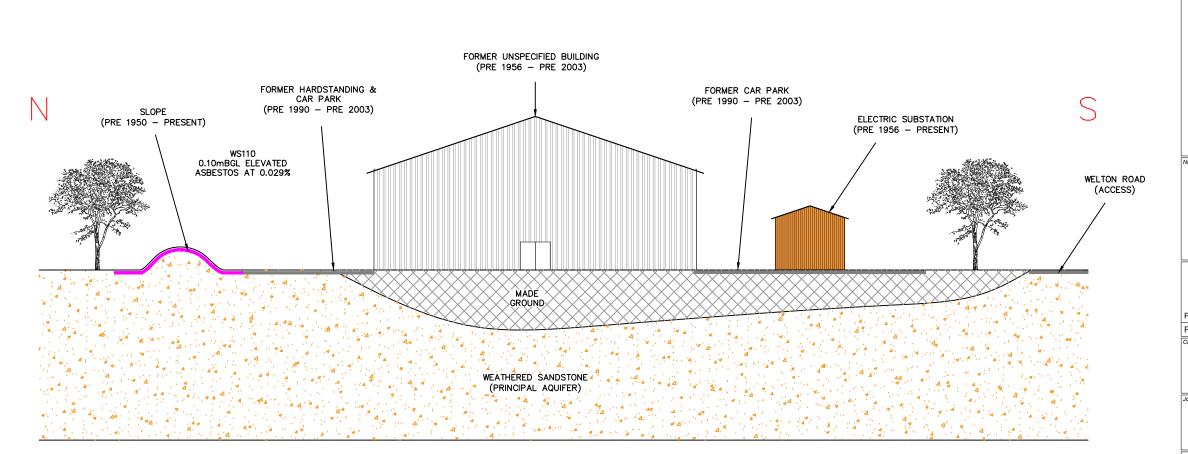












POLLUTANT LINKAGE	PATHWAY	RECEPTOR	CONTAMINANT (SOURCE)
PL1	Dermal contact. Inhalation of soil, fibres and dust. Ingestion of soils, dust, vegetables, soil attached to vegetables. Windblown dust.	Future site users. Offsite receptors.	ACM (former buildings, potentially in Made Ground, brake pad linings)
PL2	Soil ingestion, dermal contact and ingestions. Consumption of homegrown vegetables.	Construction works and residential end users.	Heavy metals within Made Ground, Topsoil , Natural drift deposits.
PL3	Inhalation of vapours. Migration through permeable strata and preferential pathways.	Future site users. Offsite receptors.	Volatile contaminants such as hydrocarbons, solvents, chlorinated hydrocarbons, naphthalene (Made Ground)
PL4	Inhalation of gas. Migration through permeable strata and preferential pathways. Explosion in confined spaces.	Future site users. Buildings. Offsite land users.	Methane, carbon dioxide. (Made Ground and infilled features on and within 250m of the site)
PL5	Surface run off. Migration through permeable strata and preferential pathways. Perched waters migration.	Groundwater (Secondary A Aquifer)	Mobile contaminants such as hydrocarbons, volatile compounds (Made Ground)
PL6	Sulphate attack on concrete.	Building Structure.	Sulphate (Potential ash within Made Ground)
PL7	Ingestion of tainted water supply.	Future site users. Water pipes.	Organic contaminants such as hydrocarbons, solvents (Made Ground, scrap yard, mills, works)
PL8	Direct Contact (Plant uptake)	Flora.	Phytotoxic Contaminants (Made Ground)

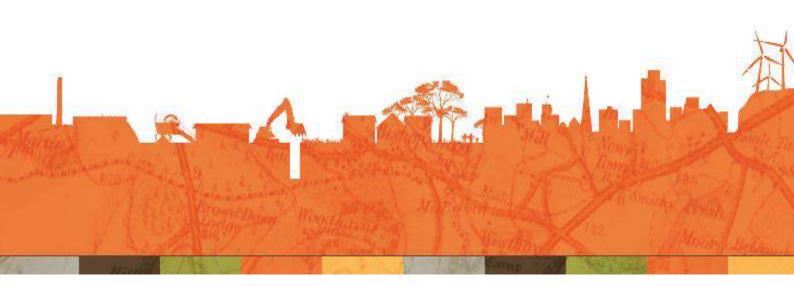
Legend

ROOM

MADE GROUND

WEATHERED SANDSTONE

Votes:						
P1	-	31-01-2019	DRAFT	RW		EM
Phase	Revision	Date	Issue	Draw	'n	Authorised
Client:			Job No:		Date:	
(Croft Busines		12-999		31	I-01-2019
	Bromboro	ough	Drawing No:		Scale:	
			011			N.T.S
			1			


Redsun Developments

Conceptual Site Model

Environmental Engineering Partnerships Ltd City Heliport & Business Centre Eccles, Manchester, M30 7RU Tel: 0161 707 9612 E-mail: info@e3p.co.uk Website: www.e3p.co.uk

The client must not amend any drawing, design or other intellectual property produced by E3P Ltd without permission in writing from E3P Ltd in advance of any amendments being made. In the event that such written permission is not obtained in advance of the amendments being made, E3P Ltd shall not be liable for any damage and/or losses occurring as a result of the amended drawing, design or intellectual property.

APPENDIX IV E3P EXPLORATORY HOLE LOGS

Trial Pit Log The Croft Project No. 12999 Depth										
The Croft Promotion Project No. 12999		B							TrialPit	No
The Croft Promotion Project No. 12999	e:	Bo					Tr	rial Pit Log		
The Croft 12999 Level: 13/12/2018 Scale 124 Logged 125 Logged 1									Sheet 1	of 1
Contains Bromborough	roject	The Croft								
Continue	lame:				12999	9				
Samples & in Stu Testing Depth 1,00 Siratum Description E.Moss	ocatio	n։ Bromborou	gh					()		
1.00 EMoss EMoss Embraración Empire	liont:	Podoup Do	volonma	anta				1		
Depth Type Results (in) (in) (in) (in) (in) (in) (in) (in)								1.00	E.Mos	ss
medium sand with frequent rootles (topsoli), Gravel is fine to coarse and tribid. O 30 O 40 In for COUNC Grey gravel. Gravel is fine to coarse and tribid. Red analy GRAVEL with frequent cobtes. Gravel is fine to coarse and brick. Red sandy GRAVEL with frequent cobtes. Gravel is fine to coarse as but-rounded of sandstone. Octobes are sub-rounded of sandstone. (Westerned sandstone) 1.00 End of Pit at 1.00m 1.00	Water Strike						Legend	Stratum Description		
		0.10	ES		0.40			medium sand with frequent rootlets (topsoil). If fine to coarse sub-angular to sub-rounded of sandstone and brick. MADE GROUND: Grey gravel. Gravel is fine sub-angular to sub-rounded of mudstone and and brick. Red sandy GRAVEL with frequent cobbles. G fine to coarse sub-angular to sub-rounded of sandstone. Cobbles are sub-rounded of sandstone sandstone).	to coarse concrete	3

						_	'	TrialPit	
eS	30					۱r	ial Pit Log	TP10	
	-			Dunia	-4 NI-		Co. anda.	Sheet 1	
Project Name:	The Croft			Projed 12999			Co-ords: - Level:	Date 13/12/20	
ocatio	n: Bromborouç	nh.		1.200			Dimensions 2.00	Scale)
							(m): 00 CF	1:24 Logge	
Client:	Redsun De				ı	1	1.60	E.Mos	s
Water Strike	Samp Depth	les & In S Type	itu Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.50	ES		0.30			MADE GROUND: Brown sandy gravel (Topsoil frequent cobbles. Gravel is fine to coarse subtosub-angular to sub-rounded of sandstone and by sub-angular to sub-rounded of sandstone and the subrounded of sandstone sub-angular to sub-rounded of sandstone. Cobbles are sub-angular to subrounded of sandstone. Cobbles are sub-angular to subrounded of sandstone. Cobbles are sub-angular to sub-rounded of sandstone. Cobbles are sub-rounded of sandstone.	angular es are orick. ent o dstone. vel is	1 2 3 4 5

Remarks: 1.Excavation slow due to dense weathered sandstone.

	(8)					_		TrialPit I	
e3	3p					Tr	ial Pit Log	TP10	
				Di.	-4 NI -			Sheet 1 d	of 1
Project Name:	The Croft			Project 12999			Co-ords: - Level:	Date 13/12/20	18
I ocatio	n: Bromborou	ah		1,-33			Dimensions 2.00	Scale	
							(m): 0 Depth C	1:24 Logged	
Client:	Redsun De		itu Testing				1.70	E.Moss	
Water Strike			Results	Depth (m)	Level (m)	Legend	Stratum Description		
War Stri	Depth 0.60	ES	Results			Legend	MADE GROUND: Brown sandy gravel (Topsoil) frequent cobbles. Gravel is fine to coarse subato sub-rounded of sandstone and brick. Cobbles sub-angular to sub-rounded of sandstone and coarse sub-angular to subrounded of sandstone and concrete. Cobbles and boulders. Gravel is fine coarse sub-angular to subrounded of sandstone and concrete. Cobbles and boulders are sub-ar to subrounded of sandstone, concrete and brick. Red sandy GRAVEL with frequent cobbles. Gravine to coarse sub-angular to sub-rounded of sandstone. Cobbles are sub-rounded of sandstone. Cobbles are sub-rounded of sandstone. Weathered sandstone).	ngular s are rick. nt to to to the prick ngular .	2
									5 —

Remarks: 1.Unstable Made Ground at 0.3m bgl. 2.Excavation slow due to weathered sandstone.

Stability: Unstable.

e3	e3p					Tr	ial Pit Log	TrialPit TP10 Sheet 1	4
Project	The Croft			Projed			Co-ords: -	Date	
Name:				12999	9		Level: Dimensions 2.00	13/12/20 Scale	
ocatio	n: Bromborou	gh 					(m): 0	1:24	
Client:	Redsun De	velopmer	nts				Depth + + 1.50	Logge E.Mos	a s
Water Strike		les & In Siti		Depth	Level	Legend	Stratum Description		
W. Str	0.10 1.20	ES ES	Results	(m) 0.30	(m)		MADE GROUND: Brown sandy gravel (Topsoil frequent cobbles. Gravel is fine to coarse subto sub-angular to sub-rounded of sandstone and the fine to coarse sub-angular to sub-rounded of sandstone. Cobbles are sub-rounded of sandstone. Cobbles are sub-rounded of sandstone. Cobbles are sub-rounded of sandstone. Or	angular es are orick. vel is	1 2 3 4 5

Remarks: 1.Excavation slow due to dense weathered sandstone.

