Our Ref: J-2060-01 23 July 2021

Mr. R. Parker 17 Kennel Hill Close Plympton Plymouth PL17 1QE By Email

RE: Proposed Demolition and Replacement of Existing Garages at Kennel Close, Plympton, Plymouth.

Surface Water Drainage Statement

Mr. R. Parker is proposing the demolition and replacement of existing garages at Kennel Close Plympton, Plymouth, PL17 1QE. The approximate Ordnance Survey NGR for the site is SX 53433 55926.

The site currently consists of 2 garages located within a hard standing turning area.

The proposal is to demolish the existing 2 garages and to replace them with 2 new garages which include a mezzanine floor. The proposed layout is shown in Annex A.

The Plymouth area critical drainage guidance states that the preferred way to dispose of surface water is to discharge to a water body, however, the nearest water body is located 250m to the north of the site and provision of an outfall to this receptor would require crossing third party land, as such this is not achievable.

Second in the surface water disposal hierarchy is infiltration, however the minimum 5m clearance from the surrounding buildings required to comply with Building Regulations cannot be achieved. As such infiltration is ruled out as a means of surface water disposal.

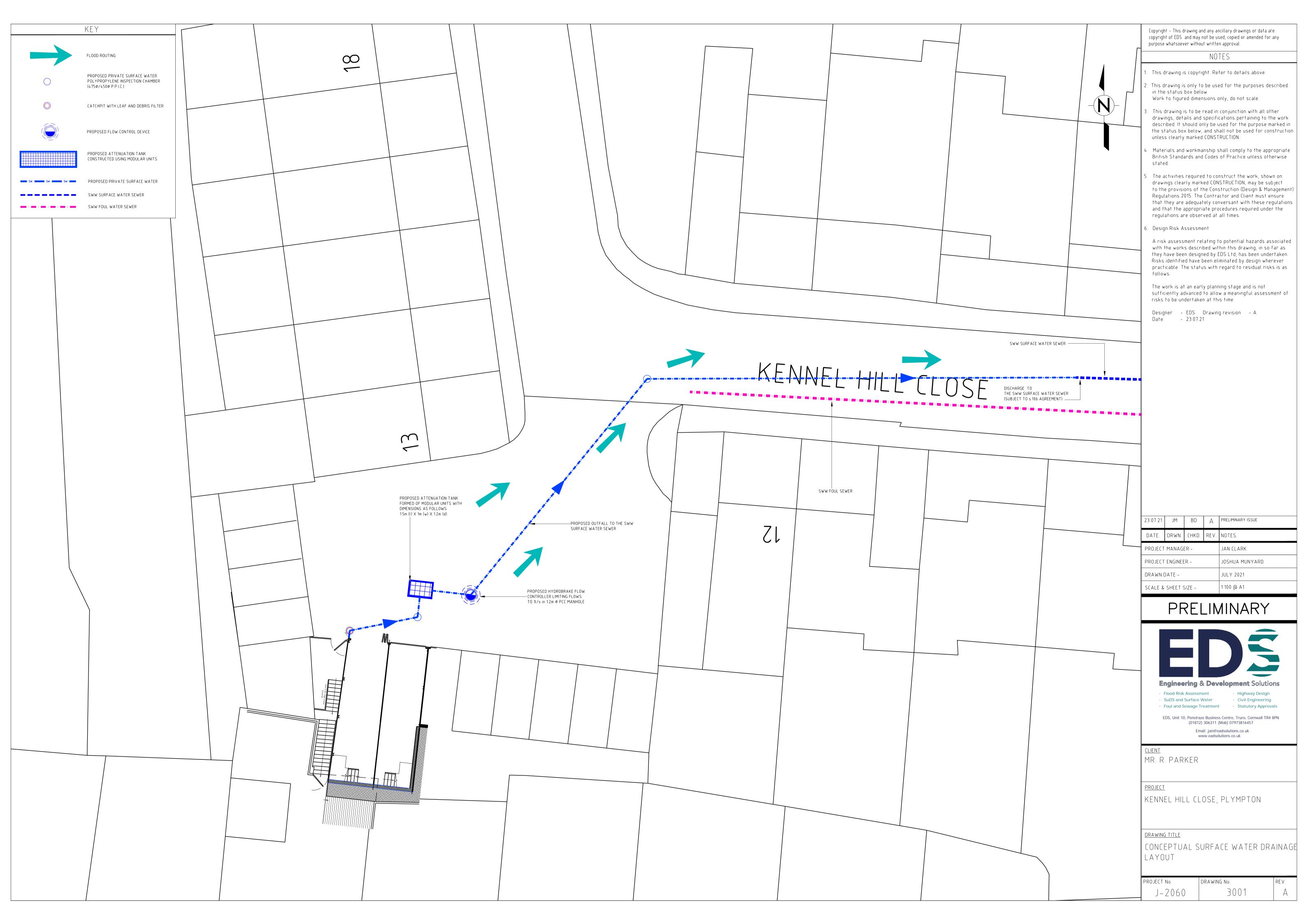
The most practical discharge point for surface water from the site is the South West Water (SWW) surface water sewer which passes through Kennel Hill Close which forms the northern part of the site. The sewer travels in an easterly direction downhill and away from the site.