1.10 End of Pit at 1.10m										
Troject No. 12999		B							TrialPit	No
Troject No. 12999	Δ:	Rh					Tr	ial Pit Log	TP10)5
Level: 13/12/2018 Cocation: Biromborough Cocation: Co		7						3	Sheet 1	of 1
Contains: Bromborough Circles: Redsun Developments Samples & In Situ Testing Depth Type Results Depth Type Results O.30 O.40 ES O.50 O.50 In I	roject	The Croft			l l					
Depth Stratum Description Depth Depth Depth Level Logend EMoss Depth Type Results Depth Type Results Depth Dep	lame:				12999	9				
Simples & In Situ Testing Depth Type Results Depth (m) Legend (m) Elegend Stratum Description NADE GROUND: Brown sandy graved (Topsoil) with frequent coobles. Grown is fire to coarse sub-angular sub-condided of macking and contents. Cookles are sub-angular to sub-condided of sandstone (Vestimend sandstone). NADE GROUND: Drown sandy graved (Topsoil) with frequent coobles. Grown is fire to coarse sub-angular sub-condided of macking and contents. Cookles are sub-angular to sub-condided of sandstone (Vestimend sandstones).	.ocatio	n: Bromborou	gh							
Samples & In Stut Testing Depth Type Results (In) Level (In) Legend Stratum Description MADE GROUND: Brown sandy gravel (Topacil) with frequent cobbles. Grove is fire to coarse sub-angular sub-rounded of amendations and crick. MADE GROUND: Grey gravel with frequent cobbles. Gravel is fire to coarse sub-angular sub-rounded of muddless and sub-angular sub-rounded of muddless and sub-angular sub-rounded of sundstone and convicte. Globbies are sub-angular sub-rounded of sundstone and convicte. Globbies are sub-angular sub-rounded of sundstone.	Client:	Redsun De	velopme	ents				Depth C	Logge	d
MADE GROUND: Brown sandy grawel (Toppoul) with frequent cobbies. Greek is fine to course sub-impular to sub-unded of sandstone and brick. 0.30 0.30 0.50	ter ke	Samp	les & In Si	tu Testing	Depth	Level	Lagand		2.11100	
frequent cobbbs. Gravel is fine to coarse sub-angular to sub-counted of sandstore and brick. Obthes are sub-angular to sub-counted of sandstore and brick. MADE (SROUND): Greg gravel will frequent cobbbs. Gravel is fine to coarse sub-angular to sub-counted of antistore and concrete. Cobbbs are sub-angular or coarse sub-angular to sub-angular to sub-counted of antistore and concrete. Red sandy RRAUL with frequent cobbbs. Gravel is fine to coarse sub-angular to sub-counted of antistore (Weathered sandstone). 1.10 End of Prt at 1.10m	Wa	Depth	Туре	Results		(m)	Legend			
		0.40	ES		0.50			frequent cobbles. Gravel is fine to coarse sub- to sub-rounded of sandstone and brick. Cobbl sub-angular to sub-rounded of sandstone and MADE GROUND: Grey gravel with frequent or Gravel is fine to coarse sub-angular to sub-roundudstone and concrete. Cobbles are sub-ang- concrete. Red sandy GRAVEL with frequent cobbles. Gr fine to coarse sub-angular to sub-rounded of sandstone. Cobbles are sub-rounded of sands (Weathered sandstone).	-angular es are brick. obbles. nded of ar of	2
										5 —

Remarks: 1.Excavation moved west due to suspected service.

Project Name:	roject ame: The Croft				ct No.		ial Pit Log Co-ords: - Level: Dimensions	TrialPit TP10 Sheet 1 Date 13/12/20 Scale	06 of 1 018
							(m): 0 Depth 7:	1:24 Logge	
Client:	Redsun De						1.10	E.Mos	s
Water	Depth	oles & In S Type	Results	Depth (m)	Level (m)	Legend			
W/e Str	1.00	ES	Results	(m) 0.30	(m)	Legend	Brown slightly clayey fine to medium SAND with frequent rootlets (topsoil). Red sandy GRAVEL with frequent cobbles. Grafine to coarse sub-angular to sub-rounded of sandstone. Cobbles are sub-rounded of sandstone (Weathered sandstone). End of Pit at 1.10m	vel is	2
									5

Remarks: 1.Terminated at 1.1m bgl due to dense weathered sandstone.

	(2)							TrialPit	No
e	Rin					Tr	ial Pit Log	TP10)7
							3 - 3	Sheet 1	of 1
Project	The Croft			Proje	ct No.		Co-ords: -	Date	:
Name:	THE CIOIL			12999	9		Level:	13/12/20	
ocatio	n: Bromborou	gh					Dimensions 2.00 (m):	Scale 1:24	
N: 4.	Dadawa Da						(m): 0 + 0 0 0 0 0 0 0 0 0	Logge	
Client:	Redsun De	-			1		0.80	E.Mos	ss
Water Strike	Samp Depth	les & In S	Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
× 00	Depth	Type	Results	0.30			Brown slightly clayey fine to medium SAND wifrequent rootlets (topsoil). Red sandy GRAVEL with frequent cobbles. Gravine to coarse sub-angular to sub-rounded of sandstone. Cobbles are sub-rounded of sands (Weathered sandstone). End of Pit at 0.80m	avel is	2 3 4
									5 —
Remarl	cs: 1 Terminat	ed at ∩	8m hal due to de	nse weath	nered sa	ndstone	<u> </u>		

	(3)					_		TrialPit	No
e 3	Bo					Tr	ial Pit Log	TP10	8(
	7							Sheet 1	
Project	The Croft			Proje			Co-ords: - 	Date	
Name:				12999	•		Level: Dimensions 2.00	13/12/20 Scale	
_ocatio	n: Bromborou	gh						1:24	
Client:	Redsun De	velopme	ents				(m): Depth	Logge E.Mos	ed
e e	Samp	les & In S	itu Testing	Depth	Level			L.IVIO3	
Water	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
				1.00			MADE GROUND: Brown sandy gravel (Topsoil frequent cobbles. Gravel is fine to coarse subto sub-rounded of sandstone and brick. Cobbls sub-angular to sub-rounded of sandstone and MADE GROUND: Grey gravel with frequent co Gravel is fine to coarse sub-angular to sub-roundustone and concrete. Cobbles are sub-angular to coarse sub-angular to sub-rounded of sandstone. Cobbles are sub-rounded of sandstone. Cobbles are sub-rounded of sandstone (Weathered sandstone). End of Pit at 1.00m	-angular es are brick. obbles. nded of ar of	2
									5 —
 Remark	s: 1.Terminat	ed at 1r	n bgl due to den	_ se weathe	red san	dstone.	I		

	Ø					_	·	TrialPit	
e 3	3p					ır	ial Pit Log	TP10	
Project				Projed	ct No		Co-ords: -	Sheet 1 o	
Name:	The Croft			12999			Level:	13/12/20	
Locatio	n: Bromborou	gh					Dimensions 2.00 (m):	Scale)
Client:	Redsun De		ents				Depth $\stackrel{\circ}{\leftarrow}$	1:24 Logge	d
			itu Testing				1.50	E.Mos	S
Wate	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
Water Strike		ı -	-	0.60	Level (m)	Legend	Stratum Description Brown slightly clayey fine to medium SAND with frequent rootlets (topsoil). Red sandy GRAVEL with frequent cobbles. Gravine to coarse sub-angular to sub-rounded of sandstone. Cobbles are sub-rounded of sandstone (Weathered sandstone). End of Pit at 1.50m	vel is	1
Remark	s: 1.Terminat	ed at 1.	5m bgl due to den	se weath	nered sa	ndstone			4

								TrialPit	No	
e	Rin					Tr	rial Pit Log	TP11	0	
								Sheet 1	Sheet 1 of 1	
Project	The Coeff			Proje	ct No.		Co-ords: -	Date	Date	
Name:	The Croft			12999	9		Level:	13/12/20		
ocatio	n: Bromborou	gh					Dimensions 2.00	Scale		
							(m): 00 H	1:24 Logge		
Client:	Redsun De	velopm	ents		1		0.50	E.Mos	SS	
Water Strike	Samp Depth	les & In S Type	Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description			
N S	0.10	ES	Results	0.10			Brown slightly clayey fine to medium SAND w frequent rootlets (topsoil). Red sandy GRAVEL with frequent cobbles. Gi fine to coarse sub-angular to sub-rounded of sandstone. Cobbles are sub-rounded of sandstone sandstone. End of Pit at 0.50m	ravel is	2 3 4 5	
Remarl	ks: 1 Excavati	on slow	due to dense w	eathered s	andston	 P				

						_		TrialPit	
e	Bo					۱r	rial Pit Log	TP11	
							-	Sheet 1	
Project Name:	The Croft				ct No.		Co-ords: -	Date	
				12999	9		Level: Dimensions 2.00	13/12/20 Scale	
ocatio	n: Bromborou	gh					(m):	1:24	
Client:	Redsun De	velopm	ents				Depth — — — — — — — — — — — — — — — — — — —	Logge E.Mos	d s
Water Strike	Samp	les & In S	Situ Testing	Depth	Level	Legend			
Wa	Depth	Туре	Results	(m)	(m)	Legend			
	0.10	ES					Brown slightly clayey fine to medium SAND wi frequent rootlets (topsoil).	th	_
				0.20			Red sandy GRAVEL with frequent cobbles. Gr fine to coarse sub-angular to sub-rounded of	avel is	_
							sandstone. Cobbles are sub-rounded of sands	tone	_
	0.50	ES					(Weathered sandstone).		_
				0.70					_
				0.70			End of Pit at 0.70m		1 —
									_
									1 —
									_
									_
									_
									_
									-
									_
									2 -
									_
									-
									_ _ _
									=
									_
									3 —
									_
									-
									_
									_
									_
									_
									4 —
									-
									-
									=
									-
									5 —
						1			5 —

Remarks: 1.Terminated at 0.7m bgl due to dense weathered sandstone.

e3	3p					Tr	ial Pit Log	TrialPit I	2
Project Name:	The Croft			Proje 12999	ct No.		Co-ords: - Level:	Date 13/12/20	12
	n: Bromborou	gh		1299	<u> </u>		Dimensions 2.00	Scale 1:24	
Client:	Redsun De	velopme	nts				(m): Depth	Logged E.Moss	d
ke t	Samp	les & In Sit	tu Testing	Depth	Level			E.IVIOS	5
Water Strike	Depth	Туре	Results	(m)	(m)	Legend			
	0.10	ES		0.30			Brown slightly clayey fine to medium SAND with frequent rootlets (topsoil). Red sandy GRAVEL with frequent cobbles. Grafine to coarse sub-angular to sub-rounded of sandstone. Cobbles are sub-rounded of sandstone).	vel is	- - - - - - -
				0.70			End of Pit at 0.70m		2
									5

Remarks: 1.Terminated at 0.7m bgl due to dense weathered sandstone.

e3	Sp					rial Pit Log	TrialPit No TP113 Sheet 1 of 1		
Project	The Croft			Proje	ct No.		Co-ords: -	Date	
Name:	THE CIOIL			12999	9		Level:	13/12/2018	
ocatio	n: Bromborou	gh					Dimensions 2.00 (m):	Scale 1:24	
Client:	Redsun De	velopm	ents				(m): 0 Depth 0.70	Logge	d
e e	Samp	les & In S	Situ Testing	Depth	Level			E.Mos	5
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	Берит	Туре	Results	0.30			Brown slightly clayey fine to medium SAND wi frequent rootlets (topsoil). Red sandy GRAVEL with frequent cobbles. Gr fine to coarse sub-angular to sub-rounded of sandstone. Cobbles are sub-rounded of sands (Weathered sandstone). End of Pit at 0.70m	avel is	3 4
									5 —

Remarks: 1.Terminated at 0.7m bgl due to dense weathered sandstone.

e3	3p					Tr	ial Pit Log	TrialPit No TP114 Sheet 1 of 1
Project Name:	The Croft			Proje	ct No.		Co-ords: - Level:	Date 13/12/2018
Location	n: Bromborou	gh		<u>'</u>			Dimensions 2.00 (m):	Scale 1:24
Client:	Redsun De	velopme	nts				Depth $\stackrel{\bigcirc}{\leftarrow}$	Logged E.Moss
ř é e	Samp	les & In Sit	tu Testing	Depth	Level		0.60	E.IVIUSS
Water	Depth	Туре	Results	(m)	(m)	Legend		
	0.10	ES					Brown slightly clayey fine to medium SAND with frequent rootlets (topsoil).	ו
				0.30			Red sandy GRAVEL with frequent cobbles. Grafine to coarse sub-angular to sub-rounded of sandstone. Cobbles are sub-rounded of sandst (Weathered sandstone).	
				0.60			End of Pit at 0.60m	
								1 -
								-
								2 -
								-
								3 -
								=
								4 -
								-
Dom - "	vo. 1 Townsin - 4	and at 0.0	Sm haldus to di	200 1112 241	horod = -	undete:=		5 -
remark	.s. i.ieiminat	.ยน สเ บ.6	Sm bgl due to de	rise weati	nered sa	เกษรเอกล	7 .	

Project Name: The Croft Project No. Co-ords: - Date 12999 Level: 13/12/2018 Location: Bromborough Dimensions (m): 2.00 Scale 1:24 Dimensions (m): 1:24	e3	3p					Tr	ial Pit Log	TrialPit TP11 Sheet 1	5
1999 Level: 13/12/2018 Scale	Project	The Croft							Date	
Collection Fordistroptory Collection					12999	9				
Reduction Personal Program (In) Copy to Co	ocatio	n: Bromborou	gh ———					(m): 0	1:24	
Depth Type Results (in) (vir) (in) (in) (in) (in) (in) (in) (in) (in	Client:	Redsun De	velopme	ents		T	_		Logge E.Mos	a s
MADE GROUND Brown sand; graved Cippodul with frequent cobbles. Gravel is fine to cares sub-inquilar to sub-invanided of sandstone and brick. Cobbles are sub-inquilar to sub-condition of sandstone and brick. The company of sandstone and brick of sandstone and brick of sandstone and brick. ADDE GROUND Grey gravel with frequent cobbles. Gravel is fine to care sub-inquilar of sub-condition of concrete. Cobbles are sub-inquilar of sub-condition of concrete. Red sandstone of sub-inquilar of sub-condition of sub-inquilar of sub-i	Nater Strike	·	1				Legend	Stratum Description		
					0.50			frequent cobbles. Gravel is fine to coarse sub- to sub-rounded of sandstone and brick. Cobbl sub-angular to sub-rounded of sandstone and MADE GROUND: Grey gravel with frequent oc Gravel is fine to coarse sub-angular to sub-rou mudstone and concrete. Cobbles are sub-angl concrete. Red sandy GRAVEL with frequent cobbles. Gr. fine to coarse sub-angular to sub-rounded of sandstone. Cobbles are sub-rounded of sands (Weathered sandstone).	-angular es are brick. obbles. nded of ar of	3

						Borehole No.				
6	3					Bo	reho	ole Log	WS101	l
									Sheet 1 of 1	
Project	Name:	The Cro	ft		Project No. 12999		Co-ords:		Hole Type WS	;
Locatio	n:	Bromboi	rough				Level:		Scale 1:50	
Client:		Redsun	Develo	opments			Dates:	13/12/2018	Logged By E.Moss	/
	Water	Sample	and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m)	(m)	g	MADE GROUND: Brown sandy gravel		
		1.00	SPT	N=19 (3,3/4,4,5,6)	0.20			cobbles. Gravel is fine to coarse substroughed of sandstone and brick. Cobbangular to sub-rounded of sandstone and brick and sandy GRAVEL with freque. Gravel is fine to coarse sub-angular to sandstone. Cobbles are sub-rounded of (Weathered sandstone).	angular to sub- bles are sub- and brick. nt cobbles. sub-rounded of	1 —
		2.00	SPT	50 (7,8/50 for 152mi	m) 2.00			End of Borehole at 2.00n	n	2 -
		2.00	SPI	50 (7,8/50 for 152ml	m) 2.00			End of Borehole at 2.00n		3 4
										-
										7 —
										8 —
										9 —

1.Terminated at 2.0m bgl due to refusal on weathered sandstone. 2.Monitroing well installed.

						Borehole No.				
6	3r					Bo	reho	ole Log	WS102	2
									Sheet 1 of	
Projec	t Name:	The Cro	ft		Project No. 12999		Co-ords:		Hole Type WS	
Location	on:	Brombo	rough				Level:		Scale 1:50	
Client:		Redsun	Develo	ppments			Dates:	13/12/2018	Logged By E.Moss	/
Well	Water Strikes			n Situ Testing	Depth Level (m)		Legend	Stratum Description		
	Ounco	Depth (m)	Туре	Results	0.10	(111)		MADE GROUND: Brown sandy gravel	with frequent	
		1.00	ES	50 (12,13/50 for 140mm)	0.40			cobbles. Gravel is fine to coarse sub-arounded of sandstone and brick. Cobbangular to sub-rounded of sandstone a MADE GROUND: Black gravel with fre Gravel is fine to coarse sub-angular to sandstone, mudstone, concrete, brick. Red sandy GRAVEL with frequent cob fine to coarse sub-angular to sub-roun	oles are sub- and brick. equent cobbles. sub-rounded of and asphalt. bles. Gravel is	1 —
				·				sandstone. Cobbles are sub-rounded ((Weathered sandstone). End of Borehole at 1.00r	of sandstone	-
										_
										2 —
										3 —
										-
										4 —
										4 - - - -
										5 —
										6 -
										- - - - -
										7 -
										8 —
										9 —
										10 —

1.Terminated at 1.0m bgl due to refusal on weathered sandstone. 2.Monitroing well installed.

1.50 SPT 50 (18,7/50 for 20mm) 2.00 fine to coarse sub-angular to sub-rounded of sandstone (Weathered sandstone). 2 - End of Borehole at 2.00m										Borehole N	0.
Project Name: The Croft Project No. 12999 Co-ords: Sheet 1 of 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6	3r					Bo	reho	ole Log	WS103	3
Project Name The Critic 12699 Co-ords WS Scale 1.50								-T		Sheet 1 of	1
Depth Strikes Depth (m) Type Results Depth (m) Depth	Projec	t Name:	The Cro	ft				Co-ords:)
Date: 13/12/2018 Logged By E.Moss Sample and in Situ Testing Depth (m) Type Results D.40 D.	_ocati	on:	Brombo	rough		12000		Level:		Scale	
Water Sample and in Situ Testing Depth (m) Type Results O.10 O.40 O.40	Client:		Redsun	Develo	opments			Dates:	13/12/2018	Logged B	y
Strikes Depth (m) Type Results (n) (m) (m) High Results (n) (m) (m) High Results (n) (m) (m) (m) High Results (n) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m	\A/ II	Water	Sample	and I	n Situ Testing	Depth	Level		01.1 D ::		
1.00 SPT N=25 (5.5/5.6.6.8) 1.20 ES 1.50 SPT S0 (18,7/50 for 20mm) 2.00 Feature of the company	Well					(m)		Legend			
			1.20	ES		0.40 m)			frequent cobbles. Gravel is fine to coa to sub-rounded of sandstone and brick sub-angular to sub-rounded of sandstome MADE GROUND: Red sandy gravel w cobbles. Gravel is fine to coarse sub-rounded of sandstone, brick and concr are sub-angular to subrounded of sand and brick. Red sandy GRAVEL with frequent cobifine to coarse sub-angular to sub-rounsandstone. Cobbles are sub-rounded of (Weathered sandstone).	rse sub-angular . Cobbles are one and brick. ith frequent angular to sub- ete. Cobbles distone, concrete bles. Gravel is ded of of sandstone	6

Remarks

1.Terminated at 2.0m bgl due to refusal on weathered sandstone.

									Borehole No	0.
ϵ	3 k					Bo	reh	ole Log	WS104	
								_	Sheet 1 of	
rojec	t Name:	The Cro	ft		Project No. 12999		Co-ords:		Hole Type WS	•
ocati	nn.	Bromboi	rough		12999		Level:		Scale	
Oodii	JII.						LOVOI.		1:50	
lient:		Redsun	Develo	opments			Dates:	13/12/2018	Logged By E.Moss	/
Nell	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	Ottikes	Depth (m)	Туре	Results		(111)	X//XX//XX/	Brown slightly clayey fine to medium S	AND with	
		1.00	SPT	50 (6,6/50 for 210m	0.10 mm) 1.00			Brown slightly clayey fine to medium Sy frequent rootlets (topsoil). Red sandy GRAVEL with frequent cobb fine to coarse sub-angular to sub-round sandstone. Cobbles are sub-rounded o (Weathered sandstone). End of Borehole at 1.00m	oles. Gravel is ded of f sandstone	1 2 3 4 5 6 7 8 9
										10 —

Remarks

1.Terminated at 1.0m bgl due to refusal on weathered sandstone.