As such it is proposed, to attenuate surface water on site using an underground attenuation tank and flow control device to manage surface water from storm events up to and including the 1 in 100 year plus 40% allowance for climate change with discharge to the SWW surface water sewer.

The greenfield runoff rate has been calculated for the site as less than 0.1 litres per second using the ICP SuDS method in Microdrainage software. Due to this low flow rate, a discharge rate of 1 litre per second is proposed for the discharge off site to reduce the risk of blockage within the system.

An attenuation tank with dimensions 1.5m x 1m x 0.8m (LxWxD) would provide the required storage for the system. All calculations are included in Annex B.

The proposed surface water drainage layout is provided as Drawing J-2060 3001A and included in Annex A.



Yours Sincerely, Joshua Munyard

For and on behalf of EDS Ltd. Joshua Munyard Graduate Engineer Enc. Annex A – Proposed Development Layout Annex B – Calculations and SWW Correspondence

ANNEX A - PROPOSED DEVELOPMENT LAYOUT

ANNEX B – Calculations

EDS Ltd		Page 1
Unit 10, Penstraze Business	J-2060	
Truro	Kennal Hill	
Cornwall	Plympton	Mirro
Date 23/07/2021	Designed by Joshua Munyard	Drainage
File J-2060 Attenuation Calc	Checked by	Diamaye
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 9 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (l/s)	Max Overflow (l/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min S	Summer	98.974	0.474	0.0	0.9	0.0	0.9	0.7	ОК
30	min S	Summer	99.029	0.529	0.0	0.9	0.0	0.9	0.8	ОК
60	min S	Summer	98.996	0.496	0.0	0.9	0.0	0.9	0.7	ОК
120	min S	Summer	98.813	0.313	0.0	0.9	0.0	0.9	0.4	ОК
180	min S	Summer	98.682	0.182	0.0	0.9	0.0	0.9	0.3	ОК
240	min S	Summer	98.614	0.114	0.0	0.9	0.0	0.9	0.2	ОК
360	min S	Summer	98.567	0.067	0.0	0.7	0.0	0.7	0.1	ОК
480	min S	Summer	98.553	0.053	0.0	0.6	0.0	0.6	0.1	ОК
600	min S	Summer	98.546	0.046	0.0	0.5	0.0	0.5	0.1	ОК
720	min S	Summer	98.541	0.041	0.0	0.4	0.0	0.4	0.1	ОК
960	min S	Summer	98.535	0.035	0.0	0.4	0.0	0.4	0.1	ОК
1440	min S	Summer	98.529	0.029	0.0	0.3	0.0	0.3	0.0	ΟK
2160	min S	Summer	98.525	0.025	0.0	0.2	0.0	0.2	0.0	ОК
2880	min S	Summer	98.522	0.022	0.0	0.2	0.0	0.2	0.0	ОК
4320	min S	Summer	98.518	0.018	0.0	0.1	0.0	0.1	0.0	ОК
5760	min S	Summer	98.516	0.016	0.0	0.1	0.0	0.1	0.0	ОК
7200	min S	Summer	98.515	0.015	0.0	0.1	0.0	0.1	0.0	ОК
8640	min S	Summer	98.514	0.014	0.0	0.1	0.0	0.1	0.0	ΟK
10080	min S	Summer	98.513	0.013	0.0	0.1	0.0	0.1	0.0	ΟK
15	min V	Winter	99.052	0.552	0.0	0.9	0.0	0.9	0.8	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m ³)	Time-Peak (mins)
15	min	Summer	110.491	0.0	1.2	0.0	14
30	min	Summer	76.555	0.0	1.7	0.0	22
60	min	Summer	50.812	0.0	2.3	0.0	40
120	min	Summer	32.576	0.0	2.9	0.0	70
180	min	Summer	24.705	0.0	3.3	0.0	98
240	min	Summer	20.126	0.0	3.6	0.0	126
360	min	Summer	15.031	0.0	4.1	0.0	184
480	min	Summer	12.210	0.0	4.4	0.0	244
600	min	Summer	10.380	0.0	4.7	0.0	302
720	min	Summer	9.085	0.0	4.9	0.0	366
960	min	Summer	7.352	0.0	5.3	0.0	478
1440	min	Summer	5.443	0.0	5.9	0.0	732
2160	min	Summer	4.018	0.0	6.5	0.0	1076
2880	min	Summer	3.234	0.0	7.0	0.0	1468
4320	min	Summer	2.375	0.0	7.7	0.0	2184
5760	min	Summer	1.911	0.0	8.3	0.0	2840
7200	min	Summer	1.614	0.0	8.7	0.0	3608
8640	min	Summer	1.407	0.0	9.1	0.0	4256
10080	min	Summer	1.253	0.0	9.5	0.0	5144
15	min	Winter	110.491	0.0	1.4	0.0	14
			©1982	2-2020	Innovyze		