03	9			Rο	reho	ole Log	Borehole No	
63	P			DO		oic Log	Sheet 1 of	
Project Nam	ie: The Cro	oft	Project No. 12999		Co-ords:		Hole Type WS	
Location:	Brombo	prough			Level:		Scale 1:50	
Client:	Redsun	Developments			Dates:	13/12/2018	Logged By E.Moss	′
Well Wate		e and In Situ Testing	(m)	Level (m)	Legend	Stratum Description		
	Depth (m)	Type Results	0.30			Brown slightly clayey fine to medium S frequent rootlets (topsoil). Brown clayey fine to medium SAND.	AND with	-
	1.00	ES SPT 50 (25 for 80mr 25mm)	0.50			frequent rootlets (topsoil). Brown clayey fine to medium SAND. Red sandy GRAVEL with frequent cobifine to coarse sub-angular to sub-round sandstone. Cobbles are sub-rounded c (Weathered sandstone). End of Borehole at 1.00n	oles. Gravel is ded of of sandstone	1
								8 —
								9

e3i	e3p				Borehole Log					
								Sheet 1 of	1	
Project Name:	The Cro	ft		Project No. 12999		Co-ords:		Hole Type WS		
Location:	Brombo	rough				Level:		Scale 1:50		
Client:	Redsun	Develo	opments			Dates:	13/12/2018	Logged By	/	
	I				l			E.Moss		
Well Water Strikes	Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description			
	0.10 0.70 1.00	ES ES	50 (25 for 10mm/50 15mm)	0.20 0.60 0.90 1.00			MADE GROUND: Brown sandy gravel frequent cobbles. Gravel is fine to coat to sub-rounded of sandstone and brick sub-angular to sub-rounded of sandstone, brick and cc Cobbles. Gravel is fine to coarse sub-a subrounded of sandstone, brick and cc Cobbles are sub-angular to subrounde concrete and brick. MADE GROUND: Brown sandy gravel cobbles. Gravel is fine to coarse sub-rounded of sandstone and brick. Cobt angular to sub-rounded of sandstone are sub-angular to sub-rounded of sandstone. Cobbles are sub-rounded of coarse sub-angular to sub-rounded of sandstone. Cobbles are sub-rounded of the coarse sub-angular to sub-rounded of sandstone. Cobbles are sub-rounded of the coarse sub-angular to sub-rounded of the coarse sub-angular	rse sub-angular Cobbles are en and brick. ith frequent angular to concrete. Ith of sandstone, with frequent angular to sub- coles are sub- coles are sub- coles Gravel is ded of frequent is sandstone.	1 1	

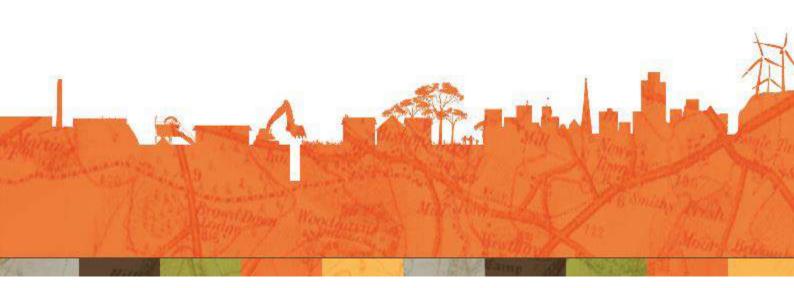
					_			Borehole N	0.
e3					Bo	reho	ole Log	WS107	7
						T		Sheet 1 of	
Project Name:	The Cro	ft		Project No. 12999		Co-ords:		Hole Type WS	:
Location:	Brombo	rough	,			Level:		Scale 1:50	
Client:	Redsun	Develo	opments			Dates:	13/12/2018	Logged By E.Moss	/
Well Water		and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
Strikes	Depth (m) 0.10	Type ES	Results	(m)	(m)	\//\\\\/	Brown slightly clayey fine to medium S		
	0.70	ES	50 (70 for 55mm/50	0.30			frequent rootlets (topsoil). Red weathered sandstone.		1
	0.70		50 (70 for 55mm/50 4mm)	for 1.00			End of Borehole at 1.00n	1	1
									9 —

Remarks

									Borehole N	0.
ϵ	31					Bo	reho	ole Log	WS108	3
									Sheet 1 of	
Projec	t Name:	The Cro	ıft		Project No. 12999		Co-ords:		Hole Type WS	•
Locati	on:	Brombo	rough		12000		Level:		Scale	
LUCALI	UII.	Бютьо	Tough				Level.		1:50	
Client:		Redsun	Develo	opments			Dates:	13/12/2018	Logged By E.Moss	y
Mall	Water	Sample	and I	n Situ Testing	Depth	Level	Lagand	Ctuatuma Dagavintian		
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
		0.10	ES		0.20			Brown slightly clayey fine to medium S frequent rootlets (topsoil).	,	_
		0.50	SPT	0 (75 for 80mm/0 f	or			Red sandy GRAVEL with frequent cob fine to coarse sub-angular to sub-roun sandstone. Cobbles are sub-rounded of	bles. Gravel is ded of	-
				0mm)	0.80			(Weathered sandstone).		
								End of Borehole at 0.80r	n	1 -
										=
										_
										2 —
										_
										3 —
										=
										=
										4 —
										-
										=
										5 —
										-
										=
										6 —
										=
										=
										7 -
										-
										=
										8 -
										9 —
										=
										10 =

									Borehole N	0.
e.	3r					Bo	reho	ole Log	WS109	•
	7								Sheet 1 of	
Project Na	ame:	The Cro	ft		Project No. 12999		Co-ords:		Hole Type WS	
Location:		Brombo	rough		1.2000		Level:		Scale 1:50	
Client:		Redsun	Develo	ppments			Dates:	13/12/2018	Logged By E.Moss	/
Wa	ater	Sample	and li	n Situ Testing	Depth	Level		2		
	ikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
		0.40 0.40	ES SPT	0 (75 for 90mm/0 f 0mm)	0.30			Brown slightly clayey fine to medium S frequent rootlets (topsoil). Red sandy GRAVEL with frequent cob fine to coarse sub-angular to sub-roun sandstone. Cobbles are sub-rounded of (Weathered sandstone). End of Borehole at 0.50n	bles. Gravel is ded of of sandstone	1 2 3 4 5 6 7 8 9
										10 —

								Borehole N	0.
e3i					Bo	reho	ole Log	WS110)
								Sheet 1 of	
Project Name:	The Cro	ft		Project No. 12999		Co-ords:		Hole Type WS	
Location:	Brombo	rough				Level:		Scale 1:50	
Client:	Redsun	Develo	opments			Dates:	13/12/2018	Logged By E.Moss	′
Well Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	ı	
Strikes	Depth (m) 0.10	Type ES	Results	(111)	(111)		Brown slightly clayey fine to medium S	AND with	
	0.40	SPT	50 (6,8/50 for 230mr	0.20 m)			frequent rootlets (topsoil). Red sandy GRAVEL with frequent cob fine to coarse sub-angular to sub-roun sandstone. Cobbles are sub-rounded of (Weathered sandstone). End of Borehole at 1.00r	bles. Gravel is ded of of sandstone	- - - - 1 —
									2 —
									3 —
									4 —
									5 —
									6 -
									7 — - - - - -
									8
									9
									10 —


23					Во	reho	ole Log	Borehole N WS111	
						. •	5.6 _ 5	Sheet 1 of	1
Project Name	The Cro	ft		Project No. 12999		Co-ords:		Hole Type WS	!
Location:	Brombo	rough				Level:		Scale 1:50	
Client:	Redsun	Devel	opments			Dates:	13/12/2018	Logged By E.Moss	′
Well Water Strikes			n Situ Testing	Depth (m)	Level	Legend	Stratum Description		
Strikes	Depth (m) 1.00	SPT	Results 50 (3,4/50 for 237mr	(m) 0.30 n) 0.90 1.00	(m)		MADE GROUND: Brown sandy gravel frequent cobbles. Gravel is fine to coa to sub-rounded of sandstone and brick sub-angular to sub-rounded of sandstone. Orange fine to medium SAND. Red sandy GRAVEL with frequent cobi fine to coarse sub-angular to sub-round sandstone. Cobbles are sub-rounded of (Weathered sandstone). End of Borehole at 1.00n	(Topsoil) with rse sub-angular . Cobbles are ne and brick.	1 2 3 4 5 6 7 8 9 10
	1								

1.Terminated at 1.0m bgl due to refusal on weathered sandstone.

	P							Borehole No	0.
e 3	p				Bo	reh	ole Log	WS112	
	<u> </u>							Sheet 1 of	
Project Nam	e: The Cro	oft		Project No. 12999		Co-ords:		Hole Type WS	•
Location:	Brombo	rough		12000		Level:		Scale 1:50	
Client:	Redsun	Develo	opments			Dates:	13/12/2018	Logged By E.Moss	/
Wate	er Sample	e and I	n Situ Testing	Depth	Level				
Well Strike		Туре		(m)	(m)	Legend	Stratum Description		
	0.10	ES					Brown slightly clayey fine to medium S frequent rootlets (topsoil).	AND with	-
	0.90	SPT	50 (25 for 5mm/50	0.30 for 1.00			Red sandy GRAVEL with frequent cob fine to coarse sub-angular to sub-roun sandstone. Cobbles are sub-rounded (Weathered sandstone).	ded of of sandstone	- - - - -
			20mm)	1.00			End of Borehole at 1.00r	n	1 —
									=
									2 -
									-
									-
									3 —
									_
									_
									4 -
									-
									-
									5 —
									-
									_
									-
									6 —
									-
									7 —
									=
									_
									_
									8 —
									-
									9 _
									10 —

APPENDIX V CHEMICAL TESTING RESULTS

Ella Moss

e3p Office 4 Heliport Business Park Eccles Liverpool Road Manchester M30 7RU

t: 0161 707 9612

e: EMoss@e3p.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 18-22972

Project / Site name: Croft Liverpool Samples received on: 19/12/2018

Your job number: 12999 Samples instructed on: 19/12/2018

Your order number: 31042 Analysis completed by: 02/01/2019

Report Issue Number: 1 Report issued on: 02/01/2019

Samples Analysed: 7 soil samples

Signed

Jordan Hill Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Lab Sample Number				1118914	1118915	1118916	1118917	1118918
Sample Reference				MG TP101	MGWS103	NAT TP108	NAT WS108	TS WS107
Sample Number				None Supplied				
Depth (m)				0.50	0.30	1.00	0.80	0.10
Date Sampled				13/12/2018	13/12/2018	13/12/2018	13/12/2018	13/12/2018
Time Taken				None Supplied				
			D					
	_	de∟	Accreditation Status					
Analytical Parameter	Units	te mi	creditat Status					
(Soil Analysis)	ß	Limit of detection	us					
		_	9					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	24	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	9.6	4.5	4.5	11	14
Total mass of sample received	kg	0.001	NONE	0.43	0.46	0.42	0.41	1.1
<u> </u>		•		-	•		•	
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	-	Not-detected
				-		-	-	
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	6.9	-	-	-	6.9
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	50	MCERTS	190	-	-	-	390
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1)	mg/kg	2.5	MCERTS	12	-	-	-	12
Water Soluble SO4 16hr extraction (2:1 Leachate		0.00405		0.0050				0.0050
Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.0062	-	-	-	0.0062
Equivalent)	mg/l	1.25	MCERTS	6.2	_	_	_	6.2
Sulphide	mg/kg	1	MCERTS	< 1.0	_	_	-	< 1.0
Total Sulphur	mg/kg	50	MCERTS	71	_	_	-	200
				. –				
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
				-		-	-	
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05	< 0.05	< 0.05
Total DALI								
Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	_	< 0.80	< 0.80	< 0.80	< 0.80
Specialed Total EPA-10 PARS	mg/kg	0.0	MCEKIS	_	< 0.00	< 0.00	< 0.00	< 0.00

Your Order No: 31042

Lab Sample Number				1118914	1118915	1118916	1118917	1118918
Sample Reference				MG TP101	MGWS103	NAT TP108	NAT WS108	TS WS107
Sample Number				None Supplied				
Depth (m)				0.50	0.30	1.00	0.80	0.10
Date Sampled				13/12/2018	13/12/2018	13/12/2018	13/12/2018	13/12/2018
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	=		Ξ-					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	2.7	6.9	3.6	7.0	4.5
Barium (aqua regia extractable)	mg/kg	1	MCERTS	-	27	270	34	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	-	0.19	0.99	0.32	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	9.2	-	-	-	17
Copper (aqua regia extractable)	mg/kg	1	MCERTS	4.4	6.7	13	2.4	10
Lead (aqua regia extractable)	mg/kg	1	MCERTS	6.9	11	38	6.2	41
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	5.7	6.9	6.2	6.0	12
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	1.0	1.2	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	-	12	7.6	12	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	15	12	32	13	36

Petroleum Hydrocarbons

TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	4.3	14	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	35	54	< 1.0	< 1.0
TPH (C21 - C35)	mg/kg	1	MCERTS	< 1.0	1000	280	< 1.0	< 1.0
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	850	180	< 10	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	< 10	1900	530	< 10	< 10

Lab Sample Number				1118914	1118915	1118916	1118917	1118918
Sample Reference				MG TP101	MGWS103	NAT TP108	NAT WS108	TS WS107
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	0.30	1.00	0.80	0.10
Date Sampled				13/12/2018	13/12/2018	13/12/2018	13/12/2018	13/12/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
	_	de:	Accreditation Status					
Analytical Parameter	Units	Limit of	creditat Status					
(Soil Analysis)	is.	Limit of detection	latio					
			on					
VOCs	-		-					
Chloromethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Chloroethane	μg/kg	1	NONE	< 1.0	-	-	-	-
Bromomethane Vinyl Chloride	μg/kg	1	ISO 17025	< 1.0 < 1.0	-	-	<u>-</u>	-
Trichlorofluoromethane	μg/kg μg/kg	1	NONE NONE	< 1.0	-	-	-	-
1,1-Dichloroethene	μg/kg μg/kg	1	NONE	< 1.0	-	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1-Dichloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
2,2-Dichloropropane	μg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	-	-	-	-
Trichloromethane 1,1,1-Trichloroethane	μg/kg μg/kg	1	MCERTS	< 1.0 < 1.0	-	-	-	-
1,2-Dichloroethane	μg/kg μg/kg	1	MCERTS	< 1.0		-		
1,1-Dichloropropene	μg/kg	1	MCERTS	< 1.0	_	-	_	_
Trans-1,2-dichloroethene	μg/kg	1	NONE	< 1.0	-	-	-	-
Benzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Tetrachloromethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Trichloroethene	μg/kg	1	MCERTS MCERTS	< 1.0	-	-	-	-
Dibromomethane Bromodichloromethane	μg/kg μg/kg	1	MCERTS	< 1.0 < 1.0	-	-	- -	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	_	_	_	_
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Toluene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
Tetrachloroethene 1,2-Dibromoethane	μg/kg μg/kg	1	NONE ISO 17025	< 1.0 < 1.0	-	-	-	-
Chlorobenzene	μg/kg μg/kg	1	MCERTS	< 1.0	-	-	-	
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	_	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
p & m-Xylene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Styrene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Tribromomethane	μg/kg 	1	NONE	< 1.0	-	-	-	-
o-Xylene 1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	-	-	-	-
Isopropylbenzene	μg/kg μg/kg	1	MCERTS	< 1.0	-	-	-	-
Bromobenzene	μg/kg μg/kg	1	MCERTS	< 1.0	_	-	-	_
n-Propylbenzene	μg/kg	1	ISO 17025	< 1.0	-	-	-	-
2-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
4-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,3,5-Trimethylbenzene	μg/kg "	1	ISO 17025	< 1.0	-	-	-	-
tert-Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	<u>-</u> -	-
1,2,4-Trimethylbenzene sec-Butylbenzene	μg/kg μg/kg	1	ISO 17025 MCERTS	< 1.0 < 1.0	-	-	-	-
1,3-Dichlorobenzene	μg/kg μg/kg	1	ISO 17025	< 1.0	-	-	-	-
p-Isopropyltoluene	μg/kg μg/kg	1	ISO 17025	< 1.0	-	-	-	-
1,2-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	-	-
1,2-Dibromo-3-chloropropane	μg/kg "	1	ISO 17025	< 1.0	-	-	-	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	- -	-
Hexachlorobutadiene 1,2,3-Trichlorobenzene	μg/kg μg/kg	1	MCERTS ISO 17025	< 1.0 < 1.0	-	-	-	-
2/2/3dilloroberizerie	₽9/ Ng		100 1/023	` 1.0				

Lab Sample Number				1118914	1118915	1118916	1118917	1118918
Sample Reference				MG TP101	MGWS103	NAT TP108	NAT WS108	TS WS107
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	0.30	1.00	0.80	0.10
Date Sampled				13/12/2018	13/12/2018	13/12/2018	13/12/2018	13/12/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs	<u> </u>		3					
Aniline		0.1	NONE	< 0.1	_	_	_	
Phenol	mg/kg mg/kg	0.1	ISO 17025	< 0.1				-
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	_	_	_	_
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3 < 0.2	-	-	-	-
4-Methylphenol Isophorone	mg/kg mg/kg	0.2	NONE MCERTS	< 0.2	-	-	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.2				
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	_	_	_	_
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	_	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	-	-	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	-	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
2,4,5-Trichlorophenol 2-Methylnaphthalene	mg/kg mg/kg	0.2	MCERTS NONE	< 0.2 < 0.1	-	-	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	_	_	-	_
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	-	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	< 0.3	-	-	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
4-Nitroaniline Fluorene	mg/kg mg/kg	0.2	MCERTS MCERTS	< 0.2 < 0.05	-	-	-	-
Azobenzene	mg/kg	0.03	MCERTS	< 0.3	-	-	-	
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	_	-	_	_
Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Carbazole	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	< 0.2	-	-	-	-
Anthraquinone	mg/kg	0.3	MCERTS	< 0.3	-	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Pyrene Rutyl honzyl phtholoto	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Butyl benzyl phthalate Benzo(a)anthracene	mg/kg mg/kg	0.3	ISO 17025 MCERTS	< 0.3 < 0.05	-	-	-	-
Chrysene	mg/kg mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	_
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	-

Lab Sample Number				1118919	1118920		
Sample Reference				TSTP111	TP112		
Sample Number				None Supplied	None Supplied		
Depth (m)				0.10	0.50		
Date Sampled				13/12/2018	13/12/2018		
Time Taken	1	1		None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	16	< 0.1		
Moisture Content	%	N/A	NONE	12	8.3		
Total mass of sample received	kg	0.001	NONE	1.1	0.42		
	9				****		
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	 <u> </u>	
	·		·			 	
General Inorganics							•
pH - Automated	pH Units	N/A	MCERTS	-	-		
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1		
Total Sulphate as SO ₄	mg/kg	50	MCERTS	-	-		
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1)	mg/kg	2.5	MCERTS	_	_		
Water Soluble SO4 16hr extraction (2:1 Leachate							
Equivalent)	g/l	0.00125	MCERTS	-	-		
Water Soluble SO4 16hr extraction (2:1 Leachate							
Equivalent)	mg/l	1.25	MCERTS	-	-		
Sulphide	mg/kg	1	MCERTS	-	-		
Total Sulphur	mg/kg	50	MCERTS	-	-		
Total Phenois							
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	-		
Speciated PAHs							•
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Total PAH						 	
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	1	
Speciated Total EFA-10 FAIIS	mg/kg	0.0	MCLKIS	< 0.00	\ 0.00	I	1

Your Order No: 31042

Late Carried a Name to an				1110010	1110020	ı	1
Lab Sample Number				1118919	1118920		
Sample Reference				TSTP111	TP112		
Sample Number		None Supplied	None Supplied				
Depth (m)		0.10	0.50				
Date Sampled		13/12/2018	13/12/2018				
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	8.1	4.2		
Barium (aqua regia extractable)	mg/kg	1	MCERTS	55	37		
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.43	0.33		
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2		
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	12	4.7		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	38	16		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	11	8.3		
Selenium (aqua regia extractable) mg/kg 1 MCERTS				< 1.0	1.7		
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	19	15		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	40	24		

Petroleum Hydrocarbons

TPH (C35 - C40) TPH Total C5 - C40	mg/kg ma/ka	10 10	MCERTS MCERTS	< 10 < 10	< 10 < 10		
TPH (C21 - C35)	mg/kg	1	MCERTS	< 1.0	< 1.0		
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	< 1.0		
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0		
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0		
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0		