EDS Ltd		Page 2
Unit 10, Penstraze Business	J-2060	
Truro	Kennal Hill	
Cornwall	Plympton	Mirro
Date 23/07/2021	Designed by Joshua Munyard	Desinado
File J-2060 Attenuation Calc	Checked by	Diamage
Innovyze	Source Control 2020.1	·

Summary of Results for 100 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (l/s)	Max Volume (m³)	Status
30	min V	Winter	99.093	0.593	0.0	0.9	0.0	0.9	0.8	ОК
60	min V	Winter	99.009	0.509	0.0	0.9	0.0	0.9	0.7	ОК
120	min V	Winter	98.713	0.213	0.0	0.9	0.0	0.9	0.3	ОК
180	min V	Winter	98.595	0.095	0.0	0.8	0.0	0.8	0.1	ОК
240	min V	Winter	98.565	0.065	0.0	0.7	0.0	0.7	0.1	ОК
360	min V	Winter	98.548	0.048	0.0	0.5	0.0	0.5	0.1	ОК
480	min V	Winter	98.540	0.040	0.0	0.4	0.0	0.4	0.1	ОК
600	min V	Winter	98.536	0.036	0.0	0.4	0.0	0.4	0.1	ОК
720	min V	Winter	98.533	0.033	0.0	0.3	0.0	0.3	0.0	ОК
960	min V	Winter	98.529	0.029	0.0	0.3	0.0	0.3	0.0	ОК
1440	min V	Winter	98.524	0.024	0.0	0.2	0.0	0.2	0.0	ОК
2160	min V	Winter	98.520	0.020	0.0	0.1	0.0	0.1	0.0	ОК
2880	min V	Winter	98.518	0.018	0.0	0.1	0.0	0.1	0.0	ОК
4320	min V	Winter	98.515	0.015	0.0	0.1	0.0	0.1	0.0	ОК
5760	min V	Winter	98.514	0.014	0.0	0.1	0.0	0.1	0.0	ОК
7200	min V	Winter	98.513	0.013	0.0	0.1	0.0	0.1	0.0	ОК
8640	min V	Winter	98.512	0.012	0.0	0.1	0.0	0.1	0.0	ОК
10080	min V	Winter	98.511	0.011	0.0	0.0	0.0	0.0	0.0	O K

	Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m ³)	Time-Peak (mins)
30	min Winter	76.555	0.0	1.9	0.0	24
60	min Winter	50.812	0.0	2.6	0.0	42
120	min Winter	32.576	0.0	3.3	0.0	72
180	min Winter	24.705	0.0	3.7	0.0	98
240	min Winter	20.126	0.0	4.1	0.0	124
360	min Winter	15.031	0.0	4.5	0.0	184
480	min Winter	12.210	0.0	4.9	0.0	246
600	min Winter	10.380	0.0	5.2	0.0	306
720	min Winter	9.085	0.0	5.5	0.0	364
960	min Winter	7.352	0.0	5.9	0.0	480
1440	min Winter	5.443	0.0	6.6	0.0	750
2160	min Winter	4.018	0.0	7.3	0.0	1116
2880	min Winter	3.234	0.0	7.8	0.0	1448
4320	min Winter	2.375	0.0	8.6	0.0	2120
5760	min Winter	1.911	0.0	9.2	0.0	2912
7200	min Winter	1.614	0.0	9.8	0.0	3784
8640	min Winter	1.407	0.0	10.2	0.0	4320
10080	min Winter	1.253	0.0	10.6	0.0	4768

©1982-2020 Innovyze

EDS Ltd		Page 3
Unit 10, Penstraze Business	J-2060	
Truro	Kennal Hill	
Cornwall	Plympton	Micro
Date 23/07/2021	Designed by Joshua Munyard	Desinado
File J-2060 Attenuation Calc	Checked by	Diamaye
Innovyze	Source Control 2020.1	•

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	18.000	Shortest Storm (mins) 15
Ratio R	0.294	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 0.006

Time (mins) Area From: To: (ha)

0 4 0.006

©1982-2020 Innovyze

EDS Ltd				P	age 4
Jnit 10, Penstraze Business	. J-2060				
Iruro	Kennal	Hill			
Cornwall	Plympto	n		N	licco
Date 23/07/2021	Designe	d by Joshi	ıa Munyar	d l	
File J-2060 Attenuation Calc			_		Irainag
Innovyze	Source	Control 20	020.1		
	Model De	tails			
Storage is (Online Cover	Level (m)	100.000		
Cellu	lar Storag	<u>e Structu</u>	re		
Infiltration Coefficien Infiltration Coefficien	· · ·	r) 0.00000	-	tor 2.0	
Depth (m) Area (m ²) Inf. 2	Area (m²) De	epth (m) Are	a (m²) In:	E. Area (m²)
0.000 1.5 0.800 1.5	1.5 5.5	0.801	0.0	5.	5
<u>Hydro-Brak</u>	e® Optimum	Outflow	<u>Control</u>		
Ur:	nit Referenc	e MD-SHE-004	49-1000-08	00-1000	
	ign Head (m			0.800	
Desig	n Flow (l/s) Flush-Flo		0-1	1.0	
		e Minimise		culated storage	
	Applicatio			Surface	
	mp Availabl			Yes	
	Diameter (mm			49	
Inve Minimum Outlet Pipe D	ert Level (m Diameter (mm			98.500 75	
Suggested Manhole D				1200	
Control	Points	Head (m) F	'low (l/s)		
Design Point	(Calculated)	0.800	1.0		
	Flush-Flo™		0.9		
	Kick-Flo®	0.437	0.8		
Mean Flow over	r Head Range		0.8		
The hydrological calculations have Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised t invalidated	Should an	other type o	of control	device oth	er than a
Depth (m) Flow (1/s) Depth (m) F					
0.100 0.8 1.200 0.200 0.9 1.400	1.2	3.000 3.500	1.8	7.000 7.500	2.7 2.8
0.300 0.9 1.400	1.4	4.000	2.1	8.000	2.0
0.400 0.8 1.800	1.4	4.500	2.2	8.500	2.9
0.500 0.8 2.000	1.5	5.000	2.3	9.000	3.0
0.600 0.9 2.200	1.6	5.500	2.4	9.500	3.1
0.800 1.0 2.400 1.000 1.1 2.600	1.6 1.7	6.000 6.500	2.5		
	/		2.0		
	082_2020	Innovera			
	982-2020	тшолдае			

EDS Ltd		Page 5
Unit 10, Penstraze Business	J-2060	
Truro	Kennal Hill	
Cornwall	Plympton	Mirm
Date 23/07/2021	Designed by Joshua Munyard	Drainage
File J-2060 Attenuation Calc	Checked by	Diamarje
Innovyze	Source Control 2020.1	

Pipe Overflow Control

Diameter (m) 0.150 Entry Loss Coefficient 0.500 Slope (1:X) 10.0 Coefficient of Contraction 0.600 Length (m) 10.000 Upstream Invert Level (m) 99.300 Roughness k (mm) 0.600