Lab Sample Number				1118919	1118920		
Sample Reference				TSTP111	TP112		
Sample Number				None Supplied	None Supplied		
Depth (m)				0.10	0.50		
Date Sampled				13/12/2018	13/12/2018		
Time Taken			1	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
VOCs							
Chloromethane	μg/kg	1	ISO 17025	_	_	I	
Chloroethane	μg/kg	1	NONE	-	_		
Bromomethane	μg/kg	1	ISO 17025	-	-		
Vinyl Chloride	μg/kg	1	NONE	-	-		
Trichlorofluoromethane	μg/kg	1	NONE	-	-		
1,1-Dichloroethene	μg/kg	1	NONE	-	-		
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	11	ISO 17025	-	-		
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-		
1,1-Dichloroethane 2,2-Dichloropropane	μg/kg μg/kg	1	MCERTS MCERTS	-	-		
z,z-Dichloropropane Trichloromethane	μg/kg μg/kg	1	MCERTS	-	-		
1,1,1-Trichloroethane	μg/kg	1	MCERTS	_			
1,2-Dichloroethane	µg/kg	1	MCERTS	-	-		
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-		
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-		
Benzene	μg/kg	1	MCERTS	-	-		
Tetrachloromethane	μg/kg	1	MCERTS	-	-		
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-		
Trichloroethene	μg/kg	1	MCERTS	-	-		
Dibromomethane Bromodichloromethane	μg/kg	1	MCERTS MCERTS	-	-		
Cis-1,3-dichloropropene	μg/kg μg/kg	1	ISO 17025		-		
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	_	-		
Toluene	μg/kg	1	MCERTS	-	-		
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-		
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-		
Dibromochloromethane	μg/kg	1	ISO 17025	-	-		
Tetrachloroethene	μg/kg	1	NONE	-	-		
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-		
Chlorobenzene	μg/kg 	1	MCERTS	-	-		
1,1,1,2-Tetrachloroethane Ethylbenzene	μg/kg	1	MCERTS	-	-		
p & m-Xylene	μg/kg μg/kg	1	MCERTS MCERTS	-	-		
Styrene	µg/кд µg/kg	1	MCERTS	-	-		
Tribromomethane	μg/kg	1	NONE	-	-		
o-Xylene	μg/kg	1	MCERTS	-	-		
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-		
Isopropylbenzene	μg/kg	1	MCERTS	-	-		
Bromobenzene	μg/kg	1	MCERTS	-	-		
n-Propylbenzene	μg/kg "	1	ISO 17025	-	-		
2-Chlorotoluene	μg/kg	1	MCERTS	-	-		
4-Chlorotoluene 1,3,5-Trimethylbenzene	μg/kg μg/kg	1	MCERTS ISO 17025	-	-		
tert-Butylbenzene	μg/kg μg/kg	1	MCERTS	-	-		
1,2,4-Trimethylbenzene	μg/kg μg/kg	1	ISO 17025	-	-		
sec-Butylbenzene	μg/kg	1	MCERTS	-	-		
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-		
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	 	
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-		
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-		
Butylbenzene	μg/kg	1	MCERTS	-	-		
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-		
1,2,4-Trichlorobenzene Hexachlorobutadiene	μg/kg	1	MCERTS MCERTS	-	-		
1,2,3-Trichlorobenzene	μg/kg μg/kg	1	ISO 17025	-	-		
TICITO THE HIGH ODE IZETIE	μy/ky		130 1/025			I	

Lab Sample Number				1118919	1118920		
Sample Reference				TSTP111	TP112		
Sample Number				None Supplied	None Supplied		
Depth (m)				0.10	0.50		
Date Sampled				13/12/2018	13/12/2018		
Time Taken				None Supplied	None Supplied		
			A				
Analytical Parameter	_	Limit of detection	Accreditation Status				
(Soil Analysis)	Units	nit ecti	creditat Status				
(Son Amarysis)	VI	g of	atio				
			-				
SVOCs							
Aniline	mg/kg	0.1	NONE	-	-		
Phenol	mg/kg	0.2	ISO 17025	-	-		
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-		
Bis(2-chloroethyl)ether 1,3-Dichlorobenzene	mg/kg mg/kg	0.2	MCERTS MCERTS	-	-		
1,2-Dichlorobenzene	mg/kg	0.2	MCERTS		-		
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	_		
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-		
2-Methylphenol	mg/kg	0.3	MCERTS	-	-		
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	 	
Nitrobenzene	mg/kg	0.3	MCERTS	-	-		
4-Methylphenol	mg/kg	0.2	NONE	-	-		
Isophorone	mg/kg	0.2	MCERTS	-	-		
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-		
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-		
Bis(2-chloroethoxy)methane 1,2,4-Trichlorobenzene	mg/kg mg/kg	0.3	MCERTS MCERTS	-	-		
Naphthalene	mg/kg	0.05	MCERTS	-	-		
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	_	_		
4-Chloroaniline	mg/kg	0.1	NONE	_	_		
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-		
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-		
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-		
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-		
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-		
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-		
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-		
2,6-Dinitrotoluene Acenaphthylene	mg/kg mg/kg	0.1	MCERTS MCERTS	-	-		
Acenaphthene	mg/kg	0.05	MCERTS	-	-		
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	_	_		
Dibenzofuran	mg/kg	0.2	MCERTS	-	-		
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-		
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	 	
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-		
Fluorene	mg/kg	0.05	MCERTS	-	-		
Azobenzene Berenalde erad albertad athere	mg/kg	0.3	MCERTS	-	-		
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-		
Hexachlorobenzene Phenanthrene	mg/kg	0.3	MCERTS	-	-		
Phenanthrene Anthracene	mg/kg mg/kg	0.05	MCERTS MCERTS	-	-		
Carbazole	mg/kg mg/kg	0.05	MCERTS	-	-		
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-		
Anthraquinone	mg/kg	0.3	MCERTS	-	-		
Fluoranthene	mg/kg	0.05	MCERTS	-	-		
Pyrene	mg/kg	0.05	MCERTS	-	-		
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	 	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-		
Chrysene	mg/kg	0.05	MCERTS	-	-		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-		
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS MCERTS	-	-		
Benzo(ghi)perylene	mg/kg mg/kg	0.05	MCERTS	-	-		
penzo(gni)penyiene	mg/kg	0.05	LICEVIO				1

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1118914	MG TP101	None Supplied	0.50	Brown loam and sand with gravel.
1118915	MGWS103	None Supplied	0.30	Brown loam and sand with gravel and rubble.
1118916	NAT TP108	None Supplied	1.00	Brown loam and sand with gravel and stones.
1118917	NAT WS108	None Supplied	0.80	Brown loam and sand with vegetation and gravel.
1118918	TS WS107	None Supplied	0.10	Brown loam and sand with vegetation and gravel.
1118919	TSTP111	None Supplied	0.10	Brown loam and sand with vegetation and stones.
1118920	TP112	None Supplied	0.50	Brown loam and sand with vegetation and gravel.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP-OES.	L038-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038-PL	D	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Ella Moss

e3p Office 4 Heliport Business Park Eccles Liverpool Road Manchester M30 7RU

t: 0161 707 9612

e: EMoss@e3p.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 18-22830

Project / Site name: Croft Liverpool Samples received on: 14/12/2018

Your job number: 12999 Samples instructed on: 17/12/2018

Your order number: 31042 Analysis completed by: 28/12/2018

Report Issue Number: 1 Report issued on: 28/12/2018

Samples Analysed: 2 leachate samples - 6 soil samples

Signed

Jordan Hill Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Lab Sample Number				1117983	1117984	1117985	1117986	1117987
Sample Reference				TS/TP101	NAT/WS103	NAT/TP109	WS107	WS108
Sample Number				None Supplied				
Depth (m)				0.10	1.20	1.00	0.70	0.10
Date Sampled				13/12/2018	13/12/2018	13/12/2018	13/12/2018	13/12/2018
Time Taken				None Supplied				
Time Tuken	1			None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	28	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	31	10	7.5	8.1	13
Total mass of sample received	kg	0.001	NONE	0.46	0.43	0.41	1.6	0.42
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	-	-	-	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	-	7.9	-	8.0	7.0
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	50	MCERTS	-	120	-	99	350
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	-	0.0093	-	0.0046	0.0068
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	-	19	-	9.1	14
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	-	9.3	-	4.6	6.8
Sulphide	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Total Sulphur Total Phenois	mg/kg	50	MCERTS	-	< 50	-	< 50	160
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH	J. J							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	< 0.80	< 0.80

Your Order No: 31042

Lab Sample Number				1117983	1117984	1117985	1117986	1117987
Sample Reference				TS/TP101	NAT/WS103	NAT/TP109	WS107	WS108
Sample Number				None Supplied				
Depth (m)				0.10	1.20	1.00	0.70	0.10
Date Sampled				13/12/2018	13/12/2018	13/12/2018	13/12/2018	13/12/2018
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	sinU	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids			=					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	7.5	7.1	9.5	6.8	15
Barium (aqua regia extractable)	mg/kg	1	MCERTS	86	-	41	-	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.56	-	0.37	-	•
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	11	-	12	12
Copper (aqua regia extractable)	mg/kg	1	MCERTS	35	4.3	11	3.6	15
Lead (aqua regia extractable)	mg/kg	1	MCERTS	56	7.8	23	5.6	32
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	14	7.6	9.1	7.3	13
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	20	-	19	-	-
Zinc (agua regia extractable)	mg/kg	1	MCERTS	50	15	25	11	37

Petroleum Hydrocarbons

TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	46	< 1.0	< 1.0	< 1.0
TPH (C21 - C35)	mg/kg	1	MCERTS	< 1.0	65	< 1.0	< 1.0	< 1.0
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	< 10	110	< 10	< 10	< 10

Lab Sample Number				1117988		1		
Sample Reference				WS110				
Sample Number				None Supplied				
Depth (m)				0.10				
Date Sampled				13/12/2018				
Time Taken				None Supplied				
			b					
		de L	(0)					
Analytical Parameter	Units	Limit of detection	edi					
(Soil Analysis)	ţ	tio	tati					
		3	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1				
Moisture Content	%	N/A	NONE	14				
Total mass of sample received	kg	0.001	NONE	1.6				
					-	-	•	•
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile				
Asbestos in Soil	Туре	N/A	ISO 17025	Detected				
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	0.029				
Asbestos Quantification Total	%	0.001	ISO 17025	0.029				
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	-				
Total Cyanide	mg/kg	1	MCERTS	< 1				
Total Sulphate as SO ₄	mg/kg	50	MCERTS	-				
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	-				
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	-				
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	_				
Sulphide	mg/kg	1	MCERTS	_				
Total Sulphur	mg/kg	50	MCERTS	-				
	-		-			=	B	B
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	-				
Speciated PAHs				7	1			
Naphthalene	mg/kg	0.05	MCERTS	< 0.05				
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05		ļ		
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05				
Fluorene	mg/kg	0.05	MCERTS	< 0.05				
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05				
Anthracene	mg/kg	0.05	MCERTS	< 0.05				
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05				
Pyrene Renze (a) anthrocone	mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05		1		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05 < 0.05				
Chrysene Benzo(b)fluoranthene	mg/kg mg/kg	0.05	MCERTS	< 0.05 < 0.05		 		
Benzo(k)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg	0.05	MCERTS	< 0.05				
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05				
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05				
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05		1		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05		1		
(J.::/por/.one	9/1/9	. 0.00		. 5.05				
Total PAH		0.0	I I	0.00		1	I	ı
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80		Ī	l	l .

Your Order No: 31042

					1	ı	
Lab Sample Number				1117988	<u> </u>		
Sample Reference				WS110			
Sample Number				None Supplied			
Depth (m)				0.10			
Date Sampled				13/12/2018			
Time Taken				None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14			
Barium (aqua regia extractable)	mg/kg	1	MCERTS	88			
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.57			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2			
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0			
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-			
Copper (aqua regia extractable)	mg/kg	1	MCERTS	26			
Lead (aqua regia extractable)	mg/kg	1	MCERTS	68			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3			
lickel (aqua regia extractable) mg/kg 1 MCERTS				16			
Selenium (aqua regia extractable)	< 1.0						
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	21			
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	67			

Petroleum Hydrocarbons

TPH (C21 - C35) TPH (C35 - C40)	mg/kg mg/kg	1 10	MCERTS MCERTS	< 1.0 < 10		
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0		
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0		
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0		
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1		
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1		
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0		

Your Order No: 31042

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1117988	WS110	0.10	150	Rope	Chrysotile	0.029	0.029

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Your	Order	No:	31042
------	-------	-----	-------

Your Order No: 31042								
Lab Sample Number				1117989	1117990			
Sample Reference				MG/TP102	MG/WS106			
Sample Number				None Supplied	None Supplied			
Depth (m)				0.50	0.70			
Date Sampled				13/12/2018	13/12/2018			
Time Taken				None Supplied	None Supplied			
			A					
Analytical Parameter	_	Lii	S					
(Leachate Analysis)	Units	ect	ati					
(Leachate Analysis)	v	Limit of detection	Accreditation Status					
			ă					
General Inorganics								
pH	pH Units	N/A	ISO 17025	6.9	8.2			
Total Cyanide (Low Level 1 μg/l)	μg/l	1	ISO 17025	< 1.0	< 1.0			
Total Phenols								
Total Phenols (monohydric)	μg/l	1	ISO 17025	3.0	2.0			
Speciated PAHs							_	_
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		ļ	
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		+	
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01		+	
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01	< 0.01			
Dibenz(a,h)anthracene	μg/l	0.01	NONE NONE	< 0.01 < 0.01	< 0.01 < 0.01		+	1
Benzo(ghi)perylene	μg/l	0.01	NONE	< 0.01	< 0.01	1	1	
Total PAH								
Total EPA-16 PAHs	μg/l	0.2	NONE	< 0.2	< 0.2		1	1
TOWN ELV TO LVID	μ9/1	0.2	NONE	< ∪.∠	< ∪.∠			
Heavy Metals / Metalloids								
Arsenic (dissolved)	μg/l	1.1	ISO 17025	< 1.1	< 1.1		1	
Cadmium (dissolved)	μg/l	0.08	ISO 17025	< 0.08	< 0.08		1	
Chromium (hexavalent)	μg/l	5	NONE	< 5.0	< 5.0		1	
Chromium (dissolved)	μg/l	0.4	ISO 17025	1.1	1.7			
Copper (dissolved)	μg/l	0.7	ISO 17025	12	17			
Lead (dissolved)	μg/l	1	ISO 17025	1.7	< 1.0		1	
Mercury (dissolved)	μg/l	0.5	ISO 17025	< 0.5	< 0.5			
Nickel (dissolved)	μg/l	0.3	ISO 17025	0.4	0.3			
Selenium (dissolved)	μg/l	4	ISO 17025	< 4.0	< 4.0		1	1
Zinc (dissolved)	μg/l	0.4	ISO 17025	8.7	1.9		1	
ZITIC (UISSOIVEU)	μg/I	0.4	150 1/025	ŏ./	1.9		1	<u> </u>

Your Order No: 31042							
Lab Sample Number				1117989	1117990		
Sample Reference				MG/TP102	MG/WS106		
Sample Number				None Supplied	None Supplied		
Depth (m)				0.50	0.70		
Date Sampled				13/12/2018	13/12/2018		
Time Taken			None Supplied	None Supplied			
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics		_				<u> </u>	
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0		
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0		
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0		
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0		
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/l	10	NONE	< 10	< 10		
Petroleum Hydrocarbons TPH1 (C10 - C40)	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10		
	1						
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10		

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1117983	TS/TP101	None Supplied	0.10	Brown loam and sand with vegetation and gravel.
1117984	NAT/WS103	None Supplied	1.20	Brown clay and sand with vegetation and gravel
1117985	NAT/TP109	None Supplied	1.00	Brown loam and sand with vegetation and stones.
1117986	WS107	None Supplied	0.70	Brown clay and sand with gravel.
1117987	WS108	None Supplied	0.10	Brown loam and clay with vegetation and gravel
1117988	WS110	None Supplied	0.10	Brown loam and sand with vegetation and gravel.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
BS EN 12457-1 (2:1) Leachate Prep	2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-1.	L043-PL	W	NONE
BTEX and MTBE in leachates (Monoaromatics)	Determination of BTEX and MTBE in leachates by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Hexavalent chromium in leachate	Determination of hexavalent chromium in leachate by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in leachate - LOW LEVEL 1 ug/l	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH at 20oC in leachate	Determination of pH in leachate by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L102B-PL	W	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (1hr extraction)	Sulphate, water soluble, in soil (1hr extraction)	In-house method	L038-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total cyanide in leachate - 1µg/l	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038-PL	D	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
TPH1 (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX VI ORIGIN OF TIER I GENERIC ASSESSMENT CRITERIA

Constituent	Origin of Risk Assessment Value
Arsenic	2014 LQM/CIEH S4ULs
Cadmium	2014 LQM/CIEH S4ULs
Chromium	2014 LQM/CIEH S4ULs
Lead	2014 LQM/CIEH S4ULs
Mercury	2014 LQM/CIEH S4ULs - methylmercury
Nickel	2014 LQM/CIEH S4ULs
Selenium	2014 LQM/CIEH S4ULs
Copper	2014 LQM/CIEH S4ULs
Zinc	2014 LQM/CIEH S4ULs
Cyanide - Total	2014 LQM/CIEH S4ULs
Phenols - Total.	2014 LQM/CIEH S4ULs
Naphthalene	General Assessment Criteria (GAC) developed by CIEH / LQM Suitable 4 Use Levels with supporting data from SR3, SR7 and existing Tox report where applicable. 1% SOM
Acenaphthylene	
Acenaphthene	
Fluorene	
Phenanthrene	
Anthracene	
Fluoranthene	
Pyrene	
Benzo(a)Anthracene ⁽	
Chrysene	
Benzo(b/k)Fluoranthene (iii)	
Benzo(a)Pyrene	
Indeno(123-cd)Pyrene	
Dibenzo(a,h)Anthracene	
Benzo(ghi)Perylene	
TPH C₅-C ₆ (aliphatic)	
TPH C ₆ -C ₈ (aliphatic)	
TPH C ₈ -C ₁₀ (aliphatic)	
TPH C ₁₀ -C ₁₂ (aliphatic)	
TPH C ₁₂ -C ₁₆ (aromatic)	
TPH C ₁₆ -C ₂₁ (aromatic)	
TPH C ₂₁ -C ₃₅ (aromatic)	

APPENDIX VII GEOTECHNICAL TESTING RESULTS

LABORATORY REPORT

4043

Contract Number: PSL19/0203

Report Date: 17 January 2019

Client's Reference: 12999

Client Name: E3P

Heliport Business Park

Liverpool Road

Eccles Manchester M30 7RU

For the attention of: Ella Moss

Contract Title: The Croft

Date Received: 3/1/2019
Date Commenced: 3/1/2019
Date Completed: 17/1/2019

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson A Watkins R Berriman (Director) (Director) (Quality Manager)

S Royle S Eyre L Knight
(Laboratory Manager) (Senior Technician) (Senior Technician)

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

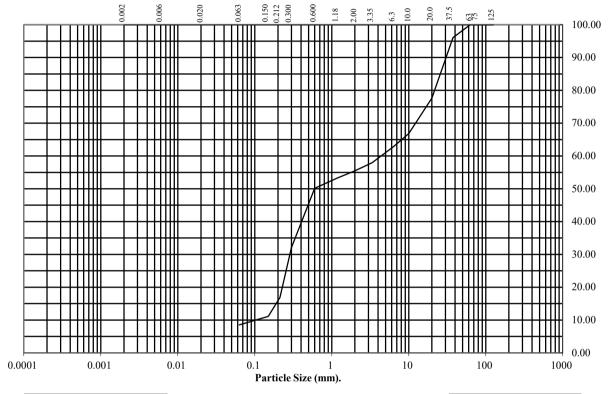
e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
TP104		BB	1.00		Reddish brown silty SAND & GRAVEL.
TP109		BB	1.30		Reddish brown very sandy very silty GRAVEL.
	_				

The Croft

Contract No:
PSL19/0203
Client Ref:
12999


PARTICLE SIZE DISTRIBUTION TEST

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: TP104 Top Depth (m): 1.00

Sample Number: Base Depth(m):

Sample Type: BB

BS Test	Percentage		
Sieve (mm)	Passing		
125	100		
75	100		
63	100		
37.5	96		
20	78		
10	67		
6.3	63		
3.35	58		
2	55		
1.18	53		
0.6	50		
0.3	32		
0.212	17		
0.15	11		
0.063	9		

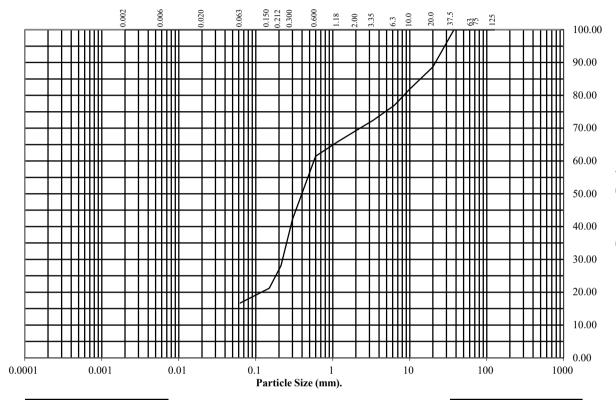
Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 45 46 9

Remarks:

See Summary of Soil Descriptions

The Croft

Contract No:
PSL19/0203
Client Ref:
12999


PARTICLE SIZE DISTRIBUTION TEST

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: TP109 Top Depth (m): 1.30

Sample Number: Base Depth(m):

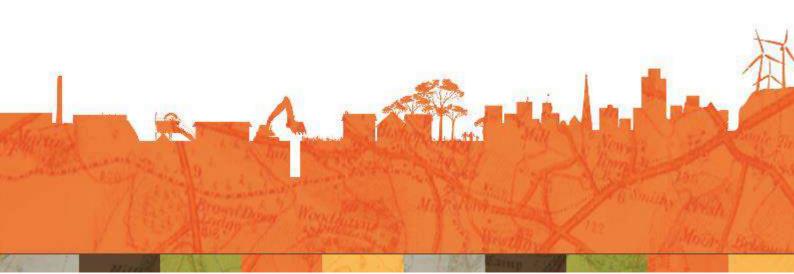
Sample Type: BB

BS Test	Percentage		
Sieve (mm)	Passing		
125	100		
75	100		
63	100		
37.5	100		
20	89		
10	82		
6.3	77		
3.35	72		
2	69		
1.18	66		
0.6	61		
0.3	42		
0.212	28		
0.15	21		
0.063	17		

Soil	Total		
Fraction	Percentage		
Cobbles Gravel Sand Silt/Clay	0 31 52 17		

Remarks:

See Summary of Soil Descriptions



The Croft

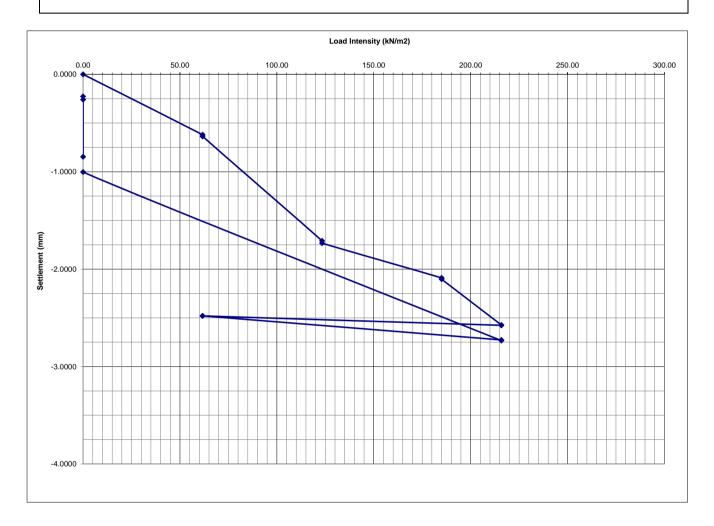
Contract No:
PSL19/0203
Client Ref:
12999

APPENDIX VIII CBR TEST CERTIFICATES

In Accordance with BS1377: Part 9:1990

Site Name: The Croft Business Park Test Date: 13/12/2019 Site Ref: 12-999 6 Tonne Excavator Type of Kentledge: Test No.: CBR101 Test Depth (m bgl): GL Plate Diameter (mm) N/A 450 Easting: 215.88 Northing: Maximum Applied Pressure (kN/m2): N/A Maximum Deformation (mm): -1.84 Weather: Dry Strata Description: Red Sand/Bedrock

Equivalent CBR Value of 25%


Comments			

Site Engineer:	Checked By:	Date:	Approved By:	Date:
J. James	R. Horseman	13/12/2018	M. Dyer	13/12/2018

In Accordance with BS1377: Part 9:1990

Site Name: The Croft Business Park Test Date: 13/12/2019 Site Ref: 12-999 Type of Kentledge: 6 Tonne Excavator Test No.: CBR102 Test Depth (m bgl): GL Plate Diameter (mm) N/A 450 Easting: 215.88 Northing: Maximum Applied Pressure (kN/m2): N/A Maximum Deformation (mm): -2.73 Weather: Dry Strata Description: Red Sand/Bedrock

Equivalent CBR Value of 8%

Comments			

Site Engineer:	Checked By:	Date:	Approved By:	Date:
J. James	R. Horseman	13/12/2018	M. Dyer	13/12/2018

In Accordance with BS1377: Part 9:1990

Site Name: The Croft Business Park Test Date: 13/12/2019 Site Ref: 12-999 6 Tonne Excavator Type of Kentledge: Test No.: CBR103 Test Depth (m bgl): GL Plate Diameter (mm) N/A 450 Easting: 215.88 Northing: Maximum Applied Pressure (kN/m2): N/A Maximum Deformation (mm): -4.50 Weather: Dry Strata Description: Red Sand/Bedrock

Equivalent CBR Value of 7%

Comments				

Site Engineer:	Checked By:	Date:	Approved By:	Date:
J. James	R. Horseman	13/12/2018	M. Dyer	13/12/2018

In Accordance with BS1377: Part 9:1990

Site Name: The Croft Business Park Test Date: 13/12/2019 Site Ref: 12-999 6 Tonne Excavator Type of Kentledge: Test No.: CBR104 Test Depth (m bgl): GL Plate Diameter (mm) N/A 450 Easting: 215.88 Northing: Maximum Applied Pressure (kN/m2): N/A Maximum Deformation (mm): -3.77 Weather: Dry Strata Description: Red Sand/Bedrock

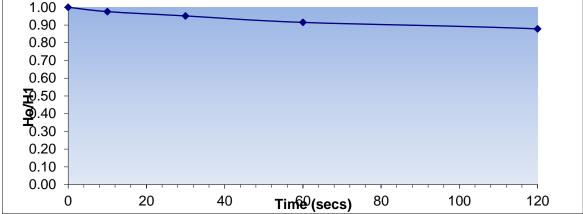
Equivalent CBR Value of 6%

Comments				

Site Engineer:	Checked By:	Date:	Approved By:	Date:
J. James	R. Horseman	13/12/2018	M. Dyer	13/12/2018

APPENDIX IX FALLING HEAD PERMEABILITY TEST CERTIFICATES

Ref-QT29-1 Authorised - A Edgar


Falling Head Test Borehole: WS105 Test No: 3

 Contract No:
 12999
 Casing Diameter: (m)
 0.05

 Contract Title:
 The Croft
 Height of Casing:
 0

 Date of Test:
 31.12.18
 Depth of Borehole: (m)
 0.82

Hours Minutes Seconds (secs) Depth (m) 0 0 0 0 0 1.000 10 10 0.02 10 0.975 30 30 0.04 30 0.955 50 60 0.07 60 0.914 120 120 0.1 120 0.878 180 180 0.16 180 0.804 300 300 0.24 300 0.707 10 600 600 0.44 600 0.463 13 780 780 0.52 780 0.365 20 1200 1200 0.74 1200 0.097		Recorded Time	2	Total Time			H/Ho
0 0 0 0 1.000 10 10 0.02 10 0.975 30 30 0.04 30 0.957 50 60 0.07 60 0.914 120 120 0.1 120 0.878 180 180 0.16 180 0.804 300 300 0.24 300 0.707 10 600 600 0.44 600 0.463 13 780 780 0.52 780 0.365 20 1200 1200 0.74 1200 0.097	Hours				Depth (m)		1 1/1 10
		13 20	10 30 50 120 180 300 600 780 1200	0 10 30 60 120 180 300 600 780 1200	0 0.02 0.04 0.07 0.1 0.16 0.24 0.44 0.52 0.74	10 30 60 120 180 300 600 780 1200	1.000 0.975 0.951 0.914 0.878 0.804 0.707 0.463 0.365 0.097 0.000

General Approach

k = permeability of soil

 $k = A \frac{\log_e H_1}{F(t_2 - t_1)}$

0.00196349 m²

 $F = Intake\ Factor\ (figures\ 6\ \&7,\ BS5930:1999)$ $H_1 = variable\ head\ measured\ at\ time\ t_1\ after\ commencement\ of\ test$

 H_2 = variable head measured at time t_2 after commencement of test

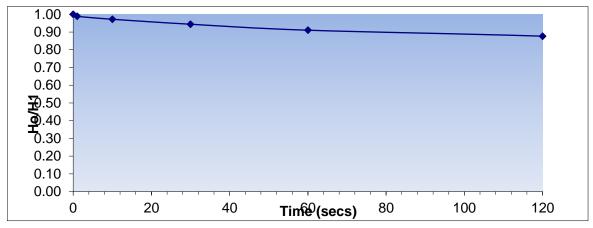
A = Cross sectional area of borehole casing or standpipe as appropiate.

 $H_1 = 0.9756$ $H_2 = 0.976$

 $t_1 = 10$ $t_2 = 1200$ $t_3 = 1.4757$

Coefficient of Permeability, k = 3.04E-06 m/s

Ref-QT29-1 Authorised - A Edgar


Falling Head Test Borehole: WS101 Test No: 3

 Contract No:
 12999
 Casing Diameter: (m)
 0.05

 Contract Title:
 The Croft
 Height of Casing:
 0

 Date of Test:
 31.12.18
 Depth of Borehole: (m)
 1.78

1 1 0.02 1 10 10 0.05 10 30 30 0.1 30 60 60 0.16 60 120 120 0.22 120 180 180 0.31 180 5 300 300 0.34 300 8 480 480 0.43 480 12 720 720 0.5 720	
1 1 0.02 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0	
10 10 0.05 10 30 30 0.1 30 60 60 0.16 60 120 120 0.22 120 180 180 0.31 180 5 300 300 0.34 300 8 480 480 0.43 480 12 720 720 0.5 720	.0000
30 30 0.1 30 0.0 60 60 0.16 60 0.0 120 120 0.22 120 0.0 180 180 0.31 180 0.0 5 300 300 0.34 300 0.0 8 480 480 0.43 480 0.0 12 720 720 0.5 720 0.0	.9888
60 60 0.16 60 120 120 0.22 120 180 180 0.31 180 5 300 300 0.34 300 8 480 480 0.43 480 12 720 720 0.5 720	.9719
120 120 0.22 120 0.00 180 180 0.31 180 0.00 5 300 300 0.34 300 0.00 8 480 480 0.43 480 0.00 12 720 720 0.5 720 0.00	.9438
180 180 0.31 180 0.31 5 300 300 0.34 300 0.34 8 480 480 0.43 480 0.00 12 720 720 0.5 720 0.5	.9101
5 300 300 0.34 300 0.8 8 480 480 0.43 480 0.0 12 720 720 0.5 720 0.0	.8764
8 480 480 0.43 480 0.43 12 720 720 0.5 720 0.5	.8258
12 720 720 0.5 720 0	.8090
	.7584
	.7191
25 1500 1500 0.69 1500 0	.6124
44 2640 2640 0.91 2640 0	.4888
65 3900 3900 0.94 3900 0	.4719
92 5520 5520 1.01 5520 0	.4326
121 7260 7260 1.12 7260 0	.3708
157 9420 9420 1.24 9420 0	.3034
185 11100 11100 1.38 11100 0	.2247
217 13020 13020 1.44 13020 0	.1910
1 1 1 1	

General Approach

k = permeability of soil

 $k = A \qquad log_e H_1$ $F(t_2 - t_1) \qquad H_2$

 $F = Intake\ Factor\ (figures\ 6\ \&7,\ BS5930:1999)$ $H_1 = variable\ head\ measured\ at\ time\ t_1\ after\ commencement\ of\ test$

 H_2 = variable head measured at time t_2 after commencement of test

A = Cross sectional area of borehole casing or standpipe as appropriate.

 $H_2 = 0.2247$ 0.00196349 m^2

0.9888

 $t_1 = 1$ $t_2 = 11100$ $t_3 = 2.621866594$

Coefficient of Permeability, k = 8.07E-07 m/s